

航空機搭載映像レーダについて

平成27年3月31日

情報通信研究機構 児島正一郎

アジマス方向

フンジル回

合成開ロレーダの観測原理

航空機搭載合成開口レーダ(Pi-SAR2)は、航空機の進行方向に対して左斜め下方向に 電波を発射し、地表面から戻ってくる電波を受信して、画像化するレーダです。Pi-SAR2で はXバンド帯の電波(9.65GHz)を使用しているため、夜間でも悪天候(雲や雨)でも地表面

スラント分解能:0.3m/0.5m/1.0m NEo0:<-23dB/-27dB/-30dB

アジマス分解能:0.3m/0.6m/1.2m 入射角:10度~65度

を観測することが可能。また、合成開口処理により、高 い空間分解能(最高分解能30cm)を有する。

観測幅:5km~12km

合成開ロレーダによる地表面観測

【NICT開発の航空機搭載合成開口レーダ(Pi-SAR2)】

- 高分解能:30 cm
- 広い観測幅:10km程度
- 偏波を使った詳細な識別:散乱過程の分類
- 立体視:1m以下の高さ精度
- 移動体検出:5~31km/hの範囲の移動体検出

Pi-SAR2について

Pi-SAR2による東京ドームの観測

x帯(波長約3cm)の電波は、東京ドームの屋根に使われているガ ラス繊維膜材を透過して、その下の様子を観測することが可能。

2011年8月26日(プロ野球の試合準備)

9GHz帯航空機搭載型合成開口レーダーシステム作業班会議資料

航空機内から撮影写真

航空機搭載映像レーダ によりとらえた御嶽山火 ロのSAR画像。2014年10 月2日(木)12:43に撮影。 図中のA~Eは国土地理 院公表の火口推定位置 との照合結果。

Pi-SAR2による紀伊半島豪雨被害(土砂ダム)

Pi-SAR2 Pi-SAR2による東日本大震災の被災状況の把握

H23.3.12(大震災翌日)

H23.3.18(一週間後)

H23.8.25

- 黒色は浸水地域を表している。
- 震災翌日は津波影響で大きく浸水し、一週間後は仙 台空港はほぼ水が引いたものの、周辺にはまだ浸 水域が残っている。

同じ場所の がれきの写真

高度計測(クロスインターフェロメトリ)

2つのアンテナのデータから鉛直方向の情報(高度情報)を抽出

阿蘇山周辺の鳥瞰図

移動体計測(アロングトラックインターフェロメトリ)

移動体検出(2011/3/30実験結果)

航空機SARの地表面観測の利用

	高分解能	インターフェロメトリ	ポラリメトリ	その他
地殻変動 (ゆっくりとした)	-	_	-	植生・積雪被 覆により長波 長が有効
地震前後の変動	地上事物(形状)	隆起/沈降	地上事物 土砂崩壊	植生・積雪被 覆の影響
火山	火ロ内外の詳細 な形状	隆起/沈降 火山灰堆積量	火山灰堆積領域	-
森林·植生	樹種·密接度	樹高	樹種·密接度	多波長が有効
土壌	テクスチャー	-	含水率	-
積雪	雪崩危険性?	積雪深	含水量	含水量の影響
雪渓·氷河·氷床	流動速度	氷域消長	内部構造	
海洋	波浪スペクトル	波高 海流(アロングトラック)	-	多波長が有効
海氷	密接度 氷盤形状・寸法	_	海氷分類 (氷厚)	広域性、全天 候性

SARは様々な地表面観測が可能であり、実用化が社会的・学術的に求められている。