
RF-IDとMCAの干渉調査について

平成22年11月19日

(財) 移動無線センター (財) 日本移動通信システム協会 ソフトバンク モバイル (株) パナソニック(株)

1. 基本的な考え方

RF-ID vs MCA↑ (GB:5M) の案900-2の内容に基づき作業実施

义 1

- ◇ 干渉計算に必要な各種パラメータについては、MCA、RF-ID各々と携帯電話 との干渉検討に使用する同一のパラメータを使用する
- ◇ MCA、RF-ID共 高度化を考慮せず、現行の規定(CH配置等含む)のまま、 周波数移行したものとして干渉検討を実施

2. 干渉調査方法

- (1) 1対1の対向モデルで最小離隔距離を検討
- (2) 現実的な設置条件に近い調査モデルとして、アンテナ高低差等を考慮した 検討を実施
- (3) 対象となる無線機が移動を伴う場合において、1対1の対向モデルでは、 共用可能性が判断できない場合、確率的な検討を行う

3. 進捗状況

- ◇ガードバンド(GB)の縮小の追加検討
 - 案900-2想定のRF-IDとMCA(↑:中継局 Rx)の間に想定している、GB=5MHz(925 930MHz)の縮小の検討を実施し、今回報告

- <GB縮小の検討について>
 - (1) GBの縮小検討を行うにあたっての考え方
 - 一 当該帯域での周波数利用効率の向上を目的
 - RF-IDの今後の市場拡大、需要増加を見据えて、帯域の拡張性を 検証する。
 - ⇒ RF-IDの帯域 (915-925MHz) について、上端周波数の925MHzを どこまで拡張できるのかを検証
 - RF-IDのアクティブタイプについては、キャリアセンス機能を有すること、 もしくは、極めてDUTY比の低い運用であることから、GB=0MHz 相当においてのCH配置を行っても、実害は想定されない。 但しパッシブタイプのCH配置等の状況を考慮して、適切なCH配置 を行う必要がある。
 - なお、RF-IDのパッシブタイプについては、一番条件の厳しい高出力タイプのものを前提として検討することによって、中出力、低出力の検討を包含するものと考える

<GB縮小の検討について>

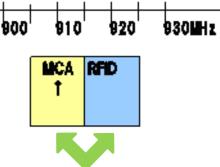
(2) RF-IDのCH配置について

950MHz帯電子タグ	「システムのチャネル配置(現状)

	950MHz帯電子タグシステムのチャネル配置(現状)													
	中心周波数 [MHz]	アクティ	ブタイプ	,	パッシブタイフ	Ĵ								
CH No.	現状 950MHz帯	特定小電力 無線局 1mW	特定小電力 無線局 10mW	構内 無線局 1W	中出力 無線局 250mW	特定小電力 無線局 10mW								
	950.0													
	950.2													
	950.4													
	950.6													
	950.8													
1	951.0													
2	951.2													
3	951.4													
4	951.6													
5	951.8													
6	952.0													
7	952.2													
8	952.4			LBT不要										
9	952.6													
10	952.8													
11	953.0													
13	953.2 953.4													
14	953. 4 953.6		-	LBT不要										
15	953.8			LDI小安										
16	954.0													
17	954.2													
18	954.4													
19	954.6													
20	954.8			LBT不要										
21	955.0													
22	955.2													
23	955.4													
24	955.6													
25	955.8													
26	956.0			LBT不要										
27	956.2													
28	956.4													
29	956.6													
30	956.8													
31	957.0													
32	957.2													
33	957.4													
	34 957.6													
35	957.8													
36	958 0													

920MHz帯を想定した場合のCH配置例(※1)

	920MHz帯を想定した場合のCH配置例(※1)													
CH No.	中心周波数 [MHz]		ブタイプ		パッシブタイフ	f								
(※2)	移行後 想定周波数 920MHz帯	特定小電力 無線局 1mW	特定小電力 無線局 10mW	構内 無線局 1W	中出力 無線局 250mW	特定小電力 無線局 10mW								
	(※3)													
	915.0													
	915.2 915.4													
	915.4													
	915.8													
1	916.0													
2	916.2													
3	916.4													
4	916.6													
5	916.8													
6	917.0					 								
7	917.2													
8	917.4			LBT不要										
9	917.6			LD I I I S										
10	917.8													
11	918.0													
12	918.2													
13	918.4													
14	918.6			LBT不要										
15	918.8			, , ,										
16	919.0													
17	919.2													
18	919.4													
19	919.6													
20	919.8			LBT不要										
21	920.0													
22	920.2													
23	920.4													
24	920.6													
25	920.8													
26	921.0			LBT不要										
27	921.2													
28	921.4													
29	921.6													
30	921.8													
31	922.0													
32	922.2													
33 34	922.4													
	922.6					 								
35 36	922.8 923.0					 								
30	923.0					\vdash								
	923.2					\vdash								
	923.4					\vdash								
	923.8					\vdash								
	924.0					 								
	924.2					 								
	924.4					 								
	924.6					 								
	924.8					 								
	925.0					 								
A	020.0		TEL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											


CH数を増やしつつ、上端のCHをどこまで、 MCA下端CHと近接することが可能か? --→

<GB縮小の検討について>

(3) (参考) 周波数再編時の移行期間(過渡期)における事象に関する検討の確認

周波数再編時の移行期において、RFID、MCAの双方のシステムに関して、

- 1. 移行期における、MCAの既存周波数(905 915MHz)に残留している装置 (中継局(RX)、移動機(TX))
- 2. 移行期における、RFIDの新規周波数 (915 925MHz) に移行済みの装置が、同時期に、同エリア、または近隣エリアに存在する場合、下記図のとおり *GB=OMHz* の周波数関係にて存在する可能性がある。
 - ⇒ GB=0MHzにおける干渉検討を行うことで、検証が可能

GB=5MHz時の検討同様、以下の検討を実施(CH配置は現状どおりとする。)

- 1. RF-ID ⇒ MCAについては、1対1の対向モデル
- 2. MCA ⇒ RF-IDについては、1対1の対向モデルと確率計算
- ※ CH配置は前SLD 5記載のCH配置を考慮し、実GB(MCA(↑:中継局 Rx)の 下端CHとRF-ID 上端CHの離調周波数)が約2MHzある前提で計算
- ※ 上述検討においては、GB=OMHzとして影響無しと結論

(割当周波数に対し、CH配置は2MHz内側配置の条件にて)

<GB縮小の検討について>

(4) 使用パラメータについて

- 検討に使用する、現状規定のパラメータ、特にパッシブタグシステム(中出力型)の許容感度抑圧電力については、-30dBm@2MHzオフセットとして規定しており、2MHz未満については、未定。
- ー 実GB=2MHzに対し、さらに縮小する(EX. 実GB=1MHz等)検討の際には、 パッシブタグステムの許容感度抑圧電力をはじめ、適切なパラメータ の見直しを行う必要がある。

(5) 考察

- 前述(3)、(4)の状況に鑑み、現状においては、以下のとおりと考察する。
 - ◇ 実GB(MCA (↑:中継局 Rx)の下端CHと、RF-ID上端CHの離調周波数)として、
 2MHzまで縮小が可能である。
 - ⇒ MCA の下端CHに対して、RF-ID (パッシブタイプ) としては、2MHzまで、近接 するCH配置が可能

4-1. 干渉検討の組合せと干渉検討結果一覧 GB=5MHz (1):RF-ID Tx ⇒ MCA 中継局 Rx

表1: 1対1対向モデル計算結果(1) (GB=5MHz)

					収1. 「グ」「グ」「「 「 													
システム 組合せNo. 与	テ干渉システム	被干渉システム	被干渉システム	被干渉システム	被干渉システム	被干渉システム	被干渉システム	伝搬モデル	アンテナ指向	検討モデル1 特性を考慮しない 所要離隔距離	場合の		方向のアンテナ 計損が最小となる	指向特性を考慮		備考		
				帯域内干渉を 避ける離隔距離 (m)	帯域外干渉を 避ける離隔距離 (m)	所要 改善量 (dB)	離隔 距離 (m)		帯域外干渉を 避ける改善量 (dB)									
			自由空間	43	1943	98	112	-20.1	13.1	13.1	- RF-IDの設置条件の調整、遮蔽物の設置、							
	RFID TX パッシブ高出力)(ディジタルMCA ↑ (中継局受信 h=40m)	奥村-秦	(注1)	(注1)	98	-	-	-	-	MCA中継局へのフィルタ挿入等の対策を行うこと							
	· > > > -1 -1 -1 -1 -1 -1 -		Walfisch-池上	36	254	98	57	-27.3	5.9	5.9	により共用可能							
		ディジタルMCA ↑	自由空間	90	4,107	104	1,697	-29.1	4.1	4.1								
2 (/3"	RFID TX パッシブ高出力)	(中継局受信	奥村-秦	(注1)	(注1)	104	1,697	-56.7	-23.6	-23.6	- 共用可能							
(, ,	. , , , , , , , , , , , , , , , , , , ,	h=150m)	Walfisch-池上	(注1)	(注1)	104	(注1)	(注1)	(注1)	-								
			自由空間	30	689	89	112	-22.3	4.8	4.8								
	RFID TX パッシブ中出力)(ディジタルMCA ↑ (中継局受信 h=40m)	奥村-秦	(注1)	(注1)	89	-	-	-	-	- 共用可能							
(, ,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Walfisch-池上	30	149	89	55	-27.5	-0.3	-0.3								
		ディジタルMCA ↑	自由空間	64	1,457	95	1,697	-32.0	-4.9	-4.9								
/	RFID TX パッシブ中出力)	(中継局受信	奥村-秦	(注1)	(注1)	95	1,697	-59.7	-32.6	-32.6	- 共用可能							
(7.1)	· // // // // // // // // // // // // //	h=150m)	Walfisch-池上	(注1)	(注1)	95	(注1)	(注1)	(注1)	-								
			自由空間	30	137	75	112	-22.4	-9.2	-9.2								
5	RFID TX (パッシブ低出力)	ディジタルMCA ↑ (中継局受信 h=40m)	奥村-秦	(注1)	(注1)	(注1)	-	-	-		- 共用可能							
(0.1)			Walfisch-池上	30	65	75	55	-27.5	-14.3	-14.3								
		ディジタルMCA ↑	自由空間	64	290	81	1,697	-32.0	-18.9	-18.9								
6 (パッ	RFID TX パッシブ低出力)	(中継局受信	奥村-秦	(注1)	(注1)	(注1)	1,697	-59.7	-46.6	-46.6	- 共用可能							
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	h=150m)	Walfisch-池上	(注1)	(注1)	(注1)	(注1)	(注1)	(注1)	-								
			自由空間	60	43	67	112	-16.4	-19.2	-16.4								
7 (7	RFID TX アクティブ 1mW)(ディジタルMCA ↑ (中継局受信 h=40m)	奥村-秦	(注1)	(注1)	67	-	-	-	-	- 共用可能							
			Walfisch-池上	43	36	67	55	-21.5	-24.3	-21.5								
		ディジタルMCA ↑	自由空間	127	92	74	1,697	-26.0	-28.9	-26.0								
8 (7	RFID TX アクティブ 1mW)	(中継局受信	奥村-秦	(注1)	(注1)	74	1,697	-53.7	-56.6	-53.7	- 共用可能							
, ,		h=150m)	Walfisch-池上	(注1)	(注1)	74	(注1)	(注1)	(注1)	-								
		>> +	自由空間	60	137	75	112	-16.4	-9.2	-9.2								
9 (アク	RFID TX 'クティブ 10mW)	ディジタルMCA ↑ (中継局受信 h=40m)	奥村-秦	(注1)	(注1)	75	-	-	-	-	- 共用可能							
			Walfisch-池上	43	65	75	55	-21.5	-14.3	-14.3								
		ディジタルMCA ↑	自由空間	127	290	81	1,697	-26.0	-18.9	-18.9								
10 (アク	RFID TX (アクティブ 10mW)	(中継局受信	奥村-秦	(注1)	(注1)	81	1,697	-53.7	-46.6	-46.6	- 共用可能							
, , ,		h=150m)	Walfisch-池上	(注1)	(注1)	81	(注1)	(注1)	(注1)	-								

4-1. 干渉検討の組合せと干渉検討結果一覧 GB=5MHz (2): MCA 移動局 Tx ⇒ RF-ID パッシブ Rx

表2: 1対1対向モデル計算結果(2) (GB=5MHz)

システム 組合せNo.	与干渉システム	被干渉システム	伝搬モデル	アンテナ指向	検討モデル1 特性を考慮しない 「要離隔距離	場合の		方向のアンテナ 負が最小となる			備考			
л <u>а</u> д е но.				帯域内干渉を 避ける離隔距離 (m)	帯域外干渉を 避ける離隔距離 (m)	所要 改善量 (dB)	離隔 距離 (m)	帯域内干渉を 避ける改善量 (dB)	帯域外干渉を 避ける改善量 (dB)	所要 改善量 (dB)				
			自由空間	394	96	84					- 確率計算の実施			
11	ディジタルMCA ↑ (車載移動局送信)	RFID RX (パッシブ高出力)	奥村-秦	(注1)	(注1)	84					(干渉確率は、0.1%以下:詳細は下表参照)			
			Walfisch-池上	(注1)	(注1)	84					⇒ 共用可能			
			自由空間	787	192	90	19	28.2	16.0	28.2	- 確率計算の実施			
12	ディジタルMCA ↑ (管理移動局送信)	RFID RX (パッシブ高出力)	奥村-秦	(注1)	(注1)	90	-	-	-	-	(干渉確率は、0.1%以下:詳細は下表参照)			
	(I I) A) (I	(* 1) 2 2 12 12 13 7	Walfisch-池上	(注1)	(注1)	90	(注1)	(注1)	(注1)	-	⇒ 共用可能			
			自由空間	70	68	69					- 確率計算の実施			
13	ディジタルMCA ↑ (車載移動局送信)	RFID RX (パッシブ中出力)	奥村-秦	(注1)	(注1)	69					(干渉確率は、0.1%以下:詳細は下表参照)			
(早)	· · · · · · · · · · · · · · · · · · ·	(ハッシン中田刀)	Walfisch-池上	(注1)	(注1)	69					⇒ 共用可能			

- (注1) 与干渉または被干渉システムの離隔距離、またはアンテナ高が奥村-秦またはWalfischー池上モデルの適用範囲外であることを示す。
- (注2) 表中網掛け(灰色)部分: 与干渉システムと被干渉システムのアンテナ地上高が同じであるため、検討モデル2が適用出来ない。(アンテナ正対モデル)

表3: 確率計算結果(1) (GB=5MHz)

システム 組合せNo.	与干渉システム	中心周波数 [MHz]	被干渉システム	受信周波数帯域 [MHz]	干渉種別	干渉許容量	干渉確率	干渉確率 3% 値	備考
11	ディジタル MCA ↑	930, 025	RFID Rx	917, 100 - 921, 300	帯域内干渉	-74.0 dBm/4.2MHz	0.1%以下	-146.1 dBm/4.2MHz	- 共用可能
11	(車載移動局送信)	930.023	(パッシブ 高出力)	917.100 - 921.300	感度抑圧	-30.0 dBm@2MHz offset	0.1%以下	-103.3 dBm	一 共用可能
12	ディジタル MCA ↑	930, 025	RFID Rx	917. 100 - 921. 300	帯域内干渉	-74.0 dBm/4.2MHz	0.1%以下	-127.6 dBm/4.2MHz	- 共用可能
12	(管理移動局送信)	930.020	(パッシブ 高出力)	917.100 - 921.300	感度抑圧	-30.0 dBm@2MHz offset	0.1%以下	−96.5 dBm	一 共用り能
12	ディジタル MCA ↑	930, 025	RFID Rx	917. 300 - 921. 500	帯域内干渉	-74.0 dBm/4.2MHz	0.1%以下	-142.8 dBm/4.2MHz	- 共用可能
13	(車載移動局送信)	300.020	(パッシブ 中出力)	921.000	感度抑圧	-30.0 dBm@2MHz offset	0.1%以下	-100.1 dBm	ᆍᅏᇭᄞᄩ

4-2. 干渉検討の組合せと干渉検討結果一覧 GB=0MHz (1):RF-ID Tx ⇒ MCA 中継局 Rx

表4: 1対1対向モデル計算結果(3) (周波数移行時GB=0MHz)

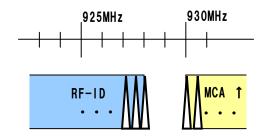
システム 組合せNo.	与干渉システム	被干渉システム	伝搬モデル	アンテナ指向	検討モデル1 特性を考慮しない 所要離隔距離	場合の		方向のアンテナ 計損が最小となる			備考
				帯域内干渉を 避ける離隔距離 (m)	帯域外干渉を 避ける離隔距離 (m)	所要 改善量 (dB)	離隔 距離 (m)	帯域内干渉を 避ける改善量 (dB)	帯域外干渉を 避ける改善量 (dB)	所要 改善量 (dB)	
		>>+ · · · · · ·	自由空間	135	1943	98	112	-10.1	13.1	13.1	- RF-IDの設置条件の調整、遮蔽物の設置、
1	RFID TX (パッシブ高出力)	ディジタルMCA ↑ (中継局受信 h=40m)	奥村-秦	(注1)	(注1)	98	-	-	-	ı	MCA中継局へのフィルタ挿入等の対策を行うこと
			Walfisch-池上	65	254	98	57	-17.3	5.9	5.9	により共用可能
	-510 TV	ディジタルMCA ↑	自由空間	285	4,107	104	1,697	-19.1	4.1	4.1	
2	RFID TX (パッシブ高出力)	(中継局受信	奥村-秦	(注1)	(注1)	104	1,697	-46.7	-23.6	-23.6	- 共用可能
		h=150m)	Walfisch-池上	(注1)	(注1)	104	(注1)	(注1)	(注1)	-	
	DEID TV	= otal MoA ↑	自由空間	96	689	89	112	-12.3	4.8	4.8	
3	RFID TX (パッシブ中出力)	ディジタルMCA ↑ (中継局受信 h=40m)	奥村-秦	(注1)	(注1)	89	-	=	-	-	- 共用可能
			Walfisch-池上	54	149	89	55	-17.5	-0.3	-0.3	
	RFID TX	ディジタルMCA ↑	自由空間	202	1,457	95	1,697	-22.0	-4.9	-4.9	
4	(パッシブ中出力)	(中継局受信 h=150m)	奥村-秦	(注1)	(注1)	95	1,697	-49.7	-32.6	-32.6	- 共用可能
		n=130m)	Walfisch-池上	(注1)	(注1)	95	(注1)	(注1)	(注1)	-	
	RFID TX	ディジタルMCA ↑	自由空間	95	137	75	112	-12.4	-9.2	-9.2	
5	(パッシブ低出力)	(中継局受信 h=40m)	奥村-秦	(注1)	(注1)	(注1)	_	-	-	-	- 共用可能
			Walfisch-池上	54	65	75	55	-17.5	-14.3	-14.3	
	RFID TX	ディジタルMCA ↑	自由空間	202	290	81	1,697	-22.0	-18.9	-18.9	
6	(パッシブ低出力)	(中継局受信 h=150m)	奥村-秦	(注1)	(注1)	(注1)	1,697	-49.7	-46.6	-46.6	- 共用可能
		11-1301117	Walfisch-池上	(注1)	(注1)	(注1)	(注1)	(注1)	(注1)	-	
	RFID TX	ディジタルMCA ↑	自由空間	191	43	77	112	-6.4	-19.2	-6.4	
7	(アクティブ 1mW)	(中継局受信 h=40m)	奥村-秦	(注1)	(注1)	77	_	-	-	-	- 共用可能
			Walfisch-池上	77	36	77	55	-11.5	-24.3	-11.5	
	RFID TX	ディジタルMCA ↑	自由空間	403	92	84	1,697	-16.0	-28.9	-16.0	
8	(アクティブ 1mW)	(中継局受信 h=150m)	奥村-秦	(注1)	(注1)	84	1,697	-43.7	-56.6	-43.7	- 共用可能
			Walfisch-池上	(注1)	(注1)	84	(注1)	(注1)	(注1)	-	
	RFID TX	ディジタルMCA ↑	自由空間	191	137	75	112	-6.4	-9.2	-6.4	
9	(アクティブ 10mW)	(中継局受信 h=40m)	奥村-秦	(注1)	(注1)	75	-	-	-	-	- 共用可能
			Walfisch-池上	77	65	75	55	-11.5	-14.3	-11.5	
	RFID TX	ディジタルMCA ↑	自由空間	403	290	81	1,697	-16.0	-18.9	-16.0	
10	(アクティブ 10mW)	(中継局受信 h=150m)	奥村-秦	(注1)	(注1)	81	1,697	-43.7	-46.6	-43.7	- 共用可能
		11 1001117	Walfisch-池上	(注1)	(注1)	81	(注1)	(注1)	(注1)	-	

4-2. 干渉検討の組合せと干渉検討結果一覧 GB=OMHz (2): MCA 移動局 Tx ⇒ RF-ID パッシブ Rx

表5: 1対1対向モデル計算結果(4) (周波数移行時GB=0MHz)

システム 組合せNo.	与干渉システム	被干渉システム	伝搬モデル	アンテナ指向	検討モデル1 特性を考慮しない 「要離隔距離	場合の		方向のアンテナ 計損が最小となる			備考
<u>ма д</u> е н о.				帯域内干渉を 避ける離隔距離 (m)	帯域外干渉を 避ける離隔距離 (m)	所要 改善量 (dB)	離隔 距離 (m)	帯域内干渉を 避ける改善量 (dB)			
			自由空間	1754	96	97					- 確率計算の実施
11	ディジタルMCA ↑ (車載移動局送信)	RFID RX (パッシブ高出力)	奥村-秦	(注1)	(注1)	97					(干渉確率は、0.1%以下:詳細は下表参照)
			Walfisch-池上	(注1)	(注1)	97					⇒ 共用可能
			自由空間	3499	192	103	19	41.1	16.0	41.1	- 確率計算の実施
12	ディジタルMCA ↑ (管理移動局送信)	RFID RX (パッシブ高出力)	奥村-秦	(注1)	(注1)	103	-	-	-	-	(干渉確率は、0.1%以下:詳細は下表参照)
	(B-ED MADE II)	(ハランラ同田カ)	Walfisch-池上	(注1)	(注1)	103	(注1)	(注1)	(注1)	-	⇒ 共用可能
			自由空間	312	68	82					- 確率計算の実施
13	ディジタルMCA ↑ (車載移動局送信)	RFID RX (パッシブ中出力)	奥村-秦	(注1)	(注1)	82					(干渉確率は、0.1%以下:詳細は下表参照)
	(半期19到问还后)	(ハッシノ中田刀)	Walfisch-池上	(注1)	(注1)	82					⇒ 共用可能

- (注1) 与干渉または被干渉システムの離隔距離、またはアンテナ高が奥村 奏またはWalfisch 池上モデルの適用範囲外であることを示す。
- (注2) 表中網掛け(灰色)部分: 与干渉システムと被干渉システムのアンテナ地上高が同じであるため、検討モデル2が適用出来ない。(アンテナ正対モデル)


表6: 確率計算結果(2) (周波数移行時GB=0MHz)

	システム 組合せNo.	与干渉システム	中心周波数 [MHz]	被干渉システム	受信周波数帯域 [MHz]	干渉種別	干渉許容量	干渉確率	干渉確率 3% 値	備考			
I	11	ディジタル MCA ↑	914, 975	RFID Rx	917. 100 - 921. 300	帯域内干渉	-74.0 dBm/4.2MHz	0.1%以下	-147.1 dBm/4.2MHz	- 共用可能			
	11	(車載移動局送信)	314. 370	(パッシブ 高出力)	917.100 - 921.300	感度抑圧	-30.0 dBm@2MHz offset	0.1%以下	-104.3 dBm	天历刊化			
I	12	ディジタル MCA ↑	914. 975	RFID Rx	917. 100 - 921. 300	帯域内干渉	-74.0 dBm/4.2MHz	0.1%以下	-130.4 dBm/4.2MHz	- 共用可能			
ı	12	(管理移動局送信)	914. 975	(パッシブ 高出力)	917.100 - 921.300	感度抑圧	-30.0 dBm@2MHz offset	0.1%以下	−87.6 dBm	一大用り能			
I	13	ディジタル MCA ↑	914, 975	RFID Rx	916, 900 - 921, 100	帯域内干渉	-74.0 dBm/4.2MHz	0.1%以下	-142.2 dBm/4.2MHz	- 共用可能			
ı	13	(車載移動局送信)	314. 373	(パッシブ 中出力)	910.900 - 921.100	感度抑圧	-30.0 dBm@2MHz offset	0.1%以下	−99.5 dBm	ᅮᅏᇭᄞᇷ			

5. まとめ

RF-IDとMCA (中継局 Rx) 間のGBについて

- 実GB(MCA (↑:中継局 Rx)の下端CHと、RF-ID上端CHの離調周波数)として、2MHzまで縮小が可能である。
 - ⇒ MCA の下端CHに対して、RF-ID(パッシブタイプ)としては、2MHzまで、近接 するCH配置が可能

- RF-IDのアクティブタイプについては、パッシブタイプのCH配置等の状況を 考慮して、適切なCH配置を行う必要がある。
- ー 上述、実GB=2MHzに対し、さらに縮小する(EX. 実GB=1MHz等)検討の際には、 パッシブタグステムの許容感度抑圧電力をはじめ、適切なパラメータの見直しを 行う必要がある。

別添

- 検討パラメータ(抜粋)
 - ⇒ 今回の追加検討において、キーとなるパラメータのみ掲載。 その他、パラメータは資料81-49-3に掲載済みのため割愛
 - ※ 個別計算結果については、資料81-48-3、資料81-49-3に記載のため、今回は記載を割愛

検討パラメータ(抜粋) : RF-IDパラメータ (RX -1)

950MHz帯電子タグシステムの受信パラメータ

OCCUMENTAL PROPERTY OF THE PRO	マノージス間・	.,,						
	単位	パツ	アクティブタグシステム※3					
	丰四	高出力型	中出力型			低出力型	1mWタイプ	10mWタイプ
許容干渉電力	dBm/MHz *	-74dBm/4.2MHz(*1)		-74dBm/4.2MHz(*2)	-64dBm/1MHz(*3)	対象外	対象外
許容感度抑圧電力	dBm	-30dBm@2MHzオフセット(*4)		データ無し		データ無し	対象外	対象外

*dBm/100kHz, dBm/kHz等の単位でも可

*1:ARIB STD-T89

*2:ARIB STD-T100 *3:ARIB STD-T90

*4:総務省 情報通信審議会 情報通信技術分科会 小電力無線システム委員会 報告(平成17年10月5日)

システム組み合わせNo.13

与干渉システム:ディジタルMCA↑(車載移動局送信)、被干渉システム」RF-ID RX(パッシブ中出力)の検討においては、パッシブタグシステム(中出力型)の許容感度抑圧電力:-30dBm@2MHzオフセットとして想定