別紙 1

情報通信審議会 情報通信技術分科会 電波利用環境委員会報告(案)

I 審議事項

電波利用環境委員会は、電気通信技術審議会諮問第 118 号「携帯電話端末等に対する比 吸収率の測定方法」(平成 12 年 5 月 22 日諮問)について審議を行った。

Ⅱ 委員会及び作業班の構成

委員会の構成については、別表1及び別表2のとおり。

なお、検討の促進を図るため、委員会の下に作業班を設けて検討を行った。作業班の構 成については別表3のとおり。

Ⅲ 審議経過

- 1 局所吸収指針委員会
 - ① 第1回(平成21年8月24日)

委員会の運営方法について審議を行ったほか、審議の促進を図るため、作業班を 設置した。また、局所吸収指針の概要及び比吸収率(SAR)^{※1}測定方法の概要に ついて説明が行われた。

② 第2回(平成22年7月1日)

作業班からの審議状況の報告及び質疑応答が行われた。

- 2 電波利用環境委員会
 - ① 第1回(平成23年2月14日)

委員会及び作業班の運営方法について審議を行ったほか、局所吸収指針委員会か ら引き続き、比吸収率測定方法作業班を設置した。また、局所吸収指針委員会にお ける比吸収率測定方法作業班の審議状況について説明が行われた。

② 第3回(平成23年7月29日)

比吸収率の測定方法に関する電波利用環境委員会報告(案)の審議が行われた。

¹ Specific Absorption Rate。生体が電磁界にさらされることによって単位質量の組織に単位時間 に吸収されるエネルギー量。

③ 第4回(平成23年8月29日)

比吸収率の測定方法に関する電波利用環境委員会の審議及び取りまとめが行われた。

- 3 局所吸収指針委員会 比吸収率測定方法作業班
 - ① 第1回(平成21年9月4日)

作業班の運営方法について審議を行った。また、局所吸収指針の概要及びSAR 測定方法の概要について説明が行われた。

② 第2回(平成22年2月18日)

比吸収率測定方法に関する国際規格化の動向について説明があり、審議が行われた。

③ 第3回(平成22年5月20日)

人体に対して 20cm 以内に近接して使用される無線機器の SAR 測定方法の国際 規格(IEC 62209-2)の内容等について説明があり、審議が行われた。

④ 第4回(平成22年7月28日)

第2回局所吸収指針委員会における審議状況報告に対する指摘事項について報告があった。また、人体側頭部で使用される無線機器の SAR 測定方法の国際規格 (IEC 62209-1)の改定動向や各国の規制動向等について説明があり、審議が行われた。

- 4 電波利用環境委員会 比吸収率測定方法作業班
 - ① 第1回(平成23年6月2日)

IEC 62209-1 及び IEC 62209-2 に関する国際規格化の動向や、各国の規制への反 映状況について説明があり、審議が行われた。

② 第2回(平成23年7月7日)

これまでの作業班における審議結果を踏まえ、人体に対して 20cm 以内に近接し て使用される無線機器の SAR 測定方法に関するとりまとめの審議を行った。

Ⅳ 審議結果

別添のとおり、電気通信技術審議会諮問第 118 号「携帯電話端末等に対する比吸収率の 測定方法」(平成 12 年 5 月 22 日諮問)のうち「人体側頭部を除く人体に近接して使用す る無線機器等に対する比吸収率の測定方法」を取りまとめた。

別表 1

情報通信審議会 情報通信技術分科会 電波利用環境委員会 構成員

(敬称略、専門委員は五十音順)

	氏名	主要現職			
主 査	ふじわら おきむ 藤原 修	名古屋工業大学工学研究科 教授			
専門委員	^{あめみや} ふじぉ 雨宮 不二雄	NTTアドバンステクノロジ(株) EMCチーム主幹担当部長			
"	あんどう まこと 安藤 真	東京工業大学大学院理工学研究科 教授			
"	いけだ すみこ 池田 澄子	(社)全国消費生活相談員協会 専務理事 一般社団法人関西電子工業振興センター			
"	いのうえ まさひろ 井上 正弘				
"	うえの しょうごう 上野 照岡	九州大学大学院工学研究院 特任教授			
"	くまだ ぁ き こ 熊田 亜紀子	東京大学大学院工学系研究科 准教授			
"	くるだ みちこ 黒田 道子	東京工科大学コンピュータサイエンス学部 教授			
"	LOJA ENL 篠塚 隆	(独)情報通信研究機構 電磁波計測研究所 電磁環境研究室			
"	LGIN 25608 白井 智之	名古屋市立大学大学院 医学研究科 名誉教授			
"	きう 書きな 多気 昌生	首都大学東京大学院理工学研究科 教授			
"	たなか けんじ 田中 謙治	(財)テレコムエンジニアリングセンター 常務理事			
"		九州大学先導物質化学研究所 教授			
"		日産自動車(株) 電子信頼性グループ主査			
"	とくだ まさみつ	東京大学大学院新領域創成科学研究科 客員共同研究員			
"	のじま としお野島 俊雄	のじま としお 野島 俊雄 北海道大学大学院情報科学研究科 教授			
"	はせやまみき 人口 美紀 北海道大学大学院情報科学研究科 教授				
"	林亮治	三菱電気(株)情報技術総合研究所 光マイクロ波回路技術部専任			
"	ふくなが かおり 福永 香	(独)情報通信研究機構 電磁波計測研究所 研究マネージャー			
"	^{ほり かずゆき} 堀 和行 ソニー(株)品質センター コンプライアンス推進Gp課長				
"	やまなか ゆきお 山中 幸雄 (独)情報通信研究機構 社会還元促進部門統括				
"	かたなべ そういち 渡邊 聡一	(独)情報通信研究機構 電磁波計測研究所 研究マネージャー			

(計 22 名)

別表 2

情報通信審議会 情報通信技術分科会 局所吸収指針委員会 構成員 (平成23年1月17日まで)

(敬称略、専門委員は五十音順)

	氏名	主要現職			
主查	あんどう まこと 安藤 真	東京工業大学大学院 理工学研究科 教授			
主査代理	多氣	首都大学東京大学院 理工学研究科 教授			
専門委員	いけだ すみこ 池田 澄子	(社)全国消費生活相談員協会 専務理事			
11	うえの しょうごう 上野 照剛	九州大学大学院工学研究院 特任教授			
11	まぐら しんじ 小倉 紳治	モトローラ(株) 代表取締役社長			
11	くまだ あきこ 熊田 亜紀子	東京大学大学院 工学系研究科 准教授			
11	城内 博	日本大学大学院 理工学研究科医療・福祉工学専攻 教授			
11	白井 智之	名古屋市立大学大学院 医学研究科実験病態病理学 教授			
11	たけばやし とおる 武林 亨	慶応義塾大学 医学部衛生学公衆衛生学教室 教授			
11	たなか けんじ 田中 謙治	(財)テレコムエンジニアリングセンター 常務理事			
11	のじま としお 野島 俊雄	北海道大学大学院 情報科学研究科 教授			
11	は たの むっこ 波多野 睦子	東京工業大学大学院 理工学研究科 教授			
"	ふくなが かおり 福永 香	(独)情報通信研究機構 電磁波計測研究センター 研究マネージャー			
"	^{ほんだ よしお} 本多 美雄	欧州ビジネス協会 電気通信機器委員会 委員長			
"	^{わたなべ そういち} 渡邊 聡一	(独)情報通信研究機構 電磁波計測研究センター 研究マネージャー			

(計15名)

別表 3

情報通信審議会 情報通信技術分科会 電波利用環境委員会 比吸収率測定方法作業班 構成員

(敬称略、構成員は五十音順)

	氏名	主要現職
主 任	たなべ そういち 渡邊 聡一	(独)情報通信研究機構 電磁環境研究室 研究マネージャー
主任代理	いしい のぞむ 石井 望	新潟大学 工学部 福祉人間工学科福祉生体工学講座 准教授
構成員	^{あたち まさる} 安達 勝	(株)日立国際電気 通信事業部 通信システム設計本部 業務システム設計部 部長
"	をばし やす お 天橋 康雄	(社)電気通信事業者協会 業務部長
"	いとう りょう 伊藤 亮	NEC カシオモバイルコミュニケーションズ(株) 共通基盤開発本部 マネージャー
"	おおにし てるお	(株)NTTドコモ 先進技術研究所 主任研究員
"	^{おおやま} ますみ 大山 真澄	イー・アクセス(株) サービス戦略本部企画部担当部長
"	^{まかく かおる} 岡部 薫	シャープ(株) 通信システム事業本部 プラットフォーム開発センター無線開発部 部長
"	かなやま よしたか 金山 佳貴	ソニー・エリクソン・モバイルコミュニケーションズ(株) エレクトロニクス 2 部アンテナ課 統括課長
"	きみやま じゅんこ 君山 潤子	(社)全国消費生活相談員協会 IT 研究会 研究員
"	こまっざき たけし 小松崎 剛	パナソニックモバイルコミュニケーションズ(株) モバイルターミナルビジネスユニット
"	と、、 たかひさ 戸部隆久	(財)テレコムエンジニアリングセンター 電磁環境試験部
"	^{なかがわ あつし}	KDDI(株) 技術企画本部電波部 企画・制度グループ担当部長
"	とがし ひろゆき 富樫 浩行	(株)ディーエスピーリサーチ 技術開発部・認証部 部長
"	さだ ましふみ 戸田 善文	(社)情報通信ネットワーク産業協会 適合性評価委員会 副委員長
"	いしだ ひろのり	(社)電波産業会 研究開発本部 電磁環境ヴループ 担当部長
"	はまだ りら 濱田 リラ	(独)情報通信研究機構 電磁環境研究室 主任研究員
"	西成卓三	ソフトバンクモンバイル(株) モバイルネットワーク本部 ネットワーク統括部 電波部担当部長
"	まつうら ながひろ 松浦 長洋	(株)バッファロー ブロードバンドソリューションズ事業部担当次長
"	みぞく たつよし 溝部 達克	日本無線(株) 通信機器技術部 モバイル通信グループ 参事
"	ほその きょふみ 細野 清文	(株)ウィルコム 技術企画部 制度渉外グループ 担当部長
"	き長 寿	(社)電子情報技術産業協会 EMF 専門委員会メンバー

(計22名)

別 添

一部答申(案)

諮問第118号

「携帯電話端末等に対する比吸収率の測定方法」

のうち

「人体側頭部を除く人体に近接して使用する無線機器等に対する比吸収率の 測定方法」

「人体側頭部を除く人体に近接して使用する無線機器等に対する比吸 収率の測定方法」答申

1	ま	えがき	1			
2	目的	的と範囲	2			
	2.1	目的	2			
	2.2	範囲	2			
3	用語	語の意味	3			
4	測	定原理	7			
5	測況	則定装置の条件				
	5.1	環境条件	8			
	5.2	ファントム外殻	8			
	5.3	ファントム液剤	10			
	5.4	SAR 計測装置	11			
	5.5	プローブ走査装置	11			
	5.6	保持器	11			
6	測況	定手順	12			
	6.1	測定装置等の設定	12			
	6.2	SAR の測定	13			
7	評	面	18			
	7.1	適合確認に用いる指針値	18			
	7.2	不確かさ	18			
8	測	定系の評価試験及び較正	20			
	8.1	測定系の評価試験	20			
	8.2	SAR 計測装置の較正	20			
9	今征	後の課題等	21			
仢	録1	ファントムの形状と電気特性の根拠	22			
亻	録2	複数帯域同時送信時の測定法	23			
亻	録3	測定におけるデータ処理の方法	26			
亻	録4	電気定数を用いた SAR 補正	27			
亻	録 5	SAR 計測装置の較正	28			
仚	録6	評価試験用ダイポールアンテナ	31			
亻	録 7	不確かさの評価	34			

1 まえがき

無線設備から発射される電波については、人体に悪影響を及ぼさないようにその強度等 に関して安全基準が設けられている。具体的には、携帯電話基地局や放送局等に適用する 安全基準として電磁界強度指針(平成2年6月電気通信技術審議会答申「電波利用におけ る人体の防護指針」)及び携帯電話端末など身体に近接して使用される無線機器に適用す る安全基準として局所吸収指針(平成9年4月電気通信技術審議会答申「電波利用におけ る人体防護の在り方」及び平成23年5月情報通信審議会答申「局所吸収指針の在り方」) が策定されており、これらの指針に基づき電波法令による規制を設けているところである。

このうち、局所吸収指針は、単位質量の生体組織に単位時間内に吸収される電気的エネ ルギー量である比吸収率(SAR: Specific Absorption Rate)により規定されている。SAR は本来、人体内部において定義される量であるが、測定器を人体内部に挿入して測定する ことが不可能であるため、擬似的な人体モデル(ファントム)を使用して間接的に評価す る方法が広く国際的に用いられている。

携帯電話端末等に対する SAR の測定方法に関しては、平成 12 年 11 月に電気通信技術 審議会から、「携帯電話端末等に対する比吸収率の測定方法」のうち「人体側頭部の側で 使用する携帯電話端末等に対する比吸収率の測定方法」が答申され、総務省の告示として 制度化された。その後、国際電気標準会議(IEC: International Electrotechnical Commission)において、SAR を統一的に評価するための測定方法が国際標準化されたこ とを受け、平成 18 年 1 月に当該答申の見直しを行い、同年、告示の改正を行っていると ころである。

そして今般、IEC において、人体側頭部以外の身体に近接して使用する無線機器等に適用される SAR 測定方法が国際標準化されたことを受け、測定方法に関する国際的な調和 を図るべく、IEC における国際規格の内容や欧米等における規格化の動向等を踏まえつつ、 諮問第 118 号「携帯電話端末等に対する比吸収率の測定方法」について改めて審議を行っ たものである。

1

2 目的と範囲

2.1 目的

本比吸収率測定方法(以下「本測定方法」という。)は、無線機器について、電波防 護指針の局所吸収指針に対する適合性評価に使用する標準的な測定方法を提示するこ とにより、電波防護指針の円滑な運用を図ることを目的とする。

本測定方法では、電界プローブを使用する測定方法を標準測定方法として採用し、それを使用する上で必要な技術的条件を規定する。

- 2.2 範囲
 - 2.2.1 対象機器

本測定方法の対象機器は、人体側頭部及び手掌を除く、人体に対して通常の使用状態において 20cm 以内に近接して使用する無線機器で、電波発射源が人体側頭部及び 手掌を除く、人体に対して 20cm 以内の近傍に存在するもののみを対象とする。

その他の人体部位でのばく露¹もしくは体内に金属等の異物を植え込んでいる場合 等のばく露は対象としない。

なお、「通常の使用状態」とは、測定対象無線機器(被測定機)の製造者等が取扱 説明書等において明示している使用状態をいう。

2.2.2 周波数範囲

本測定方法は、30MHz 以上 6GHz 以下の周波数帯域に適用する。

¹ 人体側頭部でのばく露については、平成 18 年 1 月 23 日に情報通信審議会から測定方法が一部答申されている。

3 用語の意味

保持器

測定対象無線機器を固定するための治具をいう。

• 電磁波

電界及び磁界の振動が真空中や物質中を伝搬する波動の総称である。電磁波には、低 周波の電磁界から通信に使われている、いわゆる電波、太陽より放射される光(赤外線、 可視光線、紫外線)、医療等に応用される放射線(X線、γ線)などが含まれる。紫外線 より波長の短い電磁波が電離放射線、波長の長いものが非電離放射線に大別される。

・電波

電波法第2条に定められた3000GHz以下の周波数の電磁波をいう。電波防護指針においては、10kHzから300GHzまでの周波数帯を対象とする。

電波防護指針

電波利用において人体が電波(周波数の範囲は 10kHz から 300GHz までに限る。)に さらされるとき、その電波が人体に好ましくないと考えられる生体作用を及ぼさない安 全な状況であるために推奨される指針のことをいう^{2、3}。

局所吸収指針

主に身体に極めて近接して使用される無線機器等から発射される電磁波により、身体 の一部が集中的に電磁界にさらされる場合において使用する指針をいう^{3、4}。

比吸収率(SAR: Specific Absorption Rate)

生体が電磁界に照射されるときの、単位質量当りの吸収電力をいう。密度 ρ [kg/m³] の微小体積要素 dV [m³] に含まれる微小質量要素 dm [kg] に吸収される微小エネルギ 一要素 dW [J] の時間微分、すなわち

SAR [W/kg] = $d (dW/dm)/dt = d (dW/\rho dV)/dt = \sigma E^2/\rho$

で与えられる。単位は W/kg で与えられる。

ただし、σ [S/m] は物質(すなわち生体組織)の導電率、E [V/m] は当該物質内の電 界強度実効値である。

² 電気通信技術審議会答申「電波利用における人体の防護指針」(平成2年1月25日)

³ 電気通信技術審議会答申「電波利用における人体防護の在り方」(平成9年4月24日)

⁴ 情報通信審議会答申「局所吸収指針の在り方」(平成 23 年 5 月 17 日)

平均電力

ある時刻 t_1 から t_2 で時間的に変動する電力 P(t) の平均電力 \overline{P} は、次の式で与えられる。このとき、積分時間 t_2-t_1 を平均時間と呼ぶ。

$$\overline{P} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} P(t) dt$$

• 平均時間

局所 SAR の平均時間は電波防護指針で6分と規定されている。本測定方法において は、評価対象の携帯電話端末等が6分間にわたって送信のみを持続する条件を想定する。

・局所 SAR

SAR は微小体積要素当りの数値として与えられ、電磁波の照射条件と生体組織内の 場所に依存した空間分布関数となる。この分布関数について、任意の 1g 又は 10g の組 織内で平均した SAR を局所 SAR と呼ぶ。その中での最大値を局所最大 SAR と呼ぶ。 ただし、本測定方法では 10g の組織を立方体で定義している。

・電界強度

電界の強さをいう。単位は V/m で与えられる。

•磁界強度

磁界の強さをいう。単位は A/m で与えられる。

・ファントム

実験的に SAR を推定するために用いられる擬似的な人体モデルをいう。モデル全体 にわたって同じ材料を用いる場合を均一ファントム、対応する組織毎に忠実に電気特性 等を模擬したものを不均一ファントムと呼ぶ。本測定方法においては、人体形状を模擬 するための外殻(容器)とそれに充填される液剤で構成される均一ファントムを用いる。

不確かさ(Uncertainty)

ある量の実測値と真値との差を表わす推定値をいい、平均誤差、確率誤差、標準偏差 等で表わされる。

・拡張不確かさ(Expanded Uncertainty)

測定の結果について、合理的に測定量に結びつけられ得る値の分布の大部分を含むと 期待される区間を定める量。本測定方法では 95%の信頼区間を想定する。 誘電率(ε)

生体組織やファントムの電気的特性を表す変数であり、電東密度 D と電界強度 E を 関係づける下記の式における ε で定義される。単位は F/m で与えられる。

$$D = \varepsilon E$$

$$\varepsilon_r = \varepsilon_r' - j\varepsilon_r'' = |\varepsilon_r|e^{-j\delta} = \varepsilon_r' + \frac{\sigma}{j\omega\varepsilon_0}$$

ただし、

- *ε*₀:真空中の誘電率
- *ε*_r : 複素比誘電率
- *ε*_{*i*}':複素比誘電率の実部
- *ε*_r":複素比誘電率の虚部
- δ : 複素比誘電率のオイラー表記を使った角度
- σ :導電率
- ・誘電正接

複素比誘電率の実部と虚部の比をいう。

導電率(σ)

電界強度に対する媒体内の伝導電流密度の比をいう。単位は S/m である。

等方性

任意の電磁波の入射方向に対して、その電磁界強度が同じであれば、同一指示値を与 えるプローブ(又はアンテナ)の特性をいう。

・直線性

測定範囲における与えられた区間に対して定義された基準直線からの最大偏差をい う。

プローブ走査装置

電界プローブ(センサ部)をファントム内の指定位置に3次元的に移動し、保持する ための自動位置決め装置をいう。

・電界プローブ

本測定方法では、ファントム液剤中での電界強度を等方性、かつ、高空間分解能で測定する器具をいう。

SAR 計測装置

電界プローブによってファントム液剤中の電界強度を測定し、この測定値より SAR を算出する装置をいう。電界プローブ、増幅器、マイクロコンピュータなどで構成され る。

・基地局シミュレータ

測定対象無線機器の動作を電波によって制御するための装置をいう。

表皮深さ

一般に、表皮深さは損失がある半無限領域に平面電磁波が入射した場合に、入射表面 での電界強度が 1/e に減衰する距離のことをいう。

$$d_{s} = \frac{1}{\omega} \left[\left(\frac{\mu_{0} \varepsilon_{r} \varepsilon_{0}}{2} \right) \left(\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon_{r} \varepsilon_{0}} \right)^{2}} - 1 \right) \right]^{-\frac{1}{2}}$$

ただし、

 ds
 :表皮深さ

 ɛ₀
 :真空中の誘電率

 ɛ₀'
 :複素比誘電率の実部

 µ₀
 :真空中の透磁率

 σ
 :導電率

 ω
 :角速度

・波長

波の進行方向の2つの連続する周期の同じ位相の2点間の距離。波長 λ は位相速度の 大きさ v_pと周波数 f に関係し、次式で表される。

$$\lambda = \frac{v_p}{f}$$

• 複数帯域同時送信

無線機器が複数の送信周波数帯で同時に送信することをいう。

• 離隔距離

ファントムと被測定機間の距離であり、通常の使用状態における無線機器と人体との距離に相当する。

4 測定原理

SAR の測定方法においては、擬似的な人体モデル(ファントム)を用いた模擬的ばく 露状態を実現することにより、人体内に生ずるであろう SAR を実験的に推定する。測定 系は、実際のばく露状態を良好に模擬でき、しかもより正確な推定値が得られるようなも のであることが望ましい。

これまで、ファントム内部の電界分布や内部電界に起因する温度上昇分布の測定値から SAR を推定する方法などがあるが、本答申が採用するプローブ走査型 SAR 測定方法は、 人体の電気的特性を模擬した液剤を充填したファントム内部の電界分布を等方性の電界 プローブを用いて高精度に測定し、その測定値から 1g 又は 10g 平均の局所 SAR を算出 することを基本原理とする(図 4.1 参照)。

SAR と電界強度との間には次式の関係がある。

$SAR(x,y,z) = \sigma E^2 (x,y,z)/\rho [W/kg]$

ただし、SAR(x,y,z) 及び E(x,y,z) [V/m] は、それぞれ位置 (x,y,z) における SAR 値と電 界強度の測定値(実効値)、また、σ[S/m] 及び ρ[kg/m³] は、それぞれファントムの導電 率と人体組織の密度である。

本測定方法は、これまで提案されている他の方法と比較して、SAR 分布測定の精度、 再現性等の点で優れている。また、本測定方法で用いる人体ファントムは実際の人体より も概ね大きめのSARを与えるものである(付録1参照)。ただし、測定値の信頼性を確 保するために、測定系の条件や局所 SAR の算出方法等を詳細に決めておくことが必要で ある。

図 4.1 測定系の基本構成図

5 測定装置の条件

SAR の測定装置は、次の条件に適合するものであること。

- 5.1 環境条件
 - 5.1.1 温度
 - (1)周囲の温度及びファントム液剤の温度が18℃から25℃までの範囲内であること。
 - (2) SAR の測定を行っている間のファントム液剤の温度変化は、±2℃を超えず、か つ比吸収率の偏差が±5%以内になるようにすること。
 - 5.1.2 測定環境
 - (1) 周囲雑音による影響が1g平均局所 SAR で 0.012 W/kg 以下であること。
 - (2) 基地局シミュレータなどの送信設備、床、位置決め装置等からの反射の影響が、 測定する SAR の 3%未満であること。反射の影響が 3%より大きい場合は、不確か さに追加すること。
- 5.2 ファントム外殻
 - 5.2.1 形状及び寸法

ファントム外殻は、底面が平坦で上部が開いている形状とする(図 5.1)。形状及び 寸法は、長径 600±5 mm、短径 400±5 mm の楕円形とすること。ただし、300 MHz を超える周波数では、IEC の規格 62209-2 で定めるファントム形状及び寸法⁵を用いることができる。

5.2.2 外殻の厚さ

ファントム外殻の底面の厚さは 2mm とし、許容差は(±) 0.2mm 範囲内であること。液剤を充填した際、底面の中心におけるたわみを 2 mm 未満とすること。

5.2.3 外殻材質の電気特性

外殻材質の誘電正接は 0.05 以下であること。外殻材質の比誘電率の実部は、3GHz 以下の周波数においては 5 以下、3GHz を超える周波数においては 3 以上 5 以下であ ること。

図 5.1 ファントムの模擬図

⁵ 周波数が 300 MHz を超え、ファントム外殻底面の外側表面からの離隔距離が 25 mm 以下の場合。 (1) 周波数が 300 MHz を超え 800 MHz 以下

長径 0.6λ₀(λ₀は自由空間中の波長、単位はメートル)、短径 0.4λ₀の楕円形を包含すれば平面フ ァントム底面の壁はどのような形状のファントムでもよい。

⁽²⁾周波数が 800 MHz を超え 6 GHz 以下 長径 225 mm、短径 150 mm の楕円形を包含すれば底面の壁はどのような形状のファントムでもよい。

5.3 ファントム液剤

ファントム液剤の電気的特性は、表 5.1 に適合するものであること。表の数値間の値 については、線形補間で求めること。

周波数	比誘電率の実部	導電率
(MHz)	ε'r	σ (S/m)
30	55.0	0.75
150	52.3	0.76
300	45.3	0.87
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800	40.0	1.40
1900	40.0	1.40
1950	40.0	1.40
2000	40.0	1.40
2100	39.8	1.49
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
3500	37.9	2.91
4000	37.4	3.43
4500	36.8	3.94
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.5	5.07
5800	35.3	5.27
6000	35.1	5.48

表 5.1 液剤の電気的特性

- 5.4 SAR 計測装置
 - 5.4.1 検出範囲

SAR の最小検出値が 0.01 W/kg 以下の値であること。

5.4.2 プローブ先端直径

プローブ先端直径は、2 GHz 以下の周波数においては 8 mm 以下、2 GHz を越える 周波数においては λ/3 以下であること。ここでλ は液剤中の波長とする。

- 5.5 プローブ走査装置
 - 5.5.1 位置決め精度

測定範囲に対するプローブ先端の位置決めの精度は、各走査位置について±0.2 mm 以下であること。

5.5.2 位置決め分解能 位置決め分解能は 1 mm 以下であること。

5.6 保持器

保持器材質の誘電正接は 0.05 以下であること。保持器材質の比誘電率の実部は 5 以下であること。

6 測定手順

- 6.1 測定装置等の設定
 - 6.1.1 ファントム外殻及びファントム液剤の設定
 - (1) ファントム液剤は、深さが 15cm 以上となるまでファントム外殻に充てんすること。3GHz 以上 6GHz 以下では、IEC の規格 62209-2 で定める深さとすることができる。
 - (2) 測定前の 24 時間以内に電気的特性を測定すること。なお、IEC の規格 62209-2 で定める方法で測定することができる。測定した導電率と比誘電率は目標値±10% 以内であることを確認する。
 - (3) SAR 算出には、測定した電気的特性を用いること。なお、測定に用いた液剤の 電気的特性と目標値との偏差を補正するため、IECの規格 62209-2 で定める方法で 算出した SAR に補正を施すこと。(付録 4)
 - 6.1.2 測定対象無線機器の設定
 - (1)送信設備は、内部送信機、一体化送信機又は外部で接続する送信機を使用する。
 - (2) バッテリは、SAR の測定前に完全に充電しておき、外部電源との接続は行わない。ただし、測定対象無線機器の電源が外部電源のみの場合は、製造者が指定したケーブルを用いて適切な外部電源に接続する。
 - (3) 周波数及び空中線電力の制御は、内部試験プログラム又は適切な試験装置を使用 して行う。
 - (4) 空中線電力は、最大出力値に設定する。ただし、設定が困難な場合には、それよ り低出力で測定し、最大出力時の SAR に換算することができる。
 - (5) 通常の使用状態において必要な場合以外は、電源等のケーブルを接続しないこと。
 - 6.1.3 測定位置
 - 6.1.3.1 一般事項
 - (1) 測定対象無線機器は、ファントム外殻下部に設置し、6.1.3.2 に示す位置にお いて SAR を測定すること。
 - (2)測定対象無線機器の大きさがファントム外殻の大きさを超える場合は、IECの 規格 62209-2 で定める方法で測定すること。
 - 6.1.3.2 測定位置
 - (1)測定対象無線機器の製造者等が取扱説明書等において、当該無線機器の使用方法を明示している場合には、当該明示された位置とする。使用方法が明示されていない場合は、測定対象無線機器の全ての面に対してファントム外殻下部に密着させたそれぞれの位置とする。設置例を図 6.1 に示す。

(2) 上記のほか、IEC の規格 62209-2 で定める位置に準じることができる。

図 6.1 測定対象無線機器の設置例

6.2 SAR の測定

6.2.1 一般条件

測定対象無線機器の試験条件は、IEC の規格 62209-2 で定める方法で行うこと。 測定対象無線機器をファントム外殻の所定の位置に固定し、測定対象無線機器の各 送信帯域の中央付近の周波数を使用して SAR を測定する。

ただし、マルチモード機能又は複数の使用帯域を持つ無線機器を測定する場合は、 各送信モード又は帯域で測定を行うこと。また、各々の測定位置において測定を行う こと。

得られた値のうち最大の値及び SAR の許容値に対して-3 dB(50%)以上の値が 得られた位置において、送信周波数帯域幅が中心周波数の 1%を超え 10%以下の場合 は測定対象無線機器の送信帯域の最大と最小の周波数について、送信周波数帯域幅が 中心周波数の 10%を超える場合は次式により求められる測定数の周波数(送信周波 数帯域の最大と最小の周波数を含みその間隔はできる限り等しくすること。)につい て SAR を測定する。

 $N = 2 \times roundup(10 \times (f_h - f_l)/f_c) + 1$

ただし、

f_c:中心周波数

f_b:帯域内の最高周波数

f: 帯域内の最低周波数

N:測定数

Roundup(x)は、変数 x を次の整数に切り上げる。

得られた値のうち最大の値を測定対象無線機器の SAR とする。

なお、拡張不確かさが 30%を超えた場合は、IEC の規格 62311 と同等な方法で、 当該超えた不確かさを考慮した値を SAR 測定値に上乗せし、上乗せした SAR 値と指 針値とを比較すること。

- 6.2.2 測定手順の詳細
 - (1)ファントム外殻の内部表面から 8mm 以内にある測定対象無線機器に近接した測 定点を一つ選び SAR を測定すること。
 - (2)ファントム内の SAR 分布を「粗い走査」により測定すること。

測定間隔は 3GHz 未満で 20mm 以下、3GHz 以上で 60/f [mm] 以下(f は周波数 [GHz])であること。内部表面近くでの走査を行う場合は、電界プローブ先端の中 央とファントム内部表面の間の距離は、3GHz 未満で 5mm 未満(偏差±1mm)、3GHz 以上で δln(2)/2 [mm] 未満(偏差±0.5mm)の範囲内にあること(δ は平面波の表皮 深さ、ln (x)は自然対数)。

全ての測定ポイントにおいて、表面の法線に対してプローブの角度が 5°未満が 望ましい。また、測定範囲の境界はファントム側面から 20mm 以上離すこと。

- (3)得られた SAR 分布から、最大 SAR 値の位置と最大 SAR 値の一2dB(63%)以 上となる全ての SAR の位置を割り出すこと。最大値の検索を行うために必要であ る。最大 SAR 値以外の SAR については、最大 SAR 値が SAR 許容値に対して一 2dB 以上になるときのみ測定する。
- (4) 3GHz 未満で最小寸法が 30mm×30mm×30mm である体積内において SAR を「立 方体走査」により測定すること。3GHz 以上では、22mm×22mm×22mm に減らす ことができる。

立方体走査において、測定間隔は 24/f [mm]以下(f は周波数 [GHz])とするが、 測定間隔は 8mm を超えないこと。ただし、深さ方向の測定間隔は 8-f [mm] 以下 とするが、5mm を超えないこと。

垂直方向に可変間隔を利用する場合は、ファントム外殻に近い2箇所の間隔は、 12/f [mm](fは周波数 [GHz])以下とすること。ただし、4 mmは超えないこと。 それ以外の方向は、隣接する間隔に対して1.5倍を超えない割合で間隔を増加させ ることができる。可変間隔を用いる場合、測定で用いるのと同じ間隔で外挿方法を 試験すること。

プローブ検出部の中心とファントム内部表面との最大距離は、3 GHz 未満で 5 mm、3 GHz 以上で δln(2)/2 [mm] とすること(δ は平面波の表皮深さ、ln (x) は自 然対数)。

立方体走査の領域の中心を検出された最大 SAR 値の位置に重ねること。

全ての測定ポイントにおいて、ファントム外殻の内部表面の法線に対してプロー ブの角度が 5°未満が望ましい。

(5) 6.2.4 に示された補間及び外挿手順を使って、質量平均に必要な空間分解能にお ける局所 SAR 値を求めること。 (6)(1)の測定点にて SAR 測定を再度行うこと。この測定値と(1)で得られた測 定値とを比べて二つの測定結果に±5%以上の差がある場合は、補正を施すこと。一 回の充電で連続して測定を行う場合は、IEC の規格 62209-2 で定める方法に従い補 正を行うこと。

図 6.5 測定手順の詳細

6.2.3 複数帯域同時送信時の測定手順

測定対象無線機器が複数の送信周波数で同時に動作するもので、プローブ較正も しくはファントム液剤の有効な周波数範囲より離れている複数周波数(f₁、f₂など) で同時動作する場合は、IEC の規格 62209-2 で定める複数の周波数で同時に動作す る無線機器の SAR 測定方法のいずれかの方法で測定すること(詳細については付 録 2 を参照)。 6.2.4 SAR 値の算出

(1)補間

局所 SAR を計算するとき、与えられた質量の平均化領域に対して測定間隔が粗 い場合には、測定点間で補間を行うこと。

補間方法の例を付録3に示す。

(2) 外挿

使用される電界プローブは、通常三つの近接した直交ダイポールを持ち、これらのダイポールは保護管に埋め込まれている。測定点はプローブ先端から数 mm の所 に設けられており、SAR の測定の位置を求める際に、このオフセットを考慮する こと。

外挿方法の例を付録3に示す。

(3) 平均体積

局所 SAR を算出するための組織の形状は、立方体の形をしていること。算出に 用いる密度は、1000kg/m³を使用すること。

(4) 最大値の検索

付録3に従い、局所最大 SAR の近辺のファントム内部表面上で立方体の位置を 動かすこと。

- 7 評価
- 7.1 適合確認に用いる指針値

適用する電波防護指針は、指針値のうち、局所 SAR で示される電波防護指針とする。 なお、空中線電力が電波法施行規則第2条第1項第70号に規定する平均電力で20mW 以下の機器は、一般環境における局所 SAR を満たしている。

7.2 不確かさ

SAR 測定の不確かさについては、IEC 資料⁶⁷に規定された方法に基づいて評価を行い、本測定方法において 0.4W/kg から 10W/kg の局所最大 SAR 測定値の拡張不確かさは 30%以下であること。

拡張不確かさが 30%を超えた場合は、IEC の規格 62311 と同等な方法で、当該超えた不確かさを考慮した値を SAR 測定値に上乗せすること。

7.3 評価方法

測定結果を指針値と直接比較すること。測定値が指針値以下である場合、測定対象無 線機器は局所吸収指針を満足しているものと判定する。

⁶ ISO/IEC"Guide to the Expression of Uncertainty in Measurement"98-3 : 2008

⁷ IEC の規格 62209-2

なお、7.2 のとおり、拡張不確かさが 30%を超えた場合は、IEC の規格 62311 と同等 な方法で、当該超えた不確かさを考慮した値を SAR 測定値に上乗せし、上乗せした SAR 値と指針値とを比較すること。

- 8 測定系の評価試験及び較正
- 8.1 測定系の評価試験

本測定系は、様々な構成部分を有することから、IECの規格 62209-2 Annex B に定め る手順に従って、次に述べるいくつかの試験を適切に実施することで、測定系が正常に動 作していることを確認する必要がある。

- (1) SAR 測定前に、測定系が仕様の範囲内で正常に動作していることを短時間で確認するために、簡易性能試験を実施すること。簡易性能試験は、平面ファントムと標準ダイポールアンテナなどを用いて行うこととする。
- (2)少なくとも年1回あるいはソフトウェアのバージョンアップ等の測定装置の変更 があった場合に、測定装置全体が正常に動作していることを確認するために、総合 評価試験を行うこと。総合評価試験は、平面ファントムと標準ダイポールアンテナ などを用いて行うこととする。
- 8.2 SAR 計測装置の較正

SAR 計測装置各部の較正に当たっては、電界プローブに関わる部分について行う必要 がある。電界プローブの較正の際には、実際の SAR 値測定の際に使用する装置と同じか あるいはこれと等価な較正が可能な測定装置を用いて、測定する周波数帯のファントム液 剤中で行うこととする(較正方法については、付録5を参照)。

増幅器やその他の機器については、必要に応じ指定された較正を行うこととする。

9 今後の課題等

本報告書では、人体側頭部及び手掌を除く人体に対して 20cm 以内に近接して使用する 無線機器に対する SAR の標準的な測定方法を示した。これは、電波防護指針との適合性 を統一的な評価を行うために不可欠なものであり、今後、安全な電波利用のより一層の徹 底を図っていくために、本報告書に基づく測定方法が十分活用されることが望ましい。

本測定方法では、一般的な使用状態で生じ得る SAR の概ね最大値が測定される。従っ て、この測定値が局所吸収指針値を超えなければ、電波防護指針に適合していると判断さ れる。実際に使用状態で生じる人体内の SAR は、無線機器から発射される送信出力が常 に最大値とは限らないことから、測定値よりさらに小さくなる場合が多い。無線機器から 発射される電波の健康への影響に関する懸念があるなか、本測定方法によって得られる SAR の数値に関して、正しい理解が得られるように努める必要がある。

一方、現在、IEC においては、平成 17 年 2 月に規格化された 62209-1 の拡張について 検討されているところであり、今後、国際的な規格化の動向等を踏まえ、測定方法の検討 を行う必要がある。

また今後、ワイヤレス技術の進展に伴い、携帯電話端末等の使用形態の変化、新たな電 波利用システムの出現・普及等が予想されることから、信頼性が高く、かつ、より利便性 の高い測定方法の開発に努力するとともに、国際動向にも注意しつつ、本測定方法を改定 していくことが望ましい。

付録1 ファントムの形状と電気特性の根拠

1 ファントムの形状

本測定方法では、平面ファントムを用いる。これは身体装着機器などにばく露される部 分は、人体側頭部と異なり必ずしも明確に決まらず、製品の形状や利用形態により決まる からである。底面が平面なファントムは、被測定機との接触面積が最大となり、一般的に 実人体に生じる SAR より概ね大きくなる。

平面ファントムは人体胴体の大きさに比べて過度に大きくならないことが望ましい。大きなファントムは製造が難しく、測定も困難になるからである。

2 ファントムの電気特性

ファントムに使用する液剤の電気特性(誘電率と導電率)は、頭部ファントムに使用す る液剤と同じ値が用いられており、頭部以外の一般的な人体体表付近の組織構成(皮膚、 脂肪、筋肉)に対しても過大側の SAR を与えるかどうかが検討されている。これらの検 討結果より、フレネル領域と遠方領域に被測定機が存在するときに、頭部と異なり皮下脂 肪組織での反射による定在波の影響で SAR が大きくなることが判明している[1]。ただし、 近接した距離では、本測定方法で規定する平面ファントムを用いることで概ね大きめのば く露評価が可能である。

30 MHz – 150 MHz では、実際の人体組織で示される高誘電率を実現することは難しい。 一方、誘電率が減少すると SAR が高くなるため、低誘電率の値を規定している。

以上より、本測定方法で規定するファントムを用いた測定による局所 SAR の最大値の 評価が可能である。

付録2 複数帯域同時送信時の測定法

1 方法 1:局所最大 SAR の足し合わせによる評価

本手順は、複数帯域の SAR の上限値を決定する最も簡単でかつ最も厳しい評価方法で ある。

- 同時動作を想定した各々の試験条件に対して、各々の周波数 f₁、f₂などにおける局 所最大 SAR を足し合わせる。
- (2) 合計した最大 SAR が指針値より3 dB 以内のときは、この測定条件にて最小と最 大周波数で追加測定を行うこと。これらの追加データも考慮して最大 SAR を決定 すること。
- (3) (1)か(2)で得られた最大 SAR が、複数帯域 SAR である。

<u>2 方法 2:最大 SAR 値の最も高い値を選択する評価</u>

本手順は、別々に立方体走査で測定された SAR 分布が、ほとんど重なっていない場合 に、複数帯域 SAR を正確に推定することができる。SAR 分布を空間的に足しあわせた場 合、最大 SAR から 5%未満の範囲で最大値が分離できる。

- (1) 6.2.2 に従い各々の周波数において別々に局所最大 SAR を測定する
- (2) すべての試験条件に対して、粗い走査結果を空間的に足すことにより SAR 分布が どの程度重なるかを解析する。
- (3) 分布を足し合わせることにより得られた最大 SAR が、別々の測定で得られた最大 SAR の最大値より 5%未満なら、複数帯域 SAR は2つの別々に得られた局所最大 SAR の高い方に等しくなる。

<u>3 方法3:3次元計算 SAR データによる評価</u>

本手順は、内挿・外挿と粗い走査・立方体走査を用いて3次元 SAR を得る。本手順は、 短時間で複数帯域 SAR を得ることができ、常に適用可能である。

- (1) 各々の周波数にて、粗い走査領域に渡り3次元 SAR を計算する。この時、不確か さを十分に評価し記録すること。
- (2) 必要なら 6.2.2 に従い全周波数の 3 次元 SAR を空間的に足し合わせること。
- (3) (2)で得られた SAR 分布から 6.2.4 規定の後処理手順を用いて、局所最大 SAR を 決定する。

4 方法 4: 立方体走査による評価

本手順は、複数帯域 SAR を評価するのに最も正確であり、常に適用可能である。2 つ 以上の同時送信モードについて、SAR データを各試験条件(被測定機の位置、チャネル、 状態、アクセサリー)ごとに結合する。

- (1) 以前に測定された全ての周波数 f₁、f₂などにおける立方体走査を包含する3次元
 (体積)格子を決定する(備考参照)。
- (2) 各周波数にて(1)で決めた3次元走査を行う。この3次元走査は、体積寸法以外は 6.2.2 の全ての要求を満足している。測定は、該当する周波数での送信モードを ONに、それ以外は OFF にして実行する。
- (3) (2)で得られた SAR 分布を空間的に足し合わせて、加算した SAR 分布を得る。
 6.2.4 規定の後処理手順を用いて、加算した SAR 分布から複数帯域 SAR の局所 最大 SAR を決定する。

加算した SAR 分布をできるだけ正確にするために被測定機は、液剤を交換する際も ファントムに固定しておくことが望ましい。ファントムに設置したままの機器のバッテ リーを充電する必要がある場合、被測定機に充電ケーブルを接続することを推奨する。

【備考】 (1)で包含する体積は大きい可能性がある(周波数 f₁、f₂ などにおける立方体走 査領域が離れている場合)。その結果、(2)での測定時間が長くなる。そのため、 (1)の変形として、他の周波数における、以前に測定の立方体走査と一致する、 各周波数での立方体走査を選んでもよい。(2)では、周波数 f₂、f₃ などと異なる 立方体走査を用いて周波数 f₁での SAR を測定し、周波数 f₂での SAR を周波数 f₁、f₃と異なる立方体走査を用いて測定することになる。

付録3 測定におけるデータ処理の方法

<u>1 概要</u>

6.2.4 節に適用する走査及びデータ処理の方法を示す。

2 補間

測定及び外挿された立方体内の1mmグリッド上の値は、3段階の1次元3次スプライン を使うなど、簡単な方法で補間できる。

3 外挿

微小ダイポールアンテナの中央は、プローブの先端より内側にあること又はファントム の内部表面とそれに最接近する測定点との間に距離があることから、表面のデータは外挿 により求める必要がある。外挿は、例えば、四次などの最小二乗法による測定データの多 項式近似に基づいて行う(指数近似は多くの分布が生じる可能性がある場合には適さな い)。この多項式は、表面とプローブ先端の距離を1mm 刻みで評価するのに使われる(図 1の三角の値)。

注)■は測定データ。▲は1mm間隔の多項式近似で外挿された値を示す。

図1 ファントム内部表面に対する SAR データの外挿例

4 最大値の検索

立方体がファントム表面に接触している場合の評価手順は次のとおりである。ファント ム内部表面に接触し、局所最大 SAR をもつ立方体の側面はその表面に対して平行とする。 局所最大 SAR は、測定領域内で 10g の立方体について、可能な限り様々な状態を評価・ 比較して決定すること。立方体の体積で平均した最大 SAR 値が収束するまで繰り返すこ と。
付録4 電気定数を用いた SAR 補正

1 概要

液剤電気特性の目標値からの差異により生ずる、SAR の偏差を補正する方法について 規定している。

<u>2</u> SAR 補正

SAR の変化(Δ SAR)と表 5.1 の目標値からの誘電率、導電率の変化($\Delta_{\alpha} \ge \Delta_{\sigma}$)の間 には線形な関係がある[2]。

$$\Delta SAR = C_{\varepsilon} \Delta \varepsilon_r + C_{\sigma} \Delta \sigma$$

ここで

$$C_{\varepsilon} = \partial(\Delta SAR) / \partial(\Delta \varepsilon)$$
$$C_{\sigma} = \partial(\Delta SAR) / \partial(\Delta \sigma)$$

10g 平均の局所 SAR に関する C_eと C_oの値は、周波数 f[GHz]の関数で計算できる。

$$C_{\varepsilon} = 3.456 \times 10^{-3} f^{3} - 3.531 \times 10^{-2} f^{2} + 7.675 \times 10^{-2} f - 0.186$$
$$C_{\sigma} = 4.479 \times 10^{-3} f^{3} - 1.586 \times 10^{-2} f^{2} - 0.1972 f + 0.7717$$

補正係数△SAR を用いて測定された局所最大 SAR を補正すること。但し、補正係数 △SAR が負の場合は補正しないこと。

付録 5 SAR 計測装置の較正

1 はじめに

SAR 計測装置はプローブ、増幅器、測定用付属品等で構成されており、各構成品はそ れぞれ適切な方法で較正をしておく必要がある。特に、SAR 計測用の微小電界プローブ は高精度な較正が必要である。本資料では、SAR 計測用の微小電界プローブの較正方法 の例を示す。較正方法は最新の研究成果に基づき常に改良していくことが望ましい。

<u>2 プローブ</u>

現在利用可能なプローブではショットキーダイオード検波器が使用されている。大多数の等方性プローブは、直交した指向特性を有する3つの微小センサから構成されており、そのセンサギャップ間には検波用ダイオードがとりつけられている。合成電界は3方向の電界成分の2乗和の平方根で評価できる。ダイオードの2乗特性領域において、センサ電圧出力は、対応する電界成分の2乗平均に比例する。その領域を超えると、出力電圧が圧縮され、ダイナミックレンジの直線化の補正が必要となる。各センサとダイオードの製造上の公差は各センサの感度の違いを引き起こすだろう。

3 プローブのダイポールセンサの感度評価

感度ファクタは「2段階手順」か「1段階手順」の適用により決定可能である。

3.1 2段階手順

合成電界は次式によって評価される。

$$|E|^2 = \sum_{i=1}^3 |E_i|^2 = \sum_{i=1}^3 \frac{f_i(V_i)}{\eta_i \gamma_i}$$

ここで、

f_i(V_i)は、検波信号 V_iの直線化関数

η,は、自由空間でのダイポールセンサの絶対感度[μV/(V/m)²]

γiは、液剤中と自由空間との感度比

プローブ感度を2個のファクタ η_i、γ_iに分離することにより、自由空間中でのいく つ かの標準化されたプローブ較正法を使用することが可能となり、プローブ性能と較正装 置について付加的な妥当性評価も可能とする。本較正は任意の媒質の境界から十分に離 れている場合においてのみ有効である。境界から非常に近接した距離においては、感度 は変化するかもしれない。これは境界効果と呼ばれ、等方性と同様、個別に評価する必 要がある。

3.1.1 空気中での感度(第1段階)

プローブ較正に用いられる自由空間状態を模擬し、十分に定義された電界を発生させ るために導波管が使用できる。導波管を用いることで、電力計の指示値にトレーサブル な最も正確な電界の発生が可能である。より低い周波数(約 750MHz 以下)においては TEM セルが代用できる。しかし、セル内部は必ずしも十分に定義された電界ではないの で、TEM セル内のプローブ設置場所の電界強度に関して、導波管や標準プローブ等で変 換較正することが可能である。

プローブは一般的に各導波管において、壁の小さな穴を通して挿入され、導波管の中 心付近に設置される。そこでは、電界がプローブの寸法程度にわたりほぼ均一となって いる。各センサはセンサに平行な電界成分に関して評価される。

3.1.2 液剤媒質中の感度(第2段階)

液剤中の感度は、媒体中において局所的に既知の電界値を発生させることにより、決 定される。それには温度プローブを使用しての変換較正または理論値に基づく電界によ る較正があげられる。

3.1.2.1 温度プローブを使用しての変換較正

損失のある液剤中の比吸収率(SAR)は、電界(E)と液剤中の温度勾配(dT/dt)の双方に関係している。したがって、その関係に基づいて以下の式が与えられる。

$$SAR = \sigma \frac{E^2}{\rho} = c_h \frac{dT}{dt}\Big|_{t=0}$$

ここで、

σ 導電率
 ρ 液剤の密度
 c_k 比熱

損失のある液剤中の電界は、その中の温度勾配の測定によって間接的に測定される。 高空間分解能で高速な応答時間(1秒未満)をもつ擾乱を与えない温度プローブ(光ファ イバ・プローブあるいは抵抗線使用のサーミスタプローブ)が使用可能である(IECの規 格 62209-1 参照)。

3.1.2.2 理論解析可能な電界を用いた較正(導波管)

この試験装置の方法は、導波管への入力電力の測定値から解析的に計算された電界を 使用する。これは空気中でのプローブ較正のための標準電界法に対応している。

ファントム液剤中で解析的に既知の電界を発生させることができる導波管を用いた装置は IEC の規格 62209-1 の中で提案されている。この装置(図1参照)において、直立している開放導波管の上部は組織模擬液剤で満たされている。信号供給用結合器から波長入以上の距離にある誘電体平板は空気と液剤とのインピーダンス整合(リターンロスが10dB 以上)の機能を持つ。理論的には高次モード存在の可能性はあるが、装置の対称構成と組織模擬液剤の高損失により、液剤内部の電界分布が TE₁₀ 分布に従う(±1~2%以下の偏差)ことが、液剤中の完全な3次元掃引の方法で注意深く評価されている。

x, y, z デカルト座標系軸 3δ 液剤深さ(表皮深さδの3倍以上) a 導波管断面長辺 b 導波管断面短辺 P_f 入射電力 P_r 反射電力

液剤の内部では、遮断周波数のため、電界は殆ど TEM 波として伝搬する。液剤の深さ (表皮深さの3倍以上)は、液剤上面からの反射が無視できるように選定されている。液 剤に吸収された電力(SAR)は導波管内部での進行波と反射波の測定によって評価され る。

$$SAR(z) = \frac{4(P_f - P_r)}{\rho ab\delta} e^{-2z/\delta}$$

ここで、

- ab 導波管の開口面の面積
- *P*_f 導波管内に入射する進行電力
- P. 導波管内の誘電体平板と液剤からの反射電力
- z プローブ位置でのダイポール中心の縦方向座標
- ρ 液剤の密度
- δ 液剤内部の表皮深さ
- 注:この標準規格では密度 ρは 1000kg/m³と仮定する。

較正それ自身は標準較正手順にトレーサブルな電力測定に帰着される。導波管を用いた較正は導波管のサイズの制約はあるが 800MHz から 6GHz まで対応可能である。

付録6 評価試験用ダイポールアンテナ

総合評価試験に用いる標準ダイポールアンテナはセミリジッドケーブルによるダイ ポールエレメントと 1/4 波長折り返しバランにより構成される(図1)。代表的な周波数 帯におけるアンテナ各部の寸法を表1に示す。

総合評価試験では、標準ダイポールアンテナを平面ファントム直下に配置したときの局 所 SAR を測定し、同じ条件を想定した数値シミュレーションによる計算結果と比較する。 表2に代表的な周波数での数値シミュレーション結果を示す。

略語

- L ダイポール長
- d₁ ダイポールアームの直径
- d₂ スタブの直径
- h バランチョーク部の長さ

図1 標準ダイポールの構成

	合	う 法 値 の 許 谷 訣 左 は ± 2	%)	
周波数(MHz)	L(mm)	h(mm)	d1(mm)	d2(mm)
300	396.0	250.0	6.35	
450	270.0	166.7	6.35	
835	161.0	89.8	3.6	
900	149.0	83.3	3.6	
1450	89.1	51.7	3.6	
1624	80.5	46.2	3.6	
1767.5	74.0	42.5	3.6	
1800	72.0	41.7	3.6	
1900	68.0	39.5	3.6	
1950	66.3	38.5	3.6	
2000	64.5	37.5	3.6	
2018	64.2	37.2	3.6	
2450	51.5	30.4	3.6	
2585	49.1	29.0	3.6	
2600	48.5	28.8	3.6	
3000	41.5	25.0	3.6	
3500	37.0	26.4	3.6	
3700	34.7	26.4	3.6	
5000	20.6	40.3	3.6	2.1
6000	20.6	40.3	3.6	2.1

標準ダイポールアンテナの寸法 表 1

標準ダイポールに対するファントム底面離隔距離は、以下の通り。

a) 300 MHz $\leq f \leq 1000$ MHz c t, s = 15 mm ± 0.2 mm

b) 1000 MHz < $f \leq 6000$ MHz \mathcal{C} it, s = 10 mm ± 0.2 mm

表	2	基準 SAR 値	(1W 入力換	算)	
	/ bitle	$ n \square + + \circ \circ \dots $	しねウレマいて	てもいめの日本キャイ	0

(300、450MHz は、フ	ァントム外殻の厚さを 6.3r	mmと想定している。それ以	外の周波数では、2mm。)			
		表面における SAR				
□波致(Ⅳ□Ζ)	TUg 平均 SAR	中心点	y=2cm			
300	2.04	4.40	2.10			
450	3.28	7.20	3.20			
835	6.22	14.1	4.9			
900	6.99	16.4	5.4			
1450	16.0	50.2	6.5			
1624	17.6	60.2	6.7			
1767.5	18.9	68.9	6.7			
1800	20.1	69.5	6.8			
1900	20.5	72.1	6.6			
1950	20.9	72.7	6.6			
2000	21.1	74.6	6.5			
2018	20.8	78.5	6.5			
2450	24.0	104	7.7			
2585	24.4	119	7.90			
2600	24.6	113	8.29			
3000	25.7	140	9.5			
3500	25.0	169	12.1			
3700	24.2	178	12.7			

5000	22.1	305	15.1
5200	21.6	310	15.9
5500	23.4	349	18.1
5800	21.9	341	20.3

※本表の値は、数値解析技術の改良により将来的に変更される可能性がある。

※簡易性能試験や総合評価試験(変調応答やシステムオフセットの評価手順を除く)では 10g 平均 SAR 値が 0.4~10 W/kg となるようにアンテナ入力を調節し、測定された 10g 平均 SAR 値をアンテナ入力 1 W の場合に正規化する。

また、5GHz帯ではダイポールアンテナの代わりに誘電体を装着した導波管を標準波源 として用いることも可能である。詳細は IEC の規格 62209-2 を参照すること。

付録7 不確かさの評価

1 一般事項

1.1 不確かさ評価の概念

無線機器により生ずる SAR 測定における不確かさ評価の概念は、ISO/IEC ガイド 98-3:測定における不確かさの表現のガイド(GUM:1995)[3]の原則に基づいている。それ でも、やはり、複雑な測定の不確かさ推定は困難な課題であり、高いレベルと専門の知識 が要求される。

この課題を容易にするため、本付録では、個々の不確かさ要素の評価を可能とするガイ ドラインと近似公式を提供する。表4、表5、および表6の不確かさテンプレートは、30MHz から6GHzの周波数全範囲を網羅し、すべての被試験体に対する一般的なシステム不確か さを記述することを意図する。

しかしながら、実際の不確かさ要素の値および量は、一般的に、30MHz から 6GHz の 周波数範囲を通じて同じではなく、また、部分的な周波数範囲についての不確かさは必ず それに応じて調整されなければならない。標準のテンプレートと標準不確かさ要素の使用 は、いくつかの場合、不確かさが過大評価される可能性があるという難点がある一方、こ こで示すような近似と公式の利用を可能にする利点がある。

SAR 測定装置の製造業者は、例えば、450MHz から 1900MHz など、測定するためにシ ステムが設計されている適用範囲の動作周波数を明記するものとする。これにより、表4 の中で用いられた数量(例えば、プローブ等方性、プローブ位置決め装置、境界効果など) 等の特定周波数における固定値に更新されるべき変数の決定がより簡単になるだろう。測 定が製造業者によって明記された周波数範囲を超えて拡張される場合、不確かさに関連す る数量と影響を決定し、それに応じて表を更新する責任は使用者にある。広い周波数範囲 (3GHz から 6GHz)を網羅するための一連の値が使われる場合、各数量の評価、影響、お よび方法論を詳述した追加の文書が必要であるかもしれない。

ある SAR 測定システムにおいて、不確かさ表の中の量に 0 を使用する場合は、強固な 技術的根拠が製造業者か使用者のどちらかによって示されなくてはならない。

1.2 タイプAとタイプBによる評価

標準的な不確かさの評価には、タイプAとタイプBの両方が用いられる。タイプAの 解析が実行されたときは、標準不確さの値 u_iは統計的観測からの評価された標準偏差から 導出される。タイプBの解析が実行されたときは u_iは a=(a₊ - a_)/2 を定義する確率分布関 数に依存して、問題としている許容値の上限 a₊と下限 a_から得られる。このとき、標準 不確かさは以下のようになる。

- 一様分布 : *u*_i=a/√3
- 三角則:
 u_i= a/√6
- 正規則: *u_i=a/k*
- U型(非対称): *u*;=a/√2

ここで、aは、影響量の限界により決まる区間の半分、kは、包含係数、uiは、標準不確かさである。

同じ特定のデバイスもしくは同じセットアップにおいて n 回の測定では、平均の標準偏 差(=s/vh)が標準の不確かさとして用いられる。ここで、s は同じ試験条件下でより多数の 測定結果から得られる標準偏差である。より多数の繰り返し試験に基づく予め決められた 不確かさ要素は、システム、方法、形状、条件等々が特定の端末試験を代表しているよう な場合、不確かさ要素を評価するのに用いることができる。予め決められた不確かさ要素 は特別な被測定機の寄与を含まない。特定の被測定機に対して、平均の標準偏差に用いら れた n は、特定の被測定機に対する測定回数であり、予め決められた不確かさ要因を決定 する際に試験された回数ではない。

1.3 自由度と包含係数

自由度が 30 未満のとき、2 の包含係数は 95%の信頼レベルを得るのに用いるには適当 な乗数ではない[1]。簡単だがほぼ正しい方法として包含係数 kの代わりにtを用いること である。ここで、tはスチューデント係数である。t分布の標準偏差は、正規(ガウス)分 布より狭いが、曲線は大きな自由度をもつガウス形状に近い。タイプBに基づくほとん どの標準不確かさの自由度は無限[4]であると仮定することができる。連結した標準不確 かさ u_cの実効自由度は、タイプA要因の自由度とそれらがタイプB要因に対する相対的 な大きさにもっとも強く依存する。

少ないサンプルの包含係数(k₀)は、以下の式で決定される。

$$k_p = t_p(v_{eff})$$

ここで、 k_p は確率 pの包含係数、 $t_p(v_{eff})$ は t 分布で、 v_{eff} は以下の Welch-Satterthwaite 公式を用いて推定される実効自由度である。

$$v_{\text{eff}} = \frac{u_{\text{c}}^4}{\sum_{i=1}^m \frac{c_i^4 u_i^4}{v_i}}$$

下付き添え字の p は近似的な信頼レベル(例えば 95%)を示している。t_p(v_{eff})の値については、例えば[5]の表中に記載されている。

例:7%の位置不確かさで表 4 のすべての影響する量から計算された合成標準不確かさ は、 $v_c = 14.5\%$ である。サンプルや試験数が5に等しいとすると、 $v_i = 4$ で、その他のす べての要素の自由度は、 $v_i = \infty$ である。

$$v_{eff} = \frac{u_c^4}{\sum_{i=1}^m \frac{c_i^4 u_i^4}{v_i}}$$

上の式より合成標準不確かさの実効自由度は、 v_{eff} = 74 となり、k = 2 が適用される。 拡張不確かさは、U = 29%である。もし、位置による偏差の標準的な不確かさが 9%に、 試験数が4に (v_i = 3)減ったら、 v_c = 15.6%、 v_{eff} = 27、k = k_p = k_{95} = t = t_{95} = 2.11 である。 拡張不確かさ U = 2.11×15.6 = 32.9%となる。

2 不確かさに寄与する成分

2.1 一般事項

不確かさに寄与する各要素は周波数依存があるため、SAR 評価が実施される周波数帯 で評価されるものとする。周波数拡散動作モードでは、不確かさ寄与は、考慮する帯域 内の最大値である。

2.2 測定装置(プローブと関連する電子機器)の寄与

2.2.1 プローブ較正不確かさ

電界プローブの較正不確かさは、温度較正手法および導波管較正手法に対して、付録 5に記載された方法で評価される。感度の不確かさは、正規分布を仮定して評価される ものとする。

2.2.2 プローブ等方性不確かさ

電界プローブ等方性は任意の電磁界偏波に対する、プローブ応答の偏差の程度である。 一般に、DUTによる放射界は、任意の偏波をもつ。しかしながら、ファントム液剤内に 誘起された電磁界においては、吸収メカニズムの物理的性質のため支配的な偏波成分は 表面に平行になる。

プローブ方向が基本的には測定中にファントム表面に垂直(±5°以内)である場合、等方 性不確かさは以下として計算される。

 $SAR_{uncertainty}[\%] = \sqrt{0.5 \times dev _isotoropy_{axial}[\%]^2 + 0.5 \times dev _isotoropy_{hemispherical}[\%]^2}$

ここで、dev_isotropy hemispherical [%] は $\Phi \pm 180^{\circ}$ 、 $\theta \ge \pm 60^{\circ}$ に関して評価された等方性応答 からの公差の最大値(%)、dev_isotropy axial [%]は $\Phi \pm 180^{\circ}$ 、 $\theta = 0^{\circ}$ に関して評価された等方 性の応答からの公差の最大値(%)。ただし、 Φ は プローブ軸の周りの回転、 θ は プローブ 軸に垂直な方向の周囲の回転である。

等方性公差が原因となる不確かさは、製造加工の細部に依存し、予想以上に大きい場合がある。すなわち、各プローブに関して個別に評価する必要がある。

IEC の規格 62209-1 Annex B に記載の手法でこの公差は評価される。

ー様確率分布が表4のプローブ等方性不確かさで仮定されている。

2.2.3 プローブ直線性不確かさ

ダイオード検波器は、一般に振幅に対し非線形であり時間変化応答に関して非対称で ある。すなわち、応答は電界強度と変調に対し非線形である。真の平均電力検波器の不 確かさは、以下に記載された手順で決定する必要がある。

評価に用いる機器は IEC の規格 62209-1 Annex B で記載されたものと同じである。 影響は周囲の媒質の関数ではなく、センサ素子(ダイオード、センサ、ライン)のみの関数 であるため、空気を含むいかなる媒質中でも平均電力応答からの公差を測定できる。

不確かさ要素は連続波(CW)信号で評価するものとする。また、不確かさは 10%のデュ ーティファクタと 11Hz のパルス繰り返し周期におけるパルス信号について評価するもの とし、TDMA 方式で用いられる最高および最低周波数において、1000Hz の繰り返し周期 での 4%のデューティファクタを用いる。

CW(CDMA 含む)以外の変調とTDMA に関しては、直線性からの公差は個々に評価されるものとする。

電界センサ直線性不確かさは、測定電界振幅の自乗に関して、IEC の規格 62209-1 の Annex B に記載された手順を用いて評価される。平均電力応答からの最大公差は等価 平均電力 SAR 範囲で 3dB 以下のステップで 0.01W/kg から 100W/kg まで評価される。 0.4W/kg から 10W/kg の範囲で適合性を試験するに関して、その範囲は立方体積内で生じ ると想定される。

続波、パルス変調、システム変調)

ここで SAR_{eval} は測定 SAR 値、SAR_{ref}は平均電力計で決定した SAR 参照値である。

非線形応答が原因となる不確かさは非常に大きい場合があり、様々なプローブ部品に 依存する。すなわち、それは各プローブについて個別に決定する必要がある。特定のプ ローブについて不確かさが確立されていないならば、200%の不確かさを使用するものと する。表4のプローブ直線性不確かさでは、一様確率分布を仮定した。

2.2.4 プローブ変調応答の不確かさ

ダイオードは非常に非線形な素子であるため、ダイオード検波器に基づくプローブの 変調信号への応答は複雑である場合がある。ダイオード応答理論は[6][7]で報告されてい る。特定の変調の線形化パラメータは2つの手法で決定できる。

- (1) ダイオードと他のセンサ素子の(実験的に決定される)変調包絡線と電気特性に 基づき数値的に決定する。または、
- (2) 相対実験的較正、すなわち、特定の変調で電力掃印する。
- 各センサに対して個々にこれらのパラメータを決定しなければならない。

一定の包絡線をもつパルス信号 (例えば GSM, GMSK, Bluetooth, DECT) について、補 償関数の複数のパラメータはあるプローブに対して 1 つのパラメータ、すなわち、クレ ストファクタにパラメータ数を削減できる。

不確かさは、簡易性能試験機器と同じか等価な波源(例えば、導波管またはダイポー ル)を用いて決定できる。

信号発生機器は、変調に関して不確かさを決定する通信システムの標準仕様通りに動作するものとする。電力は、検査しているプローブセンサにおいて、100mW/kg 相当から 10W/kg 相当のセンサ電圧まで、5dB ステップで増加させられなければならない。各電カレベルでは、SAR は変調信号と同じ平均電力における CW で測定されなければならない(パワーメータが真の平均電力検波器であり、増幅器が 信号全体のダイナミックレンジに関して十分に直線性を持つという検証が必要である)。各電界センサに関してこの手順を繰り返さなければならない。特定の変調 X に関して変調不確かさ導出に次式を使うことができる。

$$\operatorname{SAR}_{\operatorname{mod}} X_{\operatorname{uncertainty}} [\%] = \frac{\operatorname{MAX}}{i = \{x, y, z\}} \begin{pmatrix} P_0 + 20dB \\ MAX \\ P_i = P_0 \end{pmatrix} \left(100 \times \left| \left(\frac{\operatorname{SAR}(P_i)_{\operatorname{mod}} X_i}{\operatorname{SAR}(P_i)_{\operatorname{CW} i}} - 1 \right) \right| \right) \right|$$

ここで、

SAR_{mod}X_{uncertainty}は特定の変調 X の不確かさ(%)、 SAR(P_i)_{mod}X_iは平均電力における変調信号で測定された SAR、 SAR(P_i)_{CWi}は同じ平均電力における CW で測定された SAR、

SAR 不確かさは、3 個のセンサすべてにおけるそれぞれのステップの SARmod X の最大値として決定する。表 5 のプローブ変調応答の不確かさでは、一様確率分布を仮定した。

2.2.5 プローブ感度と検出限界

測定電界強度がプローブと関連システム測定装置の検出限界に非常に近い場合、電界 プローブ感度とシステム検出限界の不確かさが生じる可能性がある。使用される機器は IEC の規格 62209-1 Annex B に記載される。この不確かさは、SAR 試験システムにおい て容認されているか明記された最小のデューティファクタに対応する CW 信号およびパ ルス信号で評価されなければならない。CW とパルス信号はこの評価においておよそ 0.1W/kg、2W/kg、および 10W/kgの時間平均 SAR を発生させなければならない。例えば、 10 %デューティファクタにおいて、10 W/kg はこの標準のプロトコルによって明記され た 100 W/kg の最大ピーク SAR に対応するだろう。0.1 W/kg の SAR レベルは、この評価 で十分な SN 比を与えるように選択されており、10%のデューティファクタで1 W/kg に 対応している。また、0.1 W/kg 以下の SAR レベルはピーク空間平均 SAR への寄与に関 して通常無視し得るため、このレベルが選ばれた。この SAR レベルの範囲は、FDMA, TDMA, および CDMA モードで動作する典型的な DUT のピークー平均電力比 (PAR)と信 号要求仕様を網羅しなければならない。DECT 方式などの 10%未満の負荷時間率で作動 するデバイスに関しては、評価方法をその動作範囲を網羅するように変更するものとす る。検出限界による不確かさは、一様確率分布を仮定し評価するものとする。

2.2.6 境界効果不確かさ

時として、内挿および外挿不確かさを低減させるため、プローブをプローブ先端の半径 r_pより近傍での測定に用いる必要があるかもしれない。そのとき、境界効果不確かさは、望ましくは、付録5に記載された導波管システムを用いることで評価されなければならない。一方で、温度較正法も使用可能である。

プローブ軸と表面に対する法線の角度が 5°以下であると仮定すると、以下の手法が有 効である。境界効果は特定のプローブの特性であるので、それはプローブ較正中に(すな わち、プローブの r_pによって)、決定しなければならない。境界効果の補償のためにアル ゴリズムが適用されるならば、SAR 不確かさは SAR 測定を実施する時と同じ評価ハード ウェアとソフトウェアで決定しなければならない。表面にほぼ垂直な線に沿った表面と d_{be}+d_{step}以内での線形および指数関数的外挿に基づいた以下の不確かさ近似式により、境 界効果不確かさを評価することができる。

$$SAR_{uncertainty}[\%] = \Delta SAR_{be}[\%] \frac{(d_{de} + d_{step})^2}{2d_{stepi}} \frac{(e^{-d_{de}/(\delta/2)})}{\delta/2}$$

for $(d_{be} + d_{step}) < 10mm$ and $f \le 3GHz$

SAR_{uncertainty}[%] = ΔSAR_{be} [%] $\frac{\partial}{\partial - d_{be}}$

for $d_{he} < \delta$ and f > 3GHz

ここで、SAR_{uncertainty}はプローブ境界効果の不確かさ(%)、

d_{be}は平均化の過程で使用される表面と測定点の最も近い距離(mm)、

*d_{step}*は表面からの1番目と2番目の測定点の分離距離(mm)であり、2番目の測 定点の境界効果不確かさが無視し得るものとする。

δはファントム液剤の最小の表皮深さ(IECの規格 62209-2 Annex M 表 1 を 参照)であり、すなわち、δは 6GHz で 6mm である。

ΔSAR_{be}は、境界からの距離 d_{be}における測定 SAR 値の、導波管により解析的にまたは温度プローブによって評価された値 SAR_{ref} からの偏差である。

プローブ直径が(媒質中)波長の 1/3 以上であれば、境界効果は大きく(>> 1 dB)、正確 な測定値を得ることは難しい。また、境界効果が 2 番目の測定点で無視し得るという測 定条件に反する可能性がある。これらの場合は、境界効果に関して既定の不確かさ 50% が使用されるものとする(IEC の規格 62209-2 Annex M)。

プローブ軸と表面の法線ベクトル間の角度が5°以上の場合、ΔSAR_{be}は、試験周波数に 関して簡易性能試験の機器を使い以下の手順で評価されるものとする。

- ステップ 1: 粗い走査を実施し、補間後の最大値に移動する(この補間後の最大値を含む む表面に垂直な線上でステップ 2~8 におけるすべての測定値を取る)。
- ステップ 2: すべての点が体積スキャンの z-方向で格子点に対応するように z-スキャン を実施する。これらの値は参照値を代表するだろう。計算値との比較のた めに参照値を記録し、総合評価試験の不確かさより逸脱しないものとす る。
- ステップ 3: プローブ角度の傾斜を 10°(最大角度 5°に+5°)に回転させる。
- ステップ4: 軸回転を0°まで戻す。
- ステップ 5: z-スキャンを実施し、最初の測定点における参照値と比較して公差を評価 する。
- ステップ 6: 15°刻みでプローブを回転 360°まで回転させ、ステップ 4~6 を繰り返す。
- ステップ 7: プローブ角度の傾斜を、測定中に達する最大傾斜角度になるまで 5°ずつ回転させ、ステップ 4~7 を繰り返す。
- ステップ8: すべての値を報告する。

ステップ5で記録する最大公差は、上の式で使用される最大境界不確かさΔSAR_{be}である。表4の境界効果不確かさでは一様確率分布を仮定した。

2.2.7 読出し機器の不確かさ

電界プローブ読出し機器の不確かさ要素は、増幅、プローブ装荷、直線性、評価アル ゴリズム不確かさなどを含む。一般に、電界プローブとメーカー仕様値を用いる代わり に電子部品の模擬終端を使うことにより、これらの不確かさ要素の予想範囲を評価でき る。また、不確かさ要素の二乗和平方根を、全体的な読出し機器不確かさを得るのに使 用するものとする。表5の読出し機器不確かさでは正規分布を仮定した。

2.2.8 応答時間

プローブはファントムおよびファントム液剤の表面において少なくとも2 W/kg を発生 させるよく定義された電界に曝露されるものとする、ステップ変動か電源のスイッチオ ンオフの後に予想される極限値の 90%に達する時間として、信号応答時間は評価される。 プローブが応答時間の2倍以上空間的に静止しているなら、応答時間から生じる SAR 不 確かさは無視してもよい。この場合、表5の列cに0を記入する。プローブが応答時間の 2倍以上空間的に静止していないなら、表5の列cに応答時間の実際の不確かさを記入す る。表5の応答時間不確かさでは一様確率分布を仮定した。

2.2.9 積分時間

いくつかの DUT で用いられるディジタル変調のように供試機器が連続信号を放射しな いとき、プローブ積分時間の不確かさが生じる場合がある。プローブ回路で用いられる 積分時間と離散的なサンプリング間隔が、被測定信号の変調特性に連動しないとき、各 測定位置の RF エネルギーは完全に正しく捉えられない可能性がある。供試機器の信号の 特性に従って、この不確かさは SAR 測定前に評価されるものとする。

振幅変調またはパルス変調成分をもち周期性がプローブ積分時間の 1%以上の信号について、プローブ積分時間が最も長い周期 T のちょうど整数倍でないとき、付加的な SAR 不確かさを考慮するものとする。非連動のプローブ積分時間について予想される最大値の不確かさに従って、一様確率分布を仮定して不確かさは評価されなければならない。 包絡線 s(t)を持つ信号について、時間 t_oから始まる積分時間 t_{int}中のプローブによる平均した信号読取りは以下で s_{int}(t_o, t_{int})によって与えられる。

$$s_{int}(t_0, t_{int}) = \frac{1}{t_{int}} \int_{t_0}^{t_0+t_{int}} s(t) dt \qquad 0 \le t_o \le T$$

ここで s_{int} は、プローブのフィルタリングが信号包絡線 s(t)を変更しないと仮定する。 t_0 が s(t)の最も長い周期 T に連動しないなら、プローブ積分時間の不確かさは、以下に示すように定義できる。

$$SAR_{uncertainty_a}[\%] = 100 \times \frac{max(s_{int}(t_0, t_{int})) - min(s_{int}(t_0, t_{int}))}{2 \times s_{int}(0, T)}$$

ここで

SAR_{uncertainty_a}は積分時間の不確かさ(%)、 max (s_{int} (t₀,t_{int}))は $0 \le t_0 \le T$ 間の任意の間隔(t₀、t_{int})の最大値、 min (s_{int} (t₀,t_{int}))は $0 \le t_0 \le T$ 間の任意の間隔(t₀、t_{int})の最小値である。

いかなる信号のプローブ積分時間の不確かさにおいても、導出に SAR_{uncertainty_a}を使用できる。TDMA 信号のための不確かさの簡易な代替式を以下に示す。

$$SAR_{uncertainty_b}[\%] = 100 \times \sum_{all-sub-frames} \frac{t_{frame}}{t_{int}} \frac{slot_{idle}}{slot_{total}} \quad for \quad t_{int} > t_{frame}$$

ここで

SAR_{uncertainty_b}は積分時間の不確かさ(%)、 t_{frame}はフレーム持続時間、 t_{int}は積分時間、 slot_{idle}はフレームのアイドルスロット数、 slot_{total}はフレームのスロットの総数である。

上の方程式で、TDMA 信号は複数のフレームレイヤから構成される可能性があること を意味する。例えば、GSM システムの基本的なサブフレームでは、8 スロットのサブフ レームの中に7つのアイドルスロットがある状態で持続時間 t_{sub-frame}= 4.6 ms であり、一 方、全体で26 スロットのフレームの持続時間は、1 フレームのアイドルスロットを含み t_{rame} = 120 ms である。

SAR_{uncertainty_b}は、不確かさを通常過大評価する近似である。ここで、slot_{idle}はスロット の総数である slot_{total} でのフレームのアイドルスロットの数である。フレーム持続時間は t_{frame}(t_{frame}< t_{int})である。総プローブ積分時間の不確かさは、アイドルスロットのあるフレ ーム構造のすべてのサブフレームについての不確かさの合計である。例えば、0.2 秒間の プローブ積分時間に関して、不確かさは s_{int} と SAR_{uncertainty} であると評価される。US TDMA (IS-136)では、3 スロットのフレームに 2 つのアイドルスロットがあり、多重フレ ームがない状態で、t_{frame}=20ms である。0.2 秒間のプローブ積分時間に関して、 SAR_{uncertainty_b}は6.67%の不確かさを与えるが、s_{int} と SAR_{uncertainty}を用いることで導出され た真の不確かさは、0%(積分時間はフレーム時間のちょうど倍数である)である。GPRS は、アイドルスロットの数が 6, 5, ...である可能性があり、アイドルスロット数 7 がワー ストケースである以外は GSM と同じである。

不確かさ表にこの値を記入する(それは、一様分布を仮定できる)。FDMA と CDMA

デバイスは連続または CW と等価な信号で試験される。したがって、不確かさ値Oが記 入されなければならない。

2.2.10 測定 SAR ドリフト

測定 SAR ドリフトが 5%以内ならば、不確かさ(すなわち、確率的誤差)またはバイ アスのどちらかとして扱うことができる。不確かさとして扱うならば、ドリフトは不確 かさ表に記録されるものとする。バイアスとして扱うなら、測定 SAR 値に補正が適用さ れるものとする。この場合、不確かさバジェットにドリフトを記録する必要はない(すな わち、u=0%)。

測定 SAR ドリフトは SAR 評価の間、供試機器に対し動的であり、安定した電力が測定 プロセス中でデバイスに供給されることを保証する手法として、導出されている。これ は、不確かさが確立さなければならないことを意味する。測定 SAR ドリフトを網羅する ために、表4に5%の標準不確かさ値が含まれている。以下の2つの手法の1つを利用す ることによって、異なる値を反映するように5%の公差を更新できる。

- a) 望ましい方法として、粗い走査の前に、ファントム内のユーザ定義点(単一点)で 動的 SAR 測定が SAR 測定装置によって行われるものとする。システムは SAR 測 定完了後に、ユーザ定義点で2回目の測定をするものとする。そして、測定 SAR 値の差異を表4の測定不確かさに適用することができる。
- b) 一方、a)に示された望ましい方法の感度が十分良くないならば、アンテナポートにおいてデバイス位置決めの前にSAR試験に関してRF電力を測定できる機器を用いて、所望の測定を行うことができる。SAR試験が完了した後にユーザは行った高周波電力測定を繰り返すものとする。表4の更新した公差として、行った高周波電力測定の差異を評価して使用することができる。

表 4 の測定 SAR ドリフト不確かさ(出力電力ドリフトとラベルされている)には、一 様確率分布関を仮定した。

2.3 機械的制約の寄与

2.3.1 走査システム

電界プローブ位置決め装置の機械的制約は、プローブ位置決めの精度と繰り返し性の 公差を測定 SAR の不確かさに追加する。不確かさはプローブ位置決め装置の仕様に関し て、電界プローブセンサの幾何学的な中心で定義される実測位置と比較して評価されて もよく、最大値の偏差 d_{ss}として表される。

不確かさは、プローブ位置決め装置の仕様において電界プローブ検出変換器の幾何学 中心から実測位置の確定から必要とされた位置に比例して評価され、最大公差 d_{ss}として 表される。一様確率分布を仮定して、プローブ位置決め装置の機械的制約によるピーク 空間平均 SAR 不確かさ寄与(d_{ss})は、一次不確かさ近似を用い計算可能である。

SAR_{uncertainty} [%] =
$$\frac{d_{ss}}{\delta/2} \times 100$$

ここで

SAR_{uncertainty}は不確かさ(%)、

*d*_{ss}はプローブセンサの中心の計算された位置とシステムメーカによって定義された基準点における実停止位置の間の最大値の位置不確実性、

δ はファントム液剤の検討する周波数範囲の最小の表皮深さ(mm)であり、例えば δは 6GHz において 6mm である。 メーカーがプローブ位置決め装置の機械的制約を明記していないなら、SAR 測定不確 かさへの寄与を決定するために、走査装置の不確かさが評価されるものとする。粗いス キャンのエリアでの動きの相対精度を評価し、そして、ソフトウェアによって示された 位置と 実際に達成された位置の違いを不確かさへ変換することで、簡単にこれを実施 できる。SAR 不確かさは、表4の列cに仮定した一様分布を用い記入するものとする。

2.3.2 ファントム外殻不確かさ

ファントム外殻の公差の関数としての不確かさは、距離に関してコンサーバティブな 条件下で評価される。すなわち、距離の自乗への依存性および、ファントム液剤と等価 線条電流密度の位置中の距離を5mmと仮定することである(等価電流密度は最も近い電 流源に対応するのではなく、局所磁界分布で近似した電流密度に対応している)。

$$SAR_{uncertainty}[\%] = \sqrt{\left(100 \times \left(\frac{(a+d+b/2s)^2}{a^2} - 1\right)\right)^2 + \left(5\left|\varepsilon_{r_{shell}} - 4\right|\right)^2}$$

for $3 \le \varepsilon_{r_{shell}} \le 5$, for $f > 3GHz$
$$SAR_{uncertainty}[\%] = 100 \times \left(\frac{(a+d+b/2s)^2}{a^2} - 1\right)$$

for $f \le 3GHz$

ここで、

SAR_{uncertainty}は不確かさ(%)、

aはファントム液剤と等価的な線条電流密度位置の間の距離、

bは、試験されるアンテナと付属品を含むデバイスの最大伸張、または、bはファ ントムの中心と立方体走査評価立方体の中心間の距離、

dはシェルの厚みとファントム形状の公差最大値、

sは単位距離あたりのシェルの最大値のたわみ(%)である。

 $5 \times |\varepsilon_{rshell} - 4|$ は、誘電率が1までずれる場合に、シェルの実際の誘電率から標準比 誘電率4を引いた値の絶対値に、評価する5%の不確かさを掛けた値である。

また、距離公差とたわみ以外に、外殻の誘電率(ε_r=4±1)の公差による不確かさ±(5%)が 考慮されるものとする。

不確かさ表の対応する列に、不確かさ値を(一様分布)記入する。

2.3.3 ファントム外殻表面に対するプローブ位置

ファントム外殻に対するプローブ位置決め装置の不確かさ *d_{ph}* は評価されるものとする。

ー様確率分布を仮定し、最高点空間平均 SAR 不確かさ寄与は一次誤り近似を用い計算 される:

$$\operatorname{SAR}_{\operatorname{uncertainty}}[\%] = \frac{d_{ph}}{\delta/2} \times 100$$

ここで、

SAR_{uncertainty}は不確かさ(%)、

d_{ob}は、プローブ先端とファントム外殻の測定距離の最大不確かさ、すなわち、プ

ローブ先端におけるファントム位置決定の不確かさ、 δは検討する周波数範囲のファントム液剤における最小表皮深さ(mm)である。

SAR 不確かさは、一様分布を仮定し不確かさ表の列 c に記入するものとする。

2.3.4 位置決めおよび保持器不確かさ

2.3.4.1 一般事項

保持器はSAR測定中、ファントムに対しDUTの試験位置を維持するために使用する。 保持器はDUTの特性に影響を及ぼす可能性があるため、保持器の摂動によるSAR不確か さは2.3.4.2の手順により評価されるものとする。2.3.4.3で保持器の機械的な公差から生 じる位置決め変分による SAR 不確かさに手順について議論する。双方の項はデバイス特 有の、また、事前に決定された不確かさに関する手順を含む。事前に決定された不確か さを使用する場合、多くの場合、事前に決定された標準偏差をさらに低減させるために そのデバイス固有の試験を多数反復してもよい。

2.3.4.2 保持器の摂動不確かさ

2.3.4.2.1 一般事項

保持器は誘電率5未満、損失正接0.05以下の低損失誘電材料から作製されているもの とする(これらの材料定数は、例えば、同軸プローブ法で決定できる)。それにもかかわら ず、いくつかの保持器は波源に影響する可能性があるため、保持器により生じる不確か さ(すなわち、保持器なしの機器からの公差)は、評価されなければならない。特定の供試 機器の不確かさは、タイプB手法である2.3.4.2.2 に記載された手法に従い、評価され なければならない。2.3.4.2.3.に記載された手法は、同様のSAR 特性を持ち、同一の保持 器で試験した DUT のグループについての不確かさを評価するタイプA手法を示す。表4 で使用される SAR 不確かさは以下の通りである。

$$SAR_{uncertainty}[\%] = \left(\frac{SAR_{w/holder} - SAR_{w/o holder}}{SAR_{w/o holder}}\right) \times 100$$

ここで

SAR_{uncertainty}は不確かさ(%)、 SAR_{W/ holder}は保持器ありの SAR、 SAR_{W/o holder}は保持器なしの SAR である。

2.3.4.2.2 特定の供試機器のための保持器摂動不確かさ: タイプ B

特定の構成で動作する特定の DUT の不確かさは、平板ファントムを用い以下の 2 つの 試験を実施し、評価されるものとする。

- a) 胴体に対し試験する場合に保持されるのと同様にデバイスを保持器に置き、平板フ アントムに直接接触するよう DUT を位置決めし(平板ファントムの底面に平行な DUT の平行・垂直中心線)、ピーク空間的平均した SAR(SAR w/holder)を評価する。
- b) a)と同じ位置に、発砲スチロールか等価な低損失非反射素材(誘電率 1.2 以下、誘電 正接 10⁻⁵以下)を使いデバイスを設置し、ピーク空間平均 SAR (SAR _{w/o holder})を評価 する。
- この不確かさ評価では、一様確率分布と自由度 v=∞を仮定した。

2.3.4.2.3 特定のタイプのデバイスのための保持器摂動不確かさ: タイプA

タイプA 不確かさ解析が、同様の形状と SAR 分布を持つ DUT のグループに適用でき る場合がある。この分析から生じる不確かさは、2.3.4.2.2 に記載された特定の試験を避 けることができるように、同一の保持器で同様の SAR 特性を持つ試験された他の DUT に 適用することができる。異なる構成の DUT の N 種の異なるモデルにおける保持器の影響 は、各モデルに関して 2.3.4.2.2 の試験を実施し評価するものとする(各構成において、N は少なくとも6以上であるものとする)。表4に対応する不確かさは、個々の不確かさの 平方自乗平均を使い自由度 v=N-1 で評価するものとする。

2.3.4.3 ファントムに対するデバイス位置不確かさの評価

2.3.4.3.1 一般事項

ー人の試験作業者によって保持器を使い確立された DUT 試験位置は、6.1 で記載され た厳密な位置からずれているかもしれない。デバイス位置決め公差による SAR 不確かさ は、特定の保持器または試験作業者によって使用された DUT のデザインや手順で異なる 可能性があり、通常、これらの影響は不可分である。2.3.4.3.2 の手順は、個々の DUT の 設計の評価に利用できる可能性がある。2.3.4.3.3 は、同一形状・実質的に同じ寸法で、 同一の保持器を用い試験された特定の DUT 設計のシリーズまたはグループの評価につい て、適用されうる手順を記載する。これらの要求が満たされていない場合、2.3.4.3.2 に おける手順は、それぞれの個々のデバイスの評価に用いられることが望ましい。特定の DUT のグループの試験に由来する、事前に決められた特定の保持器の標準偏差が適応可 能であるなら、個々のデバイスは2.3.4.3.2 反復試験を必要としないかもしれない。

2.3.4.3.2 特定のデバイス保持器における特定の DUT の位置決め不確かさ

特定のデバイス保持器で試験された特定の DUT の位置決め不確かさは 1g または 10g SAR の反復測定によって評価される。この位置決め不確かさは、すべての周波数帯で最 も高い SAR を生じさせる動作モードについてアンテナ位置、周波数チャネルおよびデバ イス位置を用い評価されなければならない。元の SAR 測定に加えて、DUT は位置を変え なければならず、試験は少なくとも4回繰り返さなければならない。5回の試験の最小値 は、自由度に関して妥当な値を証明するために十分でなければならない。個々のデバイ スの位置決め不確かさが大きくなることが疑われるなら、トータル測定不確かさへの影 響を低減させるために、より多くの試験回数が実施される必要があるかもしれない。試 験数を増やすことで、有効自由度(*v_{eff}*)を増加させ、包含係数を減少させることができる。 測定(N)の総数の平均 SAR は、標準偏差および実施された試験の数の自由度(*v_i* = N- 1)に 従って SAR 不確かさを決定するのに用いられる。

2.3.4.3.3 特定のデバイス保持器の特定タイプの DUT に対する位置決め不確かさ

ほぼ同じ形状と実質的に等価な寸法を持つ特定の DUT のグループが特定の保持器で試 験された場合、位置決め不確かさは以下の手順を用い評価してもよい。試験は少なくと も、2.3.4.3.2 の手順により評価された 6 台のデバイスを含まなければならない(それぞ れ5試験)。ある DUT が特定の保持器を使い試験されたデバイスの特定のグループの要件 を満たす DUT と同じ形状、実際上の等価な寸法、および SAR 分布特性を持つとき、その 特定の DUT に対し 2.3.4.3.2 で記載された試験を実施する代わりに、この選択されたデバ イスのグループの位置決め不確かさを使ってもよい。2.3.4.3.2 の手順で各デバイスにつ いて決定される平均電力不確かさに従い、SAR 不確かさは表 4 の対応する行と列で報告 される。DUT の特定のグループに含まれる M 台のデバイスについて実施した試験(N)の 数に従って自由度(v_i)が決定される (v_i=(N×M)-1)。 2.4 物理パラメータの寄与

2.4.1 一般事項

電気定数試験手法の詳細は IEC の規格 62209-1 Annex J で与えられる。また、IEC の規格 62209-1 Annex J.7 は不確かさ評価法を与える。IEC の規格 62209-2 Annex I は 30MHz ~6GHz 周波数帯の参照試料のパラメータを示す。

注:通常の度量衡学の慣例に従って、それぞれの電気定数の測定不確かさは、電気定 数測定の目標値からの許容公差と同程度かより小さいことが推奨される。

2.4.2 液剤密度

ファントム液剤は 1000 kg/m³の密度を持つと仮定する。この密度に関連する不確かさ は無いものとして SAR 評価に用いられるものとする。

2.4.3 液剤誘電率と導電率

液剤誘電率と導電率による不確かさは 2 つの異なる原因から生じる。不確かさの最初 の原因は、本文 表 5.1 の目標値からの± 10 %の許容公差の電気定数の SAR 補正の使用 から起きる(付録4参照)。不確かさの2番目の原因は、このセクションで記載される誘 電率と導電率の算定に使用される測定手順から生じる。

誘電性特性測定手順はベクトルネットワークアナライザを使用する。ネットワークア ナライザは、固有の損失と反射を取り除くために較正を必要とする。誘電率測定の不確 かさバジェットは、較正データの誤差、アナライザーのドリフト、ランダムエラーに由 来する。他の起こりうる誤差の原因は、試料保持器のハードウェア上の公差および特定 の周波数に関して最適の寸法からの公差である。これは試料保持器のタイプや測定され る散乱パラメータの本質にかかわらず適用される。

スロットライン手法における直線近似による不確かさは、最小二乗解析で評価できる。

	а			b	с	$d \\ u_i = (a/b) \times (c)$	е
	不確かさ要素	許容値 (± %)	確率分 布	除数	C _i	標準不確か さ(± %)	V _i Or V _{eff}
1	ε',・σ(N 回繰り返し) の繰り返し性	5.2	Ν	1	1	5.20	4
2	液剤参照値 ε' ٫/σ か らの偏差	3.0	R	√3	1	1.73	4
3	ネットワークアナラ イザドリフト、線形性 など	0.5	R	√3	1	0.29	8
4	テストポートケーブ ル変動	0.5	U	√2	1	0.35	8
5	合成標準不確かさ					5.50	5
注	:参照のため、行見出しる	を1~5、列	見出 しを a	~dとした	0		

表1:誘電率(ϵ'_r)と導電率(σ)測定についての不確かさテンプレートと数値の例。 : $\epsilon'_r \ge \sigma$ 毎に別々の表が必要かもしれない。

不確かさテンプレートの例を表 1 に示す。すべての影響量は特定の試験機器および手順に適用されてもされなくてもよく、また、示されなかった他の要素もいくつかの試験 機器では関連するかもしれない。サンプル-プローブ間の空隙/気泡、周波数内挿、センサ の寸法または位置決めの問題、数値解析/データ抽出アーティファクト、同軸プローブの 有限フランジ効果などのように、表 1 に含まれていない他の考えられる影響量も、考慮 される必要があるかもしれない。また、表 1 は数値の例を含む。試験機器により実際の 不確かさ見積りは異なってもよく、ここに示す値と異なっていなければならない。以下 の手順に示すように([8][9][10][11])、よく特徴付けられた標準物質の測定を誘電特性の測 定不確かさ評価に用いる場合がある。

- a) 対象となる中心周波数近辺で十分大きい周波数スパンで、ネットワークアナラ イザを設定し較正する。例えば、デバイス伝送帯域内の 5 周波数以上において 835MHz±100MHz。
- b) 少なくとも n 回標準物質を測定し、誘電率および導電率についてそれぞれのデバイス中心帯域に近い周波数で平均と標準偏差を得る。
- c) ステップ b)からのそれぞれのテストランに関して、ステップ d)から h)を実施す る。
- d) 平均値で割った試料標準偏差として、繰り返し性を計算する。誘電率について 以下に与える。

Repeatability[%] =
$$100 \times \frac{1}{\overline{\varepsilon'_r}} \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\varepsilon'_{r,i} - \overline{\varepsilon'_r})}$$

ここで平均値は

$$\overline{\varepsilon}'_{r} = \frac{1}{N} \sum_{i=1}^{N} \varepsilon'_{r,i}$$

導電率に関して同様に行う。

e) 繰り返し性を表 1 の行 1、列 a に記入する。自由度 v_i=N-1 を列 e に記入する。
 目標値 ε_{r,ref} と σ_{ref} からの電気定数の公差を測定する。誘電率に関しては以下の式
 で与えられる。

$$deviation(\%) = 100 \times \left| \frac{\overline{\varepsilon}_{r} - \varepsilon_{rref}}{\varepsilon_{rref}} \right|$$

公差を表 1 の行 2、列 a に記入する。自由度 v_i=N-1 を列 e に記入する。導電率に 関して同様に行う。

- f) 表 1 の他の要素(必要であれば他の関連要素)に関して、対象とする周波数でタイプB不確かさを評価する。
- g) ステップ c)、d)、および e)から不確かさ要素の根二乗和として合成標準不確か さを決定する。表1の行5行dにこの値を記入する。
- h) 誘電率について、ステップ f)における合成標準不確かさの最大値を与える周波数 を選択する。この不確かさおよび対応する自由度 vi を表 4、5、および 6 の適切な 列に記入する。導電率に関しても同様に行う。

不確かさ評価に用いた、または省略した影響量の根拠とともに、それぞれ誘電率と導 電率に関して2つの表2の完成版を測定報告書に含めること。表 1 のバージョンはステ ップ f)と g)で判明した合成標準不確かさの最大値に対応する。

表 4、5、および 6 では、液剤導電率と液剤誘電率測定不確かさに関して列 f と g の感 度係数 c_i が必要である。これらの感度係数は、導電率に関して c_σ 、誘電率に関して c_ϵ で ある。それらは、IEC の規格 62209-2 Annex F の方程式(F.1)を(F.5)に用い計算される。 300MHz から 6GHz までの周波数範囲にわたる最大感度係数は、1 g 平均 SAR では c_{σ} =0.78(300MHz)と c_{ε} =0.23(2000MHz)、10 g 平均 SAR では c_{σ} =0.71 (300MHz)、 c_{ε} =0.26(5500MHz) であることがわかった。これらの最大値は表 4、5、および 6 に記入 される。もしくは、特定の試験周波数範囲について最大値を記入することができる。

2.4.4 液温

本標準規格では、SAR 測定は温度 18°C~25°C 以内かつ電気定数が測定された温度から±2°C 以内で行われる必要がある。以下の評価が、各レシピにつき温度許容値による不確かさ決定のために行われるものとする。

電気定数の測定は液温 *T_{low}* = 18 °C ± 1 °からと *T_{high}* = 25 °C ± 1 °C で実施されなければならず、以下の方程式で不確かさが評価される。

$$\varepsilon_\text{temp_liquid}_{\text{uncertainty}}[\%] = 100 \times \left| \frac{2 \times \left[\varepsilon_r(T_{high}) - \varepsilon_r(T_{low}) \right]}{\varepsilon_r(T_{high}) + \varepsilon_r(T_{low})} \times \frac{2^{\circ} C}{T_{high} - T_{low}} \right|$$

$$\sigma_\text{temp_liquid}_{\text{uncertainty}}[\%] = 100 \times \left| \frac{2 \times \left[\sigma_r(T_{high}) - \sigma_r(T_{low}) \right]}{\sigma_r(T_{high}) + \sigma_r(T_{low})} \times \frac{2^{\circ} C}{T_{high} - T_{low}} \right|$$

ここで、

 $\varepsilon_{\text{temp_liquid}_{\text{uncertainty}}}$ 液剤誘電率の温度不確かさ(%)、

 $\sigma_{\text{temp_liquid}_{\text{uncertainty}}}$ 液剤導電率の温度不確かさ(%)、

 $\varepsilon_r(T_{high})$ は温度 T_{high} での比誘電率、

 $\varepsilon_r(T_{low})$ は温度 T_{low} での比誘電率、

 $\sigma(T_{high})$ は温度 T_{high} での導電率、

 $\sigma(T_{low})$ は温度 T_{low} での導電率、

 T_{hish} は電気定数測定時の最高温度($^{\circ}$ C)、

 T_{low} は電気定数測定時の最低温度($^{\circ}$ C)。

特定の液剤の温度不確かさ導出に、これらの方程式を使うことができる。 T_{low} と T_{high} の不確かさは 0.1°C未満でなければならない。

 $\varepsilon_{temp_liquiduncertainty}$ と $\sigma_{temp_liquiduncertainty}$ の値は表 4、5、および 6 の適切な列に関する列 c に記入される。一様確率分布は表 4、5、および 6 の液温不確かさに関して仮定された。液温不確かさに関して感度係数は、導電率で c_{σ} 、誘電率で c_{ε} である。それらは、2.4.3 で記載された手順を用い計算される。

2.4.5 環境の摂動

高周波の不用周囲信号が SAR 試験中に存在しているとき、測定不確かさが生じる可能 性がある。周囲高周波レベルは、DUT 試験に用いられるのと同じ機器を用い、RF 電力を オフにした状態で SAR 測定を実施し評価される。高周波周囲ノイズは、測定環境がいか なる高周波波源もピーク 1gSAR の測定において 0.012W/kg 以下の影響しかないと示せる ならば、各 SAR 試験前にチェックされなくてよいかもしれない。

環境条件(本文 5.1 節)は RF 周囲ノイズによる SAR 不確かさと RF 波散乱体の影響が それぞれシステムの検出下限の 3%未満であることを要求する。IEC の規格 62209-2 Annex B に記載された試験構成は、試験サイトの近くの物体から反射の影響を評価する ためにも用いられる。さらに、RF 周囲ノイズは、すべての局所高周波発生源がスイッチ オフされている状態で SAR 測定を実施し、決定しなければならない。高周波反射と周囲 電磁界の影響による 1gSAR のピークは、本測定方法で規定された 100 mW/kg の低いダ イナミックレンジを満たすのに十分な SN 比を示すために、0.012W/kg(それは 0.4W/kg の 3%に対応する)未満でなければならない。周囲電界効果の SAR 不確かさは対応する表 4 の列に記入されるものとし、(例えば [12]を参照)、一様確率分布を仮定することができ る。

SAR 測定が無響室などの管理された環境で実施されるとき、高周波環境効果は年に一度は評価されなければならない。SAR 測定が電波無響室等の管理された環境で実施されないとき、高周波環境効果は定期的に(例えば4カ月毎など)または高周波周囲条件が確実に変化するとき(近傍の高出力非周期的波源(例えば携帯無線など)が SAR 測定中に管理されない環境で存在しているとき)、に評価されるものとする。管理されない環境の 場合は、測定環境は測定報告書で高周波周囲の適合性と周囲のノイズチェックの日付を宣言するものとする。

管理されない環境高周波チェック評価の根拠は、測定装置が管理されない環境に置か れていたとしても、高周波波源が SAR 測定装置位置から十分遠いことを示すことができ るなら、SAR 測定の近傍界的特徴から、いかなる SAR 測定も事前に不確かさ寄与を評価 する理由が全くないことである。ISO 10012:2003 に記載された較正間隔の根拠は、SAR 測定評価への高周波周囲影響の周期性を評価するために推奨される。

2.5 後処理の寄与

2.5.1 一般事項

この項は、1g および 10g 局所 SAR を決定するための離散的な測定データの後処理から 生じる不確かさの評価、内挿の合成不確かさ、外挿、平均最大値発見アルゴリズムにつ いて記載する。これらのアルゴリズムは、界の振る舞いに関する一般的な仮定による不 確かさを加味するかもしれず、したがって、特定の DUT に関してファントム液剤におけ る電界分布を完全に予測していないかもしれない。アルゴリズム不確かさは、測定につ いて選ばれた解像度とエリアおよび立方体走査で用いられた後処理手法の関数である。

ピーク位置での実際のSAR分布は、DUTの動作周波数と設計、試験位置、およびファ ントム液剤への近接度に強く依存している。低周波波源が遠く離れているとき、SAR分 布は非常に平坦な勾配を持つ可能性があり、また、ヘリカルアンテナなどの小さな高周 波源が組織の近くに置かれるとき、非常に急峻な勾配を持つ可能性がある。時として、 最大 SAR は表面の磁場のキャンセルのためファントムの表面に存在しない。

以下に提示する解析的 SAR 分布関数は、これらの条件をシミュレートすることを意図 して、この不確かさ評価の目的のために開発された。これらの参照関数は、システムソ フト後処理サブルーチンを試験する際に人工の、または、「ダミー」の SAR データセッ トを作成するのに用いられる。

粗い走査および立方体走査格子間隔において計算された参照関数値(測定値で使用され るものと同じ)はSARシステムソフトに入力される。まるでそれらが実際に測定されるか のように、粗い走査および立方体走査測定格子に対応する格子点における SAR 値は、 2.5.2で与えられた3つのSAR分布に従って計算され、システム内挿、外挿、および積分 アルゴリズムで処理される。1gおよび10g SARの結果は2.5.2で示す SAR参照値と比較 される。その領域の SAR 不確かさを評価するための手順と立方体走査後処理アルゴリズ ムは2.5.3で記載される。試験関数は、ファントム液剤とファントム境界面が平面である と仮定する。この不確かさの考え方は、解析的な分布関数で計算される格子点の位置に 誤差がないと仮定し、プローブ位置と測定の不確かさは考慮していない。

後処理の不確かさは、一様確率分布で評価されるものとする。

2.5.2 評価試験関数

3 つの解析関数 f_1 、 f_2 、 f_3 [13]は、この文書の手順に従い、試験された DUT において予想される可能な SAR 分布を代表するのに用いられる。関数 f は実際の無線機器の 30MHz から 3000MHz の周波数範囲での SAR フットプリントの評価に基づいている[14]。 f_1 について単一の、または、二つの最大値を持つ SAR 分布を評価できるように、2 つのパラメータ集合を与える。 f_2 はファントム・液剤表面における磁界の相殺を考慮にいれた場合に適用される。3GHz 以上の周波数範囲に関して f_3 は、はるかに強い減衰を説明するために追加される。ノイズがこれらの周波数で外挿に作用する可能性があるため、ノイズの項が含まれている。分布関数は z=0 のファントム表面に関して定義され、また、半空間ファントム液剤がすべての z>0 に関して定義される。

$$f_1(x,y,z) = A_1 e^{-\left(\frac{(x'+x_d/2)^2}{2\sigma_{xpeak}^2}\right)} e^{-\left(\frac{y'^2}{2\sigma_{ypeak}^2}\right)} e^{-z/a} + A_2 e^{-\left(\frac{(x'+x_d/2)^2}{2\sigma_{xsec}^2}\right)} e^{-\left(\frac{y'^2}{2\sigma_{ysec}^2}\right)} e^{-z/a}$$

ここで

$\sigma_{xpeak} = \begin{cases} \sigma_{xpp}, x' \ge -x_d/2 \\ \sigma_{xpn}, x' < -x_d/2 \end{cases}$	•	$\sigma_{ypeak} = \begin{cases} \sigma_{ypp'} y' \ge 0 \\ \sigma_{ypp'} y' < 0 \end{cases}$
$\sigma_{xsec} = \begin{cases} \sigma_{xsp'} x' \ge x_d/2 \\ \sigma_{xsp'} x' < x_d/2 \end{cases}$	•	$\sigma_{ysec} = \begin{cases} \sigma_{ysp'} y' \ge 0 \\ \sigma_{ysn'} y' < 0 \end{cases}$

$$f_2(x,y,z) = A e^{-\frac{z}{a}} \frac{a^2}{a^2 + x'^2} \left(3 - e^{-\frac{2z}{a}}\right) \cos^2\left(\frac{\pi}{2} \frac{y'}{3a}\right)$$

$$f_{3}(x,y,z) = A e^{\frac{-(x^{2}+y^{2}/2)}{(a/4)^{2}}} \left(e^{-\frac{8z}{a}}\right) + 0.4 \times \left[\frac{N_{ms}}{A} \times rnd(\zeta)\right]$$

x、y、およびzは空間座標(mm)、 x'= x + d (in mm); y'= y + d (in mm); x_dは2ピークの場合の SAR 最大値間の分離距離(表 2 参照)、 d はオフセットパラメタ(mm)、 a = 20 mm; A = 1 W/kg

*N_{rms}*は RF 信号がない場合の液剤中でのシステム雑音の振幅(W/kg)である。このパラメ ータはシステムに依存しており、RF 信号がないとき 2.3.4 に従って液剤中で測定された ノイズに対応している。参照関数 f₃の評価では、*N_{rms}*は 0.1 W/kg を使用しなければなら ない。

*rnd(ζ)*は、標準偏差が1の正規分布した乱数を返す関数である。適切な関数が典型的な 数値アプリケーションで利用可能である。変数のζは任意のシードである。関数 *rnd(ζ)*は 測定格子の各点に関して評価されるものとする。

上記のパラメータ a と A には、適切な SAR 分布の生成以外の特定の物理的意味はない。

関数 f₁のパラメータは異なる端末の評価の際に 1950MHz で選択された。表 2 にそれらを示す。

ピーク数	A1 (W/ kg)	A₂ (W/ kg)	a (mm)	x _d (mm)	σ _{xpp} (mm)	σ _{ypp} (mm)	σ _{xsp} (mm)	σ _{ysp} (mm)	σ _{xpn} (mm)	σ _{ypn} (mm)	σ _{xsn} (mm)	σ _{ysn} (mm)
1	1.2	0.0	11.9	n.a.	19.6	15.5	n.a.	n.a.	21.9	17.2	n.a.	n.a.
2	1.2	1.0	11.9	60.47	22.6	19.7	19.4	19.6	22.0	15.5	17.9	24.2

表 2 参照関数 f₁のパラメータ

例えば、*d*=2.5 mm は、ピーク位置が 5mm の増分を持つ測定格子に一致しないように SAR 分布を横シフトさせることを示す。このオフセットは、局所最大 SAR を探索するア ルゴリズムと不確かさを試験するために用いられる。

1g および 10g 立方体を(x、y、z)座標軸に合わせた際の、分布関数の f_1 、 f_2 、および f_3 の SAR 参照値を表 3 に示す。関数 f_1 が考慮されるとき、1 つまたは 2 個のピークのケースを考慮する場合、参照値からの最大値の公差が後処理の不確かさに使用されるものとする。参照値は他のデータ処理機能の試験において、以下で用いられる。

	20.01		
	SAR参照	照值 [W/kg]	
関数	1g 立方体	10g 立方体	ピークの状況
<i>f</i> ₁	0.791	0.494	ピーク1個
<i>f</i> ₁	0.796	0.503	ピーク2個、1番目のピークに立方体中心
<i>f</i> ₁	0.686	0.438	ピーク2個、2番目のピークに立方体中心
<i>f</i> ₂	1.796	1.375	
f_3	0.157	0.0268	

表 3. 後処理の不確かさ評価用 SAR 参照値(W/kg)

2.5.3 データ処理アルゴリズム不確かさ評価

2.5.3.1 粗い走査の評価

ある不確かさをもつ局所 SAR 評価の前提条件は、局所 SAR が立方体走査体積内に完全 に囲まれるという程度の精度で、粗い走査データから最大曝露の位置が決定可能である ということである。言い換えれば、粗い走査の補間アルゴリズムは±L_z/2mm か、より良 い精度でピーク SAR 位置の場所を見つけることができなければならない。ここで、L_zは 立方体走査体積の辺の長さである。この前提条件(本項の手順で試験される)が満たされて いるなら、粗い走査の評価は不確かさバジェットに寄与しない。

通常の粗い走査格子点で計算された参照関数値はシステムソフトに入力される。まる でそれらが粗い走査を完了して、ピーク SAR 位置(Xeval、Yeval)を決定するために測定され たように、補間アルゴリズムはこれらのデータ点を処理する。*d*=2.5mm のときは、(Xref、 yref)=(-2.5,-2.5)mm における解析関数によって決定された実際のピーク位置と比較される。 添字「eval」と「ref」は、それぞれ評価と参照を示す。言い換えれば、以下の不等式を満 足するものとする。

$$|x_{\text{ref}} - x_{\text{eval}}| \le L_z/2$$
 mm

$$|y_{ref} - y_{eval}| \le L_z/2$$
 mm

正確に SAR ピークの位置を探す 2 次元の粗い走査の能力は、粗い走査格子の空間分解 能(Δx , Δy)、補間値の空間分解能(Δx_i , Δy_i)、補間関数の種類($g_i(x)$, $g_i(y)$)で決まる。実際の ピーク位置(x_{ref} , y_{ref})に関する評価格子の位置と評価ポイント数(N_x , N_y)にも依存する。

ピーク SAR 位置を決定する粗い走査で用いられる補間アルゴリズムの不確かさの評価 は、次の手順で行うことが望ましい。

- a) 測定分解能(*Δx*, *Δy*)と測定と一致した評価ポイント数(*N_x*, *N_y*)を選ぶ。粗い走査 領 域の中心を(*x*₀, *y*₀)=(0,0)とする。
- b) SAR を次の領域内において粗い走査評価格子点での関数 f₁、f₂、f₃を用いて計算する。

$$x_0 - \Delta x \times [(N_x - 1)/2] \le x \le x_0 + \Delta x \times [(N_x - 1)/2],$$

$$y_0 - \Delta y \times [(N_y - 1)/2] \le y \le y_0 + \Delta y \times [(N_y - 1)/2],$$

ピーク位置はこれらの3つの関数においてzから独立なため、z=0を仮定する。ここでNxとNyは奇数であると仮定する。ピーク位置がこれらの関数においてzから独立しているので、z=0と仮定する。

- c) 3つの分布関数で求まる SAR は、ピーク SAR 位置(*x*_{eval}, *y*_{eval})を決定するシステム で用いられる補間関数の種類(*g*_i(x), *g*_i(y)) により(*Δx*_i, *Δy*_i)の空間分解能を伴い SAR 測定システムで補間される。評価する際に測定装置が SAR を入力できないときは、 同じアルゴリズムを用いて補間とピーク探索の不確かさを評価する。
- d) 補間アルゴリズムから決定したピーク SAR 位置は、不等式の要求を満たさなけれ ばならない。

$$|x_{\rm ref} - x_{\rm eval}| \le L_Z/2$$
 mm

$$|y_{ref} - y_{eval}| \le L_z/2$$
 mm

満足しないときは、データ処理と測定システムでより細かい格子分解能を用いる か、かつ/または補間点数を増やして、ステップ b)から評価を始めることが望まし い。

- e) 粗い走査の中心(x₀, y₀)は、0 < x₀ ≤ Δx/2 と 0 < y₀ ≤ Δy/2 の範囲で 1 mm ステップで 移動し、ステップ b)から再度評価を始めることが望ましい。
- 2.5.3.2 立方体走査の評価

立方体走査は、1g または 10gSAR 最大値を 2.5.2 における SAR 参照値と比較すること によって評価される。2.5.3.1 の粗い走査手順から、真のピーク位置(x_{ref}、y_{ref})は不等式に よって与えられた量によって評価のピーク位置(x_{eval}、y_{eval})と置き換えられるだろう。

$$|x_{ref} - x_{eval}| \le L_z/2$$
 mm

$$|y_{ref} - y_{eval}| \le L_z/2$$
 mm

この置き換えは、距離 d を組み込んだ 2.5.2の参照関数 f₁、f₂、f₃において考慮される。 この置き換えは、実際変化するので d の値は以下の範囲とすることが望ましい。

$$\left|d\right| \leq \left(L_{\rm Z} - L_{\rm C}\right)/2$$

ここで L_cは(平均化を行う)立方体の一辺の長さである。すなわち、1g では 10 mm、

10g では 21.5 mm である。各々の距離 d に対して 3 つの関数のうち、一番大きい不確か さを生じる関数を記録する。幾つかの距離 d に対して一番大きい不確かさの 2 乗平均は、 外挿、内挿、積分に起因する不確かさとして入力する。

- 注:粗い走査の要求は局所ピーク SAR $\hbar |d| \le L_z/2$ に位置するということであるが、 まずは 1g、10g 立方体を計算できる $|d| \le (L_z - L_c)/2$ という、より小さい範囲を用 いる。 $(L_z - L_c)/2 < |d| \le L_z/2$ の値に対しては、測定ソフトウェアは、1g または 10g 立方体が補足されておらず再測定しなければならないと警告しなければならない。 これは、不確かさに影響しないので、考慮する必要はない。
- a) 関数 f₁、f₂、f₃の評価として距離 d を選ぶ。d は-(L_z L_c)/2 から +(L_z L_c)/2 で例 えば 1mm ステップで変化させることが望ましい。x と y 方向はまた別々に変化さ せることが望ましい。
- b) SAR 値を測定された立方体走査点と一致する評価格子点で関数 f₁、f₂、f₃に従っ て計算する。立方体走査体積は、以下の座標を原点とする。

$$(x, y, z) = (0, 0, L_{\rm h}/2 + z_{\rm d})$$

ここで、*L*_hは、立方体走査体積の高さで、*z*_eは内部表面からもっとも近い測定点 までの距離である。

- c) 計算された SAR 値は、プローブの制約により測定できない立方体走査体積内の 追加点を得るために、システムのソフトウェアによりz=0のファントム表面に 外挿される。計算と外挿されたデータ点の双方は、システムのソフトウェアによっ てより詳細な分解能に補間される。次に、最大 1g もしくは 10gSAR を決定するた めに、立方体走査内で空間ピーク SAR を探すと同時に積分を行う。 他の方法でも可能である。評価する際に測定システムが SAR 値を入力できない ときは、同じアルゴリズムを用いて外挿、補間と積分の不確かさを評価する。
- d) システムもしくはデータ処理ソフトウェアにより決められた 1g と 10gSAR(SAR_{eval})は、2.5.2で与えられている SAR と比較される。分布関数 f₁, f₂に 対する SAR 不確かさは、以下の式で計算される。

$$SAR_{uncertainty} [\%] = 100 \times \left| \frac{SAR_{eval} - SAR_{ref}}{SAR_{ref}} \right|$$

分布関数 f₃に対する SAR 不確かさは、以下の式で計算される。

$$\operatorname{SAR}_{\operatorname{uncertainty}}\left[\%\right] = 100 \times \left| \frac{\operatorname{SAR}_{\operatorname{eval}} - \operatorname{SAR}_{\operatorname{ref}}}{\operatorname{SAR}_{\operatorname{ref}}} \right| + 100\sqrt{3} \left| \frac{\operatorname{SAR}_{\operatorname{stdev}}(N_{\operatorname{rms}})}{\operatorname{SAR}_{\operatorname{stdev}}} \right|$$

- e) 3つの分布関数のいずれかにより最も高い SAR 不確かさを記録する。
- f) 他の置き換え値 d に対してステップ(b)から(d)まで繰り返す。
- g) 各々の置き換え値 d に対してステップ(d)で計算された不確かさの2乗平均を求 める。この値は、外挿、内挿、積分に起因する不確かさとして表 4 の行と列に 入力することが望ましい。
- h) 立方体走査の不確かさを決定する際に用いたパラメータを記録する。

- 3次元のポイント数及びステップ数に関して、参照関数をサンプリングするのに 用いた格子の寸法
- 参照関数に対して2つの点間を含む補間点の数、もしくは3方向の補間分解能
- 外挿範囲の寸法 d_∞ すなわち、最初の測定点におけるプローブセンサ位置とファントム表面の距離(プローブ先端がファントム表面に 到達できる距離)
- 用いた補間、外挿、平均化のアルゴリズム、計算条件(格子数、格子間隔、3方 向での補間点の数など)は、すべての関数で同じとする。

2.6 標準波源のオフセットと公差

総合評価試験では、標準波源の機械的および電気的公差は評価結果としての空間的 SAR ピークと、例えば、異なる給電点インピーダンスと距離、ファントム外殻、液剤な どの関数として電流分布に影響する。また、実際の物理的な構造は目標値が基づいてい る数値モデルから外れている。結果として生じるオフセットと不確かさは、タイプ A か タイプ B 評価で決定できる。タイプ A は異なる液剤、プローブ、およびファントム評価 に関連するだろう。タイプ B 評価では、すべてのパラメータが、実験的または数値的に 評価される必要がある。

3 不確かさ推定

3.1 合成標準不確かさおよび拡張不確かさ

各不確かさの要素は、その要因、確率分布、感度係数、不確かさ値とともに記録される。結果は、以下の表4に記録する。標準不確かさの総和(*u*_c)は、次式で表される。

$$u_c = \sqrt{\sum_{i=1}^m c_i^2 u_i^2}$$

ここで、c_iは感度係数、u_cは合成標準不確かさ、u_iは標準不確かさである。 拡張不確かさUは、95%の信頼区間を用いて評価を行う。

3.2 最大拡張不確かさ

95%の信頼区間を用いた拡張不確かさは、0.4 から 10 W/kg の範囲で局所最大 SAR が ±30%を超えてはならない。もし、不確かさが 30%を超えるなら、測定について実際 の 不確かさと 30%目標値の差(%)を考慮に入れる。例えば、IEC の規格 62311 の手法を参照。

表 4 DUT SAR 試験の測定不確かさ評価表

а	b	С	d	е	f	g	h	i	k
				=f(d,k)			=c×f/e	=c×g/e	
不確かさの原因	記述	公 差 /	確率	除数	Ci	Ci	標準不確	標準不確	v; また
		不確か	分布		(1g)	(10g	かさ	かさ	は v _{eff}
		さ±%)	±%, (1g)	±%, (10g)	
測定システム									
プローブ較正	2.2.1		Ν	1	1	1			∞
軸等方性	2.2.2		R	√3	1	1			8
直線性	2.2.3		R	√3	1	1			8
プローブ変調応答	2.2.4		R	√3	1	1			8
検出限界	2.2.5		R	√3	1	1			∞
境界効果	2.2.6		R	√3	1	1			∞
読出し機器	2.2.7		Ν	1	1	1			∞
応答時間	2.2.8		R	√3	1	1			∞
積分時間	2.2.9		R	√3	1	1			∞
RF 環境雑音	2.4.5		R	√3	1	1			∞
RF 環境反射	2.4.5		R	√3	1	1			∞
プローブ走査装置の	2.3.1		R	√3	1	1			∞
機械的制限									
ファントム外殻に対	2.3.3		R	√3	1	1			∞
するプローブ位置									
後処理	2.5		R	√3	1	1			∞
試験サンプル関係	-								
保持器の不確かさ	2.3.4.2		Ν	1	1	1			M-1
試験サンプル位置	2.3.4.3		N	1	1	1			M-1
電力スケーリング	62209-		R	√3	1	1			∞
	2:L3								
出力電力ドリフト	2.2.10		R	√3	1	1			∞
ファントムと機器									
ファントムの不確か	2.3.2		R	√3	1	1			∞
さ(形状と厚さの公差)	-								
液剤導電率・誘電率の	2.4.3	1.9	N	1	1	0.84	1.9	1.6	∞
差異の補正アルゴリ									
ズム									
液剤導電率(測定値)	2.4.3		N	1	0.78	0.71			М
液剤誘電率(測定値)	2.4.3		N	1	0.23	0.26			м
液剤導電率の温度不	2.4.4		R	√3	0.78	0.71			∞
確かさ				-	_				
液剤誘電率の温度不	2.4.4		R	√3	0.23	0.26			∞
確かさ					-	-			
合成標準不確かさ	3.1		RSS			1			
拡張不確かさ(95%信	3.2					1			
頼区間)									

表5 総合評価試験の測定不確かさ評価表

а	b	С	d	е	f	g	h	i	k
				=f(d,k)	T		=c×f/e	=c×g/e	
不確かさの原因	記述	公差/不	確率	除数	Ci	Ci	標準不	標準不確か	v; ま
		確かさ	分布		(1g)	(10g	確かさ	さ	たは
		±%)	±%,(1g)	±%,(10g)	V _{eff}
測定システム									
プローブ較正	2.2.1		Ν	1	1	1			∞
軸等方性	2.2.2		R	√3	1	1			8
直線性	2.2.3		R	√3	1	1			∞
変調応答	2.2.4		R	√3	1	1			∞
検出限界	2.2.5		R	√3	1	1			8
境界効果	2.2.6		R	√3	1	1			8
読出し機器	2.2.7		Ν	1	1	1			8
応答時間	2.2.8		R	√3	1	1			8
積分時間	2.2.9		R	√3	1	1			8
RF 環境雑音	2.4.5		R	√3	1	1			8
RF 環境反射	2.4.5		R	√3	1	1			∞
プローブ走査装置の	2.3.1		R	√3	1	1			∞
機械的制限									
ファントム外殻に対	2.3.3		R	√3	1	1			∞
するプローブ位置									
後処理	2.5		R	√3	1	1			∞
ダイポール									
数値モデルと実物と	2.6		Ν	1	1	1			8
の差異									
液剤距離とダイポー	2.3.4.		R	√3	1	1			∞
ル軸	3								
出力電力ドリフト	2.2.10		R	√3	1	1			8
ファントムと機器									
ファントムの不確か	2.3.2		R	√3	1	1			8
さ(形状と厚さの公差)									
液剤導電率・誘電率の	2.4.3		Ν	1	1	0.84			8
差異の補正アルゴリ									
ズム									
液剤導電率(測定値)	2.4.3		Ν	1	0.78	0.71			М
液剤誘電率(測定値)	2.4.3		Ν	1	0.23	0.26			М
液剤導電率の温度不	2.4.4		R	√3	0.78	0.71			8
確かさ									
液剤誘電率の温度不	2.4.4		R	√3	0.23	0.26			∞
確かさ									
合成標準不確かさ	3.1		RSS						
拡張不確かさ(95%信	3.2								
頼区間)									

簡易性能試験のための測定不確かさ評価表

а	b	С	d	е	f	g	h=c×f/e	i=c×g/e	k
		1	1	=f(d,k)	T	T			1
不確かさの原因	記述	公 差 /	確率	除数	Ci	Ci	標準不確	標準不	v _i ま
		不確	分布		(1g)	(10g)	かさ±%,	確かさ	たは
		かさ					(1g)	±%,(10g	V _{eff}
		±%)	
測定システム							1		
変調応答	2.2.4		R	√3	0	0			∞
検出限界	2.2.5		R	√3	0	0			∞
境界効果	2.2.6		R	√3	0	0			∞
読出し機器	2.2.7		Ν	1	0	0			∞
応答時間	2.2.8		R	√3	0	0			∞
積分時間	2.2.9		R	√3	0	0			∞
RF 環境雑音	2.4.5		R	√3	0	0			∞
RF 環境反射	2.4.5		R	√3	0	0			8
プローブ走査装置の	2.3.1		R	√3	1	1			8
機械的制限									
ファントム外殻に対	2.3.3		R	√3	1	1			8
するプローブ位置									
後処理	2.5		R	√3	0	0			8
ダイポール									
数値モデルと実物と	2.6		Ν	1	1	1			8
の差異									
液剤距離とダイポー	2.3.4.		R	√3	1	1			∞
ル軸	3								
出力電力ドリフト	2.2.10		R	√3	1	1			8
ファントムと機器									
ファントムの不確か	2.3.2		R	√3	1	1			∞
さ(形状と厚さの公									
差)									
液剤導電率・誘電率	2.4.3		Ν	1	1	0.84			8
の差異の補正アルゴ									
リズム									
液剤導電率(測定値)	2.4.3		Ν	1	0.78	0.71			М
液剤誘電率(測定値)	2.4.3		Ν	1	0.23	0.26			М
液剤導電率の温度不	2.4.4		R	√3	0.78	0.71			8
確かさ									
液剤誘電率の温度不	2.4.4		R	√3	0.23	0.26			8
確かさ									
合成標準不確かさ	3.1		RSS						
拡張不確かさ(95%)	3.2								
信頼区間)									

表 4-6 注

- 1 a-k は参照パラメータ
- 表4の略語
 RSS、N、R、Uは、2乗和の平方根、正規、一様、U型確率分布。
 Div.は、標準不確かさを得るために用いられる除数
- 3 この表で示されている不確かさ要素は、本測定方法のために開発された試験手順 と方法を基本にしている。試験手順と方法が変化したときは、異なる不確かさ要素が適用されるかもしれない。例えば、他のファントム形状と被測定機の位置を 試験するために定義されたパラメータが該当するかもしれない。
- 4 除数は、確率分布と自由度(v_i と v_{eff})の関数である。
- 5 c_iは、SAR の変動に不確かさ要素の変動を変換するために適用される感度係数で ある
- 6 標準不確かさの自由度(v_i)と拡張された不確かさの自由度(v_{eff})の議論については
 1.3 を参照
- 7 *v_i*列のMは試験数
- 8 不確かさ影響量のいくつかは、装置メーカーにより供給される。その他の試験ごとに異なる要素の不確かさは、各々の測定で評価する必要がある。
- 9 この表で示されている全ての影響量は、システム評価試験においても有効である。 ただし、試験サンプルに関するグループにおける3アイテムが、2つの影響量を含むダイポールグループによって置き換えられる場合は除く。例えば、液剤距離と ダイポール軸、入力電力とSARドリフト。
- 10 ISO/IEC Guide 99:2007 に述べられているように、測定の再現性条件は「測定の条件、同じ測定手順、同じ作業者、同じ測定システム、同じ運用条件および同じ測定位置を含む一組の条件の範囲外、および短期間中に同じであるか同様の対象に対する再現測定」と定義される。したがって、再現性はある特定の試験機関における試験のためだけの条件と要素を含まなければならないことを暗黙的に主張している。このような関係においては、簡易性能試験に用いられるダイポールは、測定システムの一部でない。

<u>参考文献</u>

- [1] A. Christ, T. Samaras, C. Goiceanu, and N. Kuster, "Characterization of the electromagnetic near-field absorption on body tissue composition in the frequency range from 30 MHz to 6 GHz," Physics in Medicine and Biology, vol. 51, no. 19, pp. 4951 – 4965, Oct., 2006.
- [2] M. Douglas, M. Kanda, W. Luengas, M. Ballen, T. Babij, and C-K, Chou, "An algorithm for predicting the change in SAR in a human phantom due to deviations in its complex permittivity," IEEE Trans. EMC, vol. 51, no. 2, pp. 217 226, May 2009.
- [3] ISO/IEC Guide 98-3:2008, Uncertainty of measurement Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)
- [4] Onishi T. and Uebayashi S., "Influence of phantom shell on SAR measurement in 3-6 GHz frequency range," IEICE Trans. Commun., vol., E88-B, no. 8, pp. 3257 – 3262, 2005.
- [5] NIST TN1297, Guidelines for Evaluating and Expressing the Incertitude of NIST Measurement Results, Gaithersburg, MD: National Institute of Standards and Technology, 1994.
- [6] Kanda, M, Analytical and numerical techniques for analyzing an electrically short dipole with a nonlinear load, IEEE Transactions on Antennas and Propagation, Jan 1980, vol. 28, Issue: 1, pp. 71- 78.
- [7] Ladbury, J.M., Camell, D.G., Electrically short dipoles with a nonlinear load, a revisitedanalysis", IEEE Transactions on Electromagnetic Compatibility, Feb 2002, vol. 44, Issue: 1, pp 38-44.
- [8] Jenkins, S., Hodgetts, T. E., Clarke, R. N., and Preece, A. W., "Dielectric measurements on reference liquids using automatic network analysers and calculable geometries," Measurement Science and Technology, Vol. 1, No. 7, pp. 691–702, July 1990.
- [9] Migliore, M. D., "Partial self-calibration method for permittivity measurement using truncated coaxial cable," Electronics Letters, Vol. 36, No. 15, pp. 1275–1277, July 20, 2000.
- [10] Nyshadham, A., Sibbald, C. L., and Stuchly, S. S., "Permittivity measurements using open-ended sensors and reference liquid calibration—an uncertainty analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 2, pp. 305–314, Feb.1992.
- [11] Luc, J., Butet, R., Lebrusq, E., Toutain, Y., and Gallee, F., "SAR Measurement time reduction via optimization algorithms and interpolation scheme", Proc. 28th Annual Meeting of the Bioelectromagnetics Society (BEMS 2006), June 11-15, 2006, Cancun, Mexico
- [12] IEEE Std 1528:2003, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- [13] Evans, S., and Michelson, S. C., "Intercomparison of dielectric reference materials available for the calibration of an open-ended probe at different temperatures," Measurement Science and Technology, Vol. 6, No. 12, pp. 1721–1732, Dec. 1995.
- [14] Francavilla M., Schiavoni A.: "New Reference Function for Post Processing Uncertainty Evaluation in SAR Compliance Tests" submitted to IEEE Microwave and Wireless Components Letters.

参考資料

参考資料1	局所吸収指針	1
参考資料2	諮問第 118 号「携帯電話端末等に対する比吸収率の測定方法」 のうち、「人体側頭部の側で使用する携帯電話端末等に対する 比吸収率の測定方法」答申書別添(平成 18 年 1 月 23 日)	3
参考資料3	ファントム液剤の組成例	35
参考資料4	諸外国の状況	39

局所吸収指針

平成9年4月24日策定

(電気通信技術審議会答申 諮問第 89 号「電波利用における人体防護の在り方」) 平成 23 年 5 月 17 日改定

(情報通信審議会答申 諮問第 2030 号「局所吸収指針の在り方」)

<u>1 適用範囲</u>

本指針は、周波数 100kHz 以上 6GHz 以下に適用する。

局所吸収指針の主な対象は、携帯電話端末等の小型無線機であり、電磁放射源に寄 与するアンテナや筐体が人体に極めて近接して使用される場合を想定している。

具体的には、本指針(局所吸収指針)は、電磁放射源(主にアンテナ)や放射に関わる金属(筐体等)と人体との距離が20cm以内の場合に適用される。また、それ以外の距離においても、電磁界強度指針、補助指針又は局所吸収指針のいずれか1つを満たせば基礎指針を満たしていると判断できる。ただし、周波数が300MHz以上300GHz未満であって、10cm以上20cm以内の距離における電磁界強度指針又は補助指針の適用は排除されない。

なお、空中線電力の平均電力が 20mW 以下の無線局については、仮に無線局の全 出力が身体のごく一部に吸収される場合でも、局所 SAR の電波防護指針を満たして おり、評価の必要性はないものと考えられる。また、管理環境においては、同 100mW 以下の無線局については、評価の必要性がないものと考えられる。

<u>2 管理環境</u>

次の要件を全て満たすこと。

- <1> 全身平均 SAR の任意の6分間平均値が、0.4W/kg 以下であること。
- <2> 任意の組織 10g 当りの局所 SAR (6 分間平均値) が 10W/kg (四肢では 20W/kg) を超えないこと。
- <3> 接触ハザードが防止されていない場合は、100kHz から 100MHz までの周波数 において接触電流が 100mA 以下(平均時間 6 分間)であること。 ただし、接触電流がこの指針に対して無視できないレベルの複数の周波数成分

からなる場合は、その各周波数成分の指針値に対する割合の自乗和を求める。こ れらの総和が1を超えてはならない。

なお、周波数 100MHz 以上の無線局は、<3>に述べた接触電流に関する指針に基づく評価を行う必要はない。

3 一般環境

次の要件を全て満たすこと。

- <1> 全身平均 SAR の任意の 6 分間平均値が、0.08W/kg 以下であること。
- <2> 任意の組織 10g 当たりの局所 SAR (6 分間平均値) が 2W/kg (四肢では 4W/kg) を超えないこと。
- <3> 接触ハザードが防止されていない場合は、100kHz から 100MHz までの周波数 においては接触電流が 45mA 以下(平均時間 6 分間)であること。

ただし、接触電流がこの指針に対して無視できないレベルの複数の周波数成分

からなる場合は、その各周波数成分の指針値に対する割合の自乗和を求める。これらの総和が1を超えてはならない。

なお、周波数 100MHz 以上の無線局は、<3>に述べた接触電流に関する指針に基づく評価を行う必要はない。

参考資料2

一部答申

諮問第 118 号

「携帯電話端末等に対する比吸収率の測定方法」

のうち

「人体側頭部の側で使用する携帯電話端末等に対する比吸収率の測定方法」
「人体側頭部の側で使用する携帯電話端末等に対する比吸収率の測定方法」答申

	•	•	6
	•	•	8
2.1 目的			
2.2 範囲			
3 定義及び用語 · ·	•	•	9
4 測定原理 ・	•	•	13
5 測定系の条件 · ·	•	•	14
5.1 概要			
5.2 ファントム			
5.3 SAR 計測装置			
5.4 プローブ走査装置			
5.5 保持器			
6 測定手順・・	•	•	19
6.1 測定系のセットアップ			
6.2 測定			
7 評価 •	•	•	27
7.1 適合確認に用いる指針値			
7.2 不確かさ			
7.3 評価方法			
8 測定系の評価試験及び較正・	•	•	28
8.1 測定系の評価試験			
8.2 SAR 計測装置の較正			
9 従来の測定方法の評価について・・・・	•	•	29
10 今後の課題等 ・	•	•	30
101 測定方法の適用対象の拡大			20
10.2 SAR 值の取扱い			
付録 1:ファントムの仕様・・・	•	•	31
付録 2:測定におけるデータ処理の方法	•	•	33
付録 3:測定系の評価試験	•	•	35
付録 4: 新旧測定方法の違い ・	•	•	39
参考文献 •	•	• ,	41

1 まえがき

無線設備の電波が人体に好ましくない影響を及ぼさないように、その強度等に関し て、平成2年6月に電気通信技術審議会から「電波利用における人体の防護指針」(通 称、「電波防護指針」)が答申されている^[1]。この電波防護指針の値は、人体防護を前 提としたものであり、無線設備の使用者の状況や設置環境条件等の変動を踏まえて十 分な安全率を考慮して定められたもので、既に電波法施行規則第21条の3として制 定されている。

さらに、近年の携帯電話等の急速な普及に伴い、携帯電話端末等から発射される電 波による健康への影響が懸念されるようになってきたため、平成9年4月電気通信技 術審議会答申「電波利用における人体防護の在り方」において、携帯電話端末等、身 体に近接して使用される無線設備に適用する電波防護指針(局所吸収指針:比吸収率 (SAR: Specific Absorption Rate)で規定)が策定され^[2]、人体側頭部における比吸収 率の許容値として既に無線設備規則第14条の2として制定されている。

携帯電話端末等に対する SAR の測定方法については、平成 12 年 11 月に電気通信 技術審議会から「携帯電話端末等に対する比吸収率の測定方法」のうち「人体側頭部 の側で使用する携帯電話端末等に対する比吸収率の測定方法」が答申^[3]され、総務省 告示として制度化されている。その後、国際電気標準化会議(IEC: International Electrotechnical Commission)において SAR を統一的に評価するための測定方法につい て標準化が進められ、我が国からも多くの寄与を行った結果、本年 2 月に「人体側頭 部の側で使用する携帯電話端末等に対する比吸収率測定方法が国際標準化^[4]されたと ころである。

本答申は、我が国の電波防護指針のうち、局所吸収指針の適用に関連して、人体側 頭部の側で使用される携帯電話端末等による SAR の統一的な測定方法について、我 が国も含めた加盟国により合意された国際標準との整合性を確保するために平成 12 年答申の見直しを行ったものである。

局所吸収指針が定める SAR は、単位質量の生体組織に単位時間内に吸収される電気的エネルギー量で定義されている。これは本来、人体内部において定義される量であるが、測定器を人体内部に挿入して測定することが不可能であるため、本答申では、擬似的な人体モデル(ファントム)を使用して間接的に SAR を評価する方法について述べる。個々の人体組織の多様性及びファントムを使用することによる SAR 測定値の差違は適用指針値の安全率に含まれるとし、標準の測定機関での運用性、統一性の実現に配慮している。

本測定方法では、対象無線機器によって生じる SAR の概ね最大値(ほとんどの場合において、実際の運用の中で想定される SAR よりも高い値)が得られる。したがって、この測定値が局所吸収指針値を超えなければよい。通常の使用条件で携帯電話等の端末機器によって生じる人体内の SAR は、この測定値以下であり、アンテナの放射特性やシステムの条件によってはさらに小さくなる場合が多い。

今後、安全な電波利用のより一層の徹底を図っていくために、本答申に基づく測定

方法が十分活用されることが望ましい。また、電波防護指針の見直し、測定機器の進 歩、携帯電話端末等の使用形態の変化、新たな電波利用システムの出現・普及、国際 動向などに対応して、本測定方法を改定する必要がある。

2 目的と範囲

2.1 目的

本比吸収率測定方法(以下「本測定方法」という。)は、携帯電話端末等について、 電波防護指針の局所吸収指針に対する適合性評価に使用する標準的な測定方法を提 示することにより、電波防護指針の円滑な運用を図ることを目的とする。

本測定方法では、電界プローブを使用する測定方法を標準測定方法として採用し、 それを使用する上で必要な技術的条件を規定する。

2.2 範囲

2.2.1 対象機器

本測定方法の対象機器は、人体側頭部の側で使用する携帯電話端末等で、電波発射源が人体側頭部の近傍に存在するもののみを対象とする。

その他の人体部位でのばく露若しくは体内に金属等の異物を挿入している場合等のばく露は対象としない。

2.2.2 周波数範囲

本測定方法は、300MHzから3GHzまでの周波数帯域に適用する。

現在、我が国の携帯電話端末等に使用されている周波数は、800MHz 帯、1500MHz 帯及び 1900MHz 帯であり、1700MHz 帯及び 2000MHz 帯の新たな使用も見込まれて いる。近い将来の動向にも配慮し、300MHz から 3GHz とする。

3 定義及び用語

・電磁波

電界及び磁界の振動が真空中や物質中を伝搬する波動の総称である。電磁波には、 低周波の電磁界から通信に使われている、いわゆる電波、太陽より放射される光(赤 外線、可視光線、紫外線) 医療等に応用される放射線(X線、γ線)などが含まれ る。紫外線より波長の短い電磁波が電離放射線、波長の長いものが非電離放射線に 大別される。

・電波

電波法第2条に定められた3000GHz以下の周波数の電磁波をいう。電波防護指 針においては、10kHzから300GHzまでの周波数帯を対象とする。

・電波防護指針

電波利用において人体が電波(周波数の範囲は10kHzから300GHzまでに限る。) にさらされるとき、その電波が人体に好ましくないと考えられる生体作用を及ぼさ ない安全な状況であるために推奨される指針のことをいう^{[1][2]}。

・局所吸収指針

主に身体に極めて近接して使用される無線機器等から発射される電磁波により、 身体の一部が集中的に電磁界にさらされる場合において使用する指針をいう^[2]。

・比吸収率 (SAR: Specific Absorption Rate)

生体が電磁界に照射されるときの、単位質量当りの吸収電力をいう。密度 $\rho[kg/m^3]$ の微小体積要素 dV に含まれる微小質量要素 dm に吸収されるエネルギー dW の時間微分、すなわち

SAR [W/kg] = $d (dW/dm)/dt = d (dW/\rho dV)/dt = \sigma E^2/\rho$ で与えられる。単位は W/kg で与えられる。

ただし、σ[S/m]は物質(すなわち生体組織)の導電率、E[V/m]は当該物質内の電 界強度実効値である。

・平均電力

ある時刻 t_1 から t_2 で時間的に変動する電力 P(t)の平均電力 \overline{P} は、以下の式で与えられる。このとき、積分時間 t_2 - t_1 を平均時間と呼ぶ。

$$\overline{P} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} P(t) dt$$

・平均時間

局所 SAR の平均時間は電波防護指針で6分と規定されている。本測定方法においては、評価対象の携帯電話端末等が6分間にわたって送信のみを持続する条件を 想定する。

・局所 SAR

SAR は微小体積要素当りの数値として与えられ、電磁波の照射条件と生体組織内の場所に依存した空間分布関数となる。この分布関数について、任意の 1g 又は 10g の組織内で平均した SAR を局所 SAR と呼ぶ。その中での最大値を局所最大 SAR と呼ぶ。ただし、本測定方法では 1g 又は 10g の組織を立方体で定義している。

・電界強度

電界の強さをいう。単位は V/m で与えられる。

・磁界強度

磁界の強さをいう。単位は A/m で与えられる。

・電力密度(電力束密度)

伝搬の方向に垂直な単位面積当たりの放射電力をいう。例えば、平面波の場合の 電力密度 S[W/m²]は、電界強度の実効値を E[V/m]、磁界強度の実効値を H[A/m]と すれば、自由空間における特性インピーダンス $120\pi[\Omega]$ により、S = E²/ 120π = 120π ・ H²のように関連付けられる。

・ファントム

実験的に SAR を推定するために用いられる擬似的な人体モデルをいう。モデル 全体に渡って同じ材料を用いる場合を均一ファントム、対応する組織毎に忠実に電 気特性等を模擬したものを不均一ファントムと呼ぶ。本測定方法においては、人体 形状を模擬するための外殻(容器)とそれに充填される液剤で構成される均一ファ ントムを用いる。

不確かさ(Uncertainty)

ある量の実測値と真値との差を表わす推定値をいい、平均誤差、確率誤差、標準 偏差等で表わされる。

・拡張不確かさ(Expanded Uncertainty)

測定の結果について、合理的に測定量に結びつけられ得る値の分布の大部分を含むと期待される区間を定める量。本測定方法では 95%の信頼区間を想定する。

・境界効果

プローブの感度に対して、ファントムの二つの媒体間の境界が与える影響並びに プローブが二つの媒体間の境界に近づいたとき、電界分布及び電流密度に対してプ ローブが与える影響をいう。

・検出限界

検出下限値(又は上限値)は、測定機器の最低(又は最大)SAR 値により定義される。

・誘電率(ε)

電力束密度 D を電界強度 E で割った値により定義される。生体組織やファント ムの電気的特性を表す変数である。

$$\varepsilon = \varepsilon_{r} \varepsilon_{0} = \frac{D}{E}$$

$$\varepsilon_{r} = \varepsilon_{r}' - j\varepsilon_{r}'' = |\varepsilon_{r}|e^{-j\delta} = \varepsilon_{r}' + \frac{\sigma}{j\omega\varepsilon_{0}}$$
ただし、
$$\varepsilon_{0} : 真空中の誘電率$$

$$\varepsilon_{r} : 複素比誘電率$$

$$\varepsilon_{r}': 比誘電率の実部$$

- ε_r " :比誘電率の虚部
- δ:複素比誘電率のオイラー表記を使った角度
- σ :導電率

単位は F/m で与えられる。

・誘電正接

複素比誘電率の実部と虚部の比をいう。

・導電率 (σ)

電界強度に対する媒体内の伝導電流密度の比をいう。単位は S/m である。

・(自由空間の)特性インピーダンス

伝搬する電磁波の磁界強度に対する電界強度の比。自由空間における平面波の特 性インピーダンスは 120π (約 377) [Ω]である。

・等方性

任意の電磁波の入射方向に対して、その電磁界強度が同じであれば、同一指示値 を与えるプローブ(又はアンテナ)の特性をいう。

・直線性

測定範囲における与えられた区間に対して定義された基準直線からの最大偏差 をいう。

・プローブ走査装置

電界プローブ(センサ部)をファントム内の指定位置に3次元的に移動し、保持 するための自動位置決め装置をいう。

・電界プローブ

本測定方法では、ファントム液剤中での電界強度を等方性、かつ、高空間分解能で測定する器具をいう。

・SAR 計測装置

電界プローブによってファントム液剤中の電界強度を測定し、この測定値より SARを算出する装置をいう。電界プローブ、増幅器、マイクロコンピュータなどで 構成される。

・基地局シミュレータ

被測定機の動作を電波によって制御するための装置をいう。

・感度

測定システムの感度とは、測定された数量(例えば、電界)に対する測定システムの出力信号(例えば、電圧)の比をいう。

・表皮深さ

一般に、表皮深さは損失がある半無限領域に平面電磁波が入射した場合に、入射 表面での電界強度が 1/e に減衰する距離のことをいう。

4 測定原理

SAR の測定方法においては、擬似的な人体モデル(ファントム)を用いた模擬的ば く露状態を実現することにより、人体内に生ずるであろう SAR を実験的に推定する。 測定系は、実際のばく露状態を良好に模擬でき、しかもより正確な推定値が得られる ようなものであることが望ましい。これまで、ファントム内部の電界分布や内部電界 に起因する温度上昇分布の測定値から SAR を推定する方法などが提案されてきた^[5]。

本答申が採用するプローブ走査型 SAR 測定方法は、人体の電気的特性を模擬した 液剤を充填したファントム内部の電界分布を等方性の電界プローブを用いて高精度 に測定し、その測定値から 1g 又は 10g 平均の局所 SAR を算出することを基本原理と する。SAR と電界強度との間には次式の関係がある。

 $SAR(x,y,z) = \sigma E^2 (x,y,z)/\rho [W/kg]$

ただし、SAR(x,y,z)及び E(x,y,z)[V/m]は、それぞれ位置(x,y,z)における SAR 値と電 界強度の測定値(実効値)また、 σ [S/m]及び ρ [kg/m³]は、それぞれファントムの導電 率と人体組織の密度である。本測定方法は、これまで提案されている他の方法と比較 して、SAR 分布測定の精度、再現性等の点で優れている。ただし、測定値の信頼性を 確保するために、測定系の条件や局所 SAR の算出方法等を詳細に決めておくことが 必要である。

5 測定系の条件

5.1 概要

測定系は、図 5.1 に示すように、ファントム、SAR 計測装置、プローブ走査装置、 携帯電話端末等(以下「被測定機」という。)の保持器及び基地局シミュレータから 構成される。

測定は、以下の環境条件で行うこと。

- 周囲温度が 18°C から 25°C の範囲にあること。
- 他の無線設備に影響を与えないこと。
- 周囲ノイズによる影響を SAR で 0.012W/kg 以下とすること。
- 基地局シミュレータなどの RF 送信機や床、位置決め装置などからの反射の影響 は、SAR の測定値の 3%より小さくすること。

5.2 ファントム

5.2.1 概要

ファントムの大きさや形状は、SAR 値に関わる主要なパラメータであることから、 人の頭部及び頸部を近似することが望ましい。また、その電気的特性も頭部組織と同 様の特性を有することが望ましい。ファントム内部で電界プローブを走査可能にする ため、このファントムは、頭部及び頸部を左右に2分割した形状または、上部に開口 部を持つ外殻に液剤を充填した構成とする。外殻は形付けられた容器として用い、可 能な限り測定に影響を与えないものである。手のモデル化は行わない(付録1の2.3)。

5.2.2 形状と寸法

ファントムの形状と寸法は、付録1の1によること。本条件は、国際標準^[4]にも採用されているものであるが、日本人の標準的形状及び寸法を用いた場合と比較して過大側の測定結果が得られる(付録1の2.1)。本ファントムの模擬図を図 5.2 に示す。

図 5.2 ファントムの模擬図

- 5.2.3 外殻
 - ・ 外殻材料の誘電正接及び比誘電率の実部は、それぞれ 0.05 以下及び 5 以下であること。

- ・ ファントム外殻の形状は、ファントム形状データに対して±0.2mm 未満の公差 を保つこと。
- ・ 外殻の厚さは、耳及び周辺の延長部分を除き、携帯電話端末等の投影面のいか なる箇所においても、2±0.2mm であること。
- ・ 図5.3に記述する被測定機の位置決めの基準点(RE,LE,M点:右耳、左耳及び口に対応する位置)が分かるように表面に印をつけること。

耳は、携帯電話端末等を押し当てた状態を再現し、耳の基準点の場所(RE, LE 点)で 液剤の境界から 6±0.2mm の頭部外殻と同じ材料の低損失材料による耳翼モデルと する。

図 5.3 被測定機の位置決めの基準点

5.2.4 液剤

ファントムに充填する液剤の電気的特性は、表 5.1 に従うこと。表の数値間の値に ついては、線形補間で求めること。

周波数 (MHz)	比誘電率 の実部 _{&} '	導電率

表 5.1 液剤の電気的特性

300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800	40.0	1.40
1900	40.0	1.40
1950	40.0	1.40
2000	40.0	1.40
2450	39.2	1.80
3000	38.5	2.40

5.3 SAR 計測装置

- SAR の最小検出限界値は、0.01W/kg 未満であること。最大検出限界値は、 100W/kg より高いこと。
- ・ 直線性は、0.01W/kg から 100W/kg の SAR 範囲に対して、±0.5dB の範囲内であ ること。
- ・ 感度、直線性及び等方性は、測定周波数における生体組織の電気的特性を模擬 する液剤中にて評価すること。
- ・ 電界プローブセンサ部の保護カバーの外形寸法を 8mm 以下にすること。なお、 電界プローブは定期的に較正しておくこと。

図 5.4 電界プローブの例

5.4 プローブ走査装置

5.4.1 概要

3次元 SAR 分布の評価ができるように、電界プローブを液剤内で走査可能であること。機械的構造が SAR 測定を妨げないこと。

5.4.2 技術的条件

(1) 精度

測定範囲に対するプローブ先端の位置決めの精度は、±0.2mm より良いこと。

(2) 位置決め分解能1mm 以下であること。

5.5 保持器

- ・携帯電話端末等を 6.1.3 に記述する位置に保持できること。
- ・傾斜角度の誤差が±1°の範囲内であること。
- ・誘電正接及び比誘電率の実部が、それぞれ0.05以下及び5以下の材質であること。

6 測定手順

6.1 測定系のセットアップ

6.1.1 一般事項

- ・ SAR 測定前の 24 時間以内に、ファントム液剤の電気的特性を測定すること。 この測定は、SAR 測定時と同じ温度条件で行うこと。液剤温度の許容偏差は ±2°C の範囲内であること。
- ファントム液剤の比誘電率の実部及び導電率の測定値は、表 5.1 で指定された 値に対して許容偏差±5%の範囲内にあること。2-3GHz での比誘電率の偏差は ±10%以内とすることができるが、できる限り目標値に近づけること。測定方法 は国際規格^[4]等を参照のこと。
- ・ SAR 算出には、測定した電気特性を用いること。
- ファントム液剤の深さは耳の基準点にて15cm以上になるようにすること。
- 測定前にファントム液剤を慎重にかき混ぜ、気泡がないようにすること。
- ・ 走査装置は、ファントム上の少なくとも3点の参照値を用いてファントムと関 連づけられること。これらの点は、使用者から見えるようにし、10cm 以上離 して配置すること。測定系及び各構成部分が条件どおりに正確に動作している ことを確認すること。

6.1.2 被測定機

- 測定に際して被測定機は、それ自身の内部送信機を使うこと。
- アンテナ、バッテリ及び付属品は、被測定機の提供メーカにより指定されたものであること。
- バッテリは、各測定前に完全に充電し、外部との接続がないこと。
- 空中線電力及び周波数は、内部試験プログラム又は適切な試験装置(基地局シ ミュレータ)を使って制御すること。
- 空中線電力は、被測定機を人体側頭部の側で使用する場合に対応した通信モード(音声通信等)での最大出力値に設定すること。ただし、最大出力で SAR 測定が困難な場合は、それより低出力で測定し、最大出力時の SAR に換算してもよい。音声とデータが混在する通信モードについては、端末を人体側頭部の側で使用する場合で生じうる最大空中線電力で測定を行うこと。ただし、送信動作は、擬似的なベースバンド信号等を用い、当該通信方式の信号形式に従った連続送信とすること。

6.1.3 標準的な測定位置

被測定機は、ファントムの左右両側について、次に規定する二つの位置で測定する こと。

(1) 頬の位置

図 6.1(a)および(b)に示す 2 直線 (垂直中央線と水平線)を確認する。垂直中央線 は、被測定機の前面の 2 つの点を通る線である。2 つの点は、被測定機の受話部の 高さでの幅 Wt の中央点と被測定機の底辺部の幅 Wb の中央点である。水平線は、 被測定機の受話部の中央を通り垂直中央線に対し直交する。2つの線は A 点で交差 する。

- a) 垂直中央線と水平線を、ファントムの正中面に平行に位置させ、かつ、A 点が REとLEを結ぶ直線と交差するように被測定機を置くこと(図 6.2(a))。
- b) A 点を RE-LE 間の線と合わせたまま、耳に接触するまで被測定機をファントム に向かって動かすこと(図 6.2(b))。
- c) 正中面と平行な面内に被測定機を保持しながら、A 点を中心に両耳と口の三つの基準点(M、RE 及び LE)を含む基準面に垂直中央線を合わせるように被測 定機を回転させること(図 6.2(a))。
- d) 基準面内に被測定機の垂直中央線を保ち、かつ、被測定機が耳に接触した状態 で被測定機前面のいずれかの点が、ファントムの頬に接触するまで被測定機の 底を動かすこと(図 6.2(c))。ただし、頬に接触する前に耳から離れた場合は、 その位置で測定すること(図 6.2(c))。
- (2) 傾斜の位置:
- a) (1)の頬の位置に被測定機を置くこと(図 6.2(c))。
- b) 被測定機の向きを変えずに、被測定機を参照面に対し平行に移動し、被測定機 が15°回転できるまでファントムから十分に離す。
- c) (1)の基準面内に被測定機の垂直中央線を保ちながら、A 点を中心点として頬の 位置の状態から外側に 15°の角度まで被測定機を回転させること(図 6.3)。ただ し、15°の角度にいたる前に、被測定機の1ヶ所が耳に接触し、同様に他の部分 がファントムに接触している場合は、傾斜角度は 15°より小さくてよい。

図 6.1 被測定機の一例

図 6.2 頬の位置

6.2 測定

6.2.1 一般条件

- (1) 測定は、6.1.3 で記述した(1)と(2)の両方の位置に対して、ファントムの左右両側にて各動作帯域の中央付近の周波数を使って行うこと。
- (2) 被測定機の全ての構成(例えば、収納可能なアンテナを持つ場合には、アンテ ナを伸ばした状態と収納した状態の両方)で(1)の試験を行うこと。
- (3) マルチモード機能又は複数の使用帯域を持つ被測定機を測定する場合には、各送信モード又は帯域について対応する最大送信出力で(1)の試験を行うこと。
- (4)送信周波数帯域幅が中心周波数の 1%を超え、かつ、10%以下の場合は、(1)から(3)の試験でSARの最も高い測定値が得られたときの被測定機位置において、送信帯域の最大と最小の周波数について試験すること。さらに、SARの測定値がSARの許容値に対し 50%以上(-3dB以上)にある他の全ての条件に対しても同様に行うこと。
- (5) 送信周波数帯域幅が中心周波数の10%を超える場合は、(1)から(3)の試験でSAR の最も高い測定値が得られたときの被測定機位置において、以下の式を用いて 試験する周波数の数を決め試験すること。さらに、SARの測定値がSARの許 容値に対し50%以上(-3dB以上)にある他の全ての条件に対しても、同様に行 うこと。
 - $N = 2*roundup(10*(f_h f_l)/f_c)+1$
 - f_c:中心周波数
 - f_h:帯域内の最高周波数

f_l:帯域内の最低周波数

N:測定数

Roundup(x)は、変数 x を次の整数に切り上げる。試験する周波数は、できる限り等間隔にすること。

6.2.2 **測定手順の詳細**

- 6.2.1 に記述した一般条件についてさらに、以下の操作及び測定を実施すること。
- (1) ファントム外殻の内部表面から 10mm 以内にある測定点を一つ選び SAR を測定 すること。測定点は、被測定機のアンテナ付近にとること。ただし、耳付近で も良い。
- (2) ファントム内の SAR 分布を測定すること。測定間隔は 20mm 未満であること。 内部表面近くでの走査を行う場合は、電界プローブ先端の中央とファントム内 部表面の間の距離は、8mm 未満で偏差が±1mm の範囲内にあること。最初から 詳細な立方体的走査を行う場合は、ファントム外殻の内部表面にできる限り近 くすること(8mm 未満)。走査する間隔は 5mm 以下、少なくとも 25mm の深さ まで測定し、さらに(5)に進むこと。全ての測定ポイントにおいて、表面の法線 に対してプローブの角度が 30°未満が望ましい。
- (3) 得られた SAR 分布から、最大 SAR 値の位置と最大 SAR 値の 63%以上(-2dB 以上) となるすべての SAR の位置を割り出すこと。最大値の検索を行うために必要である。最大 SAR 値以外の SAR については、最大 SAR 値が SAR 許容値に対して 63%以上(-2dB 以上)、すなわち 1.26W/kg 以上になるときのみ測定する。
- (4) 最小寸法が 30mm×30mm×30mm である体積内において、8mm 以下の測定間隔で SAR を測定すること。ただし、深さ方向は 5mm 以下とする。その領域の中心を 検出された最大 SAR 値の位置に重ねること。全ての測定ポイントにおいて、フ ァントム外殻の内部表面の法線に対してプローブの角度が 30°未満が望ましい。
- (5) 6.2.3 に示された補間及び外挿手順を使って、質量平均に必要な空間分解能にお ける局所 SAR 値を求めること。
- (6) (1)の測定点にて SAR 測定を再度行うこと。この測定値と、(1)で得られた測定値 とを比べて二つの測定結果に±5%以上の差がある場合は、バッテリを完全に充 電して測定を繰り返す等の処置をとること。これが不可能な場合は、例えば SAR の時間に対する変化データ等を用いて試験が適切であることを実証すること。

以上の条件を含む測定の基本手順を図 6.4 及び図 6.5 に示す。

図 6.4 測定の基本手順

6.2.3 SAR 値の算出

(1) 補間

局所 SAR を計算するとき、与えられた質量の平均化領域に対して測定間隔が粗い場合には、測定点間で補間を行うこと。

補間方法の例を付録2に示す。

(2) 外挿

使用される電界プローブは、通常三つの近接した直交ダイポールを持ち、これ らのダイポールは保護管に埋め込まれている。測定点はプローブ先端から数 mm の所に設けられており、SARの測定の位置を求める際に、このオフセットを考慮 すること。

外挿方法の例を付録2に示す。

(3) 平均体積

局所 SAR を算出するための組織の形状は、立方体の形をしていること。算出に 用いる密度は、1000kg/m³を使用すること。

立方体がファントム外殻内面と交差する場合は、三つの頂点が外殻内面に接触 するように又は一つの面の中央が表面に正接するように立方体の向きを決める こと。

外殻内面に最も近い立方体の面をその表面に合うよう変更し、追加された体積 を立方体の反対側の面から差し引くこと。

立方体における平均値の求め方を付録2に示す。

(4) 最大値の検索

付録2に従い、局所最大 SAR の近辺のファントム内部表面上で立方体の位置を 動かすこと。

局所最大 SAR を持つ立方体が走査空間内の端にないこと。もし端にある場合は、 走査領域をずらし、測定をやり直すこと。

この局所最大 SAR 値を測定結果とする。

7 評価

7.1 適合確認に用いる指針値

適用する電波防護指針は、平成9年4月電気通信技術審議会「電波利用における人体防護の在り方」^[2]の局所吸収指針の局所 SAR (四肢を除く。)とする。

なお、空中線電力が電波法施行規則第2条第1項第70号に規定する平均電力で 20mW以下の機器は、一般環境における局所 SAR を満たしている^[2]。

7.2 不確かさ

SAR 値測定の不確かさについては、IEC 資料^{[4][6]}に規定された方法に基づいて評価 できる。本測定方法において 0.4W/kg から 10 W/kg の局所最大 SAR 値測定の拡張不 確かさは 30%以下であること。

7.3 評価方法

測定結果を指針値と直接比較すること。測定値が指針値以下である場合、被測定機 は局所吸収指針を満足しているものと判定する。

8 測定系の評価試験及び較正

8.1 測定系の評価試験

本測定系は、様々な構成部分を有することから、下記に述べるいくつかの試験を適切に実施することで、測定系が正常に動作していることを確認する必要がある。

SAR 測定前に、測定系が仕様の範囲内で正常に動作していることを短時間で確認す るために、簡易性能試験を実施すること。簡易性能試験は、平面ファントムと標準ダ イポールアンテナなどを用いて行うこととする。(詳細な手順については、付録3参 照。)

少なくとも年1回あるいはソフトウェアのバージョンアップ等の測定装置の変更が あった場合に、測定装置全体が正常に動作していることを確認するために、総合評価 試験を行うこと。総合評価試験は、平面ファントムと標準ダイポールアンテナを用い て行うこととする。(詳細な手順については、付録3参照。)

8.2 SAR 計測装置の較正

SAR 計測装置各部の較正に当たっては、電界プローブに関わる部分について行う必要がある。電界プローブの較正の際には、実際の SAR 値測定の際に使用する装置と同じかあるいはこれと等価な較正が可能な測定装置を用いて、測定する周波数帯の組織等価液剤中で行うこととする。

増幅器やその他の機器については、必要に応じ指定された較正を行うこととする。

9 従来の測定方法の評価について

これまでに我が国で実施されてきた携帯電話端末の局所最大 SAR 測定では、ほと んどの場合が耳翼付近に局所最大 SAR が現れていることを確認している。このよう な場合には、旧測定方法と新測定方法はほぼ同様の測定条件となるため(付録4参照)、 両測定方法による測定値はほぼ一致している^[8]。

ただし、旧測定方法では、耳翼から遠く離れた場所でプローブ挿入角度がファント ム外殻の内部表面の法線から大きな角度となる。この場合、等方性誤差等が大きく影響し、測定された SAR 値の拡張不確かさが増大する。したがって、局所最大 SAR が 耳翼から遠く離れた部位に現れる場合には、旧測定方法では測定精度が不十分であっ た可能性があるため、これまでに行われてきた旧測定方法による局所最大 SAR 測定 結果を検証したところ、このプローブ挿入角度による拡張不確かさの増大を考慮した 場合においても、局所吸収指針値を超える事例はなかったことを確認している。

10 今後の課題等

10.1 測定方法の適用対象の拡大

本測定方法は、手順を具体的に示す必要性から、現在広く使われている携帯電話端 末等の使用形態(側頭部の側での利用)を前提にしている。携帯電話端末等の高機能 化が急速に進んでおり、これまでと異なる使用形態の機器が実用化されることも想定 される。IEC においても、平成17年2月に規格化されたIEC62209-1^[4]を拡張し、側 頭部の側以外の人体の近傍で使用される無線機器に適用する SAR 測定方法について 検討されているところである。今後、無線機器の実用化動向、国際的な規格化の動向 等を踏まえ、測定方法の検討を行う必要がある。

なお、今後ワイヤレス技術がますます急速に進歩し、人体の近傍で使われる機器の 使用形態が多様なものになることが予想されることから、本測定方法のように人体頭 部を忠実に模擬するファントムを用いる方法だけでなく、より広範な使用形態に適用 可能な汎用性の高い測定方法の開発にも努力することが望ましい。

10.2 SAR 値の取扱い

本答申では、人体側頭部の側で使用する携帯電話端末等に対する SAR の標準的な 測定方法を示した。標準化された方法で SAR を測定し、電波防護指針との適合性を 統一的に評価する方法を確立するものであり、携帯電話端末等から発射される電波の 健康への影響に関する懸念に対して、適切な情報提供を可能にすることが期待される。

本測定方法では、一般的な使用状態で生じ得る SAR の概ね最大値が測定される。 したがって、この測定値が局所吸収指針値を超えなければ、電波防護指針に適合して いると判断される。実際の使用状態で生じる人体内の SAR は、システムの送信出力 制御(通信条件によって端末の出力が自動的に低減されること。)が動作することか ら、測定値よりさらに小さくなる場合が多い。

本測定方法によって得られる SAR の数値に関して、正しい理解が得られるように 務める必要がある。

付録1 ファントムの仕様

1 仕様 (データシート)

ファントム外殻の外側及び内側寸法は、三次元の CAD データによって規定する^[4]。 耳の基準点(RE,LE)は、耳珠点から 15 mm 離れた基準面中に存在する。基準面は、 口点(M)と左右の耳珠点によって定義される。

2 根拠

2.1 ファントムの形状

これまでの研究によると、大きな頭部は、小さな頭部に比べて放射エネルギーとの 結合度がより大きいため、より多くのばく露を受ける場合がある^[9]。

1988年のアメリカ軍人の人体測定研究により、様々な年齢、人種及び民族のサンプルに基づいたデータが提供されている^[10]。したがって、このデータを利用し、それに基づく、成人男性の 90 パーセンタイル値の頭部寸法モデルを使用することにより、過大側の測定結果を得ることができる。

ここで、90 パーセンタイル値とは、ある標本数を抽出したときに、それらのうちか ら特に寸法の大きいもの 10%を除いた残りの 90%が含まれるようにとった寸法値で ある。

また、耳後部の突起は、携帯電話端末等及びアンテナと頭部との距離に直接影響し、 SAR 測定の重要なパラメータである。耳の形状は、携帯電話端末等の位置決めを行う 場合の基準を与えることから、正確で再現性のある位置決めが可能となるよう設計し なければならない。

2.2 ファントムの媒質

頭部は、脳・頭蓋骨・皮膚・眼球など様々な組織から構成されており、これらの組 織の電気的定数はそれぞれ異なる値を持つため、頭部の電気的特性は不均一である。 このため、携帯電話端末等使用時の頭部内における SAR 分布は、非常に複雑である。

数値シミュレーションでは、頭部構造を詳細に模擬した計算上の仮想モデルが利用 可能であるが、現実的には、不均一構造をもつファントムの製作は難しく、測定の簡 便性や再現性からも、均一ファントムの使用が望ましい。そこで、均一ファントムを 用いた測定による SAR 推定値の妥当性を検証するため、均一頭部モデルと不均一頭 部モデルによる局所 SAR 分布の比較検討が報告されている^{[11][12]}。これらの検討結果 から次のことが判る。

- 頭部内部の SAR 分布は、頭部組織の不均一構造に依存し、均一頭部モデル内部の SAR 分布は、不均一頭部モデル内部の SAR 分布とは異なる。
- 頭部表面の SAR 分布は、頭部形状に依存し、同じ形状をもつ均一モデルと不均 ーモデルの表面 SAR 分布は、ほぼ同じである。
- 均一・不均一頭部モデルともに、局所最大 SAR 値は頭部表面上に生じ、均一モデルの値は、不均一モデルの値に比べて同等以上である。

また、10g 当たりの局所組織で平均された SAR の最大値(局所吸収指針に対応)に

関しては、均一モデルと不均一モデルでの値の違いがほとんど無視できることが報告 されている^[10]。

以上より、均一ファントムを用いた測定による頭部局所 SAR の最大値の評価が可能である。

2.3 手の影響について

携帯電話端末等を保持している手は、その筐体と接触し、かつ、そのアンテナに非 常に接近しているため、アンテナと電磁的に強く結合している。したがって、携帯電 話端末等を握る手の形状や位置により、頭部に生じる SAR 分布も強く影響されると 予想される。しかし、これまでの数値シミュレーションによる報告から、通常の保持 状態の場合(携帯電話端末等を握る手がアンテナを覆ったりしない場合)には、手で 握られていない(空間中に浮いている)携帯電話端末等により生じる頭部における局 所 SAR の最大値が、手で握られた場合と比較して同程度であることが示されている ^{[11][13]}。最近、同様の傾向が実験による測定でも示され、その報告中で、手がないこと による頭部における局所 SAR の最大値の過小評価は、5%未満であることが述べられ ている^[14]。

したがって、頭部における局所 SAR の最大値を評価する際には、手のモデルを考慮しなくてもよい。

付録2 測定におけるデータ処理の方法

1 概要

6.2.3 節に適用する走査及びデータ処理の方法を示す。

2 最大値を探す粗い走査

SAR 分布は、ばく露を受けている側の頭部をできる限りカバーするような、2次元 (x,y)又は3次元(x,y,z)のグリッド上で測定する。機械的又は光学的に適切な表面 検出システムを用いて、表面の正確な位置を事前に検出するか、あるいは、走査中に決 定することが重要である。人体近くに保持され、300MHz以上で操作される装置につい ては、表面から8mm 未満の距離において、間隔を一定に保ちながら2次元走査を行う だけで十分である。評価手法により、グリッド点間の最大間隔を決めること。最大値の 位置を評価するため、2段階の1次元3次スプラインを使う場合に、要求される精度を 得るには20mm×20mm(x,y)のグリッドで十分であることが示されている。最大局所 SARは、補間される1-2mmのグリッド上で評価される。

3 立方体走查

立方体の走査は、次の手順で行うことができる。粗い走査で検出した局所最大 SAR 体積の周りの 5×5×7 点 (x,y,z について)を計測して、32mm×32mm×30mm (10g)の 体積についての SAR を評価する。表面に最大値が検出された場合、各測定点で、立 方体の表面をファントム表面に沿うようにフィッティングする。

4 外挿

微小ダイポールアンテナの中央は、プローブの先端より内側にあること又はファン トムの内部表面とそれに最接近する測定点との間に距離があることから、表面のデー タは外挿により求める必要がある。外挿は、例えば、四次などの最小二乗法による測 定データの多項式近似に基づいて行う(指数近似は多くの分布が生じる可能性がある 場合には適さない。)。この多項式は、表面とプローブ先端の距離を1mm 刻みで評価す るのに使われる(図1の三角の値)。

注)■は測定データ。▲は1mm 間隔の多項式近似で外挿された値を示す。

図1 ファントム内部表面に対する SAR データの外挿例

5 補間

測定及び外挿された立方体内の 1mm グリッド上の値は、3 段階の 1 次元 3 次スプラインを使うなど、簡単な方法で補間できる。

6 積分

1g 又は 10g 立方体に対して積分を行う簡単で正確な方法は、共通台形アルゴリズム を用いることである。立方体がファントム表面に接触している場合の評価手順は次の とおりである。ファントム内部表面に接触し、局所最大 SAR をもつ立方体の側面はそ の表面に対して平行とする。つまり図 2 に示すように、立方体の一方の面がファント ム表面に一致し、そして、反対の側面もこの表面に平行とする。その他の立方体の選 択方法は、IEC 規格^[4]に詳しく記述されている。

図2 ファントム表面に対する立方体の向きと表面

局所最大 SAR は、測定領域内で 1g 又は 10g の立方体について、可能な限り様々な 状態を評価・比較して決定すること。立方体の体積で平均した最大 SAR 値が収束す るまで繰り返すこと。

付録3 測定系の評価試験

測定系の評価試験は、以下の「1 簡易性能試験」及び「2 総合評価試験」により 行われる。

1 簡易性能試験

1.1 目的

簡易性能試験は、一連の SAR 測定前に、測定系が仕様の範囲内で正常に動作していることを短時間で確認(再現性確認)するために、簡易性能試験を実施すること。

1.2 基本構成例

この試験は、平面ファントムと標準放射源として標準アンテナ等を用いて行う。総 合評価試験に用いられる標準ダイポールアンテナも簡易性能試験に使用することが できる。

標準放射源の例として標準ダイポールアンテナを使用する場合の基本構成を図1に 示す。また、この場合の各構成部の条件を 1.2.1 から 1.2.3 に示す。

PM:電力計(必要に応じて減衰器を含む。)

図1 簡易性能試験の基本構成(標準ダイポールアンテナ使用の場合)

- 1.2.1 ファントム
 - ・ 底面の最小の幅と長さは局所最大 SAR での誤差が 1%以内であるように、長軸 を a、短軸を b とする楕円で定義する。自由空間波長を λ、外殻の厚さを d とし たとき、

f < 800MHz の場合、a 0.6ん、b 0.4ん、6.0mm d 6.5mm

f 800MHzの場合、a 225mm、b 150mm、d=2mm

参考資料3

ファントム液剤の組成例

1 ファントム液剤の調合

ファントム液剤を調合する際には、以下の材料を用いることができる。

- 蔗糖(98%)
- 塩化ナトリウム(99 + %)
- 脱イオン水 (電気抵抗値 16MΩ)
- ハイドロキシルセルロース (HEC)
- 防腐剤
- ジエチレングリコールブチルエーテル (DGBE)
- プロピレングリコール
- ブチルカルビトール
- ジアセチン
- 1,2-プロパンジオール
- トゥイーン (Tween)
- 乳化剤
- 鉱油

ファントム液剤の調合例を、以下に示す。

(1) 300MHz 溶液

- 55.32% 蔗糖 37.56% 脱イオン水 5.95% 塩化ナトリウム 0.98% HEC 0.19% 防腐剤
- (2) 450MHz 溶液
 56.32% 蔗糖
 38.56% 脱イオン水
 3.95% 塩化ナトリウム
 0.98% HEC
 0.19% 防腐剤
- (3) 835MHz 溶液 1
 56.0% 蔗糖
 41.45% 脱イオン水
 1.45% 塩化ナトリウム
 1.0% HEC
 0.1% 防腐剤

- (4) 835MHz 溶液 2
 48.39% トゥイーン
 50.36% 脱イオン水
 1.25% 塩化ナトリウム
- (5) 900MHz 溶液 1
 56.50% 蔗糖
 40.71% 脱イオン水
 1.48% 塩化ナトリウム
 0.99% HEC
 0.19% 防腐剤

(6) 900MHz 溶液 2
 64.81% プロピレングリコール
 34.40% 脱イオン水
 0.79% 塩化ナトリウム

- (7)900MHz 溶液3
 47.42% トゥイーン
 51.38% 脱イオン水
 1.20% 塩化ナトリウム
- (8) 1450 MHz 溶液 1
 45.51% DGBE
 53.82% 脱イオン水
 0.67% 塩化ナトリウム
- (9)1450MHz 溶液 2
 - 44.73% トゥイーン 56.67% 脱イオン水 0.60% 塩化ナトリウム
- (10) 1624MHz 溶液46.20% トゥ
 - 46.20% トゥイーン53.15% 脱イオン水0.65% 塩化ナトリウム
- (11)1767.5MHz 溶液
 - 45.27% トゥイーン 54.23% 脱イオン水 0.50% 塩化ナトリウム
- (12) 1800 MHz 溶液

44.92%	ブチルカルビトール
54.90%	脱イオン水
0.18%	塩化ナトリウム

- (13) 1950MHz 溶液 145.00% ブチルカルビトール55.00% 脱イオン水
- (14) 1950MHz 溶液 2
 44.91% トゥイーン
 54.89% 脱イオン水
 0.20% 塩化ナトリウム
- (15) 2018MHz 溶液
 45.50% トゥイーン
 54.63% 脱イオン水
 0.17% 塩化ナトリウム
- (16) 2100MHz 溶液50.00% ブチルカルビトール50.00% 脱イオン水
- (17) 2450MHz 溶液 1
 49.75% ジアセチン
 0.50% 防腐剤
 49.75% 脱イオン水
- (18) 2450MHz 溶液 2
 45.00% トゥイーン
 55.00% 脱イオン水
- (19) 4000MHz 溶液44.00% 酸化鉱油56.00% 脱イオン水
- (20) 5000MHz 溶液44.00% 酸化鉱油56.00% 脱イオン水
- (21) 5200MHz 溶液
 - 17.24% ジエチレングリコールモノヘキシルエーテル
 17.24% トリトン X-100
 66.53% 脱イオン水
- (22) 5800 MHz 溶液

17.24% ジエチレングリコールモノヘキシルエーテル17.24% トリトン X-10066.53% 脱イオン水

(23) 6000MHz 溶液

44.00%	酸化鉱油
56.00%	脱イオン水

2 ファントム液剤の電気定数測定

ファントム液剤の電気的特性は、スロットライン法、接触プローブ法又は TEM 線路 法を用いて測定することができる。具体的手順等は、国際規格[IEC 62209-2]等を参照 すること。

諸外国の状況

人体側頭部以外の SAR 測定法に関する主な諸外国の状況について調査した結果をまと めた。

<u>1 北米</u>

(1)米国

IEC 62209-2 と同様な測定法を FCC(連邦通信委員会)/OET Bulletin 65 (FCC OET 65) Supplement C に記載し運用。詳細は Knowledge Data Base (KDB)にて 規定。

(2) カナダ

IEC 62209-2 を採用済み。但し、FCC KDB も引用

2 欧州

IEC 規格 62209-2 を CENELEC (欧州電気標準化会議)基本規格(BS) EN62209-2 として発行。上位規格である製品規格(PS)を CENELEC TC106X WG1 にて策定し、欧州 官報(OJ)に公示予定。これには、所掌範囲、引用規格、定義、許容値など基本事項が 記載される見込み。

3 アジア・オセアニア

(1)豪州

平成23年2月にFCC OET 65からIEC 62209-2/EN62209-2 規格に変更。但し、 平成25年1月までは移行期間。

(2) 韓国

審議会を立ち上げ審議中

(3) 中国

工業規格に採用決定したが、施行時期については未定