情報通信審議会 情報通信技術分科会 技術戦略委員会 第2次中間報告書 (案)

平成 26 年 12 月 18 日付け諮問第 22 号 「新たな情報通信技術戦略の在り方」について

平成 28 年 6 月 13 日 技術戦略委員会

目次

はじ	めに	1
第 1	章 第1次中間答申以降の動き	2
	第5期科学技術基本計画の策定	
2.	国立研究開発法人 情報通信研究機構(NICT)の第4期中長期目標・計画の策定	4
3.	産学官による IoT 推進体制の構築	6
4.	次世代の人工知能技術の研究開発における連携体制の構築	8
	章 IoT/BD/AI 時代の政策課題	
	IoT/BD/AI 時代の到来	
	製品やサービスの付加価値のソフトウェアへの移行	
	我が国の企業の IoT/BD/AI 時代への対応の遅れ	
	産業構造の変化に対応したオープン・クローズ戦略	
	IoT/BD/AI 時代における人材育成・標準化の必要性	
6.	IoT と CPS によるイノベーションの実現	17
	本委員会で検討する政策課題	
	章 横断的な推進方策	
1.	IoT/BD/AI 時代の人材育成策	
	(1)IoT/BD/AI 時代に対応するために求められる人材像	
	(2)IoT/BD/AI 時代の人材育成策	
2.	IoT/BD/AI 時代の標準化戦略	
	(1)国際標準化機関等における標準化動向	
	(2)新標準化戦略マップの策定	
	(3)IoT/BD/AI 時代における国際標準化活動の現状と課題	39
	(4) 今後の国際標準化活動の推進方策	41
	章 分野別の推進方策	
	5.1 節 先端的な IoT 分野の推進方策	
7	スマート IoT 推進戦略」(別冊 1)	
	I. 先端的 IoT の重要性	
	Ⅱ. 先端的な IoT により目指すべき社会イメージ(自律型モビリティ社会)	
	Ⅲ. 公共・産業分野の先端 IoT システム(固定系 IoT)の推進方策	
	IV. 自律型モビリティ分野の先端 IoT システム(移動系 IoT)の推進方策	
	V.先端 IoT システムの円滑な社会実装に向けた推進方策	
第	52節 次世代人工知能分野の推進方策	
ζ٦	欠世代人工知能推進戦略」(別冊 2)	
	I. 我が国が抱える社会的課題と人工知能への期待	
	Ⅱ.人工知能の研究開発等の動向	
	Ⅲ. 人工知能が実現する社会	
	Ⅳ. 人工知能の発展のための推進方策	

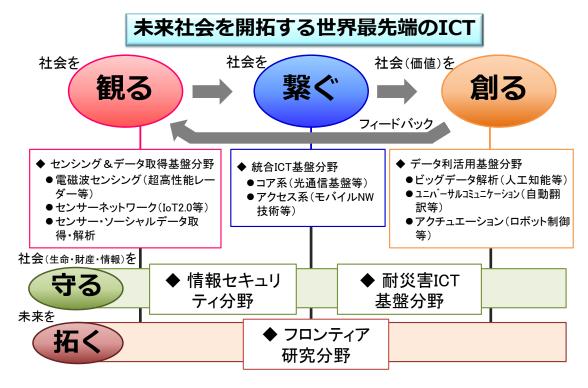
参考資料(別冊3)

℧. まとめ

はじめに

情報通信審議会情報通信技術分科会技術戦略委員会(以下「本委員会」という。)においては、平成26年12月18日付け諮問第22号「新たな情報通信技術戦略の在り方」を受け、平成28年度からの5年間を目途とし、ICT分野において国や国立研究開発法人情報通信研究機構(NICT)等が取り組むべき重点研究開発分野・課題及び研究開発、成果展開等の推進方策の検討を行い、平成27年7月28日に中間答申(以下、「第1次中間答申」という。)として取りまとめたところである。総務省においては、第1次中間答申の提言を踏まえ、NICTの次期中長期目標の策定や産学官によるIoT推進体制の構築等に取り組んできたところである。

一方、人工知能(AI)技術の急速な発展により、様々な分野における IoT の利用拡大と相まって、「第 4 次産業革命」と言われる史上最高のイノベーションが起きつつある。20 世紀は産業の競争力の源泉がハードウェアのノウハウ、レシピであったが、このような IoT/ビッグデータ(BD)/AI 時代の到来により、産業構造の変革が起こり、「プラットフォーム」と「データ」と「人工知能」を制するものが勝つというゲームチェンジがあらゆる産業分野で起きる可能性がある。


このような変化に対応し、我が国が ICT 分野のみならず国全体で国際的な競争力を維持・強化し、持続的な経済成長を達成していくために、AI を含め ICT 分野全体で産学官による総力戦が必要である。

このため、本委員会は昨年12月に審議を再開し、今後の経済成長・価値 創造に重要な分野である先端的なIoT分野とAI・脳研究分野について、今 後の研究開発・社会実装の推進方策について重点的に検討し、「スマートIoT 推進戦略」と「次世代人工知能推進戦略」を取りまとめた。また、このよ うな激変する時代に若い世代や子供たちが戦っていくための「人材育成策」 や、百戦錬磨の欧米の巨大ICT企業と伍していくための「オープン&クロ ーズ戦略」を武器とした「標準化戦略」について取りまとめたものである。

総務省及び NICT 等においては、本報告書の提言を踏まえて、関係省庁と連携して産学官の英知を結集した具体的な取組が進められることを期待する。IoT/BD/AI 時代においては、技術革新のスピードが極めて速いことから、本委員会において引き続き取組状況をフォローアップしていくこととする。

第1章 第1次中間答申以降の動き

昨年7月に行われた中間答申(以下、「第1次中間答申」という。)においては、今後5年間を目途に国や国立研究開発法人情報通信研究機構(NICT)が取り組むべき基礎的・基盤的研究開発における重点研究開発分野・課題、テストベッドを活用した研究開発・実証の一体的な推進、産学官の連携による研究開発の推進方策等について提言が行われたところである。これらを踏まえ、政府及び関係機関において様々な取組が既に進められているところである。第2次中間報告を取りまとめるに当たり、先ず、本章において、第1次中間答申以降の主な動きについて概観する。

図表 1-1 重点研究開発分野 (H27.7 情報通信審議会中間答申)

1. 第5期科学技術基本計画の策定

科学技術基本法に基づき政府が策定する5年間の科学技術の振興に関する総合的な計画である科学技術基本計画は、平成8年に第1期基本計画が策定され、以後5年ごとに4期に渡って策定されてきたところである。平成28年度からの第5期科学技術基本計画については、政府の総合科学技術・イノベーション会議(CSTI)の下に基本計画専門調査会を設置して検討が進められ、本年1月に、平成28年度からの5年間の新たな「第5期科学技術基本計画」が閣議決定された。

新たな基本計画は、ICTの進化等により、社会・経済の構造が日々大きく変化する「大変革時代」が到来しているとの現状認識に立って策定された。

未来の産業創造と社会変革に向け、自ら大きな変化を起こし、大変革時代を 先導していくため、非連続なイノベーションを生み出す研究開発を強化し、 ICT を最大限に活用して、サイバー空間とフィジカル空間(現実世界)とを 融合させた、人々に豊かさをもたらす「超スマート社会」を未来社会の姿と して共有し、その実現に向けた一連の取組を「Society 5.0」として強力に推 進することとしている。また、世界に先駆けて超スマート社会を実現するた めに必要となる基盤技術、すなわちサイバー空間における情報の流通・処 理・蓄積に関する技術として、サイバーセキュリティ技術、IoT システム構 築技術、ビッグデータ解析技術、人工知能(AI)技術、ネットワーク技術、 エッジコンピューティングといった技術が挙げられており、ビッグデータ等 から付加価値を生み出していく上で不可欠な技術として戦略的な強化を図 ることとしている。

このように、第5期科学技術基本計画においては、ICTの進展によるIoT/ ビッグデータ/AI 時代における新たな社会変革と価値創造の取組の重要性と、 その基盤的技術としての ICT 分野の研究開発の重要性が強調されている。

- ■「科学技術基本計画」は、科学技術基本法に基づき政府が策定する、10年先を見通した5年間の科学技術の振興に関する総合的な計画
- 第5期基本計画(平成28年度~32年度)は、総合科学技術・イノベーション会議(CSTI)として初めての計画であり、「科学技術イノベーション政策」を強力に推進
- 本基本計画を、政府、学界、産業界、国民といった幅広い関係者が共に実行する計画として位置付け、我が国を「世界で最もイノベーションに適した国」へと導く

第1章 基本的考え方

(1) 現状認識

- ICTの進化等により、社会・経済の構造が日々大きく変化する「大変革時代」が到来・ ・既存の枠組みにとらわれない市場・ビジネス等の登場・「もの」から「コト」へ、価値観の多様化・ ・知識・価値の創造プロセス変化(オープンイノペーションの重視、オープンサイエンスの潮流)等
- 国内外の課題が増大、複雑化(エネルギー制約、少子高齢化、地域の疲弊、自然災害、安全 保障環境の変化、地球規模課題の深刻化など)
 - ⇒ こうした中、科学技術イノベーションの推進が必要(科学技術の多義性を踏まえ成果を適切に活用)
- (3) 目指すべき国の姿
- 実現するのかを提示
- ① 持続的な成長と地域社会の自律的発展
- 基本計画によりどのような国を ② 国及び国民の安全・安心の確保と豊かで質の高い生活の実現
 - ③ 地球規模課題への対応と世界の発展への貢献 ④ 知の資産の持続的創出
- (4) 基本方針
- ① 第5期科学技術基本計画の4本柱
- ii)経済・社会的な課題への対応 i) 未来の産業創造と社会変革
- iii) 基盤的な力の強化 iv)人材、知、資金の好循環システムの構築
 - $i\sim iv$ の推進に際し、科学技術外交とも一体となり、戦略的に国際展開を図る視点が不可欠

第2章 未来の産業創造と社会変革に向けた新たな価値創出の取組

白ら大きな変化を起こし、大変革時代を先導していくため、非連続なイノベーションを生み出す 研究開発と、新しい価値やサービスが次々と創出される「超スマート社会」を世界に先駆けて実 現するための仕組み作りを強化する。

- (1) 未来に果敢に挑戦する研究開発と人材の強化(略)
- (2) 世界に先駆けた「超スマート社会」の実現 (Society 5.0)
- 世界では、ものづくり分野を中心に、ネットワークや I o Tを活用していく取組が打ち出されている。 な分野に広げ、経済成長や健康長寿の形成、さらに 技術の成果のあらゆる分野や領域 への浸透を促し、ビジネス 力の強化、サービスの質の向上につなげる
- サイバー空間とフィジカル空間 (現実社会) が高度に融合した「超スマート社会」を未来の姿として 共有し、その実現に向けた一連の取組を「Society 5.0」※とし、更に深化させつつ強力に推進 ※ 狩猟社会、展耕社会、工業社会、情報社会に続くような新たな社会を生み出す変革を科学技術イノベーションが先導していく、という意味を持つ
- サービスや事業の「システム化」、システムの高度化、複数のシステム間の連携協調が必要であり、産 学官・関係府省連携の下、共通的なプラットフォーム(超スマート社会サービスプラットフォーム)構 に必要となる取組を推進

招スマート社会とは

「必要なもの・サービスを、必要な人に、 必要な時に、必要なだけ提供し、社会の 様々なニーズにきめ細かに対応でき、あら 様々なニー人にさめ細かに対応でき、の5 ゆる人が質の高いサービスを受けられ、年齢、性別、地域、言語といった様々な違いを乗り越え、活き活きと快適に暮らすこ とのできる社会」であり、人々に豊かさをも

(3)「超スマート社会」の競争力向上と基盤技術の戦略的強化

- 競争力の維持・強化に向け、知的財産・国際標準化戦略、基盤技術、人材等を強化
- システムのパッケージ輸出促進を通じ、新ビジネスを創出し、課題先進国であることを強みに変える
- ティ、I O Tシステム構築、ビッグデータ解析、A I 、デバイスなど)と、新たなかを有する技術(ロボット、センサ、バイオテクノロジー、素材・ナノテクノロジー、 -、素材・ナノテクノロジー、光・量子など) につい て、中長期視野から高い達成目標を設定し、その強化を図る

第3章 経済・社会的課題への対応

在化している課題に先手を打って対応するため、国が重要な政策課 題を設定し、課題解決に向けた科学技術イノベーションの取組を進める。

第4章 科学技術イノベーションの基盤的な力の強化

々な変化に対して柔軟かつ的確に対応するため、若手人材の育成・活躍促 進と大学の改革・機能強化を中心に、基盤的な力の抜本的強化に向けた取組を進める。

第5章 イノベーション創出に向けた人材、知、資金の好循環システムの構築

、大学、公的研究機関の本格的連携とベンチャー企業の創出強化等を通じて、人材、知、 資金があらゆる壁を乗り越え循環し、イノベーションが生み出されるシステム構築を進める。

第6章 科学技術イノベーションと社会との関係深化

科学技術イノベーションの推進に当たり、社会の多様なステークホルダーとの対話と協働に取り組む。

第7章 科学技術イノベーションの推進機能の強化

科学技術イノベーションの主要な実行主体である大学及び国立研究開発法人の改革・機能強 23ン政策の推進体制の強化を図るとともに、研究開発投資を確保する。

図表 1-2 第5期科学技術基本計画の概要(内閣府資料より作成)

(注) 黄色は ICT 関連の記載

2. 国立研究開発法人 情報通信研究機構(NICT)の第4期中長期目標・計画の

第1次中間答申を踏まえ、総務省では、NICT の平成 28 年度からの新た な中長期目標の策定・指示を行い、NICT では同目標に基づき中長期計画を 策定し、総務大臣の認可を受けた。

中長期目標においては、NICT において取り組むべき ICT の基礎的・基盤 的研究分野について、第1次中間答申における重点研究開発分野(①)「社会 を観る」、②「社会を繋ぐ」、③「社会(価値)を創る」、④「社会を守る」、 ⑤「未来を拓く」)に沿って研究開発の目標を定めている。また、研究開発 成果の社会実装に向けた取組として、第1次中間答申の提言を踏まえ、技術 実証及び社会実証のためのテストベッドの構築、オープンイノベーション創 出に向けた産学官連携の強化等について定め、これらを一体的に推進するこ ととされている。

- グローバルな環境において、ICTが人、組織、物流、金融など、あらゆるものを瞬時に結びつける時代
- ICTは、超高齢化社会、厳しい国際競争の時代において、新たな価値を創出し、経済・社会の変革につなげていく役割
- 新たなビジネス創出において鍵となる、センサー、IoT、ビッグデータ、人工知能、自動翻訳、ロボットへの対応
- 第5世代移動通信システム(5G)の実現、急増するサイバー攻撃への対応、2020 年東京オリンピック・パラリンピック競技大会の開催

情報通信審議会「新たな情報通信技術戦略の在り方」中間答申(H27.7)、国立研究開発法人審議会からの意見(H27.12) 重点研究開発分野

中長期目標の期間:

5年間(平成28年4月~平成33年3月)

次期中長期目標

ICT分野の基礎的・基盤的な研究開発等

- (1) 「社会を観る」能力(センシング基盤分野)
- ●ゲリラ豪雨を早期に予測する技術 ●地震・火山の災害状況を広域把握する技術 ●より正確な時刻を作る技術
 - ●安全な電波利用を確保する技術 等
- (2) 「社会を繋ぐ」能力(統合ICT基盤分野)
 - ●革新的なネットワーク設計の確立 ●IoTを超越する時代に対応する無線技術
 - ●現在の千倍以上の通信量に対応する世界最高水準の光ファイバ技術
 - ●衛星通信を高速化・大容量化する技術 等

(3) 「社会(価値)を創る」能力(データ利活用基盤分野)

- ●世界の「言葉の壁」をなくす実用レベルの多言語翻訳技術
- ●誰でも専門家のような高度知識を得られる人工知能技術(社会知解析)
- ●脳活動を測ることで健康・福祉・生活の質を向上する技術
- (4) 「社会を守る」能力 (サイバーセキュリティ分野) 🐉 Voice Tra
- ●急増するサイバー攻撃の監視技術 ●防御方法の検証技術 ●暗号技術
- (5)「未来を拓く」能力(フロンティア研究分野)
- ●盗聴を防止する量子情報通信技術
- ●未踏周波数領域(ミリ波・テラヘルツ波)を開拓する通信技術
- ●通信速度を抜本的に増大させる革新的デバイス技術 等 ++

サイバー攻撃の状況を可視化する "NIRVANA改"(ニルヴァーナ・カイ)

研究開発成果を社会実装に導く重要な取組

社会全体のICT化の推進

会を観る■

情報通信審議会中間答申(H27.7)より

- (1) テストベッドを活用した「利用者・企業・大学・地域社会の 出会いの場」の創出(技術実証・社会実証の強化)
 - ・研究開発成果の早期の市場投入を目指した検証

創る

- ・社会的受容性の検証によるイノベーションの創発 等
- (2)オープンイノベーション創出に向けた産学官連携の強化

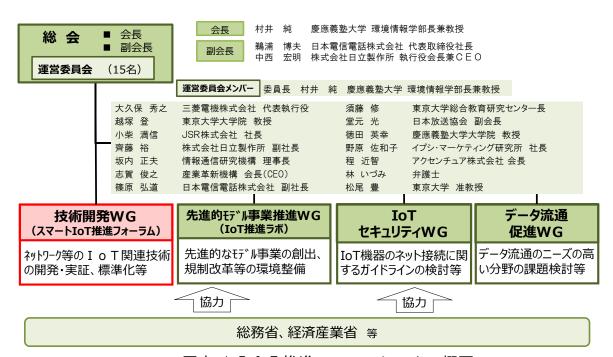
産学官の幅広いネットワーク形成、共同研究、大学との連携強化、 協議会の設立、社会実装事例の蓄積等

- (3) 耐災害ICTの実現に向けた取組
- (4) 戦略的な標準化活動の推進
 - フォーラム標準化活動等への戦略的対応 等

国際的人材交流、国際共同研究、展示会出展 等

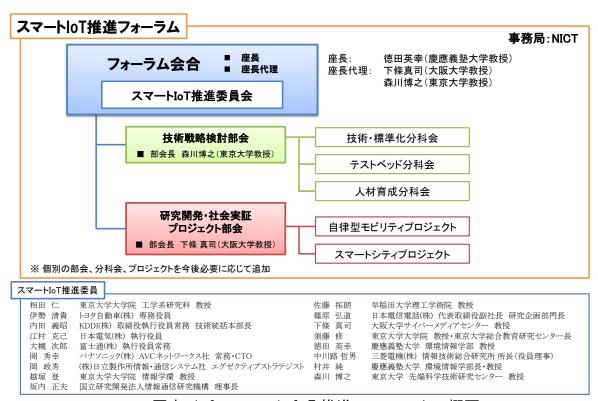
図表 1-3 NICT 第 4 期中長期目標の概要

また、NICTが策定する中長期計画においても、中長期目標に定められた 5つの研究開発分野における具体的な研究課題について、第1次中間答申に おいて提言された重点研究開発課題及びロードマップに基づき設定されて いるところである。



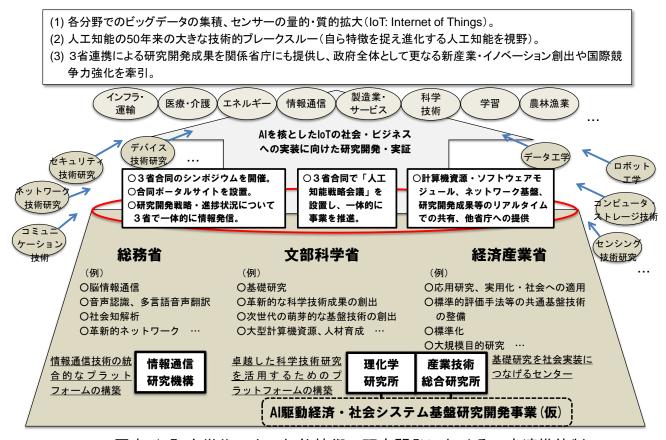
図表 1-4 NICT 第 4 期中長期計画の概要

3. 産学官による IoT 推進体制の構築


第1次中間答申においては、研究開発の推進方策について、社会全体のICT 化を目指した産学官による IoT 推進体制として、総務省は NICT と連携し て、民間企業、大学、標準化団体等から構成される推進体制の創設を検討す べき旨の提言がなされたところである。

この提言を受け、総務省では経済産業省と連携し、企業・業種の枠を超えて産学官で IoT の研究開発・実証、利活用を促進するため、民主導の組織として「IoT 推進コンソーシアム」(会長:村井純慶應義塾大学教授)を昨年の10月に設立した。コンソーシアムには4つの WG が設置され、「技術開発WG (スマート IoT 推進フォーラム)」において、ネットワーク等 IoT 関連技術の開発・実証、標準化に取り組んでいる。

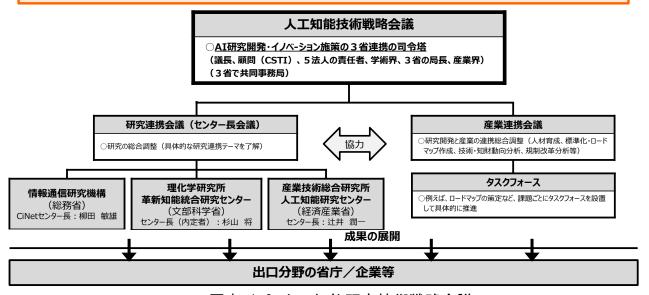
図表 1-5 IoT 推進コンソーシアムの概要


スマート IoT 推進フォーラムは昨年 12 月に会合を開催し、座長に徳田慶應義塾大学教授を選任し、フォーラムの下に、技術戦略検討部会、研究開発・社会実証プロジェクト部会の2つの部会を設置した。技術戦略検討部会においては、産学官の今後の戦略の策定やテストベッド活用ノウハウの共有、人材育成、国際標準化活動の推進を行うため、分科会を設置し、具体的な活動を開始したところである。また、研究開発・社会実証プロジェクト部会においては、当面、自律型モビリティプロジェクト、スマートシティプロジェクトの2つのプロジェクトを設置し、社会実証に向けた技術、課題の検討を推進することとしている。

図表 1-6 スマート IoT 推進フォーラムの概要

4. 次世代の人工知能技術の研究開発における連携体制の構築

第1次中間答申における重点研究開発分野の一つである「社会(価値)を 創る」分野において、AI技術は、今後の IoT 時代において、ビッグデータ 分析等により新たな価値創出を行うにあたって極めて重要な技術として期 待されている。また、1で述べたように、第5期科学技術基本計画において も、AI技術は基盤的技術として戦略的に強化すべき技術として位置づけられ ているところである。このような状況を踏まえ、総務省、文部科学省、経済 産業省は、「次世代の人工知能の研究開発における3省連携体制」を構築し、 3省連携により研究開発と社会実装を進めることとしている。



図表 1-7 次世代の人工知能技術の研究開発における3省連携体制

政府においては、平成 28 年 4 月 12 日に開催された「未来投資に向けた官民対話」において、安倍総理大臣より、人工知能の研究開発目標と産業化のロードマップを本年度中に策定する、そのため、人工知能技術戦略会議を創設するとの指示があったことを受け、同年 4 月 18 日に 3 省連携の司令塔となる「人工知能技術戦略会議」(議長:安西祐一郎日本学術振興会理事長)が設置された。同会議のもと、NICT、理化学研究所、産業技術総合研究所の各研究所における AI 研究センター長により構成される研究連携会議や、産業界の代表者から構成され研究開発と産業界との連携に関する総合調整を行う産業連携会議が設置され、具体的な研究連携やロードマップの検討を進めることとしている。

総理指示を受け、「人工知能技術戦略会議」を設置。今年度から、本会議が司令塔となり、その下で総務省・文部科学省・経済産業省の人工知能(AI)技術の研究開発の3省連携を図る。

本会議の下に「研究連携会議」と「産業連携会議」を設置し、AI技術の研究開発と成果の社会実装を加速化する。

図表 1-8 人工知能研究技術戦略会議

第2章 IoT/BD/AI 時代の政策課題

1. IoT/BD/AI 時代の到来

あらゆるモノを IoT によりネットワークにつなぐことで、その状態やニーズ等に関する情報を収集し、膨大なビッグデータを AI により解析することで、様々な社会課題の解決や新たな価値創造を実現する IoT/BD/AI 時代が到来しつつある。

一方で、このような動きが産業に与える影響について、米国の著名な実業家¹は以下のように指摘している²。

"IoT 等の普及が、あらゆる産業分野で生産者から消費者へのパワーシフトを加速する史上最高のイノベーション (ムーンショット3) を起こしつつある。顧客へのパワーシフトは、起業家にとっては「未曾有のチャンス」となるだろうが、同時に、伝統的な産業にとっては「崩壊の始まり」となるかもしれない。Airbnb、Uber のような収集データによりスマートになった顧客が作ったブランドが台頭しており、このようなスマートになった顧客の時代に対応していくことが不可欠である。

利益を最重要視するビジネスは生産者が中心にいた時代のものであり、今は技術の進化により必要なデータをいつでも取れるようになり、製品やサービスをどうデザインするか、どう提供するか、提供後にどう顧客を扱うか、このような全ての局面で「顧客の経験価値」を中心にデザインする必要がある。"

その指摘のとおり、IoT/BD/AI 時代に顧客へのパワーシフトが起こりつつ ある中で、我が国のあらゆる産業の競争基盤を揺るがしゲームチェンジを起 こすような事態が進行している。

2. 製品やサービスの付加価値のソフトウェアへの移行

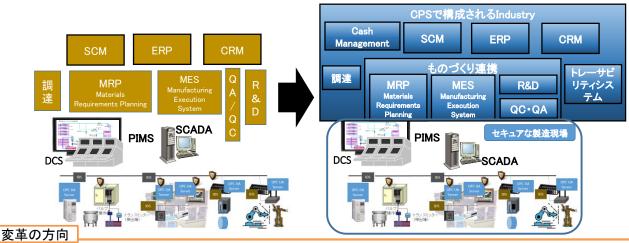
IoT により実空間とサイバー空間が強力に連携し、社会問題の解決や新たな価値創造を行うサイバーフィジカルシステム(CPS)の実現により、従来の産業構造が大きく変革する「第4次産業革命」が進行している。

現在我々が直面している産業革命は、ハードウェアの高度化よりも、デジタル技術とソフトウェアにより産業の価値形成を目指すものである。IoTとCPSにより、製品やサービスの付加価値をソフトウェアのレバレッジを効かせて高める時代が到来し、産業のソフトウェア化が製造業を含む多くの産業分野へ急拡大しつつあり、市場の競争ルールが大きく変化してきている。

¹ ジョン・スカリー (John Sculley): 米国の実業家、ペプシコーラ、アップル等の CEO を歴任、現在は起業家、メンターとして活躍。

^{2 「}ムーンショット!」(株式会社パブラボ、2016年発行)

³ シリコンバレーの用語で、「それに続く全てをリセットしてしまう、ご く少数の大きなイノベーション」のことをいう。


例えば、IoT と CPS により、モノの生産やサービスの提供においては、経営管理・製品開発・生産・受発注等の統合管理を図るプラットフォームを提供し、生産ラインのデータを収集し、データベース化し、人工知能による生産のリアルタイム最適化の実現を図るとともに、生産工程の設計・変更の自動化を目指すプロジェクトが進んでいる。Industrie 4.0 と米国の IIC (Industrial Internet Consortium) が連携して生産過程のモデリングとデータ標準化に取り組んでおり、生産機械等のハードウェアに係るこれまで現場で蓄積されてきた運用ノウハウ等の暗黙知のレシピが、データの形に変換されプラットフォームを通じて収集されることになる。

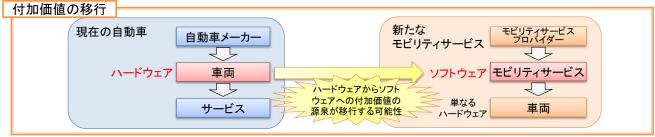
欧米企業は、このようなプラットフォームを多くの製造業やサービス業に普及させ、データを独占することにより、データに基づくソフトウェアのレバレッジによる価値形成を行うサービスビジネスへの変革を目指しており、ハードウェアによる価値形成から、データに基づくソフトウェアによる価値形成へゲームチェンジを図り、ハードウェアの市場も含めて席巻しようとしている。

このような状況においては、我が国が従来得意としてきたハードウェアは、 国際的なビジネス・エコシステムに組み込まれコモディティ化していき、国 際競争力の源泉となり得ないばかりでなく、その運用ノウハウまでもデータ 化され、ソフトウェア・プラットフォーマーに独占されていく恐れがある。

【事例1】IoT/BD/AIによるモノの生産やサービスの提供における変革の可能性

- デジタル化と統合により、生産ラインのデータに基づき、人工知能が製品開発・生産・受発注等の統合管理を図るプラット フォームを提供することで、生産のリアルタイム最適化を実現。
- 具体的には、製品開発及び生産過程のモデリングによる形式化により、生産工程の設計・変更の自動化を目指すもの。 (生産機械等のハードウェアに係る暗黙知のレシピを透明化し、データの形に変換。)
- そのため、製品開発や生産ラインのデータを収集し、データベース化し、人工知能による最適化の実現を図るもの。
- これにより、ものづくり技術を一つのFunction Domainとして調達やSCMと連携させたプラットフォームを構築し、多くの工場に普及させることでデータを独占、プラットフォームの一層の高度化を推進。

- ・工場/プラント/インフラ管理等をIoTとCPSによりオープン化。
 - →ハードウェアに係る暗黙知のレシピによる価値創出から、工場等の運用情報が情報層に集まりデータから価値創出する サービスビジネスへ変革。
- ・ハードウェアによる価値形成から、日々生成されるデータに基づくソフトウェアのレバレッジによる価値形成へゲームチェンジ。
- ・ハードウェアは国際的なビジネスエコシステムに組み込まれ、コモディティ化する懸念。


図表 2-1 IoT/BD/AI 時代の政策課題① 出所)技術戦略委員会 第10回 VEC 発表資料より作成

また、自動車分野においては、ネットワークに接続される自動車(コネクテッドカー)の進展により、米国のテスラモーターズのように、ソフトウェアを更新することにより、利便性の向上を図る自動車が登場している。また、従来の自動車メーカのような、自動車というハードウェアの売り切りモデルではなく、ソフトウェアの更新により高度化するモビリティサービスを課金モデルで提供するベンチャー企業が登場している。このように、自動車産業においても、ハードウェアからソフトウェアに付加価値の源泉が移行する可能性が指摘されている。

【事例2】IoT/BD/AIによる自動車分野における付加価値移行の可能性

- テスラモーターズのように、ネットワーク経由でソフトウェアを更新することにより利便性の向上を図る自動車の登場。
- さらに、自動車というハードウェアの売切りモデルではなく、スマートフォンのようにソフトウェア更新で高度化する モビリティサービスを課金モデルで提供するベンチャー企業の登場。

図表 2-2 IoT/BD/AI 時代の政策課題②

出所)技術戦略委員会 第9回 コンチネンタル・オートモーティブ(株)発表資料より作成

このように、IoT/BD/AI 時代は多様な産業において CPS の進展により、ハードウェアシステムに係るノウハウ・レシピがオープン化(透明化)され、

- ① データ駆動によるソフトウェアのレバレッジによる価値形成
- ② ハードウェアの国際的なビジネス・エコシステムへの組み込み

を通じて、付加価値の源泉がソフトウェアに移行し、産業構造の変革により、「プラットフォーム」と「データ」と「人工知能」を制するものが勝つというゲームチェンジが起きる可能性がある。

3. 我が国の企業の IoT/BD/AI 時代への対応の遅れ

以上のように、ビジネスの成否を決める重要な要素が、20世紀は「ヒト・モノ・カネ」であったが、IoT/BD/AI 時代の到来により 21世紀は「データ・ソフト・サービス」になり、価値を生み出すスキル・求められる人材像が大きく変化してきている。

IoT/BD/AI時代は産業の競争力・付加価値が変化

20世紀の産業競争力 ~ヒト・モノ・カネ~	loT/BD/AI 時代の産業競争力 〜データ・ソフト・サービス〜
熟練工による「巧みの技」	A I とロボットで安価・迅速に 需要に応じた少量多品種生産
経験と勘によるカイゼン	データ解析による自動最適化
量産できる工場の所有が希少価値	製品&サービスの設計力が希少価値
ハードの機能/性能で差異化	デザイン・ソフト・サービスで差異化
社内業務プロセスの効率化	サプライチェーン全体の自動最適化
供給側の宣伝広告でブランド・ 市場を作る	データで賢くなった顧客がブランド・ 市場を作る
大企業に資金が集まる	優れたアイデア・技術に資金が集まる

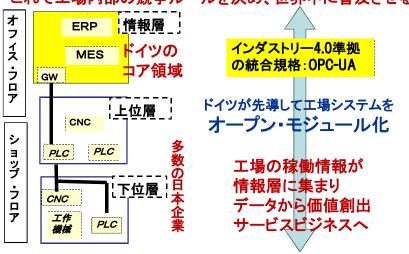
価値を生み出すスキル・求められる人材像が大きく変化

図表 2-3 IoT/BD/AI 時代における産業の競争力・付加価値の要素

出所) 技術戦略委員会 第10回 NTT コミュニケーションズ(株)発表資料より作成

IoT/BD/AI 時代を迎えて、GE 等の欧米の企業がハードウェア企業からソフトウェア企業への移行を打ち出す中で、日本企業の多くは製品やサービスの競争力の源泉がソフトウェアに移行しているという感覚をあまり持っていないことも考えられる。その要因としては以下のようなものが予想される。

- ICT の発達により、顧客へのパワーシフト等の市場変化を経営層が見抜けていない。
- ・ 売上高/利益の数字だけで経営を判断しており、自社の製品・サービスの競争力がどこにあるかを把握していない。
- ・ ソフトウェアを外部に丸投げしているので、社内でデータベースを作れず、また経営層にはプログラムが理解できる者がいない。したがって、データの重要性を理解していないので、自社データのコントロールができず、最適化データも得られない。
- ・ 経営システム、生産システム等の丸投げで自社の経営データや生産データが他社に流れており、それを基に改善されたシステムを競合会社に導入されるリスクがあることを分かっていない(データの形でのノウハウが外部流出していることが分からない)。


製造業及びサービス産業全体においてソフトウェアやデータが重要となる時代に対応するためには、以下のような方向の取組が喫緊の課題である。

- ・ 今後の製品・サービスの競争力を事業戦略全体で考え、顧客ニーズを 迅速に捉える仕組み作り
- ・ IoT でデータを集めて可視化だけしてもメリットは少なく、製品企画から生産や品質検査までトータルな ICT 活用、シミュレーション技術と AI 技術を利用することで製品やサービスの付加価値向上につながる IoT 活用の実現
- ・ 社内にはデータがないと言ってオープンデータに頼るのではなく、サービスからデータ獲得、データによる知能化、知能化によるサービス向上という正循環のビジネス設計が重要、真の意味での技術と事業の一体化が急務、その上でサービスの内製化の推進
- ・特に製造業、流通業、金融業といったユーザ企業には、社内にデータベースやプログラムが理解できる人がいないことが多く、ソフトウェア・データ時代に対応する司令塔がいないので、ユーザ企業と一体となってその企業の新事業創出・事業改善に取り組む支援体制の構築
- ・ 操業継続力と同じくソフトウェアとデータを守る上で不可欠となる サイバーセキュリティ対策や人材育成の推進

4. 産業構造の変化に対応したオープン・クローズ戦略

デジタル化による産業構造の変革への対応で、先行する欧米企業は独占するコア領域を定義し、これをクローズとするとともに、パートナーに任せる領域に知的財産をすり込んだ上でオープンとし、コア領域から影響力を持たせるメカニズムを組み込んだ上で、部品調達等の国境を越えた巨大なビジネス・エコシステムを形成している。これにより、自社による独占と市場による競争の境界設計を行い、競争ルールを自社に有利な形で設定している。

Industrie4.0と米国IICが標準化で連携して、
Industrie4.0準拠の通信規格をオープン標準化
これで工場内部の競争ルールを決め、世界中に普及させる

図表 2-4 Industrie4.0 に見るオープン・クローズ戦略の例

出所) 技術戦略委員会 第9回 小川東京大学政策ビジョン研究センターシニアリサーチャー発表資料より作成

特に、IoT/BD/AI 時代には製品やサービスの付加価値がソフトウェアに移行するため、クローズすべきコア領域を持った上で、プラットフォームをオープン化し、パートナー企業を引き寄せて吸い上げたデータでソフトウェアによるイノベーションを起こし、プラットフォームに対する期待形成を高め、求心力を増していく。このような取組を通じて、プラットフォームを先導するメンバーに有利なビジネスルールの形成を図っている。

Industrie4.0 と米国の IIC が標準化で連携することとなったが、欧米企業が自らに有利な形でルールメイキングを進めている中において、キャッチアップ型の対応では、産業構造の変化により、我が国の企業は、国際的なエコシステムの中で欧米企業にソフトウェアやデータ等の頭脳の提供をおさえられ、コモディティ化したハードウェア製造のみの「下請け」的な位置づけに陥る懸念がある。このため、過去の教訓を活かしつつ、このような欧米企業の動きに対して先手を打ち、オープンなプラットフォームを形成しイノベーションの創出を先導するととともに、その中に我が国企業の強みをクローズな部分として組み込む仕組を事前設計していくことが重要となっている。

オープン&クローズ戦略とは

- ■エコシステム構造の出現を前提に、
 - 独占するコア領域(クローズ)を決め、
- ■独占するコア領域とパートナーが繋がる結合領域に 知財を刷り込んだ上で公開(オープン)
- ■コア領域からパートナーへ影響力を持たせる 市場コントロールのメカニズムを "伸びゆく手"として構築

パートナーに任せる領域(オープン)と自社のコア領域(クロース・) を峻別するためには 自社と市場の境界設計が必要

図表 2-5 オープン&クローズ戦略の概要

出所) 技術戦略委員会 第9回 小川東京大学政策ビジョン研究センターシニアリサーチャー発表資料

5. IoT/BD/AI 時代における人材育成・標準化の必要性

0

米国

我が国においては、米国と比べてユーザ企業において ICT 技術者が不足しており、IoT/CPS に対応できる人材育成が急務となっている(図表 2-6 図表 2-6 図表 2-6)。また、前述したように、産業における付加価値の源泉、さらに産業構造が変化しつつある中、求められるスキルや人材像もこれまでから大きく変化している。

日本の産業界の現状 ~ユーザ企業にICT技術者が不足~

(出典) 日本 : IPA「IT人材白書2015」総務省等「情報通信業基本調査報告書(平成28年3月)」等より推計 米国 : 米国労働省 労働統計局等より推計

図表 2-6 日米における ICT 技術者の状況

日本

(2014年)

このような状況において、欧米の動きに対応していくためには、オープン・クローズ戦略を事前設計し方向性を示す軍師型の人材や、データから価値を生み出すデータサイエンティストやソフトウェア技術者等といった、産業構造の変化に対応し、IoT/CPSを総合的に理解し、データを作り出し、駆使出来る人材、顧客ニーズを迅速に捉えてアイデアを発想できる人材の育成が鍵となる。

さらに、クローズにすべき領域とオープン化すべき領域を踏まえ、標準化 戦略の策定とそれを実行する人材の育成が必要である。

6. IoT と CPS によるイノベーションの実現

現場のデータを IoT で収集することで、「見える化」だけにとどまるのではなく、生産・サービスの現場の問題解決、製品・サービスの付加価値向上に役立てる必要がある。

そのために、なぜ現場のデータを収集するのか、それを何に生かすのかを 考えて、IoT/CPS の導入を検討すべきである。

具体的には、IoT/CPS を活用してユーザ企業にどのような付加価値を生み出すかという戦略(図表 2-7 図表 2-7)をしっかりと検討することが必要である。

生産インフラに IoT を導入して膨大なデータを集めて見える化(ステップ
1)するだけではそのメリットは大きくない。その先の欧米の巨大 ICT 企業が目指すモデリングと標準化による経営管理と生産管理の統合、生産工程の設計・変更の自動化(ステップ 2)による付加価値は大きいと考えられる。しかし、更にその先の我が国の生産やサービス提供の現場が抱える人手不足や熟練工の減少等の課題を解決するとともに、消費者のニーズを迅速に把握し、新たな製品やサービスを生み出すプラットフォームを構築するような現場のイノベーション(ステップ 3)を目指すことが重要である。

CPS/第4次産業革命のステップ1.2.3 制御システムセキュリティ対策は、IoT/CPSを支える基盤技術 現場の真の課題を理解すればできるレベル 何が必要かを考えればできるレベル 何が見えていないかが分れば Industrie4.0/IICが ステップ3 目指すステップ できるレベル 欧米グロー ステップ2 バル企業 生産・サービスの現場の •ステップ1 クラウドを活用したバ イノベーション リューチェーン 使えるAI 見える化 今までにない解決策 ビッグデータ処理 SCM, ERP, CRM 情報セキュリティだけでは、 サイバー攻撃対策は不充分 モデリング 日本企業 **IEC6254**1(OPC UA) 標準化 標準化 制御システムセ 情報セキュリティ 制御システムセキュリティ キュリティ 制御システムセキュリティ IEC62443 ISO27000 IEC62443 IEC62443 (ISMS) (CSMS) (CSMS、SDLA、SSA、EDSA認証) (CSMS、SDLA、SSA、EDSA認証) 一つのベンダ製品からデータを 異なるベンダ製品からデータ 顧客ニーズを迅速に把握し、 取り出してインターネットにアッ を取り出して、価値ある情報 時代に対応した現場にするべく、 プして"見える化"する にして活用する 現場の課題を改善する技術革新 経営ニーズに基づくソリューション 競合しないサプライヤ仲間作り志向 ユーザ企業の将来を考えたソリューションを志向 を志向

図表 2-7 IoT/CPS 導入により目指すべきステップ

出所) VEC 講演資料より作成

7. 本委員会で検討する政策課題

以上を踏まえ、本委員会では、IoT/BD/AI 時代において、我が国経済が引き続き国際競争力を維持・強化し、我が国経済の持続的な成長を図るために、国・NICT が今後取り組むべき技術戦略として、横断的な推進方策と分野別の推進方策について検討を進めた。

このうち、横断的な推進方策については、IoT/BD/AI 時代における人材育成策と標準化戦略について、また、分野別の推進方策については、本委員会に、先端技術WGと AI・脳研究WGを設置し、それぞれのWGにおいて、先端的な IoT システムや次世代人工知能技術の推進方策等について、検討を進めた。

次章以降において、これらの項目について本委員会において取りまとめた 内容について述べる。

Ⅰ 横断的な推進方策

① 人材育成

IoT/BD/AI時代に重要となる ソフトウェアとデータ分析分野等の 人材育成策

②標準化

IoT/BD/AI時代の産業のデジタル化、 ソフトウェア化、産業構造のエコシステム化 に対応するためのオープン&クローズ戦略

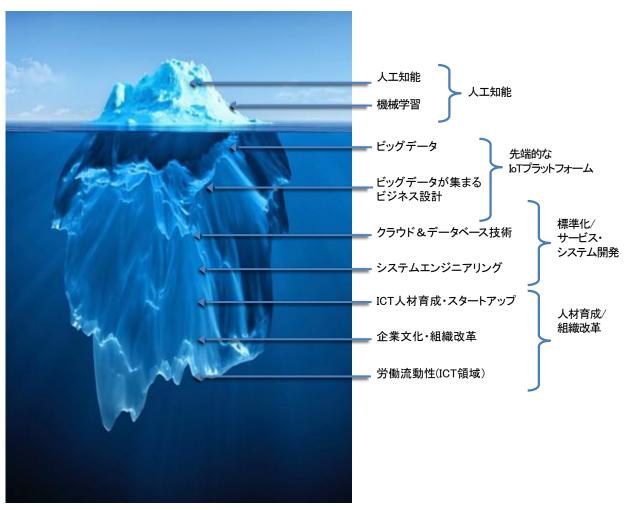
Ⅱ分野別の推進方策

① 先端的なIoT分野

超低遅延接続が必要な自律型モビリティシステム (自動車、ロボット、ドローン等)や超大量接続が 必要なスマートシティ等の推進方策

⇒「スマートIoT推進戦略」

② 次世代人工知能


省電力で大量のデータを必要としない 脳科学の知見を利用した次世代人工知能の 推進方策

⇒「次世代人工知能推進戦略」

図表 2-8 技術戦略委員会における検討事項

なお、これらの取組は同時並行的に迅速に取り組んでいく必要がある。例えば、次世代人工知能の研究だけではなく、人工知能に処理させるビッグデータが集まるプラットフォームの構築、標準化/サービス・システム開発、人材育成/組織改革等に総合的に取り組んでいく必要がある(図表 2-9 図表 2-9)。

IoT/BD/AI 時代に我が国の浮沈をかけて、産学官の総力戦としてこれらの施策に取り組む必要がある。

図表 2-9 IoT/BD/AI 時代における総合的な取組の必要性

出所)(株)NTTドコモ講演資料より作成

第3章 横断的な推進方策

1. IoT/BD/AI 時代の人材育成策

(1) IoT/BD/AI 時代に対応するために求められる人材像

従来、我が国の産業競争力の源泉は、熟練工の経験と勘に基づく「巧みの技」や、高機能なハードウェアといった点にあった。一方、第2章で述べたように、製品やサービスの付加価値のソフトウェアへの移行といった産業構造の変革により、収益を得る手段がハードウェアの販売からソフトウェアによるサービスの提供に移っていくことが予想されることから、ソフトウェアを構築するスキルが共通のスキルとして欠かせないものになるとともに、図表3-1 図表3-1 のようにビジネスモデル考案、基盤デザイン、データ解析等必要となるスキルが変わってきている。また、技術革新のスピードが速いことから、常に最新のものを取り入れていくことが必要となる。

IoT/CPSの普及に向けて必要となるスキル

スキル項目	必要な能力
課題発見・コンサル	社会や企業の問題点を見つけ、独自の解決策を考える
ビジネスモデル考案	常識や慣習にとらわれず 業界を超えたサービスを考える
ICT基盤デザイン	最新のハード/ソフト技術で新しいアーキテクチャを創る
データ解析・A I	数理統計や機械学習の技術を使って 社会課題を解決する
ITとOTの統合 (OT : Operation Technology)	制御系システムの特性を理解し ITネットワークにつなぐ
セキュリティ	制御系システムを含めて 人・モノ・データの安全を守る
UI/UX デザイン	ハード/ソフト/サービスのデザインカで人を感動させる

~起業・発明・基盤ソフト開発・デザイン の人材が必要~

図表 3-1 IoT/CPS の普及に向けて必要となるスキル

出所)技術戦略委員会 第 10 回 NTT コミュニケーションズ(株)発表資料

このような IoT/BD/AI 時代において、進むべき方向性を具体的な方策へ翻訳して示すことができる、「プロデューサ(軍師型人材)」が求められる。このような軍師型人材は、方向性と具体的方策の提示、オープン&クローズ戦略の策定、それに基づく競争と協業のルール設計や技術やデータを価値に結びつけるメカニズムをデザインするといった役割を果たすことが期待される。

また、データを価値に変える能力や顧客ニーズを読む能力等を有する、データサイエンス/マーケティングを担当する「サービス開発人材」が求められる。さらに、CPS は多様な技術の複合システムであるため、「エンジニア」は、生産やサービス提供のためのハードウェアやソフトウェアの技術者とセンサー、ネットワーク、無線やクラウドといった分野の ICT の技術者が協力

して対応する必要がある。また、これらの人材を巻き込んでイノベーション を起こす「イノベーター」人材が求められる。

ICT 企業とユーザ企業が連携し、これらの人材がチームを形成し、それぞ れの役割を果たしながら IoT/BD/AI 時代に対応したオープン・クローズ戦略、 ビジネスモデルを検討し、データから価値を生み出すプラットフォームを形 成していくことが重要である。

[求められる役割]

- 方向性と具体的方策の提示 オープン&クローズ戦略
- ・技術やデータを価値に結び つけるメカニズム構築
- 技術とビジネスのバランス

プロデューサ(軍師型人材)

- 全体を俯瞰し、方向性等を 提示する能力
- 現場を理解し、全体をデザイン できる能力

イノベーター

- 独創性
- 自己追求性
- 不屈の精神

[求められる役割]

- ・アントレプレナ-・プロモーション
- サービス開発人材やエンジニ アを巻き込んでイノベーション を起こす

IoT/BD/AI時代に対応する人材チーム のイメージ

[求められる役割]

- マーケティング
- ・品質の確保
- ・ビジネス分析

サービス開発人材

- (データサイエンス/マーケティング担当)
- 顧客ニーズを読む能力
- データを価値に変える能力 ● データを生み出すエンジンとし
- てモノの価値を判断する能力

エンジニア

- ハードウェア及びソフトウェアの技術者と 無線やクラウド等のICT技術者の 両方の参加
- 制御システムセキュリティの専門家
- 個別技術を習得して高度化
- [求められる技術知識]
- ・センサ
- -無線
- ・クラウド ・セキュリティ
- ・ハードウェア
- ・ソフトウェア

図表 3-2 IoT/BD/AI 時代に対応するための人材像

また、IoT/CPS による生産やサービス提供のためのシステムは社内の情報 システムに比べて、桁外れのセキュリティが必要であり、サイバー攻撃によ るシステム障害は膨大な経済損失や人命のリスク等につながることを踏ま えて、制御システムのセキュリティの専門家の育成が重要である。

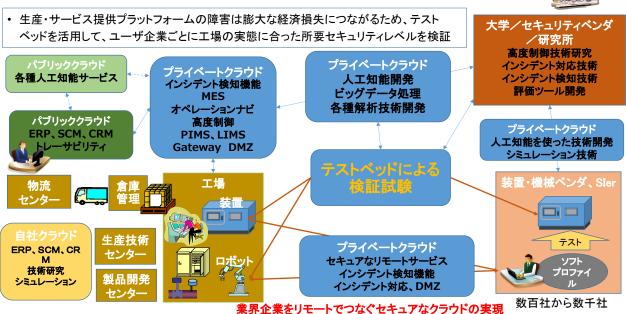
制御システムの特性(業務システムとの違い)

要求条件	業務システム (社内情報システムなど)	制御システム (重要インフラ/プラント等)
性能	非同期	リアルタイム
	応答の信頼性	応答の即時性 (タイムクリティカル)
	遅延や揺れは ある程度 許容	遅延や揺れは 重大事故に直結
信頼性	スケジュール運用	連続運用保証 (24時間365日)
	不具合に寛容	不具合や停止は致命的
	フィールドでのβ版テストも可能	完全な動作確認テストが必要
リスク管理	リスクはデータや事業運用の喪失	リスクは人命・設備・製品の 喪失 と 環境負荷
	リブートによる復旧が可能	常時正常な動作が必須

出典:平成22年度内閣官房情報セキュリティセンター委託調査 「制御システムのオーブン化が重要インフラの情報セキュリティに与える影響の調査」をもとに編集

制御システムセキュリティの専門家の育成が課題

図表 3-3 制御システムの特性


出所) 技術戦略委員会 第 10 回 NTT コミュニケーションズ(株)発表資料

(2) IoT/BD/AI 時代の人材育成策

① テストベッドによる次世代の生産・サービス提供プラットフォームの実証 (1)で述べたように、IoT による産業構造の変革に対応するためには、「プ ロデューサ」、「サービス開発人材」、「エンジニア」、「イノベーター」といっ た人材が必要であるが、これらの能力を一人で身につけるのは困難であり、 それぞれの得意分野を活かし、人材チームとして連携して対応することが必 須と考えられる。

ICT企業、IoT/CPSを活用して新たな価値を生み出すユーザ企業が連携し、 オープン&クローズ戦略を検討するとともに、テストベッド等を活用したセ キュアなインフラにより、次世代の生産・サービス提供プラットフォームの 実現に向けた実証を推進し、イノベーションの創出を目指すことが重要であ る。

テストベッドを活用した生産・サービス提供プラットフォームの安全・信頼性対策の実証

図表 3-4 テストベッドを活用した実証例

出所) 技術戦略委員会 第10回 VEC 発表資料より作成

② 多様なビジネス分野における loT 利活用に向けたユーザのリテラシー向上

第2章5第2章5で述べたとおり、米国においてはユーザ企業の中に ICT 技術者が多くいるが、日本においてはユーザ企業で ICT 技術者が不足しており、ユーザ企業において IoT の導入を検討しようとしても自社で検討できない。

製造業の現場において、IT と OT (Operation Technology) という制御システム技術の両方が分かり、通信技術も理解出来る人材が不足している、また、工場のサイバーセキュリティ対策を検討したいが制御システムのセキュリティに詳しい専門家がいないなどの声があがっている。一方で、ICT 業界においては、ユーザ企業のニーズ・課題の分かる人が少ないという声も出ている状況である。

日本の企業から聴取したコメント

業界	担当者のコメント
機械・重工業	製品の故障修理でお金がもらえる時代は終わる。 IoTを活用したレンタルサービスのノウハウが必要。
製造装置・部品	輸出製品の保守メンテのためIoTを活用したいが、 ITとOTが両方わかり通信工事できる人がいない…
電機・自動車	工場のサイバーセキュリティ対策も検討したいが、 制御システムに詳しいセキュリティ人材がいない…
通信・ISP	IoT/CPS時代に向けたサービスの検討が必要だが、 ユーザー/社会のニーズ・課題のわかる人が少ない

業界を超えた 幅広い技術知識・ビジネスセンスが必要!

図表 3-5 IoT 利活用に関する各業界のコメント

出所) 技術戦略委員会 第 10 回 NTT コミュニケーションズ(株)発表資料

このように、ユーザ企業の現場では、IoTに係る基本的な技術知識がなく、現場のニーズを解決するために IoT や AI をどのように使ったらよいのか分からない場合が多いと考えられる。特に過疎地や人手不足の中小規模の工場や農家等、IoTの活用が期待されている現場ほど、ICT や IoT の利用経験や知識がほとんどないことも考えられる。

さらに今後は、様々な分野において多様なユーザが IoT システムを導入することが見込まれており、これにともない膨大な数の IoT デバイスが導入されることとなる。それらのほとんどが電波を利用してネットワークに接続されることが想定されており、IoT や無線システムの運用経験がないような新規ユーザが急増することとなるが、このようなユーザによる適切な無線システムの選定、無線ネットワークの構築が行われなければ、極めて深刻な周波数逼迫や混信が発生することも懸念される。

以上を踏まえると、円滑な IoT の利活用の推進や、電波の適正な利用を確保し、多様な産業において IoT 推進による新たな価値創造を図っていくために、IoT のユーザにおいて、IoT に係る基本的な技術知識の向上を図っていくことが必要である。

このため、IoT 推進コンソーシアムのスマート IoT 推進フォーラムのようなユーザ企業と ICT の専門家がいる場において、電波利用等の IoT の利活用に係るリテラシー向上に向けた専門知識の要件(スキルセット)について、必要となる技術分野・知識水準の調査を行い、取りまとめることが必要である。また、スキルセットに基づき、周知啓発に使用する適切な素材の作成を促進し、IoT 利用に係るリテラシー向上に向け、IoT の利活用分野(ユースケース)毎に各地域において IoT のユーザに対する周知啓発事業を実施することが適当である。

1. IoT利用に係る周波数使用に関するリテラシー向上

- 2. 多様な分野のユーザ/専門家によるIoTスキルセットの設定
 - ⇒スマートIoT推進フォーラム等の活動として推進
 - ⇒そのようなスキルセットに基づき、様々な分野のIoTの利用希望者等に対して、 民間事業者が検定・研修を実施

図表 3-6 IoT スキルセットの例

出所)技術戦略委員会 第8回 モバイルコンピューティング推進コンソーシアム発表資料より作成

③ 若者やスタートアップを対象とした IoT リテラシーに係る人材育成の推進

今後の IoT の利活用の進展に伴い、文系、理系によらず、IoT を総合的に 理解し、使いこなせる人材、IoT 利用のアイデアを発想できる人材が求めら れる中、開発キットや教材、オープンソースハードウェア、クラウドサービ ス等を使ったロボットやアプリ等を DIY (Do It Yourself) で開発すること (モノづくり)を通じた人材育成の取組が行われている。

米国では、Maker (モノづくりをする人)が集まって DIY した作品を出展・ 販売するイベント「メイカーフェア」が広がっている。

2014 年にはホワイトハウスがメイカーフェア (White House Maker Faire) を開催し、モノづくりへの支援に国を挙げて取り組んでいる。特に若者向け に、ボードコンピュータを活用したモノづくりを通じた体験型の教育プログ ラムを実施しており、その取組には主要企業や、NASA、国防総省といった 政府機関も参加している。メイカー支援は米国の STEM (science, technology, engineering, and mathematics)教育施策としても位置付けられている。

我が国でも若い世代がハードウェアとソフトウェアの両方の技術を修得 し、モノづくりの中でプログラミング能力を身につけられるような取組を進 めることが望ましい。

- 米国では、Maker(モノづくりをする人)が集まってDIYした作品を出展・販売するイベント「メイカーフェア」が広がっている。 2014年にはホワイトハウスがメイカーフェア(White House Maker Faire)を開催し、モノづくりへの支援を強調。
- メイカー支援は米国のSTEM(science, technology, engineering, and mathematics)教育施策としても位置付けられており、 企業、大学、図書館等へのメイカースペース(PC、3Dプリンタ、グラフィックツール等の環境が用意されたスペース)の設置等、 アイディアに基づくモノづくりの裾野を広げる活動が進んでいる。

White House Maker Faire ■ 2014年6月18日を"Day of Making"とし、ホワイトハウス初のメイカーフェ ■ 25以上の州から100名以上のMaker及びMakerへの支援に賛同する大 学、自治体の首長、企業、NPOの代表者らが参加。 政府、企業、大学、各種団体によるMaker支援への取組も公表された

出所)デトロイト公共図書館

出所)White House

図表 3-7 米国におけるメイカーズイベントの例

出所) 技術戦略委員会 第8回 (株)三菱総合研究所発表資料より作成

また、家電、ロボットなど様々なモノについて、インターネット上で広く 用いられる Web 技術を活用し、統一的に接続・制御を可能とする共通プラットフォーム技術(WoT: Web of Things)の実現に向けた取組が進められており、新たなビジネスモデルが生まれることが期待されている。

現在、我が国のプログラミング人材についてはアセンブラ等が使える組み込み技術者が 26 万人程度であるが、Web 技術であれば対応できるソフトウェア技術者はこの組み込み技術者を含め 100 万人を超えている。更にその他に17万人程度いると言われているウェブデザイナーも Web 技術であれば対応できる。

このため、IoT デバイスの開発に、全てのソフトウェア技術者の共通言語である Web 技術を基にした WoT が導入されることにより、IoT デバイス開発に参加できるソフトウェア技術者を大幅に増やすことが可能になると考えられる。

- 家電、ロボットなど様々なモノについて、インターネット上で広く用いられるWeb技術を活用し、統一的に接続・制御を可能とする共通プラットフォーム技術(WoT: Web of Things)を実現することで、新たなビジネスモデルが生まれることが期待。
- 我が国が世界に先駆けてWoT導入を推進することで、ソフトウェア技術者の不足問題にも大きな効果。
- W3C技術総会(TPAC2015札幌:平成27年10月開催)において、WoT Interest Group(IG)会合(議長:シーメンス)が 同会合のWG化の方向性等を確認。

IoT時代には、ネットワークの共通化は推進されるものの、企業・アライアンス毎にモノ・アプリ・サービスはバーチカルで分離され、連携利用困難

世界共通のアプリ・サービスPFであるWebで相互連携

- Web技術導入により、IoTデバイス開発者を4倍以上に増加させることが可能
 - ① 組み込み技術者はソフトウェア技術者の四分の一
 - ② Web技術は全てのソフトウェア技術者の共通言語
 - ③ 更に、Web技術はデザイナーの共通言語でもある(CSS,HTML)

IoTデバイスにWeb技術を導入することで、 4倍以上のソフトウェア技術者がIoT開発に参加可能 が可能 組み込み技術者: 25.8万人 全ソフトウェア 技術者:102万人 経産省:IT人材を取り巻く 現状(2011年)※1 より

デザイナーに該当する者の数は、全国で16.5万人 経産省:デザイン業の実態、デザイナー数について**2より

※出展 1: http://www.meti.go.jp/committee/sankoushin/jouhoukeizai/jinzai/001_s02_00.pdf
2: http://www.meti.go.jp/policy/mono.info.service/mono/human-design/toukei.html

図表 3-8 WoT 導入の推進

出所) 技術戦略委員会 第9回 KDDI(株)発表資料より作成

このような背景を踏まえ、WoT 技術を実装したボードコンピュータを開発し、HTML5 や CSS といった簡単な Web ベースの技術を用いて組み込み機器を自由に開発できるような環境を構築し、これを活用して若者向けにモノ

づくりを通じた体験型教育を行おうとする Mozilla Factory CHIRIMEN Open Hardware Project のような取組も行われている。

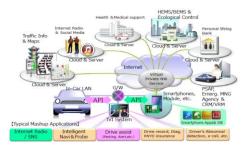
さらに、IoT 分野においては、車の情報と Web 技術の融合によるサービス やアプリの創出を目指した「Web とクルマのハッカソン」のような様々なハ ッカソンが国内外で開催されている。特に、若者やスタートアップがハッカ ソンによりアイデアやソリューションを競うことによる教育や人材育成と しての効果は大きいと考えられる。

IoT/BD/AI 時代においてサービス開発を担うエンジニアの人材育成は、プ ログラミング能力の育成を含め、中学、高校等早い段階でのアプローチが重 要であり、進路選択を行う若年層において、IoTに係る知識向上を図ってい くことが効果的である。IoT による電波有効利用の周知啓発につながること から、モノづくりを通じた体験型教育やハッカソン等の若者やスタートアッ プを対象にした IoT リテラシーに係る人材育成を推進することにより、ハー ドウェア・ソフトウェアの両方に強い技術者の育成を図っていくことが重要 である。

IoTを総合的に理解し、使いこなせる人材、アイディアを発想できる人材が求められており、IoTによる電波有効利用の周知 啓発にもつながることから、若者やスタートアップを対象として、開発キットや教材、オープンソースハードウェア等を使った 開発(モノづくり)を通じた体験型教育やアイデア、ソリューションを競うハッカソンの取組を推進することが重要。

Mozilla Factory CHIRIMEN* Open Hardware Project

- 「"オープン"を軸としたモノづくりを学び、実践する場」として、2012 年春に Mozilla Japan が構想を発表。
- オープンな思想のもと、専門家、大学生、中高生が一緒になってモ ノづくりのプロジェクトに実際に参加することで、そのプロセスの中から気付きや学びを得て、皆でイノベーションの種を作っていく枠組
- これまでの Web の概念にとらわれることなく「自由な発想で "モノ づくり" を行いながらプロトタイプの作成を目指す Labo (実験室) 的 なプロジェクト」等様々な取り組みを実施。



※CHIRIMEN: センサーやアクチュエーターなどの物理デバイスをWeb技術だけで 制御することができるオープンソースの開発環境で、ボードコンピュータとその上 で動作するソフトウェアを含めた総称。

Webとクルマのハッカソン

- Web技術の高度化に伴い、車内ネットワークの情報とWebを通じた 様々な情報を連携させた新たなビジネスモデル創出が期待。Web技 術の国際標準化団体であるW3Cにおいて、車両情報活用に関する APIの標準化が進められている。
- 2016年1月、クルマの情報とWeb技術の融合による新たなサ やアプリの創出、Webと車の連携に関する普及啓発・裾野拡大を目 的として、「Webとクルマのハッカソン」を開催。

Webと車の標準化進展により 想定されるサービスイメージ

「Webとクルマのハッカソン」 の様子(2016年1月)

図表 3-9 IoT リテラシー人材育成の例

出所) 技術戦略委員会 第8回 (株)三菱総合研究所発表資料、第9回 KDDI(株)発表資料等より作成

④スマート IoT 推進フォーラムと連携した人材育成の推進

これまで述べてきたように、IoT に係る人材育成の推進に当たっては、多様な分野におけるIoTユーザの現場のニーズや課題を的確に把握することが不可欠である。産学官により IoT の技術開発・実証・標準化を推進しているスマート IoT 推進フォーラムには、多様な業種から多くの会員が参加し、人材育成も含めた検討体制を設けているところであり、施策の推進に当たっては、このような産学官の多様な会員が集まるような場と連携し、より現場のニーズを踏まえた施策の検討・実施を図る必要がある。

2. IoT/BD/AI 時代の標準化戦略

(1) 国際標準化機関等における標準化動向

Wi-SUN 等のセンサー技術や、IPv6 等のインターネット技術、ビッグデータ解析のための計算処理能力等の飛躍的向上を背景とした IoT 利用の進展に伴い、デジュール標準化機関に加えフォーラム標準化団体等における活動の拡大や、オープンソースに関する取組の活発化等、標準化を取り巻く環境は大きく変化している(図表 3-10 図表 3-10)。

特に、一部の欧米企業が垂直統合型のビジネスモデルを構築しつつある中、 新たな価値創造の源泉となるデータの円滑な利活用を促進し、多様なデータ を糾合するため、プラットフォーム層の標準化活動が活発化している。

また、一方で、米国の IIC (Industrial Internet Consortium) に代表されるような数多くの推進団体が、企業連合による IoT 推奨規格の普及を推進している。

ITU-T SG20	政府、民間企業等	2015年6月にStudy Group(SG20)を設置。IoT及びスマートシティ&コミュニティを対象とし、IoTの要求条件及びユースケース、スマートシティ&コミュニティの全体像及びICTの役割等に係る勧告案を検討中
ITU-R SG5 WP5D	政府、民間企業等	IMT無線インターフェース、IMTと他業務との周波数共用、将来のIMT(5G)の開発プロセスに関する決議、勧告、報告について検討。今後IMT-2020無線インターフェースの勧告案を検討予定
ISO/IEC JTC1 WG10	政府、大学、民間企業等	2014年11月にWG10を設置。ISO/IEC JTC1におけるIoT技術の指針となる参照アーキテクチャを検討中
IEEE	大学、民間企業等	交通、ヘルスケア等の様々な分野に適用可能なloTのアーキテクチャの枠組を標準化することを目指し、2014年3月にWG(P2413)を設置。 セキュリティ等の在り方についても規定予定
IETF	大学、民間企業等	低電カデバイスにおけるIPv6通信を行うための6LoWPAN(RFC6568)や低電力でロスの多いネットワークにおけるルーティングプロトコルを規定したRPL(RFC6550)を標準化
oneM2M	欧米、日中韓印の 標準化機関	2012年7月、M2Mサービスレイヤの標準化を推進するために設立。2015年1月、要求条件や機能アーキテクチャ等の技術仕様書(リリース1)を公開。2016年夏頃を目標にリリース2の公開に向けて検討中
W3C	Google, Microsoft, IBM, Samsung等	Web技術を利用したIoTサービスやアプリケーションの開発を可能にするWeb of Thingsの規格について検討中
Industrie 4.0	Akateck, Fraunhofer, Siemens, Bosch, SAP等	産学官共同で工場等の生産工程を高度化することにより国際競争力を確保するとともに、サイバー・フィジカル・システムによる「考える工場」の実現を目指し、ネットワークと参照アーキテクチャ、複雑なシステムの管理、安全とセキュリティ等の8つの優先開発分野のロードマップ等を検討中
Industrial Internet Consortium	GE, Intel, IBM, Cisco, AT&T等	IoTを活用したビッグデータ分析により産業・製造業の革新を図る「Industrial Internet」を提唱。相互接続・運用性の検証のためのテストベッドに関する取組、接続技術の導入を促進する標準化参照情報の提供等を実施
Allseen Alliance	Qualcomm、Panasonic, SHARP, Microsoft, LG等	Linux Foundationがホスティングする団体であり、Qualcommが開発し、オープンソース化したP2P ^{※型} のデバイスを接続するための枠組である「AllJoyn」を活用し、IoT向けの様々なソフトウェアの開発を促進 ※P2P(Peer to Peer):ホストサーバに依存せず、コンピュータ機器同士が直接通信を行うネットワークの形態
Open Connectivity Foundation	Intel, Samsung,Cisco等	デバイスの相互接続・運用性の要件について検討し、技術仕様書を公開。また、同コンソーシアムの出資により、 Linux Foundationとの協業プロジェクトとして「IoTivity」を設置し、同仕様書に基づくオープンソースを活用したIoT 向けの様々なソフトウェアの開発を促進。2016年2月まではOpen Interconnect Consortiumとして活動
Thread Group	Nest Labs, Samsung等	ホームオートメーションに係る機器のセキュリティと相互接続・運用のためのネットワークプロトコルを開発し、メンバー企業に対して仕様を公開
HomeKit	Apple, IBM, TI, Honeywell, Philips等	AppleのiOS8.1以降を搭載したiPhone、iPad、iPod touchによる家電機器の遠隔制御の仕様を策定し、メンバー企業に対して公開

図表 3-10 IoT に関する主な標準化機関・推進団体

①ITU⁴の動向

ITUでは、無線通信部門(ITU-R)及び電気通信標準化部門(ITU-T)において、各国主管庁及び民間のセクターメンバー等が参加し、標準化活動が行われており、IoT/BD/AI 時代を支えるネットワーク基盤技術として、第5世代(5G)移動通信システム(IMT-2020)に関する標準化活動が開始されている。

ITU-R SG5 では、IMT-2020 システムの無線インタフェースに関する要求条件や評価手法等について、無線インタフェースの提案募集を 2017 年に開始し、無線インタフェースの詳細な仕様を 2020 年に勧告化する予定である。

ITU-T SG13 では、将来におけるネットワーク(Future networks)に関する議論が行われており、ネットワーク仮想化に関する要件やアーキテクチャ等が勧告化された。また、ITU-T FG IMT-2020 では、IMT-2020 を支える有線技術や有線・無線の連携技術を含むトータルなネットワーク技術に関する議論が進められている。

また、IoT (M2M を含む) やユビキタスセンサーネットワーク、スマートシティ&コミュニティ等の広範な課題について協調して標準化していくために、2015 年 6 月の ITU-T TSAG 会合において SG20 の設置が承認された。 SG20 では、IoT のデバイス管理の要求条件が合意されたほか、スマートメータ等を含む IoT のネットワーク要求条件について、我が国からの提案を基に 2016 年 7 月の SG20 会合での合意を目指している。

② ISO/IEC JTC15の動向

ISO/IEC JTC1 においては、2014 年 11 月にビッグデータに関する WG9 及び IoT に関する WG10 が設置され、2015 年 9 月にスマートシティに関する WG11 が設置された。

WG10では、IoTの参照アーキテクチャ等を検討している。様々な IoT システム向けの国際標準を策定する際に参照されることを目的として、IoT としての一般的な機能やシステム構成等について取りまとめており、ITU、ISO、IEC の関連 WG や IoT 関連の標準化組織とも連携を図っている。

WG11では、2016年3月にスマートシティに関するICTの参照フレームワーク等の検討項目が承認され、議論を進めている。

⁴ ITU: International Telecommunication Union (国際電気通信連合)。国際連合の専門機関であり、電気通信技術の標準化や電波 (周波数)の割り当てなど、通信全般にわたる国際規格を勧告する役割を担う国際標準化組織である。

⁵ ISO/IEC JTC1: 国際標準化機構 (ISO)及び国際電気標準会議 (IEC)の第一合同技術委員会 (Joint Technical Committee 1) として 1987 年に設立した情報技術分野の標準化を担う国際標準化組織である。

③ oneM2M⁶の動向

M2M(Machine to Machine)や IoT の市場の分裂を避け、エコシステムを構築するための標準化を目的に日米欧中韓等の標準化団体が連携してoneM2M を 2012 年 7 月に設立した。M2M/IoT の様々な分野のアプリケーションに対応可能な共通プラットフォームの標準化を推進している。

様々な分野のユースケースに基づき要求要件を定め、M2M のアーキテクチャ、API 及びセキュリティ等に関する技術仕様を、oneM2M リリース 1 として 2015 年 2 月に策定した。その後も、住宅、産業、車等の各分野における具体的な要求要件等の検討を進めている。

住宅分野への oneM2M 仕様の適用(Home Domain Enablement)については、2016 年 8 月に HEMS を含む共通デバイス管理モデルを規定し、標準化を完了する予定である。

産業分野への oneM2M 仕様の適用(Industrial Domain Enablement)については、工場でのユースケースやその要求条件等を 2016 年 8 月頃に策定するリリース 2 へ盛り込む予定となっている。

車分野への oneM2M 仕様の適用(Vehicular Domain Enablement)については、要求条件等を検討中であり、2018 年 3 月頃に策定するリリース 3 へ盛り込む予定である。

④W3C⁷の動向

ウェブ技術の高度化と IoT の検討の進展を受け、家電、設備機器、産業機器、車等と、これらからデータをセンシングするセンサーデバイス等の様々なモノ (Things) を制御・管理するための共通プラットフォームとしてのWeb API について検討するため、2013 年 7 月に W3C 内に Web of Things(WoT) Community Group(CG)が設立され、議論が開始された。

2014年6月にユースケースや要求条件を整理する Interest Group(IG)の設立について合意した。これを受けて、2015年1月に WoT IG が設立され、シーメンスとインテルが共同議長になった。

2015 年 10 月に札幌で開催された W3C 技術総会(TPAC: Technical Plenary/ Advisory Committee Meetings)における IG 会合では、参加メンバーにより、Web 技術を用いた照明、エアコン、センサーなどの遠隔制御のデモや、各企業が試作した機器制御 Web API の相互接続性の試験が実施された。

⁶ oneM2M: 欧州、米国及びアジアの電気通信関連の標準化団体(7団体) が連携して、M2Mの標準化を担うことを目的に2012年に設立した国際標 準化組織である。

⁷ W3C: World Wide Web Consortium。ウェブ(World Wide Web)に関するコア技術の仕様策定を行うため、1994 年に設立された国際標準化組織である。

IG においては、アーキテクチャやモノ(Things)の記述表現、端末発見やセキュリティ・プライバシー等を扱う複数のタスクフォースが設置され、今後の Working Group(WG)の設立に向けて、標準化を進めるべき要求条件の絞り込みが行われている。IG における検討は、シーメンス等の欧州企業が主導する形で進められているが、我が国からも家電メーカやICT ベンダ等が積極的に活動に参加している。

⑤ IETF⁸の動向

IETFでは、IoT 関連の具体的活動として、IEEEで標準化された低消費電力の無線通信規格(IEEE802.15.4)で規定されるリンク層の上で IPv6 を稼働させるための技術として 6loWPAN を規格化した。その後、6loWPAN の応用と拡張を進めている。

また、IRTF(Internet Research Task Force)の Thing-to-Thing Research Group(T2T-RG)では、IoT デバイスの IP レイヤからアプリケーションレイヤの全般的な検討を行っている。W3C WoT IG とも連携し、共同会合を開催して、仕様に関する議論や相互接続性の検証(プラグフェスト)を実施している。

⑥ IEEE⁹の動向

IEEE P2413 WG では、IoT のための包括的なアーキテクチャ等について 検討している。特に、IIC と協調し、産業用 IoT のための要件と相互運用性 のギャップ分析等を共有している。

IEEE802.11 WG では、LAN(Local Area Network)、PAN(Personal Area Network)といった無線通信技術の規格化を行っており、IoT での近距離無線通信に使用されている。さらに、2016 年 3 月に 3GPP との間でLWA(LTE-WLAN Aggregation) / LWIP(LTE WLAN Radio Level Integration with IPsec Tunnel)の技術に対して連携を行い、5G に関する検討との協調を図っている。

⁸ IETF: Internet Engineering Task Force。TCP/IP 等のインターネットで利用される技術の標準化を促し、インターネットの円滑な運用を推進する国際標準化組織である。

⁹ IEEE: Institute of Electrical and Electronics Engineers (米国電気電子学会)。電気、電子、通信、無線、航空などを専門とする技術組織であり、IEEE-SA(Standards Association)にて国際標準化を議論/策定している国際標準化組織である。

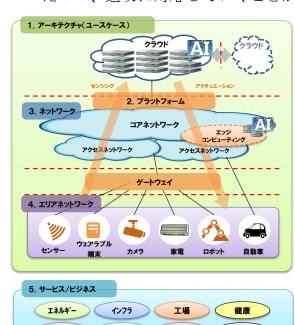
⑦ETSI¹⁰の動向

ETSI ISG MEC (Industry Specification Group Mobile Edge Computing) では、2014 年 9 月にモバイルエッジコンピューティングに関するホワイトペーパーが発行され、3GPP と連携しつつ、そのインタフェース等の標準化の議論を進めている。

また、ETSI ISG NFV (Industry Specification Group Network Functions Virtualisation) では、ネットワーク仮想化に関するインタフェースやアーキテクチャの議論を進めている。

® 3GPP¹¹の動向

3GPP では、仮想化されたモバイルネットワークによる管理手法の議論を開始したところである。3GPP SA2 (Service & System Aspect Working Group 2) では、2016年9月に完了することを目標にネットワークスライスの議論を進めている。


また、MTC (Machine Type Communication) 向けのデバイス ID の扱い に関する定義やネットワーク処理の最適化の議論を進めている。

¹⁰ ETSI: European Telecommunications Standards Institute (欧州電気通信標準化機構)。欧州の電気通信における標準仕様を策定するために設立された国際標準化組織である。

^{11 3}GPP: Third Generation Partnership Project。Third Generation Partnership Project. 各国・各地域の標準化団体や携帯電話に関連する事業者等から構成され、移動通信システムの仕様を検討・開発し、標準化することを目的とした、国際標準化組織である。

以上の標準化活動の概況についてまとめたものを<mark>図表 3-11 図表 3-11</mark> に 示す。

また、上記の標準化動向に加え、図表 3-10 図表 3-10 に示すような IIC をはじめとする多数の推進団体においても、様々な推奨規格の普及を推進しているが、対象のレイヤやユースケースが多種多様であることから、国内プレーヤーそれぞれが自らの事業戦略と各推進団体の活動内容を十分に踏まえつつ、適切に対応していくことが必要である。

1. アーキテクチャ(ユースケース)

デジュール(ITU, ISO/IEC)、フォーラム(IEEE, oneM2M)双方において、俯瞰的な整理が行われている。我が国の検討状況はITUやoneM2Mに適切にインプットされている状況

2. プラットフォーム

多数の民間コンソーシアムの推奨規格が乱立している中、 oneM2MやW3Cにおいて共通プラットフォーム化を検討。状況は 混沌としており、共通化の具体的な方向性について、関係者間の コンセンサス形成が必要

3. ネットワーク

「超高速」「同時多数接続」「超低遅延」の要求条件を満たす柔軟なネットワーク構成(5GNW)の実現に向け、ネットワークソフト化技術やエッジコンピューティングの検討が進展しており、デジュール、フォーラム(3GPP、ETSI)双方への積極的な対応が必要

4. エリアネットワーク

基本的に商用化フェーズとなっている。電源確保が厳しい環境下における更なる低消費電力化の検討がフォーラム(IEEE, IETF)を中心に行われており、我が国の企業も積極的に対応

5. サービス/ビジネス

デジュール、フォーラム双方で多種多様な活動が行われており、 ビジネス化を見据えた戦略的な対応が必要

図表 3-11 IoT に関する標準化活動の概況

(2) 新標準化戦略マップの策定

農業

防災

① 策定の背景

情報通信審議会は、「情報通信分野の標準化政策の在り方」(平成 23 年諮問第 18 号)について平成 24 年 7 月に答申しており、その中で、標準化の重点分野を選定するとともに、各分野の標準化の必要性や達成目標等を具体化した標準化戦略マップを策定したが、それから 3 年以上が経過している。

また、IoT/BD/AI 時代の本格的な到来に伴い、標準化についても、上記(1)で述べたような新たな活動が進展していることを踏まえ、以下のとおり、今後の国際標準化活動における重点領域を設定し、各重点領域における標準化の必要性や具体的目標等を取りまとめるとともに、今後のロードマップに関する新しい「標準化戦略マップ」(参考資料)を策定した。

② 重点標準化領域の考え方

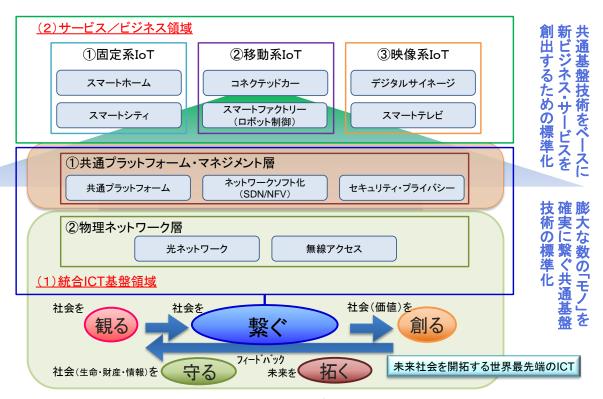
重点標準化領域については、第1次中間答申における重点研究開発分野を 踏まえて検討した。

第 1 次中間答申においては、今後の重点研究開発分野として、「社会を観る」「社会を繋ぐ」「社会(価値)を創る」「社会(生命・財産・情報)を守る」「未来を拓く」の 5 つの柱が提示されているが、IoT 時代においては、多種多量の「モノ」のデータが、クラウド等を活用した様々なサービス提供主体に確実に届けられることが非常に重要であることから、特に「社会を繋ぐ」分野について、研究開発と並行して標準化活動に重点的に取り組むことが必要である。

また、その際にやりとりされる大量のデータを活用した新たなビジネスモデル創出の観点から、特定の分野や市場に依存せずにデータの利活用を実現するための共通プラットフォームの確立や、それらを利用した新ビジネス・サービスの創出を目的とした標準化活動にも重点的に取り組むことが必要である。

このような考え方を踏まえて、今後の標準化の重点領域としては、以下の 2つを選定するとともに、我が国の経済社会活動の課題解決や国際競争力強 化等の観点を踏まえて重点サブテーマを例示した。

ア 統合 ICT 基盤領域


中間答申における「社会を繋ぐ」分野の重点研究開発分野と同じ「統合 ICT 基盤領域」を重点標準化領域とし、通信機能の階層構造を参考に、さらに「共通プラットフォーム・マネジメント層」及び「物理ネットワーク層」の2つのカテゴリーに分類して重点サブテーマを例示した。

イ サービス/ビジネス領域

「統合 ICT 基盤領域」の上位レイヤである「サービス/ビジネス領域」を重点標準化領域とし、「固定系 IoT」、「移動系 IoT」、「映像系 IoT」の 3つのカテゴリー 12 に分類して重点サブテーマを例示した。

¹² いずれも、サービス/アプリケーション層における標準化が今後重要となるが、特に、①固定系 IoT 及び②移動系 IoT については、超大量接続や超低遅延といった新たなニーズに対応可能な先端的な通信制御プラットフォームの検討が必要となるため、第4章第1節において推進方策の詳細を記載。

以上の考え方及び重点領域を概念的に示した図を<mark>図表 3-12 図表 3-12</mark> に 示す。

図表 3-12 新標準化戦略マップにおける重点領域

③ 各重点領域における標準化の必要性及び具体的目標 ア 統合 ICT 基盤領域

IoT 時代においては、スマートフォン等の通信需要の増大に加え、あらゆるモノがインターネットに接続されることが想定されており、以下のような新たな要求条件がネットワークに求められている。

- ➤ ユーザごと最大 10Gbps 程度の超高速通信 (4K/8K など高精細映像も 超高速に伝送が可能)
- ➤ 無線区間で 1ms 程度の低遅延(自動運転、遠隔ロボット操作でリアル タイム操作が可能)
- ➤ 100 万台/km²接続程度の多数同時接続(狭いエリアで同時多数接続が 可能)

従来のシステムではこれらの要求条件に対応できないため、第5世代(5G)移動通信システム (IMT-2020) の実用化に向け、ネットワーク資源を柔軟に制御可能な機能等を導入するため、2020 年頃までに基盤技術の国際標準化を目指す必要がある。

なお、具体的に実現を目指す機能等は以下のとおりである。

(ア) 共通プラットフォーム・マネジメント層

共通プラットフォーム技術や SDN/NFV によるネットワーク仮想化 技術を応用したネットワークソフト化技術等について、以下のような標 準化活動を行う。

i 共通プラットフォーム技術

oneM2Mにおけるリリース2やリリース3等の仕様策定を我が国が主導し、住宅や産業、車等の様々な分野に対するM2M/IoTの要求条件やアーキテクチャ等を規定しつつ、市場ニーズに即した通信プロトコル及び他のM2M/IoT技術との相互接続・運用を可能とする水平連携型の共通プラットフォーム機能の標準化を推進する。

また、W3C における WoT 標準化の進展を踏まえ、2016 年度から 開始する WoT に関する研究開発プロジェクトの成果を踏まえた標準 化提案を行うことで、2018 年度中の標準化完了を目指し、Web 技術 による機器の情報取得及び制御技術に関する標準化を推進する。

ii SDN/NFV 技術(ネットワークソフト化)

SDN/NFVによるネットワーク仮想化技術を用いたスケーラブルでリアルタイム性の高いネットワーク管理を実現するため、ITU-T FG IMT-2020におけるネットワークソフト化の議論について 5G モバイルフォーラムの活動を基に我が国が主導して、2018年を目処にITU-Tにおいて勧告化を目指すとともに、並行して 3GPP や IETF 等の他の標準化機関・団体へも同様な標準化提案を行い、5G ネットワークのアーキテクチャやスライス技術、モバイルエッジコンピューティング等の標準化を推進する。

iii セキュリティ・プライバシー技術

ITU-Tや3GPP等の各標準化機関・団体において、セキュリティやプライバシーに関わる要件定義やアーキテクチャ等の標準化を推進する。

(イ) 物理ネットワーク層

この層では、物理的な電気信号や光信号を伝送したり中継したりする ための仕組や、コンピューティング及びストレージ資源等の機能を提供 する。光ネットワーク技術や無線アクセス技術について、以下のような 標準化活動を行う。

i 光ネットワーク技術

2017 年までに 1 波長当たり毎秒 1 テラビット級の光ネットワーク の高速化及び低消費電力化を両立する技術を開発し、その成果を基に ITU-T 等において我が国が主導して勧告化を目指すとともに、5G ネットワークのモバイルフロントホール/バックホールの高速化かつ低

遅延処理のための光アクセス制御技術に関する標準化を推進する。

ii 無線アクセス技術

ITU-R や 3GPP 等の標準化機関・団体において、2020 年頃の次世代移動通信システムの標準化を推進する。特に、ITU-R SG5 では 2017年に IMT-2020 システムの無線インタフェースに関する要求条件や評価手法等の提案募集を開始するため、我が国から積極的に提案を行い、2020年に完成予定の無線インタフェースの詳細仕様に関する標準化を推進する。

イ サービス/ビジネス領域(固定系 IoT)

(ア) スマートホーム

2016 年 4 月に電力自由化が開始され、ダイナミックプライシングとの連携による家庭向けの節電サービスの充実や、アグリゲータの介在による取引市場の創設など、新たな省エネルギーサービスの導入が期待されている。

これまでもエアコンや照明などの家電機器制御等を可能とする HEMS (Home Energy Management System) 関連技術の開発及び普及の取組が進められてきたが、電力自由化に伴いその必要性や重要性が一層高まることが期待されるため、ゲートウェイ装置や各種センサー機器の相互運用性を向上させる観点から、クラウド技術との連携や汎用性の高い Web 技術の適用に関する標準化を推進する。

(イ) スマートシティ

都市や地域に根ざす社会的課題が顕在化する中、課題解決を図り、地域創生にもつなげるため、IoTを活用したスマートシティ関連のサービスの発展が期待されている。

スマートシティについては、エネルギー、社会インフラ、都市・交通、 ヘルスケア、農業等、様々な分野毎に IoT の利活用モデル等の検討が進められ、通信規格が乱立しているが、効率的なシステム構築や異分野間のデータ共有による価値創造の観点から、分野横断の共通プラットフォームの構築が期待される。

このため、関係業界が連携し、オープン化すべきデータの見極めや異業種間のデータ流通の重要性について理解を深めるとともに、プラットフォームやシステムアーキテクチャ等の標準化を推進する。

ウ サービス/ビジネス領域(移動系 IoT)

(ア) コネクテッドカー

最先端の ICT 技術を活用する自動走行も含めた ITS (高度道路交通システム) の開発が進められており、車両からの各種情報を活用した新た

なサービスやスマートフォン等の端末及びクラウドと連携した新たなビジネス等、コネクテッドカーの利用形態は多岐にわたり、成長戦略等においても ICT 技術の利用によって自動車分野におけるイノベーションを推進すべきとされている。

2020年代前半の準自動走行システム(レベル3)の市場化に向け、ICT 及び自動車の両分野における国際競争力の強化を図るため、様々な車両向けサービスの登場が期待されるコネクテッドカー分野において、各種車両情報の利活用を実現する技術等の標準化を推進する。

(イ) スマートファクトリー

ものづくりと ICT の融合により、製造業が大きな変革を迎えようとしており、高度化した生産システムによる新たなビジネスモデルへの期待が高まっている。

生産現場における生産効率の向上や生産工程の改善のため、早期の IoT 技術の本格導入を想定して、工場内及び本社(間接部門等)や設計 部門と工場等の間をネットワーク化し、IoT 技術を導入するためのシステムアーキテクチャ等の標準化を推進する。

エ サービス/ビジネス領域(映像系 IoT)

(ア) デジタルサイネージ

交通機関や公共空間等の様々な場所で、情報提供インフラとして普及しているデジタルサイネージは、平常時の生活情報に加え、緊急災害時等の情報入手手段としての役割も大きい。デジタルサイネージにおいて、機器間・システム間の相互接続を確保する標準化は、これまでも我が国企業の取組みにより、基本的なフレームワークや災害時・緊急時の運用要件等の国際標準化が行われてきた。

以上の成果を踏まえ、2020年の東京オリンピック・パラリンピック 及びそれ以降の高度な情報発信を実現するデジタルサイネージの普及 展開を図るため、災害情報やオリンピック情報等の一斉配信や、個人の 属性に応じた情報提供等を可能とする技術の標準化を推進する。

(イ) スマートテレビ

ウェブ技術と放送コンテンツを連携させることにより、番組連動コンテンツの表示やスマートフォン等との連携等を実現するスマートテレビは、視聴者に新たな体験を提供する高度な放送・通信連携サービスとして期待されている。この分野において、我が国はデータ放送等で培った技術やノウハウを活かし、世界に先駆けて HTML5 を活用した放送通信連携規格を策定し、既に NHK 及び民放各局によるサービスが開始されている。

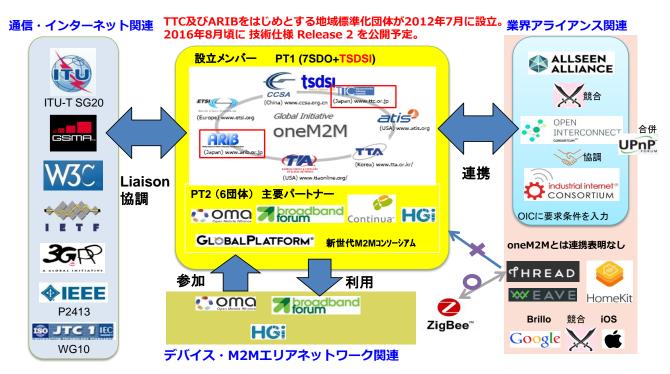
我が国の放送コンテンツや関連技術の国際競争力の強化を図るため、世界に先駆けて実現した放送・通信連携サービスから得られた知見を活用し、2020年頃の4K・8K放送の本格展開とも連携しつつ、高精細なスマートテレビに関する標準化を推進する。

(ウ) 縦書きレイアウト

新聞や書籍などで広く普及している縦書きテキストレイアウトは、我が国を含めた東アジア特有の文化である。このような我が国の縦書き文化を継承するという意味において、ICT環境における縦書きテキストレイアウトの国際標準化は重要である。

これまでの我が国の標準化活動により、主要ブラウザでは基本的な縦書きが表示可能になっているが、多様な端末への縦書きコンテンツ展開を可能とする環境を整備するため、縦書きテキストレイアウトの主要仕様の 2016 年中の標準化を目指す。

(3) IoT/BD/AI 時代における国際標準化活動の現状と課題


今後、国際標準化活動を推進するに当たり、特に留意すべき現状及び課題を抽出すると以下のとおりである。

① プラットフォーム層における標準化活動の重要性の増大

ICT 分野の標準化活動については、ネットワーク層を中心とした相互接続性の確保に加え、新たな価値創造の源泉となるデータの円滑な利活用促進の観点から、プラットフォーム層の標準化の重要性が増大している。プラットフォーム機能の実現手法は多岐にわたるため、国際標準の検討にあたっては、従来以上にオープン&クローズ戦略が重要となることから、国内のプレーヤーがそれぞれの知財戦略をベースとしつつ連携し、モジュール化すべき機能(競争領域)とオープン化すべきインターフェース(協調領域)を見極めた上で、競争力強化につながるようなリファレンス・モデルを戦略的に提案することが必要である。

② 標準化関連団体の多様化及び連携の進展

ICT の利活用分野の拡大等に伴い、国際標準化活動についても関係機関や対象技術が多岐にわたるようになっており、1つの機関だけで行うことは不可能であるため、関係する複数の標準化機関・団体による効率的な連携体制の構築が進展している。特に、様々なフォーラム標準化団体等において IoT の検討が開始される中、各団体の重要度や影響度を十分に把握・分析した上で、それぞれの標準化活動の場に適切に対応していくことが不可欠な状況となっている。(図表 3-13 図表 3-13)

図表 3-13 様々な標準化機関・推進団体間の連携

出所) 技術戦略委員会 第9回 一般社団法人情報通信技術委員会発表資料より作成

③ ソフトウェア中心の標準化と実装の重視

産業のソフトウェア化の進展は、標準化の現場にも大きな影響を与えている。従前より、フォーラム標準化団体においては、実装事例を提示することが最終勧告化の条件とされるケースが多く、そのための対応が課題となっている。加えて近年では、5G コアネットワークの標準化の事例にみられるように、デジュール標準においても POC (Proof of Concept) (概念実証)の実施、プロトタイピングの推進、オープンソースとの連携等の新たな取組が進展している。

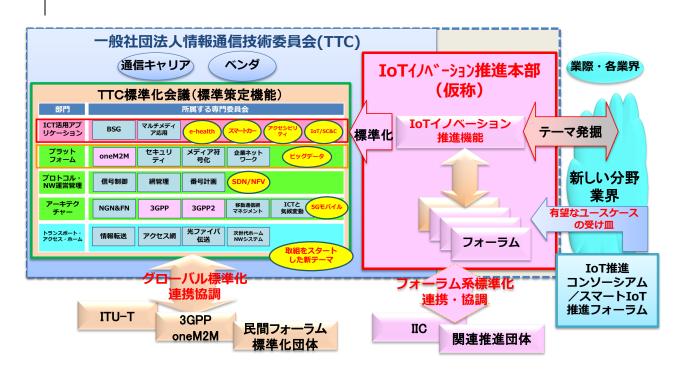
このように、従来のドキュメンテーション中心の標準化ではなく、より一層実装を重視する傾向が強まっていることに加え、特に海外企業では事業展開や市場拡大のフェーズにおいて標準化を戦略的に活用する動きが活発化

していることから、我が国企業としても、こうした動向に適切に対応してい くことが、今後の国際標準の獲得競争において極めて重要となっている。

(4) 今後の国際標準化活動の推進方策

今後の ICT 分野の国際標準化の推進に当たっては、上記(3)で述べたような環境の変化や課題等を考慮した上で、効果的に活動を進めて行く必要がある。具体的には、以下の方向性で今後の国際標準化活動を推進することが適当である。

① 新標準化戦略マップに基づく活動の推進


今後の国際標準化活動における重点領域を設定するとともに、各重点領域 における標準化の必要性や具体的目標等を定めた「新標準化戦略マップ」を 活用し、戦略的に標準化活動及びビジネス展開を推進することが重要である。

②オープン&クローズ戦略に基づくモデルの具体化

欧米諸国の垂直統合型ビジネスモデルを踏まえつつ、共通プラットフォーム構築を推進するため、「スマート IoT 推進フォーラム」を核とした分野横断の連携体制において、国内プレーヤーそれぞれの知財戦略をベースとしつつ、オープン領域とクローズ領域を見極めながら、競争力強化につながるリファレンス・モデルを早急に具体化することが重要である。

③ フォーラム標準への対応も含めた国内標準化推進体制の抜本的強化

「スマート IoT 推進フォーラム」の場における ICT 業界と利活用業界のマッチングイベント等を通じて具体化された有望なユースケースの標準化活動の推進にあたり、具体的なビジネス展開を視野に入れた上で、デジュール標準とフォーラム標準、ネットワークレイヤとサービス・アプリケーションレイヤの検討に一体的かつ柔軟に対処できるような体制強化が必要である。具体的には、情報通信ネットワークに係る国内標準の策定や、ITU、3 GPP、oneM2M を中心とした国際標準化活動に取り組んでいる一般社団法人情報通信技術委員会(TTC)を中核として、NICT を含めた産学官連携による国内標準化推進体制を抜本的に強化することが重要である。(図表 3-14 図表3-14)

図表 3-14 デジュール/フォーラム標準の一体的な国内推進体制

出所) 技術戦略委員会 第9回 一般社団法人情報通信技術委員会発表資料より作成

④ 実装重視型の標準化提案支援スキームの導入

国際標準化プロセスにおける実装事例の提示には、相応のコストを要するだけでなく、一定期間の継続的な対応が求められることから、特に中小企業等にとっては大きな負担となっている。このような標準化を取り巻く環境の変化に対応するため、上記③の体制強化とあわせて、標準化に関連するサンプル機能実装やプロトタイプ開発、継続的な標準化提案のための会合参加や適切なタイミングでの会合招致、標準化エキスパートによるノウハウ提供等の支援スキームを導入するとともに、フォーラム標準及びオープンソース系の知識も十分に有する新たな標準化人材の育成強化等を推進することが必要である。

第4章 分野別の推進方策

第1節 先端的な IoT 分野の推進方策 「スマート IoT 推進戦略」(別冊1)

- I. 先端的 IoT の重要性
- Ⅱ. 先端的な IoT により目指すべき社会イメージ (自律型モビリティ社会)
- Ⅲ. 公共・産業分野の先端 IoT システム(固定系 IoT)の推進方策
- IV. 自律型モビリティ分野の先端 IoT システム(移動系 IoT)の推進方策
- V. 先端 IoT システムの円滑な社会実装に向けた推進方策

第2節 次世代人工知能分野の推進方策

「次世代人工知能推進戦略」(別冊2)

- I. 我が国が抱える社会的課題と人工知能への期待
- Ⅱ 人工知能の研究開発等の動向
- Ⅲ. 人工知能が実現する社会
- Ⅳ. 人工知能の発展のための推進方策
- Ⅴ. まとめ

参考資料 (別冊 3)