Horizon 2020 & MIC funded SAFARI Project

Scalable and Flexible optical Architecture for Reconfigurable Infrastructure

Horizon 2020 EU-Japan coordinated R&D project on "Scalable And Flexible optical Architecture for Reconfigurable Infrastructure (SAFARI)"

6 Oct, 2016

NTT Network Innovation Laboratories

Yutaka Miyamoto

Overview and Target of SAFARI Project

SAFARI

Scalable and Flexible optical Architecture for Reconfigurable Infrastructure (Oct.1, 2014 – Sep. 30th, 2017)

Realization of various programmable technology (modulation formats, subcarrier numbers, core multiplicity) for future Pb/s-class optical network (over 1000-km distance)

Working package structure

WP3 Programmable optical hardware

Verification and establishment of a control scheme for optical transport programmability beyond 400 Gb/s

WP3: Use cases and MCF crosstalk issue

- We examined the control scheme of programmable optical hardware and investigated the use cases of the scalable and flexible optical networks.
- We clarified the impact of inter-core XT on network planning and control in an MCF deployment scenario.
- The use-case was adopted in ONF "Use-cases for Carrier Grade SDN" document in March, 2016.
- The contribution on "the carrier-grade SDN use case document with valuable and influential use case" was awarded as the outstanding contributor from ONF on Sept. 7th, 2016.

(https://www.opennetworking.org/news-and-events/awards-en < https://www.opennetworking.org/news-and-events/awards-en>)

WP4: Requirements for designing SM-MCFs

WP4: Characteristics of each fabricated fibre

	30 core	31 core	32 core
Techniques for reducing XT	Heterogeneous (trench and step index)	Homogeneous and Quasi-single mode	Heterogeneous and Relaxing cutoff condition
Core types	4	1	2
Manufacturability	Relatively bad	Good	Reasonable
Layout	Hexagonal-close- packed structure	Hexagonal-close- packed structure	Square lattice structure
1550 nm- A _{eff}	77.3 μm²	75.1 μm²	81.8 μm²
1550 nm-total- XT	-35 dB/500km	-14 dB/500km	-33 dB/500km
Cladding diameter	229 µm	230 µm	242 μm
Fibre length	9.6 km	11.0 km	51.4 km

WP4: Comparison with reported SM-MCFs

32-core fibre has realized the highest core count and low XT simultaneously.

Y. Sasaki et al., ECOC 2016, paper W.2.B.2.

Fully integrated cladding-pumped

32core-EYDFA inline amplifier with two pump couplers

Comparison between passive- and active fiber

11

WP4: 32-core Dense Space Division Multiplexing (DSDM) SAFARI Long-distance Transmission over 1644.8 km

- Demonstration of 32-core dense space division multiplexing (DSDM), long-haul transmission over 1644.8 km
- World first demonstration of long-haul DSDM transmission exceeding 1000 km achieved in SAFARI project

T. Mizuno et al., OFC 2016, Postdeadline paper Th5C.3

6 Oct., 2016: JP-EU Symposium, Makuhari, Japan Mizuno et al, OFC2016 postdeadline paper Th5C.3, 2016

WP4: 32-core dense SDM transmission experiment SAFAR

Measured Q-factors of all 640 channels (32 DSDM x 20 DWDM) after 1644.8 km (=32 loops) transmission exceeded the FEC limit of 5.7 dB

•

T. Mizuno et al., OFC 2016, Postdeadline paper Th5C.3

- SAFARI PJ overview
- WP3: Proposal of MCF-based network use cases
- ➢ WP4: High count SM-MCF
- ➢ WP4: High count EYDFA
- > WP4: 32-core transmission experiment