〇総務省告示第二百三十五号

+ 七 標 号) 準 テ 第 レ ビ 八 条 ジ 第 彐 ン 号 放 及 送 び 等 第 \mathcal{O} う 号、 、 ちデ ジ 第 兀 タ 十 ル 放 七 条 送 に 並 関 び 12 す 第 る 送 六 + 信 五 \mathcal{O} 条 標 準 \mathcal{O} 方 式 \mathcal{O} 規 平 定 に 成二十三 基 づ き、 年 総 ス ク 務 ラ 省 令 第 ブ 八 ル

 \mathcal{O} 方 式 を 次 \mathcal{O} よう に定 め、 平 成二十六 年 七 月 \equiv 日 か 5 施 行 す る。

な お、 平成二十三年 総 務 省 告 示第三百二号 ヘス クラ ン ブ ル \mathcal{O} 方 式 を 定 め る 件 は、 平 ·成二十 六年七

月三日限り廃止する。

平成二十六年七月三日

総務大臣臨時代理

国務大臣 田村 憲久

標 準 テレ ピ ジ 日 ン 放 送等 0 うち デジジ タ ル 放 送に 関 す る 送 信 0 標 準 方 式 平 成二 十三 年 総 務 省 令 第

八 + 七 号。 以 下 「 標 準 方 式 とい う。 第 八 条第 号 \mathcal{O} 規 定 に 基 づ くス クラ ン ブ ル \mathcal{O} 方 式 は 次 \mathcal{O} 各

号に掲げるとおりとする。

1

ス ク ラ ン ブ ル \mathcal{O} 範 进 は、 Τ S パ ケ ツ 1 伝 送 制 御 信 号 及 び 関 連 情 報 を送 る た 8) \mathcal{O} Ł \mathcal{O} を 除

)のペイロード部とする。

ス ク ラ ン ブ ル \mathcal{O} 手 順 は 別 表 第 号 \mathcal{O} と お り لح す る。

三 標 準 方 式 第 几 章 第 節 及 び 第二 節 第 五. 章 第 節 並 び に 第 六 章 第三 節 に 定 8 る 放 送 \mathcal{O} ス クラン

ブ ル \mathcal{O} 手 順 は 前 号 \mathcal{O} 規 定 に か か わ 5 ず、 別 表 第 号 か 5 別 表 第三 号 ま で \mathcal{O} 1 ず れ カン \mathcal{O} لح お り ع

す る

匹 標 準 方 式 第 五 章 第 \equiv 節 及 び 第 六 章 第 五. 節 に 定 8 る 放 送 \mathcal{O} ス ク ラ ン ブ ル \mathcal{O} 手 順 は 第 号 に 定 め

る 規 定 12 か か わ 5 ず、 别 表 第 号 又 は 別 表 第 三 号 \mathcal{O} 1 ず れ か \mathcal{O} と お ŋ لح す

2 標 準 方 式 第 八 条 第二 号 \mathcal{O} 規 定 に 基 づ < ス クラン ブ ル \mathcal{O} 方 式 は 次 \mathcal{O} 各 号 に 撂 げ る لح お ŋ す る

ス ク ラ ブ ル \mathcal{O} 範 囲 は 平 成 + 三 年 総 務 省 告 示 第 \equiv 百 号 映 像 信 号 \mathcal{O} う 5 セ ク シ 日 ン 形 式

に ょ る ŧ \mathcal{O} 及 び 音 声 信 号 \mathcal{O} う ち セ ク シ 日 ン 形 式 に ょ る ŧ \mathcal{O} \mathcal{O} 送 出 手 順 を 定 8 る 件 第 2 項 に 定

 \Diamond

る 干 ジ ユ ル لح す る。

ス ク ラ ブ ル を 行 0 た 干 ジ ユ ル に は 当 該 ス ク ラ ン ブ ル \mathcal{O} 手 順 を 識 別 す る 情 報 当 該 ス ク ラ

ブ ル \mathcal{O} 解 除 \mathcal{O} 手 順 を 識 別 す る 情 報 当 該 干 ジ ユ ル を 含 む 放 送 番 組 を 識 別 す る 情 報 及 75 当 該

ラ ン ブ ル に 関 す る 関 連 情 報 を 識 別 す る 情 報 を 含 む 情 報 を 付 加 す ることとす る。

標 潍 ス ク 方 ラ 式 ン 第 ブ 兀 +ル \mathcal{O} 七 条 範 囲 \mathcal{O} は 規 定 同 に 期 基 づ パ < ケ ス ツ ク 1 ラ を 伝 ン 送 ブ す ル る \mathcal{O} 方 1 ラ 式 ン は 次 ス ポ \mathcal{O} 各 号 1 に フ 掲 V げ る ム لح 全 お 体とする。 り す

ع

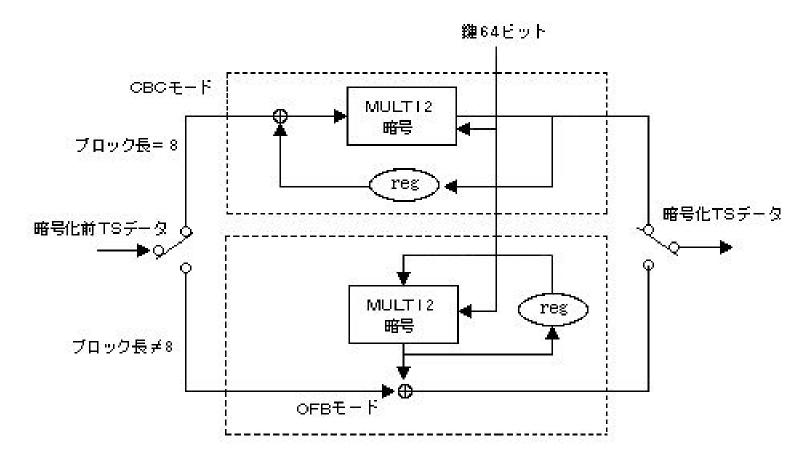
ス

3

ス ク ラ ン ブ ル \mathcal{O} 手 順 は 別 表 第 几 号 カン 5 別 表 第 七 号 ま で \mathcal{O} 1 ず れ か \mathcal{O} と お ŋ لح す る。

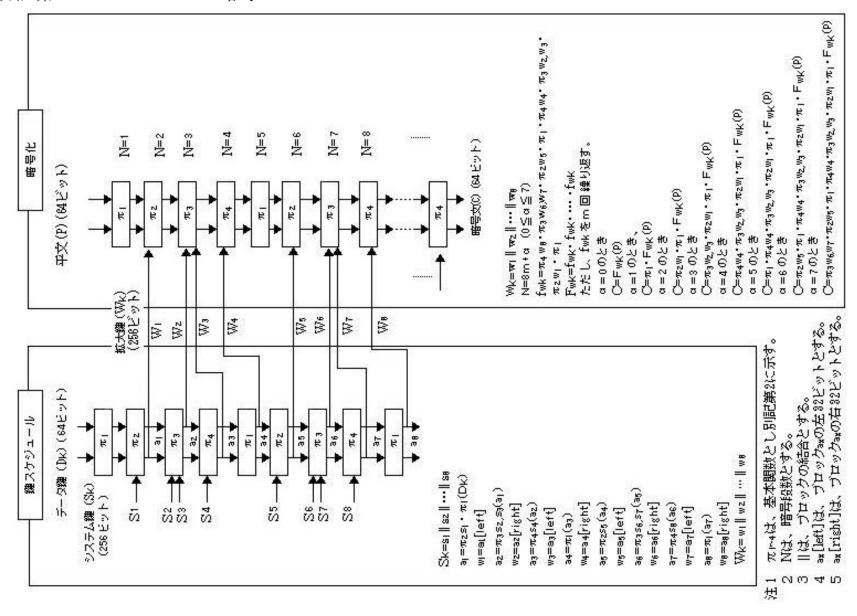
4 標 潍 方 式 第 六 + 五. 条 \mathcal{O} \mathcal{O} 規 定 に 基 づ < ス ク ラ ン ブ ル \mathcal{O} 方 式 は 次 \mathcal{O} 各 号 に 掲 げ る لح お り とす

ツ 1 0 F と Ι P

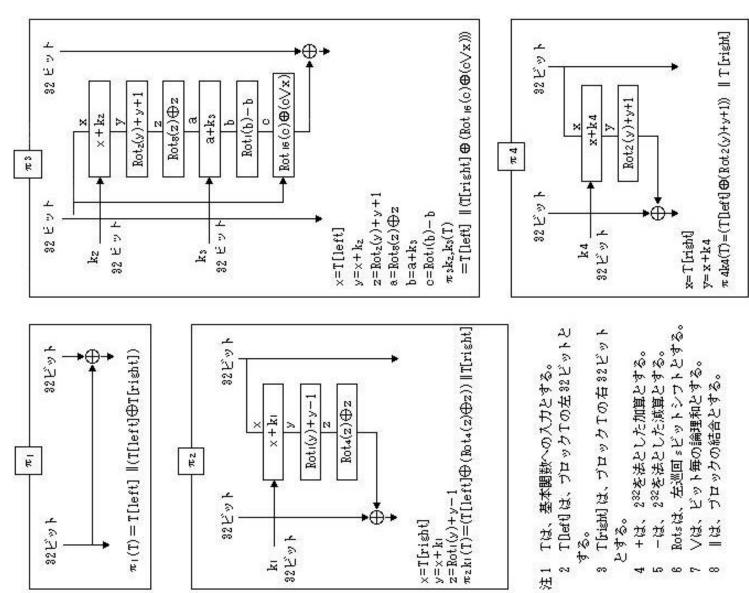

ス ク ラ ン ブ ル \mathcal{O} 範 进 は M M Τ P パ ケ 12 あ て は \sim 1 口 部 \mathcal{O} う 5 デ タ 部

る

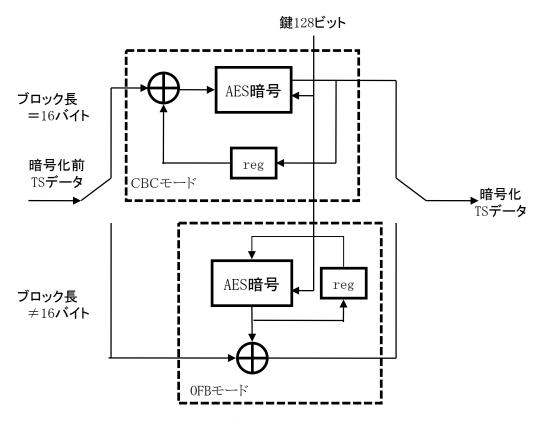
二、スクランブルの手順は、別表第八号又はパケットにあってはペイロード部とする。


別表第八号又は別表第九号のいずれかのとおりとする。

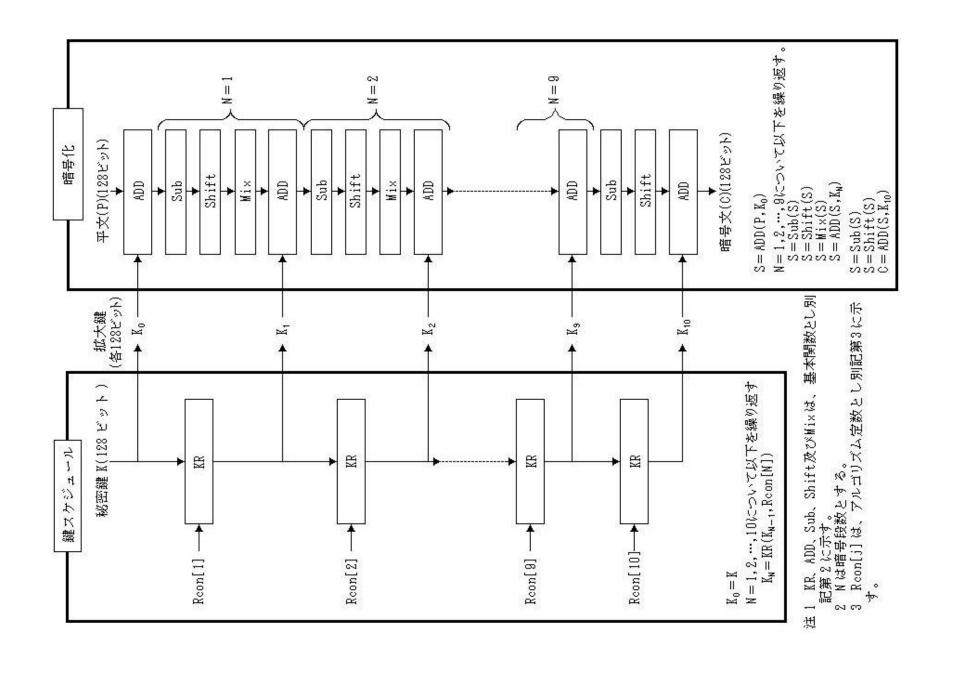
別表第一号



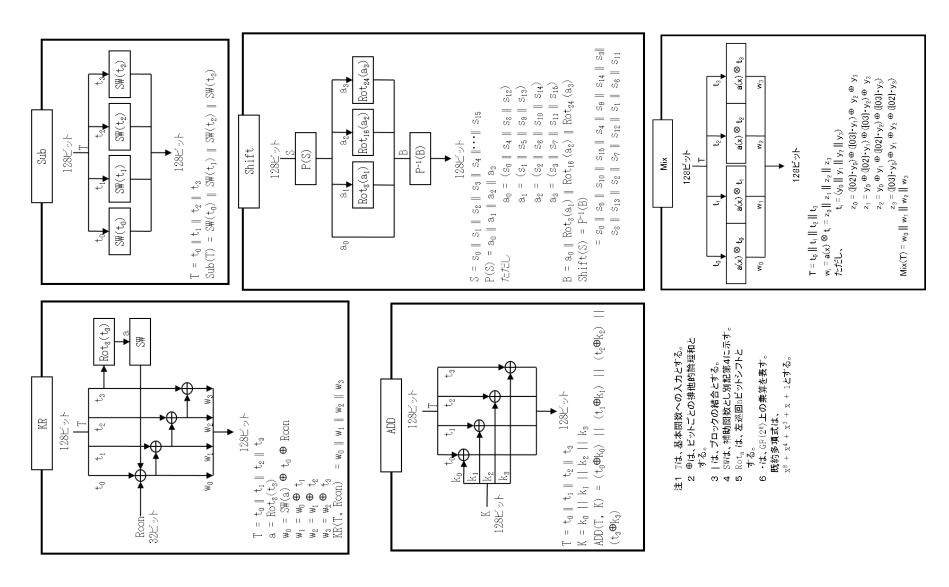
- 注1 MULTI2暗号は、別記第1に示す。
 - 2 (reg は、レジスタを示す。以下同じ。
 - 3 ⊕は、排他的論理和を示す。以下同じ。


別記第1 MULTI2暗号

別記第2 基本関数



別表第二号



注 AES暗号は、別記第1に示す。

別記第1 AES暗号

別記第2 基本関数

別記第3 アルゴリズム定数

$$R_{con} [1] = 01000000$$

$$R_{con} [2] = 02000000$$

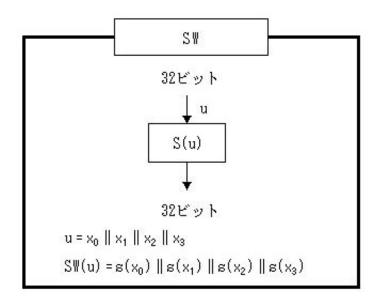
$$R_{con} [3] = 04000000$$

$$R_{con} [4] = 08000000$$

$$R_{con} [5] = 10000000$$

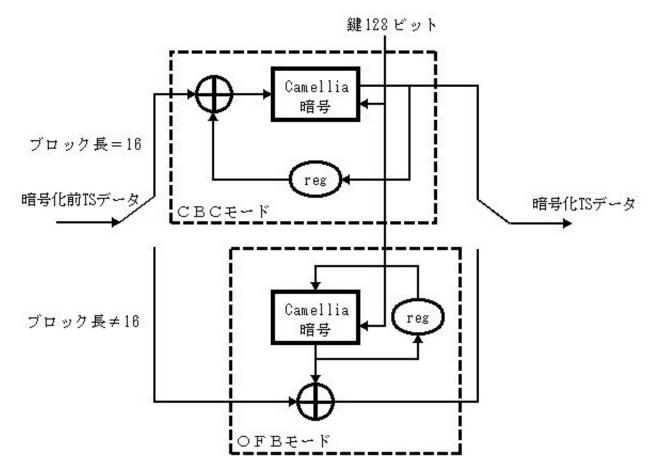
$$R_{con}$$
 [6] = 20000000

$$R_{con} [7] = 40000000$$

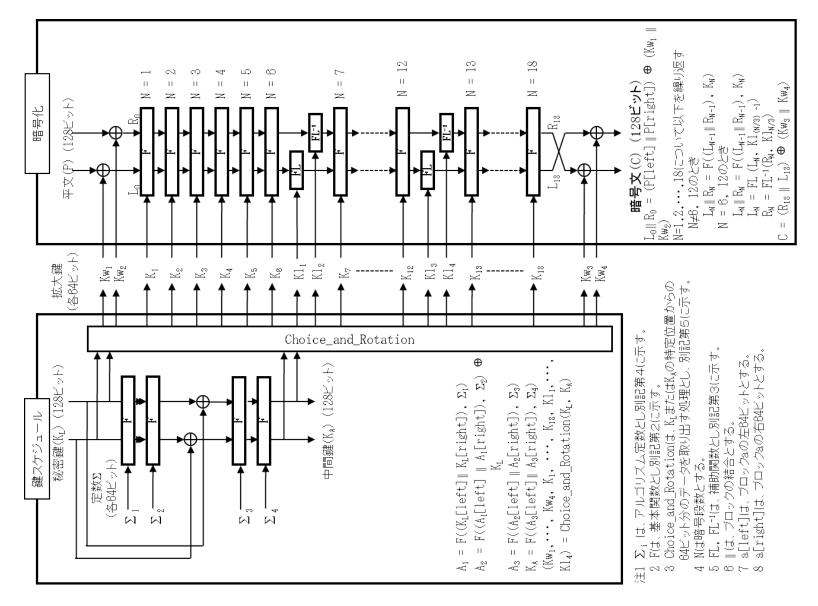

$$R_{con} [8] = 80000000$$

$$R_{con} [9] = 1b000000$$

$$R_{con}$$
 [10] = 36000000


注 数値は16進数表記とする。

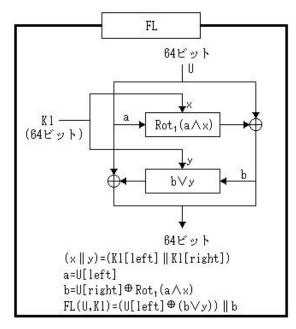
別記第4 補助関数

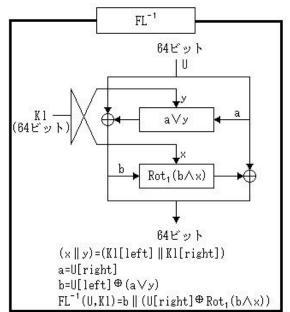

- 注1 uは、補助関数への入力とする。
 - 2 | は、ブロックの結合とする。
 - 3 sは、8ビットの置換表とし、ISO/IEC18033-3に従うものとする。

別表第三号

注 Camellia暗号は、別記第1に示す。

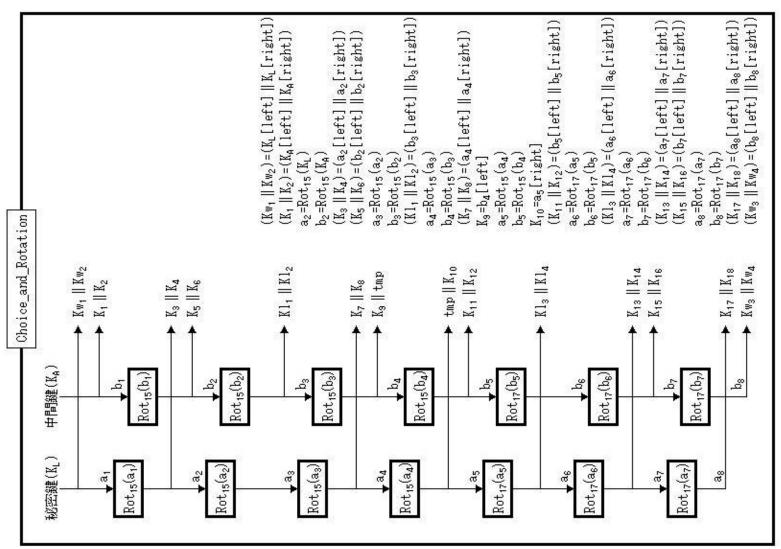
別記第1 Camellia暗号




別記第2 基本関数

- 注1 Tは、基本関数への入力とする。
 - 2 T [left] は、ブロックTの左64ビットとする。
 - 3 T[right]は、ブロックTの右64ビットとする。
 - 4 | は、ブロックの結合とする。
 - 5 s_iは、8ビットの置換表とし、ISO/IEC18033-3:2005(E) 5.2.3.4節に従うこととする。

別記第3 補助関数

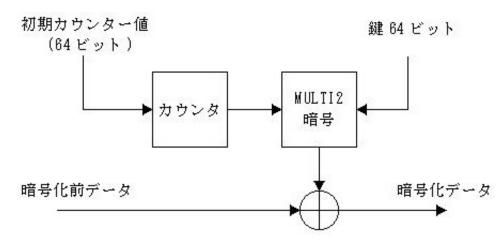


- 注1 Uは、基本関数への入力とする。
 - 2 | は、ブロックの結合とする。
 - 3 Rot, は、左巡回1ビットシフトとする。
 - 4 人は、ビットごとの論理積とする。
 - 5 ∨は、ビットごとの論理和とする。
 - 6 U [left]は、ブロックUの左32ビットとする。
 - 7 U[right]は、ブロックUの右32ビットとする。

別記第4 アルゴリズム定数

- $\Sigma_1 = a09e667f3bcc908b$
- $\Sigma_2 = b67ae8584caa73b2$
- $\Sigma_3 = \text{c6ef372fe94f82be}$
- $\Sigma_4 = 54 \text{ff} 53 \text{a} 5 \text{f1} \text{d} 36 \text{f1} \text{c}$
- 注 数値は16進数表記とする。

別記第5 Choice_and_Rotation

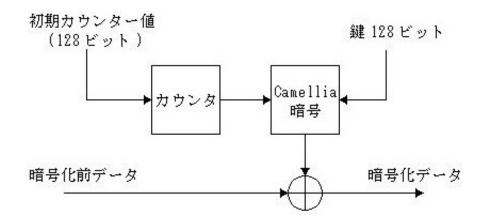

注1 Rotnは、左巡回nビットシフトとする。

^{2 ||}は、ブロックの結合とする。

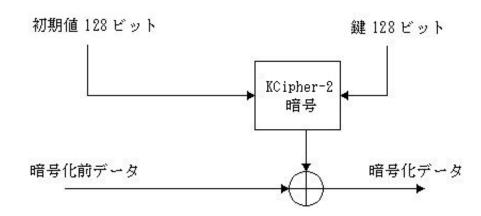
³ U [left] は、ブロックUの左64ビットとする。

U [right] は、ブロックUの右64ビットとする。

別表第四号

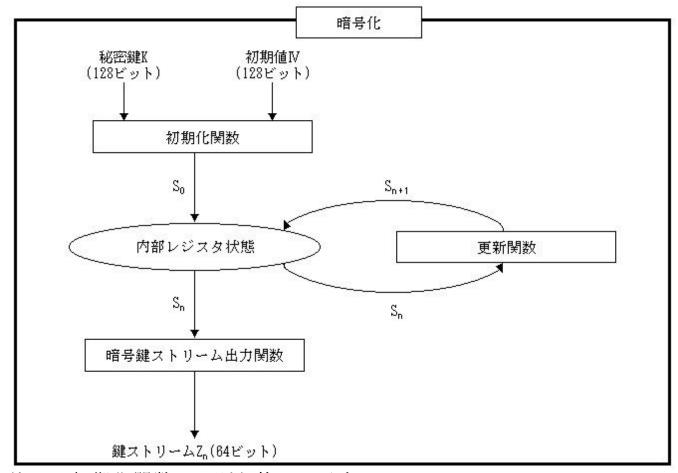


注 MULTI2暗号は、別表第一号別記第1に示す。 別表第五号

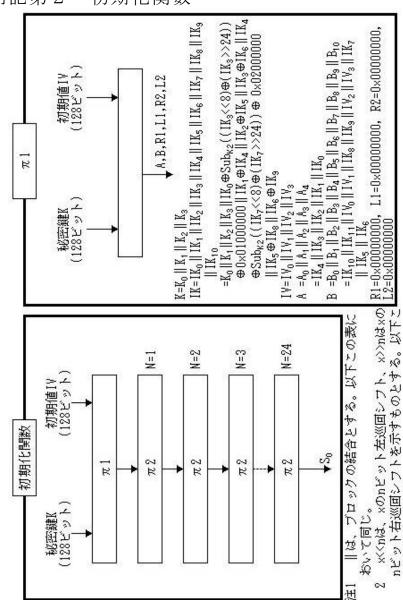


注 AES暗号は、別表第二号別記第1に示す。

別表第六号



注 Camellia暗号は、別表第三号別記第1に示す。 別表第七号



注 KCipher-2暗号は、別記第1に示す。

別記第1 KCipher-2暗号

- 注1 初期化関数は、別記第2に示す。
 - 2 S_nは内部レジスタ状態を示すものとする。
 - 3 更新関数は、別記第3に示す。
 - 4 暗号鍵ストリーム出力関数は、別記第4に示す。

 $=B_1\|B_2\|B_3\|B_4\|B_5\|B_6\|B_7\|B_8\|B_9\|B_{10}\\ \|((\alpha_1^{-421301}+\alpha_2^{-1-4}^{-161301}-1)\otimes B_0)\oplus B_1\oplus B_6\oplus (\alpha_3^{-61301})\oplus B_1\oplus B_2\oplus B_2\oplus (\alpha_3^{-61301})\oplus B_2\oplus B_2\oplus B_2\oplus (\alpha_3^{-61301})\oplus B_2\oplus B_2\oplus B_2\oplus (\alpha_3^{-61301})\oplus B_2\oplus B_2\oplus B_2\oplus (\alpha_3^{-61301})\oplus (\alpha_3^$ S'=(A',B',R1',L1',R2',L2') $=A_1\|A_2\|A_3\|A_4\|(\alpha_0\otimes A_0)\oplus A_3\oplus (B_0+_{32}R2)\oplus R1\oplus A_4$ S=(A,B,R1,L1,R2,L2) R1'=Sub_{K2} (L2+32B₉), L1'=Sub_{K2} (R2+32B₄) L2'=Sub_{K2}(L1) ⊗B₈)⊕(B₁₀+32L2)⊕L1⊕A₀ 22R2'=Sub_{K2}(R1), B. ~ AoからAaまで、BoからBoまで、R1、L1、R2及 VXL2は32ビットの値を示す変数とする。 「Dx」に続く数字を16進数とする。以下この 表において同じ。 と乗算を示すものとする。以下この表において +32及びのは、それぞれGF(232)上の算術加算

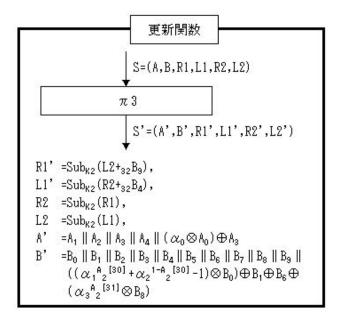
の表において同じ

S

4

S

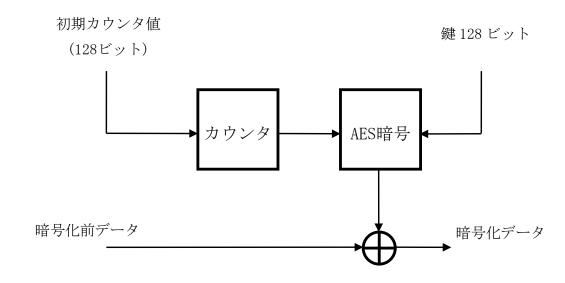
順に適用する関数とする。以下との表において Sub_{K2}は、別表第2号に示すS⊪製数・Mix関数を ر ا


 α_0 は、 $\mathrm{GF}(2^{22})$ 上の元であり、 $\chi^4+\beta^{24}\chi^3+\beta^3\chi^2+\beta^{12}\chi+\beta^{71}$ \in $\mathrm{GF}(2^9)$ [χ]の根とする。ただし、 β は原始多項式 $\chi^8+\chi^7+\chi^6+\chi+1$ \in GF(2)[χ]の 根とする。以下この表において同じ。 0

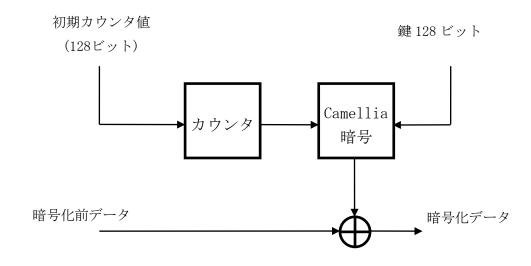
XのY番目のビットを示すものとする。 α,はGF(232)上の元でありχ4+γ230χ3+γ156 $\chi^2 + \gamma^{93} \chi + \gamma^{29} \in \mathrm{GF}(2^8)[\chi]$ の根とする。ただし、 γ は原始多項式 $\chi^8 + \chi^5 + \chi^3 + \chi^2 + 1 \in \mathrm{GF}(2)$ [水]の様とする。以下この表において同じ。 X[Y]X හ 00


 α_2 は $\mathrm{GF}(2^{32})$ 上の元であり $\chi^4+\delta^{34}\chi^3+\delta^{16}\chi^2$ $+\delta^{199}\chi+\delta^{248}$ \in (Jr (Sr) [χ] の根とする。ただし、 δ は原始多項式 $\chi^8+\chi^6+\chi^3+\chi^2+1$ \in (Jr $[\chi]$) σ 以下との表において同じ。 2

 $\xi^{56}\chi + \xi^{16} \in GF(2^8)[\chi]$ の根とする。ただ ξ は原始多項式 $\chi^8 + \chi^6 + \chi^5 + \chi^2 + 1 \in GF(2)$ α₃はGF(2³2)上の元であり χ⁴+ζ¹57 χ³+ζ²⁵³ [x]の板とする。以下この表において同じ。 根とする。以下この表において同じ。 x2+5 Ξ


別記第3 更新関数

別記第4 暗号鍵ストリーム出力関数



別表第八号

注 AES暗号は、別表第二号別記第1に示す。

別表第九号

注 Camellia暗号は、別表第三号別記第1に示す。