新たな情報通信技術戦略の在り方
＜平成 26 年 12 月 18 日付け諮問第 22 号＞

中間答申

平成 27 年 7 月 28 日
情報通信審議会
目次

第1章 検討の背景

1.1 ICTの発展動向 ... 1
1.2 我が国のICTインフラの状況 ... 3
1.3 我が国のICT産業の状況 .. 4
1.4 我が国を取り巻く社会的課題 .. 6
1.5 新たなチャンスの到来 .. 7

第2章 新たな情報通信技術戦略の方向

2.1 新たなIoT戦略への期待 ... 10
2.2 今後の情報通信技術戦略の方向 .. 10
2.3 世界最先端のICTによる新たな価値創造（未来社会）のイメージ 12
 2.3.1 ロボットとの協働による多様な社会参加の実現、社会生活の利便性向上 12
 2.3.2 ユーザの感情・潜在意識まで理解して、きめ細やかに支援するロボットの実現 13
 2.3.3 多言語音声翻訳システムによるグローバルで自由な交流の進展 14
 2.3.4 ビッグデータのリアルタイム解析によるオンデマンド生産・供給の実現 15
 2.3.5 センサ・ビッグデータを活用した社会システムの最適制御 15
 2.3.6 脳情報を利用した新ビジネスの創出 16
2.4 ソーシャルICT革命を推進するために必要な技術分野 17
2.5 ソーシャルICT革命推進に向けた重点研究開発分野 17

第3章 重点研究開発分野及び重点研究開発課題

3.1 重点研究開発分野 ... 19
3.2 重点研究開発課題 ... 20
 3.2.1 国、NICTが主導して研究開発を推進すべき技術課題 20
 3.2.2 各分野における主要な重点研究開発課題 21
 3.2.3 重点研究開発課題の全体像 ... 31
 3.2.4 各重点研究開発課題の概要 ... 33

第4章 研究開発等の推進方策

4.1 研究開発、成果展開の推進について 43
 4.1.1 国、NICTによる先導的・基盤的研究開発の推進 43
 4.1.2 研究開発の成果展開・社会実装に向けた取り組みの強化 43
4.2 テストベッドの構築・活用について 44
 4.2.1 次世代ICTテストベッドによる最先端技術の「橋渡し」の推進 45
 4.2.2 ソーシャルICTテストベッドによる社会実証の推進 45
4.3 産学官連携の推進について .. 46
 4.3.1 産学官連携によるIoT推進体制の構築 46
 4.3.2 オープンイノベーションを促進する取組の推進 47
4.4 国際標準化の推進について .. 47
 4.4.1 本格的なIoT時代に向けて多様化・複雑化する国際標準化活動への対応 48
 4.4.2 NICTにおける国際標準化への取組の一層の強化 48
 4.4.3 研究開発と国際標準化の一体的推進 48
 4.4.4 国際標準化に係る人材育成の推進 48
4.5 国際連携の推進について .. 49
 4.5.1 国際共同研究の推進 .. 49
 4.5.2 研究開発成果の国際展開の推進 49
4.6 人材育成の推進について .. 49
 4.6.1 研究人材等の育成の推進 50
 4.6.2 研究人材等の流動化 .. 50

参考資料1 重点研究開発課題に関する工程表 51

センシング & データ取得基盤分野 51
統合ICT基盤分野 - コア系 - .. 57
統合ICT基盤分野 - アクセス系 - 59
データ利活用基盤分野 .. 63
情報セキュリティ分野 ... 69
耐災害ICT基盤分野 .. 70
フロンティア研究分野 ... 73
分野横断的課題 世界最先端ICTテストベッド 82

参考資料2 人工知能・ロボット アドホックグループ検討結果とりまとめ... 85

参考資料3 .. 93

諮問書 .. 94
情報通信審議会 情報通信技術分科会 技術戦略委員会 構成員名簿 96
情報通信審議会 情報通信技術分科会 技術戦略委員会
重点分野WG 構成員名簿 ... 97
情報通信審議会 情報通信技術分科会 技術戦略委員会 重点分野WG
人工知能・ロボット アドホックグループ 構成員名簿 98
開催経緯 .. 99

用語集 .. 101
はじめに

我が国が超高齢化社会を迎え、国際的な経済競争が厳しくなる中で、経済を再生し、さらに持続的に発展させていくためには、経済社会活動全般の基盤であるとともに、今後とも重要な産業であるICT分野が力強く成長し、市場と雇用を創出していく必要がある。また、ICTが経済社会活動全般の基盤として国民生活に深く浸透するとともに、IoT（Internet of Things：モノのインターネット）の時代を迎える中で、経済社会活動や国民生活の安全・安心を守るため、急増するサイバー攻撃等からネットワーク、情報・コンテンツや社会システムを守る情報セキュリティ対策の強化が喫緊の課題となっている。

情報通信審議会では、ICT分野におけるイノベーション創出の実現に向けた取組として、平成26年6月に、「イノベーション創出実現に向けた情報通信技術政策の在り方」を答申したところであるが、イノベーションのシーズを生み出すための未来への投資として、基礎的・基盤的な研究開発についても着実に推進していく必要がある。

また、総務省が所管する、情報通信研究機構（NICT）は、平成27年4月より、研究開発成果の最大化を目的とした新たな「国立研究開発法人」に移行したが、ICT分野における我が国の研究開発等を一層強力にリードすることにより、ICT産業の国際競争力の確保等に資することが期待されている。

このような状況を踏まえ、総務省は、ICT分野において国、NICT等が取り組むべき重点研究開発分野・課題及び研究開発、成果展開等の推進方策の検討を行い、NICTの次期中長期目標、次期科学技術基本計画の策定等に資するため、平成26年12月に、平成28年度からの5年間を目途とした「新たな情報通信技術戦略の在り方」について情報通信審議会に諮問した。これを受けて、情報通信技術分科会に、技術戦略委員会が設置され、これまで検討が進められてきたところである。

本中間答申は、これまでの検討結果を踏まえ、新たな情報通信技術戦略の方向、重点研究開発分野及び重点研究開発課題、研究開発等の推進方策について、中間的に取りまとめのあるものである。なお、具体的な施策の推進方策等、引き続き議論すべき事項については、本中間答申の取りまとめ後に引き続き検討を進めることとする。
第1章 検討の背景

1.1 ICT の発展動向

ICT の役割は、従来の電気通信のように端末と端末を必要な時だけ繋ぐような「人と人を繋ぐ」手段から、近年のブロードバンドの発展により大量の情報が高速に伝送可能となり、端末とサーバー・クラウドを繋ぐような「人と情報を繋ぐ」手段へ発展してきた。（図 1-1）

現在、IoT（Internet of Things：モノのインターネット）の登場や、人工知能の高度化により、ネットワークに接続されたセンサー等の IoT デバイスから得られたビッグデータの分析結果（「知識」）に基づき、将来予測等の新たな価値（「知性（インテリジェンス）」）を創出することが可能となってきている。これにより、ICT は、実空間とサイバー空間を連携させ、「人・モノ・コトと知性を繋ぐ」ことを可能とし、様々な分野・業界において、新たな価値を創出する役割が期待されている。

今後の超高齢化、厳しい国際競争の時代において、このような新たな価値を創出し経済・社会システムの変革につなげていくためには、ビッグデータ・人工知能・IoT・ロボット等の ICT 分野の技術が重要なものと考えられる。

図 1-1 ICT の発展動向

既に、諸外国においては、ドイツでは、Industrie 4.0 を提唱し、産学官共同でセンサーや自ら考えるソフトウェア、機械や部品の情報蓄積能力及び相互通信能力によって生産工程を高度化することにより、「サイバーフィジカルシステム（CPS）」でネットワーク化された『考える工場』を実現し、ドイツの生産拠点としての国際競争力の強化を目指している（図 1-2）。
また、米国では、GEがIndustrial Internetを提唱し、先端的な産業機器、予測分析技術と意思決定者である人間をインターネット介して結びつけることで新たな価値の創造を目指している。また、シスコシステムズはIoE（Internet of Everything）を提唱し、モノとモノの通信だけでなく、モノ、人、プロセス、データの有機的な連携を目指している（図1-3）。このように、欧米主要国は、ビッグデータ・人工知能・IoT等のICTを活用して、モノの生産やサービスの提供等について実空間とサイバー空間を連携させ高度化を図るCPSの実現に向けた新たなIoT戦略を打ち出している。
1.2 我が国のICTインフラの状況

これまで、我が国においては、光ファイバや無線によるブロードバンド整備を推進してきたところであり、超高速ブロードバンドの利用可能世帯率は99.9%を達成し、また、LTEの人口カバー率は90%以上となるなど、固定系、移動系の双方において世界的に高度なICTインフラが広く普及しているところである。

一方、ICTの利活用の観点でみると、例えばビジネスにおけるブロードバンドの活用状況や電子商取引の利用状況については、欧米諸国と比べ進んでいるとは言えないことから、今後の新たなIoT時代に向けて、この優れた固定系・移動系のICTインフラの一層の活用を図っていくことが重要と考えられる。（図1-4）
1.3 我が国のICT産業の状況

一方、ICT分野の産業の状況を見ると、我が国は国際競争力の低迷、貿易収支の赤字化等の厳しい状況に陥っている。世界経済フォーラム（WEF）が発表しているICT分野の国際競争力ランキングにおいては、我が国はここ数年20位前後で推移しているところであり、2015年には10位に上昇しているものの、他の先進国と比較すると下位の状況が続いているところである。また、ICT産業の貿易収支については、2011年までは黒字であったが、2012年に赤字に転落している。（図1-4）
研究開発投資については、我が国のICT分野への研究開発投資は2007年にピークを迎え、その後減少傾向となっている。また、全分野を通して見ると、基礎研究費は全研究費の約12%にとどまっており、主要諸外国に比べると少ない割合となっている。一方、応用研究費、開発研究費はそれぞれ約21%、約62%であり、研究開発投資において基礎研究より応用研究、開発研究を重視していることが分かる。

国内外の主要なICT企業における研究開発費の推移を見ると、我が国企業の研究開発費は過去10年間において減少傾向である一方、米国企業の研究開発費は増加傾向を示している。また、我が国の主要な企業の研究開発投資は、売上高比で5～10%程度であるのに対して、米国では15%前後やそれを超える企業もあり、米国の方が活発な研究開発投資を行っている。（図1-6）
また、ICT産業を支える人材についても、情報系学科の卒業生の人口当たりの比率は主要諸外国と比較して少ない状況であり、また、人口当たりの博士取得者数も米国・ドイツ・英国と比較すると少なく、日本以外の国は博士取得者数が増えている中で、日本だけは数が減少している状況となっている。（図1-7）

このような中で、我が国のICT分野の将来の発展シーズが枯渇しないように、国・NICTがICT分野の基礎的・基盤的研究開発をしっかりと推進していく必要がある。

図1-7 日本における人材育成の現状

1.4 我が国を取り巻く社会的課題

我が国を取り巻く社会的課題に目を転じてみると、人口に関しては、我が国では超少子高齢化社会が到来し、2050年には高齢化率が40%程度まで達すると見込まれている。高齢者の健康維持、労働力人口の減少、医療費の増大等の多くの課題が想定される。

一方で、世界的に都市部への人口集中が進むため、交通渋滞の緩和、環境負荷の低い移動手段の実現が重要になり、我が国のような過疎地域が急拡大する国においては、低コストで高齢者でも安全・安心して利用できる移動手段が必要になる。

また、我が国では、社会インフラの老朽化が急速に進み、例えば、建設後50年を経過する橋梁の割合は2013年の18%から2030年には60%に増加し、インフラ老朽化への対応、効率的なインフラ補修・管理等が大きな課題となる。

エネルギー・資源に関しては、一次エネルギー（石油や石炭等）の消費量は2010年から2030年において1.4倍に増加し、鉱物資源の使用量（銅、鉛、亜鉛等）については2050年の需要は埋蔵量を超過すると予測されており、天然資源の効率的な探索・発掘、再生可能エネルギーの安定的な利用等が必要となる。

また、自然災害・気候変動に関しては、我が国の平均気温は2000年の10.2℃から2050年には12.4℃、年間降水量は同じく1,758mmから2,394mmに増加することが予想されており、気候変動や大規模自然災害（台風、ゲリラ豪雨等）への対応等が課題となる。
世界人口に関しては、2011年の71億人から2050年にはその約1.3倍の91億人に増加し、食用穀物需要が2050年には2005年の1.2倍、水不足となる人口が2050年には2005年の5倍以上、廃棄物発生量は2025年には2010年の1.5倍に増加すると予想されており、農業・水産業の高度化、廃棄物の効率的な処理等が課題となる。

我が国は、以上のように超少子高齢化の到来、過疎地域への対応、社会インフラの老朽化、大規模自然災害への対応等、複雑化・多様化する多くの社会的課題を抱えている。一方で、これらの社会的課題は、他の先進国やアジア諸国等が今後直面する課題である。

我が国は課題先進国として、IoT等の最先端のICTを活用することにより世界に先駆けて課題解決を図り、世界を先導していくことが期待されている。

課題解決に当たっては、我が国が安全安心を重視する国民や社会の特性は、ICTを活用したきめ細やかな課題解決に有利な土壌であること等を踏まえ、ピンチをチャンスに変えるべく、精力的に取り組むべきである（図1-8）。

図1-8 我が国が直面する課題

1.5 新たなチャンスの到来
2020年に東京オリンピック・パラリンピック競技大会が開催されることが決定され、現在、大会に向けた様々な取組が開始されている。2020年東京オリンピック・パラリンピック競技大会に向け、世界中から多くの人々が我が国を訪れることが見込まれており、この機会を我が国の世界最先端のICTをショーケースとして世界に発信する絶好の機会として活用すべきである。その際には、2020年以降の成熟社会を支える社会基盤（レガシー）として残すべきものを構築することが必要である。

また、訪日外国人観光客は増加傾向にある、2014年には1,300万人を超え、2030年に3,000万人を目標とする取組が進められているところである。少子高齢化・人口減少により国内市場が縮小する中、ビジネスの海外展開（輸出、海
外進出）とともに、訪日外国人向けビジネスは非常に期待される分野であり、地方を含めた新たな発展のチャンスも到来している。

観光は、過去のストックを活用するという意味で成熟国家において重要な産業である。フランス、米国、スペイン等においては、我が国を大幅に上回る外国人訪問者を受け入れているところである。観光は地方にとっても有望産業であり、我が国においても、観光・外国人を ICT による地方創生の起爆剤とすることが大いに期待されている。

また、本年10月からは、いわゆるマイナンバー制度（社会保障・税番号制度）におけるマイナンバーの付番・通知が開始され、来年1月からはマイナンバーの利用が開始される。更に、医療介護分野の ICT 化に向けた新たな番号制度の在り方について現在検討が進められているところである。

農業などの第一次産業においても、「攻めの農林水産業」の展開において、ICTを活用したスマート農業の取り組みが進められているなど、ICTの活用が本格化している。

このように、様々な分野における国民の利便性向上、産業競争力の強化等に向けて ICT は切札として期待されている。

図1-9 新たなチャンス（2020年東京オリンピック・パラリンピック競技大会等）

1.6 新たな価値創造の必要性

1.3のように、我が国の ICT産業は厳しい国際競争にさらされ、研究開発投資は低迷しているが、依然として我が国が世界的に技術的優位性を有する技術も存在している。

例えば、図1-10のように、センサー技術、レーダー技術、光通信技術、ネットワーク仮想化技術、映像認識技術、ロボット技術のような分野については、我が国が依然として世界最先端の技術を有しているとともに、これらの技術は、今後の新たなIoT社会におけるキーテクノロジーとしても期待される。

一方で、技術的な優位性が必ずしも我が国の産業競争力に結びついていないという状況も踏まえ、そのような技術を活かして国民やユーザーのニーズを適時
的確に捉えたビジネスモデルをいち早く構築していく必要がある。そのために
は世界最先端のICTを確立するとともに、国・NICTによる研究開発成果を早期
にテストベッドとして外部に開放し、様々な分野・業界との協業を図りつつ、
産生やサービスの効率的なトライアルが可能な実証基盤をつけて産業競争
力を強化していく必要がある。
また、社会経済活動が複雑化し、超高齢化社会が進展していく中で、ユニバ
ーサルデザインのように、高齢者、障がい者、子供も含め、あらゆる人がユニバ
ーサルにサイバー空間を活用できるようにすることで、それぞれ連携させて実
空間で活力ある社会を目指すことが重要である。さらに、人工知能を活用し、
人間の趣味・嗜好、感情、感性まで理解してロボット等によるきめ細やかなサー
ビスの提供を目指すことにより、広範な分野での価値創造が期待される。
したがって、上記のような我が国が技術的優位性を有する技術を参考にして、
社会経済活動における生産性向上や新たな価値創造を図るという観点から
新たに重点研究開発分野、重点研究開発課題を整理することとなる。これらの技
術の研究開発と多様なプレーヤーが参加可能な実証実験を一体的に推進するこ
とで、ニーズにマッチしたICTシステム、ビジネスモデルの早期の開発、社会
実装、市場展開を図ることで、我が国のICT産業の国際競争力を強化していく
ことが必要である。

<table>
<thead>
<tr>
<th>技術(例)</th>
<th>我が国が有する技術的優位性(一例)</th>
</tr>
</thead>
<tbody>
<tr>
<td>センサー技術</td>
<td>日本は世界有数のセンサー大国</td>
</tr>
<tr>
<td></td>
<td>世界のセンサーの1/4が日本で使われていると言われている。</td>
</tr>
<tr>
<td></td>
<td>CMOS画像センサー用では、我が国企業が世界シェアの首位。</td>
</tr>
<tr>
<td>レーダー技術</td>
<td>フェーズドアレイレーダーは、民生用として世界初の実用機を開発</td>
</tr>
<tr>
<td></td>
<td>世界で最短の観測周期で全空間を実際に観測できる技術を有する。</td>
</tr>
<tr>
<td>光通信技術</td>
<td>日本の光通信技術は世界最高レベル</td>
</tr>
<tr>
<td></td>
<td>伝送容量は世界最高速。</td>
</tr>
<tr>
<td></td>
<td>大容量マルチコアファイバ伝送技術では、世界一のファイバ製造技術と要素技術を持つ。</td>
</tr>
<tr>
<td></td>
<td>100Gbpsのデジタル信号処理(DSP)回路を世界に先駆けて実用化。</td>
</tr>
<tr>
<td></td>
<td>2016年製品化予定の400Gチップも伝送距離、駆動電圧等で世界最高性能となる見込み。</td>
</tr>
<tr>
<td>ネットワーク仮想化技術(SDN)</td>
<td>ネットワーク仮想化技術の開発・製品化で欧米をリード</td>
</tr>
<tr>
<td></td>
<td>マルチレイヤ、マルチネットワーク、マルチドメインに対応した世界初のOS用コントローラを実用化。</td>
</tr>
<tr>
<td>映像技術</td>
<td>超臨場感・超高精細度映像技術、画像認識技術で世界をリード</td>
</tr>
<tr>
<td></td>
<td>超臨場感映像技術について、動く物体への高速マッピング等を可能とする次世代プロジェクション</td>
</tr>
<tr>
<td></td>
<td>マッピングの開発において世界をリード。</td>
</tr>
<tr>
<td></td>
<td>4K/8Kの映像フォーマットに対応した超高精細度デジタル映像システム(UHDTV)について、必要な技術</td>
</tr>
<tr>
<td></td>
<td>規格等の国際標準化や対応設備・機器の開発・展開等において世界をリード。</td>
</tr>
<tr>
<td></td>
<td>米国国立標準技術研究所(NIST)の顔認証の精度評価コンテストで米、仏、独、中等の企業の中で、</td>
</tr>
<tr>
<td></td>
<td>2012年から3年連続世界1位を獲得。</td>
</tr>
<tr>
<td>ロボット技術</td>
<td>ネットワークロボット技術の標準化に関して、世界をリード</td>
</tr>
<tr>
<td></td>
<td>日本は産業用ロボット稼働台数について、世界シェア23%で第1位(2013年)。</td>
</tr>
<tr>
<td></td>
<td>ネットワークロボット技術に関しては、世界に先駆けて、介護用ロボットや会話用ロボット等に</td>
</tr>
<tr>
<td></td>
<td>幅広く利用可能な共通プラットフォームを世界をリード。</td>
</tr>
</tbody>
</table>

国1-10 ICT分野において我が国が技術的優位性を有する技術（例）

（注）本図表に示す技術分野及び技術的優位性は、1.6においての一例として示したものであり、ICT分野における我
が国の技術的優位性を有する技術はこれらに限られたものではない。
第2章 新たな情報通信技術戦略の方向

2.1 新たな IoT 戦略への期待

第1章で取り上げたように、我が国の国経の今後の持続的発展を図るためには、我が国の広く普及した高度な ICT インフラ、現在も国際的な強みを有している技術を十分に活かしつつ、我が国の国民や社会の安全・安心を重視する特性を踏まえて、様々な社会的課題に取り組むために ICT の高度化を図っていくことが必要である。

また、我が国の GDP の約 7 割、従業員の約 7 割を超えるサービス産業の高付加価値化や生産性向上は政府全体の重要な課題となっているが、このような医療・福祉、小売り等のサービス産業のビジネスモデルの革新を図るためにもビッグデータの活用を図っていくことが必要である。

さらに、近年の人工知能の高度化によりビッグデータの活用は新たなフェーズに至っており、収集したデータから自動で学習し新たな機能を生み出す ICT システムが実現可能となっている。したがって、膨大なセンサー等からの情報伝送遅延を最小化する等の革新的なネットワーク技術が実現すれば、周囲の状況をリアルタイムに収集し、ビッグデータ解析により将来を予測しロボットや車等を最適制御するような新たな IoT 活用(IoT2.0)も可能となることが期待される。

(図 2-1)

1. これまでの IoT 活用

2. 今後期待される新たな IoT 活用→以下のサイクルを高速に回し、IoT 活用の好循環サイクルを実現

2.2 今後の情報通信技術戦略の方向

したがって、今後は、新たな IoT 技術を用いて人・モノ・コトと知性を繋いで、実社会とサイバー空間を強力に連携させることにより、ICT による社会課題の解決のみならず健康・医療、交通・物流、公共サービスのような幅広い分野において、社会システムの効率化・最適化等による新たな価値の創造を図っていくことが期待される【注】。

【注】実空間とサイバー空間の間で超大容量のビッグデータをリアルタイムにやり取りし、人
工知能で将来を予測し、社会システム（経済社会活動を担う ICT システム）の最適制御、効率化・最適化、社会システムの自動化・人間との協働を行う等、

図 2-2 実空間とサイバー空間の連携

新たな価値創造を可能とする世界最先端の ICT としては、
● 多様なモノや環境の状況を、センサー等の IoT デバイスやレーダー等のセンシング技術により把握し（「社会を観る」）、
● それらからの膨大な情報を広域に収集し（「社会を繋ぐ」）、
● ビッグデータ解析を行った上で将来を予測し、多様な社会システムのリアルタイムな自動制御等を行う（「社会（価値）を創る」）ものが必要となる。

さらに、
● 急増するサイバー攻撃等に対し、ネットワーク、情報・コンテンツや社会システムを守る情報セキュリティ及び国民の生命・財産を守るための耐災害 ICT 基盤を実現し（「社会（生命・財産・情報）を守る」）、
● 将来のイノベーションのシーズを育てる先端的な基盤技術を創出する（「未来を拓く」）ことが必要である。（図 2-3）

図 2-3 世界最先端の「社会全体の ICT 化」の推進
次の5年間の技術戦略（研究開発）は、このような世界最先端のICTを実現し、それにより「社会全体のICT化」を推進することで、課題解決を超えて新たな価値の創造を目指すことが適当である。

このような「社会全体のICT化」は、2000年頃に起こった「IT革命」を発展させ、膨大なビッグデータにより将来を予測し、多様な社会システムの自動化・人間との協働等を目指すものであり、いわば「ソーシャルICT革命」と呼ぶべきものである。

図2-4にソーシャルICT革命の位置付けについて示す。

図2-4 ソーシャルICT革命の位置付け

2.3 世界最先端のICTによる新たな価値創造（未来社会）のイメージ

ソーシャルICT革命の推進により、世界最先端のICTが実現する2030年以降の未来社会における新たな価値創造のイメージとしては、例えば次のようなものと考えられる。

2.3.1 ロボットとの協働による多様な社会参加の実現、社会生活の利便性向上

〜社会経済システムの多様な場面におけるロボットとの協働の実現〜

介護、販売、生産等のあらゆる社会経済システムにおいて、外部の膨大なセンサー情報をもとに、AI技術を活用し、緊急時の対応や高齢者の健康を見守りつつ、人間と助け合って働く高度ネットワークロボットの導入により、人手不足を解消し、高齢者、障がい者、女性など多様な社会参加への支援が可能となる。さらに、ロボット同士、自動化システム同士が自律的に対話し、知識を共有することで、社会経済全体の効率性と安全・安心を高めることが可能となる。（図2-5）
図 2-5 ロボットとの協働による多様な社会参加の実現、社会生活の利便性向上

2.3.2 ユーザの感情・潜在意識まで理解して、きめ細かに支援するロボットの実現

～ロボットが日々の生活に寄り添いながら、相互に協調する社会の実現～

人間が日々行なっている認識、判断、意思決定といった処理を支援してくれる高度ロボットサービス（コンシェルジュロボット）が実現する。日々の行動パターンや、趣味・嗜好、スケジュール等の情報を活用しながら、ユーザが今何を求めているかを推測し、最適な情報をリコメンドするとともに、コンシェルジュする際に、ロボット同士が自律的にコミュニケーションし、ユーザに最適な情報を提示可能とする。（図 2-6）
2.3.3 多言語音声翻訳システムによるグローバルで自由な交流の進展
～世界中どこにいても、誰とも自由に意思疎通できて、協働・共感できるグローバル社会の実現～

世界中どこにいても、観光、医療、ショッピングのような日常会話を超えて、ビジネス交渉、行政手続等の自動同時翻訳、さらに言葉だけでなく文化や感情表現等を的確に把握し、表現豊かな翻訳を可能とするとともに、様々な国において現地のテレビ番組や映画等の臨場感あふれる自動同時翻訳が実現する。この技術を世界に先駆けて社会実装することにより、世界の人々のグローバルで自由な交流を実現し、相互理解の促進や国際問題の円滑な調整、我が国の企業の国際競争力の向上に資する。

図 2-6 ユーザの感情まで理解して、きめ細やかに支援するロボットの実現

図 2-7 多言語音声翻訳システムによるグローバルで自由な交流の進展
2.3.4 ビッグデータのリアルタイム解析によるオンデマンド生産・供給の実現
～世界中の好み・ニーズに対応したオンデマンド型生産・供給の実現～
世界中のあらゆるウェブ、ツィッター等を外国語のものも含めリアルタイムに解析し、世界の人々の好み・ニーズをリアルタイムに把握し、世界で人気が高い産物・商品を予測することで最適なタイミングで出荷・輸出することが可能となる。また、世界において好み・ニーズが盛り上がっているときを適切に捉えて、3D プリンター等の生産技術で少量生産することで、中小企業であっても、ニッチ市場で利益を確保することが可能となる。（図 2-8）

2.3.5 センサー・ビッグデータを活用した社会システムの最適制御
～地球環境と調和しつつ交通・物流が最適に制御された社会の実現～
自動運転車ごとに目的地まで最短時間で到達でき、しかも、全体として交通渋滞を発生させないように、自動運転車全体の動きの最適制御が実現する。また、外部センサーから収集される情報をもとに、AI 技術を活用し、子供の道路への急速な飛び出しやアリガタ豪雨等の突発的自然災害にも適切に対応・回避するとともに、化学物質（PM2.5等）や CO2の濃度を衛星センサーで広域に高分解能観測し、環境負荷が最小となるように自動運転車全体の動きを最適制御する。これにより、地球環境と調和しつつ、必要な物資を必要な量だけ必要なときに配送する物流の最適化が実現する。（図 2-9）
2.3.6 脳情報を活用した新ビジネスの創出
～様々な生活シーンにおいて個人の脳情報特性を活用した高度なQoLの実現～
脳情報計測と解析技術の高度化により、人間の感情や潜在意識等を脳情報から推定する技術が実現する。この技術を備えた簡易かつ安価な計測器の普及によって、様々な状態・活動シーンにおける個人の脳情報特性と脳のビッグデータ（集合知）を最大限に活用した高度なQoLを実現するビジネスの創出が実現する。

図 2-9 センサー・ビッグデータを活用した社会システムの最適制御

図 2-10 脳情報を活用した新ビジネスの創出
2.4 ソーシャル ICT 革命を推進するために必要な技術分野

2.1 で述べた世界最先端の「社会全体の ICT 化」（「ソーシャル ICT 革命」）を推進するためには、次のような最先端の ICT の対応能力（Power）が必要であり、それを実現する基礎的・基盤的技術の研究開発に重点的に取り組むことが必要である。

(1) 社会を観る能力（Power）
「社会を観る」能力として、多様なモノや環境に導入された IoT デバイスにより広範なデータ収集を行うことを可能とするセンサーネットワーク技術や、地球規模の広域まで超高分解能で社会・環境を見守ることができる電磁波センシング技術等の「センシング&データ取得基盤分野」の技術が重要になる。

(2) 社会を繋ぐ能力（Power）
「社会を繋ぐ」能力として、2020 年代には現在の 1000 倍以上の通信量が見込まれている中で、膨大な数の IoT デバイス等からのネットワークへの接続要求に対応するとともに、ICT システムのリアルタイム制御を行うために情報伝達遅延を最小化した革新的なネットワーク等の「統合 ICT 基盤分野」の技術が必要になる。

(3) 社会（価値）を創る能力（Power）
「社会（価値）を創る」能力として、膨大な情報をもとに、人工知能も活用したビッグデータ解析により新しい知識や価値を創造するとともに、それを人や物に優しく、あらゆる人に最適な形で提供することを可能とする、ユニバーサルコミュニケーション技術（自動翻訳等）、アクチュエーション技術（ロボット制御等）、感動・臨場感をリアルに伝える超臨場映像技術等のような「データ利活用基盤分野」の技術が重要になる。

(4) 社会（生命・財産・情報）を守る能力（Power）
「社会（生命・財産・情報）を守る」能力として、ネットワークやその中を流通する情報・コンテンツを急増するサイバー攻撃等から守る「情報セキュリティ分野」や、国民の生命・財産を守るために災害に強い ICT を実現する「耐災害 ICT 基盤分野」の技術が重要になる。

(5) 未来を拓く能力（Power）
「未来を拓く」能力として、将来のイノベーションのシーズを育てる抜本的なブレークスルーにつながる先端的な基盤技術を創出する「フロンティア研究分野」が重要になる。

2.5 ソーシャル ICT 革命推進に向けた重点研究開発分野

2.4 において、ソーシャル ICT 革命推進に向け ICT に必要とされる能力と、その実現のために重要となる技術分野について述べた。これらの技術分野について、ソーシャル ICT 革命推進に向けた今後 5 年間の重点研究開発分野と位置づけるものとする。
<table>
<thead>
<tr>
<th>必要とされる能力</th>
<th>技術分野</th>
</tr>
</thead>
<tbody>
<tr>
<td>社会を「観る」</td>
<td>センシング&データ取得基盤分野</td>
</tr>
<tr>
<td>社会を「繋ぐ」</td>
<td>統合 ICT 基盤分野</td>
</tr>
<tr>
<td>社会（価値）を「創る」</td>
<td>データ利活用基盤分野</td>
</tr>
<tr>
<td>社会（情報・財産・情報）を「守る」</td>
<td>情報セキュリティ分野、耐災害 ICT 基盤分野</td>
</tr>
<tr>
<td>未来を「拓く」</td>
<td>フロンティア研究分野</td>
</tr>
</tbody>
</table>
第3章 重点研究開発分野及び重点研究開発課題

3.1 重点研究開発分野

世界最先端の「社会全体の ICT 化」、すなわちソーシャル ICT 革命の推進によって先進的な未来社会を実現することにより、新たな価値の創造や社会システムの変革をもたらすためには、重点的に研究開発を行うべき技術課題（重点研究開発課題）を特定し、産学官の密接な連携の下、集中的な取組を推進することが必要である。

2.5 では、ソーシャル ICT 革命推進に向けて今後 5 年間に取り組むべき技術分野を重点研究開発分野として位置付けた。ここで、これらを整理すると、図 3-1 のとおりである。なお、ここで言う「人工知能」とは、主として、大量の文章、画像等のビッグデータから、機械学習により知識を自動的に学習、蓄積し、推論等の知的処理を可能とするような技術等を想定したものである。

ICT は国の持続的発展と安全・安心を確保するための基盤であり、次の 5 年間において、国及び NICT は、基礎的・基盤的な研究開発をしっかりと推進していく必要がある。特に、上記の分野について幅広く研究開発を行う NICT は、産学官と連携しつつ、中心的な役割を果たすことが期待される。

一方で、それぞれの分野における最新の研究開発成果を適時適切に社会へと展開・実装していくためには、関係者が技術実証だけでなく社会実証についても実施可能な環境、具体的には、世界最先端の ICT テストベッドを構築することで、先進的な研究開発と実証実験を一体的に推進することが重要である。このような ICT テストベッドによる実証実験に関する取組についても、分野横断的な重点的取組として位置付けることが適当である。なお、テストベッドの構築・活用に係る推進方策については 4.2 に後述する。
ここで、各重点研究開発分野の概要及び分野横断的な重点的取組を整理すると、図3-2のとおりである。

3.2 重点研究開発課題

3.2.1 国、NICTが主導して研究開発を推進すべき技術課題

3.1において、ソーシャルICT革命の推進に向けて今後5年間に取り組むべき重点研究開発分野を示したが、世界最先端のICTの活用によって課題解決にとどまらず新たな価値の創造を実現するため、分野において国、NICTが主導して研究開発を推進すべき重点研究開発課題について整理する。なお、重点研究開発分野において取り組むべき技術課題であっても、主として民間主導で推進すべきものについては、国やNICTとの役割分担を適切に勘案しつつ、例えば、競争的実利実用機会等も含めた推進検討することが適当である。

ここで、イノベーション創出の観点から国が主導して取り組むべき技術については、「イノベーション創出実現に向けて情報通信技術政策の在り方」(平成26年6月情報通信審議会答申)において示しており、それを踏まえ、先ずは、国、NICTが主導して研究開発を推進すべき技術を次のとおり整理する。

(1) 国際的な競争優位性を有する可能性があるが、研究開発に長期間を要し、大きな開発リスクを伴う技術

- その実現によって国際的な競争優位性を獲得する可能性がある一方で、技術の確立に長期期間を要し、民間での研究開発の実施には大きなリスクを伴うもの
(2) 国際標準化が必須であり、技術が確立しても利用できる保証がない技術
 - 国際的に複数の者が同じ規格の技術を利用しなければならないため、技術が
 完成するだけでなく、国際標準も獲得しなければ製品化に結びつかない技術の
 うち、大きな投資が必要なもの

(3) 国の必要性を踏まえて開発する技術であり、かつ共通的な技術
 - 国自らが利用を必要しており、かつそのニーズが民間におけるニーズより
 も先進的なものや、国が定める戦略の実現のため民間におけるニーズよりも高
 度な技術を確立することが求められるもの

(4) 日本の強みを活かせる新たなビジネス領域の開拓につながる技術
 - 我が国に強みがある領域の優位性を維持し、またその優位性を活かしてビジ
 ネス領域の開拓が期待できるもの

(5) 国の存立を確保するために我が国として維持すべき技術
 - 幅広い側面からの安全・安心の確保等、我が国を支える基盤として維持すべ
 きもの

(6) 持続的成長や社会発展への寄与等、様々な分野への波及効果の高い技術
 - その実現によって我が国の持続的成長や社会発展に大きく寄与することが期
 待される等、幅広い分野への高い波及効果が見込まれるもの

(7) 多様なシーズを育てることが必要な技術
 - 新たな技術の登場が破壊的イノベーションや直面する社会課題の解決につな
 がる可能性を秘める一方で、どのようなものがイノベーション実現に貢献するか
 全く予測できないもの

(8) その他（開発者が受益することができる技術、国の資源の利用効率化に
 つながる技術等）
 - 当該技術の普及には技術自体を極めて低廉に提供する必要が生じることが想
 定されるため、経済合理性の観点からの研究開発が進まないものや、電波のよ
 うに国の管理する限りある資源について未利用資源の利用可能化や利用効率向
 上につながるもの

3.2.2 各分野における主要な重点研究開発課題
国、NICTが主導して研究開発を推進すべき技術として、3.2.1に示した(1)から(8)までのあるか、あるいは複数に該当するものであって、1.3に示した我が国が世界的に強みを有する技術等を勘案しつつ、2.3に示した世界最先端のICTによる新たな価値創造（未来社会）の実現の観点からも検討し、各重点研究開発分野における重点研究開発課題を整理した。
それらのうち、主要な重点研究開発課題を例示すると次のとおりである。
<table>
<thead>
<tr>
<th>重点研究開発分野</th>
<th>主要な重点研究開発課題</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) センシング＆データ取得基盤分野</td>
<td>① センサーネットワーク技術、センサー・ソーシャルデータ取得・解析技術</td>
</tr>
<tr>
<td></td>
<td>② リモートセンシング技術（地上レーダー、航空機・衛星搭載レーダー等）</td>
</tr>
<tr>
<td></td>
<td>③ フォトニックネットワークシステム基盤技術</td>
</tr>
<tr>
<td></td>
<td>④ 新たな IoT 時代に対応した最先端 ICT ネットワーク基盤技術</td>
</tr>
<tr>
<td></td>
<td>⑤ 衛星通信技術（グローバル光衛星通信ネットワーク基盤技術、宇宙・海洋ブロードバンド衛星通信ネットワーク基盤技術）</td>
</tr>
<tr>
<td></td>
<td>⑥ 協調統合型ワイヤレス技術</td>
</tr>
<tr>
<td>(2) 統合 ICT 基盤分野</td>
<td>① 音声翻訳・対話システムの多言語化、多分野化、高精度化</td>
</tr>
<tr>
<td></td>
<td>② 社会知解析技術</td>
</tr>
<tr>
<td></td>
<td>③ スマートネットワークロボット技术</td>
</tr>
<tr>
<td>(3) データ利活用基盤分野</td>
<td>① 未来型サイバーセキュリティ技術</td>
</tr>
<tr>
<td>(4) 情報セキュリティ分野</td>
<td>① 未解決 ICT 基盤分野</td>
</tr>
<tr>
<td>(5) 耐災害 ICT 基盤分野</td>
<td>① 耐災害・被害軽減に関連する ICT 基盤技術</td>
</tr>
<tr>
<td>(6) フロンティア研究分野</td>
<td>① 量子 ICT</td>
</tr>
<tr>
<td></td>
<td>② 脳情報通信技術</td>
</tr>
</tbody>
</table>

上に例示した主要な重点研究開発課題について、その概要は次のとおり。

(1) センシング＆データ取得基盤分野

① センサーネットワーク技術、センサー・ソーシャルデータ取得・解析技術

膨大な情報を超低消費電力で高効率に収集できる広域対応型の次世代センサーネットワーク技術を確立するとともに、センサーネットワークから取得した多種多様な情報から空間構造・意味を解析して対象を的確に認識する技術や、それらの情報をインターネット上から取得したソーシャルデータと統合して、分析・検索・可視化するためのデータ利活用基盤技術等を実現する。

これらにより、2020 年までに、「社会を観る」ための高効率なセンサーネットワークの普及や、例えば「ロボットの目」としても利用可能な画像データ等を含むセンサーデータ利活用基盤の実用化・普及を図ることで、物理空間のあらゆる情報を円滑にセンサーで収集することのできる世界最先端の ICT 利活用基盤を実現する。（図 3-3）
図 3-3 主要な重点研究開発課題【(1)〜(1)】

② リモートセンシング技術
地球規模の気候変動を観測する衛星搭載センサー（降雨・雲・風観測用）技術、局所的な豪雨・竜巻等の発生予測精度向上に資するフェーズドアレイレーダ・ライダ融合観測技術、空間分解能を限界まで高めた次世代航空機搭載 SAR 技術等を確立する。

これらの成果を踏まえ、2017年度には開発した雲レーダーを搭載した EarthCARE 衛星の打上げ・運用開始を予定するとともに、2020年度には精度の雨量観測が可能なマルチパラメータ・フェーズドアレイレーダや、火山喷火・地震等の被災状況把握に利用可能な世界最高水準の分解能を有する次世代航空機搭載 SAR の実用化を図り、これまで観測できなかった自然現象や物質を高精度に「社会を観る」ことにより、安全・安心な社会を実現する。

図 3-4 主要な重点研究開発課題【(1)〜(2)】

③ センサーネットワーク技術
必要とされる情報を高効率（エネルギー効率・周波数利用効率等）にサイバー空間へ収容（センシング情報種別やセンシングエリアの多様性に対応）して、画像や映像から空間構造を点群として記述、空間構造から空間意味解析を行うことにより、物体を認識することのТ社会全体のICT化に必要となる、社会を「観る」技術を実現する。

（図 3-2）
(2) 統合 ICT 基盤分野

① フォトニックネットワークシステム基盤技術

極めて膨大な量のデータを基幹ネットワークで円滑に処理・流通するため、我が国が強みを有する光通信技術を結集し、従来の伝送速度を超える超大容量マルチコアネットワーク技術、オール光スイッチング技術、世界を先駆けた空間スーパーモード伝送技術等、フォトニックネットワークシステムの基盤技術を確立する。

これらにより、1入力端子当たりの交換速度が1ペタbps（現在の100倍以上）を超えるマルチコア・マルチモードのオール光スイッチング技術等を実現し、2020年中に社会実装に向けたフィールド実証を開始、2025年頃には超大容量・省エネの世界最先端のオール光ネットワーク環境を実現する。（図3-5）

図3-5 主要な重点研究開発課題【(2)①】

② 新たな IoT 時代に対応した最先端 ICT ネットワーク基盤技術

本格的な IoT 時代の到来に向け、IoT 機器（自律モビリティシステム、ロボット等を含む）とネットワーク基盤との間で、セキュアかつ情報伝達の遅延を最小化するために人工知能（AI）やエッジコンピューティング技術等を活用した革新的なネットワーク技術を確立するとともに、多様な IoT サービスの基盤となる共通的なプラットフォーム技術等の開発を推進し、最先端のテ스트ベッドの整備・開放を通じて社会全体の ICT 化に係る先進的な実証を行う。

新たな IoT 時代では、あらゆる産業分野において、ネットワーク化された多様な IoT 機器から得られるデータを活用することで、様々なサービスの創造が期待される。このような状況下において、我が国が国際競争力を確保・強化するために、産学官が連携して集中的に取り組むことの、2018年度までに多様な多彩多様な IoT 機器からのデータを安全かつ確実に伝送することが可能なネットワーク技術や様々なサービスをセキュアに提供可能なプラットフォーム技術等を確立し、2020年度までに新たな IoT 時代に対応した研究及び実証の成果を社会へ還元する。（図3-6）
（最先端ICTネットワーク基盤技術）
新たなIoT時代に対応した最先端ICTネットワーク基盤技術
新たなIoT時代に対応した最先端ICTネットワーク基盤技術の研究開発

研究開発の概要
研究：膨大な数のIoTデバイスからの情報をリアルタイムで収集して円滑に流通させるために、新たなシステムを考案される必要がある。そこで、国益を基盤として相手に対する高度なシステムを構築するため、高度なデータを効率的にリアルタイムで伝達し、社会システムの高度なネットワークでの創出を可能とする新たなネットワーク技術（AIも含む）を仮想化技術とネットワーク構築技術を組み合わせることで、多様なユーザに選択するネットワーク構築・機能をリアルタイムかつ適時に対応する技術を構築
重点的なポイント：国益を基盤にすることで技術の確立化し、利用の可能性を拡げると考えられることから、国益は、多様な技術を基盤として相手に対する高度なシステムを構築するための技術を示す

成果イメージ
ネットワーク構築利用
プログラミングモデル開発
ネットワーク構築の自動化（プログラミングモデル化）に必要なプログラミングモデルの開発
ユーザーセンスリング
ネットワーク構築技術
ネットワーク機能の個別設定技術
ユーザが求めるサービス要求・品質を認識し、必要な資源・機能を自動配分する技術の確立

図3-6 主要な重点研究開発課題【(2)～(3)】

（3）衛星通信技術

衛星通信技術

衛星通信技術

研究開発の概要
研究：グローバル通信ネットワークへの向けた衛星通信衛星技術の研究開発

成果イメージ
グローバル通信ネットワーク技術の研究開発

図3-7 主要な重点研究開発課題【(2)～(3)】
協調統合型ワイヤレス技術

ワイヤレス通信トラヒックが現在の 1000 倍以上に達すると予測される 5G/Beyond5G 時代において、低遅延化等の質を確保しながら膨大なトラヒックに対応するため、異なるワイヤレス通信システム間を効率的に連携させるためのシステム間連携制御技術、協調統合型の基地局・端末構築技術、ミリ波帯を含む高速無線アクセス技術等を確立する。

これらにより、2020 年までに、様々な無線システムを最適に組み合わせて自動構築する技術や、ユーザの利用状況に応じて周波数を動的に割り当てる技術、高速無線通信に必要な周波数帯の利用技術等を実現し、2020 年代前半には、エネルギー利用効率に優れたワイヤレス通信システムの実用化・展開を図る。さらに、2030 年頃には、あらゆる場所でワイヤレス通信環境を意識することなく利用可能な次世代基盤システムを実現する。

図 3-8 主要な重点研究開発課題【(2)〜(4)】

(5G/Beyond5Gに向けたモバイルネットワーク技術）
協調統合型ワイヤレス技術

研究開発の概要
概要: 5G/Beyond5G 時代にはモバイルアクセスにおける通信トラヒックが現在の 1000 倍に達すると予測される。トラヒック増大、推定上昇、自動運転・ロボット制御等の影響による低遅延・高精度等の多様化する「質」への対応が必要。これに、異なるワイヤレスシステム間を効率的に連携させる協調統合型ワイヤレス技術の研究開発が実施される。

重点のポイント：国際標準化が必須であり、技術が確立しても利用できる保証がなくとも、持続的成長や社会発展への寄与等、様々な分野への波及効果の高い技術国際的な研究動向: 5G/Beyond5G 時代に向けた異種無線統合技術の研究開発が欧米、中韓等で進行中。異種統合技術に関する国際標準化では我が国がこれまで世界をリード。

成果イメージ
動的周波数資源管理
ユーザの位置情報・利用サービスに基づく動的割り当て共有技術の確立
高機能基地局・端末技術
基地局折り返し通信・端末間通信等のトラヒック制御による効率伝送手法の確立

システム間連携制御
様々な異形システムを組み合わせて制御可能な通信網を自動構築する連携制御技術の確立

高速無線アクセス
高速無線通信に必要なテラヘルツ帯/ミリ波帯を含む無線アクセス技術の確立

ユーザの位置情報・利用サービスに基づく動的割り当て共有技術の確立

図 3-9

(3) データ利活用基盤分野

① 音声翻訳・対話システムの多言語化、多分野化、高精度化

現在までに世界最先端の技術水準を維持している音声翻訳・対話技術について、専門分野向けの自動翻訳の多言語化・多分野化、高精度化の研究開発のほか、同時通訳を行うための基礎技術の開発を行う。

これらにより、2020 年までに、多言語化（10 言語程度）、多分野化（医療・防災を含む生活分野）、高精度化（音声認識・翻訳性能の改善）を達成し、さらに社会実装することで、日常生活的様々な場面で音声翻訳・対話システムを通じてコミュニケーションできる社会を実現する。
図 3-9 主要な重点研究開発課題【(3)−①】

(③) 社会知解析技術

Web や科学論文等、社会に流通している知識（社会知）を解析し、様々な社会問題等を容易に解決できる形で提供する社会知解析技術について、問題や回答を自動生成し文脈を深く分析する等の高度化や多言語化、リアルタイム化のための技術を確立する。

これらにより、2020 年までに、誰もが専門家並みの知識を自由自在に活用可能なシステムを実現する。さらに 2020 年代半ば頃には、社会知の解析・提供による一般向けサービスや膨大な知識に基づくイノベーション支援システム等を実現し、我が国の教育、産業等の発展に寄与する。（図 3-11）

図 3-10 主要な重点研究開発課題【(3)−②】
３ スマートネットワークロボット技術
様々なロボットがネットワークを介して情報を共有し、リアルタイムに自動で動作するための基盤技術、クラウド上での大規模データの集積・分析、人工知能による行動生成やマルチモーダル制御のためのデータ指向型ロボティクス技術、さらに視覚・聴覚や脳情報等を用いた人の心に寄り添うコミュニケーションを実現する技術等を確立する。
これらにより、2020年には、ICT、人工知能、ロボットを活用した日本の「おもてなし」をショーケースとして示すとともに、サービス、医療・介護、製造業、農業・漁業等の様々な分野へのスマートネットワークロボットの導入による利便性に溢れる社会を実現する。
(図3-11)

スマートネットワークロボット技術
・ネットワークロボットプラットフォーム技術（スマートロボット技術）の研究開発
・クラウドとロボットの融合による革新的サービスの研究開発
・人の心に寄り添うコミュニケーションロボットの研究開発

研究開発の概要

国際的な研究動向：我が国はこれまで世界をリード。米国DARPAや欧州Horison2020等において研究開発を推進。また産業分野では、米国Industrial Internet Consortiumや欧州Industrie4.0戦略等、官民での取組が本格化。

成果イメージ
・ロボットの導入が進むことで、医療・介護や製造業、農業分野等の人手不足を解消するとともに、新たな付加価値の創出が期待される。
・2020年東京オリンピック・パラリンピック競技大会において、ICT、人工知能、ロボットを活用した日本の「おもてなし」をショーケースとして示す。

図3-11 主要な重点研究開発課題【(3)〜(3)】

(4) 情報セキュリティ分野
① 未来型サイバーセキュリティ技術
世界各国で最重要研究課題とされているサイバーセキュリティ技術に関して、能動的サイバー攻撃観測網の開発に向けた一層柔軟かつ網羅的な自律的観測技術の確立、試験運用等を行うとともに、複合型サイバー攻撃の分析・可視化技術を確立し、フィールド試験による方式の高度化等を行う。
これらにより、2016年以降、新型の分析技術・可視化技術の技術移転を順次進め、社会への実展開を推進する。2020年には、得られた成果に基づき、東京オリンピック・パラリンピック競技大会関連のシステム等に国産の未来型サイバーセキュリティ技術等を導入し、さらに世界展開を図るとともに、誰もが安心・安全にICTを利用できるように我が国の社会基盤の一層の安全確保を図る。（図3-12）
耐災害 ICT 基盤分野

① 耐災害・被害軽減に関連する ICT 基盤技術

災害時の通信確保、被害状況の把握や救助等に資するため、幅広い技術によく急復旧技術の応用を活用する耐震性 ICT 基盤技術の研究開発を進める。これにより、2020 年までに、技術成果の社会実装を順次進めるとともに、2030 年代半ばまでには、東日本大震災クラスの大規模災害発生した場合に、被災地であっても強固な通信の確保が可能となる ICT 基盤を実現する。(図 3-13)

図 3-13 主要な重点研究開発課題【(4)～(1)】
(6) フロンティア研究分野

① 量子 ICT

理論的に極めて高い安全性を有する量子暗号技術に関して、基礎理論の構築からプログラム実装・検証実験等までを行い基盤的技術を確立することで、2020年代からの実用化を図る。さらに、量子暗号技術等を活用した量子情報通信技術について、2020年までに光量子制御技術、量子インターフェース技術等に関する研究開発を進め、量子光ネットワークテストベッドにおける原理実証等を行う。

これらの研究開発成果に基づき、2030年頃から、データセンタやネットワークにおけるノード処理の多機能化、超低損失・省エネ化等による普及を促進し、2050年頃には、究極的に高効率かつ安全な光・量子情報通信基盤の実現を図る。（図3-14）

② 脳情報通信技術

2020年までに、高次脳型情報処理技術、脳計測技術、脳情報統合分析技術等に関する基盤技術を確立する。

これらの成果を踏まえつつ、2020年代前半までに、脳内ネットワークのモデル化による脳内表現の分析基盤技術や高度な脳活動計測技術等を確立するとともに、脳情報に基づく学習支援や新たな市場開拓等が可能となる脳情報分析サービスを実現する。さらに、2030年頃には、ICTによって人間のポテンシャルを引き出すことのできる高次脳機能型情報処理システムを実現することで、高齢者や障がいのある方等が抱える様々な機能的な課題を脳情報通信技術によって優しくサポート・克服し、誰もが不自由なく生活の質を向上させることができる社会を支える基盤技術を実現する。（図3-15）
3.2.3 重点研究開発課題の全体像

次に、重点研究開発課題の全体像について、次のとおり整理した。なお、それぞれの重点研究開発課題の具体的内容については 3.2.4 において後述する。

【図3-15 主要な重点研究開発課題（6）-②】

3.2.3 重点研究開発課題の全体像

次に、重点研究開発課題の全体像について、次のとおり整理した。なお、それぞれの重点研究開発課題の具体的内容については 3.2.4 において後述する。

【図3-15 主要な重点研究開発課題（6）-②】
データ利活用基盤分野
重点研究開発分野
◆ 多種多様な情報に基づき知識・価値を創出し、人に優しく最適な形で、あらゆる人が利活用可能とするための基盤技術
【実用レベルの多言語音声翻訳技術の実現】
音声聴取・対話システムの高度化
【ソーシャルデータ等から知識・価値を創出】
社会知解析技術
【スマートネットワークロボット技術】
空間構造の解析・理解技術
【超臨場感映像技術】

社会セキュリティ分野
重点研究開発分野
◆ 自律的・能動的なサイバーセキュリティ技術の確立等をはじめとするネットワークセキュリティ対策に加え、情報・コンテンツ等に係る幅広い側面からの情報セキュリティ対策のための基盤技術
【サイバーセキュリティ技術】
【耐災害ICT基盤分野】
【新たな領域への拡展】
耐災害ICT基盤分野の創出
【新たな領域への拡張】
耐災害 ICT基盤分野
【社会を支える技術基盤】

未來を
フロンティア研究分野
重点研究開発分野
◆ 各分野に打ち、次世代の技術的ブレイクスルーにつながる先端的な基盤技術
◆ 基盤技術の更なる深化に加えて、先進的な融合領域の開拓、裾野拡大、他分野へのシーズ展開等を図る
【技術的ブレイクスルーの創出】
量子ICT
ナノICT
バイオICT
【新たな領域への拡大】
高周波・THz技術
新規ICTデバイス技術
【社会を支える技術基盤】
電磁波計測基盤技術（時空標準技術）
電磁波計測基盤技術（電磁環境技術）

分野横断的課題
重点研究開発分野
◆ 世界最先端の次世代ICTテストベッド等の構築・展開
世界最先端ICTテストベッド
重点研究開発分野
※ 新たなICT時代に対応した世界最先端のICTテストベッドを構築するとともに、最新の研究成果をテストベッドとして研究機関やユーザ等に開放することで、先進的な研究開発と実証実験を一体的に推進
3.2.4 各重点研究開発課題の概要

各重点研究開発分野における重点研究開発課題等とその概要は次のとおりである。

なお、それぞれの重点研究開発課題ごとに、今後の時間軸に沿って具体的な取組方針を明示しつつ、目指すべき具体的な成果目標（アウトカム）等を含めて整理した工程表は参考資料1のとおりである。

I. センシング＆データ取得基盤分野

(1) センサーネットワーク技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 次世代センサーネットワーク技術（環境融和型ワイヤレス）の研究開発</td>
<td>センシングデータ取得における周波数利用効率・エネルギー効率の更なる向上のため、センサー端末自らが利用環境・応用形態を認識し、最適な通信プロファイルを選択・実行するワイヤレスメッシュネットワーク（環境融和型ワイヤレス）技術を確立する。</td>
</tr>
<tr>
<td>② バッテリー不要なセンサーのネットワーク化に関する研究開発</td>
<td>エネルギーハーベスティングやパッシブデバイスを組み合わせることで、バッテリー不要で半永久的に駆動可能なセンサーをネットワーク化するための無線端末構成技術、多様な無線方式で長期間（数十年間）・広域で利用される端末を柔軟に収容することのできるフレキシブルゲートウェイ技術等を確立する。</td>
</tr>
</tbody>
</table>

(2) リモートセンシング技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 地上レーダー技術の研究開発</td>
<td>ゲリラ豪雨等の突発的な災害の発生予測精度向上に資するため、マルチパラメータ（MP）フェーズドアレイレーダー、地デジ放送波を利用した水蒸気量推定技術、パッシブレーダー等のリモートセンシング技術を確立するとともに、関連信号処理技術の高度化を図る。また、ドップラーライダー等、他のリモートセンシング技術との融合観測によって、災害情報の迅速な提供等に資する新たな知見の開拓を目指す。</td>
</tr>
<tr>
<td>② 航空機搭載合成開口レーダー（SAR）技術の研究開発</td>
<td>地震・火山噴火等の災害発生時に、より詳細な状況把握を可能とするため、現在の航空機搭載 SAR（Pi-SAR2）を超える空間分解能を有する次世代航空機搭載 SAR 技術及び高度解析等の情報抽出技術を確立する。</td>
</tr>
<tr>
<td>③ 衛星搭載レーダー技術の研究開発</td>
<td>地球規模の観測による温暖化・水循環メカニズム等の解明に寄与するため、GPM 衛星搭載降水レーダー及びEarthCARE 衛星搭載雲レーダーに係る観測データ処理アルゴリズムの開発・改良等を行い、高精度な降水・雲観測技術を確立する。</td>
</tr>
<tr>
<td>④ テラヘルツ帯センシング技術の研究開発</td>
<td>これまで観測できなかった上空の中層大気に存在する物質や気温・風等を高精度に観測可能とするため、テラヘルツ帯高感度ヘテロダイナム受信機の開発や広帯域化により、衛星搭載用テラヘルツリルサウンド等、新たな気象・環境センサーの開発に寄与するテラヘルツ帯センシング技術を</td>
</tr>
</tbody>
</table>
確立する。

⑤ 光アクティブセンシング技術の研究開発

大型台風の進路予測精度の向上等に資するため、高出力パルスレーザー等を開発し、上空の三次元観測を実現する衛星搭載ドップラーレーダー等の新たな気象・環境計測センサーの開発に寄与する光センシング技術を確立する。

(3) 非破壊センシング・イメージング技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 非破壊センシングの実用化に向けた研究開発</td>
<td>効率的かつ確実なインフラ維持管理に資するため、維持管理対象物（建造物等）の材質・構造等に基づく最適な非破壊センシング・イメージング技術（周波数帯の選定を含む）を開発するとともに、実証を通じて開発技術の実用化を図る。</td>
</tr>
</tbody>
</table>

(4) 宇宙環境計測技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 電離圏観測・シミュレーションに関する研究開発</td>
<td>航空運用等の電波インフラの安定利用に資するリアルタイムシステムの構築に向けて、電離圏電子密度の鉛直プロファイル自動導出技術等を開発し、大気圏・電離圏統合モデルを用いた予測に係る基盤技術を開発する。</td>
</tr>
<tr>
<td>② 磁気圏観測・シミュレーションに関する研究開発</td>
<td>人工衛星の安定運用に資するリアルタイムシステムの構築に向けて、磁気圏シミュレータの高度化及び衛星観測データによる放射線帯モデルを開発し、観測データを有機的に取り込んだ磁気圏モデルのプロトタイプを開発する。</td>
</tr>
<tr>
<td>③ 太陽・太陽風観測・シミュレーションに関する研究開発</td>
<td>電波観測・太陽風シミュレーションによる高精度早期警報システムの構築に向けて、太陽活動観測データを活用した電波観測システム、衛星観測データを活用した太陽風伝搬モデル・シミュレータ等を開発する。</td>
</tr>
</tbody>
</table>

(5) センサー・ソーシャルデータ取得・解析技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① ソーシャル ICT 情報利活用基盤に関する研究開発</td>
<td>スマートサービスと人との間でデータを共有し地域全体で環境問題等を解決すべく、様々な IoT データを分野横断的に統合・分析する技術、実世界のモノ・コト・知識を解析・予測し行動制御するクラウドロボティクス技術、クラウドを介したデバイスネットワークとソーシャルネットワークの自律連携制御技術等を確立するとともに、コミュニティが中心となってデータを集め集団的に分析するオープンサイエンス基盤技術を確立する。</td>
</tr>
<tr>
<td>② 空間構造解析・理解に関する研究開発</td>
<td>ロボットの目としての機能等を実現するため、画像や映像から特定空間を対象として空間構造を記述し、空間構造から空間意味解析を行うことにより各物体を認識する技術等を確立する。</td>
</tr>
</tbody>
</table>

Ⅱ-1. 統合 ICT 基盤分野（コア系）
（1）最先端 ICT ネットワーク基盤技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 新たな IoT 時代に対応した最先端 ICT ネットワーク基盤技術の研究開発</td>
<td>多種多様な社会システムで用いられる極めて膨大な数の IoT デバイスからの情報を取り上げてリアルタイムで収集して円滑に流通させるとともに、ビッグデータ解析に基づきこれらを最適制御するため、膨大なデータを高効率かつセキュアに伝送し、社会システムのリアルタイムでの制御を可能とする革新的なネットワーク技術（AI 等も活用し、仮想化技術にエッジコンピューティング技術等を組み合わせることで、多数のユーザに対してネットワーク資源・機能をリアルタイムかつ最適に自動提供する技術）を確立する。</td>
</tr>
<tr>
<td>2 データセントリックなネットワーク技術等の研究開発</td>
<td>情報・コンテンツ指向型のネットワーキングやモノ間の情報伝達を支えるネットワーキング等、新たなネットワークアーキテクチャを確立するとともに、下位レイヤまでを含めたネットワークの効率的な資源管理・資源配分、多様な通信環境に対する通信品質向上等を実現する新たな制御技術やネットワークサイエンスを確立する。</td>
</tr>
</tbody>
</table>

（2）フォトニックネットワークシステム技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 フォトニックネットワークシステム基盤技術に関する研究開発</td>
<td>現在の 1000 倍のトラフィック増が想定される 5G 等のユーザサービスを収容する光基幹網等や、さらにその先の大容量化に対応するため、1Pbps 級の交換ノードを有するマルチコアネットワークシステムに対する基盤技術、マルチコア/マルチモードオール光交換技術を確立する。また、マルチコアファイバ用送受信機の小型化等のため、高密度で高精度な送受信技術（パラレルフォトニック）を確立するとともに、さらなる大容量伝送の実現に向けて、世界に先駆けた空間スーパーモード伝送基盤技術を確立する。</td>
</tr>
<tr>
<td>2 光統合ネットワーク実現に向けた研究開発</td>
<td>光統合ネットワークの実現に向けて、400Gbps の再構成可能なスイッチトランスポートネットワーク技術、さらに次世代の 1Tbps 装置の要素技術等を確立する。</td>
</tr>
</tbody>
</table>

（3）衛星通信技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 グローバル衛星通信ネットワーク基盤技術の研究開発</td>
<td>10Gbps 級の地上－衛星間光データ伝送を可能とする衛星搭載機器の開発等、グローバル光衛星通信ネットワークの実現に必要となる基盤技術を確立する。</td>
</tr>
<tr>
<td>2 宇宙・海洋ブロードバンド衛星通信ネットワーク基盤技術の研究開発</td>
<td>100Mbps 級の宇宙・海洋ブロードバンド衛星通信システムを実現するため、次期技術試験衛星のための衛星通信システム及び高機能地球局システムの基盤技術を確立する。</td>
</tr>
</tbody>
</table>

（4）極限環境通信技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 極限環境における通信技術の研究開発</td>
<td>これまでは通信が不可能な極限環境においても円滑な通信を可能とするため、海洋資源の開拓等に資する海中通信、</td>
</tr>
</tbody>
</table>
他惑星の観測映像等の高速伝送に資する深宇宙通信等に係る基盤技術を確立する。

Ⅱ-2. 統合 ICT 基盤分野（アクセス系）

(1) 5G/Beyond5G に向けたモバイルネットワーク技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 無線通信の大幅な大容量・高速化を実現するための研究開発</td>
<td>5G 時代に求められる多様なモバイルサービスやアプリケーションを実現可能とするため、無線通信システムの大幅な大容量化を実現する技術として、分散アンテナ技術、光収容技術、システム間連携技術を、加えて、無線通信速度の大幅な高速化を実現する技術として、低 SHF 帯／高 SHF 帯超多素子アンテナ技術、端末ディスカバリーテクニックを確立する。</td>
</tr>
<tr>
<td>② 協調統合型ワイヤレスの研究開発</td>
<td>単一システムによる高効率伝送の限界を突破するため、異なる複数のシステム間に跨がる協調・統合により、モバイル網の更なる高効率伝送（同一通信量当たりの総消費電力を 1/10 へ低減）を実現する協調統合型ワイヤレスシステムを確立する。</td>
</tr>
<tr>
<td>③ 高信頼ワイヤレス伝送技術の研究開発</td>
<td>無人航空機を含むロボット群等の遠隔制御に適用可能な高信頼ワイヤレス伝送を実現するため、要求される伝送遅延条件を保証する通信技術を確立する。また、多様な環境に適したワイヤレス伝送技術や干渉回避等の周波数共用技術を確立する。</td>
</tr>
<tr>
<td>④ 高度同期型分散ネットワーク技術の研究開発</td>
<td>端末間での時刻同期精度を大幅に向上させるとともに、災害発生時等に必要とされる端末規模（例えば 5000 台以上）を収容するグループ通信を実現するため、低消費電力化が求められる端末に実装可能な、電波を利用した端末間の同期型分散ネットワーク技術を確立する。</td>
</tr>
<tr>
<td>⑤ 光モバイルアクセス及び光コア融合ネットワーク技術の研究開発</td>
<td>消費電力の増大を抑制しつつ、伝送距離×収容ユーザ数を現在比 100 倍以上とするため、超高高速・極低消費電力の光アクセス（固定、バックホール等）に係る基礎技術や、超高速移動通信ネットワーク構成技術等を確立する。</td>
</tr>
<tr>
<td>⑥ アクセス系に係る光基盤技術の研究開発</td>
<td>アクセス系光ファイバにおける受受信機小型化等を実現するため、高密度で高精度な受受信技術（パラレルフォトニクス）を確立する。また、高速移動体に対して高速データ伝送が可能な 100G アクセス技術や、広帯域 RF センシング信号の一括光転送処理を実現する SoF（Sensor on Fiber）技術を確立する。</td>
</tr>
</tbody>
</table>

(2) ユーザの利用環境や要求を認識したネットワーク構築・制御技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① ユーザ利用環境・要求を認識したネットワーク構築・制御技術の研究開発</td>
<td>少子高齢化により労働者人口が減少した場合にも、質・量とともに世界最先端のネットワークインフラの提供に寄与する自動化技術を実現するため、ユーザの利用環境や要求をネットワーク側で認識し、ビッグデータ及び人工知能等を活用したアクセス系ネットワーク資源・機能分配の自動化に資する基盤技術を確立する。</td>
</tr>
</tbody>
</table>
Ⅲ．データ利活用基盤分野

(1) 音声翻訳・対話システムの高度化

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 音声翻訳・対話システムの多言語化、多分野化、高精度化の実現</td>
<td>2020年東京オリンピック・パラリンピック競技大会までに、10言語に関して、旅行、医療、防災を含む生活一般の分野について実用レベルの音声翻訳・対話システムを社会実装するため、多言語化、多分野化、高精度化等に資する翻訳技術・音声技術を開発・確立する。</td>
</tr>
<tr>
<td>② 現場音声認識の精度向上及びクロスリンガル音声対話の実現</td>
<td>音声認識（現在の7語対応から20語へ）、非ネイティブ音声認識、環境音の自動判別等を実現し、現場音声認識の精度向上を図るとともに、多言語・複数人の音声対話システムを目指す。</td>
</tr>
<tr>
<td>③ 長文音声翻訳に対応した自動翻訳技術の実現</td>
<td>同時通訳を実現するため、同一分野の対訳ではない2言語のコーパス利活用、自動翻訳処理及び翻訳の逐次処理に関する基盤技術を確立する。</td>
</tr>
<tr>
<td>④ 文脈を用いた自動翻訳技術の研究開発</td>
<td>自動翻訳の高精度化のため、単語や文に加えて結論性や談話構造等の文脈を利活用することにより、意味に基づく翻訳を実現する基盤技術を確立する。</td>
</tr>
</tbody>
</table>

(2) 社会知解析技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 社会知解析技術の研究開発</td>
<td>Web、科学研究論文、白書等から社会問題等様々な問題を自動検出し、それらの解決策や影響等、関連する情報・仮説を能動的に発見して統合された知識として提供するシステムや、SNS等での問題や出来事をリアルタイムで自動検出・分析し、それらにまつわる議論の推移を要約して提示するシステム等を実現するための基盤技術を確立する。</td>
</tr>
<tr>
<td>② ソーシャル IOT 情報利活用基盤に関する研究開発【再掲】</td>
<td>スマートサービスと人との間でデータを共有し地域全体で環境問題等を解決すべく、様々なIoTデータを分野横断的に統合・分析する技術、実宇宙のモノ・コト・知識を解析・予測し行動制御するクラウドロボティクス技術、クラウドを介したデバイスネットワークとソーシャルネットワークの自律連携制御技術等を確立するとともに、コミュニティが中心となってデータを集め集団的に分析するオープンサイエンス基盤技術を確立する。</td>
</tr>
</tbody>
</table>

(3) スマートネットワーク・クロボット技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① ネットワーククロボット・プラットフォーム技術（スマートロボット技術）の研究開発</td>
<td>ビッグデータ、人工知能、ネットワーク関連技術等との連携により、全てのロボットがネットワークを介して必要な情報共有し、遅延なく高度な動作を実現するネットワーク制御技術を確立するとともに、複数のロボットの相互連携により効率的・効果的に機能を発揮するためのプラットフォーム技術を確立する。</td>
</tr>
</tbody>
</table>
| ② クラウドとロボットの融合による革新的サービスの研究開発 | 様々なIoTデバイスを連携させた生活支援や観光案内等のサービスを実現するため、クラウドにおけるロボットからのデータの大規模な集積と分析、人工知能技術に基づく
ロボットの行動生成、言語・非言語情報を組み合わせたマルチモーダル制御等を可能にするデータ指向型ロボティクス技術を確立する。

③ 人の心に寄り添うコミュニケーションロボットの研究開発

人の動きをセンシングしたり、脳情報から人の感情や潜在意識を把握することにより、スマートフォンやロボットを通じて、人の心に寄り添うコミュニケーションを実現するため、ロボット会話技術、状況認識・理解・推論・再現技術、感性データマイニング・伝達技術、感情生成・表現モデル等の技術を確立する。

(4) 空間構造の解析・理解技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 空間構造解析・理解に関する研究開発【再掲】</td>
<td>ロボットの目としての機能等を実現するため、画像や映像から特定空間を対象として空間構造を記述し、空間構造から空間意味解析を行うことにより各物体を認識する技術等を確立する。</td>
</tr>
</tbody>
</table>

(5) 超臨場感映像技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 空間情報伝送再現システムに関する研究開発</td>
<td>位相・振幅を制御するデジタル方式のホログラム技術、ホログラムのデジタルプリント技術、プロジェクション用スクリーン技術等を確立する。</td>
</tr>
<tr>
<td>② 超臨場感映像の超低遅延処理、圧縮・送信等に関する基盤技術の確立</td>
<td>100Gbps 超の伝送レートが必要な超臨場映像を、光ファイバによる超低遅延でのルーティング、聴覚・視覚出力、信号処理することが可能な SDI（Software Defined Infrastructure）技術を確立する。また、裸眼立体映像の圧縮等に関する基盤技術を確立する。</td>
</tr>
<tr>
<td>③ 超高精細度映像の高効率伝送技術に関する研究開発</td>
<td>超高精細度テレビジョン（UHDTV）放送の本格展開に向けて、地上波等の限られた帯域において、超高精細度映像を高効率かつ効果的に伝送するための映像圧縮技術や伝送技術等を確立する。</td>
</tr>
</tbody>
</table>

IV. 情報セキュリティ分野

(1) サイバーセキュリティ技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 未来型サイバーセキュリティ技術の研究開発</td>
<td>国内のセキュリティ対策を強化するため、能動的サイバー攻撃対策の構築、複合型サイバーセキュリティ攻撃分析・可視化技術を確立する。また、2020年東京オリンピック・パラリンピック競技大会関連のシステム等に当該技術を導入しセキュリティ確保に貢献するとともに、セキュリティ自給率向上・国産技術の国際展開を図る。</td>
</tr>
<tr>
<td>② セキュリティ知識ベースを用いた自動対策技術に関する研究開発</td>
<td>実利に基づく脆弱性情報やサイバー攻撃情報を効率的に蓄積する知識データベースを確立することで、脆弱性管理や IT資産管理、初動対応等、セキュリティ対策業務の一部の自動化を促進する能動的なセキュリティ対策技術を確立する。</td>
</tr>
</tbody>
</table>
暗号技術を活用した情報セキュリティ技術の研究開発

パーソナルデータの利活用を促進するための暗号技術を活用したプライバシー保護技術や、新たな社会ニーズに対応した機能を実現する機能性暗号技術を確立する。加えて、電子政府システムの調達等で利用する暗号や、今後の利用が想定される新たな暗号技術の安全性評価を行う。

IoT 社会に対応したセキュリティ技術の研究開発

IoT 社会の本格展開によって普及が想定される車やウェアラブル機器等の M2M システムへの脅威に対して、脅威分析・リスク評価を行った上で、端末の処理能力やライフサイクル等、IoT の特徴を踏まえたサイバーセキュリティ技術を確立する。

Ⅴ. 耐災害 ICT 基盤分野

(1) 耐災害・被験軽減に関連する ICT 基盤技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 災害に強い光ネットワーク技術の研究開発</td>
<td>大規模災害発生後、残存するメトロコアを構成する光ファイバ網に集中する通信トラヒックの負荷分散を図るため、光信号の波長や時間チャネルを動的かつ効率的に制御する技術を確立する。また、有線ネットワークが途絶した地域において、通信基盤を迅速かつ柔軟に再構成するため、大容量光ネットワーク暫定復旧基盤技術を確立する。</td>
</tr>
<tr>
<td>② しなやかなワイヤレスネットワーク技術の研究開発</td>
<td>大規模災害時に発生する通信回線障害やトラヒックの急増等、通信環境の大きな変化に柔軟に対応するため、軒轅（通信混雑）を回避しつつ、通信の接続の確保やサービスの継続を可能とする無線ネットワーク構成・管理技術や、小型無人機に搭載した中継器による高信頼ワイヤレス伝送技術、災害時の衛星通信の利用等、災害現場のニーズに即応して早期の運用を可能とする機動的なネットワーク技術を確立する。</td>
</tr>
<tr>
<td>③ リアルタイム社会知解析技術の研究開発</td>
<td>防災や減災に、SNS 情報やセンサ情報が統合された総合的なリアルタイムデータ、即ち社会知（ネット上において一般国民から専門家まで多様な主体が発信する知識、情報の総称）を活用するため、災害時における被災状況から、ネット上の複雑な議論を基に、リアルタイムに解析・整理する技術を確立する。</td>
</tr>
<tr>
<td>④ 災害の状況把握や被害予測等に活用可能なリモートセンシング技術の研究開発【再掲】</td>
<td>大規模災害発生時における広範な被害状況の迅速かつ詳細な把握に資する次世代航空機搭載 SAR 技術や、ゲリラ豪雨等の突発的な災害の発生予測精度の向上に資するマルチパラメータ（MP）フェーズドアレイレーダー等をはじめとするリモートセンシング技術を確立する。</td>
</tr>
</tbody>
</table>
VI. フロンティア研究分野

(1) 量子 ICT

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>量子光ネットワーク技術の研究開発</td>
<td>極めて安全かつ高効率な量子光ネットワークの実現に向けて、QKD（Quantum Key Distribution）プラットフォーム技術及び量子光伝送技術を確立するとともに、量子光ネットワークテストベッドにおいて新世代 QKD 技術や物理レイヤ暗号方式等を実証する。</td>
</tr>
<tr>
<td>量子ノード技術の研究開発</td>
<td>データセンターネットワークにおけるノード処理の多機能化や超低損失・省エネ化等のため、光量子制御技術、量子インターフェース技術及び量子計測標準技術を開発し、光量子回路の小型・集積化の基礎技術を確立する。これらの技術を量子光ネットワークテストベッドにおいて実証する。</td>
</tr>
</tbody>
</table>

(2) ナノ ICT

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>ナノコンポジット材料・素子技術の研究開発</td>
<td>様々な環境下で運用される移動体に搭載可能な、超高速かつ高効率の電子-光(E0)変換技術等の実用化等に向けて、デバイスの動作信頼性及び性能を飛躍的に向上させるため、有機/無機ハイブリッド基盤技術を原子・分子レベルの精度で制御・構築するための基盤技術を確立する。</td>
</tr>
<tr>
<td>超伝導単一光子検出器(SSPD)、超伝導省電力ロジックデバイスの研究開発</td>
<td>SSPD の量子暗号通信、宇宙通信、バイオ・医療等への幅広い応用展開を目指し、広波長帯域化及び多ピクセル化等の高速・高機能化のための基盤技術を確立する。また、新たな極限的低エネルギー情報処理技術の創出を目指し、電子の位相制御に基づく新しい論理デバイス及び超省電力モリを実現するための基盤技術を確立する。</td>
</tr>
</tbody>
</table>

(3) バイオ ICT

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>バイオ情報素子構成技術の研究開発</td>
<td>生体の感覚に則したセンシングを実現するために、情報検出部を生体材料そのものによって構成するための基盤技術を確立する。また、情報検出部として適切な生体材料の検討を行うとともに、その機能の拡張・最適化を行うための天然材料の改変技術、材料を組合せて機能システムを構成する技術等を確立する。</td>
</tr>
<tr>
<td>バイオ情報抽出技術の研究開発</td>
<td>生体と同様のメカニズムで、入力情報から情報源のカテゴリーを抽出する技術を実現するために、機械学習等のデータ解析手法を活用し、生体材料より得られた信号から情報カテゴリを抽出する技術を確立する。また、生体の細胞ネットワークを対象として、実際に行われている情報の蓄積・統合・認識の様式を学び取り、生体に倣って情報処理を行うための基盤技術を確立する。</td>
</tr>
<tr>
<td>バイオシグナル収集技術の研究開発</td>
<td>生体材料が示す応答を詳細に計測し、利活用可能な形で取り出すため生体信号収集技術を確立する。また、生体材料が示す応答を、その性質に応じて抽出して電磁的信号に</td>
</tr>
</tbody>
</table>
変換する技術や、生体材料のシステムとしての動態を計測するための基盤技術を確立する。

(4) 脳情報通信技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 高次脳機能情報処理システムの研究開発</td>
<td>超高齢化社会に対応したICT基盤を整備するため、人間の脳内ダイナミックネットワークモデルの解析を通じて、日常生活での人間の理解/認識を捉え、高齢者・障がい者のみならずスポーツ選手等を含めた人間の運動能力・行動支援等を実現する脳型情報処理アーキテクチャ技術、快適さ・好み等の抽象的な評価軸による評価技術及び身体的・感覚的・社会的なヒューマンアシスト技術の基盤を確立する。</td>
</tr>
<tr>
<td>② 脳計測技術の研究開発</td>
<td>脳活動計測の高度化と日常的な脳機能モニタリングを実現する基盤技術を確立するため、脳活動の新たな計測手法を開発して精度の向上を図るとともに、大型設備による制限された実験環境での高精度な計測技術や、実生活における軽量小型の計測装置を開発する。</td>
</tr>
<tr>
<td>③ 脳情報統合分析技術の研究開発</td>
<td>マルチモーダルな計測データによる分析に基づき、脳情報を実生活で効率的に精度良く利用するため、多様な計測機器によるデータの統合、共有、分析技術等の基盤技術を確立する。また、複数の機能に対して蓄積された脳活動データを活用し、複数の脳機能を統合した総合的な脳活動を多角的に分析するための基盤技術を確立する。</td>
</tr>
</tbody>
</table>

(5) 高周波・THz技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 超高周波無線通信基盤技術の研究開発</td>
<td>ミリ波・テラヘルツ波向け化合物半導体高速電子デバイス技術の高度化を図るとともに、シリコン半導体デバイス、アンテナ技術、実装・集積化技術を組み合わせて、275GHz以上を利用した無線通信システムの実用化に向けた基盤技術を確立する。</td>
</tr>
<tr>
<td>② 超高周波光源技術の研究開発</td>
<td>高精度局発光モジュールや高精度テラヘルツ計測システムの実現に向けて、テラヘルツ帯大容量通信に必要な狭線幅・高安定な光源に関する基盤技術を確立する。</td>
</tr>
<tr>
<td>③ テラヘルツ帯における無線通信・計測技術等の研究開発</td>
<td>テラヘルツ帯の実利用に向けて、テラヘルツ帯無線通信装置や試験装置、スペクトラム・電力計測システム、高感度センサー技術、非破壊センシング技術等を確立する。</td>
</tr>
</tbody>
</table>

(6) 電磁波計測基盤技術（時空標準技術）

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 標準時及び周波数標準の安定的な発生・供給のための技術開発</td>
<td>日本標準時の小金井局及び神戸局の運用による分散制御システムの実用化、時刻・周波数供給サービス、周波数校正サービス・国際相互承認活動、衛星を用いた国際時刻・周波数比較、アジア・太平洋地域における国際比較校正拠点としての取組を実施し、必要となる関連技術を確立する。</td>
</tr>
</tbody>
</table>
| ② 超高精度周波数標準の実現に関する技術開発 | 秒の再定義に適応可能な標準を実現するため、実運用に耐える堅実な超高精度周波数標準を構築するとともに、次世代光基準の基盤技術を確立する。また、ACES (Atomic
Clock Ensemble in Space) 地上局運用、超高精度周波数比較・伝送技術を開発し、光標準の国際リンクに資する基盤技術を確立する。

③ 周波数標準の新たな利用活用領域拡大に資する技術開発

国家標準にトレーサブルな THz 標準技術を確立する。また、広域時刻同期技術を開発し、サブマイクロ秒同期が可能な通信インフラ実現に向けた基盤技術を確立する。

(7) 電磁波計測基盤技術（電磁環境技術）

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 先端 EMC 計測技術の研究開発</td>
<td>広帯域電磁波の精密測定技術、300GHz までの較正技術等を確立する。また、スマートグリッドに関する国際規格の整備に貢献するため、スマートコミュニティ/エネルギー管理システムにおける電磁干渉評価技術を確立する。</td>
</tr>
<tr>
<td>② 生体 EMC 技術の研究開発</td>
<td>THz 帯までの電波浸透評価技術を研究開発し、分子レベルから組織、全身までのマルチスケール浸透評価技術を確立する。また、5G システム等で利用が想定されている 6GHz 以上の周波数帯における電波防護指針への適合性評価技術を開発する。</td>
</tr>
</tbody>
</table>

(8) 新規 ICT デバイス技術

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 酸化物、窒化物半導体電子デバイスに関する研究開発</td>
<td>酸化ガリウムデバイス基盤技術の電気・自動車メーカー等への技術移転を目指し、酸化ガリウムのパワーデバイスや無線通信デバイス等に関する技術を確立する。</td>
</tr>
<tr>
<td>② 深紫外光 ICT デバイスに関する研究開発</td>
<td>安全安心でクリーンな生活環境、持続可能な社会の実現に資するため、高出力深紫外小型光源や、現在未踏の深紫外 ICT デバイスを世界最先端のナノ光構造デバイス技術を駆使することで実現する基盤技術を確立する。</td>
</tr>
<tr>
<td>③ バイオミメティックセンサーネットワークに関する材料・素子技術の研究開発</td>
<td>エネルギーハーベスティング等の多様な給電により駆動可能なバッテリー不要なセンサーや、新たなセンサーデバイスを活用した革新的センサーネットワーク技術の実現に向けて、生物機構を模倣した低環境負荷の材料・素子等に係る基盤技術を確立する。</td>
</tr>
</tbody>
</table>

VII. 分野横断的な重点的取組

(1) 世界最先端 ICT テストベッド

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 世界最先端の次世代ICT テストベッド等の構築・展開</td>
<td>ネットワーク仮想化技術、光統合ネットワーク技術、ビッグデータ等的情報基盤等を導入し、新たな IoT（Internet of Things）時代に対応した世界最先端の ICT テストベッドを構築するとともに、最新の研究成果をテストベッドとして研究機関やユーザ等に開放することで、先進的な研究開発と実証実験を一体的に推進する。</td>
</tr>
</tbody>
</table>
第4章 研究開発等の推進方策

我が国が、世界最先端の「社会全体の ICT 化」（「ソーシャル ICT 革命」）の推進を図り、新たな IoT 時代を主導していくためには、第3章で述べた重点研究開発課題に関する研究開発を着実に推進し、イノベーション創出を加速することが重要である。

今後のソーシャル ICT 革命の推進に向けた研究開発等の推進に当たっては、次のような取組を検討することが適当である。なお、具体的な施策の推進方策等、引き続き議論すべき事項については、本中間答申の取りまとめ後において議論を深めていく予定である。

4.1 研究開発、成果展開の推進について

ICT 分野における我が国の国際競争力を高め、キャッチアップから世界のフロンティアで競うため、最先端の ICT の研究成果について、異分野の産業との幅広い連携により課題解決、新たな価値創造を図り、成果展開、社会実装を進めていくことが必要である。

更に、今後の激化する国際競争において、このような課題解決、新たな価値創造により我が国の国際競争力を強化していく観点からも、先端的な研究開発により、Game-Change が可能な、Disruptive な技術の創出等を図っていくことが重要である。

このような、研究開発、成果展開の推進に当たって、次のような取り組みを進めていくことが必要である。

4.1.1 国・NICT による基礎的・基盤的研究所開発の推進

NICT は、ICT を専門とする唯一の公的研究所として、国立研究開発法人制度の下で、国の政策と連携し、中長期的視点に立った世界最先端の基礎的・基盤的な研究開発に取り組むことが適当である。特に、平成28年度からの NICT の次期中長期目標期間においては、ソーシャル ICT 革命の推進に向け、第3章で示した重点研究開発課題に関する研究開発を他機関との連携も図りながら先導していくべきである。

その際、研究開発プロジェクトでは確実な成果創出を求めるだけでなく、チャレンジングなテーマへの取組を強化するため、必達目標と挑戦目標に分けた目標管理等の可能性も検討すべきである。

4.1.2 研究開発の成果展開・社会実装に向けた取り組みの強化

ソーシャル ICT 革命の推進により、最先端の ICT を活用した新たな価値の創造、国際競争力の更なる強化を図っていくためには、例えば、超省電力センサーネットワーク等の NICT の研究開発成果について、他の産業との協業の推進によりサービスの創出等を促進していく必要がある。

このため、様々な実社会の課題に対して多様な業界・業種との連携・協調を行うための場として、研究開発成果を実装し、ユーザにも使いやすい形でオープンに開放する試験環境として「テストベッド」を構築し、それを多様な業種のユーザ等も利用してもらい、社会的受容性等の検証も含めた社会実証を推進
することが必要である。社会実証に当たっては、プライバシー等のような社会的な課題、システム設計等について、技術者と社会科学者が協力してグランドデザインを描いていくことが必要であり、更にはICTにより解決できる社会的課題やICTにより生まれる新たな価値等について設計・評価できる文理融合型の新たな学問領域の創生について検討することが適当である。

さらに、ソーシャルICT革命の推進に向けた研究開発においては、その社会実証の結果を踏まえて、研究開発のターティットを適宜見直す等、研究開発と実証実験（技術実証と社会実証）を車の両輪として相互にフィードバックをかけて推進することが必要である。

また、研究開発の段階から社会実装が進むように、また、新しい研究を創出し続けるように、研究開発の成果指標については論文数や特許数に加えてインセンティブ付与が可能な適切な仕組みを検討すべきである。また、社会実証については、どういう指標を用いて社会的受容性等を評価するか等について検討すべきである。

2020年東京オリンピック・パラリンピック競技大会は、世界最先端のICTについてシェーケースとして世界に発信する絶好の機会であり、また、将来の成熟社会を見据えた社会基盤（レガシー）として残すものが期待されており、そのような機会を捉えて、最先端のICTの社会実装を推進すべきである。

4.2 テストベッドの構築・活用について

民間企業の研究開発の中心が基礎研究から応用・開発研究にシフトする中で、ICT分野における諸外国との厳しい国際競争を勝ち抜き、世界をリードするためには、研究開発から社会実装までの加速化を図ることが重要であり、従来のリニア型の研究開発ではなく、最先端の技術については、基礎研究段階の研究開発とともに市場投入を目指した技術実証に一体的に取り組み、一気に実用化を目指すことが必要な場合があると考えられる。

また、「ソーシャルICT革命」の推進を図るためには、社会のあらゆる分野に最先端のICTの社会実装を進めていくことが必要であり、研究開発成果について、異分野の産業と広範な協業を推進するために、様々な業界、ユーザも含めた幅広いプレーヤーが参加可能な社会実証が重要である。

今後、研究開発成果について多様な研究機関等に利用してもらい、技術的な達成レベルや効果等の技術検証を行う場、あるいは、研究開発成果について一般での実用化の前段階でユーザ等にも利用してもらい、社会実証を行う場としてのテストベッドの一層の活用を図っていくことが重要である。実証実験とテストベッドの関係について、図4-1に取りまとめる。また、テストベッドの利用については、その利用条件を緩和する等して、最先端のICTシェーケースとして、研究開発成果の広範なユーザ獲得を推進すべきである。

以上を踏まえ、具体的な取組としては、次のような取り組みが挙げられる。
図4-1 研究開発と実証実験の一体的推進について

4.2.1 次世代ICTテストベッドによる最先端技術の「橋渡し」の推進
次世代光技術の多様な最先端の研究開発成果を実装し、オープンに開放する試験環境である「テストベッド」（次世代ICTテストベッド）を構築し、それを多様な外部研究機関等に試行的に利用してもらい、技術検証やその関連の製品・サービス等の開発を促進する。これにより、先端的な研究開発と技術実証を一体的に推進可能となり、最先端の技術を早く「橋渡し」することにより、研究開発成果の社会実装を加速化する。
テストベッドの開放に当たっては、それを利用した製品・サービスの開発を行うユーザ企業が、オープンな場での協業とクローズな場での開発の両方を実施できる環境の構築に配慮すべきである。

4.2.2 ソーシャルICTテストベッドによる社会実証の推進
ソーシャルICT革命を推進するためには、超省電力センサネットワークのようなNICTの研究開発成果を、他の産業との協業の推進によりサービスの創出等を促進していく必要がある。
このため、研究開発成果を実装し、ユーザにも使いやすい形でオープンに開放する試験環境として「テストベッド」（ソーシャルICTテストベッド）構築し、アイディアを活用して様々なアイデアを融合させる、多様な業界・業種との連携環境を提供するとともに、社会的受容性等の検証を含
めた社会実証を推進することが必要である。また、Living Lab のように、研究開発成果を実装した機器をユーザ等と共同実証ができる社会環境に持ち込んで検証を行う社会実証の推進についても検討すべきである。

4.3 産学官連携の推進について
「ソーシャル ICT 革命」の推進に向けた研究開発やその成果展開等の推進に当たっては、ICT分野のみならず、様々な分野・業種との連携・協調が必要である。

また、国際的な厳しい技術開発競争に対応するため、技術力の優れたベンチャー企業等も含め、産学官の連携によるオープンイノベーションの推進を支援するとともに、NICTにおいても研究開発成果の最大化のためにオープンイノベーションの推進に取り組むことが必要である。

以上を踏まえ、具体的な取組としては、次のような取り組みが挙げられる。

4.3.1 産学官連携による IoT推進体制の構築
ソーシャル ICT革命の推進を図るため、4.2で述べたテストベッド等を核として、NICTをハブとした最先端の研究開発と研究開発成果の社会実装を推進するための産学官連携推進体制を構築することが適当である。（図4-2）

したがって、膨大な IoTからの情報をリアルタイムに収集し、人工知能によるビッグデータ解析等により、自律型走行車、無人飛行型ロボットも含めた様々な用途のICTシステムの高精度かつセキュアな制御を可能とする共通的なICTプラットフォーム技術等の確立や、広範な先進的社会実証を総合的に推進するため、社会全体のICT化を目指した産学官連携によるIoT推進体制として、総務省はNICTと連携して、民間企業、大学、標準化団体等から構成される「スマートIoT推進協議会（仮称）」の創設を検討する。

また、外部の研究リソースを有効活用し、NICT自らの研究開発と一体的に取り組むことで効率化が図られるプロジェクトについては委託研究を通じた産学との連携推進を図るとともに、既に脳情報通信、耐災害ICT分野における研究開発拠点が設置されている大阪大学、東北大学との一層の連携強化、大学との知の連携が期待できる分野については大学との包括協定による連携強化を図る。

光ネットワーク技術や多言語翻訳技術のように、民間企業等が保有する強い要素技術を集約させ、国やNICTも研究開発への参加・支援を行うことで社会実装や国際標準化をリードするような取組を強化する必要がある。

さらに、従来から産学官連携拠点として機能してきた地域や機関のポテンシャルを活かし、今後一層重要となるワイヤレス、IoT、人工知能、ロボット等について、産学官による効率的・効果的な研究開発等の推進環境の構築を検討することが適当である。
4.3.2 オープンイノベーションを促進する取組の推進

ICT分野の競争的研究資金である戦略的情報通信研究開発推進事業（SCOPE）において、ベンチャー企業の参加促進等のオープンイノベーションを促進する方策について検討する。

SCOPE、ICTイノベーション創出チャレンジプログラム（I-Challenge!）において、地方の有望な案件の発掘、ベンチャーキャピタルとのマッチング、他府省も含めた直轄研究やファンドへの応募支援等を行うための地域イノベーション創出アドバイザーの導入を検討する。

4.4 国際標準化の推進について

近年、フォーラム等における標準化活動やオープンソースに関する取組が活発化しており、IoTに関しては世界的に多数のフォーラムが設立されるなど、標準化活動が多様化・複雑化している。国内の標準化関係者、個々ではこのような標準化活動の状況を網羅的に把握し難い状況である。

最近の4G等のICTシステムでは、標準に組み込まれる特許（標準必須特許）の数が膨大になっていること等から、標準に自社の技術を入れ込むだけでは、企業の収益や競争力の強みに結びつかなくなっている。また、この標準必須特許の取扱い（IPR政策）を巡る係争が生じており、ITU等においてIPRポリシーについて議論が行われている。

このため、産学官の関係者が、国際標準化動向の状況を共有しつつ、互いの強みを活かしながら役割分担や連携を図って取り組むことが一層重要となっている。
4.4.1 本格的なIoT時代に向けて多様化・複雑化する国際標準化活動への対応
多様化・複雑化する標準化活動に対し、我が国が一体となって一層効果的・効率的に推進していくためには、関係者が協力して情報の共有や対応方針に係る戦略の検討を行う必要である。そのため、関係者がそれぞれの強みを活かしながら、互いのリソースを最大限活用して国内の標準化機関や各種フォーラム等において連携の強化を図ることが適当である。

4.4.2 NICTにおける国際標準化への取組の一層の強化
NICT は、国際標準化の場において、議長や主要課題のラボータ等の役職を務める等、標準化活動を主導するとともに、研究成果の社会実装を意識して、外部の専門家を含めたタスクフォースを構成して産学官の国際標準化活動で中心的な役割を果たす等、関係者との連携や調整等に一層のリーダーシップの発揮に努めることが重要である。
また、社会的ニーズを的確に把握しつつ、新たな標準化に向けて適切な技術シーズを発掘し、継続的に標準化活動を実施する。
100Gbps光伝送方式、Wi-SUNやLagopus等は、我が国の強みが活かされ、産学官が連携して、国際標準化、社会実装が進んでいる成功事例であり、NICTは、かかる成功事例を参考としつつ、産学官と連携した国際標準化において中心的な役割を果たすことが期待される。

4.4.3 研究開発と国際標準化の一体的推進
IoT時代においては、Wi-SUNのように先端的な研究成果について多様な業界・業種と連携しつつ、テストベットで検証しながら国際標準化を推進する等、研究開発と国際標準化の一体的推進が必要である。
国際標準化では、競争領域と協調領域を明確にして、コア技術はブラックボックス化して日本企業が押さえる等、知財を含めたオープン・クローズド戦略を基に対応すべきである。また、研究開発の推進においても、競争領域と協調領域の双方を念頭に置きつつ推進する必要がある。
スピード感を重視したデファクト化や、オープンソースの活用も含めた標準化戦略を踏まえつつ、国際標準化を推進する。

4.4.4 国際標準化に係る人材育成の推進
国際競争が激化する中、各社の標準化エキスパートの経験や強み等を最大限活用していくため、関係者が連携・協力して人材育成を推進することが適当である。
NICTにおいても、研究者の国際標準化活動に関して、自らの研究分野について議長、ラボータ等の役職の就任を勧奨し、活動成果について引き続き適切に評価するとともに、産学官と連携した標準化活動において中心的な役割を担う国際標準化エキスパートを育成・確保する必要がある。
4.5 国際連携の推進について

我が国の国際共同研究は欧米に比べると低調であるが、世界の頭脳を日本に集め海外の知的資源を内部化するためには、グローバルなイノベーションハブとなることが重要であり、国際共同研究等を強化することが必要である。

開発途上国においては大学の教授が産業界に影響力を持っている場合があり、国際的な研究協力を通じて、国際標準化や日本企業の海外展開等での協力に向けた信頼関係を構築することが重要である。

日本企業のインフラ輸出等について政府を挙げて支援しているが、研究開発成果についても積極的に国際展開を図り、将来の日本企業のインフラ輸出等につなげていくことが重要である。

このため、国際連携の推進に当たっては、次のような取組を進めていくことが必要である。

4.5.1 国際共同研究の推進

海外研究機関等との間で、国際的な研究協力の推進、研究成果の国際展開、研究者の国際交流を有機的に連携させて推進する。

特に東南アジアにおいては、NICTが東南アジアと培ってきた研究連携を基にして、域内研究機関・大学等が参加するバーチャルな研究連携組織を設置しており、域内の研究連携においてリーダーシップを発揮する。

また、総務省及びNICTは、我が国がグローバルな研究開発拠点となることを目指して、欧州、米国等において世界的な研究開発能力を持つ機関及び研究者との共同研究を推進する。

4.5.2 研究開発成果の国際展開の推進

NICTの海外拠点を活用し、従来の相互研究協力から、研究成果の積極的なマッチングや日本企業の海外展開支援も視野に入れつつ戦略的な研究協力推進する。

研究成果の国際展開では、機器の導入だけではなく、利活用方法やセキュリティ対策（教育、海外研修生の受け入れも含む）も含めた国際展開を推進する。

技術分野によっては、研究開発段階から始め、技術実証、標準化等の多段階でWin-Winな国際連携を図りながら推進する。

4.6 人材育成の推進について

我が国ではICT分野の博士課程取得者が減少している一方で、ポスドクの雇用の問題は依然として存在しており、民間企業の求める研究人材との間でミスマッチが生じている懸念がある。

博士課程のみならずICT分野の研究人材が、多様な経験を積んで民間企業の求める人材の“質”を満たせるように人材の流動化に係る好循環の仕組み等を構築することが重要である。

一方で、ICT分野の人材については、基礎研究にベースを置きつつ、大きなアーキテクチャや次のシステムのデザインができるような、プログラミング等とは異なるレイヤの議論ができる高度な人材、技術的に高度な知識を持ちプロジェクトのリーダを務めることが可能な研究者など構造的に不足しているような
人材がいるのではないか、一般的な研究人材の不足とは異なる ICT 産業に特有の深刻な人材問題が起きているのではないかとの問題点の指摘がある。この人材育成については、更に分析が必要であるため、本中間答申の取りまとめ後に議論を深めていくこととする。

4.6.1 研究人材等の育成の推進

競争的資金等を活用し、将来の ICT 分野の研究者の育成に資するような取組（委託研究の採択評価における学生の参加、人材育成への寄与の加点等）を推進する。また、SCOPEを通じた今後不足が予想されるデータサイエンティストの育成支援について検証し、必要に応じて見直し等の検討を行う。

連携大学院協定による NICT 研究員の大学院での研究・教育活動への従事、海外も含めた研究者の受け入れ等を推進する。

起業家万博、起業家甲子園、I-Challenge!の連動によるベンチャー人材の発掘・育成、産学官のフォーラム等の場を通じた若手人材の発掘・育成を強化する必要がある。

ICT 分野において我が国発の破壊的イノベーションの創出を目指した独創的な人材の研究開発を支援し、その育成を図るため、「異能(inno)vation」プログラムを推進、地域への展開や独創的な人材の支援を希望する民間企業等とのマッチング強化を推進することが適当である。

今後、2020 年東京オリンピック・パラリンピック競技大会に向けて不足が懸念されているセキュリティ人材についても人材育成の取組を検討する。

4.6.2 研究人材等の流動化

NICT はクロスアポイントメント制の活用による研究人材の流動化を推進するとともに、さらに研究支援人材の充実も図るとともに、海外経験に対して、組織として一定の評価の付与や、インセンティブとして適切なキャリアパスの設定を検討することが適当である。
重点研究開発課題に関する工程表

センシング & データ取得基盤分野

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) センサーネットワーク技術</td>
<td>センシングデータ取得における周波数利用効率・エネルギー効率の更なる向上のため、センサー端末自らが利用環境・応用形態を認識し、最適な通信プロファイルを選択・実行するワイヤレスメッシュネットワーク（環境融和型ワイヤレス）技術を確立する。</td>
</tr>
<tr>
<td>(2) バッテリー不要のセンサーのネットワーク化に関する研究開発</td>
<td>エネルギーハーベスティングやパッシブデバイスを組み合わせることで、バッテリー不要で半永久的に駆動可能なセンサーをネットワーク化するための無線端末構成技術、多様な無線方式で長期期間（数十年間）・広域で利用される端末を柔軟に収容することのできるフレキシブルゲートウェイ技術等を確立する。</td>
</tr>
</tbody>
</table>

リモートセンシング技術

<p>| ① 地上レーダ技術の研究開発 | ゲリラ豪雨等の突発的な災害の発生予測精度向上に資するため、およびパラメータ（MP）フェーズドアレイレーダ、地デジ放送波を利用した水蒸気量推定技術、パッシブレーダ等のリモートセンシング技術を確立するとともに、関連信号処理技術の高度化を図る。また、ドップラーレーダ等、他のリモートセンシング技術との融合観測によって、災害情報の迅速な提供等に資する新たな観察技術の開発を目指す。 |
| ② 航空機搭載合成開口レーダ（SAR）技術の研究開発 | 地震・火山噴火等の災害発生時に、より詳細な状況把握を可能とするため、現在の航空機搭載SAR（Pi-SAR2）を超える空間分解能を有する次世代航空機搭載SAR技術及び高度解析等の情報抽出技術を確立する。 |
| ③ 衛星搭載レーダ技術の研究開発 | 地球規模の観測による温暖化・水循環メカニズムの解明に寄与するため、GPM衛星搭載降水レーダ及びEarthCARE衛星搭載雲レーダに係る観測データ処理アルゴリズムの開発・改良等を行い、高精度な降水・雲観測技術を確立する。 |
| ④ テラヘルツ帯センシング技術の研究開発 | これまで観測できなかった上空の大気状態を観測可能とするため、テラヘルツ帯高感度・高分解能等の観測機の開発や高精度化により、テラヘルツ帯センサ等の新たな観測技術の開発に寄与するテラヘルツ帯センシング技術を確立する。 |
| ⑤ 光アクティブセンシング技術の研究開発 | 大型台風の進路予測精度の向上等に資するため、高出力パルスレーザ等を開発し、上空の三次元風観測を実現する衛星搭載ドップラーレーダー等の新たな観測技術の開発に寄与する光アクティブセンシング技術を確立する。 |</p>
<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 非破壊センシングの実用化に向けた研究開発</td>
<td>効率的かつ確実なインフラ維持管理に資するため、維持管理対象物（建造物等）の材質・構造等に基づく最適な非破壊センシング・イメージング技術（周波数帯の選定を含む）を開発するとともに、実証を通じて開発技術の実用化を図る。</td>
</tr>
<tr>
<td>② 電離圏観測・シミュレーションに関する研究開発</td>
<td>航空運用等の電波インフラの安定利用に資するリアルタイムシステムの構築に向けて、電離圏電子密度の鉛直プロファイル自動導出技術等を開発し、大気圏・電離圏統合モデルを用いた予測に係る基盤技術を開発する。</td>
</tr>
<tr>
<td>③ 太陽・太陽風観測・シミュレーションに関する研究開発</td>
<td>電波観測・太陽風シミュレーションによる高精度早期警報システムの構築に向けて、太陽活動モニタリングに資する電波観測システム、衛星観測データを活用した太陽風伝播モデル・シミュレータ等を開発する。</td>
</tr>
<tr>
<td>① ソーシャルICT情報利用基盤に関する研究開発</td>
<td>スマートサービスと人との間でデータを共有し地域全体で環境問題等を解決すべく、様々なIoTデータを分野横断的に統合・分析する技術、実世界のモノ・コト・知識を解析・予測し行動制御するクラウドロボティクス技術、クラウドを介したデバイスネットワークとソーシャルネットワークの自律連携制御技術を確立するとともに、コミュニティが中心となってデータを集め集団的に分析するオープンサイエンス基盤技術を確立する。</td>
</tr>
<tr>
<td>① 地域エアネットワーク（RAN）用環境融和型プロファイル技術の研究開発</td>
<td>地域利用を含む基礎検討から、実証装置整備・実証試験を経て技術・標準化後、認証試験を実施し、2020年前半までに商用技術として市場需要を開拓。</td>
</tr>
</tbody>
</table>

【センシング & データ取得基盤分野】

(1) センサーネットワーク技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>スマートユーティリティネットワーク（SUN）用環境融和型プロファイル技術の研究開発</td>
<td>装置実証・認証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>市場需要調査</td>
<td>基礎検討</td>
<td>評価装置整備・実証試験</td>
<td>認証試験</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>伝搬特性を含む基礎検討</td>
<td>技術仕様検討</td>
<td>評価装置整備・実証試験</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUN・RAN連携技術による高効率メッシュネットワーク技術研究開発</td>
<td>装置実証・仕様策定</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>市場需要調査</td>
<td>基礎検討</td>
<td>評価装置整備・実証試験</td>
<td>標準化への寄与・認証試験</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>伝搬特性を含む基礎検討</td>
<td>技術仕様検討</td>
<td>評価装置整備・実証試験</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2020年前半、さまざまなアプリケーションに自律的に適用可能な技術により環境融和型ネットワーク技術を開発。農業分野、インフラ維持管理、災害観測等において、センサーデータ取得基盤技術として活用することで、労働力人口減少、社会インフラ老朽化、防災・減災等、社会的課題の解決に資するセンサーデータ利活用基盤を実現。
【センシング&データ取得基盤分野】
(1) センサーネットワーク技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>バッテリー不要無線端末構成技術の研究開発</td>
<td>回収不要無線端末構成技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>電力伝送技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>多方向低電力無線方式の設計</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>メンテナンスフリー/ソフト無線対応アクセスポイントの研究開発</td>
<td>アクセスポイント連携技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>広域センサNW用ゲートウェイの研究開発</td>
<td>実用化・需要開拓に向けた実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バッテリー不要無線端末構成技術の研究開発</td>
<td>回収不要無線端末構成技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>電力伝送技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>多方向低電力無線方式の設計</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>メンテナンスフリー/ソフト無線対応アクセスポイントの研究開発</td>
<td>アクセスポイント連携技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>広域センサNW用ゲートウェイの研究開発</td>
<td>実用化・需要開拓に向けた実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>電力伝送技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【センシング&データ取得基盤分野】
(2) リモートセンシング技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>マルチパラメータ（MP）フェーズドアレイレーダの開発</td>
<td>MPフェーズドアレイレーダの実証実用化</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>地デジ放送波を利用した水蒸気推定技術の開発</td>
<td>地デジ放送波を利用した水蒸気推定技術の実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バッシプレーダ技術の研究開発（バイスタティックレーダ、放送波等の側方散乱波利用）および関連信号処理技術の高度化</td>
<td>バッシプレーダ一部実用化</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>リモートセンシング観測融合研究レーダ・ライダー・融合プロダクト研究サーソナルテクノロジー</td>
<td>多様なリモートセンシング観測融合研究 SAR・衛星周辺センサーなど多様なリモートセンサ融合</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2020年後半までに現業機関が導入可能な“雷”を検知・測定するMPフェーズドアレイレーダの研究
2020年までに水蒸気推定実用化
2020年までにバイスタティックレーダー・ライナーフォーミングを実用化
2020年までにレーダ・ライナー融合観測システムの導入
【センシング & データ取得基盤分野】

(2) リモートセンシング技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)-② 航空機搭載合成開口レーダー (SAR) 技術の研究開発</td>
<td>超高精度航空機搭載SAR</td>
<td>実証実験・実利用</td>
<td>2020年後半に火山噴火・地震等の災害状況把握に利用可能な航空機搭載SARの実用化</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)-③ 衛星搭載レーダー技術の研究開発</td>
<td>EarthCAREアルゴリズム開発・検証研究</td>
<td>2020年代に実施されるTHz無線装置開発での正確な計測評価に寄与</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)-④ テラヘルツ帯センシング技術の研究開発</td>
<td>高感度ヘテロダイナム分光技術の確立</td>
<td>広帯域スペクトル同時計測技術・微弱電力計測技術の研究開発</td>
<td>2020年代に実施されるTHz無線装置開発での正確な計測評価に寄与</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)-⑤ 光アクティブセンシング技術の研究開発</td>
<td>高出力単一波長パルスレーザの研究開発</td>
<td>高感度センサー技術の研究開発</td>
<td>2020年代に実施されるTHz無線装置開発での正確な計測評価に寄与</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【センシング & データ取得基盤分野】

(3) 非破壊センシング・イメージング技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)-① 非破壊センシングの実用化に向けた研究開発</td>
<td>赤外線非破壊センシング技術の開発</td>
<td>高周波非破壊センシングの研究開発</td>
<td>2020年代に実施されるTHz無線装置開発での正確な計測評価に寄与</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

アドバンスト技術の開発 (2020年度) 〜成果目標 (2030年)
【センシング & データ取得基盤分野】
(4) 宇宙環境計測技術

--- | --- | --- | --- | --- | --- | ---
(4)-① 電離圏観測・シミュレーションに関する研究開発 | 国内イオノソンデ更新 | VIPIRによる電離圏観測のリアルタイム監視技術開発 | リアルタイム電離圏観測のグローバル化（海面含む） | • 電離圏観測・シミュレーションに関する研究開発 | • 上海GPS点の利用、赤道越え電波伝播による海上電離圏モニタリング技術開発による海上白昼区の観測 | 2020年度までに電離圏観測システムの実用化を目的に、リアルタイムシステムを構築

・国内4施設の更新、新旧データ比較・検証・電離圏パラメータ、磁気圏プロファイルを自動導出技術開発 | • 国外リアルタイムGPSデータ利用 | • 全球モデルに必要な観測データ取得技術の開発 | 2030年度までにデータ同定システムの開発を目的とするリアルタイムシステムを構築

・斜め伝搬による観測空白域（海上等）の電離圏観測 | • TECデータ標準化（ITU-R、IGS等） | • 全球モデルに観測データを有機的に取り込む磁気圏モデルのプロトタイプの開発（次ページ） | 2020年度までに赤道域と日本観測データ同定、リアルタイム化を目的とするリアルタイムシステムを構築

(4)-② 磁気圏観測・シミュレーションに関する研究開発 | 全球モデル（GAIA）のデータ同化プロトタイプの開発 | 磁気圏シミュレータの検証と改良 | 結合検討 | 2030年度までに人工衛星の安定運行のためのリアルタイムシステムを構築

・気体地球の効果の検討 | 全球モデル（GAIA）のデータ同化プロトタイプの開発 | • ニューラルネットによる予測システム機能向上 | 2025年度までに衛星運用のための宇宙気情報システムの構築に向けた検証

放電帯モデル開発 | 人工衛星スペックを考慮した予測システムの設計 | 実用化に向けた検証 | 2025年度までに衛星運用のための宇宙気情報システムの構築に向けた検証

観測データを入力した計算の検証 | データ同化を用いた気体地球入力手法の改良 | 结合検討 | 2020年度までに人工衛星の安定運行のためのリアルタイムシステムを構築

・ニューラルネットによる予測システム機能向上 | 全球モデル（GAIA）のデータ同化プロトタイプの開発 | 2030年度までに赤道域と日本観測データ同定、リアルタイム化を目的とするリアルタイムシステムを構築

観測データを有機的に取り込んだ磁気圏モデルのプロトタイプの開発（次ページ） | 領域モデルの開発 | 領域モデルの開発と拡張 | 2020年度までに電波観測・太陽風シミュレーションによる高精度早期警報（太陽面爆発に端を発する突発的擾乱の到来時刻を誤差±10時間以内で予測）を実現

(4)-③ 太陽・太陽風観測・シミュレーションに関する研究開発 | 太陽電波観測システム開発 | 太陽電波観測を用いた早期警報システムの開発 | 他観測データとの連携による警報の高精度化 | 2020年度までに電波観測・太陽風シミュレーションによる警報の高精度化を実現

・定常運用に向けた調整等 | 太陽電波観測を用いた早期警報システムの開発 | 電波以外の地上及び衛星データの利用 | 2020年度までに電波観測・太陽風シミュレーションによる警報の高精度化を実現

太陽風シミュレーションの研究開発 | CME伝播シミュレーションの研究開発 | 太陽風シミュレーションコードの高精度化・高精度化 | 2030年度までに統計的フレア発生予測モデルを構築

・定常太陽風シミュレーションの研究開発 | DISCOVR衛星データによる予測精度の検証 | 太陽風シミュレーションコードのCME伝播モデル開発 | 2030年度までに統計的フレア発生予測モデルを構築

ビッグデータを用いた太陽フレア発生確率予測の研究開発 | 観測データを入力するフレア／CMEシミュレーション検討 | 観測データを入力するフレア／CMEシミュレーション検討 | 2025年度までに人工衛星の安定運行のためのリアルタイムシステムを構築

・画像解析手法を用いたフレア発生確率の導出 | 磁場観測利用 | 2020年度までに人工衛星の安定運行のためのリアルタイムシステムを構築

2020年度までに電離圏観測システムの実用化を目的に、リアルタイムシステムを構築
【センシング & データ取得基盤分野】
(5) センサー・ソーシャルデータ取得・解析技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IoTデータ統合管理技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>異分野データの収集・解析技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サイバーフィジカルソーシャルデータの分析</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>クラウドを介したデバイスネットワークとソーシャルネットワークの自律連携制御技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実世界的モノ・コト知識を解析、予測し行動制御するクラウドロボティクス基盤の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>市民参加型の気象被害情報収集解析システムへの実証応用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>交通やヘルスケア等のスマートサービスと連携させた気象被害緊急対応スマートシティ基盤への実証応用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>分野横断相関分析のオープンサイエンス基盤の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オープンデータメタデータ技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>データサイテーション基盤技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ソーシャル化されたデバイス生成検証プロセスを実行するオープンサイエンスフレームワークの開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境問題のオープンサイエンスを対象としたデータコーパス構築への実証応用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境問題のオープンサイエンスを対象としたリンクオープンデータ構築への実証応用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【センシング & データ取得基盤分野】
(5) センサー・ソーシャルデータ取得・解析技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>空間構造を記述するための基盤研究</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGB-D以外をも包含する空間構造記述の検討 (点要素および集合体としての構造が備えるべき属性の定義)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>センサーフュージョンによる空間構造の構造化技術開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>構造化技術の実装</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【センシング & データ取得基盤分野】
(5) センサー・ソーシャルデータ取得・解析技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>空間構造における検索・予測・行動制御のための技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>空間構造情報に適したデータハンドリング・マッチング技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>空間構造情報を対象としたオブジェクトセグメンテーション・認識技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
統合ICT基盤分野 - コア系

(1) 最先端ICTネットワーク基盤技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)-① 新たなIoT時代に対応した最先端ICTネットワーク基盤技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)-② データセントリックなネットワーク技術等の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) フォトニックネットワークシステム技術

<table>
<thead>
<tr>
<th></th>
<th>2020年、5GやIoTデバイスからデータを瞬時に、安全に、確実に伝送する情報通信基盤を構築し、高付加価値・最適化社会を実現する</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>各機能系統の連係動作検証 • 8K放送等の実サービスをターゲットに大规模実証実験 • リアルタイム伝送実証実験</td>
</tr>
<tr>
<td></td>
<td>ネットワーク自動構築制御技術の研究開発 (ユーザセントリックネットワーク技術)</td>
</tr>
<tr>
<td></td>
<td>ネットワーク構築制御用プログラムをデモ</td>
</tr>
<tr>
<td></td>
<td>ユーザセントリックネットワーク構築技術</td>
</tr>
<tr>
<td></td>
<td>ネットワークアドレス自動設定技術、ソフトウェアによるネットワーク抽象化技術、データ分散・高送り技術等</td>
</tr>
</tbody>
</table>

(3) 衛星通信技術

<table>
<thead>
<tr>
<th></th>
<th>2020年、5GやIoTデバイス等からデータを瞬時に、安全に、確実に伝送する情報通信基盤を構築し、高付加価値・最適化社会を実現する</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ネットワーク自動構築制御技術の研究開発 (ユーザセントリックネットワーク技術)</td>
</tr>
<tr>
<td></td>
<td>ネットワーク構築制御用プログラムをデモ</td>
</tr>
<tr>
<td></td>
<td>ユーザセントリックネットワーク構築技術</td>
</tr>
<tr>
<td></td>
<td>ネットワークアドレス自動設定技術、ソフトウェアによるネットワーク抽象化技術、データ分散・高送り技術等</td>
</tr>
</tbody>
</table>

(4) 極限環境通信技術

<table>
<thead>
<tr>
<th></th>
<th>2020年、5GやIoTデバイス等からデータを瞬時に、安全に、確実に伝送する情報通信基盤を構築し、高付加価値・最適化社会を実現する</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ネットワーク自動構築制御技術の研究開発 (ユーザセントリックネットワーク技術)</td>
</tr>
<tr>
<td></td>
<td>ネットワーク構築制御用プログラムをデモ</td>
</tr>
<tr>
<td></td>
<td>ユーザセントリックネットワーク構築技術</td>
</tr>
<tr>
<td></td>
<td>ネットワークアドレス自動設定技術、ソフトウェアによるネットワーク抽象化技術、データ分散・高送り技術等</td>
</tr>
</tbody>
</table>

【統合ICT基盤分野 - コア系】

(1) 最先端ICTネットワーク基盤技術
【統合ICT基盤分野 - コア系】

（2）フォトニックネットワークシステム技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>高密度高精度送信装置の開発</td>
<td>マルチコアNW方式と基盤システムの研究開発</td>
<td>マルチコア/マルチモード・オール光スイッチング技術の研究開発</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)-①</td>
<td></td>
<td></td>
<td></td>
<td>2020年、ASEAN等への展開（標準化含む）</td>
<td>2020年、社会実装に向けたフィールド実証開始</td>
<td>経済・社会の持続的発展を支える基盤となる超大容量・低遅延・省エネ・高信頼なネットワークインフラの実現、国際競争力の確保・更なる強化</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（2）-① フォトニックネットワークシステム基盤技術に関する研究開発

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)-①</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)-②</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【統合ICT基盤分野 - コア系】

（3）衛星通信技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)-①</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)-②</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（3）-① グローバル光衛星通信ネットワークのための宇宙光通信技術の確立

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)-①</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
【統合ICT基盤分野 - コア系】

(4) 極限環境通信技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>海中伝搬実験 (電波: 0.1〜10 MHz帯, 光)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>・マルチアンテナ海中チャネルサウンダ開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>・遠近の海中, 底面</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>・3D環境においての伝搬実験</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>極限環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>限界環境に</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>てある</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

中間目標 (2020年~)

- 海中通信、海底レーダ、海洋、制御、テレメトリー技術の実用化

成果目標 (2030年)

- 世界初となる深海環境を理解するための技術
- 深海底の資源探査や自然現象解明による社会貢献

【統合ICT基盤分野 - アクセス系】

要点研究開発課題

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 無線通信の大幅な大容量化・</td>
<td>5G時代に求められる多様なモバイルサービスやアプリケーションを実現可能とするため、無線通信システムの大幅な大容量化を実現する技術として、分散アンテナ技術、光収容技術、システム間連携技術を確立する。</td>
</tr>
<tr>
<td>② 協調統合型ワイヤレスの研究開</td>
<td>単一システムの高速、大容量化を実現する技術として、分散アンテナ技術、光収容技術、システム間連携技術を確立する。</td>
</tr>
<tr>
<td>③ 高信頼ワイヤレス伝送技術の</td>
<td>無人航空機を含むロボット群等の通信制御に適用可能な大容量化を実現する技術として、要求される伝送遅延条件を確保する技術を確立する。</td>
</tr>
<tr>
<td>④ 高度同期型分散ネットワーク</td>
<td>端末間での時刻同期精度を大幅に向上させるとともに、災害発生時等に必要とする端末システムを実現する技術として、無人航空機を含むロボット群等の通信制御に適用可能な技術を確立する。</td>
</tr>
<tr>
<td>⑤ 光モバイルアクセス及び光コア</td>
<td>消費電力の増大を抑制しつつ、伝送距離×収容ユーザ数を現状比100倍以上とするため、超高</td>
</tr>
</tbody>
</table>
【統合ICT基盤分野 - アクセス系】
(1) 5G/Beyond 5Gに向けたモバイルネットワーク技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>オンリオンピック・パラリンピック競技大会開催会場含む5Gシステム総合実証実施(2019年度)</td>
<td>社会実装向けのフィールド実証・システム開発</td>
<td>社会実装向けのフィールド実証・システム開発</td>
<td>5G時代に求められる、超高速(ピーク時10Gbps)、大容量(4G比1000倍)、多数接続(基地局当たり同100倍)、低遅延(1ミリ秒)、低消費電力等の実現に向けた研究開発</td>
<td>社会実装向けのフィールド実証・システム開発</td>
<td>社会実装向けのフィールド実証・システム開発</td>
<td></td>
</tr>
<tr>
<td>高周波エントランス/アクセスNW構成技術</td>
<td>高度マルチモード端末</td>
<td>公衆網(セッション)と自営網(無線LAN)連携技術</td>
<td>公衆網(セッション)と自営網(無線LAN)連携技術</td>
<td>高度マルチモード端末</td>
<td>高周波エントランス/アクセスNW構成技術</td>
<td></td>
</tr>
</tbody>
</table>

【統合ICT基盤分野 - アクセス系】
(2) 協調統合型ワイヤレスの研究開発

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>協調統合型ワイヤレスシステムの研究開発</td>
<td>協調統合型ワイヤレスシステムの研究開発</td>
<td>協調統合型ワイヤレスシステムの研究開発</td>
<td>協調統合型ワイヤレスシステムの研究開発</td>
<td>協調統合型ワイヤレスシステムの研究開発</td>
<td>協調統合型ワイヤレスシステムの研究開発</td>
<td></td>
</tr>
<tr>
<td>協調統合型基礎構築技術</td>
<td>協調統合型基礎構築技術</td>
<td>協調統合型基礎構築技術</td>
<td>協調統合型基礎構築技術</td>
<td>協調統合型基礎構築技術</td>
<td>協調統合型基礎構築技術</td>
<td></td>
</tr>
<tr>
<td>高速データ取り扱い</td>
<td>高速データ取り扱い</td>
<td>高速データ取り扱い</td>
<td>高速データ取り扱い</td>
<td>高速データ取り扱い</td>
<td>高速データ取り扱い</td>
<td></td>
</tr>
<tr>
<td>データ通信</td>
<td>データ通信</td>
<td>データ通信</td>
<td>データ通信</td>
<td>データ通信</td>
<td>データ通信</td>
<td></td>
</tr>
<tr>
<td>共通信制式化</td>
<td>共通信制式化</td>
<td>共通信制式化</td>
<td>共通信制式化</td>
<td>共通信制式化</td>
<td>共通信制式化</td>
<td></td>
</tr>
<tr>
<td>データフレーム</td>
<td>データフレーム</td>
<td>データフレーム</td>
<td>データフレーム</td>
<td>データフレーム</td>
<td>データフレーム</td>
<td></td>
</tr>
<tr>
<td>データ通信</td>
<td>データ通信</td>
<td>データ通信</td>
<td>データ通信</td>
<td>データ通信</td>
<td>データ通信</td>
<td></td>
</tr>
<tr>
<td>データフレーム</td>
<td>データフレーム</td>
<td>データフレーム</td>
<td>データフレーム</td>
<td>データフレーム</td>
<td>データフレーム</td>
<td></td>
</tr>
<tr>
<td>データ通信</td>
<td>データ通信</td>
<td>データ通信</td>
<td>データ通信</td>
<td>データ通信</td>
<td>データ通信</td>
<td></td>
</tr>
<tr>
<td>データフレーム</td>
<td>データフレーム</td>
<td>データフレーム</td>
<td>データフレーム</td>
<td>データフレーム</td>
<td>データフレーム</td>
<td></td>
</tr>
</tbody>
</table>
統合ICT基盤分野 - アクセス系

(1) 5G/Beyond 5Gに向けたモバイルネットワーク技術

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)−④ 高度同期型分散ネットワーク技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ユニット技術の開発
- 位相同期等を含む多対多多端末間分散同期技術
- 端末間相互発見相互連結技術
- グループ自律形成・自律管理技術
- エリア伝播特性の取得・評価

システム化技術の開発
- 災害発生時を想定した端末数（5000台以上）を収容可能とする大容量化技術
- ネットワーク共存技術
- 小型端末技術

社会実装評価実験
- 災害発生時における情報収集・情報拡散アプリケーション技術の開発と検証
- 平時のトラフィックオフロード用途としての評価

2020年までに、地域における各種情報の共有・収集をグループ通信によって行えることで、地域の防災・産業・観光・暮らし・観光等、各種サービスにおける品質向上・多様化へ寄与
主な取組

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>出典</td>
<td>5G/Beyond 5Gに向けたモバイルネットワーク技術</td>
<td>出典</td>
<td>5G/Beyond 5Gに向けたモバイルネットワーク技術</td>
<td>出典</td>
<td>5G/Beyond 5Gに向けたモバイルネットワーク技術</td>
<td>出典</td>
</tr>
<tr>
<td>テクノロジー</td>
<td>1）62</td>
<td>1）62</td>
<td>1）62</td>
<td>1）62</td>
<td>1）62</td>
<td>1）62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>主な取組</td>
<td>2015年度</td>
<td>2016年度</td>
<td>2017年度</td>
<td>2018年度</td>
<td>2019年度</td>
<td>2020年度</td>
</tr>
<tr>
<td>アクセスキモバイルアクセス及び光コア融 合ネットワーク技術</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>成果目標(2030年)</td>
<td>成果目標(2030年)</td>
<td>成果目標(2030年)</td>
<td>成果目標(2030年)</td>
<td>成果目標(2030年)</td>
<td>成果目標(2030年)</td>
<td>成果目標(2030年)</td>
</tr>
<tr>
<td>1）-⑤</td>
<td>1）-⑤</td>
<td>1）-⑤</td>
<td>1）-⑤</td>
<td>1）-⑤</td>
<td>1）-⑤</td>
<td>1）-⑤</td>
</tr>
<tr>
<td>光モバイルアクセス及び光コア融合ネットワーク技術の研究開発</td>
<td>光モバイルアクセス及び光コア融合ネットワーク技術の研究開発</td>
<td>光モバイルアクセス及び光コア融合ネットワーク技術の研究開発</td>
<td>光モバイルアクセス及び光コア融合ネットワーク技術の研究開発</td>
<td>光モバイルアクセス及び光コア融合ネットワーク技術の研究開発</td>
<td>光モバイルアクセス及び光コア融合ネットワーク技術の研究開発</td>
<td>光モバイルアクセス及び光コア融合ネットワーク技術の研究開発</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 5G/Beyond 5Gに向けたモバイルネットワーク技術</td>
</tr>
<tr>
<td>1）5G/Beyond 5Gに向けたモバイルネットワーク技術</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>主な取組</td>
<td>主な取組</td>
<td>主な取組</td>
<td>主な取組</td>
<td>主な取組</td>
<td>主な取組</td>
<td>主な取組</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 5G/Beyond 5Gに向けたモバイルネットワーク技術</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 5G/Beyond 5Gに向けたモバイルネットワーク技術</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
<td>主要取組</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 5G/Beyond 5Gに向けたモバイルネットワーク技術</td>
</tr>
</tbody>
</table>

(2) ユーザの利用環境や要求を認識したネットワーク構築・制御技術

<table>
<thead>
<tr>
<th>(2)-①ユーザーの利用環境や要求を認識したネットワーク構築制御技術の研究開発</th>
<th>ネットワーク構築制御用プログラミングモデル開発</th>
<th>ユーザーセンシティブネットワーク構築技術</th>
<th>認知型通信制御技術</th>
</tr>
</thead>
<tbody>
<tr>
<td>ネットワーク仮想化技術</td>
<td>リソース記憶体、サービス機能記憶体、インタフェース記憶体、ポリシー記憶体、などのネットワーク自動制御による運用の可能化</td>
<td>ハードウェアとソフトウェアとネットワークのオーウェア化</td>
<td>ビッグデータ解析や人工知能等による需要、品質変動の認識に基づき、インフラ維持に必要となるソフトウェア機能、ハードウェア資源、無尽力ネットワーク自動制御技術</td>
</tr>
<tr>
<td>IDCロケータ分離技術</td>
<td>ハードウェアとソフトウェアとのオーウェア化、ネットワーク自動制御技術、ソフトウェア定義可能ネットワークをターゲットに大規模実証実験</td>
<td>IDロケータ分離技術</td>
<td>階層型アドレス配布技術</td>
</tr>
<tr>
<td>機構型アドレス配布技術</td>
<td>各機能系統の連係動作検証</td>
<td>関連型アドレス配布技術</td>
<td>ネットワーク構築制御用プログラミングモデル開発</td>
</tr>
<tr>
<td>ネットワーク構築制御用プログラミングモデル開発</td>
<td>2030年、キャリアインフラにおけるマニュアルオペレーションの極小化</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【統合ICT基盤分野 - アクセス系】

(2) ユーザーの利用環境や要求を認識したネットワーク構築・制御技術

重点研究開発課題 概要説明

① 音声翻訳・対話システムの多言語化、多分野化、高精度化の実現	2020年東京オリンピック・パラリンピック競技大会までに、10言語に関して、旅行、医療、防災を含む生活分野の音声翻訳・対話システムを実用レベルで確立するため、多言語化、多分野化、高精度化に資する翻訳技術・音声技術を開発・確立する。
② 現場音声認識の精度向上及びクロスリンガル音声対話の実現	長文音声認識（現在の7語対応から20語へ）、非ネイティブ音声認識、環境音の自動判別等を実現し、現場音声認識の精度向上を図るとともに、多言語・複数人の音声対話システムを目指す。
③ 長文音声翻訳に対応した自動翻訳技術の研究開発	同時通訳を実現するため、同一分野の対訳だけでなく2言語のコーパス利活用、自動翻訳処理等に基づく自動翻訳の汎用化及び翻訳の逐次処理化に関する基盤技術を確立する。
④ 車載を用いた自動翻訳技術の研究開発	自動翻訳の精度化のため、単語又は文に加えて結論性、流動性の文脈を利活用することにより、意味に基づく翻訳を実現する基盤技術を確立する。

(1) 音声翻訳・対話システムの高度化

① 社会知解析技術の研究開発

Web、科学技術論文、白書等から社会問題等様々な問題を自動検出し、それらの解決策や影響等、関連する情報・仮説を能動的に発見して統合された知識として提供するシステムや、SNS等で得られた情報やビデオデータを分析し、それらの詳細な議論の推移を要約して提示するシステム等を実現するための基盤技術を確立する。

② ソーシャルICT情報活用基盤に関する研究開発【再掲】

スマートサービスと人との間でデータを共有し、地域全体で環境問題等解決に対処し、様々なIoTデバイスを分野横断的に統合・分析する技術、実世界的モノ・コト・知識を解析・予測し行動制御するクラウドロボティクス技術、クラウドを介したデバイスネットワークとソーシャルネットワークの自律連携制御技術等を確立するとともに、コミュニティが中心となってデータを集団的に分析するオープンサイエンス基盤技術を確立する。
<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) スマートネットワークロボット技術</td>
<td>ビッグデータ、人工知能、ネットワーク関連技術等との連携により、全てのロボットがネットワークを介して必要な情報を共有し、遅延なく効率的な動作を実現するネットワーク制御技術を確立するとともに、複数のロボットの相互連携により効率的・効果的に機能を発揮するためのプラットフォーム技術を確立する。</td>
</tr>
<tr>
<td>① ネットワークロボット・プラットフォーム技術(スマートロボット技術)の研究開発</td>
<td>クラウドとロボットの融合による革新的サービスの研究開発</td>
</tr>
<tr>
<td>② クラウドとロボットの融合による革新的サービスの研究開発</td>
<td>ネットワークロボット・プラットフォーム技術(スマートロボット技術)の研究開発</td>
</tr>
<tr>
<td>③ 人の心に寄り添うコミュニケーションロボットの研究開発</td>
<td>人の動きをセンシングしたり、脳情報から人の感情や潜在意識等を把握することにより、スマートフォンやロボット等を通じて、心の通った(人の心に寄り添う)コミュニケーションを実現するため、人・ロボット会話技術、状況認識・理解・推論・再現技術、感情生成・表現モデル等の技術を確立する。</td>
</tr>
</tbody>
</table>

(4) 空間構造の解析・理解技術

① 空間構造解析・理解に関する研究開発【再掲】

ロボットの目としての機能等を実現するため、画像や映像から特定空間を対象として空間構造を記述し、空間構造から空間意味解析を行うことにより各物体を認識する技術等を確立する。

② 超臨場感映像技術

① 空間情報伝送再現システムに関する研究開発

位相・振幅を制御するデジタル方式のホログラム技術、プログラムのデジタルプリント技術、プロジェクト用スクリーン技術等を確立する。

② 超臨場感映像の超低遅延処理、圧縮・伝送等に関する基盤技術の確立

100Gbps超の伝送レートが必要な超臨場感映像を、光ファイバにより超低遅延でルーティング、蓄積・読み出し、信号処理することが可能なSDI(Software Defined Infrastructure)技術を確立する。また、裸眼立体映像の圧縮等に関する基盤技術を確立する。

③ 超高精細度映像の高効率伝送技術に関する研究開発

超高精細度テレビジョン(UHDTV)放送の本格展開に向けて、地上波等の限られた帯域において、超高精細度映像を高効率かつ効果的に伝送するための映像圧縮技術や伝送技術等を確立する。

【データ利活用基盤分野】

(1) 音声翻訳・対話システムの高度化

(1)−① 音声翻訳・対話システムの高度化

2020年東京オリンピック・パラリンピック競技大会へ向けた音声技術開発

2020年東京オリンピック・パラリンピック競技大会へ向けた音声技術開発

【データ利活用基盤分野】
【データ利活用基盤分野】

(2) 社会知解析技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IoTデータ統合管理技術の研究開発</td>
<td>集約・異分野センソーティデータの収集統合・解析・可視化技術（イベントデータウェアハウス）</td>
<td>クラウドを介したデバイスピータワークとソーシャルワークの自律連携制御技術</td>
<td>実世界のモノ・コト知識を解析・予測し行動制御するクラウドロボティクス基盤の研究開発</td>
<td>市民参加型の気象被害情報収集解析システムへの実証応用</td>
<td>交通やヘルスケア等のスマートサービスと連携させた気象被害対応スマートシティ基盤への実証応用</td>
<td></td>
</tr>
</tbody>
</table>

分野横断相関分析のオープンサイエンス基盤の研究開発

| 分野横断相関分析システムの開発 | オープンデータメタサーチ技術 | データサイテーション基盤技術 | ソーシャルデータの統合分析及びデータ利活用技術 | 分野横断相関分析システムの実証実験 | 領域間のオープンサイエンスを対象としたオープンデータ構築への実証応用 |

【データ利活用基盤分野】

(3) スマートネットワークロボット技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>スマートロボット・共通プラットフォームの研究開発</td>
<td>スマートロボット・共通プラットフォームの研究開発</td>
<td>スマートロボット・共通プラットフォームの研究開発</td>
<td>スマートロボット・共通プラットフォームの研究開発</td>
<td>スマートロボットの実証実験</td>
<td>スマートロボットの実証実験</td>
<td></td>
</tr>
<tr>
<td>スマートロボット三次元制御技術の研究開発</td>
<td>スマートロボット三次元制御技術の研究開発</td>
<td>スマートロボット三次元制御技術の研究開発</td>
<td>スマートロボット三次元制御技術の研究開発</td>
<td>スマートロボットの実証実験</td>
<td>スマートロボットの実証実験</td>
<td></td>
</tr>
<tr>
<td>空間制御、環境制御、操作制御、移動制御計画、環境制御、ネコロボット、ルーティング、バイオロボット、エネルギー供給技術等</td>
<td>空間制御、環境制御、操作制御、移動制御計画、環境制御、ネコロボット、ルーティング、バイオロボット、エネルギー供給技術等</td>
<td>空間制御、環境制御、操作制御、移動制御計画、環境制御、ネコロボット、ルーティング、バイオロボット、エネルギー供給技術等</td>
<td>空間制御、環境制御、操作制御、移動制御計画、環境制御、ネコロボット、ルーティング、バイオロボット、エネルギー供給技術等</td>
<td>空間制御、環境制御、操作制御、移動制御計画、環境制御、ネコロボット、ルーティング、バイオロボット、エネルギー供給技術等</td>
<td>空間制御、環境制御、操作制御、移動制御計画、環境制御、ネコロボット、ルーティング、バイオロボット、エネルギー供給技術等</td>
<td></td>
</tr>
</tbody>
</table>

データ指向ロボティクスの研究開発

<table>
<thead>
<tr>
<th>大規模ロボティクスの研究開発</th>
<th>データ指向ロボティクスに基づくIoTサービスの実証実験</th>
<th>データ指向ロボティクスに基づくIoTサービスの実証実験</th>
<th>データ指向ロボティクスに基づくIoTサービスの実証実験</th>
<th>データ指向ロボティクスに基づくIoTサービスの実証実験</th>
<th>データ指向ロボティクスに基づくIoTサービスの実証実験</th>
</tr>
</thead>
<tbody>
<tr>
<td>ユニバーサルクロアントデータの集積と深層学習に基づく行動生成、言語・非言語を処理するマルチモーダル制御技術の開発</td>
<td>ユニバーサルクロアントデータの集積と深層学習に基づく行動生成、言語・非言語を処理するマルチモーダル制御技術の開発</td>
<td>ユニバーサルクロアントデータの集積と深層学習に基づく行動生成、言語・非言語を処理するマルチモーダル制御技術の開発</td>
<td>ユニバーサルクロアントデータの集積と深層学習に基づく行動生成、言語・非言語を処理するマルチモーダル制御技術の開発</td>
<td>ユニバーサルクロアントデータの集積と深層学習に基づく行動生成、言語・非言語を処理するマルチモーダル制御技術の開発</td>
<td>ユニバーサルクロアントデータの集積と深層学習に基づく行動生成、言語・非言語を処理するマルチモーダル制御技術の開発</td>
</tr>
</tbody>
</table>

人との心に寄り添うコミュニケーションロボットの研究開発

<table>
<thead>
<tr>
<th>人とのコミュニケーションロボットの研究開発</th>
<th>人とのコミュニケーションロボットの研究開発</th>
<th>人とのコミュニケーションロボットの研究開発</th>
<th>人とのコミュニケーションロボットの研究開発</th>
<th>人とのコミュニケーションロボットの研究開発</th>
<th>人とのコミュニケーションロボットの研究開発</th>
</tr>
</thead>
<tbody>
<tr>
<td>人・ロボット対話技術、環境状況推定・理解技術、再現技術、感情マイニング技術、伝達技術、感情生成・表出モデル</td>
<td>人・ロボット対話技術、環境状況推定・理解技術、再現技術、感情マイニング技術、伝達技術、感情生成・表出モデル</td>
<td>人・ロボット対話技術、環境状況推定・理解技術、再現技術、感情マイニング技術、伝達技術、感情生成・表出モデル</td>
<td>人・ロボット対話技術、環境状況推定・理解技術、再現技術、感情マイニング技術、伝達技術、感情生成・表出モデル</td>
<td>人・ロボット対話技術、環境状況推定・理解技術、再現技術、感情マイニング技術、伝達技術、感情生成・表出モデル</td>
<td>人・ロボット対話技術、環境状況推定・理解技術、再現技術、感情マイニング技術、伝達技術、感情生成・表出モデル</td>
</tr>
</tbody>
</table>

ICTやビッグデータ、人工知能とロボット技術を活用して、世界に先駆けて産業構造の変革を図るとともに、ロボットと人の共存・共生する未来社会を実現する計画を展開。
【データ利活用基盤分野】
(4) 空間構造の解析・理解技術

再掲

(5) 超臨場感映像技術
【データ利活用基盤分野】
(5) 超臨場感映像技術

| --- | --- | --- | --- | --- | --- | --- |

<table>
<thead>
<tr>
<th>(5)-② 超臨場感映像の超低遅延處理、圧縮・伝送等に関する基盤技術の確立</th>
</tr>
</thead>
<tbody>
<tr>
<td>超低遅延ルーティング技術の開発</td>
</tr>
<tr>
<td>位相同期や切替位置指定などの映像ルーティング要求を完全に満足する光ルーティング技術の開発</td>
</tr>
<tr>
<td>超低遅延蓄積・読み出し、信号処理技術の開発</td>
</tr>
<tr>
<td>ネットワークノードでの映像蓄積・読み出し、信号処理の超低遅延化技術の開発</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>裸眼立体映像圧縮符号化方式の研究開発</td>
</tr>
<tr>
<td>裸眼立体映像に適合した3D-HEVCの拡張方式の開発</td>
</tr>
<tr>
<td>3D-HEVCを基本とした階層符号化方式の開発</td>
</tr>
<tr>
<td>高品質な裸眼立体映像の撮影・表示技術の開発</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ミリ波帯無線素材伝送技術の開発</td>
</tr>
<tr>
<td>ミリ波帯増幅デバイスの開発</td>
</tr>
<tr>
<td>400Mbps級帯域無線伝送技術の開発</td>
</tr>
<tr>
<td>増幅デバイスの高出力化・低伝送</td>
</tr>
<tr>
<td>無線伝送の高速化</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

【データ利活用基盤分野】
(5) 超臨場感映像技術

| --- | --- | --- | --- | --- | --- | --- |

<table>
<thead>
<tr>
<th>(5)-③ 超高精細度映像の高効率伝送技術に関する研究開発</th>
</tr>
</thead>
<tbody>
<tr>
<td>超高精細度映像圧縮技術の研究開発</td>
</tr>
<tr>
<td>既存技術圧縮技術の検証・改良</td>
</tr>
<tr>
<td>次世代映像圧縮技術の設計・基本検証</td>
</tr>
<tr>
<td>次世代映像圧縮技術の技術検証</td>
</tr>
<tr>
<td>限定された帯域における高効率伝送技術の研究開発</td>
</tr>
<tr>
<td>既存伝送技術による伝送試験・改良</td>
</tr>
<tr>
<td>限定帯域における新たな伝送技術に関する技術検証</td>
</tr>
<tr>
<td>既存映像圧縮技術の検証・改良</td>
</tr>
<tr>
<td>次世代映像圧縮技術の設計・基本検証</td>
</tr>
<tr>
<td>次世代映像圧縮技術の技術検証</td>
</tr>
<tr>
<td>限定された帯域における高効率伝送技術の研究開発</td>
</tr>
<tr>
<td>既存伝送技術による伝送試験・改良</td>
</tr>
<tr>
<td>限定帯域における新たな伝送技術に関する技術検証</td>
</tr>
<tr>
<td>2020年までに超高精細度映像圧縮技術を基にした帯域で伝送可能な既存技術に比べて圧縮率が7%以下となる次世代映像圧縮技術を確立</td>
</tr>
</tbody>
</table>

【データ利活用基盤分野】
(5) 超臨場感映像技術

| --- | --- | --- | --- | --- | --- | --- |

<table>
<thead>
<tr>
<th>(5)-③ 超高精細度映像の高効率伝送技術に関する研究開発</th>
</tr>
</thead>
<tbody>
<tr>
<td>超高精細度映像圧縮技術の研究開発</td>
</tr>
<tr>
<td>既存技術圧縮技術の検証・改良</td>
</tr>
<tr>
<td>次世代映像圧縮技術の設計・基本検証</td>
</tr>
<tr>
<td>次世代映像圧縮技術の技術検証</td>
</tr>
<tr>
<td>限定された帯域における高効率伝送技術の研究開発</td>
</tr>
<tr>
<td>既存伝送技術による伝送試験・改良</td>
</tr>
<tr>
<td>限定帯域における新たな伝送技術に関する技術検証</td>
</tr>
<tr>
<td>2020年までに超高精細度映像圧縮技術を基にした帯域で伝送可能な既存技術に比べて圧縮率が7%以下となる次世代映像圧縮技術を確立</td>
</tr>
</tbody>
</table>

【データ利活用基盤分野】
(5) 超臨場感映像技術

| --- | --- | --- | --- | --- | --- | --- |

<table>
<thead>
<tr>
<th>(5)-③ 超高精細度映像の高効率伝送技術に関する研究開発</th>
</tr>
</thead>
<tbody>
<tr>
<td>超高精細度映像圧縮技術の研究開発</td>
</tr>
<tr>
<td>既存技術圧縮技術の検証・改良</td>
</tr>
<tr>
<td>次世代映像圧縮技術の設計・基本検証</td>
</tr>
<tr>
<td>次世代映像圧縮技術の技術検証</td>
</tr>
<tr>
<td>限定された帯域における高効率伝送技術の研究開発</td>
</tr>
<tr>
<td>既存伝送技術による伝送試験・改良</td>
</tr>
<tr>
<td>限定帯域における新たな伝送技術に関する技術検証</td>
</tr>
<tr>
<td>2020年までに超高精細度映像圧縮技術を基にした帯域で伝送可能な既存技術に比べて圧縮率が7%以下となる次世代映像圧縮技術を確立</td>
</tr>
</tbody>
</table>

【データ利活用基盤分野】
(5) 超臨場感映像技術

| --- | --- | --- | --- | --- | --- | --- |

<table>
<thead>
<tr>
<th>(5)-③ 超高精細度映像の高効率伝送技術に関する研究開発</th>
</tr>
</thead>
<tbody>
<tr>
<td>超高精細度映像圧縮技術の研究開発</td>
</tr>
<tr>
<td>既存技術圧縮技術の検証・改良</td>
</tr>
<tr>
<td>次世代映像圧縮技術の設計・基本検証</td>
</tr>
<tr>
<td>次世代映像圧縮技術の技術検証</td>
</tr>
<tr>
<td>限定された帯域における高効率伝送技術の研究開発</td>
</tr>
<tr>
<td>既存伝送技術による伝送試験・改良</td>
</tr>
<tr>
<td>限定帯域における新たな伝送技術に関する技術検証</td>
</tr>
<tr>
<td>2020年までに超高精細度映像圧縮技術を基にした帯域で伝送可能な既存技術に比べて圧縮率が7%以下となる次世代映像圧縮技術を確立</td>
</tr>
</tbody>
</table>

【データ利活用基盤分野】
(5) 超臨場感映像技術

| --- | --- | --- | --- | --- | --- | --- |

<table>
<thead>
<tr>
<th>(5)-③ 超高精細度映像の高効率伝送技術に関する研究開発</th>
</tr>
</thead>
<tbody>
<tr>
<td>超高精細度映像圧縮技術の研究開発</td>
</tr>
<tr>
<td>既存技術圧縮技術の検証・改良</td>
</tr>
<tr>
<td>次世代映像圧縮技術の設計・基本検証</td>
</tr>
<tr>
<td>次世代映像圧縮技術の技術検証</td>
</tr>
<tr>
<td>限定された帯域における高効率伝送技術の研究開発</td>
</tr>
<tr>
<td>既存伝送技術による伝送試験・改良</td>
</tr>
<tr>
<td>限定帯域における新たな伝送技術に関する技術検証</td>
</tr>
<tr>
<td>2020年までに超高精細度映像圧縮技術を基にした帯域で伝送可能な既存技術に比べて圧縮率が7%以下となる次世代映像圧縮技術を確立</td>
</tr>
</tbody>
</table>

【データ利活用基盤分野】
(5) 超臨場感映像技術

| --- | --- | --- | --- | --- | --- | --- |

<table>
<thead>
<tr>
<th>(5)-③ 超高精細度映像の高効率伝送技術に関する研究開発</th>
</tr>
</thead>
<tbody>
<tr>
<td>超高精細度映像圧縮技術の研究開発</td>
</tr>
<tr>
<td>既存技術圧縮技術の検証・改良</td>
</tr>
<tr>
<td>次世代映像圧縮技術の設計・基本検証</td>
</tr>
<tr>
<td>次世代映像圧縮技術の技術検証</td>
</tr>
<tr>
<td>限定された帯域における高効率伝送技術の研究開発</td>
</tr>
<tr>
<td>既存伝送技術による伝送試験・改良</td>
</tr>
<tr>
<td>限定帯域における新たな伝送技術に関する技術検証</td>
</tr>
<tr>
<td>2020年までに超高精細度映像圧縮技術を基にした帯域で伝送可能な既存技術に比べて圧縮率が7%以下となる次世代映像圧縮技術を確立</td>
</tr>
</tbody>
</table>

【データ利活用基盤分野】
(5) 超臨場感映像技術

| --- | --- | --- | --- | --- | --- | --- |

<table>
<thead>
<tr>
<th>(5)-③ 超高精細度映像の高効率伝送技術に関する研究開発</th>
</tr>
</thead>
<tbody>
<tr>
<td>超高精細度映像圧縮技術の研究開発</td>
</tr>
<tr>
<td>既存技術圧縮技術の検証・改良</td>
</tr>
<tr>
<td>次世代映像圧縮技術の設計・基本検証</td>
</tr>
<tr>
<td>次世代映像圧縮技術の技術検証</td>
</tr>
<tr>
<td>限定された帯域における高効率伝送技術の研究開発</td>
</tr>
<tr>
<td>既存伝送技術による伝送試験・改良</td>
</tr>
<tr>
<td>限定帯域における新たな伝送技術に関する技術検証</td>
</tr>
<tr>
<td>2020年までに超高精細度映像圧縮技術を基にした帯域で伝送可能な既存技術に比べて圧縮率が7%以下となる次世代映像圧縮技術を確立</td>
</tr>
</tbody>
</table>
重点研究開発課題

| ① 未来型サイバーセキュリティ技術の研究開発 | 国内のセキュリティ対策を強化するため、能動的サイバーセキュリティ技術・可視化技術を確立する。2020年東京オリンピック・パラリンピック競技大会関連システム等に当該技術を導入し、セキュリティに貢献する。さらに、攻撃対策技術の走査を強化し、セキュリティ自給率向上や国産技術の国際展開を図る。

| ② セキュリティ知識ベースを用いた自動対策技術に関する研究開発 | 実利用に基づく脆弱性情報やサイバー攻撃情報を効果的に蓄積する知識データベースを確立することで、脆弱性管理やIT資産管理、初動対応等、セキュリティ対策業務の一部を自動化を促進する能動的セキュリティ対策技術を確立する。

| ③ 暗号技術を活用した情報セキュリティ技術の研究開発 | パーソナルデータの利活用を促進するための暗号技術を活用したプライバシー保護技術や、新たな社会ニーズに対応した機能を実現する機能性暗号技術を確立する。加えて、電子政府システムの構築等で利用する暗号や、今後の利用が想定される新たな暗号技術の安全性評価を行う。

| ④ IoT社会に対応したセキュリティ技術の研究開発 | IoT社会の本格展開によって普及が想定される車やウェアラブル機器等のM2Mシステムへの脅威に対して、脅威分析・リソース評価を行った上で、端末の処理能力やライフサイクル等、IoTの特徴を踏まえたサイバーセキュリティ技術を確立する。

情報セキュリティ分野

⑴ サイバーセキュリティ技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>サイバーセキュリティ技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>未来型サイバーセキュリティ技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サイバーセキュリティ知識ベースの拡充・運用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セキュリティ技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>知識ベースのフィールドテスト</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>知識ベースのフィールドテスト</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>知識ベースのフィールドテスト</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©MITI 2020
【情報セキュリティ分野】

(1) サイバーセキュリティ技術

| パーソナルデータの利活用のためのプライバシー保護技術の研究開発及び大規模実証 |
| 2020年度までにパーソナルデータ活用時のプライバシー保護を実現し、ビッグデータの利活用を促進 |

(1)-③
暗号技術を活用した情報セキュリティ技術の研究開発

・暗号技術の活用によりプライバシー保護を実現する技術の研究開発
(プライバシーを保護したデータマイニング技術、暗号化状態における高速データ処理技術等)
・関連制度や社会受容性等を踏まえたパーソナルデータ活用時におけるプライバシー保護技術の大規模実証

(1)-④
IoT社会に対応したセキュリティ技術の研究開発

・IoT機器の倉庫分析・リスク評価の実施
・セキュリティ検証テストベッドの構築
M2Mに適した暗号・通信プロトコル等の開発

セキュリティの高度化・標準化

セキュリティ検証基盤の運用

セキュリティ検証テストベッドの構築

脆弱性を有するIoT機器検知技術の開発

軽量暗号技術の実装・評価

セキュア通信プロトコルの改良

各種ユースケースにおける実証実験の実施

IoT脆弱性検証・対策技術の高度化・運用

脆弱性情報共有システムの構築

セキュリティ検証基盤の運用

2017年以降
開発した技術を実社会に展開することで脆弱性を有するIoT機器の減少に貢献

2019年以降
新たな必要な機能に即応して早期の運用を可能とする機動的なネットワーク技術を確立する。

【情報セキュリティ技術】

重点研究開発課題	概要説明
① 災害に強い光ネットワーク技術の研究開発 | 大規模災害発生後、残存するメトロコアを構成する光ファイバ網に集中する通信トラヒックの負荷分散を図るため、光信号の波長や時間チャネルを動的かつ効率的に制御する技術を確立する。
② しなやかなワイヤレスネットワーク技術の研究開発 | 大規模災害時に発生する通信回線障害やトラフィックの急増等、通信環境の大きな変化に柔軟に対応するため、無線ネットワークの構築・管理技術や、小型無人機に搭載した中継器による高速データ伝送技術、災害時の通信の利用等、災害現場のニーズに即応して早期の運用を可能とする機動的なネットワーク技術を確立する。
③ リアルタイム社会知解析技術の研究開発 | 防災や減災に、SNS情報やセンサー情報が統合された総合的なリアルタイムデータ、即ち社会知識（ネット上において一般国民から専門家まで多様な主体が発信する知識・情報の総称）を活用するため、災害時の通信の利用等、ネット上の複雑な構架を、リアルタイムに解析・整理する技術を確立する。
④ 災害の状況把握や被害予測等に活用可能なリモートセンシング技術の研究開発 | 大規模災害発生時における広範な被害状況の迅速かつ詳細な把握に資する次世代航空機搭載SAR技術や、地層被害等の突発的な災害の発生予測精度の向上に資するマルチパラメータ（MP）フェーズドアレイレーダ等をはじめとするリモートセンシング技術を確立する。

耐災害ICT基盤分野

(1) 耐災害・被害軽減に関連するICT基盤技術

① 災害に強い光ネットワーク技術の研究開発
② しなやかなワイヤレスネットワーク技術の研究開発
③ リアルタイム社会知解析技術の研究開発
④ 災害の状況把握や被害予測等に活用可能なリモートセンシング技術の研究開発
【耐災害ICT基盤分野】

(1) 耐災害・被害軽減に関連するICT基盤技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>自律分散ネットワーク基盤技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>災害対応型集中分布ネットワーク(CDN)ネットワーク技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>各種要素技術の研究と実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>分散制御管理技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ネットワークスキャニング技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ロッドランナーネットワーク技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ネットワークテストベッド等における実証と社会実装</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>多様多様な環境センサー/監視映像情報が集積する新たなネットワーク技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>レジリエンントアクセスユニットのフィールド実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大規模災害時でも生き残る耐震性ワイヤレスネットワーク技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>機動的ネットワーク構成技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>災害時通信の技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>災害情報収集およびコンテンツ処理と連携した情報伝達システム</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>多様多様な環境センサー/監視映像情報が集積する新たなネットワーク技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>レジリエンントアクセスユニットのフィールド実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) - (1) 災害に強い光ネットワーク技術の研究開発

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>光ネットワーク技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>光ファイバー光ネットワークの研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>光ネットワークシステムの研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>光ネットワーク技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>機動的ネットワーク構成技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>災害時通信の技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>災害情報収集およびコンテンツ処理と連携した情報伝達システム</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>多様多様な環境センサー/監視映像情報が集積する新たなネットワーク技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>レジリエンントアクセスユニットのフィールド実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【耐災害ICT基盤分野】

(1) 耐災害・被害軽減に関連するICT基盤技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>自律分散ネットワーク基盤技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>災害対応型集中分布ネットワーク(CDN)ネットワーク技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>各種要素技術の研究と実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>分散制御管理技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ネットワークスキャニング技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ロッドランナーネットワーク技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ネットワークテストベッド等における実証と社会実装</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>多様多様な環境センサー/監視映像情報が集積する新たなネットワーク技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>レジリエンントアクセスユニットのフィールド実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大規模災害時でも生き残る耐震性ワイヤレスネットワーク技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>機動的ネットワーク構成技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>災害時通信の技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>災害情報収集およびコンテンツ処理と連携した情報伝達システム</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>多様多様な環境センサー/監視映像情報が集積する新たなネットワーク技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>レジリエンントアクセスユニットのフィールド実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) - (2) しなやかなワイヤレスネットワーク技術の研究開発

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>自律分散ネットワーク基盤技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>災害対応型集中分布ネットワーク(CDN)ネットワーク技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>各種要素技術の研究と実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>分散制御管理技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ネットワークスキャニング技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ロッドランナーネットワーク技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ネットワークテストベッド等における実証と社会実装</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>多様多様な環境センサー/監視映像情報が集積する新たなネットワーク技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>レジリエンントアクセスユニットのフィールド実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大規模災害時でも生き残る耐震性ワイヤレスネットワーク技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>機動的ネットワーク構成技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>災害時通信の技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>災害情報収集およびコンテンツ処理と連携した情報伝達システム</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>多様多様な環境センサー/監視映像情報が集積する新たなネットワーク技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>レジリエンントアクセスユニットのフィールド実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
リアルタイム

（1）耐災害・被害軽減に関連するICT基盤技術

--- | --- | --- | --- | --- | --- | ---

【耐震・防災ICT基盤分野】

（1）耐震・防災ICT基盤分野

--- | --- | --- | --- | --- | --- | ---

リアルタイム社会知解析技術の研究開発

<table>
<thead>
<tr>
<th></th>
<th>1.5万ツイートの速度で解析し、災害時に被災者、救援団体等にリアルタイムで情報提供するシステム（DISAANA）の開発、一般公開。</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

リアルタイム社会・センサーデータ統合解析技術の研究開発

<table>
<thead>
<tr>
<th></th>
<th>ソーシャルメディアのみならず政府各機関の文書も対象に、同義や矛盾と言ったテキスト間の関係を認識する技術の研究開発</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

システムの国際展開

<table>
<thead>
<tr>
<th></th>
<th>2030年に実現</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

【耐災害ICT基盤分野】

（1）耐災害・被害軽減に関連するICT基盤技術

--- | --- | --- | --- | --- | --- | ---

マルチパラメータ（MP）フェーズドアレイレーダの開発

<table>
<thead>
<tr>
<th></th>
<th>MPフェーズドアレイレーダの実証</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

パッシブレーダ技術の研究開発

<table>
<thead>
<tr>
<th></th>
<th>世界初の面的な水蒸気量推定を達成</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

リモートセンシング観測融合研究

<table>
<thead>
<tr>
<th></th>
<th>世界最高性能の航空機搭載SARとなりうる高分解能次世代SARを開発</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

再掲

（1）-4

災害の状況把握や被害予測等に活用可能なリモートセンシング技術の研究開発

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>フロンティア研究分野</td>
<td>重点研究開発課題</td>
<td>概要説明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 量子ICT</td>
<td>① 量子光ネットワーク技術の研究開発</td>
<td>極めて安全かつ高効率な量子光ネットワークの実現に向けて、QKD（Quantum Key Distribution）プラットフォーム技術及び量子光伝送技術を確立するとともに、量子光ネットワークテストベッドにおいて新世代QKD技術や物理レイヤや量子情報技術を実証する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>② 量子ノード技術の研究開発</td>
<td>データセンターネットワークにおけるノード処理の多機能化や低遅延性・省エネルギー等のため、光量子制御技術、量子インターフェース技術及び量子計算標準技術を確立し、光量子回路の小型・集積化の基盤技術を確立。これらの技術を量子光ネットワークテストベッドにおいて実証する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) ナノICT</td>
<td>① ナノコンポジット材料・素子技術の研究開発</td>
<td>様々な環境下で運用される移動体に搭載可能な、超高速かつ効率のよい・光（EO）変換技術等の実用化等において、センサーやデバイスが動作領域を飛躍的に向上させるため、機能・無機ハイブリッド素子技術を原子・分子レベルの精度で制御・構築するための基盤技術を確立する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>② 超伝導単一光子検出器（SSPD）、超伝導電力ロジックデバイスの研究開発</td>
<td>S2PDの量子暗号通信、宇宙通信、バイオ・医療等の幅広い応用展開を目指し、超高速・高機能のための基盤技術を確立する。また、新たな極低エネルギー情報処理技術の創出を目指し、電子の位相制御に基づく新しい論理デバイス及び超高速電力測定のための基盤技術を確立する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) バイオICT</td>
<td>① バイオ情報素子構成技術の研究開発</td>
<td>生体の感覚に則したセンシングを実現するために、情報検出部を体全体にそのものを作り上げ、人が感覚を体全体として構成するための基盤技術を確立する。また、情報検出部として適切なバイオ材料の検討を行い、その機能を拡張・最適化を行うための自然材料の変形技術、材料を組み合わせて機能システムを構成する技術等を確立する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>② バイオ情報抽出技術の研究開発</td>
<td>生体同様のメカニズムで、入力情報から情報源のカテゴリーを抽出する技術を実現するために、生物医学等のデータ解析手法を活用し、体全体によって得られた情報から情報を抽出する技術を確立する。また、生体の細胞ネットワークを対象として、実際に行われている情報の蓄積・統合・認識の様子を学び、体全体を情報処理を行うための基盤技術を確立する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>③ バイオシグナル収集技術の研究開発</td>
<td>生体材料が示す応答を詳細に計測し、利活用可能な形で取り出すため生体信号収集技術を確立する。また、生体材料が示す応答を、その特性に応じて抽出して電磁的信号に変換する技術や、生体材料のシステムとしての動態を計測するための基盤技術を確立する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) 脳情報通信技術</td>
<td>① 高次脳機能型情報処理システムの研究開発</td>
<td>超高齢化社会に対応したICT基盤を整備するため、人間の脳内ダイナミックネットワークモデルの解析を通じて、日常生活での人間の理解・認知を捉え、高齢者・障がい者のみならずスポーツ選手等を含めた人間の行動機能・活動支援等を実現する脳型情報処理アーキテクチャ技術、快適さ・好み等の抽象的な評価軸による評価技術及び身体的・感覚的・社会的なヒューマンアシスト技術の基盤を確立する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>② 脳計測技術の研究開発</td>
<td>脳活動計測の高精度化と日常生活での脳機能モニタリングを実現する基盤技術を確立するため、脳活動の新たな計測手法を開発して精度の向上を図るとともに、大型装置による制限された実験環境での高精度な計測技術や、実生活における軽量小型の計測装置を開発する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>③ 脳情報統合分析技術の研究開発</td>
<td>マルチモーダルな計測データの分析に基づき、脳情報を実生活で効率的に精度高く利用するため、多様な計測手法によるデータの統合、共有、分析技術等の基盤技術を確立する。また、複数の機能に対して蓄積された脳活動データを活用し、複数の脳機能を統合した総合的な脳活動を多角的に分析するための基盤技術を確立する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) 高周波・THz技術</td>
<td>① 超高波無線通信基盤技術の研究開発</td>
<td>ミリ波・テラヘルツ波向け化合物半導体高速電子デバイス技術の高度化を図るとともに、シリコン半導体デバイス、放射技術、実装・集積化技術を組み合わせて、275GHz以上を利用した無線通信システムの実用化に向けた基盤技術を確立する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>② 高周波光源技術の研究開発</td>
<td>高精度局域光モジュールや高精度テラヘルツ計測システムの実現に向けて、テラヘルツ帯大容量通信に必要となる狭帯域・高安定性光源に関する基盤技術を確立する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>③ テラヘルツ帯における無線通信・計測技術等の研究開発</td>
<td>テラヘルツ帯の実用に向けて、テラヘルツ帯無線通信装置や試験装置、放射技術・光電計測システム、高感度センサー技術、非破壊検査技術等を確立する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
【フロンティア研究分野】

(1) 量子ICT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QKDネットワーク技術の研究開発</td>
<td>理論検討</td>
<td>基礎理論の構築</td>
<td>秘匿通信容量と符号化法の解明</td>
<td>秘匿ネットワーク化の基礎理論</td>
<td>ネットワーク設計</td>
<td>プログラム実装と検証</td>
</tr>
<tr>
<td>QKDプラットフォーム技術</td>
<td>調査研究（文献、特許）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QKDサービス実運用試験</td>
<td>QKDネットワーク動作実証</td>
<td>都市圏実装・サービス運用に向けた検証と改善、ユーザ開拓</td>
<td>量子光セキュリティに基づく新世代技術の研究開発</td>
<td>新世代QKD技術のフィールド実証</td>
<td>潜在ユーザとの連携およびQKDサービスの試験運用実績を確立</td>
<td></td>
</tr>
<tr>
<td>量子情報伝送技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>量子光ネットワークテクノロジー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【フロンティア研究分野】

(1) 量子ICT

2050年 低電力・高容量かつ安全なグローバル光・量子情報通信基盤
【フロンティア研究分野】

(2) ナノICT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>超伝導単光子検出器(SSPD)、超伝導省電力ロジックデバイスの研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>超伝導単光子検出器(SSPD)の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>超伝導省電力ロジックデバイスの研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通信波長帯SSPD研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>光学多層膜構造による高感度化</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ベンチタイプファイバー結合による高感度化</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>システム開発と応用展開</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小規模SSPD技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16ピクセルSSPDによる高速動作実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ベンチタイプファイバー結合による高感度化</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>システム開発と応用展開</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通信波長帯SSPDの高効率化</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大規模SSPDアレイシステム開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>短波長用SSPDの高速化</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大規模SSPDアレイシステム開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>超伝導・スピントロニクス融合に向けた磁性/超伝導ハイブリッド構造の検討・作製技術構築</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>超伝導・スピントロニクス融合に向けた磁性/超伝導ハイブリッド構造の検討・作製技術構築</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【フロンティア研究分野】

(3) バイオICT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)-① バイオ情報素子構成技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生物体材料調整・配置技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バイオ情報素子構成技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生物体分子配置技術の構築</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生体材料のプランテーション設計・制御</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生物体自己組織プロセス解析</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生体材料の配置と制御</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生細胞顕微観察法の高度化</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生体応答抽出法の開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バイオ情報抽出技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生体情報素子構成技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バイオ情報素子構成技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バイオ情報素子構成技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バイオ情報素子構成技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)-② バイオ情報抽出技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>信号処理部の構築</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バイオ情報抽出技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バイオ情報抽出技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バイオ情報抽出技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【フロンティア研究分野】

(2)-② 超伝導単光子検出器(SSPD)、超伝導省電力ロジックデバイスの研究開発

(3)-③ バイオシグナル収集技術の研究開発

【フロンティア研究分野】

(4) 脳情報通信技術

(4)-① 高次脳機能型
情報処理システムの
研究開発

(4)-② 脳計測技術の
研究開療

(4)-③ 脳情報統合
分析技術の
研究開療
【フロンティア研究分野】
(5) 高周波・THz技術

(5)-① 超高周波無線通信基盤技術の研究開発

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>主な取組</td>
<td>半導体デバイス・アンテナ融合技術の研究開発</td>
<td>部品接続技術の検討</td>
<td>フロントエンド基板化技術の確立</td>
<td>THz帯無線設備の実証に適応可能なTHzデバイスの実現</td>
<td>2020年代後半に無線装置の実証に適用可能なTHzデバイスの実現</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THz帯の利用に寄与するデバイスの開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

オートカムと社会的メリット
- 中間目標(2020年～)
- 結果目標(2030年)

(5)-② 超高周波光源技術の研究開発

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>主な取組</td>
<td>500GHzまでの評価環境の構築</td>
<td>0.5~1THzまでの評価環境の構築</td>
<td>THz半導体デバイス等の特性評価技術の確立</td>
<td>THz帯電波の有効利用の推進とともに、築基礎域の微細精密技術に寄与</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

オートカムと社会的メリット
- 中間目標(2020年～)
- 結果目標(2030年)

(5)-③ 超高周波・THz技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>主な取組</td>
<td>高安定THz帯周波数コンフォ光源の研究開発</td>
<td>ナノスケール経軸光測器技術の確立</td>
<td>THz帯の正確な測定・評価</td>
<td>THz帯無線装置の免許付与に際する試験業務への活用</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

オートカムと社会的メリット
- 中間目標(2020年～)
- 結果目標(2030年)

(5)-④ 超高周波・THz技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>主な取組</td>
<td>極めて細かなTHz帯周波数の研究開発</td>
<td>光通信波長帯の帯域帯域対応可能なTHz光源の開発</td>
<td>ナノスケール経軸光測器技術の確立</td>
<td>THz帯電波の有効利用の推進とともに、築基礎域の微細精密技術に寄与</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

オートカムと社会的メリット
- 中間目標(2020年～)
- 結果目標(2030年)

(5)-⑤ 超高周波・THz技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>主な取組</td>
<td>THz帯電波の有効利用の推進とともに、築基礎域の微細精密技術に寄与</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

オートカムと社会的メリット
- 中間目標(2020年～)
- 結果目標(2030年)
【フロンティア研究分野】
(5) 高周波・THz技術

---|---|---|---|---|---|---

---|---|---|---|---|---|---

高感度のTHz帯電波伝搬技術の開発 | 300GHz以下の有線電波伝搬技術、THz帯電波伝搬技術の開発
| テラヘルツ帯電波伝搬技術の開発 | 各機能のモジュール化、THz帯電波伝搬技術の開発
| 中間周波帯電波伝搬技術の開発 | ハイブリッドシステムのマルチブロック化、THz帯電波伝搬技術の開発
| テラヘルツ帯電波伝搬技術の開発 | 衛星搭載用テラヘルツ帯電波伝搬技術の開発
| 大気観測システム用センサー等の研究開発 | 衛星搭載用テラヘルツ帯電波伝搬技術の開発
| 衛星搭載用テラヘルツ帯電波伝搬技術の開発 | 2030年代後半にミリ波・テラヘルツ帯が無線検査で実用化

【フロンティア研究分野】
(6) 電磁波計測基盤技術(時空標準技術)

---|---|---|---|---|---|---

---|---|---|---|---|---|---

小金井の定期運用 | 300GHz以下の無線電波伝搬技術の開発
| THz帯電波伝搬技術の開発 | 各機能のモジュール化、THz帯電波伝搬技術の開発
| 中間周波帯電波伝搬技術の開発 | ハイブリッドシステムのマルチブロック化、THz帯電波伝搬技術の開発
| テラヘルツ帯電波伝搬技術の開発 | 衛星搭載用テラヘルツ帯電波伝搬技術の開発
| 大気観測システム用センサー等の研究開発 | 衛星搭載用テラヘルツ帯電波伝搬技術の開発
| 衛星搭載用テラヘルツ帯電波伝搬技術の開発 | 2030年代後半にミリ波・テラヘルツ帯が無線検査で実用化

衛星を用いた国際時刻・周波数比較

- NICTの標準時間基準においては、秒の再定義で国際合意確定後、常任業務への必要な反映を実施。
- 小金井の常任運用
- 原子時計群の運用による日本標準時と周波数標準基準を、安定的に発生。
- 世界標準時と周波数標準を、安定的に発生。
- 日本における時刻/周波数標準機能として、時計タグ提供など世界標準時推進に向けた有効活用を実施。
- 卫星国際時刻・周波数比較計測を定常的に実施。
- 電波法等に基づく周波数基準供給サービスを、安定的に運用。
- 日本の周波数標準機関として、MRAlに関する国際活動に引き続き貢献。

時刻・周波数基準供給サービスの運用(標準電波、電波回線による時刻供給、ネットワーク時刻同期等)

- 機構法業務である標準電波の発射及び周波数標準機関として、時計タグ提供など世界標準時推進に向けた有効活用を実施。
- 周波数校正サービスの利用(Radio Wave Intercomparison Arrangement:相互認識)活動
- 電波法等に基づく周波数基準供給サービスを、安定的に運用。
- 日本における時刻/周波数標準機関として、MRAlに関する国際活動に引き続き貢献。

衛星を用いた国際時刻・周波数比較

- 日本標準時と原子時計の国際リンクによる日本標準時と周波数基準供給サービスの運用
- ステップ・体制整備
- 国際度量衡局(BIPM)が運用する国際比較ネットワーク(1次校正局)の1つとして運用。
電磁波計測基盤技術（時空標準技術）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(6)−①</td>
<td>上段</td>
<td>下段</td>
<td>中間目標(2020年~)</td>
<td><成果目標(2030年)></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17乗台の光標準の実現</td>
<td>実運用に耐える超高精度周波数標準の実現</td>
<td>2025年までに秒の再定義に適応可能な実用に近い光標準を構築</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>堅実に17乗台の精度を実現する光標準の開発</td>
<td>長波長光学連続測定、運用負荷軽減等に向けたシステム改良</td>
<td>2025年までに秒の再定義に適応可能な実用に近い光標準を構築</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>従来技術の精度限界突破に向けた新技術開発</td>
<td>未開拓THz領域解消に資する帯域拡張のための基礎技術開発</td>
<td>2025年までに国際標準化に向けた技術開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>新型共振器、超高速安定SRダレース、新型「フラッシュ」等の開発</td>
<td>常態CCSに接続可能なTHz標準技術を確立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020年までに光標準の国際リンクに資する技術を2030年までに確立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022年12月の300GHzまでのスプリアス測定義務化に対応</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020年までにIEC,ISO,CISPR等への各評価技術の寄与</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>スマートグリッド関連国際規格の整備</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ライナントーク同期可能な通信導入に対応</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>省エネ機器による電磁干渉機器の解明</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>パワーグリッド防護設備の放射防止測定法</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THz帯電界計測装置の検証手法開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>～170GHzの電力較正業務開始</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>電磁波の正確な測定技術に基づく電磁干渉評価技術と人体の安全性評価技術の確立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生体EMC技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPTおよびLTE/MIMOシステムの電波防護指針適合性評価法の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Gシステム等の電波防護指針適用性評価技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020年までに、6GHz以上の評価技術を開発、国際標準化等へ寄与</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

電磁波計測基盤技術（電磁環境技術）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(7)−①</td>
<td>先端EMC計測技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>電磁波の正確な測定技術に基づく電磁干渉評価技術と人体の安全性評価技術の確立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>スマートコミュニティ/エネルギー管理システムにおける電磁干渉評価技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>家庭用エネルギー管理システムにおける電磁干渉評価技術の確立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アンテナ機能分担システムの電磁干渉評価技術の確立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>家庭用エネルギー管理システムにおける電磁干渉評価技術の確立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>家庭用エネルギー管理システムにおける電磁干渉評価技術の確立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>家庭用エネルギー管理システムにおける電磁干渉評価技術の確立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生体EMC技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THz帯までの電波防護指針適合性評価法の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020年までに、THz帯までの電波防護指針適合性評価法を確立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>分子レベル〜組織〜全身までのマルチスケール曝露評価技術の確立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

電磁波計測基盤技術（電磁環境技術）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(7)−②</td>
<td>生体EMC計測技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THz帯までの電波防護指針適合性評価法の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020年までに、THz帯までの電波防護指針適合性評価法を確立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【フロンティア研究分野】

(6) 電磁波計測基盤技術（時空標準技術）

(7) 電磁波計測基盤技術（電磁環境技術）
【フロンティア研究分野】
(8) 新規ICTデバイス技術

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(8)-③ バイオミメティックセンサーネットワークに関する材料・素子技術の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

分野横断的課題

<table>
<thead>
<tr>
<th>重点研究開発課題</th>
<th>概要説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 世界最先端ICTテストベッド</td>
<td>① 世界最先端の次世代ICTテストベッド等の構築・展開</td>
</tr>
</tbody>
</table>

ネットワーク仮想化技術、先端ネットワーク技術、ビッグデータ等の情報基盤等を導入し、新たなIoT(Internet of Things)時代に対応した世界最先端のICTテストベッドを構築するとともに、最新の研究成果をテストベッドとして研究機関やユーザ等に開放することで、先端的な研究開発と実証実験を一体的に推進する。
【分野横断的課題】
(1) 世界最先端ICTテストベッド

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>次世代ICTテストベッドの構築・展開</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>例: 光統合ネットワーク実証基盤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100G光統合NW-TB試行</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>光パス・パケット統合NWテストベッド構築</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小金井大手町リーマン構成で運用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100G光統合NW-TB運用、400G-TB試行</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>超低レイテンシNW（100Gbps光パケット交渉及び100Gbps光パケットサービスを含むNW）を運用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400Gbps光パケットを管理して運用試験運用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400G光統合NW-TB運用、1T-TB要素技術実証・試行</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>超低レイテンシNW（100Gbps光パケット交渉及び100Gbps光パケットサービスを含むNW）を運用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>光パケットの一部を400Gbps化</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1T光パケット要素技術実証実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ソーシャルICTテストベッドの構築・展開</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>例: ネットワーク仮想化実証基盤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>基礎理論の構築</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QKDネットワーク</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>動作実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QKDプラットフォーム技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>量子光伝送技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ソーシャルICTテストベッドによる原理検証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サービス仮想化基盤（サービス・インフラ分離技術）の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サービス仮想化基盤（サービス・インフラ分離技術）の研究開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ネットワーク設計</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ユースケース展開</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>例: 社会ソリューション実証基盤（エミュレーション/シミュレーション）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>先端的な通信技術を用いた社会ソリューション実証基盤技術の確立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>例: 社会実験シミュレーション/エミュレーション</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>関西地方で可能な導入事例を確認する</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オープンイノベーション創出に資するビッグデータ等情報基盤の整備・展開</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QKDネットワーク</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>動作実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>量子光ネットワークテストベッドによる原理検証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>量子光ネットワークテストベッドによる原理検証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>量子光ネットワークテストベッドによる原理検証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>量子光ネットワークテストベッドによる原理検証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 本工程表（案）は、情報通信審議会 情報通信技術分科会 技術戦略委員会 重点分野WGにおいて、重点研究開発課題ごとに、平成28年度からの5年間を目途として現時点で想定される具体的な取組方針等を取りまとめたものであり、今後の技術の発展動向や研究開発の進展状況等を踏まえて、適時適切にその内容を見直していく必要がある。
人工知能・ロボット アドホックグループ
検討結果とりまとめ

～ ICTを活用したスマートロボット／IoTの推進方策 ～

構成

1 はじめに
2 スマートロボット／IoT実証実験ゾーンのイメージ
3 スマートロボットの種別毎のネットワーク要件等
4 スマートロボット／IoT実証実験環境に求められる要件
5 スマートロボット／IoT実証実験イメージ
6 その他実証実験ゾーンに必要な実験環境等
7 スマートロボット／IoT実証実験を通じて解決すべき課題
8 スマートロボット共通プラットフォームの標準への取組
9 推進体制（案）について
1. はじめに
本年4月に、「人工知能・ロボット アドホックグループ検討結果」のとりまとめを行った。その際に、今後、介護・医療、インフラ・建築など様々な分野においてロボットの早期導入を推進するための方策として、①ロボット大規模実証実験ゾーンの構築、②ロボット共通プラットフォームの標準化、③ロボット普及のための推進体制の構築や人材育成の推進等の必要性を挙げた。

本編では、リアルタイム通信によるロボットの協調・連携や超ビッグデータ解析を用いたコミュニケーションロボットの実証実験等を円滑かつ迅速に実施するために必要となる、大規模でかつセキュアなクラウド環境や高速ネットワークを装備した「ロボット大規模実証実験ゾーン」に求められる要件等に関して整理したものである。

本検討結果は、総務省や情報通信研究機構(NICT)が実施すべき重点研究分野であるロボット技術についての研究開発や普及展開に向けた具体的な取組イメージとして、「新たな情報通信技術戦略の在り方」(平成26年諮問第22号)に関する情報通信審議会 中間答申に参考資料として掲載するものである。

【検討事項】
1. スマートロボット／IoT大規模実証実験ゾーンの構築に向けた取組
2. スマートロボット共通プラットフォームの標準化への取組
3. スマートロボット／IoTの推進体制の構築に向けた取組等

2. スマートロボット／IoT(Intelligent IoT)実証実験ゾーンのイメージ (1)

1 スマートロボット／IoT実証実験ゾーンの種類

ロボット技術の成熟度により、以下のとおり整理することができる。

●災害対応やインフラ点検等、主に屋外で使用されるフィールドロボット技術は、その活用が期待される一方、技術的には未だ発展途上であり、ロボット技術の開発・実証・実用化を加速するための拠点(実証フィールド)が必要⇒例:福島浜通りロボット実証区域など
【利用が想定されるロボット:ドローン(無人小型航空機)、監視用ロボット、災害用ロボット等】

＜これまでのアドホック会合での意見＞
・ドローンは、強風などの悪環境下では飛行に問題がある。先ずは無人環境での実証を重ね有人環境への実用化を目指すべき。

●ロボット技術等が既に成熟し、実証段階にある場合には、実環境下における実証実験を行い、データを取得・分析しフィードバックし、実用化を加速できる実証フィールドが必要。
⇒例:東京近郊の市街地(お台場エリア等)、国際空港、必要に応じて実証特区
【利用が想定されるロボット:自立型モビリティ(自動運転)、コミュニケーションロボット(多言語翻訳、道案内)、監視・警備用ロボット等】

＜これまでのアドホック会合での意見＞
・日常環境において実際に使って安全性を確認するなど、早期実用化に向けた検証を進めるとともに、必要に応じて規制・制度改革を行うべき。
・実用化ターゲットとして、2020年東京オリンピック・パラリンピック競技大会が有効であり、ショーケースすべき。
2. スマートロボット／IoT実証実験ゾーンのイメージ（2）

一方、ネットワークやクラウド機能をフルに活用し、高度な行動や対話を実現するスマートロボットの開発を目指す場合には、以下のとおり整理することができる。

● ICTを活用して人工知能・ロボット技術の開発・実証において、世界最先端のネットワーク・クラウド機能をフルに活用でき、様々なスマートロボットを動作させる環境を備えた実証フィールドが必要。

⇒ 例：横須賀リサーチパーク（YRP）、NICT新世代通信網テストベッド（JGN-X）

【利用が想定されるロボット：複数ロボットの連携動作・制御、コミュニケーションロボット等】

＜これまでのアドホック会合での意見＞
・ロボットの目的や利用シーンに合わせて、自律制御やネットワークにより協調・連携を図る必要がある。
・自動運転においては、ネットワークに①リアルタイム性、②安全性、③確実性が求められる。
・日本では人の感性や気持ちに寄り添うようなコミュニケーションロボットを目指すべき。また、人の感情を推察できるようになったとしても、それを伝えるインターフェースの確立も必要である。

2. スマートロボット／IoT実証実験ゾーンのイメージ（3）

2 事例紹介：横須賀リサーチパーク（YRP）におけるネットワーク・クラウド環境 資料提供：NICT

① ネットワーク環境
YRP（神奈川県横須賀市）からNICTのJGN-X（東京都大手町）に接続することにより、以下のネットワーク環境を構築可能。

●伝送容量：最大10Gbps ＜圧縮4K映像は約300ch伝送可能。（非圧縮4Kは1ch）＞
●遅延時間：3mS（片方向） ＜大手町から他アクセスポイントに接続する場合には変化する＞
●セキュリティ：他のトラフィック、サービスと分離して利用が可能（専用線として利用）。セキュアな通信方式（暗号化方式等）を用いる場合には、ユーザが終端装置等を準備することで実証実験は可能（要相談）

② クラウド環境
YRPにはNICTテストベッド（JOSE）拠点があり、JGN-X又はJOSEの仮想化ストレージサービスを利用可能。

・JGN-Xとは10Gbpsの帯域で接続されているが、各サーバとは1Gbps（※）で接続。
・セキュリティ上、ユーザ間は分離可能。

●容量：サーバ台数は400台 ＜Intel 8core Xeonプロセッサ、64GBメモリ＞
ストレージ：250TB ＜圧縮4K映像は約2年分。（非圧縮4Kは90時間）＞

※非圧縮の場合には、6Gbpsを実現するためには、専用のシステム構築が必要。
3. スマートロボットの種別別のネットワーク要件のイメージ

（1）無人化施工、インフラ点検、災害対応ロボット（ドローン等を含む）
●遅延時間：数10ms ～ 100ms以下
●伝送容量：数100kbps ～ 数10Mbps以下（制御用、データ・画像伝送用）
※情報通信審議会「ロボットにおける電波利用の高度化に関する技術的条件」で審議中。

（2）らくらくカー（自動運転）
●遅延時間：1ms以下（遅延時間が短ければ短いほどよい。）
●伝送容量：数100kbps ～ 数10Mbps以下（制御用、データ・画像伝送用）

（3）コミュニケーションロボット
●遅延時間：数10ms ～ 100ms以下
●伝送容量：数100kbps ～ 数100Mbps以下（通信・制御用、データ伝送用）

4. スマートロボット実証実験環境に求められる要件

（1）ネットワーク環境
●遅延時間：1ms以下 ～ 100ms以下
＜ロボット用途や数によって柔軟にネットワーク制御＞
●伝送容量：数Mbps ～ 数100Mbps以下
（制御用、データ・画像伝送用）
●セキュア通信：データの秘匿・分散化により、安全・安心な通信・制御を確立。
●カバレッジ、スケール：面的な広がり、数的な拡張に対応
上記要件を満たすため、サービス毎のネットワーク構築やネットワーク資源のダイナミック制御等が必要。
ネットワーク仮想化（SDN）、エッジコンピューティング等の最先端技術の実現

（2）クラウド環境
●サーバー容量：超ビッグデータに対応するための大容量化
●処理能力：人工知能を用いたビッグデータ解析技術
●ロボット共通プラットフォーム：共通3次元地図、複数のロボット協調・連携技術、音声データ（コミュニケーションロボット）

（3）研究環境での新たな取組＝Living Lab
●課題を発見し、デザイン思考で取り組む。
●早いサイクルで、構築・計測、学習（プロトタイピング）を繰り返す。
●ユーザー参加型、対話型 ●スタートアップ企業の参加
●オープンイノベーション
5. スマートロボット実証実験イメージ

＜例①＞ 高齢者等支援のためのモビリティシステムの開発、実証

○ （要求条件）
✓ 高齢者がストレスなく、安全に生活するためのパーソナルモビリティ装置と、自動走行技術の確立
 • 生活圏の地図・路面状態に関するデータ整備
 • 最適経路の探索技術とリアルタイムな制御の確立

<table>
<thead>
<tr>
<th>分野</th>
<th>要件</th>
</tr>
</thead>
<tbody>
<tr>
<td>センシング技術</td>
<td>パーソナルモビリティ装置と人間、自動車等、道路の状態を一定区間ごとにセンシングする技術</td>
</tr>
</tbody>
</table>
| ロボット技術 | • データを高効率・セキュアに伝送する技術の確立
 • リアルタイム制御の高度化 |
| ネットワーク技術 | データをリアルタイムに処理可能なネットワーク技術。
 • 伝送容量：数100kbps～数10Mbps以下 |

データ利活用技術

| 標準化 | 通信プロトコル標準化
 • ユーザー・機器認証技術の確立 |

社会的課題

法制度の整備
（道路交通法、介護保険制度…）

実証実験におけるプレイヤー

• メーカー
 （パーソナルモビリティ開発、センサー開発）
• 通信事業者（ネットワーク、クラウド）
• 自治体

＜例②＞ 脳情報・生体情報を用いたコミュニケーションロボットの開発、実証

○ （要求条件）
✓ ユーザーの感情と行動の情報に基づき、心身共に健康な暮らしを支援するコミュニケーションロボットの開発
 • 脳波からユーザーの感情（喜怒哀楽）を判別
 • 多数のユーザーの脳情報を蓄積した脳情報ビッグデータの構築
 • ユーザーに特化した脳波・行動情報と脳情報ビッグデータを活用したコミュニケーション（会話）の実現

<table>
<thead>
<tr>
<th>分野</th>
<th>要件</th>
</tr>
</thead>
</table>
| 脳情報通信技術 | • ウェアラブル小型脳波計測機器による、脳情報の十分な時空間分解能での計測の実現
 • 異なる計測法を統合的に活用する技術の確立
 • リアルタイムな脳情報ビッグデータ（〜数百ms）の実現
 • 脳情報ビッグデータの構築（様々な状態・活動シーンにおける脳情報をメタデータとともに記録・蓄積した大規模な脳情報データベースの構築） |
| ロボット技術 | • 環の状況認識・音声認識技術の確立
 • データを高効率・セキュアに伝送する技術の確立 |
| ネットワーク技術 | 大規模なデータをリアルタイムに処理可能なネットワーク技術。
 • 伝送容量：数Mbps～数100Mbps以下 |

データ利活用技術

| 標準化 | 通信プロトコル標準化
 • ユーザー・機器認証技術の確立 |

社会的課題

法制度の整備
（個人情報保護、介護保険制度…）

実証実験におけるプレイヤー

• メーカー
 （脳情報計測機器、ロボット）
• 通信事業者（ネットワーク、クラウド）
• 民間セキュリティ会社、病院
6. その他実証実験ゾーンに必要な実験環境等

例えば、前ページに掲げる以下のシステムの実証実験を実施する場合には、ネットワーク・クラウド環境に加え、以下のようなロボット利活用環境設備が必要。

例① 高齢者等支援のためのモビリティシステムの開発、実証
例② 脳波を用いたコミュニケーションロボットの開発、実証

- 電源
- 路側ポール（アンテナ取り付け用）
- 実験ハウス（ロボットバリアフリー）
- 電波環境測定機器
- デジタル地図データ
- 各種センサー（環境用、人感用、監視用、振動用等）
- 通信装置（車車通信間、LTE／WiFi、WiSUN、GPS／ビーコン位置把握等）

【参考：BMIハウス（資料提供：ATR）】

日常生活行動をBMIで支援できるように、各種センサーとアクチュエータ（生活支援機器）を配備した実環境実験設備（BMIハウス）を構築。

BMIハウス 実証実験の様子

7. スマートロボット実証実験を通じて解決すべき課題

（1） ネットワークロボットの確実性や安全性の検証

① ロボット開発・実証試験に併せて安全面でのリスクや社会的受容性の検証
 ⇒ ロボットの機能評価や認証試験等を実施
 ⇒ ロボットの倫理的課題、法的課題、社会的課題の検証
 （ELSI: Ethical, Legal and Social Issues）

② 安定的なロボット運用のためのネットワーク確実性の検証
 ⇒ 常時接続が可能となるネットワーク技術の高度化の検討
 ⇒ 万が一、ネットワークが回線断くなった場合の保証方法の検討（ロボット側も含む）

③ 安定的なロボット運用のためのネットワーク安全性の検証
 ⇒ サイバー攻撃等からのネットワークの強靱性検証及び悪用防止や回避策の検討

（2） ロボットに係る制度整備等の検討

ロボットの電波利用の高度化等の開発・実証と連携し、また関係省庁の協力を得ながら、制度整備等の検討に寄与する。
8. スマートロボット共通プラットフォームの標準化への取組

スマートロボットの標準化のための検討課題

① 複数のスマートロボットの協調・連携技術

• 複数のスマートロボット（ロボット、スマホ、センサなどを含む）の協調・連携の記述方式、プロトコル
• 複数（例えば、同一エリア内に数百台程度を想定）のロボットを同時に制御可能とする高信頼・高効率・低遅延を実現する無線通信技術・ネットワーク技術
• スマートロボット協調・連携を自動的に管理するプラットフォームアーキテクチャ
• 悪意あるユーザのスマートロボットの乗っ取りを未然に防ぐロボット遠隔制御セキュリティ
• 複数のスマートロボット連携サービスに関する安全基準

② コミュニケーションロボット技術

• 人とロボットのコミュニケーション（インタラクション）データ（行動、音声・対話のデータ）を蓄積するデータ記述形式
• コミュニケーションデータから抽出したコミュニケーション知識とWeb上のタスク実行のための知識を利用可能にするプラットフォームアーキテクチャ

標準化への取り組み

JGN-X等でこれまで培った経験をもとにし、最先端のネットワークを活用したスマートロボットのテストベッド環境を整備し、世界に先駆けて多くのロボット利用を実現するとともに、ネットワーク制御のプラットフォームの標準化を主導し、我が国の優位性を確保。

9. 推進体制（案）について

スマートロボット/IoTの推進体制の構築について

スマートロボットの研究開発と実証実験の一貫した推進、また早期のビジネス展開を図るため、スタートアップ企業を含め様々な分野（特に、異分野・異業種）からの参加を得て、ロボット活用に関する意見・要望を広く求め、全体での情報共有や課題解決の検討、さらにはビジネスマッチングや人才育成に向けた方策の検討等を行うこと等を目的として、産学官の連携推進体制を構築する。

【スマートロボット／IoT推進体制メンバー（案）】
• 起業家、ビジネスデザイナー、金融機関
• 通信事業者・関係団体、メーカー（ICT、ロボット、自動車等）、大学・研究機関
• ユーザー（地方自治体、医療・介護、インフラ、警備等）等
参考資料 3

1. 諮問書
2. 情報通信審議会 情報通信技術分科会 技術戦略委員会 構成員名簿
3. 情報通信審議会 情報通信技術分科会 技術戦略委員会 重点分野WG 構成員名簿
4. 情報通信審議会 情報通信技術分科会 技術戦略委員会 重点分野WG
 人工知能・ロボット アドホックグループ 構成員名簿
5. 開催経緯
1. 諮問書

諫 問 第 2 2 号
平成 2 6 年 1 2 月 1 8 日

情報通信審議会会長 殿

総務大臣 山 本 早苗

諫 問 書

下記について、別紙により諮問する。

記

新たな情報通信技術戦略の在り方
新たな情報通信技術戦略の在り方

１　諮問理由

我が国が超高齢化社会を迎え、国際的な経済競争が厳しくなる中で、経済を再生し、さらに持続的に発展させていくためには、経済社会活動全般の基盤であるとともに、今後とも重要な産業である ICT 分野が力強く成長し、市場と雇用を創出していく必要がある。

このため、本年６月の情報通信審議会答申「イノベーション創出実現に向けた情報通信技術政策の在り方」に基づき、ICT 分野におけるイノベーション創出の実現に向けた取組を推進しているところであるが、イノベーションのシークを生み出すための未来への投資として、基礎的・基本的な研究開発についても着実に推進していく必要がある。

また、独立行政法人情報通信研究機構（NICT）は、平成27年4月から、研究開発成果の最大化を目的とした新たな「国立研究開発法人」に移行する予定であり、ICT 分野における我が国の研究開発等を一層強力にリードすることにより、ICT 産業の国際競争力の確保等に資することが期待されている。

このような状況を踏まえ、ICT 分野において国、NICT 等が取り組むべき重点研究開発分野・課題及び研究開発、成果展開等の推進方策の検討を行い、次期科学技術基本計画、NICT の次期中長期目標の策定等に資すること、平成28年度からの5年間を目標とした新たな情報通信技術戦略の在り方について、諮問する。

２　答申を希望する事項

(1) ICT分野における重点研究開発分野及び重点研究開発課題
(2) 研究開発、成果展開、産学官連携等の推進方策
(3) その他必要と考えられる事項

３　答申を希望する時期

平成27年7月目途

４　答申が得られた時の行政上の措置

今後の情報通信行政の推進に資する。
<table>
<thead>
<tr>
<th>氏名</th>
<th>主要現職</th>
</tr>
</thead>
<tbody>
<tr>
<td>主査</td>
<td>相田 仁 東京大学大学院 工学系研究科 教授</td>
</tr>
<tr>
<td>委員</td>
<td>森川 博之 東京大学 先端科学技術研究センター 教授</td>
</tr>
<tr>
<td>委員</td>
<td>近藤 貞子 老テク研究会 事務局長</td>
</tr>
<tr>
<td>委員</td>
<td>水嶋 繁光 シャープ(株) 取締役会長</td>
</tr>
<tr>
<td>専門委員</td>
<td>伊丹 俊八 国立研究開発法人 情報通信研究機構 理事（平成27年5月20日から）</td>
</tr>
<tr>
<td>専門委員</td>
<td>内田 耕昭 KDDI(株) 取締役執行役員事務技術統括本部長 兼 技術企画本部長</td>
</tr>
<tr>
<td>専門委員</td>
<td>江村 克己 日本電気(株) 执行役員</td>
</tr>
<tr>
<td>専門委員</td>
<td>大木 一夫 (一社)情報通信ネットワーク産業協会 前専務理事</td>
</tr>
<tr>
<td>専門委員</td>
<td>大久保 明 国立研究開発法人 情報通信研究機構 前理事（平成27年5月19日まで）</td>
</tr>
<tr>
<td>専門委員</td>
<td>大島 まり 東京大学大学院情報学環／東京大学生産技術研究所 教授</td>
</tr>
<tr>
<td>専門委員</td>
<td>岡田 好幸 パナソニック(株) AVC ネットワークス社 常務・CTO</td>
</tr>
<tr>
<td>専門委員</td>
<td>冲 理子 地球観測研究センター 研究領域リーダー</td>
</tr>
<tr>
<td>専門委員</td>
<td>黒田 道子 東京工科大学 名誉教授</td>
</tr>
<tr>
<td>専門委員</td>
<td>酒井 善則 放送大学 特任教授 東京渋谷学習センター所長</td>
</tr>
<tr>
<td>専門委員</td>
<td>佐々木 繁 (株)富士通研究所 常務取締役</td>
</tr>
<tr>
<td>専門委員</td>
<td>篠原 弘道 日本電気電話(株) 代表取締役副社長 研究企画部門長</td>
</tr>
<tr>
<td>専門委員</td>
<td>角南 賢政 政策研究大学院大学 教授</td>
</tr>
<tr>
<td>専門委員</td>
<td>浜田 泰人 日本放送協会 理事・技師長</td>
</tr>
<tr>
<td>専門委員</td>
<td>平田 常夫 (株)国際電気通信基礎技術研究所 代表取締役社長</td>
</tr>
<tr>
<td>専門委員</td>
<td>松井 房樹 (一社)電波産業会 専務理事・事務局長</td>
</tr>
<tr>
<td>専門委員</td>
<td>三谷 政昭 東京電機大学 工学部 情報通信工学科 教授</td>
</tr>
<tr>
<td>専門委員</td>
<td>宮崎 早苗 (株)NTTデータ 公共システム事業本部 課長</td>
</tr>
</tbody>
</table>

オブザーバー	田中 宏 内閣府 政策統括官(科学技術・イノベーション担当)付参事官
オブザーバー	櫻本 剛 文部科学省 研究振興局 参事官(情報担当)
オブザーバー	渡邊 昇治 経済産業省 産業技術環境局 研究開発課長
3. 情報通信審議会 情報通信技術分科会 技術戦略委員会 重点分野WG 構成員名簿
（敬称略）

<table>
<thead>
<tr>
<th>氏名</th>
<th>主要現職</th>
</tr>
</thead>
<tbody>
<tr>
<td>主任</td>
<td>森川 博之 東京大学 先端科学技術研究センター 教授</td>
</tr>
<tr>
<td>主任代理</td>
<td>下條 真司 大阪大学 サイバーメディアセンター 教授</td>
</tr>
<tr>
<td>井上 友二</td>
<td>（株）トヨタ開発センター 代表取締役会長</td>
</tr>
<tr>
<td>宇佐見 正士</td>
<td>KDDI（株）理事 技術開発本部長</td>
</tr>
<tr>
<td>梅比良 正弘</td>
<td>茨城大学 工学部 教授</td>
</tr>
<tr>
<td>加藤 次雄</td>
<td>（株）富士通研究所 ネットワークシステム研究所長</td>
</tr>
<tr>
<td>門脇 直人</td>
<td>国立研究開発法人 情報通信研究機構 執行役・経営企画部長</td>
</tr>
<tr>
<td>加納 敏行</td>
<td>日本電気（株）中央研究所 主席技術主幹</td>
</tr>
<tr>
<td>黒田 徹</td>
<td>日本放送協会 放送技術研究所長</td>
</tr>
<tr>
<td>坂井 英一</td>
<td>三菱電機（株）宇宙システム事業部 宇宙開発利用推進室 担当部長</td>
</tr>
<tr>
<td>鈴木 仁</td>
<td>広島大学大学院 先端物質科学研究科 准教授</td>
</tr>
<tr>
<td>高原 勲</td>
<td>日本電信電話（株）未来ネット研究所長</td>
</tr>
<tr>
<td>手塚 悟</td>
<td>東京工科大学 コンピュータサイエンス学部 教授</td>
</tr>
<tr>
<td>中村 哲</td>
<td>奈良先端科学技術大学院大学 情報科学研究科 教授</td>
</tr>
<tr>
<td>中村 武宏</td>
<td>（株）NTTドコモ 先進技術研究所 5G推進室長</td>
</tr>
<tr>
<td>中村 秀治</td>
<td>（株）三菱総合研究所 情報通信政策研究本部長</td>
</tr>
<tr>
<td>西村 信治</td>
<td>（株）日立製作所 研究開発グループ テクノロジーイノベーション統括本部 エレクトロニクスイノベーションセンター長</td>
</tr>
<tr>
<td>根本 香絵</td>
<td>国立情報学研究所 情報学プリンシブル研究系 教授・量子情報国際研究センター長</td>
</tr>
<tr>
<td>萩田 紀博</td>
<td>（株）国際電気通信基礎技術研究所 知能ロボティクス研究所長</td>
</tr>
<tr>
<td>平松 勝彦</td>
<td>パナソニック（株）全社CTO室 技術部外部長</td>
</tr>
<tr>
<td>三膳 孝通</td>
<td>（株）インターネットイニシアティブ 技術主幹</td>
</tr>
<tr>
<td>渡邊 敏明</td>
<td>（株）東芝 研究開発センター 技監</td>
</tr>
<tr>
<td>氏名</td>
<td>主要現職</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>下條真司</td>
<td>大阪大学 サイバーメディアセンター 教授</td>
</tr>
<tr>
<td>淺間一</td>
<td>東京大学 工学系研究科 教授</td>
</tr>
<tr>
<td>栄藤稔</td>
<td>(株)NTTドコモ 執行役員イノベーション統括部長</td>
</tr>
<tr>
<td>尾坐幸一</td>
<td>セコム（株）IS研究所 センシングテクノロジーエディビジョン マネージャ</td>
</tr>
<tr>
<td>門脇直人</td>
<td>国立研究開発法人 情報通信研究機構 執行役・経営企画部長</td>
</tr>
<tr>
<td>是津耕司</td>
<td>国立研究開発法人 情報通信研究機構 ユニバーサルコミュニケーション研究所 情報利活用基盤研究室長</td>
</tr>
<tr>
<td>高野史好</td>
<td>(株)小松製作所 CTO室 技術イノベーション企画グループ 主幹</td>
</tr>
<tr>
<td>高橋智隆</td>
<td>(株)ロボ・ガレージ 代表取締役社長</td>
</tr>
<tr>
<td>高原厚</td>
<td>日本電信電話（株）NTT 未来ねっと研究所長</td>
</tr>
<tr>
<td>鳥澤健太郎</td>
<td>国立研究開発法人 情報通信研究機構 ユニバーサルコミュニケーション研究所 情報分析研究室長</td>
</tr>
<tr>
<td>中村秀治</td>
<td>(株)三菱総合研究所 情報通信政策研究本部長</td>
</tr>
<tr>
<td>西川徹</td>
<td>(株)Preferred Networks 代表取締役 最高経営責任者</td>
</tr>
<tr>
<td>西崎親</td>
<td>(株)電通 ロボット推進センター ロボットプランナー</td>
</tr>
<tr>
<td>本間義康</td>
<td>パナソニック（株） 生産技術本部 生産技術開発センター 新規事業推進室 室長</td>
</tr>
<tr>
<td>前田英作</td>
<td>日本電信電話（株）NTT コミュニケーション科学基礎研究所長</td>
</tr>
<tr>
<td>宮下敬宏</td>
<td>(株)国際電気通信基礎技術研究所 ネットワークロボット研究室長</td>
</tr>
<tr>
<td>米田旬</td>
<td>シャープ（株）新規事業推進本部 副本部長</td>
</tr>
</tbody>
</table>
5. 開催経緯
平成26年12月18日 第33回総会にて諮問
平成27年1月21日 第106回情報通信技術分科会にて技術戦略委員会を設置

■技術戦略委員会
平成27年1月30日 第1回
（1）諮問事項、技術戦略委員会の設置及び運営等について
（2）総務省の研究開発に係る取組について
（3）情報通信研究機構の取組について
（4）構成員等からのプレゼンテーション

平成27年2月25日 第2回
（1）研究開発、国際標準化、成果展開等の推進方策について
 1. 構成員等からのプレゼンテーション等

平成27年3月20日 第3回
（1）産学官連携、国際連携、人材育成等の推進方策について
 1. 構成員等からのプレゼンテーション等

平成27年4月28日 第4回
（1）骨子案について

平成27年5月22日 第109回情報通信技術分科会にて検討状況の報告
平成27年5月25日 第5回
（1）中間報告書（案）について

平成27年7月10日 第6回
（1）中間報告書（案）について
平成27年7月17日 第111回情報通信技術分科会にて中間報告書（案）の報告

■技術戦略委員会 重点分野WG
平成27年2月5日 第1回
（1）重点分野WGの設置及び進め方について
（2）構成員等からのプレゼンテーション
（3）重点研究開発分野、重点研究開発課題等に関する論点の例について

平成27年3月10日 第2回
（1）構成員等からのプレゼンテーション
（2）重点研究開発分野、重点研究開発課題について
（3）研究開発の推進方策等に関する御意見について

平成27年4月10日 第3回
（1）構成員からのプレゼンテーション
（2）人工知能・ロボット アドホックグループの検討状況について
（3）重点研究開発分野及び重点研究開発課題（案）について
技術戦略委員会 重点分野WG 人工知能・ロボット アドホックグループ

平成27年4月2日 第1回
（1）人工知能・ロボット アドホックグループの設置について
（2）検討の進め方、背景説明等
（3）有識者プレゼンテーション

平成27年4月6日 第2回
（1）有識者プレゼンテーション
（2）重点分野WGへの報告について

平成27年4月17日 第3回
（1）有識者プレゼンテーション
（2）検討結果取りまとめ

平成27年5月21日 第4回
（1）技術戦略委員会の審議結果報告について
（2）有識者プレゼンテーション
（3）人工知能・ロボット推進方策について

平成27年6月26日 第5回
（1）有識者プレゼンテーション
（2）人工知能・ロボット推進方策について
<table>
<thead>
<tr>
<th>ページ</th>
<th>用語</th>
<th>用語解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>400Gチップ</td>
<td>400Gbpsの光伝送を行うためのデジタル信号処理回路。</td>
</tr>
<tr>
<td>24,26,31,35,36</td>
<td>5G（第5世代移動通信システム）</td>
<td>4G（第4世代移動通信システム、LTE-Advanced）と比較し、更なる高速化、大容量化・低遅延化等を実現する次世代移動通信システム。2020年の商用開始を目指して研究開発が進められている。</td>
</tr>
<tr>
<td>24,26,31,36</td>
<td>5G/Beyond5G時代</td>
<td>第5世代移動通信網（5G）またはそれ以降の移動通信網が実用化される時代のこと。</td>
</tr>
<tr>
<td>41</td>
<td>ACES（Atomic Clock Ensemble in Space）地上局</td>
<td>基礎物理実験や次世代の衛星搭載時計・時刻比較技術開発のため、高精度原子時計を宇宙ステーションに搭載し地上との間で周波数比較実験を行うために必要な地上の設備・施設。ACES地上局は高精度な原子時計を有する世界7機関に設置され、日本ではNICTが代表機関となり運用を行っている。</td>
</tr>
<tr>
<td>9</td>
<td>CMOS画像センサー</td>
<td>CMOS（相補性金属酸化膜半導体）を用いたイメージセンサー。大量生産が可能なため、比較的安価であり、素子が小さいことから消費電力も少ない。</td>
</tr>
<tr>
<td>1,2</td>
<td>CPS（Cyber Physical System、サイバーフィジカルシステム）</td>
<td>現実空間とサイバー空間をネットワークを介して融合したシステム。現実空間において得られたデータをサイバー空間において処理し、その結果を現実空間にフィードバックする。</td>
</tr>
<tr>
<td>28</td>
<td>DARPA（Defense Advanced Research Projects Agency）</td>
<td>米国国防総省の研究開発部門である国防高等研究計画局のこと。</td>
</tr>
<tr>
<td>23,33</td>
<td>EarthCARE衛星</td>
<td>日本と欧州が協力して開発を進める地球観測衛星。搭載センサーを用いて、地球温暖化予測における最大の誤差要因である雲・エアロゾルの全地球的な把握の実現を行う。</td>
</tr>
<tr>
<td>28</td>
<td>Horison2020</td>
<td>欧州委員会による新しい研究開発・イノベーション枠組プログラムのこと。（2014年～2020年）</td>
</tr>
<tr>
<td>3</td>
<td>Industrial Internet Consortium</td>
<td>産業機器とデータを結びつけるオープンでグローバルなネットワークの普及促進を目的とするコンソーシアム。AT&T, Cisco, GE, IBM, Intelの5社により2014年3月設立。</td>
</tr>
<tr>
<td>2,28</td>
<td>Industrie4.0</td>
<td>IoTやAIによりものづくりにおける工程全体の革新を目指すドイツの国家戦略。ドイツは、Industrie4.0を、蒸気機関による第1次産業革命、電力による第2次産業革命、エレクトロニクスとITによる第3次産業革命に続く、第4の産業革命と位置付けている。</td>
</tr>
<tr>
<td>1,他</td>
<td>IoT（Internet of Things）</td>
<td>モノのインターネット。PCやスマートフォンに限らず、センサー、家電、車など様々なモノがインターネットで繋がること。</td>
</tr>
<tr>
<td>25</td>
<td>ITU-T</td>
<td>International Telecommunication Union Telecommunication Standardization Sector（国際電気通信連合電気通信標準化部門）の略称。電気通信に関する技術、運用及び料金について研究を行い、電気通信を世界規模で標準化するとの見地から、技術標準等を定める勧告の作成などを行う機関。</td>
</tr>
<tr>
<td>ページ</td>
<td>用語</td>
<td>記述</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>25</td>
<td>Ka 帯マルチビーム</td>
<td>30/20 GHz 帯の電波で、複数のビームでサービスエリアを覆うもの。マルチビームは、ビームを絞ることにより地上で受信する電波を強めることができるため、地球局アンテナの小型化や伝送容量の増加が可能という特長がある。</td>
</tr>
<tr>
<td>48</td>
<td>Lagopus</td>
<td>総務省「ネットワーク仮想化技術の研究開発」において、日本電信電話（株）が開発した SDN ソフトウェアスイッチ。「雷鳥」の意味。</td>
</tr>
<tr>
<td>46</td>
<td>Living Lab</td>
<td>開発プロセスにエンドユーザー等の多様なステークホルダーが参加し、モノやサービスを共創していくモデル。</td>
</tr>
<tr>
<td>1,2,39</td>
<td>M2M（Machine to Machine、マシン・ツー・マシン）</td>
<td>ネットワークに繋がれた機械同士が人間を介在せずに相互に情報交換を行うシステムのこと。</td>
</tr>
<tr>
<td>16,33,39</td>
<td>MP 頻度ドアレイレーダー</td>
<td>降水現象の定量的な観測（雨粒の正確な観測）に優れたマルチパラメータレーダー（観測に用いる電磁波の振動方向が「水平」と「垂直」の2方向のレーダー）の性能を持ったフェーズドアレイレーダー。</td>
</tr>
<tr>
<td>1,25</td>
<td>NFV（Network Functions Virtualization、ネットワーク機能仮想化）</td>
<td>ネットワーク接続機器として使用されているルータやゲートウェイ等の機能をソフトウェア化して実装する技術。</td>
</tr>
<tr>
<td>9,25,35,45</td>
<td>Pbps, Tbps, Gbps</td>
<td>通信速度の単位。Pbps は1秒間に何千兆ビットのデータを送れるか、Tbps は1秒間に何兆ビットのデータを送れるか、Gbps は1秒間に何十億ビットのデータを送れるかを表す。</td>
</tr>
<tr>
<td>30,40</td>
<td>QKD 実用化技術</td>
<td>量子鍵配送（QKD）で生成した暗号鍵を、従来のネットワークの暗号化に応用するまでのシステム全体を実用化する技術。</td>
</tr>
<tr>
<td>16</td>
<td>QoL（Quality of Life）</td>
<td>物理的な豊かさやサービスの量だけでなく、精神面を含めた生活全体の豊かさに関する概念。</td>
</tr>
<tr>
<td>25,38</td>
<td>SDI（Software Defined Infrastructure）</td>
<td>ネットワークのみならず、クラウドを含むインフラ全体を仮想化して、ソフトウェアにより柔軟に制御するもの。</td>
</tr>
<tr>
<td>1,25</td>
<td>SDN（Software Defined Networking、ネットワーク仮想化）</td>
<td>ネットワークの物理的な構成に依存することなく、ソフトウェアによりネットワークを柔軟かつ効率的に制御するもの。</td>
</tr>
<tr>
<td>13,14,45,47</td>
<td>Wi-SUN（Wireless Smart Utility Network）</td>
<td>スマートメータ等向けの無線通信規格。NIC が主導的に研究開発や標準化活動等を推進し、IEEE802.15.4/g/e として国際標準化。国内の全電力管内のスマートメータに採用。今後、農業やインフラ管理等の様々な分野における普及が期待。</td>
</tr>
<tr>
<td>45</td>
<td>アイデアソン</td>
<td>アイデア（Idea）とマラソン（Marathon）を組み合わせた造語。一定期間集中的に共同作業によるサービスの考案等を行い、アイデアを競うもの。</td>
</tr>
<tr>
<td>17,19</td>
<td>アクチュエーション</td>
<td>様々な IoT デバイスを連携させ、実世界での人々の行動やコミュニケーションを能動的に支援する技術。</td>
</tr>
<tr>
<td>14,23</td>
<td>アルゴリズム</td>
<td>コンピュータ等で処理（計算）を行うときの計算方法や手順のこと。</td>
</tr>
</tbody>
</table>

102
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>宇宙・海洋ブロードバンド衛星通信システム</td>
</tr>
<tr>
<td>24,25,26,27,35</td>
<td>エッジコンピューティング</td>
</tr>
<tr>
<td>33,42</td>
<td>エネルギーハーベスティング</td>
</tr>
<tr>
<td>34</td>
<td>鉛直プロファイル</td>
</tr>
<tr>
<td>9</td>
<td>オープンソースソフトウェア (Open-source software, OSS)</td>
</tr>
<tr>
<td>24</td>
<td>オール光スイッチング技術</td>
</tr>
<tr>
<td>28,38</td>
<td>感性データマイニング</td>
</tr>
<tr>
<td>1</td>
<td>協調無線 LAN</td>
</tr>
<tr>
<td>24,35</td>
<td>空間スーパーモード伝送技術</td>
</tr>
<tr>
<td>23</td>
<td>雲プロファイリングレーダー（Cloud Profiling Radar, CPR）</td>
</tr>
<tr>
<td>50</td>
<td>クロスアポイントメント制</td>
</tr>
<tr>
<td>30,31</td>
<td>高次脳型情報処理技術</td>
</tr>
</tbody>
</table>

静止衛星を介して、船舶や航空機等へ高速通信環境を提供するシステム。現行では Ku 帯(12-18GHz)等を利用して1Mbps程度のサービスが提供されているところ、本システムでは Ka 帯(26-40GHz)で100Mbps級を目指すとともに、災害等の非常通信時に柔軟に対応できるよう、需要に応じてビーム数や周波数を可変できる機能を有する。

データを遠隔にあるクラウドで集中的に処理するのではなく、ユーザーより近いネットワークの端（エッジ）にサーバを設置し、データを分散的に処理することにより、通信遅延及びネットワーク負荷を低減するデータ処理方式。

空間を伝搬する電磁波を集めて電気エネルギーに変換したり、光発電や振動発電等の技術を活用して、機器の内部でエネルギーを生成して活用する技術。これにより、電池や商用電源等のバッテリーがなくても機器を駆動することができる。

地球圏大気中における高度方向の汚染物質や水蒸気などの物質の変化。

ソースコードが無償で公開され、改良や再配布を行うことが許可されているソフトウェア。

光ファイバネットワークの中継点において、光信号の経路切替えを光のまま行う技術。（従来は、光→電気→光の信号変換が伴う。）

感性情報に関連する生体情報や発話等の大量のセンサデータから、感性情報に関する知識（規則性、パターン）を抽出する技術。ユーザーや心に感じ取る動き等の推定に利用する。

複数の無線 LAN 親機をネットワーク経由で連携させる技術。周辺の無線使用状況等に応じて最適な無線資源配分を行うことにより、無線 LAN が近接に多数存在する場合でも安定した通信を可能とする等、高効率な通信を実現する。

光ファイバ中で、伝わり方（コア断面内での光分布）の異なる光信号を極限まで多重化し伝送する技術。

大型パラボラアンテナを用いて高度約 400km の衛星軌道上から地球に向けて周波数 94GHz（波長約 3mm）の電波を照射し、雲粒子によって反射された電波を受信することにより、雲の鉛直構造を観測することができる世界最高感度の衛星搭載レーダー。

研究者等が大学、公的研究機関、企業の中で、二つ以上の機関に雇用されつつ、一定のエフォート管理の下で、それぞれの機関における役割に応じて研究・開発及び教育に従事することを可能にする制度。「『日本再興戦略』改訂2014年」（平成26年6月24日閣議決定）や「科学技術イノベーション総合戦略2014」（平成26年6月24日閣議決定）等においても、クロスアポイントメント制度の積極的な導入・活用の必要性がうたわれている。

脳内活動の仕組みを取り入れることで、認知、記憶や感情（情動）等の状態を捉えることを可能とする情報処理技術。
<table>
<thead>
<tr>
<th>スイッチ番号</th>
<th>技術名</th>
<th>訳</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>広帯域 RF センシング信号</td>
<td>高精度センサーデバイス等から出力され、広帯域にわたって存在する大容量信号のこと。（例えば高解像度レーダーデバイスからの高画質情報など。）</td>
</tr>
<tr>
<td>14</td>
<td>高分解能観測技術</td>
<td>分解能とは、計測器あるいは計測・観測システムの性能を示す数値の一つで、その計器によって識別しうる対象の極小値であり、NICT は世界最高の精度（30cm）を有する航空機搭載合成開口レーダー（Pi-SAR2）を開発。</td>
</tr>
<tr>
<td>35</td>
<td>再構成可能スイッチポートネットワーク技術</td>
<td>さまざまな通信方式要求に応じて、動的に光スイッチや光送受信機の設定や電子回路の変更をし、ノードの機能を再構成することにより、所望の機能・性能を提供する光ネットワーク技術。</td>
</tr>
<tr>
<td>42</td>
<td>サブマイクロ秒同期</td>
<td>1マイクロ秒以下レベルでの精度で時刻の同期をとること。</td>
</tr>
<tr>
<td>42</td>
<td>酸化ガリウムデバイス基盤技術</td>
<td>トランジスタ、ダイオードといった酸化ガリウムを材料とする半導体デバイスを製作するために必要となる要素技術。将来的な産業化に向けて、まずはその基礎となる基盤技術を、結晶成長、デバイスプロセス技術から、回路・モジュール設計・製造技術まで包括的に網羅・開発する必要がある。</td>
</tr>
<tr>
<td>30</td>
<td>シード鍵</td>
<td>暗号化に用いる暗号鍵（暗号化の種（シード）となる）。</td>
</tr>
<tr>
<td>31,34</td>
<td>磁気圏</td>
<td>電離層の上から地球大気の限界までの、地表からおよそ 10 万 km の範囲の領域。</td>
</tr>
<tr>
<td>16</td>
<td>視聴覚アクティブ支援技術</td>
<td>人の感覚・行動を支援するために、環境や状況に合わせて、視覚・聴覚に関わる機能を支援することで、生活空間において柔軟に支援する技術。例えば、聴覚を支援する補聴器において、周りの環境が騒々しい場所では、人の声など聞き分けたいと思っている特定の帯域のみの聴覚機能を高める技術。</td>
</tr>
<tr>
<td>16</td>
<td>集合知</td>
<td>膨大な知識を分析したり体系化したりして、活用できる形にまとめたもの。</td>
</tr>
<tr>
<td>29</td>
<td>省力セキュリティオペレーション技術</td>
<td>組織のセキュリティ管理を一部自動化することで運用に係る人的コストを抑えるためにの技術。</td>
</tr>
<tr>
<td>29</td>
<td>自律的観測技術</td>
<td>センサーによりサイバー攻撃関連情報を自動的に観測、収集する技術。</td>
</tr>
<tr>
<td>24</td>
<td>自律モビリティシステム</td>
<td>収集・蓄積される膨大なビッグデータ等を用いて、高度なAIを用いた近傍の各所のリアルタイム解析により走行制御を自ら行う移動機器（車、車いすなど）。</td>
</tr>
<tr>
<td>25</td>
<td>新世代ネットワーク技術</td>
<td>インターネットの次の世代を目指した、新しい設計思想によるネットワーク技術。</td>
</tr>
<tr>
<td>9,24,35</td>
<td>スイッチ（ネットワーク仮想化）</td>
<td>通信パケットの行先（経路）を制御する通信機器。従来機器ではなく MAC アドレスや IP アドレスを用いて制御されていたが、仮想ネットワークにおいては仮想 ID（フロー等）を用いて制御を行う。</td>
</tr>
<tr>
<td>41</td>
<td>スペクトラム</td>
<td>電磁波の信号波形を周波数成分で分解したときの各周波数の強度の分布。</td>
</tr>
<tr>
<td>42</td>
<td>スマートグリッド</td>
<td>発電設備から末端の機器までを通信網で接続、電力流と情報流を統合的に管理することにより自動的な電力需給調整を可能とし、電力の需給バランスを最適化する仕組み。</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>28.32</td>
<td>スマートネットワークロボット</td>
<td>ネットワークに接続され、人工知能を用いて新たな付加価値を生み出すことができるロボット。</td>
</tr>
<tr>
<td>42</td>
<td>生体 EMC 技術</td>
<td>無線通信や放送等で用いられている電波を人体に対して安全な条件で適切に利用するための技術。</td>
</tr>
<tr>
<td>40.41</td>
<td>生体材料</td>
<td>生物体を形づくる素材である細胞および生体分子（タンパク質、核酸など）。</td>
</tr>
<tr>
<td>23.33</td>
<td>全球降水観測計画（Global Precipitation Measurement、GPM）衛星</td>
<td>日本及び米国が中心として、欧州、フランス、インド、中国なども含めた国際的な協力体制で進められているプロジェクト。日本は、本計画の主衛星に搭載する二周波降水レーダーの開発・運用を担当している。</td>
</tr>
<tr>
<td>1,23</td>
<td>センサーNW（センサーネットワーク）</td>
<td>部屋、工場、道路など至る所に埋め込まれたセンサーが周囲の環境を検知し、当該情報がユーザーや制御機にフィードバックされるネットワーク。</td>
</tr>
<tr>
<td>16</td>
<td>対訳コーパス</td>
<td>コンピュータ上で翻訳を実現するために、文章を名詞や動詞といった言語的な情報と共に構造化したデータベース（コーパス）にし、それを別の言語のコーパスと同じ意味となるように結びつけてきたもの。</td>
</tr>
<tr>
<td>34</td>
<td>太陽風</td>
<td>太陽から放出される物質（電子）。地球に到来して、地磁気（地球の磁場）に影響を与える。</td>
</tr>
<tr>
<td>11,14, 27</td>
<td>多言語音声翻訳システム</td>
<td>以下の3つの技術の組み合わせにより、音声翻訳を実現するシステムのこと。 「音声認識」…人が話した言葉（音声）を文字に変換する 「機械翻訳」…文字を別の言語（例：日本語から英語や中国語）に翻訳する 「音声合成」…翻訳された文字から人が話すような自然な音声に変換する NICTの「Voice Tra」、「Google翻訳」、Microsoft社の「Bing翻訳」等がある。</td>
</tr>
<tr>
<td>36</td>
<td>端末ディスカバリーテクニック</td>
<td>超低消費電力での端末の運用を可能とするために、端末がごく微弱な電力であってもその所在を効率的に検知する技術。</td>
</tr>
<tr>
<td>25</td>
<td>地上〜衛星間光デーテータ伝送</td>
<td>地上局及び衛星間の通信回線に光を使用すること。</td>
</tr>
<tr>
<td>40</td>
<td>超伝導単一光子検出器（Superconducting Nanowire Single Photon Detector、SSPD）</td>
<td>光子のエネルギー収吸により超伝導（ゼロ抵抗）状態が抵抗状態に転移することを利用した光子検出器。通常、超伝導ナノ細線（厚さ10ナノメートル、幅100ナノメートル程度）が用いられる。通信波長帯で90%を超える光子検出能力が実証されており、量子情報通信を始めとする様々な分野への応用が期待されている。</td>
</tr>
<tr>
<td>36</td>
<td>低 SHF／高 SHF 帯超多素子アンテナ技術</td>
<td>低 SHF 帯（3GHz〜6GHz）及び高 SHF 帯（6GHz〜30GHz）において、超多数の素子を有するアンテナを用いて超高速伝送を実現する技術。</td>
</tr>
<tr>
<td>ページ</td>
<td>トピック</td>
<td>解説</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>106</td>
<td>低軌道衛星</td>
<td>高度が700〜2,000kmと低い軌道を回る通信衛星。非静止衛星のため、電波の届かないエリアがほとんどなく、低軌道のため通話の遅延が少ない特性がある。</td>
</tr>
<tr>
<td>25</td>
<td>データ指向型ロボティクス技術</td>
<td>サイバー空間に集約された多種多様なデータ（ビッグデータ）を使って実世界に対する高度な知識を獲得し、実世界のモノやコトを理解しながらロボット等を制御する技術。</td>
</tr>
<tr>
<td>28</td>
<td>テストベッド</td>
<td>研究開発成果を実装し、ユーザーにも使いやすい形でオープンに開放する試験環境のこと。</td>
</tr>
<tr>
<td>24,30,32,42,43,44,45</td>
<td>テラヘルツ帯高感度ヘテロダイナム受信機</td>
<td>高周波数テラヘルツ帯（300〜3THz帯）においてヘテロダイナム受信（高感度な冷却型超伝導受信機を用いて二つの信号のビート（うなり）を取る受信法）を行うリモートセンシング観測器をいう。</td>
</tr>
<tr>
<td>33</td>
<td>電波ばく露評価技術</td>
<td>携帯電話等からの電波が人体のどこにどれだけ吸収されるかを計算や実験で評価する技術。生体EMC技術を確立するために、不可欠な技術。</td>
</tr>
<tr>
<td>34</td>
<td>電離圏</td>
<td>大気上層のうち、大気の分子、原子が電離して生じた電子とイオンが多量に存在する領域。</td>
</tr>
<tr>
<td>36</td>
<td>同期型分散ネットワーク</td>
<td>中央制御ではなく分散制御によってネットワーク内端末の時刻同期を確立することで、ネットワーク内端末間通信を行うネットワーク。</td>
</tr>
<tr>
<td>12,20,31,36</td>
<td>（統合ICT基盤）アクセス系</td>
<td>通信事業者と加入者、個々の機器・端末を結ぶ回線で、一般ユーザーに近い、小容量・高頻度な通信が行われるネットワーク。</td>
</tr>
<tr>
<td>19,20,31</td>
<td>（統合ICT基盤）コア系</td>
<td>国家間、都市間のような大容量データが流通する大規模な通信ネットワーク。</td>
</tr>
<tr>
<td>34</td>
<td>ドップラー風ライダー</td>
<td>レーザー光を発射して、大気中のエアロゾル（塵、微粒子）からの反射光を受信し、その移動速度を風速として計測する手法。レーザー光の往復時間から計測領域までの距離を計測するため、従来の風速計では不可能であった上空の風速分布の計測を遠隔でおこなうことが可能。</td>
</tr>
<tr>
<td>29</td>
<td>トラック分析技術</td>
<td>組織ネットワークの通信の特徴を分析してサイバー攻撃を検知する技術。</td>
</tr>
<tr>
<td>40</td>
<td>ナノコンポジット材料・素子</td>
<td>異種材料をナノスケールで複合した材料や素子。光学特性や電子特性、力学特性、化学特性などが異なる異種材料を、原子や分子レベルで複合化することで、界面における光散乱や電荷移動、表面化学応答、熱膨張などの諸特性を人工的に制御する。</td>
</tr>
<tr>
<td>1</td>
<td>ナノフォトニクス</td>
<td>光の波長以下でナノの寸法の光デバイスを実現したり、微細な光加工を行う技術。</td>
</tr>
<tr>
<td>42</td>
<td>ナノ光構造デバイス技術</td>
<td>光の波長（数百ナノメートルオーダー）以下の微細構造を駆使した光の人工的な操作技術。光分散関係を人為的に操作することができるので、光をナノ微小領域に閉じ込めたり、逆に、取り出したりするなど、光と物質間の相互作用を人工的に操作することが可能となる。</td>
</tr>
<tr>
<td>23</td>
<td>二周波降水レーダー</td>
<td>熱帯降雨観測衛星（Tropical Rainfall Measuring Mission: TRMM）に搭載された降雨レーダーの後継である13.6GHz（Ku帯）のレーダーに、より高感度な観測を実現するための35.55GHz（Ka帯）のレーダーを追加した、双方の周波数により降水を観測するレーダー。</td>
</tr>
<tr>
<td>35</td>
<td>ネットワークアーキテクチャ</td>
<td>ネットワーク上の通信に必要な機能を階層(レイヤ)構造化したもの、又は通信プロトコルを複数組み合わせたもの。</td>
</tr>
<tr>
<td>9,28</td>
<td>ネットワークロボット</td>
<td>ネットワークに接続され、環境センサーや人と協調・連携することができるロボット。</td>
</tr>
<tr>
<td>16</td>
<td>脳情報計測</td>
<td>EEG（脳波計）、NIRS（近赤外線光を用いた脳計測システム）、MRI（磁気共鳴画像）などの装置を用いた脳の活動状況に関するデータの計測。</td>
</tr>
<tr>
<td>16</td>
<td>脳情報データベース</td>
<td>脳情報計測によって得られたデータによるデータベース。</td>
</tr>
<tr>
<td>30</td>
<td>ノード処理</td>
<td>ネットワーク上の中継点(ノード)で行われる、情報の転送選択や異なるネットワーク間の接続や、光信号・電気信号の変換等の処理のこと。</td>
</tr>
<tr>
<td>42</td>
<td>バイオミメティックセンサー</td>
<td>生物が持つ高度で低消費電力なセンシング機構や情報処理機構、構造を模倣して作製、構築することで、既存技術では実現が困難である優れた特性を発揮するセンサーデバイス。生物機能、材料そのものを部材として使う方法や、生物組織を他の材料を用いて人工的に構築し機能化する方法がある。</td>
</tr>
<tr>
<td>45</td>
<td>ハッカソン</td>
<td>ハッカソン:ハック(hack)とマラソン(marathon)を組み合わせた造語。一定期間集中的に共同作業によるサービスの考案等を行い、アイデアを競うもの。</td>
</tr>
<tr>
<td>25,36</td>
<td>パックホール</td>
<td>末端のアクセス回線と中心部の基幹通信網（パックボーン回線）を結ぶ中継回線やネットワーク。</td>
</tr>
<tr>
<td>33</td>
<td>パッシブデバイス</td>
<td>一般に、電力の供給が不要な受動回路やアンテナを示すが、P33で言うパッシブデバイスは、外部から電波等を受信した際に、磁界や電界のエネルギー等を活用して自らの通信を行う機器。常時自ら通信を行う機器（アクティブデバイス）に比べて消費電力を低減することができる。センサーや電子タグ等に利用されている。</td>
</tr>
<tr>
<td>33</td>
<td>パッシブレーダー</td>
<td>自ら電波を発射せず、他の目的で使われている電波を受信し情報を得るレーダー。たとえば既存の降雨レーダーの送信電波を受信するだけの専用局を少し離れた場所に置いて2次元風速を得るなどの場合にも、広い意味でパッシブレーダーと考えることができる。</td>
</tr>
<tr>
<td>34</td>
<td>パルスレーザー</td>
<td>細かい時間間隔で点滅をくり返すレーザーのこと。パルスレーザーの1回のレーザー照射時間は、パルス幅と呼ばれる。</td>
</tr>
<tr>
<td>25</td>
<td>光データ中継衛星</td>
<td>衛星間通信回線に光通信を使用する衛星。通信の大幅な高速化と小型化が可能となる。地表データを早期に把握できるなど、災害対策等に応用。</td>
</tr>
<tr>
<td>30,40</td>
<td>光量子制御技術</td>
<td>光の量子的な性質を制御する技術。</td>
</tr>
<tr>
<td>30</td>
<td>光レイヤ</td>
<td>ネットワークにおいて従来の光通信技術で情報をやりとりする部分。</td>
</tr>
<tr>
<td>25</td>
<td>フィーダリンク回線</td>
<td>基地局と衛星間の双方を結ぶ回線。</td>
</tr>
<tr>
<td>ページ番号</td>
<td>記述内容</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>23,29</td>
<td>フェーズドアレイレーダー・ライダー融合観測技術</td>
<td></td>
</tr>
<tr>
<td>23,29</td>
<td>フェーズドアレイ気象レーダーと風速分布を観測できるドップラーレーダー（レーザー光を発射して、大気中の塵や微粒子からの反射光を受信し、その移動速度や方向を風速・風向きとして測定する装置）を融合させた観測技術。竜巻や豪雨といった突発的・局所的気象現象の早期検知を可能とする。</td>
<td></td>
</tr>
<tr>
<td>9,16,23,29,39</td>
<td>フェーズドアレイレーダー</td>
<td></td>
</tr>
<tr>
<td>9,16,23,29,39</td>
<td>平面上に多数の小型アンテナを配置し、ビームの放射方向を素早く変化させる気象レーダー。これまでの5分程度の観測時間から、10〜30秒程度の高速で三次元観測を実現し、ゲリラ豪雨や竜巻等の早期発見が可能となる。NICTが世界ではじめて開発したもの。</td>
<td></td>
</tr>
<tr>
<td>24,31,35</td>
<td>フォトニックネットワーク</td>
<td></td>
</tr>
<tr>
<td>24,31,35</td>
<td>全ての信号処理を光のまま行うネットワーク。</td>
<td></td>
</tr>
<tr>
<td>28,29</td>
<td>複合型サイバー攻撃の分析・可視化技術</td>
<td></td>
</tr>
<tr>
<td>28,29</td>
<td>センサー情報やSNSの情報等の複数の情報を統合してサイバー攻撃を分析し、可視化する技術。</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>物理レイヤ</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>ネットワークの中で、電気信号や光信号などの物理的な信号を扱う部分。</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>フレキシブルゲートウェイ技術</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>周波数や無線方式が異なる無線端末との通信を、広帯域受信回路やソフト無線技術等を利用して単一の無線装置で通信を行う機器。無線方式が多様化・世代交代してもソフトウェアの更新等で継続して利用できる。</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>プログラマブルネットワーク</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>ネットワークの制御機能を、プログラム（ソフトウェア）により展開・運用後も自由に変更できるネットワーク。</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>プロジェクションマッピング</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>映写したい映像をプロジェクタ等の投影機器を用い、物体や建物、あるいは空間に対して映し出す技術。</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>分散アンテナ技術</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>同一周波数を使用する超多数の送信アンテナを超高密度に配置する際に、高度な協調無線リソース制御により干渉低減を実現する技術。</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>ホログラム技術</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3次元空間情報を記録したデータ、媒体及びその製造等に関する技術。</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>マルウェア</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>コンピュータウィルス等の悪意のあるソフトウェア（Malicious Software）の総称。</td>
<td></td>
</tr>
<tr>
<td>9,24,35</td>
<td>マルチコア</td>
<td></td>
</tr>
<tr>
<td>9,24,35</td>
<td>1本の中に複数の光の通り道（コア）をもつ光ファイバ。</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>マルチコアネットワーク技術</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>マルチコアファイバを利用したネットワーク技術。</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>マルチコアファイバ伝送技術</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1本の光ファイバ内の複数の光の通り道（コア）を利用して、光信号の伝送容量を飛躍的に高める技術。</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>マルチドメイン</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>複数のネットワークが異なる通信事業者や通信技術、管理方法などによって構成されていること。</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>マルチネットワーク</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>マルチレイヤ・マルチドメインからなるネットワーク。</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>マルチモーダル制御</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>複数の機能（モード）を持つ（マルチモーダルな）センサーやアクチュエータを制御する技術。具体的には、ウェアラブルデバイスや対話ロボットなど、IoTに取り込まれた異なる種類のデバイスを最適に組み合わせ、ヘルスケアやナビゲーションなど実世界での生活や行動を網羅的かつ効果的に支援する技術。</td>
<td></td>
</tr>
<tr>
<td>24,35</td>
<td>マルチモード</td>
<td></td>
</tr>
<tr>
<td>24,35</td>
<td>光ファイバ中に、伝わり方に（コア断面内での光分布）の異なる光信号が複数存在すること。</td>
<td></td>
</tr>
<tr>
<td>番号</td>
<td>用語</td>
<td>解説</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>9</td>
<td>マルチレイヤ</td>
<td>階層的に構成される通信プロトコル（手順、レイヤ）の総称。リンク（光、無線等の単一区間）、パス（IP等の複数リンクを連絡した経路）、セッション（パス上で多重化されるアプリケーション毎通信）により階層的に構成され通信が行われる。</td>
</tr>
<tr>
<td>16</td>
<td>メタデータ</td>
<td>コンピュータのファイルなどについて、そのデータの作成者、作成日時、属性を記録したもの。</td>
</tr>
<tr>
<td>39</td>
<td>メトロコア</td>
<td>LANより広域な都市レベルのエリアを対象としたネットワークであるメトロ（地域内）網とメトロ同士を結ぶコア（地域間）網で構成される通信回線網。</td>
</tr>
<tr>
<td>40</td>
<td>有機／無機ハイブリッド基盤技術</td>
<td>有機材料の高効率な光応答特性と無機材料による精密な光学構造との補完的融合（ハイブリッド）による高機能デバイス作製基盤技術。界面や積層、ナノ構造などを原子分子レベルにて高精度に制御することにより、それぞれの材料の機能を最大限に発揮させる。</td>
</tr>
<tr>
<td>25</td>
<td>ユーザーセントリックネットワーク</td>
<td>従来のネットワークは通信事業者が提供するサービスをユーザーが利用するのに対し、ユーザーがネットワークサービスを自ら構築できるようなネットワーク。</td>
</tr>
<tr>
<td>30</td>
<td>量子暗号技術</td>
<td>量子鍵配送で暗号鍵を共有し、その暗号鍵を使って情報を暗号化・復号化する技術。</td>
</tr>
<tr>
<td>30</td>
<td>量子インターフェース技術</td>
<td>量子的な情報を光や固体物質の間で自在にやり取りするための技術。</td>
</tr>
<tr>
<td>30</td>
<td>量子鍵</td>
<td>1個1個の光の粒、光子の量子的な性質を使って送受信者間で暗号鍵を共有する手法。本技術により、傍聴・盗聴者の存在を必ず探知でき、情報理論的安全性（いかなる計算機を用いても解読できない）を持つ暗号鍵が共有可能。</td>
</tr>
<tr>
<td>30</td>
<td>量子通信技術</td>
<td>光の量子的な性質を最大限に活用し、情報理論的に安全な通信（量子暗号）や、微弱な光信号から最大限の情報を取り出す大容量通信等を実現する通信技術。</td>
</tr>
<tr>
<td>30</td>
<td>量子レイヤ</td>
<td>ネットワークの中で、量子鍵配送など、量子的な光信号を伝送する部分。</td>
</tr>
<tr>
<td>2</td>
<td>ロバストなネットワーク環境</td>
<td>外からの影響によらず一定の性能を維持する強じんなネットワーク環境。</td>
</tr>
<tr>
<td>33</td>
<td>ワイヤレスメッシュネットワーク</td>
<td>無線を用いたアクセス・ポイントを網の目状に結び、それらの間で自律的に伝送路を構築する通信回路網。</td>
</tr>
</tbody>
</table>