IPv6 によるインターネットの
利用高度化に関する研究会
最終報告書（原案）

〜IPv6 のディプロイメントからマイグレーションへ〜

2018 年 2 月
IPv6 によるインターネットの利用高度化に関する研究会
目次
はじめに .. 1
第1章 これまでの経緯と現状、検討の背景 ... 3
 1. インターネットをめぐる環境の変遷 ... 3
 2. IPv4 アドレスの枯渇状況と対策 ... 3
 （1）国内外の枯渇状況 .. 4
 （2）CGN による IPv4 グローバルアドレスの共用 .. 4
 （3）移転による IPv4 アドレスの再利用 .. 5
 （4）IPv4 利用を継続するリスク ... 6
 3. 諸外国のIPv6 対応状況 ... 6
 （1）諸外国の IPv6 対応の状況 ... 7
 （2）ハイバー・ジャイアントにおける IPv6 対応 ... 10
 4. 我が国のIPv6 対応状況 ... 10
 （1）我が国におけるインターネット接続サービスの利用状況 10
 （2）IPv6 対応の主体別状況と課題 ... 11
 5. IoT 時代の到来 .. 22
 （1）IoT で実現される社会 .. 22
 （2）IoT 社会の実現に向けた IPv6 の役割 .. 22
 6. 本研究会の検討の背景及び検討事項 ... 23
第2章 第四次報告書（2016 年 1 月）に対するプログレスレポート 25
 1. 2020 年に向けた明確な目標策定に対する進捗状況 ... 25
 2. 事業分野毎のアクションプランに対する進捗状況 .. 25
 3. 分野横断的に実施すべき取組に対する進捗状況 ... 34
第3章 今後の IPv6 対応の方向性 ... 39
 1. 今後の IPv6 対応に向けた基本的な考え方 ... 39
 （1）IPv6 の利用環境整備（IPv6 のデプロイメント） .. 39
 （2）IPv6 の利用促進（IPv6 のマイグレーション） ... 39
 （3）本研究会の位置付け .. 40
 2. IPv6 の利用促進に向けた今後の取組の提言 ... 40
 （1）IPv6 の利用促進にあたっての基本的な姿勢 ... 40
 （2）国際連携の推進、対外的な情報発信 .. 40
 （3）横展開可能なモデル事業 .. 41
 （4）IPv6 による持続的な成長を目指して .. 41
 （5）人材育成の推進 .. 42
 （6）推進体制の検討 .. 42
おわりに .. 43
IPv6 によるインターネットの利用高度化に関する研究会 構成員名簿 44
IPv6 によるインターネットの利用高度化に関する研究会 開催状況 45
はじめに

インターネットは、「自律・分散・協調」の原則の下、国境を越えたオープンなネットワークとして、情報の自由な流通が確保されることで発展してきた。いまや世界中の人々がインターネットを利用しており、インターネット上で動作するアプリケーションやサービスは、Webブラウザやメールといった単純なものに加え、クラウドサービスやIoTサービスのような高度かつ複雑なものが次々に生まれている。インターネットの発展は、我が国の経済成長と利用者の利便性向上に大きく寄与している。

インターネットが健全に運営・発展し続けるためには、インターネット上の住所に相当するIPアドレスやドメイン名等のインターネット資源の安定した供給・管理が不可欠であり、我が国は国際的な動向を踏まえて必要な施策を実施してきている。

一方、インターネットの世界的な普及と飛躍的な発展は、インターネット黎明期の想定をはるかに上回り、現在のインターネットの主要技術として利用されているIPv4アドレスの在庫の枯渇という状況を招いた。IPv4アドレスの枯渇は、2006年頃から予測されており、日本を含むアジア太平洋地域でIPアドレスを分配しているAPNIC（Asia Pacific Network Information Centre）については、IPv4アドレスの在庫が2011年4月に枯渇した。

総務省は、IPv4アドレスの枯渇対策や、IPv4アドレス枯渇後も社会経済の重要インフラであるインターネットの利用環境を確保し、さらなる利便性の向上を図る観点から、2009年2月に本研究会（「IPv6によるインターネットの利用高度化に関する研究会」）を設置した。本研究会では、IPv4アドレスの枯渇対策として、無尽蔵なアドレス数を持つIPv6アドレスの普及促進に関する課題・方策等について、産学官連携で取り組み、2016年1月には、第四次報告書を取りまとめて公表した。

第四次報告書では、IoT（Internet of Things）の普及を契機に、これまでのIPv4アドレスの枯渇対策を目的としたものに加え、様々なモノがインターネットにつながるIoT社会の実現のためにIPv6アドレスの活用が不可欠になるということを述べている。また、IoT社会の実現に向けたIPv6対応の方向性として、事業分野毎のアクションプラン及び分野横断的に実施すべき取組を打ち出した。

第四次報告書を踏まえて実施された同報告書に対する2016年度進捗状況フォローアップ調査結果（2017年3月公表）では、NTTドコモ、KDDI及びソフトバンクのMNO（移動体通信事業者）3社が、2017年にスマートフォンユーザーが意識せずにIPv6の利用を始めている状況にすることを表明した。加えて、NTT東西の提供するFTTH回線であるフレッツ光ネクストにおけるIPv6利用率が、2017年3月時点で30%を突破するなど、我が国における通信機器や通信インフラのIPv6対応は着実に進展していることが明らかになった。

こうした背景から、我が国における今後のIPv6対応については、IPv6のディプロイメント（利用環境整備）からマイグレーション（利用促進）にシフトしていくフェーズに来ており、その在り方の検討が必要となっている。以上を踏まえ、総務省は、本研究会を再開し、第四次報告書を踏まえた同報告書に対するプログレスレポ
ートの作成、IPv6 のマイグレーションに向けた方策、今後の取組の新たな目標設定及ぶ今回の研究会のとりまとめの位置付け等を検討し、本研究会の最終報告書としてとりまとめた。

○ 最後に、最終報告書のとりまとめに当たり、研究会においてプレゼンテーションをしていただいた関係企業及び関係団体等の皆様方に心から御礼を申し上げるとともに、本報告内容が、総務省をはじめ、関係企業・団体等で広く理解・実行され、IoT 社会の実現に不可欠な IPv6 の利用が促進されることで、我が国の持続的な成長を強く期待するものである。
第1章 これまでの経緯と現状、検討の背景

本章では、今回の研究会の開催にあたって、これまでの経緯とIPv6対応の現状、研究会の検討の背景を述べる。

1. インターネットをめぐる環境の変遷

インターネットの発展に伴い、その利用環境も大きく変遷している。IPアドレスやドメイン名などのインターネット資源は、インターネットの利用環境の変遷と密接な関係にあることから、ここでは、これまでのインターネットをめぐる環境の変遷を概観する。

インターネットは、米国国防総省が1969年に構築したARPANET（Advanced Research Project Agency NET）を起源とし、我が国のインターネットの基となったのは、1984年に東京大学、東京工業大学、慶應義塾大学の3つの大学を実験的につなげたJUNET（Japan University NETwork）であった。1991年にIPアドレスやドメイン名の割り当てを行うJNIC（現在のJPNIC：日本ネットワークインフォメーションセンター）が誕生したことを契機として、IIJなどの商用ISPが生まれ、今日のインターネットを確立していくこととなった。

1990年代後半になると、電子メールやWWW（World Wide Web）など、大学や企業だけでなく個人がインターネットを利用するようになり、2000年代に入ると、日本政府のe-Japan戦略の後押しもあり、ADSL、そしてFTTHなどの高速・大容量のブロードバンド通信によるインターネット利用が拡大した。併せて、インターネットの利用用途は、動画などの大容量コンテンツ、ネットショッピングなどのEコマース、外部のコンピュータリソースを使うクラウドサービスなど、多様なものに拡大していった。これらのサービスは、他方で発展してきた携帯電話（3GやLTE等）や無線LANなどの無線によるインターネット接続サービスへも適用されていった。

2010年に入ると、我が国の固定通信については2015年からのNTT東日本・NTT西日本の光回線の卸売サービスの提供開始、移動通信についてはMVNO（仮想移動体通信事業者）の増加など、インターネット接続サービスの提供主体が拡大することで、利用者はこれまで以上に多様なインターネットサービスを利用可能となっている。また、スマートフォン・タブレット端末の著しい普及に加え、家電機器や各種センサーなど、従来はインターネットにつながっていなかったモノのインターネット接続が増加するIoT社会となり、情報通信産業に限らず、各産業を横断してあらゆるモノがインターネットにつながり、そこで蓄積される様々なデータをAI（Artificial Intelligence：人工知能）等を使って解析することで新サービス・製品などの新たな価値を創出するという第4次産業革命への変革期が到来している。

2. IPv4アドレスの枯渇状況と対策

インターネットの飛躍的な発展とグローバルな普及は、世界的なIPv4アドレスの枯渇という事態を招いた。このような事態に対応する方策の一つとして、CGN1を用いた

1 Carrier Grade Network Address Translation：キャリアグレードNAT
IPv4 アドレスの共用化等の対策がとられてきたが、このような IPv4 アドレスを今後も引き続き使用していく上でのリスクも存在する。ここでは、IPv4 アドレスの枯渇の状況や再利用の実態について記載した上で、IPv4 利用を継続するリスクについても触れる。

(1) 国内外の枯渇状況
○ IPv4 アドレスの枯渇は世界的に進展している。2011年4月にAPNICのIPv4アドレス在庫が枯渇し、2012年9月にはRIPE NCCが、2014年6月にはLACNICが、2015年9月にはARINが、2017年4月にはAFRINICのIPv4アドレス在庫が枯渇した。これにより、世界に5つある全てのRIR（Regional Internet Registry：地域インターネットレジストリ）のIPv4アドレスの在庫が枯渇したことになる。

○ 一方、使用されているIPv4アドレスを有効に活用するためのIPv4アドレスの移転等も行われている。RIR間のIPv4アドレス移転については、APINCとARIN間、APNIC配下の一部NIR（National Internet Registry：国別インターネットレジストリ）とAPNIC間において可能となっている。また、2015年10月には、RIPE NCCとARIN間、及びRIPE NCCとJPNICを含むAPNIC配下のNIRとの移転も可能となった。ただし、アドレス移転制度により利用可能となるアドレス数は限られていることから、IPv4アドレス枯渇の根本的な解決策とはならない。

○ APNIC及びJPNICにおいては、最後の/8ブロック（103.0.0.0/8）からIPv4アドレスを分配している。その在庫は2018年1月時点で約550万アドレスであるが、およそ2年でこの在庫も尽きることが予想されている。

(2) CGN による IPv4 グローバルアドレスの共用
○ IPv4 アドレスの枯渇対策として、CGN を用いた IPv4 グローバルアドレスの共用が、移動通信事業者を中心に行われている。CGN は、IP アドレスを変換する技術である NAT を用い、1つの IPv4 グローバルアドレスを複数のプライベートアドレスで共用する仕組みを大規模に構築するものである。

○ NAT においては、同一のIPv4グローバルアドレスを、ポート番号を活用して複数の利用者で共用する。利用者のプライベートアドレスをルータでグローバルアドレス上のポート番号に紐付け、ルータを通過する際にIPアドレスとポート番号の変換を

2 在庫枯渇の定義はRIRごとに異なっており、例えばAPNICにおいては、在庫が最後の/8ブロック（約1,670万アドレス）となったことを持って枯渇したとしている。
3 Réseaux IP Européens Network Coordination Centre：ヨーロッパ、中近東、アジアの一部を管轄するRIR
4 Latin American and Caribbean Internet Address Registry：中南米地域を管轄するRIR
5 American Registry for Internet Numbers：北米地域を管轄するRIR
6 African Network Information Centre：アフリカ地域を管轄するRIR
7 https://www.afrinic.net/library/news/2053-afrinic-enters-ipv4-exhaustion-phase-1
8 https://labs.apnic.net/ipv4/report.html
9 ポート番号も含めたアドレス変換はNAPT（Network Address Port Translation）と呼ばれるが、ここでは総称してNATと呼ぶ。
行うことで、同一のIPv4グローバルアドレスで複数の端末がインターネット側と通信することが可能となる（図1）。

図1 NATによるIPv4グローバルアドレス共有の仕組み

○CGNにより当面のIPv4アドレスの枯渇対策が可能であったこと、更なるIPv6対応で発生するコストへの見返りが不明なこと、IPv6対応のために追加的な設備投資が必要なこと等を背景に、移動通信事業者などの事業者では、CGNを活用したIPv4によるサービスの提供が行われているのが現状である。

（3）移転によるIPv4アドレスの再利用

○IPv4アドレスの枯渇が世界的に進むなか、我が国におけるIPv4アドレスの入手方法は、APNICにおける枯渇後の限定在庫の中から少数の分配を受けるか、既に分配されたIPv4アドレスを保有する組織からの移転により調達する方法に限られる。

○しかしながら、APNICのアドレス分配は上述のとおり数年で終了すると予測されており、IPv4アドレスを利用して新たな事業展開等を図ることは既に困難な状況にある。

○組織間のアドレス移転に関しては、APNIC、ARIN、RIPE NCCにおいて、移転希望者が仲介業者にコンタクトできるようにするなど移転支援策を講じている。しかしながら、移転可能なアドレス量には、RIR間のアドレス移転が増えたとしても限界があり、またIPv4アドレスの流通量が減少するに従って、移転による取引価格の上昇も予想される。
（4）IPv4 利用を継続するリスク

○ CGN の導入が進むと、IP アドレスだけでは送信元を特定できない上、ポート番号を加えたログ管理を行う必要があり複雑となる。多段 NAT 等によるアプリケーションの動作不良が発生するリスクも高まる。また、IPv6 に対応しない事業者においては、デフォルトで IPv6 が動作する機器のふるまいによりセキュリティ上の問題等が発生する恐れもある。

○ 実際に、ポート番号を固定して通信する一部の電話会議システム等が正常に作動しないなどの影響も出ている。また、一利用者当たりが使われるポート数が制限されることで、地図等のリッチな Web ページの閲覧など複数のセッションを張る通信においてその数が制約となり、表示に支障が出る場合も想定される。

○ NAT は、往路（サーバー→端末）のパケットが NAT を通過できるよう、往路（端末→サーバ）の情報（グローバル側とプライベート側の IP アドレスとポート番号の対応）を一定時間記憶している。1 つのグローバル IP アドレスで使用できるポート番号には限りがあることから、1 つのグローバル IP アドレスで多くの利用者を収容するためには、往路の情報を記憶している時間を短くする必要がある。しかしながら、収容する利用者数を増やすために、往路の情報を記憶している時間を過度に短くすると、サーバー端末間での定期的に行われるポーリング通信の間隔よりも短くなる。この場合、往路の情報が既に書き換えられているため、ポーリング通信が届かなくなくなることから、サーバー基盤との通信が中止されたものと判断されることになり、端末側から新たな通信を行わなけり限り、サーバー側からの通信がでなくなる。この事象により、例えば、SNS アプリでは、サーバー基盤からリアルタイムにメッセージを受け取ることができなくなるなどの影響が出る。

○ このように CGN は IPv4 アドレスの枯渇対策として一時的な対応を可能とするものであるが、システムが複雑になるなど上述のような課題を新たに生じさせる恐れがあるため、本質的な解決策とはならない。

○ また、IPv4 アドレスの再利用において、サイバー攻撃で使われた等の理由で、過去にリスト化された IP アドレスがフィルタリングされたままの状態である場合や、IP アドレスに紐付いた属性によりグループ化されたままの状態でサービス提供が継続されている場合に、正常に通信できないといった問題が発生するケースがある。

○ さらに、世界的に IPv6 利用が拡大していくなかで、顧客や企業等から IPv6 接続サービスを要求された場合のインフラ輸送を含む国内外のビジネス上の機会の損失や、IP アドレスの資源不足による事業展開が妨げられる等の将来的なリスクも挙げられる。

3. 諸外国の IPv6 対応状況

ここでは、諸外国の IPv6 対応の状況や、世界規模の上位レイヤー事業者の動向を紹介する。

10 https://www.nic.ad.jp/ja/newsletter/No41/0800.html

11 ネットワークで接続されたコンピュータやネットワーク機器同士の接続が、有効な状態であることを確認したり表明したりするための定期的な通信のこと。
介し、IPv6 の世界的な潮流を把握することとする。

（1）諸外国の IPv6 対応の状況
○ Google の統計によれば、Google サービスへの IPv6 によるアクセス割合は年間約 1.5 倍のベースで増加しており、2018 年 1 月時点では全世界の約 21.84%12 の利用者が IPv6 でアクセスしている（図 2）。

![Google サービスへの IPv6 アクセス割合](Google ウェブサイト13より)

同統計における主要国の IPv6 利用率は表 1 のとおりである。我が国は 2012 年度まではトップクラスにあったが、近年は大きく順位を下げている。
○ IPv6 への対応促進のため、World IPv6 Day14、World IPv6 Launch15 といった世界的な IPv6 関連イベントが開催された。

表 1 Google サービスへの国別 IPv6 アクセス割合16

12 2018 年 1 月 1 日（月）時点。ただし、曜日による変動が大きく、土日にアクセス割合が増加する傾向にある。
14 世界の Web サイトが 24 時間限定で、IPv6 に対応するイベント（2011 年 6 月 8 日開催）
15 世界の Web サイト、ISP、通信機器ベンダー等が恒久的な IPv6 対応を開始するイベント（2012 年 6 月 6 日開催）
16 2018 年 1 月 1 日時点
Ciscoでは、各国のIPv6対応率を、トランジットAS、コンテンツ、利用者の3つの対応率から算出している17。この統計においても、欧米を中心にIPv6対応が進展し、一部途上国・中進国でも対応が進んでいるが、我が国はこれらの国に後れをとったり始めている18。APNIC、akamai等においても同様の統計が公開されており19、傾向は類似している。

諸外国においては、政府によるIPv6推進政策が進められており、IPv6対応を推進する上で、一定の政府の役割が求められている（表2）。例えばベルギーでは、政府が通信事業者に対し、IPv6対応のスケジュールの提示を奨励する等により、2014年にIPv6対応が急速に進展した。また、米国では、業務効率や行政サービスの改善等を目的として、政府機関の情報システムのIPv6対応を早期から計画的に推進することでIPv6対応を加速させている。

表2 主要国のIPv6政策

<table>
<thead>
<tr>
<th>国名</th>
<th>IPv6利用率</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベルギー</td>
<td>54.94%</td>
</tr>
<tr>
<td>アメリカ</td>
<td>38.78%</td>
</tr>
<tr>
<td>ドイツ</td>
<td>37.57%</td>
</tr>
<tr>
<td>ギリシャ</td>
<td>36.75%</td>
</tr>
<tr>
<td>スイス</td>
<td>31.5%</td>
</tr>
<tr>
<td>ルクセンブルク</td>
<td>29.94%</td>
</tr>
<tr>
<td>ウルグアイ</td>
<td>29.54%</td>
</tr>
<tr>
<td>インド</td>
<td>24.86%</td>
</tr>
<tr>
<td>日本</td>
<td>22.37%</td>
</tr>
<tr>
<td>フランス</td>
<td>22.3%</td>
</tr>
<tr>
<td>ブラジル</td>
<td>22.28%</td>
</tr>
<tr>
<td>イギリス</td>
<td>21.95%</td>
</tr>
</tbody>
</table>

（Googleウェブサイトより総務省作成）

17 http://6lab.cisco.com/stats/
18 IPv6対応率の相対インデックス（1位を10とした際の相対値）は、例えばベルギー10、ドイツ8.4、米国7.8、ウルグアイ7.7、インド7.3、ブラジル6.9、マレーシア6.8、日本6.7。（2018年1月19日時点）
19 APNIC https://stats.labs.apnic.net/ipv6
の最終報告書において、今後の対応の方策の1つとして、政府自身がIPv6対応を進め、事例を示すことを提言（2016年）
・デジタル国家のための法律において、2018年より、政府情報システムを構成する機器について、IPv6対応機器へのマイグレーションを促進（2016年）

<table>
<thead>
<tr>
<th>順位</th>
<th>国名</th>
<th>対応策</th>
<th>年次</th>
</tr>
</thead>
</table>
| 1 | ドイツ | 2012年には政府基盤ネットワークのIPv6での運用を開始し、2015年にはサブLIR体制の構築を完了する目標を設定（2009年）
民間普及団体において、2010年までに国内インターネット利用者の25%にIPv6を普及させる目標を設定（2009年） | 2016年 |
| 2 | ベルギー | IPv6対応のための国家計画において、2年以内に政府システムのIPv6対応完了を目標（2012年）
通信事業者に対して2年以内のIPv6対応を奨励（2012年） | 2016年 |
| 3 | 韓国 | 政府・公共機関に2015年から段階的なIPv6対応を義務付け。2017年までに政府公共ネットワークは100%、政府・公共機関の住民向けのWebサービスは30%をIPv6対応とし、2022年までに政府・公共機関の住民向けのWebサービスについても100%をIPv6対応する目標を設定（2014年）
2017年までに主要ISPのIPv6対応完了、2022年までに中小ISPのIPv6対応完了を目標。税制優遇措置を導入（2014年） | 2016年 |
| 4 | 中国 | 中国国務委員会は、2013年には各事業者がIPv6ユーザを300万人以上とすること、2015年には全体で2500万人とすることを目標（2011年）
工業・情報技術省及び国家開発・改革委員会は、2016年末までにLTEでのIPv6利用者3000万人以上を目標（2014年）
共産党中央弁公庁及び国務院弁公庁は、①2018年末までにIPv6のアクティブな利用者数を2億人に、インターネット利用者に占める割合を20%とする、②2020年末までにIPv6のアクティブな利用者数を5億人に、インターネット利用者に占める割合を50%とする、③2025年末までに中国のIPv6ネットワークの規模、利用者、トラフィックを世界一に、ネットワーク、アプリケーション、端末を全面的にIPv6に対応する行動計画を発出（2017年） | 2016年 |
| 5 | インド | 2013年6月以降にインターネット接続するLTEユーザはIPv6対応すること、2014年以降新たにインターネット接続する全ての企業及び個人回線ユーザはIPv6対応すること、2014年1月以降新たに利用が始まる全てのinドメインはIPv6対応すること、2014年6月以降新たに提供される全てのコンテンツはIPv6対応することを目標として策定（2013年）
2017年未までに、全ての政府組織はIPv6に完全移行する目標を策定（2013年） | 2016年 |
| 6 | マレーシア | 政府公共機関ネットワークのIPv6対応を2020年までに行うことを目標（2015年） | 2016年 |
| 7 | オーストラリア | 全ての府省組織は、2015年までにIPv4/IPv6デュアルスタック環境を運用開始する目標を設定（2009年） | 2016年 |

（総務省調査）
（2）ハイパーアイアントにおけるIPv6対応

○ Google、Facebook、Apple等の世界規模の上位レイヤー事業者（いわゆるハイパーアイアント）は、おおむね2010年代前半までに基盤／基幹サービスのIPv6対応を完了している。
○ このようにグローバル展開しているハイパーアイアントは、例えば、CGNによるIPアドレス管理の追加的なコストや位置情報の活用、低遅延・セキュリティ面での優位性等の理由から戦略的にIPv6対応を実施している。
○ 特に、Appleは、2015年6月、iOS9以降、全てのアプリケーションに対しIPv6に対応することを要件とすることを発表した22。さらに同年7月、iOS及びOSXにおけるIPv4の通信はIPv6の通信と比べ25ミリ秒遅延させることも表明した23。なお、IPv4の通信に遅延を設けるアルゴリズムは、2017年12月に同社の技術者の提案によりHappyEyeballsVersion2(RFC830524)として発行され、遅延時間は50ミリ秒が推奨されている。
○ これらの事業者はIPv4枯渇を見据え、また、IPv4/IPv6デュアルスタック運用の煩雑さから解放するために、IPv6のみのサービスの提供に向けた取組を推進している。

4．我が国のIPv6対応状況

我が国のIPv6対応状況を整理するため、インターネットサービスの利用状況及び事業主体別のIPv6対応状況について、総務省で実施した調査を踏まえて、以下のとおりまとめる。

（1）我が国におけるインターネット接続サービスの利用状況

○ 総務省の調査では、2017年9月末時点での我が国の固定系ブロードバンドサービスの契約数は3,915万であり、前年同期比で1.7%増加している。また、移動系通信（携帯電話、PHS及びBWA）の契約数は1億6,929万であり、前年同期比で2.7%増加している25。
○ また、インターネットを利用する際に使用する端末としては、携帯電話、PHSの割合が減少しており、パソコン、スマートフォンやタブレットの割合が増加している。特にスマートフォン・タブレット端末の割合の増加がほかより大きいことが分

21前述のCiscoによるコンテンツIPv6対応率。
22http://www.internetsociety.org/deploy360/blog/2015/06/apple-will-require-ipv6-support-for-all-ios-9-apps/
23https://www.ietf.org/mail-archive/web/v6ops/current/msg22455.html
かかる26（図3）。
〇 このようにインターネット接続サービスの利用状況に鑑みると、我が国のIPv6対応を進める上では、固定系、移動系の双方において推進していく必要があることが分かる。

IPv6に対応したサービス提供がIPv4と同等に行われているとは言えない現状において、当面はIPv4とIPv6の双方での通信が可能となるような環境（デュアルスタック環境）を維持することが必要となる。

IPv6に対応したサービス提供がIPv4と同等に行われているとは言えない現状において、当面はIPv4とIPv6の双方での通信が可能となるような環境（デュアルスタック環境）を維持することが必要となる。

IPv6に対応したサービス提供がIPv4と同等に行われているとは言えない現状において、当面はIPv4とIPv6の双方での通信が可能となるような環境（デュアルスタック環境）を維持することが必要となる。

27 IPv6に対応したサービス提供がIPv4と同等に行われているとは言えない現状において、当面はIPv4とIPv6の双方での通信が可能となるような環境（デュアルスタック環境）を維持することが必要となる。

28 ①ISP(CATV事業者を除く)
〇 IPv6インターネット接続サービスの提供について、「既に提供中（商用サービス）」と回答したISPは、約19.8％（2016年3月）から約25.3％28（2017年3月）へと増加した（図4、総務省アンケート29）。

29 2017年3月に総務省が実施したアンケート調査。以下同様。
○ 規模別に見ると、10 万契約以上の ISP の 76.9%が「既に提供中（商用サービス）」と回答した。一方、10 万契約未満の ISP では約 16.7%が「既に提供中（商用サービス）」と回答しており、大規模 ISP に比べると IPv6 対応が遅れている（図 5、総務省アンケート）。

○ 10 万契約未満の ISP については、2015 年度実験/試行サービス中と回答した事業者を中心に IPv6 サービスを開始しており、2015 年度に比較して IPv6 サービスの普及が広がりつつあるが、まだ未対応の事業者が半数近く存在している（図 5、総務省アンケート）。

図 4 ISP（CATV 事業者を除く）における IPv6 サービスの対応状況（割合）

図 5 ISP（CATV 事業者を除く）における IPv6 サービスの対応状況（規模別）

② CATV 事業者

○ IPv6 インターネット接続サービスの提供について、「既に提供中（商用サービス）」と回答した CATV 事業者は、約 6.8%（2016 年 3 月）から約 6.1%（2017 年 3 月）へと減少しているが、回答事業者数の増減によるものであり、IPv6 対応事業者
が減少したわけではない（図 6、総務省アンケート）。
○ 規模別に見ると、5 万契約以上では、60.0%の CATV 事業者が「既に提供中（商用サービス）」と回答した一方、5 万契約未満の CATV 事業者においては 5.3%、1 万契約未満の CATV 事業者においては IPv6 に対応している事業者がいない状況である（図 7、総務省アンケート）。
○ IPv6 対応を検討していない理由については、「利用者のニーズがない」、「現在割り当てられている IPv4 で当面は問題ない」があげられている。（図 8、総務省アンケート）。

<table>
<thead>
<tr>
<th></th>
<th>1万契約未満</th>
<th>5万契約未満</th>
<th>5万契約以上</th>
</tr>
</thead>
<tbody>
<tr>
<td>検討中</td>
<td>61.9%</td>
<td>23.7%</td>
<td>14.8%</td>
</tr>
<tr>
<td>実験/試行サービス中</td>
<td>7.9%</td>
<td>15.0%</td>
<td>33.3%</td>
</tr>
<tr>
<td>未検討</td>
<td>5.9%</td>
<td>5.0%</td>
<td>1.9%</td>
</tr>
<tr>
<td>検討の上、提供しないと決定</td>
<td>18.8%</td>
<td>11.0%</td>
<td>20.0%</td>
</tr>
<tr>
<td>既に提供中(商用サービス)</td>
<td>20.0%</td>
<td>20.0%</td>
<td>20.0%</td>
</tr>
</tbody>
</table>

図 6 CATV 事業者における IPv6 サービスの対応状況（割合）

<table>
<thead>
<tr>
<th></th>
<th>1万契約未満</th>
<th>5万契約未満</th>
<th>5万契約以上</th>
</tr>
</thead>
<tbody>
<tr>
<td>検討中</td>
<td>61.9%</td>
<td>23.7%</td>
<td>14.8%</td>
</tr>
<tr>
<td>実験/試行サービス中</td>
<td>7.9%</td>
<td>15.0%</td>
<td>33.3%</td>
</tr>
<tr>
<td>未検討</td>
<td>5.9%</td>
<td>5.0%</td>
<td>1.9%</td>
</tr>
<tr>
<td>検討の上、提供しないと決定</td>
<td>18.8%</td>
<td>11.0%</td>
<td>20.0%</td>
</tr>
<tr>
<td>既に提供中(商用サービス)</td>
<td>20.0%</td>
<td>20.0%</td>
<td>20.0%</td>
</tr>
</tbody>
</table>

図 7 CATV 事業者における IPv6 サービスの対応状況（規模別）
図 8 CATV 事業者における IPv6 対応を検討していない理由

③ データセンター（DC）事業者

○ IPv6 対応サービスの提供について、「既に提供中（商用サービス）」と回答したデータセンター事業者は、約 14.9%（2016年3月）から約 16.2%（2017年3月）と増加した（図 9、総務省アンケート）。

○ 規模別に見ると、売上高が 100億円超のデータセンター事業者の 12.5%は「既に提供中（商用サービス）」と回答し、売上高が 100億円以下のデータセンター事業者の 16.7%は「既に提供中（商用サービス）」と回答しており、事業規模による大きな差は見られない（図 10、総務省アンケート）。

○ データセンター事業者が IPv6 対応を進めた理由としては、利用者からの要望があったことが指摘されている（図 11、総務省アンケート）。

○ IPv6 対応が未検討である理由として、「現在保有している IPv4 アドレスで当面は問題が無い」、「利用者のニーズがない」があげられている（図 12、総務省アンケート）。

○ 対応のための事業的な課題として、「想定されるトラブル等の情報不足・移行リスク」と「IPv6 に詳しい技術者の不足」があげられている（図 13、総務省アンケート）。

○ 技術的な課題として、「アドレス設計/管理方法・NAT の設計に関するノウハウ等の不足」があげられている（図 14、総務省アンケート）。
図9 データセンター事業者におけるIPv6サービスの対応状況

図10 データセンター事業者におけるIPv6サービスの対応状況（規模別）
図11 データセンター事業者におけるIPv6対応（対応を検討）している理由

図12 データセンター事業者におけるIPv6対応を検討していない理由
図13 データセンター事業者におけるIPv6導入に係る事業的課題

図14 データセンター事業者におけるIPv6導入に係る技術的課題

④コンテンツ事業者（ASP/CSP）等
○IPv6対応サービスの提供について、「既に提供中（商用サービス）」と回答したASP/CSPは、約6.0%（2016年3月）から約7.2%（2017年3月）へと増加している（図15、総務省アンケート）。
○IPv6対応理由としては、「世界的にIPv6に移行する動きとなっているから」が最も多く、続いて「IPv6により新しいサービスの可能性、利用者ニーズが期待できるから」が多い（図16、総務省アンケート）。
○IPv6未対応の理由としては、「利用しているネットワーク回線/iDCでIPv6を利用できない」が最多である（図17、総務省アンケート）。
用していないため、自社のみで検討しても意味がないから」、「現在保有しているIPv4で当面は問題ないから」、「同業他社の動向を見て考えるから」があげられている（図17、総務省アンケート）。

○ 対応のための事業的な課題として、「設備の更新にかかる手間及びコスト」と、「想定されるトラブル等の情報不足・移行リスク」があげられている（図18、総務省アンケート）。

○ 技術的な課題として、「IPv4との共存方法」と「アドレス設計/管理方法・NATの設計に関するノウハウ等の不足」があげられている（図19、総務省アンケート）。

○ 今後の対応のきっかけとして、「顧客からのIPv6提供要求が一定レベルに達したから」を過半数の事業者があげている（図20、総務省アンケート）。

図15 ASP/CSPにおけるIPv6サービスの対応状況

図16 ASP事業者によるIPv6対応（対応を検討）している理由
図 17 ASP 事業者による IPv6 対応を検討していない理由

全体 (n=46)
- 対応機器の価格: 28.3%
- 想定されるトラブル等の情報不足・移行リスク: 6.5%
- IPv6 対応サービス（IDC、クラウド等）の価格: 10.9%
- 運用ポリシー等の変更及びそのノウハウ: 10.9%
- ISP の対応: 3.3%

100 億超 (n=10)
- 対応機器の価格: 50.0%
- 想定されるトラブル等の情報不足・移行リスク: 20.0%
- IPv6 対応サービス（IDC、クラウド等）の価格: 23.3%
- 運用ポリシー等の変更及びそのノウハウ: 0%
- ISP の対応: 0%

100 億以下 (n=30)
- 対応機器の価格: 3.3%
- 想定されるトラブル等の情報不足・移行リスク: 3.3%
- IPv6 対応サービス（IDC、クラウド等）の価格: 3.3%
- 運用ポリシー等の変更及びそのノウハウ: 20.0%
- ISP の対応: 30.0%

図 18 ASP 事業者による IPv6 導入に係る事業的課題
図19 ASP事業者によるIPv6導入に係る技術的課題

図20 ASP事業者によるIPv6対応サービスを提供する条件

⑤MVNO

○ IPv6対応について、1社が商用サービスで提供中であり、また、検討中の事業者が5社であった。（図21、総務省アンケート）
図 21 MVNO における IPv6 対応状況

⑥ 公衆無線 LAN 事業者

○ 公衆無線 LAN 事業者については検討中が１事業者のみで、対応済みとした事業者はない状況である。IPv6 について知らないという回答はなかったが、よく知っているという回答者は基盤事業者に限られ、エリアオーナーは概要を知っている程度という状況であった（図 22、総務省アンケート）。

○ 対応のための事業的な課題として「設備の更新にかかる手間及びコスト」と、「利用者機器の置き換えにかかる手間及びコスト」があげられている。（表 3、総務省アンケート）。

図 22 公衆無線 LAN 事業者における IPv6 の認知度

表 3 IPv6 対応の事業的な課題

| 設備の更新にかかる手間及びコスト | 3 |
| 利用者機器の置き換えにかかる手間及びコスト | 3 |
5. IoT 時代の到来

IoT 社会では、パソコンやスマートフォンだけでなく、各種センサー、家電機器、自動車など、従来はインターネットにつながらことを想定していなかった様々なモノがインターネットにつながることになる。IoT 社会の実現により、新たな価値の創造や経済社会の変革が期待される一方、その恩恵を最大限に活用するためには、無尽蔵なアドレス数（約 340 澱個：1兆人が毎日 1兆個使い捨てても 1兆年持つ）を持つ IPv6 を活用することが必要不可欠であることを述べる。

(1) IoT で実現される社会

○ インターネット技術や各種センサー・テクノロジーの進化等を背景に、パソコンやスマートフォンなど従来のインターネット接続端末に加え、家電機器や自動車、ビルや工場のセンサーなど、世界中の様々なモノがインターネットにつながり始めている。今後もインターネットにつながるモノ（IoT：Internet of Things）が爆発的に増加していくことが予想される。IHS Technology によると、2016 年時点でインターネットにつながる IoT デバイスの数は約 173 億個であり、2021 年までにその約 2 倍の約 349 億個まで増大すると推定されている。

○ IoT により、製造、農林水産、流通、医療・介護、金融など様々な分野において、従来通信機能を備えていなかったモノがインターネットにつながることになる。これに伴い、IoT は、あらゆる産業の生産性向上に資るとともに、既存サービスの高度化や新たなサービスの創出など、新たな価値を生み出し、経済社会を変革するものとして期待されており、第 4 次産業革命の到来を象徴するものである。IoT が牽引する第 4 次産業革命は、世界共通のインフラであるインターネットをそのエンジンとしながら、あらゆる社会インフラの在り方を変えていくものとして国際的に議論がなされている。

○ 我が国においても、「未来投資戦略 2017」（2017 年 6 月 9 日閣議決定）や「経済財政運営と改革の基本方針 2017」（2017 年 6 月 9 日閣議決定）において、第 4 次産業革命を成長戦略の中核として位置付け、IoT など第 4 次産業革命の技術革新をあらゆる産業や社会生活に取り入れることにより、様々な社会課題を解決する Society5.0（超スマート社会）を世界に先駆けて実現することとしている。また、Society5.0 の経済システムでは、眠っている様々な知恵・情報・技術・人材を「つなげ」、イノベーションと社会課題の解決をもたらす仕組みを世界に先駆けて構築できれば、経済活動の最適化・高付加価値化と活力ある経済社会を実現でき、これは老若男女、大企業と中小企業、都市と地方を問わず、あらゆる人々や産業にチャンスを与えるものとしている。

(2) IoT 社会の実現に向けた IPv6 の役割

○ IHS Technology によると、2016 年時点でインターネットにつながる IoT デバイスの数は約 173 億個であり、既に多数の IoT デバイスが世界中でインターネットにつながっている。
現在のインターネットの主要技術であるIPv4アドレスの数は、約43億個であり、今後爆発的な増大が予想されるIoTデバイスのインターネット接続について、IPv4のアドレス数では絶対的に不足することになる。

このため、通信事業者等は、本章2.（2）で述べたCGN等により接続機器の増加に対応しているのが現状である。しかしながら、本章2.（4）で述べたとおり、CGN等でIPv4アドレスの利用を継続すると、セッション数の多いWebページの表示に支障が出るなどのリスクが生じる。加えて、IPv4アドレスの共用技術でIoTのネットワークを構築すると、将来的にIPv6アドレスを活用しているIoTのネットワークに接続することができなくなり、IoTネットワークとしてスケーラビリティに制約が生じる可能性がある。また、現在、海外でIPv4アドレスが1個約$10で売買されている状況に鑑みると、今後も限られたIPv4アドレスの価格は上昇することが予想されることから、IPv6の導入コストへの懸念という短期的な視点からIPv4でネットワークを構築することは、長期的には経済的に採算が取れなくなる可能性も想定される。

したがって、IoT社会を実現し、その恩恵を最大限かつ持続的に享受するためには、無尽蔵のアドレス数を持つIPv6アドレスの利用が不可欠である。IPv6アドレスは、そのアドレス数から、各デバイスにグローバルアドレスを割り当てることができるため、大規模ネットワークの設計が容易であり、その拡張性も優れている。なお、IPv6はCGN等を介していないが、IPv6にもIPv4と同様にフィルタは存在するため、CGN等の有無はセキュリティには直接影響しない。

6. 本研究会の検討の背景及び検討事項

前項までで述べたとおり、IPv4アドレスの在庫の枯渇とIoTの進展を背景として、国内外でIPv6が急速に普及している。現状として、IPv6は導入の初期段階を終え、普及拡大期に突入している。実際、IPv6の仕様決定から約20年が経過しており、IPv6の実装技術が成熟し、技術文書も豊富に存在していることなどから、IPv6に対応していない機器は殆どない状態にまでなってきている。

我が国においては、NTTドコモ、KDDI及びソフトバンクのMNO3社が、2017年中にスマートフォンユーザーが意識せずにIPv6の利用を始めている状況にすることを2016年1月に表明した。これを達成するために、MNO3社は、IPv6対応するための議論の場を形成し、海外調査等も実施して取り組んだ結果、ソフトバンクは2016年6月以降、NTTドコモは2017年5月以降、KDDIは2017年9月以降発売されるスマートフォンについて、IPv6のデフォルト提供を開始した。加えて、MNO3社は、移動通信ネットワークを利用する他業種の事業者やコンテンツ事業者等がIPv6対応を計画的に進められるような必要な情報の公開等を実施するなど、MNO3社の取組は、我が国のIPv6対応のベストプラクティスとして今後のIPv6の普及を牽引するものである。

さらに、NTT東西の提供するFTTH回線であるフレッツ光ネクストにおけるIPv6利用率が、2017年9月時点で39%を突破し、大手CATV事業者もIPv6化の取組を進めてい

30 https://www.ipv4auctions.com/
るなど、我が国における通信インフラのIPv6対応は着実に進展している。また、ClAJ（一般財団法人情報通信ネットワーク産業協会）による推計では、現在市販されているルータなどの通信機器の大半がIPv6に対応しており、またOSについてもWindows Vista以降の主流OSは、スマートフォンのOSを含めてIPv6に対応している。

以上から、通信機器や通信インフラのIPv6化が概ね完了しているところまで来ており、今後はいかにIPv6の利用を促進していくかという観点へのシフト、すなわちIPv6のディプロイメント（利用環境整備）からマイグレーション（利用促進）へのシフトが重要となっている。併せて、IPv6のディプロイメントを目的に設置され、2009年2月から長期に渡って議論を続けてきた本研究会の在り方についても検討することが必要なフェーズになっている。

こうした背景を踏まえ、総務省は、本研究会を再開し、以下の事項について検討を行った。

① 第四次報告書において、隔年で策定することとしている同報告書に対するプログレスレポート
② IPv6のディプロイメントに向けた方策
③ IPv6のマイグレーションに向けた方策
④ 今後のIPv6対応の取組の新たな目標設定
⑤ 今回の研究会のとりまとめの位置付け
第2章 第四次報告書（2016年1月）に対するプログレスレポート

本章では、第四次報告書に記載されている2020年に向けた明確な目標設定、事業分野毎のアクションプラン及び分野横断的に実施すべき取組に対するプログレスレポートとして、その進捗状況をまとめる。

1. 2020年に向けた明確な目標策定に対する進捗状況
（第四次報告書における記載内容）

○ IPv6対応及びIoTの進展を促進し、2020年の東京オリンピック・パラリンピック競技大会において、最先端ICTのショーケースとして世界に発信していくため、その基盤となるIPv6の利用拡大的取組については2017年を一つの大きな目標として設定すべきである。

（進捗状況）
○ 2017年にはスマートフォンの利用者に対するIPv6のデフォルト提供が、利用料の追加的負担なく展開されている状況（「IPv6 Mobile Launch」）を目標とし、NTTドコモ、KDDI及びソフトバンクは、2017年9月までにデフォルトでIPv6が利用可能な状況を実現した。

2. 事業分野毎のアクションプランに対する進捗状況
① 固定通信事業者
（第四次報告書における記載内容）

○ 多くの固定通信事業者により新規利用者へのデフォルト提供が始始されているが、既存利用者については、IPv6インターネット接続サービスはオプション設定となっているため、IPv6利用に係る利用者の同意や理解を得るための機会を拡大し、IPv6サービスを利用料の追加的負担なく早期に実施すべきである。
○ NTT東西は、光コラボサービスでの転用時に利用者が自らルータを用意しなければならない場合があることから、ベンダーにおけるIPv6ルータ（PPPoE対応、IPoE方式で用いられるIPv6ルーティングやIPv6パススルー対応、IPv4overIPv6対応等）の開発を積極的にサポートするなど、対応ルータの普及を促進すべきである。
○ なお、ルータベンダーは今後発売する家庭用ルータのIPv6化（PPPoE対応、IPoE方式で用いられるIPv6ルーティングやIPv6パススルー対応、IPv4overIPv6対応等）とその利用者へのデフォルト設定を推進するとともに、それらの安価な提供が期待される。
○ なお、IPv6対応に当たっては、Wi-Fi利用のIPv6対応についても関係者間で協力して推進すべきである。

（進捗状況）
○ NTT東日本・NTT西日本は、2015年2月から提供中の光コラボレーションモデルにおいて、光コラボレーション事業者に対して、IPv6インターネット接続サービス（IPv6オプション）をデフォルト提供する環境を用意しており、当該
IPv6方式の光コラボレーション事業者の利用者は、IPv6がデフォルトで利用可能である。引き続き、積極的に光コラボレーションモデルを推進することで、IPv6に係る利用者の同意機会の拡大を図っている。

【参考】光コラボレーションモデルの契約状況：NTT東日本・NTT西日本の49.8%※が利用

※フレッツ光(コラボ光含む)の契約数に占める割合(2017年9月末データ31)

○NTT東日本は、2016年9月30日から、PPPoE方式でのIPv6接続に非対応のホームゲートウェイ利用者に対し、PPPoE方式でのIPv6接続に対応するホームゲートウェイのレンタルを開始している（交換は有償）。

【参考】NTT西日本でレンタル提供しているホームゲートウェイにおいては、2014年より、IPv6（PPPoE方式）接続に対応している。

○ なお、NTT東日本・NTT西日本は、2014年以降、NTT東日本・西日本と個別に契約を締結した大手ISP8社（PPPoE方式でのIPv6接続を提供）の利用者に対して、ホームゲートウェイ内に搭載するPPPoEアダプタ機能（IPv6対応）を提供中である。一方、当該機能は、2019年7月にはNTT東日本・NTT西日本から無償公開され、NTT東日本・NTT西日本と個別に契約を締結しないISP（PPPoE方式でのIPv6接続要対応）の利用者も利用できるようになる予定である。

○ 公衆無線LANのIPv6対応については、総務省が、Wi-Biz（無線LANビジネス推進連絡会）の総会等を通じ、Wi-Bizの会員等を対象にIPv6対応の必要性を周知啓発している。

○ NTT東西が提供する公衆無線LANサービスのうち、以下については提供開始時よりIPv6に対応している。

 NTT東：ギガらくWi-Fi（2014年12月1日提供開始）
 NTT西：スマート光ビジネスWi-Fi（2015年3月6日提供開始）

○ KDDIでは、auWi-FiSPOTにてIPv6サービスを平成29年度内に提供開始した。

○ ソフトバンクでは、SoftbankWi-FiスポットにてIPv6サービスを提供中である。

②ISP

（第四次報告書における記載内容）

○ 大規模ISPは、IPv6に対応したサービスの拡大とともに、対応エリアの拡大及びデフォルト提供への対応を更に進めるべきである。また、利用者の光コラボサービスでの転用の機会などを捉え、IPv6のデフォルト提供を推進すべきである。

○ AAAA フィルタは、フォールバック問題に対する短期的な対策であり、IPv6 対応の根本的な解決策とはなっていない。他方、IPv6 ネットワークの進展等に伴いフォールバックの影響は小さくなってしまい、不必要な設定があることで長期的な解決が進まない恐れも生じる。IPv6 の利用者に AAAA フィルタが適用されないよう配慮するとともに、今後は IPv6 対応の拡大に向け、根本的な解決を目指すべきである。

○ なお、IPv6 の対応サービスの拡大等については、大規模 ISP が率先して行い、IPv6 の導入事例や対応・運用ノウハウの共有を通じて、中小規模 ISP への波及を図るべきである。

○ なお、IPv6 対応に当たっては、Wi-Fi 利用の IPv6 対応についても関係者間、場合によっては利用者も含めた関係者間で、セキュリティやネットワークの利用方法などについて協議し、協力して推進すべきである。

（進捗状況）

○ JAIPA（日本インターネットプロバイダー協会）の会員企業（大手 ISP 8 社）に対するヒアリングによると、新規 IPv6 接続サービスの提供、IPv6 対応エリアの拡大及び IPv6 デフォルト提供が進展している状況である。

○ 大規模 ISP のうち、NTT ぷらら、ソニーネットワークコミュニケーションズ、TOKAI コミュニケーションズ等は、PPPoE 方式による IPv6 接続サービスをデフォルト提供している。同様に、朝日ネット、NTT コミュニケーションズ、ビッグローブ等は、新規及び光コラボレーションモデルでの転用利用者に対して、IPoE 方式による IPv6 接続サービスをデフォルト提供している（参考資料 2）。

○ JET Internet（宮城県）、インターネットリンク（東京都）、ネットフォレスト（神奈川県）、シナブス（鹿児島県）、マンダラネット（徳島県）など、中小・地域 ISP においても、IPoE 方式での IPv6 接続サービスの提供が増えてきている。

○ IPv6 未対応の ISP において、対応の必要性を認識しているものの未対応である理由として多いのは、「現在割り当てられている IPv4 のみで問題が解消できるから（約 44%）」、「利用者のニーズがないから」（約 38%）、「検討するための検討に時間やリソースが不足しているから」（約 34%）等である（参考資料 1）。

○ 実際の IPv6 利用率（利用者が IPv6 でアクセスできている割合）は、国内 ISP の場合、2017 年 10 月 25 日時点で、大規模事業者では KDDI が 37.48%、Softbank BB が 28.19%、OCN/ぷららが 23.33% と、年々確実に増加しつつある一方で、まだ IPv6 利用率が高い事業者も存在する（IPv6 普及・高度化推進協議会）。

32 アクセス先のホスト名に A レコード（ホスト名と IPv4 アドレスの関連づけを定義するレコード）と AAAA レコード（ホスト名と IPv6 アドレスの関連づけを定義するレコード）が両方設定されている場合、IPv4 の通信による DNS への問い合わせには、A レコードのみを返答し、AAAA レコードを返さない DNS の機能。https://www.iiij4u.or.jp/guide/ipv6/ipv6_fallback/
33 一部地域では IPoE 方式による IPv6 接続サービスがデフォルト提供。
34 http://www.v6pc.jp/jp/spread/ipv6spread_03.phtml (IPv6 普及・高度化推進協議会）
○ JAIPAの会員企業（大手ISP8社）に対するヒアリングによると、一部サービスを除き、IPv6の利用者に対してAAAAフィルタが適用されない状況になっている（参考資料2）。
○ 公衆無線LANのIPv6対応については、総務省が、Wi-Bizの総会等を通じ、Wi-Bizの会員等を対象にIPv6対応の必要性を周知啓発している（再掲）。

③ 移動通信事業者（MVNOを除く）
（第四次報告書における記載内容）

○ 今後のIoTの発展やIPv6に舵を切る国際的なトレンドに対応するため、移動通信ネットワークを提供する通信事業者の責務として、移動通信ネットワークのIPv6対応を早期に実現・展開することが急務である。
○ IPv6対応を円滑に推進する上で、
 ・端末（IPv6非対応ネットワーク接続時やローミング時の端末の動作検証等）
 ・無線アクセス系（アクセス系のシグナリングの動作検証等）
 ・コアネットワーク系（コアネットワークのシグナリング動作検証等）
 ・バックエンドシステム（各種センター機能の性能検証および動作検証等）
 ・ゲートウェイセクタ（フィルタリング機能その他機能の動作・性能検証等）
 ・インターネット接続（セキュリティ機能・サービスフィルタリング機能の動作検証・性能検証等）
等について、技術面、運用上等の課題の解決を早急に図り、2017年にはスマートフォンの利用者に対するIPv6のデフォルト提供が、利用料の追加的負担なく展開されている状況（「IPv6 Mobile Launch」）を実現すべきである。また、IPv6のデフォルト提供があまねく利用者に提供されるよう、継続的かつ積極的に対応していくべきである。
○ そのため、移動通信事業者は、直ちにIPv6対応を実現するための議論の場を形成し、各社状況の共有や海外事業者の状況調査やヒアリングを実施しつつ、課題の解決に取り組むべきである。
○ また、新しいテクノロジーも設備の更新・導入時にIPv6対応を実施すべきであり、同時に移動通信ネットワークを利用する他産業の事業者やコンテンツ事業者等がIPv6対応を計画的に進められるような必要な情報の公開等を行うことで、我が国のIPv6対応を牽引すべきである。
○ この際、IoTを含めたグローバルなICT環境の変化に対応し、強固なIPv6通信基盤の構築を実現するとともに、こうした成果を活用したショーケースとして、2020年の東京オリンピック・パラリンピック競技大会でのIPv6通信基盤を活用した先進的あるいは独創的なIoTの実現を推進すべきである。
○ また、同競技大会に向け、Wi-Fi利用におけるIPv6対応についても関係者間で協力して推進すべきである。

（進捗状況）
○ NTTドコモでは、2017年5月以降発売機種に関しては、デフォルトでIPv6が
利用可能である（iPhone/iPad は iOS11 以降デフォルトで IPv6 が利用可能。なお、2015 年夏モデル以降の機種は利用者が設定变更することで IPv6 が利用可能である）。APNIC（Asia-Pacific Network Information Centre）の統計によると、同社のネットワークにおける IPv6 対応率は、2018 年 1 月時点で約 3.4%35である。

○ KDDI では、2017 年 9 月以降発売機種に関しては、デフォルトで IPv6 が利用可能である。APNIC の統計によると、同社のネットワークにおける IPv6 対応率は、2018 年 1 月時点で約 55.0%36であり、これは同社の固定系インターネット接続も含めた数値となっている。

○ ソフトバンクでは、2016 年 6 月以降発売機種（iPhone7 を除く。）に関しては、デフォルトで IPv6 が利用可能である。APNIC の統計によると、同社のネットワークにおける IPv6 対応率は、2018 年 1 月時点で約 36.9%37であるが、これは同社の固定系インターネット接続も含めた数値となっている。

○ なお、NTT ドコモ、KDDI 及びソフトバンクは、MVNO に対して IPv6 接続が可能なネットワーク環境を提供している。

○ NTT ドコモ、KDDI 及びソフトバンクは、今後の取組として、スマートフォンにおける IPv6 の普及率を公表することで、モバイル業界のさらなる IPv6 化を促進していく予定である。また、スマートメータのような用途については、IPv6 で提供している事例も存在するが、今後の IoT でも IPv6 を活用することも適宜検討していく予定である。

○ KDDI では、au Wi-Fi SPOT にて IPv6 サービスを平成29年度内に提供開始した（再掲）。

○ ソフトバンクでは、Softbank Wi-Fi スポットにて IPv6 サービスを提供中である（再掲）。

④ MVNO
（第四次報告書における記載内容）

35 https://stats.labs.apnic.net/ipv6/JP 「AS9605 DOCOMO NTT DOCOMO, INC. 3.41%」（2018年1月時点）（2015年10月時点では 0.01%）
36 https://stats.labs.apnic.net/ipv6/JP 「AS2516 KDDI KDDI CORPORATION 54.95%」（2018年1月時点で）（2015年10月時点では 51.8%）
37 https://stats.labs.apnic.net/ipv6/JP 「AS17676 GIGAINFRA Softbank BB Corp. 36.93%」（2018年1月時点で）（2015年10月時点では 18.9%）
○ MVNO の多くで IPv4 グローバルアドレスによる接続サービスが提供されている。MVNO の利用者の増加及び IPv4 アドレスの枯渇を背景に、最近では更にプライベートアドレスを活用してのサービス提供が増えつつあり、携帯電話事業者（MNO）と同様に IPv6 への対応が容易ではない状況に陥る可能性がある。
○ IPv6 対応へ早期に軌道修正がされるよう、他の MVNO における IPv6 対応の先行事例や MNO の今後の取組を共有しながら IPv6 のデフォルト提供にシフトしていくべきである。
○ なお、MNO は自らのネットワークを使用する MVNO に対して MVNO が IPv6 のデフォルト提供をするために必要な情報を適宜提供すべきである。

（進捗状況）
○ テレコムサービス協会の調査では、IPv6 インターネット接続サービスの提供について、回答 15 社のうち、「既に提供済み」と回答した MVNO は 3 社あり、2017年度中に提供予定と回答した MVNO は 1 社あった（参考資料 3）。
○ IIJ が提供する MVNO サービスである「IIJmio」における LTE 接続のうち、IPv6 利用率は 2015 年 10 月には 2.5%であったが、2017 年 10 月には 25%に拡大している（参考資料 4）。なお、2018 年 1 月時点では、IPv6 利用率は 32%に増加している。
○ MVNO について、端末側の IPv6 対応は改善してきている。Android では、主要な最新 SIM フリーモデルにおいて IPv6 への対応が済んでいる（ただし、APN 設定に際し、明示的に「IPv4v6」の指定が必要）。また、iPhone では、2017 年 9 月配信開始の iOS11 と最新の APN 設定において、デフォルトで IPv6 の利用が可能となった。
○ テレコムサービス協会の調査における MVNO の IPv6 未対応の理由としては、「既存 IPv4 で問題ない」、「ニーズがない」、「コストがかかる」等があげられている（参考資料 5）。また、ネットワーク設備を持つ上位の MVNE の対応次第という回答もあった。

⑤ CATV 事業者
（第四次報告書における記載内容）
○ 大規模 CATV 事業者は、対象サービスやデフォルト提供の更なる拡大を図るとともに、IPv6 の導入事例や対応・運用ノウハウの共有を通じて、中小規模 CATV 事業者への波及を図るべきである。
○ 業界団体においても、2015 年 3 月に改定された IPv6 対応ガイドラインを活用し、対応事例の周知等による普及啓発を引き続き行うべきである。
○ なお、IPv6 対応に当たっては、Wi-Fi 利用の IPv6 対応についても関係者間で協力して推進すべきである。

（進捗状況）
○ CATV 事業者の IPv6 サービスへの対応状況について、三菱総合研究所による 2017年のアンケート結果では、1万世帯以上（接続世帯の97%に該当）の契約
数を持つ CATV 事業者からの IPv6 対応への前向きな回答（すでに提供中、実験/試行サービス中、提供予定（対応予定））が、2015 年比で 5%増加した（参考資料 6）。

○ また、大規模 CATV 事業者のうち、ジュピターテレコムは、一部のコースで利用者からの申込みにより IPv6 接続サービスを提供しており、当該コースについて現在 IPv6 デフォルト提供に向けて準備中である（参考資料 7）。また、コミュニティネットワークセンター（スターキャット）は、一部の契約コースで IPv6 接続サービスをデフォルト提供しており、宅内設置機器の約 6 割が IPv6 対応している（参考資料 8）。コミュニティネットワークセンター（キャッチネットワーク）は、一部の契約コースで IPv6 接続サービスをデフォルト提供しており、宅内設置機器の約 8 割が IPv6 対応している（参考資料 9）。イッツ・コミュニケーションズは、一部の契約コースで IPv6 接続サービスをデフォルト提供しており、宅内設置機器の約 7 割が IPv6 対応している（参考資料 10）。

○ 全国の CATV 事業者を対象に、IPv6 化の啓蒙活動を行うべく、IPv6 セミナーを日本ケーブルラボ及び日本ケーブルテレビ連盟で共同開催している。2017 年 3 月 28 日に開催した IPv6 セミナーでは、48 社 104 名が参加した（参考資料 11）。

⑥ データセンター事業者
（第四次報告書における記載内容）

○ クラウドサービスや IoT の進展に伴い、ビッグデータ分析や知能情報処理を担うデータセンターの役割・意義が今後ますます高まると考えられ、グローバルな社会経済システムにおいて、クラウドサービスの提供を含め、我が国のデータセンター及びそのプラットフォームの IPv6 化を推進すべきである。

○ また、地域の産業や医療・介護等のスマート化やエッジコンピューティングによるプラットフォームの分散が進展することへの対応や、大規模災害時等の業務継続の観点からもデータセンターの地域分散化を促進する必要がある。

（進捗状況）

○ 日本データセンター協会では、2017 年に公表した「建物設備システム リファレンスガイド」（第 2 版）において、IPv6 対応の最近の状況を紹介するとともに、建設設備システムへの IPv6 の導入が一般化されていく可能性がある旨を言及している。

○ NICT（情報通信研究機構）が、総務省と連携して 2016 年 9 月から実施している地域データセンター事業に対する助成において、データセンターの IPv6 対応を助成要件としており、データセンターの IPv6 対応を促進している。（実績平成 28 年度：8 件、平成 29 年度：5 件）
⑦コンテンツ事業者
（第四次報告書における記載内容）

○ISPや移動通信事業者のIPv6デフォルト提供に合わせて、IPv6対応を進めるべきである。
○この際、特に移動通信事業者は、コンテンツ事業者がIPv6対応を計画的に進められるよう必要な情報の公開等を行うことで、我が国のIPv6対応を牽引すべきである。

（進捗状況）
○大手コンテンツ事業者であっても、サービス側フロントエンドにおけるIPv6試験環境の準備が完了している一方、サービス側バックエンドシステムのIPv6対応に伴う影響調査、IPv4とIPv6のデュアルスタック環境でのセキュリティ対応、IPv6トラフィックの可視化対応等の課題から全面的な対応に時間を要するとの声もある。

⑧情報通信機器ベンダー
（第四次報告書における記載内容）

○情報通信機器ベンダーは、今後発売する家庭用ルータ等のネットワーク機器及び端末機器のIPv6対応（PPPoE対応、IPoE方式で用いられるIPv6ルーティングやIPv6バススルー対応、IPv4overIPv6対応等）及び利用者へのデフォルト設定を推進すべきである。
○その際、最近では1万円を切るような比較的安価なルータも販売されつつあるが、一般的には高価なものとなっており、利用者や事業者がIPv6対応機器を容易に購入できるよう、安価に提供される機器が増えたことが期待される。
○IoT時代には様々なモノとモノが任意に情報を交換することとなることから、多様なデバイス間での相互接続性の確保が重要となり、マルチベンダー間の相互接続性が確保された機器等が利用者に容易に認識されるよう、IPv6対応の「見える化」を推進すべきであり、ベンダー等はIPv6ReadyLogoの取得を推進すべきである。

（進捗状況）
○CIAJ（情報通信ネットワーク産業協会）会員企業の販売中（2017年12月28日現在）のルータにおけるIPv6対応状況は、一般法人・企業向けが55機種であるのに対し、家庭・個人向けは13機種となっている。接続方式（PPPoE
式/IPoE 方式）別の対応状況は、以下のとおりである。

<table>
<thead>
<tr>
<th></th>
<th>PPPoEのみ</th>
<th>IPoEのみ</th>
<th>両方</th>
</tr>
</thead>
<tbody>
<tr>
<td>家庭・個人向けルータ</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>法人・企業向けルータ</td>
<td>8</td>
<td>0</td>
<td>29</td>
</tr>
</tbody>
</table>

IPv6 対応製品として IPv6 Ready Logo38の認定製品が幅広く公開されている39が、例えば上記の IPv6 対応ルータにおいては、IPv6 Ready Logo の認定製品は、一般法人・企業向けが 36 機種であるのに対し、家庭・個人向けは 1 機種のみである。

9 政府機関・地方公共団体
（第四次報告書における記載内容）

○ IPv6 によるインターネット接続が増加するなか、国や地方公共団体は、国民や住民への責任あるサービス提供という観点からは、IPv6 によるコンテンツ提供の拡大や、機能する情報システムや Wi-Fi ネットワークの IPv6 対応を推進すべきである。

○ 国や地方公共団体が調達等に係るガイドライン等の作成・周知広報活動等において IPv6 対応に積極的な姿勢を示すことで、民間事業者等における IPv6 対応を先導すべきである。

（進捗状況）

○ 政府においては、「政府機関の情報セキュリティ対策のための統一基準」（サイバーセキュリティ戦略本部）に基づき、IPv6 対応の政府情報システム構築時に IPv6 Ready Logo（Phase-2）認定製品を活用することとされている。

○ 政府機関及び地方公共団体の IPv6 対応状況について、IPv6 アドレスを取得し、DNS に登録しているものの割合は、2017 年 3 月時点で、政府機関は約 90%、地方公共団体は約 40% となっている。実際に IPv6 に対応したウェブサイトを提供している割合は、2017 年 11 月末時点で、政府機関は約 60% に達するが、地方公共団体は約 1% に留まっている（参考資料 13）。また、メールサービスが IPv6 対応している割合は、2017 年 11 月末時点で、政府機関は約 40%、地方公共団体は約 0.3% となっている（IPv6 普及・高度化推進協議会調べ）。

○ 総務省は、IPv6 関連のセミナー等において、2014 年に策定した「IPv6 対応ガイドライン」及び「IPv6 対応調達仕様書モデル」を含めた IPv6 普及促進策の周知啓発を実施している。

38 IPv6 対応機器が相互に IPv6 で通信ができることの審査に合格した機器について、IPv6 の普及を目指す国際 NPO「IPv6 Forum」内の IPv6 Ready Logo Committee（議長：江崎浩東京大学大学院教授）が発行するロゴ。
39 http://ipv6.jate.jp/approved_list
一般企業等
（第四次報告書における記載内容）

○ 総務省では、IPv6関連のセミナー等において、一般企業等を対象としたIPv6普及促進策の周知啓発を実施している。

○ 我が国において、GoogleサービスへのIPv6によるアクセス割合も年々増加しており、2017年12月3日時点で21.0%（2016年12月31日時点で15.3%、2015年12月31日時点で10.2%）となり、徐々に比率が向上している（参考資料14）。

○ IPv6普及・高度化推進協議会、IAjapan（インターネット協会）及びJPNIC（日本ネットワークインフォメーションセンター）では、インターネット上のサービスやアプリケーションのIPv6対応を加速させることを目的としてワークショップを開催している。

3. 分野横断的に実施すべき取組に対する進捗状況
① IPv6を活用したIoTの実装の推進
（第四次報告書における記載内容）

○ モノや人と繋がるグローバルなインターネットの恩恵を最大限に享受するため、IoTの推進においては、研究段階からシステムやサービスの開発・実装に至る段階まで、IPv6に対応したネットワークやデバイスの開発等を前提に進めるべきで、特に実装においては、グローバルIPアドレスの使用を推進すべきである。

○ IoTが実際の社会経済システムに着実に実装され、世界をリードしていくため、IoT時代の典型的あるいは汎用的なプラットフォームが社会経済システムで実際に機能し、受け入れられることを明らかにする実証が実用化促進のための起爆剤として有効と考えられる。

○ 例えば、ロボット等の自律歩行等を想定すると、必要なネットワークとの通信の帯域幅や安定性の確保、遅延時間等が課題としてあげられるが、実際に社会システムとして組み入れられ、正常に機能するかどうか、通信の信頼性の検証等を推進すべきである。
○ IoT の着実な社会実装のためには、実証されたプラットフォームがエコシステムを構成する形で、実際の社会経済システムにおいて展開・普及させていくことが肝要である。このため、国際展開も見据え、戦略的なビジネスモデルの事前検討を推進すべきである。

（進捗状況）
○ 総務省では、IPv6 関連のセミナー等において、IoT 時代には IPv6 の活用が不可欠である旨の周知啓発を実施している。
○ NICT が、総務省と連携して 2016 年 9 月から実施している、IoT の実現に資する新たな電気通信技術の開発・実証のためのテストベッドの整備等に対する助成支援を実施している。（実績 平成 28 年度：5 件、平成 29 年度：1 件）

② IPv6 対応の見える化と政府調達の要件化
（第四次報告書における記載内容）

○ IoT 時代の多様なデバイス間の相互接続性が重要であることから、その相互接続性が容易に認識されるよう、IPv6 対応の「見える化」を推進すべきである。このため、事業者等は、IPv6 Ready Logo を取得した機器の使用を前提とすべきである。
○ 国や地方公共団体の情報システムや情報通信機器の調達等における IPv6 対応の促進を契機として民間事業者等における IPv6 対応を誘導すべく、政府調達等において IPv6 対応や IPv6 Ready Logo 取得機器の活用を要件化することなどにより、IPv6 の普及を牽引すべきである。
○ なお、IPv6 Ready Logo は国際的に IPv6 フォーラムが発行しており、IPv6 Ready Logo の審査は同フォーラムから認定された一般財団法人電気通信端末機器審査協会が行っているが、今後増加が見込まれる審査業務に適切に対応できるよう我が国の審査体制の整備等について早急に検討すべきである。

（進捗状況）
○ 政府においては、「政府機関の情報セキュリティ対策のための統一基準」（サイバーセキュリティ戦略本部）に基づき、IPv6 対応の政府情報システム構築時に IPv6 Ready Logo（Phase-2）認定製品を活用することとされている（再掲）。
③ 政府政策等を踏まえた IPv6 対応の推進
（第四次報告書における記載内容）

○ IPv6 対応の推進に当たっては、情報通信審議会 IoT 政策委員会における議論や 2015 年 10 月に設立された IoT 推進コンソーシアムの取組も踏まえて取り組む必要がある。また、他のネットワーク資源に係る施策等との連携を推進すべきである。例えば、情報通信審議会電気通信番号政策委員会において指摘されている M2M 等専用番号の運用の在り方やその他電気通信番号等に係る施策の検討とも連携すべきである。

○ IoT における IPv6 の実装においては、2020 年の東京オリンピック・パラリンピック競技大会に係る国や地方公共団体の取組などと連携を図りながら推進していくことも検討すべきである。

○ 各事業者や地方公共団体等が Wi-Fi を利用したネットワークあるいは情報システムを構築する場合においては、IPv6 の専門家も交え、総務省とも連携しつつ、関係する事業主体間で協力して IPv6 対応を推進すべきである。

（進捗状況）

○ 「日本再興戦略 2016」において、「IoT 時代のデータ流通を支える情報通信インフラの 2020 年までの整備に向けて、･･･（中略）主要スマートフォン利用者向け IPv6 対応の来年度までの開始等に向けた取組を促すために、毎年度進捗状況の調査等を行う。」とされており、総務省はその取組を推進してきている。前述のとおり、NTT ドコモ、KDDI 及びソフトバンクの 3 社については、IPv6 のデフォルト提供を完了している。

○ 公衆無線 LAN の IPv6 対応については、総務省が、Wi-Biz の総会を通じ、Wi-Biz の会員等を対象に IPv6 対応の必要性を周知啓発している（再掲）。

○ Wi-Biz による会員企業への調査では、フォン・ジャパンが提供している公衆無線 LAN サービスの一部で、静岡市が提供している「Shizuoka Wi-Fi Paradise」サービスの一部で IPv6 対応している。また、JR 東日本メカトロニクス及び愛知県では、自社設備の IPv6 対応が完了している。

④ 人材育成・普及啓発の推進
（第四次報告書における記載内容）

○ インターネットはグローバルなインフラであり、IoT の普及に当たっても、セキュリティや接続性を含めた品質を確保した上で、オープンでセキュアな IPv6 対応を推進すべきである。このような IPv6 対応の基本的な考え方等について、IPv6 普及・高度化推進協議会等における IPv6 普及に向けた取組のなかで、より一層の普及啓発を推進していくべきである。

○ また、IPv6 対応の成功事例、システム構築・維持管理コストや運用管理者の教育コスト等の低減を図る取組等の情報共有や、関係業界の実態調査に基づく、実際に IPv6 でシステムを構築可能な人材の育成が重要であり、IPv4 アドレス枯渇対応タスクフォースや関係業界において人材育成や普及啓発を図る取組をより一層推進していく必要がある。

（進捗状況）
○ JAIPA では、IPv6 の普及を機にしたブロードバンド関連用語の標準化に向けた活動として、「ブロードバンド関連用語の標準化に向けた検討会」を開催している（参考資料 15）。
○ IPv6 普及・高度化推進協議会では、IPv6 Summit in Tokyo 2017 において、IPv6 の動向、協議会の活動を紹介している。

⑤ 我が国の取組の国際的な発信
（第四次報告書における記載内容）

○ インターネットの普及促進のため、発展途上国を含めた諸外国に我が国の IPv6 対応に向けた取組を発信することは、国際貢献の一環として我が国に求められる責務である。
○ このため、我が国の IPv6 対応に関するベストプラクティスや関連データを積極的に公開し、世界に対しても発信していくべきであり、このような取組は、結果として将来の IPv6 対応システムの海外展開等にも資するものである。

（進捗状況）
○ JPNIC では海外の会議での講演、関係機関との意見交換会等を通じて情報発信に努めている。

<table>
<thead>
<tr>
<th>時期</th>
<th>国際的な発信</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016年12月</td>
<td>Internet Governance Forum 2016 (メキシコ)において、日本の IPv6 推進状況を報告</td>
</tr>
<tr>
<td>2017年9月</td>
<td>SGNOG において、日本の携帯キャリア 3 社における IPv6 導入状況を紹介</td>
</tr>
<tr>
<td>2017年11月</td>
<td>第 4 回世界インターネット大会で日本の IPv6 の現状を発表</td>
</tr>
<tr>
<td>2017年11月</td>
<td>VNNIC と日越における IPv6 普及状況に関して情報交換</td>
</tr>
<tr>
<td>2017年12月</td>
<td>Taiwan Internet Forum において日本の IPv6 の現状を発表</td>
</tr>
<tr>
<td>2017年12月</td>
<td>Internet Governance Forum 2017 (スイス) において、日本の IPv6 推進状況を報告</td>
</tr>
</tbody>
</table>

○ 総務省は、Internet Society CEO 来日時（2016年4月）や APrIGF 2016 台北（2016年7月）を通じて、我が国の IPv6 の普及促進策を発信している。

⑥ 継続的な調査及 BDCA の実施
（第四次報告書における記載内容）
○ 大規模ISP事業者等のIPv6対応は、契約者ベースでは多くの利用者がIPv6接続を利用できる環境にある一方で、実際のIPv6アクセス率は低いとの統計もある。我が国においてもIPv6の実際の利用状況が客観的かつ定量的に把握できる仕組みを検討すべきである。

○ 我が国が今後もIPv6先進国の地位を引き続き維持するためには、国内及び海外のIPv6対応状況や動向について継続的に調査を行い、その結果を、次項に示すPDCAの過程における我が国のIPv6対応の進捗状況の把握等で活かしていくべきである。

○ 本報告書で掲げた課題を確実に遂行するために、着実なPDCAを実施すべきである。具体的には、本報告書について毎年度進捗状況を把握し、その結果を公表する。また、隔年でプログレスレポートを策定し、進捗状況を踏まえた課題の見直し等を行う。

（進捗状況）

○ 毎年度、国内外のIPv6対応状況に関する調査を実施し、進捗状況の把握及び施策検討に活かすとともに、総務省のホームページで調査結果の概要を公表している。

○ IPv6普及・高度化推進協議会では、ISPの協力を得て、フレッツ光ネクスト及びその他のネットワークサービスについて、IPv6での接続が可能な利用者数の割合を収集し、アクセス網におけるIPv6の普及状況の指標のひとつとして調査・公開（フレッツ光ネクストにおけるIPv6普及率が2017年9月に39.2%に到達40）している。

○ 総務省は、第四次報告書に対する2016年度進捗状況フォローアップ調査結果を2017年3月14日に公表している。

40 http://v6pc.jp/jp/spread/ipv6spread_03.phtml
第3章 今後のIPv6対応の方向性

本研究会において、IPv6対応に係る課題や普及方策等を約9年にわたって議論してきた。その結果、第1章及び第2章までで述べてきたとおり、我が国において現在市販されている通信機器やOS、固定通信事業者、ISP及びMNOなどの通信インフラのIPv6対応は、利用者が特段意識せずにIPv6で通信可能な環境を構築できたという観点で、概ね完了しているところまで進展した。

一方で、コンテンツレイヤーにおけるIPv6対応は発展途上であり、コンテンツレイヤーのIPv6対応が進まないと通信インフラのIPv6化（IPv4とIPv6の二重投資）が無駄な投資で終わることとなる。この状況を是正するため、今後のIPv6対応の方向性として、コンテンツレイヤーのIPv6を推進し、究極的にはIPv6のシングルスタックを目指すべきである。すなわち、IPv6の利用環境整備（ディプロイメント）から利用促進（マイグレーション）にシフトしていくことが必要である。

1．今後のIPv6対応に向けた基本的な考え方

第1章及び第2章の議論を踏まえ、今後のIPv6対応に向けた基本的な考え方について、以下にまとめる。

（１）IPv6の利用環境整備（IPv6のディプロイメント）

○我が国においてIPv6のディプロイメントが概ね完了している一方で、公衆無線LAN、MVNO、IoT関連産業（情報通信以外）など、IPv6対応がまだ十分には進んでいないミッシングピースの通信インフラに関しては、各事業主体の自主的な取組により、引き続きIPv6対応を進めていくことが重要である。

（２）IPv6の利用促進（IPv6のマイグレーション）

○IPv6で通信を行うには、通信機器、通信インフラ、コンテンツレイヤー（法人の情報システムや教育コンテンツ等の通信事業者のユーザ）の全てがIPv6に対応している必要があり、これまで国内でのIPv6の普及には、通信インフラのIPv6化が先か、コンテンツレイヤーのIPv6化が先かという鶏と卵の関係の議論がなされてきた。

○その間、Google、Facebook、Amazon、Microsoftなどの海外のコンテンツ事業者は、提供しているコンテンツレイヤーのIPv6対応を先行して取り組んできた。

○本章１．（１）で述べたとおり、我が国においても通信インフラのIPv6化が概ね完了するところまで進展したため、通信インフラのIPv6化とコンテンツレイヤーのIPv6化の鶏と卵の関係は解決された。

○したがって、我が国において、今後のIPv6の利用促進に向けて残された課題として、Webページ等のコンシューマ向けのものや法人の一部の内部システム等、コンテンツレイヤーのIPv6化に向けた検討を強化していくことが必要であり、今後の我が国のIPv6対応の取組は、IPv6のディプロイメントからマイグレーションへシフトしていくことが重要である。

○但し、IPv6シングルスタックへのマイグレーションについては、非常に時間を有する
るものであるから、長期的な視点で取り組む必要がある。

（3）本研究会の位置付け
○ 本章１．（1）で述べたとおり、我が国における通信機器や通信インフラのIPv6化が概ね完了した段階に到達したことから、IPv6のディプロイメントを目指して取組を進めてきた本研究会の役割としては大きな節目に達したものと認識される。したがって、本報告書は、本研究会の最終報告書と位置付ける。
○ 一方で、IPv6に係る新たな課題（コンテンツレイヤーのIPv6化等）が出てきていることから、その課題に取り組む新たな場を設けることが必要である。

2. IPv6の利用促進に向けた今後の取組の提言
本研究会では、IPv6のディプロイメントからマイグレーションへシフトしていくにあたっての留意事項や実施すべき取組を、以下のとおり提言する。

（1）IPv6の利用促進にあたっての基本的な姿勢
○ IPv6の利用促進には、通信機器、通信インフラ、コンテンツレイヤーの全てがIPv6に対応している必要があり、コンテンツレイヤーのIPv6化が進まないと、既に概ねの対応を完了している通信インフラのIPv6化が無駄な投資で終わってしまうことになる。
○ 現状として、通信事業者は、通信インフラの二重投資（IPv4とIPv6のデュアルスタック）を行い、二重のコストで運用している状況である。コンテンツレイヤーのIPv6化を強化することで、IPv6で通信を行える環境が拡大し、究極的には、通信事業者は通信インフラの二重投資を解消（IPv6シングルスタックへのマイグレーション）することができる。コンテンツレイヤーの事業者についても、提供するコンテンツへのIPv4とIPv6の二重投資はコスト面等で運用が困難なため、IPv6シングルスタックへのマイグレーションは重要である。
○ IPv6シングルスタックへのマイグレーションは、長期的にはコスト削減につながり、利用者料金の低廉化にも資するものとなる。但し、コンテンツレイヤーのIPv6化、ひいてはIPv6シングルスタックへのマイグレーションについては、非常に時間も有するものであるから、IPv4からIPv6への移行の過渡期だけでなく長期的な視点で取り組む必要がある。

（2）国際連携の推進、対外的な情報発信
○ インターネットの普及促進のため、我が国のIPv6対応に向けた取組やベストプラクティスを世界に対して発信していくことは、国際貢献の一環として我が国に求められる責務である。特に、発展途上国に対しては、我が国のIPv6対応のベストプラクティスをリファレンスモデルとして提示し、発展途上国のIPv6対応を支援することが、ネットワーク先進国としての責務である。
○ また、IPv6アドレスをはじめとしたインターネット資源の安定的な運用・管理に資するため、IGF（インターネット・ガバナンス・フォーラム）などの国際会議の場を
活用して、我が国のIPv6対応の取組やインターネット資源管理に対するマルチステークホルダーアプローチの重要性を継続的に発信していくことが重要である。しかし、国際的な情報発信は、我が国とは立場を異にする諸外国も対象者に含まれていることから、その影響を十分考慮した上で行うべきものであることに留意すべきである。

○ 我が国におけるIPv6対応にあたっては、IPv6対応に係る諸外国との情報共有など、国際連携を一層強化すべきである。

○ さらに、MNO3社の2年という短期間でのIPv6対応、CATV事業者の着実なIPv6対応などの我が国におけるIPv6化のベストプラクティスに関しては、積極的に情報発信していくことで、IPv6のディプロイメントのミッシングピースとなっている事業者のモデルケースとして、当該事業者のIPv6対応の加速に資するべきである。

（3）横展開可能なモデル事業

○ コンテンツレイヤーのIPv6化を進めていくためには、IPv6対応のベストプラクティスを作り、それを共有していくことが重要である。現状として、大学、地方公共団体、中小企業を含む法人の情報システム等のコンテンツレイヤーは、通信インフラと比較して、IPv6対応があまり進んでいない。

○ このような法人の情報システムを導入するシステムインテグレータの立場としては、顧客からのIPv6対応の要望がない限り、ビジネスベースでIPv6化に対応することは困難と想定される。そのため、我が国において、このような情報システムのIPv6化に係る知見やノウハウの蓄積が十分でなく、IPv6対応を面的に展開していくにあたって土台となる有効なひな形（例えば、標準仕様書や運用手順書等）が存在しない。ひな形の存在しない現状が、ビジネスベースでのIPv6対応のボトルネックとなっている。

○ このボトルネックを解消するため、IPv6対応があまり進んでいない機関を対象に、国策としてIPv6対応のモデル事業を実施することが必要である。例えば、ある機関を対象として、実際にIPv6で動作するシステムを作り、ユーザに使用してもらった上での改善点についてフィードバックをもらい、システム改修に活かす。このプロセスを繰り返することで、実運用可能なIPv6対応のシステムを構築する。そして、その機関がIPv6対応を検討する際に、リファレンスモデルとして活用できるよう、当該システムに関する標準仕様書を作成するといったモデル事業が考えられる。

○ なお、モデル事業の実施にあたっては、当該モデル事業の対象となる領域（地方自治体、大学等）、実施内容及び留意事項などを関係事業者、業界団体や有識者と協議しながら選定していくべきである。また、モデル事業の対象主体は、実際に実運用に耐えるシステムを構築し、他の機関のリファレンスになるということに留意して選定されるべきである。

（4）IPv6による持続的な成長を目指して

○ 第1章4．（2）で述べたとおり、海外でIPv4アドレスが1個約$10で売買されている現状に鑑みると、今後も限られたIPv4アドレスの価格は上昇することが予想さ
れる。したがって、IPv4 のネットワークやコンテンツを運用し続ける、また IPv6 へのマイグレーションが進まず、IPv4 と IPv6 の二重投資のまま運用し続けることは、長期的には、経済的に採算が取れなくなる可能性があることに留意すべきである。

また、IPv4 の在庫が世界的に枯渇している状況下で、本格的な IoT 社会が到来し、インターネットにつながる機器が爆発的に増加している現状において、今後インターネットに接続される機器は、膨大なアドレス数を持つ IPv6 が世界的に活用されていくことになる。第 4 次産業革命により情報通信産業以外の産業においても IoT が進展しており、これらの IoT には IPv6 が割り振られていく見込みであること及び発展途上国を含む諸外国も IPv6 対応を積極的に推進している状況に鑑みると、IPv6 への短期的な投資コストの観点から IPv4 だけでネットワークやコンテンツを構築してしまうと、将来的に国内外の IPv6 化されたネットワークやコンテンツと分断されることとなり、IoT による産業間の相乗効果を十分に享受できない、ネットワークそしてのスケーラビリティに制約が生じるなどのリスクを被る可能性がある。

以上から、今後も我が国として持続的な成長を維持していくため、産学官連携により、将来を見据えて長期的な観点から IPv6 の利用を促進していくべきである。

（5）人材育成の推進

（1）〜（4）の取組を継続的かつ実効的に推進していくにあたって、IPv6 の利用促進という文脈に限らず、一般論として、より大器的な観点から、今後のデジタル社会を支えるエンジニアの育成を推進していくことが重要である。

（6）推進体制の検討

コンテンツレイヤーの IPv6 化、ひいては IPv6 シングルスタックへのマイグレーションは、非常に大層なテーマであることから、その在り方や推進方策はどのような場やメンバーで議論することが適当であるか、実施主体や政府の関与の仕方など、官民ともに推進体制を検討し、確立すべきである。
おわりに

○ 本報告書では、IPv6 対応状況、第四次報告書に対するプログレスレポート、IPv6 のマイグレーションに向けた方策の提言等を、本研究会の最終報告書としてとりまとめた。

○ 第 1 章では、これまでの経緯と現状として、インターネットをめぐる環境の変遷、IPv4 アドレスの枯渇状況、国内外のIPv6の対応状況を述べた。本研究会を含めたこれまでの我が国の取り組みの結果、我が国のIPv6の対応状況については、通信機器や通信インフラのIPv6化に関して、概ね完了した段階に到達していると言える。そのため、今後のIPv6対応については、IPv6のディプロイメント（利用環境整備）からマイグレーション（利用促進）にシフトしていくフェーズに来ており、その在り方の検討が、今回の研究会の検討項目の一つである。

○ 第 2 章では、第四次報告書において、隔年で策定することとしていたプログレスレポートをとりまとめた。具体的には、今回の研究会でのヒアリングを踏まえて、事業分野毎のアクションプラン及び分野横断的に実施すべき取組の進捗について述べた。特筆すべきこととして、NTTドコモ、KDDI及びソフトバンクのMNO3社が、第四次報告書で掲げた2017年までのIPv6のデフォルト提供を達成したことは、我が国におけるIPv6対応のベストプラクティスとなるものであり、他分野のIPv6対応に資するものとして、非常に評価に値するものである。

○ 第 3 章では、今回の研究会の議論を踏まえ、IPv6のマイグレーション（利用促進）に向けた今後の取組を、研究会の提言としてとりまとめた。国際連携の推進、対外的な情報発信、国策として実施すべきモデル事業、人材育成の推進、推進体制の検討など、大局的かつ長期的な観点からIPv6のマイグレーションにあたって実施すべき内容を提言した。

○ 第 3 章の提言を踏まえ、各関係主体が連携しながら必要な取組を実施していくことで、今後も我が国のIPv6の利用が促進されていくことを期待する。そして、IoT社会やその先の社会において、IPv6が不可欠な要素であることは明らかであり、その利用が促進されることで、我が国の持続的な成長に寄与することを切に願っている。

○ 最後に、2009年発足から約9年という長きにわたって、本研究会でのヒアリングやプレゼンテーションのご協力いただいた関係企業及び関係団体等の皆様に心から御礼申し上げるとともに、我が国におけるIPv4の枯渇対策やIPv6の普及促進等、我が国のインターネットの発展に多大なるご貢献をいただいた情報通信業界の皆様方に敬意を表する。
IPv6によるインターネットの利用高度化に関する研究会 構成員名簿

（敬称略、五十音順）

会津 泉　　多摩大学　情報社会学研究所　教授
有木　節二　一般社団法人　電気通信事業者協会　専務理事
江崎　浩　　東京大学大学院　情報理工学系研究科　教授
木下　剛　　一般財団法人　インターネット協会　副理事長

座長代理　國領　二郎　慶應義塾大学　総合政策学部　教授

座長　齋藤　忠夫　東京大学　名誉教授
立石　聡明　一般社団法人　日本インターネットプロバイダー協会　副会長
永見　健一　一般社団法人テレコムサービス協会　政策委員会委員長
中村　修　　慶應義塾大学　環境情報学部　教授
藤崎　智宏　一般社団法人　日本ネットワークインフォメーションセンター　常務理事
松田　和男　一般財団法人　日本データ通信協会 情報通信セキュリティ本部　本部長
松野　敏行　一般財団法人　電気通信端末機器審査協会　専務理事
松村　敏弘　東京大学　社会科学研究所　教授
松本　修一　一般社団法人　日本ケーブルラボ　専務理事
IPv6 によるインターネットの利用高度化に関する研究会 開催状況

<table>
<thead>
<tr>
<th>開催年月日</th>
<th>主な議事</th>
</tr>
</thead>
<tbody>
<tr>
<td>第 35 回 2017 年 10 月 16 日</td>
<td>①事務局説明 ②民間事業者等からのプレゼンテーション</td>
</tr>
<tr>
<td></td>
<td>・ 研究会の進め方案</td>
</tr>
<tr>
<td></td>
<td>・ (株)三菱総合研究所</td>
</tr>
<tr>
<td></td>
<td>・ IPv6 普及・高度化推進協議会</td>
</tr>
<tr>
<td></td>
<td>・ (一社)日本インターネットプロバイダー協会</td>
</tr>
<tr>
<td></td>
<td>・ 東日本電信電話(株)及び西日本電信電話(株)</td>
</tr>
<tr>
<td></td>
<td>・ (一財)電気通信端末機器審査協会</td>
</tr>
<tr>
<td>第 36 回 2017 年 11 月 13 日</td>
<td>民間事業者等からのプレゼンテーション</td>
</tr>
<tr>
<td></td>
<td>③民間事業者等からのプレゼンテーション</td>
</tr>
<tr>
<td></td>
<td>・ (一社)テレコムサービス協会 MVNO 委員会</td>
</tr>
<tr>
<td></td>
<td>・ (一社)日本ケーブルラボ</td>
</tr>
<tr>
<td>第 37 回 2017 年 12 月 12 日</td>
<td>民間事業者等からのプレゼンテーション</td>
</tr>
<tr>
<td></td>
<td>③民間事業者等からのプレゼンテーション</td>
</tr>
<tr>
<td></td>
<td>・ ヤフー(株)</td>
</tr>
<tr>
<td></td>
<td>・ アマゾンウェブサービスジャパン(株)</td>
</tr>
<tr>
<td></td>
<td>・ (株)三菱総合研究所</td>
</tr>
<tr>
<td>第 38 回 2018 年 1 月 12 日</td>
<td>事務局説明</td>
</tr>
<tr>
<td></td>
<td>事務局説明</td>
</tr>
<tr>
<td>第 39 回 2018 年 2 月 6 日</td>
<td>事務局説明</td>
</tr>
<tr>
<td></td>
<td>事務局説明</td>
</tr>
<tr>
<td>第 40 回 2018 年 3 月 20 日</td>
<td>最終報告書</td>
</tr>
</tbody>
</table>

【参考: これまでの研究会のとりまとめ文書】

- 2016 年 1 月 26 日 第四次報告書 公表
- 2013 年 7 月 26 日 第三次報告書第二次プログレスレポート 公表
- 2012 年 7 月 31 日 第三次報告書プログレスレポート 公表
- 2011 年 12 月 9 日 第三次報告書 公表
- 環境クラウドサービスの構築・運用ガイドライン 公表
- 2010 年 3 月 12 日 第二次中間報告書 公表
- 2009 年 6 月 23 日 中間報告書 公表