
ケーブルテレビを活用した 条件不利地域へのデジタル ディバイド解消策

第4回 デジタル・ディバイド解消戦略会議 説明資料

2008年3月26日

(社)日本ケーブルテレビ連盟

ケーブルテレビによる 条件不利地域へのデジタルディバイド解消策

ブロードバンド化

放送のデジタル化

合わせ技

条件不利地域のデジタルディバイド解消

《条件不利地域の環境》

条件不利地域の多くは、地上放送の電波が受信できない難視聴地域であり、 共同受信施設を利用

《具体策》

ブロードバンド実現のために、この共同受信施設を改修し、都市型ケーブルテレビと接続

《効果》

ブロードバンド化を実現すると共に、放送のデジタル化にも対応

条件不利地域での「共同受信施設」の状況と課題

(設備状況)

- VHF帯(1~12CH)で地上波を再送信サービス
- 1施設平均約70世帯規模、難視解消が目的の簡易な施設
- 下り方向への放送サービスのみ、双方向の通信が不可
- 空いているMID帯域(3chと4chの間の帯域)の活用で地デジ伝送可能
 - 共聴ケーブルをそのまま利用
 - UHF帯域の地上デジタル信号を周波数変換により伝送
 - 施設によっては、増幅器等の一部交換が必要
 - 比較的簡単に地デジ受信用HE装置を追加可能
 - 改修コストが低廉(100~200万円程度)

(課題)

- 都市型CATVと難視型共聴施設を接続するための回線の確保
 - 回線の設備負担 → 国、自治体等の支援が必要
- 都市型CATVを接続し、通信機能を追加する場合、流合雑音などが問題
- 流合雑音を避けるため、上り回線をフィルターで抑圧
- 共聴施設で通信機能を追加するには、光ケーブル化が最適

施設形態別の狭帯域共聴施設加入世帯

施設形態	施設数	受信世帯	うち狭帯域施設加入世帯
自主放送型CATV	*1 約0.1万	*1 約2,060万	*2 約30万 (ケーブルテレビ連盟加盟 事業者分のみ)
難視聴解消用共聴	* ⁴	* ^{* 4}	* ⁴
	約2万	約170万	約170万
障害対策共聴	* ⁴	* ⁴	* ⁴
	約5万	約600万	約540万
集合住宅共聴	* ⁴	* ^{* 4}	* ³
	約40万	約500万	約40万

*1:総務省発表「ケーブルテレビの普及状況」(2007年9月)より

*2:日本ケーブルテレビ連盟加盟事業者対象の調査(2007年)

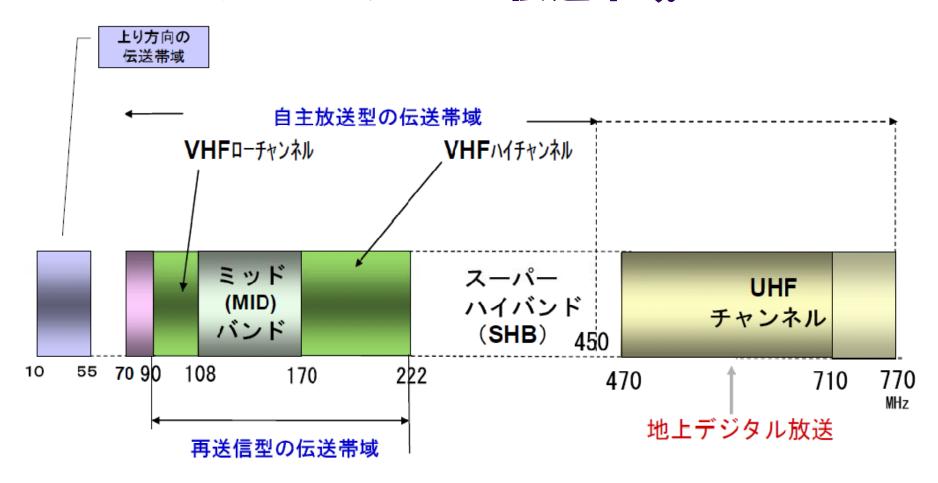
*3:NHK調べ(2002年10月) から、それぞれ推定

*4:(JEITA「地上デジタル放送ケーブル再送信パススルー方式に関する報告書(2003年11月)」より)

都市型ケーブルテレビによる 条件不利地域へのデジタルディバイド解消策

(取組の条件)

- 条件不利地域で、放送再送信サービスを行っている辺地共聴施設 (難視型共聴施設)が対象
- 条件不利地域近傍に、都市型ケーブルテレビが存在



(対応策)

- 都市型CATVを延長し、難視型共聴施設と接続
- 相互接続用光ケーブルを設置 → 国、自治体の支援が必要
 - 伝送帯域は異なるが、地デジの再送信は可能
 - 双方向化により、通信の接続が可能
 - 施設が使用可能な場合は、現存施設との接続
 - 使用不可能な場合は、施設を更新。広帯域化あるいは光ケーブル化により高機能化を図る
- 相互接続用無線を設置 → 通信系無線(WiMAX-WiFi)で対応
 - 接続用光ケーブルの設置が不可能の場合
 - 無線に比べ、ケーブル設置のコスト高などの場合
- 将来、高機能化を図ることにより、多chサービス、通信など双方向 サービスが提供可能

ケーブルテレビの伝送帯域

- ■地上デジタル放送はUHF帯域で放送される
- ■狭帯域のケーブルではUHF帯域が伝送出来ない(MID、SHB帯等で伝送)

周波数変換装置

デジタルディバイド解消に向けた、条件不利地域 へのケーブルテレビの取り組みの具体策

(対策の具体例)

A案 : 既設共聴施設が使用可能な場合

(都市型ケーブルテレビと光ケーブルにより接続)

① 片方向共聴施設の双方向化 (通信機能を追加)

② 狭帯域施設の広帯域化 (通信機能を追加及び地デジ・多CH対応)

B案: 既設共聴施設が使用不可能な場合

(都市型ケーブルテレビと光ケーブルにより接続)

① 狭帯域施設のまま (無線(WiMAX)による通信機能を追加)

② 広帯域・双方向機能を有する同軸施設を新設

(通信機能を追加及び地デジ・多CH対応)

③ 光ケーブルによる施設を新設 (通信機能を追加及び地デジ・多CH対応)

C案: 中継用無線の活用

(都市型ケーブルテレビと無線中継により接続)

放送のデジタル化対応は既設共聴施設を活用 通信のブロードバンド化のみ無線設備を新設

デジタル化及び通信機能改修コスト

(試算例:70世帯程度の簡易施設として検討した例)

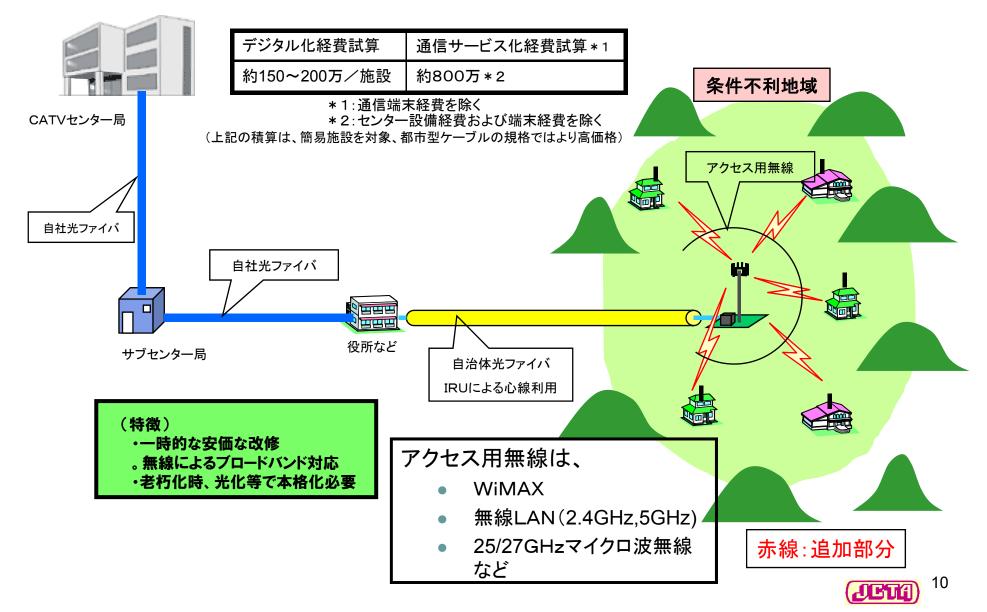
(下記の積算は、簡易施設を対象とし、緩やかな規格に基づいたもので、 都市型ケーブルでの厳しい規格に対しては高価格となる)

具 体 策	改修内容	デジタル化 経費試算	通信化経費試 算 *1
A一① (既設) 狭帯域·双方向化	都市型ケーブルテレビと光ケーブルにより接続。 線路増幅器の双方向タイプへの交換(8台程度)ほか(分岐・分配器、保安器など)	約150~200万 /施設	約400万~/施設
A 一 ② (既設) 広帯域·双方向化	都市型ケーブルテレビと光ケーブルにより接続。 広帯域化では、増幅器、分岐・分配器、場合によってはケーブルも一部取り替え必要	約800万~ /施設	約400万~/施設
B一① _(新設) 無線通信のみ追加	都市型ケーブルテレビと光ケーブルにより接続。 MID帯を活用した地デジ伝送とWimax で通信サービス	約150~200万 /施設	約800万 *2
B一② _(新設) 広帯域双方向化	都市型ケーブルテレビと光ケーブルにより接続。 CATV側と同規格の機器で同軸施設を 新設	約1200万~/ 施設	左記に含む
B 一 ③ _(新設) 光ケーブル通信	都市型ケーブルテレビと光ケーブルにより接続。 通信にはメディアコンバーター及び接続部分で対応設備が必要	約1200万~/ 施設	左記に含む
C 一① _(新設) 接続に中継無線活用	都市型ケーブルテレビと無線中継により接続。 ブロードバンドを実現	約150~200万 /施設	約4000万~/施 設

A-①案: 狭帯域既設設備の双方向化

デジタル化経費試算通信サービス化経費試算*1約150~200万/施設約400万~/施設

*1:通信端末経費を除く (上記の積算は、簡易施設を対象、都市型ケーブルの規格ではより高価格) (保安器 (保安器 (アナログ地上波) (分配器) (分配器) (増幅器) サブセンター局 役所など (増幅器) (分配器) (HE) (分配器) 自治体等所有の光ファイバ 自社光ファイバ IRUによる心線利用 赤字:改修部分 (特徴) ・一時的な安価な改修 CATVセンター局 ・老朽化時、光化等で本格化必要

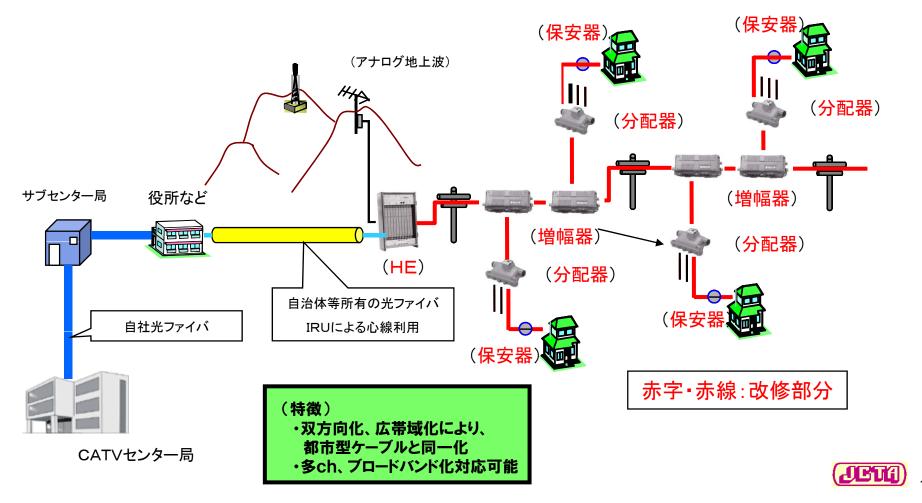

A-2案: 既設設備の広帯域·双方向化

デジタル化経費試算	通信サービス化経費試算 * 1	
約800万~/施設	約400万~/施設	

*1:通信端末経費を除く

(上記の積算は、簡易施設を対象、都市型ケーブルの規格ではより高価格) (保安器 (アナログ地上波) (分配器) (分配器) サブセンター局 役所など (増幅器) (増幅器) (分配器) (HE) (分配器) 自治体等所有の光ファイバ 自社光ファイバ IRUによる心線利用 赤字•赤線:改修部分 (特徴) ・都市型ケーブルと同等の改修 ・広帯域化により多chサービス可 CATVセンター局 ・ケーブル等老朽化時、光化等で本格化必要

B一①案: 既設設備のままでの、WiMAX による無線での通信

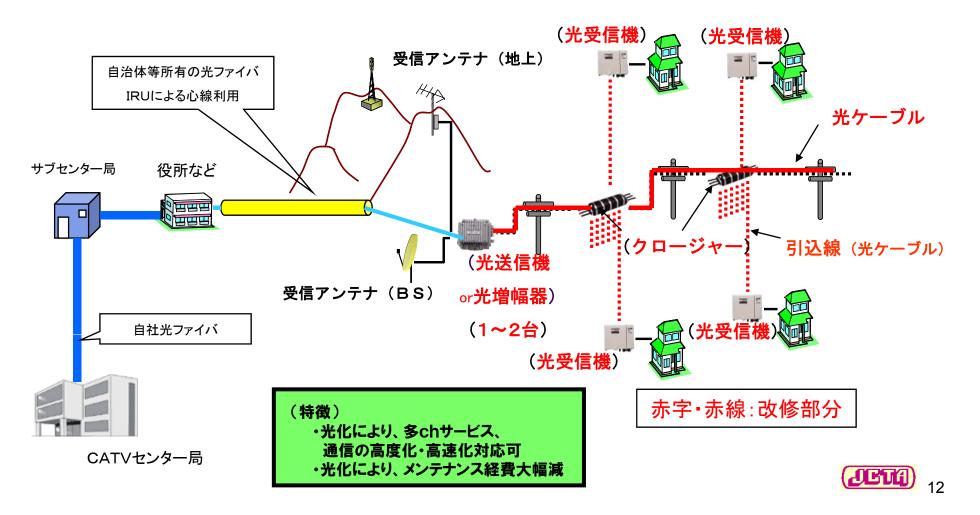


B-②案: 新設・同軸ケーブルによる広帯域・双方向化

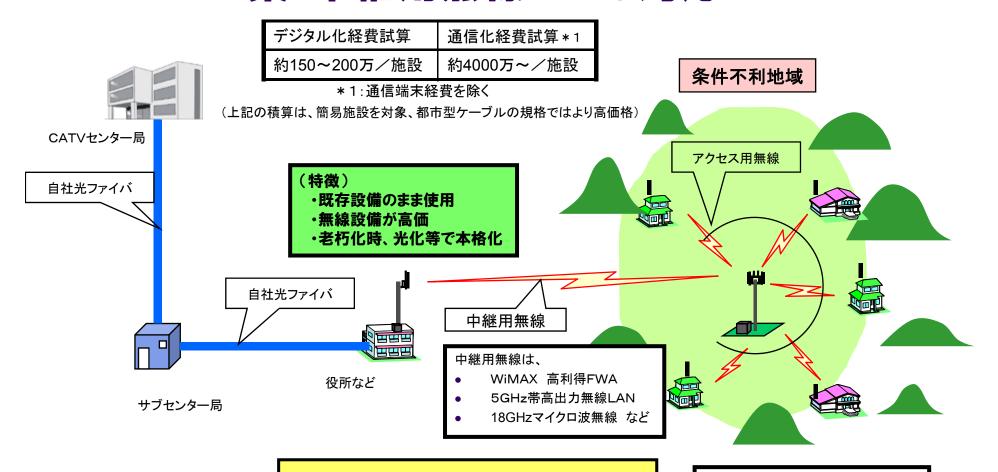
デジタル化経費試算	通信サービス化経費試算 * 1
約1200万~/施設	左記に含む

*1:通信端末経費を除く

(上記の積算は、簡易施設を対象、都市型ケーブルの規格ではより高価格)



B-③案:新設·光ケーブルによる対応


デジタル化経費試算通信サービス化経費試算*1約1200万~/施設左記に含む

*1:通信端末経費を除く

(上記の積算は、簡易施設を対象、都市型ケーブルの規格ではより高価格)

C案:中継用無線による対応

WiMAX価格

センター設備 約3000万円~ 基地局 約800万円~

(平均70戸程度の共聴施設で試算)

アンテナ、局舎、機器一式 @約 500万円

@約 200万円

材料·工事費 置局設計費等

@約 100万円

端末装置一式 @約 1~2万円

アクセス用無線は、

- WiMAX
- 無線LAN(2.4GHz,5GHz)
- 25/27GHzマイクロ波無線など

赤線:改修部分

地域に、生活に役立つ ケーブルテレビ

トリプルプレイ+新たなサービス

放 送

P波地震警報

生活道路

定点カメラ映像

インターネット

+

音楽配信サービス

RFID児童見守り

サービス

電話

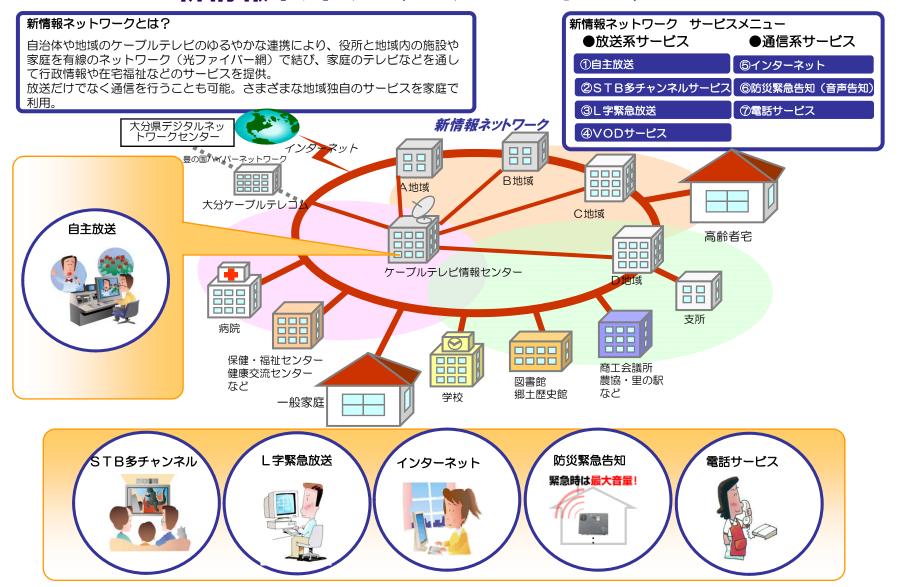
映像配信サービス

(ビデオ・オンデマンド)

地域コミュニティ放送

独居老人見守り

サービス


地域広告、地域情報、 生活情報など

配信サービス

など

(参考資料)

大分ケーブルテレコム 新情報ネットワーク サービスイメージ

(参考資料)

大分ケーブルテレコム サービス内容と行政アプリケーション

新情報ネットワークで提供するサービス

●放送系サービス

●通信系サービス

- ①自主放送
- ②STB多チャンネル・双方向
- ③L字緊急放送
- ④VODサービス

- ⑤インターネット
- ⑥防災緊急告知(音声告知)
- ⑦電話サービス

放送系サービスは、<u>難視聴対策・デジタル化対応を目的とした基本チャンネル</u>と、 STBによる多チャンネルサービスを提供。

ケーブルテレビの自主放送番組(ハイビジョン)を通じて緊急時の防災情報を流す L字緊急放送またはデータ放送に対応。防災対策として利活用。

通信系サービスは、ブロードバンドインターネットを安価な価格で提供、ネットワークの双方向性を生かした地域サービスとして、防災緊急告知と電話サービスを提供。