「小型衛星の打ち上げ・利用に関する研究会」
報告書

小型衛星の打ち上げ・利用に関する研究会
平成 30 年 3 月
目次

はじめに .. 1

第 1 章. 衛星の現状と動向 .. 2
 第 1 節. 世界の宇宙産業市場の現状 ... 2
 第 2 節. 我が国の宇宙産業市場の現状 ... 8
 第 3 節. 国内での宇宙関連産業の新たな動き 8
 第 4 節. H-IIA ロケットでの小型衛星打ち上げの実績 10
 第 5 節. 人工衛星局相当・地球局相当実験試験局の免許状況 10

第 2 章. 小型衛星の利用用途 ... 13
 第 1 節. 小型衛星の分野別利用と内容 14

第 3 章. 周波数の国際調整と事前公表資料(API) 25
 第 1 節. 国際周波数調整の概要 ... 25
 第 2 節. 国際周波数調整の流れ ... 27
 第 3 節. 国際周波数調整の例 .. 30
 第 4 節. 小型衛星に利用されている周波数帯 35
 第 5 節. 事前公表資料(API)概要 .. 39
 第 6 節. 事前公表資料(API)作成時の基本事項・注意事項 40
 第 7 節. 事前公表資料(API)ツールの使用方法 49
 第 8 節. 地球局調整 .. 57
 第 9 節. コンター図作成要領 .. 61
 第 10 節. 周波数選定・調整の苦労点 ... 64

第 4 章. 手続き .. 67
 第 1 節. 宇宙無線通信を行う実験試験局の免許までの流れ 67
 第 2 節. 免許申請相談時の留意事項 .. 69
 第 3 節. 無線局免許申請 .. 70
 第 4 節. 人工衛星局相当・地球局相当実験試験局の審査について 73
 第 5 節. 落成検査 ... 79
 第 6 節. 無線局免許申請での苦労点 .. 81
資料
資料1 開催要旨
資料2 開催要項
資料3 構成員名簿
資料4 研究会開催経過
資料5 報道発表資料
資料6 研究会の実施結果
資料7 調査結果
資料8 RF 回線設計標準
資料9 主な地球局の諸元
資料10 用語集
資料11 関連法令・参考文献
はじめに

近年の小型衛星の低廉化、JAXAによる衛星打ち上げロケットの空きスペースに他の小型衛星を相乗りさせる相乗り衛星の利用機会増加、及び海外の打ち上げベンチャーの出現による打ち上げ費用の削減により、大学やベンチャー企業等が小型衛星の打ち上げに関心を寄せています。

衛星からのデータ取得による宇宙観測・産業育成・観光文化振興などを目的として、北陸3県でも小型衛星打ち上げの計画が推進されています。

一方で、衛星の打上げに際しては、衛星通信を行うための周波数や軌道位置について総務省が日本の窓口となって事前の国際調整を行っています。このため連絡調整には多くの時間を要しており、小型衛星を新たに打ち上げようとする者にとって負担となっています。

そのため、小型衛星で使用可能な衛星通信諸元（周波数帯、必要最小限の占有周波数帯幅、空中線電力など）、小型衛星の利用目的について、小型衛星を開発・利用する者が容易に参照できるようなノウハウ集、事例集として取りまとめ、公表することを目的として、本研究会を開催しました。

本報告書が小型衛星の打ち上げ・利用に貢献することを期待するとともに、ご多忙の中研究会に参加し、熱心に議論頂きました構成員各位、貴重な情報・ノウハウを紹介、説明頂きました方々、並びに本研究会にご協力・ご支援頂きました関係各位に対し心より感謝申し上げます。

「小型衛星の打ち上げ・利用に関する研究会」
座長 八木谷 聡
第1章 衛星の現状と動向

第1節 世界の宇宙産業市場の現状

世界中で宇宙産業における収益は年々増加しており、近年ではその成長率がやや減少傾向となっているものの宇宙産業市場は拡大しつつある。

米国に拠点を置く、衛星産業協会（SIA）の2017年における衛星作業活動の報告書によると、2016年では宇宙活動による世界規模での経済効果は全体で3,391億ドルであり、2015年における収益よりも1%増加している。このうち、衛星産業市場が大部分である約77%を占め、2,605億ドルの収益であることが報告されており、世界の衛星産業市場はこの10年間で2倍以上の市場成長を遂げている。世界の衛星産業市場規模の推移を図1.1-1に示す。

図1.1-1：世界宇宙市場規模の推移

図1.1-2に衛星産業における市場規模の内訳を示す。2016年における衛星産業は、市場規模の大きい順に衛星サービス、地上設備、衛星機器製造、打ち上げ産業となっている。中でも衛星産業と地上系設備の占める割合は大きく、この二つで全体の2/3程度を占めている。宇宙産業の基盤を成す衛星機器製造と打ち上げ産業については、その重要度と裏腹に、経済効果としてはそれほど大きくない。以降に衛星産業における経済効果の推移について項目別に内訳を示す。
図1.1-2：衛星産業における市場規模の内訳

- 衛星サービス

図1.1-3 に衛星サービスにおける市場規模の推移を示す。2016年における衛星サービスによる経済効果は1,277億ドルであり、2012年からは毎年5%程度増となっていたものの前年は0.2%の増加率となり、2015年とほぼ変わらない値となった。このうち、82%にあたる1,047億ドルが衛星テレビ、衛星ラジオ、衛星ブロードバンドサービスといった消費者による利用である。
図 1.1-3: 衛星サービスの市場規模の推移

より抜粋

消費者サービスによる経済効果のうち大部分を占める約 93%が衛星 TV サービスとなっており、衛星ラジオ及びブロードバンドサービスが残りを分けているが、衛星 TV サービスと比較すると収益は少ない。一方で、消費者サービス以外の業務による経済効果として、移動衛星サービス事業者から提供される Ku 帯及び Ka 帯における固定衛星通信サービスを含む移動衛星サービスが約 5%増加し、地球観測業務による経済効果が 11%増加したが、固定衛星サービスについては 3%減となった。

衛星機器製造業務

図 1.1-4 に衛星機器製造業務における市場規模の推移を示す。2012 年〜2015 年までは市場の増加率が上昇もしくは、ほぼ横ばいであったのに対し、2016 年においては 2015 年の打上げ機数から 76 個少ない 126 個であったこともあり、前年度及び最近の 5 年間の平均を大きく下回る 13%減となった。また、このうち超小型衛星は 2015 年の半分以下しか製造されておらず、概算ではおよそ 2 億ドルの経済損失であったが、米国及び欧州政府によって大量の商用衛星及び政府衛星の配備が見込まれるため、この傾向はある程度緩和される予測である。
通常の人工衛星よりも安価である超小型衛星への関心は、今後も高まることが予測されている。その用途は、地球観測から通信実験など多岐にわたる。このような流れの中で、超小型衛星を目的に応じて安価かつ魅力的にカスタマイズすることができるキットが販売されており、今後の経済効果が期待されている。

打上げ産業
図 1.1-5 に打上げ産業（商用ロケット打上げによる）における市場規模の推移を示す。2016 年は前年より 2%の増加であり、直近の 5 年間の収益の平均と同程度であった。これまでのところ大幅に市場規模が変化することなく、5.5〜6 億ドルの範囲で収益が変動している。2016 年における商用ロケットによって打ち上げられた衛星は 64 基であり、静止軌道及び低軌道への投入がそれぞれ 28 基、中軌道が 6 基、静止軌道以上の高度への投入が 2 基であった。民間企業によるロケットの打上げはまだ始まったばかりであり、技術及び市場もまだ発展途上である。そのため、他の衛星産業市場と比較すると、収益はまだ大きくしていない。
図 1.1-5：打ち上げ産業の市場規模の推移

図 1.1-6 に各国による商用ロケットの打上げ数の推移を示す。年によってばらつきはあるものの、米国、欧州、ロシアによって打上げが行われており、他の衛星産業とは異なり必ずしも米国一強の構図ではなく、むしろ近年では欧州の打上げ回数が最多である。以前と比較するとロシアの打上げ回数が減少しており、直近の 3 年では毎年 1 回の打上げにとどまっている。

図 1.1-6：各国による商用ロケットの打上げ数の推移
現在、Rocket Lab 社、Virgin Galactic 社、Vector Space Systems 社などによって、少なくとも 33 基の超小型ロケットの開発が世界中で進められている。上記の企業が開発した小型ロケットの価格は積載許容量によって様々であるが、およそ 150 万円〜1000 万円程度であり通常のサイズのロケットと比較しても非常に安価であるため、打上げにかかる費用を抑えることができる。これによって、より高頻度で重量の小さい小型衛星を軌道投入することができるようになると見込まれるが、一方で積載許容重量あたりのロケットの価格で通常サイズのロケットと比較すると経済性に劣ってしまう。すべての企業が資金を確保できているわけではないが、今後の産業化の見通しは不明確であり、開発にはリスクをはらんでいる。今後の市場規模の拡大、及び打上げ機会の増加のためには、これらの課題を解決していくことが必要となっている。

● 地上設備
図 1.1-7 に世界の衛星地上設備による市場規模の推移を示す。2007 年から収益は右肩上がりであり、この 5 年間でおよそ 1.5 倍に収益が増加している。内訳に注目すると、ネットワーク機器及び衛星テレビ、ラジオといった全球測位衛星システム（GNSS）ではない消費者機器は緩やかな増収であるのに対して、GNSS の消費者機器の成長は比較的大きかった。

図 1.1-7：衛星のための地上機器による収益の推移
第2節．我が国の宇宙産業市場の現状

図1.2-1に日本国における宇宙関連事業の売上高の年間推移を示す。日本の宇宙関連市場は、世界と比較するとそれほど大きな市場ではない。直近の約10年は漸増傾向となっており、特に飛翔体による売り上げが増加してきている。

図1.2-1 我が国の宇宙関連事業の売上高（ただし28年度はデータ集計時の予測値）
（一社）日本航空宇宙工業会 H28年度宇宙産業データブックから作成

日本国における宇宙産業市場の多くは政府向けであり、依然として官需に依存している状況である。しかしながら、最近では小型衛星の普及に伴い大学や企業が主体となって衛星開発やロケット開発に着手している。宇宙開発における民間の参入は海外でも同様に起きており、今後は官需だけでなく民需による売り上げ増加が期待できる。官需は限られた予算に基づく受注であるため市場規模は限られてくるが、民需は市場が開かれているため官需よりも市場拡大の期待値が高い。

第3節．国内での宇宙関連産業の新たな動き

これまでの宇宙開発の主体は、国や国立研究開発法人であったが、昨今では大学などによる活動も増加してきている。また、大学のみならずベンチャー企業といった民間企業も宇宙開発に参入してきており、新たな宇宙関連産業を形成し始めている。宇宙関連産業におけるベンチャー企業の活動は多岐にわたり、例えばリモートセンシング衛星サービス、独自ロケットの打ち上げ、デブリ除去、小型衛星・部品開発、月面探査が例として挙げられる。
平成 28 年 11 月に開催された総務省の宇宙×ICT に関する懇談会第 1 回会合では、宇宙産業活動のひとつである衛星取得データの活用について触れており、未だ経済活動に大きく影響を与えるような衛星データ利用のビジネスモデルや活用は手探りの状態であって、今後様々な分野において、衛星から取得したデータを他のデータや処理を加えることで、如何にして価値を創出するのかを見出していくことが必要であるとの意見が交わされている。各宇宙産業における企業活動の一部を表 1.3-1 に示す。

<table>
<thead>
<tr>
<th>メーカー名称</th>
<th>事業内容</th>
<th>事業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>(株)アクセルスペース</td>
<td>リモートセンシング衛星</td>
<td>キヤノン電子（株）</td>
</tr>
<tr>
<td>東京大学発の衛星ベンチャーとして 2008 年設立。三井物産や JSAT 等が出資。超小型衛星の宇宙実証を行うため、2016 年 8 月、JAXA との革新的衛星技術実証プログラムに関する契約を締結。</td>
<td>2012 年に衛星ビジネス参入。2017 年 6 月 23 日にインドにて 100kg・1m 分解能の超小型衛星の打ち上げに成功。光学系は EOS 5D Power Shot（商用製品を転用）。</td>
<td>2013 年 11 月にロシア、ドニエプルロケットでアクセルスペース等が開発した小型人工衛星の打ち上げに成功。</td>
</tr>
</tbody>
</table>

総務省 HP 「宇宙×ICT に関する懇談会」報告書より一部改変の上抜粋
第4節．H-ⅡAロケットでの小型衛星打ち上げの実績

小型衛星を宇宙空間にて運用するためには、宇宙空間まで衛星を輸送する必要がある。大学や民間の小型衛星の場合は、主ミッション衛星の相乗り衛星として打ち上げが行われている。この相乗り衛星の公募は世界中で行われており、JAXAでは、日本国の宇宙開発利用の裾野を広げ、教育・人材育成に貢献することを目的として、民間企業・大学などによる容易かつ迅速な超小型衛星の打ち上げ・運用を実現するための仕組みを作り、H-ⅡAロケットで衛星を打ち上げる際に余剰能力ができた場合には、そのロケットで50kg以下の超小型衛星を無償で相乗りさせる機会の提供を平成18年5月より開始した。以下、H-ⅡAロケットにおける超小型衛星の打ち上げ実績を示す。

表1.4-1 H-ⅡAロケットでの小型衛星打ち上げの実績

<table>
<thead>
<tr>
<th>打上げ日</th>
<th>H-ⅡAロケット</th>
<th>主衛星</th>
<th>相乗り衛星</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成21年1月23日</td>
<td>15号機</td>
<td>いぶき(GOSAT)</td>
<td>公募超小型衛星6機 JAXA超小型衛星1機</td>
</tr>
<tr>
<td>平成22年5月21日</td>
<td>17号機</td>
<td>あかつき(PLENAT-C)</td>
<td>公募小型衛星4機</td>
</tr>
<tr>
<td>平成24年5月18日</td>
<td>21号機</td>
<td>しずく(GCOM-W) KOMPSAT-3</td>
<td>公募超小型衛星1機 JAXA超小型衛星1機</td>
</tr>
<tr>
<td>平成26年2月28日</td>
<td>23号機</td>
<td>GPM</td>
<td>公募超小型衛星7機</td>
</tr>
<tr>
<td>平成26年5月24日</td>
<td>24号機</td>
<td>だいち2号(ALOS-2)</td>
<td>公募超小型衛星4機</td>
</tr>
<tr>
<td>平成26年12月3日</td>
<td>26号機</td>
<td>はやぶさ2(HAYABUSA2)</td>
<td>公募副ペイロード3機</td>
</tr>
<tr>
<td>平成28年2月17日</td>
<td>30号機</td>
<td>ひとみ(ASTRO-H)</td>
<td>公募超小型衛星3機</td>
</tr>
</tbody>
</table>

※H-ⅡBロケットについてはこれまで相乗りを実施した実績はない。

北陸総合通信局 第1回研究会資料 国立研究開発法人宇宙航空研究開発機構(JAXA) 周波数管理室 作成「超小型衛星に関する最近の動向」を参考に庶務が作成

当初、JAXAが提供する相乗りの公募は無償による打ち上げ機会提供（無償制度）のみであったが、現在では民間企業が営利目的等に利用するなど超小型衛星による新しいビジネスの創出、宇宙利用の拡大に向けた取り組みの一環として、産業化を見据えて国内需要を顕在化させるため有償による超小型衛星の打ち上げ機会提供（有償制度）も実施されている。JAXAの超小型衛星の打ち上げ・放出機会提供については、以下のURLのJAXAwebサイトから情報を取得することができる。

JAXA webサイト
http://aerospacebiz.jaxa.jp/solution/satellite/#h-iia

第5節．人工衛星局相当・地球局相当実験試験局の免許状況

実験試験局とは無線局の局種の一つであり、電波法施行規則第4条第1項第22号に「科学若しくは技術の発達のための実験、電波の利用の効率性に関する試験又は電波の
利用の需要に関する調査を行うために開設する無線局であつて、実用に供しないもの（放送をするものを除く。）と定義されているものである。非商用の科学、技術発展のための無線局の多くはこれに該当する。日本国内における人工衛星局及び地球局相当実験試験局の免許交付状況を表 1.5-1 に示す。免許状況は予備免許中の免許も含めて数えている。調査結果は平成 29 年 9 月 25 日現在のものである。

表 1.5-1 人工衛星相当及び地球局相当実験試験局の免許状況

<table>
<thead>
<tr>
<th>管轄総合通信局</th>
<th>免許人</th>
<th>人工衛星局相当</th>
<th>地球局相当</th>
</tr>
</thead>
<tbody>
<tr>
<td>東北総合通信局</td>
<td>国立大学法人東北大学</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>関東総合通信局</td>
<td>内閣府</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>国立研究開発法人宇宙航空研究開発機構（JAXA）</td>
<td>42</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>国立研究開発法人情報通信研究機構（NICT）</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>国立大学法人東京大学</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>国立大学法人東京工業大学</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>学校法人千葉工業大学</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>日本電気株式会社</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>株式会社ウェザーニュース</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>株式会社エイ・イーエス</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>信越総合通信局</td>
<td>国立研究開発法人宇宙航空研究開発機構（JAXA）</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>国立大学法人東京大学</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>東海総合通信局</td>
<td>国立大学法人名古屋大学</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>三菱重工業株式会社</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>近畿総合通信局</td>
<td>国立大学法人和歌山大学</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>九州総合通信局</td>
<td>国立研究開発法人宇宙航空研究開発機構（JAXA）</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>国立大学法人九州大学</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>沖縄総合通信事務所</td>
<td>国立研究開発法人宇宙航空研究開発機構（JAXA）</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

実験試験局の免許は、その多くが国立研究開発法人に交付されている。特に宇宙航空研究開発機構（JAXA）の占める割合は大きく、交付された人工衛星局及び地球局相当免許の 70%は JAXA によるものである。情報通信研究機構（NICT）においては、人工衛星局相当免許は取得していないが、多くの地球局相当無線局免許を有しており、全
体の 20%と、JAXA に次いで多くなっている。この状況からもわかるように、これまで衛星開発は JAXA が主体であり、地球局における無線通信についても、JAXA もしくは NICT がそのほとんどである。このような状況の中でいくつかの大学や民間企業が、衛星及び地球局相当の実験試験局の免許を取得していることが注目すべき点である。教育機関の人工衛星局相当実験試験局の免許取得状況は全体の 20%であり、地球局相当実験試験局は 6%である。それ以外（主に民間企業）の人工衛星局相当実験試験局の免許取得状況は全体の 10%であり、地球局相当は 4%である。実際に交付されている人工衛星局相当実験試験局の免許のうちの 30%を大学と民間企業が占めている事実は、人工衛星の開発・利用の主体が非政府組織にも拡大してきたことを反映していると考えられる。昨今の小型衛星の需要と開発状況を踏まえ、今後は大学や民間における免許も増えていくことが予想される。
第2章. 小型衛星の利用用途

小型衛星の厳密な定義はないが、一般的に打ち上げ時の衛星質量（燃料等を含む）が500kg未満の衛星であるとされており、小型衛星の中でもさらに重量で細かい分類がある。

① 100kg～500kg ミニ衛星
② 10kg～100kg マイクロ衛星
③ 1kg～10kg 超小型衛星
④ 1kg未満 ピコ衛星

運用中の衛星の軌道分布を衛星サイズごとに集計したものを図2.0-1に示す。この結果によると、全軌道における小型及び超小型衛星の機数は532基となっており、運用中の全ての2/3以上を占めている。小型衛星及び超小型衛星は全て低軌道で運用されており、低軌道に限定した衛星数においては中型の約2.5倍、大型衛星の約10倍となっている。

また、人工衛星全体の主な利用用途は通信放送、地球観測、航行測位、技術試験である。

1.3 運用中の衛星の軌道分布

<table>
<thead>
<tr>
<th>軌道</th>
<th>大型</th>
<th>中型</th>
<th>小型</th>
<th>超小型</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEO</td>
<td>52</td>
<td>212</td>
<td>228</td>
<td>296</td>
<td>788</td>
</tr>
<tr>
<td>MEO</td>
<td>2</td>
<td>93</td>
<td>0</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>GEO</td>
<td>349</td>
<td>154</td>
<td>0</td>
<td>0</td>
<td>503</td>
</tr>
<tr>
<td>Elliptical</td>
<td>17</td>
<td>15</td>
<td>8</td>
<td>0</td>
<td>40</td>
</tr>
</tbody>
</table>

* iは軌道傾斜角でi=0は赤道面、「みちびき」（i=45度）など準天頂衛星も含む。

出典 UCS（Union of Concerned Scientists）2016年6月末現在

図2.0-1 運用中の衛星の軌道分布
北陸総合通信局 第1回 小型衛星研究会 JAXA 周波数管理室作成資料より抜粋
1.2 運用中の衛星数（推定）

<table>
<thead>
<tr>
<th>衛星種類</th>
<th>通信</th>
<th>地球観測</th>
<th>航空測位</th>
<th>宇宙科学</th>
<th>有人宇宙船</th>
<th>技術試験</th>
<th>その他</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>ロシア</td>
<td>80</td>
<td>20</td>
<td>30</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>米国</td>
<td>385</td>
<td>130</td>
<td>31</td>
<td>40</td>
<td>3</td>
<td>53</td>
<td>7</td>
<td>549</td>
</tr>
<tr>
<td>欧州</td>
<td>112</td>
<td>56</td>
<td>14</td>
<td>13</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>220</td>
</tr>
<tr>
<td>日本</td>
<td>15</td>
<td>20</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>中国</td>
<td>39</td>
<td>75</td>
<td>22</td>
<td>11</td>
<td>0</td>
<td>38</td>
<td>0</td>
<td>185</td>
</tr>
<tr>
<td>その他</td>
<td>179</td>
<td>65</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>284</td>
</tr>
<tr>
<td>世界計</td>
<td>710</td>
<td>366</td>
<td>105</td>
<td>79</td>
<td>6</td>
<td>171</td>
<td>7</td>
<td>1444</td>
</tr>
<tr>
<td></td>
<td>49%</td>
<td>25%</td>
<td>7%</td>
<td>5%</td>
<td>1%</td>
<td>12%</td>
<td>1%</td>
<td></td>
</tr>
</tbody>
</table>

出典 UCS（Union of Concerned Scientists）2016年6月末現在＋惑星探査機等

図2.0-2 運用中の衛星数

北陸総合通信局 第1回 小型衛星研究会 JAXA 周波数管理室作成資料より抜粋

第1節．小型衛星の分野別利用と内容

小型衛星が台頭する以前の衛星開発は、高い技術力と多額の資金、大型の専門的な設備が必要であったことから、ほとんどが宇宙開発を専門に行う機関によって開発が進められていた。しかしながら近年、大型衛星と比較して小規模、低予算である小型衛星が普及し、衛星開発の敷居が下がり大学や民間企業がこれまでより気軽に衛星開発に参入できるようになった。小型衛星開発の黎明期には衛星を実際に作成すること、宇宙空間で作動させることが目的であり、大学などが研究段階として開発を進めていたが、小型衛星の発展ノウハウ、経験が蓄積され、また衛星開発に必要な技術力の底上げがされるにつれて、小型衛星は様々な大学や民間企業に広く普及するようになった。また、単に衛星を製造するだけでなくどのようなデータを取得するか、そのデータを利用してどのような価値を創造するか、もしくは教育コンテンツとして衛星開発を扱うなど、その開発目的は「利用」が重視されるように変移してきている。本節では小型衛星に関する研究開発の場での小型衛星の利用用途、また衛星開発によって見込まれる地域活性、民間企業の衛星開発の事例について紹介する。

(1). 研究開発事例

① 金沢大学の衛星開発事例＜KANAZAWA SAT＞
【概要】
平成26年4月より金沢大学で開始した、超小型衛星の設計製作プロジェクト。大学院生に対して、手作り人工衛星の開発を通じて先端宇宙理工学を重点的に学べる教育環境を整備し、また超小型衛星に金沢大学独自の科学観測装置を搭載し、世界に通用する宇宙観測研究成果を創出することで宇宙理工学の教育研究拠点を形成することを目的としている。

【学術目的】
重力波天体からの流出するガスの生成機構・環境を観測的に明らかにする。広視野X線撮像検出器とガンマ線検出器によりX線突発天体を監視し、発生方向と発生時刻を地上に通報する。

【教育目的】
プロジェクトマネジメントの観点から企業が求める人材の輩出及び、理論の検討・ものづくりの経験を通じた理工一帯の総合科学技術の習得によって、人工衛星の利用が日常である社会へ貢献できる先端的職業人の育成を目指す。

【地域との連携】
地元の業者とミッション機器の電子回路や金属加工などで連携し、今まで宇宙機器の開発経験がない会社と共に開発をすすめることで、産業側自身でノウハウを身に着けており、間接的に地域産業の技術発展に関わっている。

② 東京大学の衛星開発事例
【東京大学が小型衛星開発をする主たる目的】
東京大学が開発する小型衛星は宇宙研究、宇宙探査、宇宙システムの研究、特に姿勢制御、カメラ、データの蓄積転送の研究が主な目的である。以下に東京大学の小型衛星開発実績及び打ち上げ予定の衛星プロジェクトを列挙する。

【東大の関わる小型衛星の実績】
・XIシリーズ
・PRISM, PRISM2
・HODYOSHIシリーズ
・PROCYON
・TRICOMM-1R

【東大の関わる打ち上げ予定の小型衛星】
・NANO-JASMINE
・EQUULEUS
・Micro-Dragon
【民間ベンチャー企業との連携】
東京大学ではいくつかの民間ベンチャー企業との協業の実績がある。

③ 金沢工業大学の衛星開発に向けた取り組み「夢考房人工衛星開発プロジェクト」
【概要】
金沢工業大学では「夢考房プロジェクト」という、グループ活動を前提として、学生メンバーが立案・調査・設計・製作・分析・評価という一連のモノづくりのプロセスを体験すると共にスケジュール管理、予算管理、組織運営を自主的に行う学生の創作を促進するための活動を実施している。このプロジェクトの一つに人工衛星開発分野があり、最終目的として人工衛星の開発、打ち上げ、運用を掲げている。現在は、活動の初期段階として人工衛星開発の基礎技術の習得と蓄積を目標にカンサットの開発とコンペへの参加をしている。

【カンサットの活動について】
2012年から開始した人工衛星開発プロジェクトは5年目を迎え、人工衛星開発に向けた技術を習得しつつある。初期は種子島ロケットコンテストペイロード部門に参加し、最近では能代宇宙イベントと衛星設計コンテストに参加している。探査機を意識したペイロードを作成しており、自律ロボットの走行技術を開発してきた。また、通信系も搭載しており、ログを送信し記録している。ZigBeeを使っており、通信距離は100m程度である。

【今後の衛星開発の見通し】
衛星開発、利用の見通しはまだ先である。また、大学では本年度から衛星に関わる研究を開始しているが、金沢大だけでは開発するのではなく、予算を取りつつ協同研究で進めるのが現実的であると考えている。他の大学と情報交換し、協同研究の体制を検討したいと考えている。

【地域との連携】
既にカンサットの活動に地域産業から投資を受けている。
表 2.1-1: H-ⅡA ロケット FY15 主衛星「いぶき (GOSAT) 」との相乗り衛星

<table>
<thead>
<tr>
<th>衛星名</th>
<th>開発（提案）機関</th>
<th>ミッション</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOHLA-1</td>
<td>東大阪宇宙開発協同組合</td>
<td>・地域産業活性化
・雷観測</td>
</tr>
<tr>
<td>SPRITE-SAT</td>
<td>東北大学</td>
<td>・スプライト現象
・地球起源ガンマ線観測</td>
</tr>
<tr>
<td>SORUNSAT-1</td>
<td>ソラン株式会社</td>
<td>障害を持った子供たちの夢を宇宙につなげる活動
①自立型オンボード管制システム
②インフレータブル方式進展ブーム
③大学ミッション（デブリ検出、オーロラ電流残留磁気低減化）</td>
</tr>
<tr>
<td>PRISM</td>
<td>東京大学</td>
<td>伸展式屈折望遠鏡による地球画像取得実験</td>
</tr>
<tr>
<td>STARS</td>
<td>香川大学</td>
<td>テザー宇宙ロボット技術実証実験</td>
</tr>
<tr>
<td>KKS-1</td>
<td>都立産業技術高等専門学校</td>
<td>マイクロスラスタ及び3 軸姿勢制御機能の実証</td>
</tr>
</tbody>
</table>

表 2.1-2: H-ⅡA ロケット FY17 主衛星「あかつき (PLANET-C) 」との相乗り衛星

<table>
<thead>
<tr>
<th>衛星名</th>
<th>開発（提案）機関</th>
<th>ミッション</th>
</tr>
</thead>
<tbody>
<tr>
<td>WASEDA-SAT2</td>
<td>早稲田大学</td>
<td>・展開パドルの空気抵抗による姿勢制御の可能性の検証
・QR コードによる通信の基礎的な確認試験
・学生主体による衛星開発（人材育成）</td>
</tr>
<tr>
<td>大気水蒸気観測衛星</td>
<td>鹿児島大学</td>
<td>小型化・軽量化への技術的挑戦
・カード型のブーム伸展機構
・携帯用磁気センサ
・ジュラルミン製太陽電池パドル</td>
</tr>
<tr>
<td>Negai☆</td>
<td>創価大学</td>
<td>学生手作り人工衛星であり FPGA を用いた情報処理システムを搭載
・地球画像の高効率取得
・地球撮影判定機能</td>
</tr>
<tr>
<td>UNITEC-1</td>
<td>大学宇宙工学コンソーシアム</td>
<td>・深宇宙環境下における各大学が開発した宇宙用コンピュータのコンペ
・深宇宙から送信する超微弱電波の受信、解読技術の開発及び実験コンペ</td>
</tr>
</tbody>
</table>
表 2.1-3: H-ⅡA ロケット FY21 主衛星「しずく (GCOM-W)」との相乗り衛星

<table>
<thead>
<tr>
<th>衛星名</th>
<th>開発（提案）機関</th>
<th>ミッション</th>
</tr>
</thead>
<tbody>
<tr>
<td>鳳龍 2号</td>
<td>九州工業大学</td>
<td>・低軌道上での 300V 発電</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・放電による太陽電池電気性能出力低下現象の確認</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・帯電抑制電子エミッタフィルム（ELF 素子）の軌道上実証</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・地上民生用技術を転用した衛星表面電位系の軌道上実証</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・ループセンサによるループ観測</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・SCAMP（Surrey Camera Payload）の軌道上実証</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・カメラ撮影画像を利用した地域貢献と衛星データ利用人材育成プログラムへの教材提供</td>
</tr>
</tbody>
</table>

表 2.1-4: H-ⅡA ロケット FY23 主衛星「全球降水観測（GPM）」との相乗り衛星

<table>
<thead>
<tr>
<th>衛星名</th>
<th>開発（提案）機関</th>
<th>ミッション</th>
</tr>
</thead>
<tbody>
<tr>
<td>STARS-Ⅱ</td>
<td>香川大学</td>
<td>・重力傾斜を利用したテザー伸展</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・EDT による電流収集（ベアテザー）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・重力傾斜によるテザー張力を利用した TSR制御</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・張力制御によるテザー伸展回収</td>
</tr>
<tr>
<td>ShindaiSat</td>
<td>信州大学</td>
<td>・衛星地上間の双方向可視光通信実験</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・アマチュア無線サービス</td>
</tr>
<tr>
<td>TeikyoSat-3</td>
<td>帝京大学</td>
<td>・微小重力環境と宇宙放射線が粘菌に与える影響を小型副衛星で観察</td>
</tr>
<tr>
<td>KSAT2</td>
<td>鹿児島大学</td>
<td>・大気水蒸気の独創的観測</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・宇宙からの動画撮影と配信</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・低高度軌道での衛星測位システム基礎実験</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・電波干渉計による衛星軌道決定実験</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・超低高度軌道での衛星運用実験</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・パンタグラフ式伸展ブームの宇宙実証</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・宇宙からの日本応援メッセージ送信</td>
</tr>
<tr>
<td>OPUSAT</td>
<td>大阪府立大学</td>
<td>・リチウムイオンキャパシタの耐宇宙環境性能の実証実験</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・MPPT 制御を用いた高効率蓄電技術の実現</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・磁気トルクを用いた太陽指向制御，太陽電池パドル展開による大電力獲得技術の実現</td>
</tr>
<tr>
<td></td>
<td>多摩美術大学</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>衛星データ（テレメトリ）の芸術利用</td>
</tr>
<tr>
<td></td>
<td></td>
<td>衛星データ活用のためのプラットフォーム実装</td>
</tr>
<tr>
<td></td>
<td></td>
<td>衛星をメディアとしたインタラクティブ作品の制作</td>
</tr>
<tr>
<td></td>
<td></td>
<td>芸術作品を通じたアウトリーチの展開</td>
</tr>
<tr>
<td>ITF-1</td>
<td>筑波大学</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>小型衛星を利用したネットワークの構築</td>
</tr>
<tr>
<td></td>
<td></td>
<td>新型マイコンの宇宙空間での動作実証</td>
</tr>
<tr>
<td></td>
<td></td>
<td>超小型アンテナの動作実証</td>
</tr>
</tbody>
</table>

表2.1-5: H-ⅡAロケット FY24 主衛星「だいち 2号（ALOS-2）」との相乗り衛星

<table>
<thead>
<tr>
<th>衛星名</th>
<th>開発（提案）機関</th>
<th>ミッション</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPROUT</td>
<td>日本大学</td>
<td>・複合膜面構造物展開の宇宙実証と設計手法の検証</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・数 kg級衛星用姿勢決定・制御技術の実証</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・複合膜面構造物による軌道降下率変化の予測</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・アマチュア無線家による衛星運用</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・地域交流活動</td>
</tr>
<tr>
<td>UNIFORM-1</td>
<td>和歌山大学</td>
<td>・Wildfire 監視を目的とした熱異常検知</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・アジア等の宇宙新興国との協力によるキャパシティビルディング</td>
</tr>
<tr>
<td>RISING-2</td>
<td>東北大学</td>
<td>・高解像度地球撮影（約 5m 分解能目標）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・高精度三軸姿勢制御（約 0.1 度指向誤差目標）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・積乱雲の高解像度ステレオ撮像</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・高高度放電発光撮影</td>
</tr>
<tr>
<td>SOCRATES</td>
<td>(株)エイ・イー・エス</td>
<td>・小型衛星標準バスの実証</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・先進的ミッション／要素技術の軌道上実証環境の提供</td>
</tr>
</tbody>
</table>

表2.1-6: H-ⅡA ロケット FY26 主衛星「はやぶさ 2（HAYABUSA2）」との相乗りペイロード衛星

<table>
<thead>
<tr>
<th>ペイロード名</th>
<th>開発（提案）機関</th>
<th>ミッション</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCYON</td>
<td>東京大学</td>
<td>・50kg級超小型深宇宙探査機バス技術の実証</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・高効率X帯パワーアンプによる通信、超近接フライバイ撮像技術等の深宇宙探査技術の実証</td>
</tr>
</tbody>
</table>

19
しんえん2 九州工業大学

- 熱可塑性 CFRP による宇宙機の製作と宇宙技術実証
- 遠距離における地球-宇宙間の相互通信

ARTSAT2-DESPATCH 多摩美術大学

- ソーシャルネットワークを用いたテレメトリ共同受信（協調ダイバシティ通信実験）
- 宇宙生成詩の創作（各種センサーデータから搭載プログラムが生成したテレメトリの送信）
- 深宇宙彫刻の実現（3Dプリント造形物の宇宙機搭載実証）

表 2.1-7：H-ⅡA ロケット FY30 主衛星「ひとみ（ASTRO-H）」との相乗り衛星

<table>
<thead>
<tr>
<th>衛星名</th>
<th>開発（提案）機関</th>
<th>ミッション</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChubuSat-2</td>
<td>名古屋大学</td>
<td>放射線観測</td>
</tr>
<tr>
<td></td>
<td></td>
<td>アマチュア無線の中継</td>
</tr>
<tr>
<td>ChubuSat-3</td>
<td>三菱重工業</td>
<td>温室効果ガスの影響把握</td>
</tr>
<tr>
<td></td>
<td></td>
<td>デブリ環境観測</td>
</tr>
<tr>
<td>凤龍四号</td>
<td>九州工業大学</td>
<td>放電実験</td>
</tr>
<tr>
<td></td>
<td></td>
<td>プラズマ密度計測</td>
</tr>
<tr>
<td></td>
<td></td>
<td>真空アークスラスタ実証 など</td>
</tr>
</tbody>
</table>

(2). 地域活性

様々な場面において地域創生の重要性が語られる昨今、小型衛星の開発・利用は教育、学術の場のみならず、地域社会における産業の振興を目指した地方発のプロジェクトの題材として扱われ始めている。以下に、北陸地域における小型衛星開発による地域活性を目指すプロジェクト事例を紹介する。

① 県民衛星プロジェクト（福井県）

【概要】

地方では、今後人口減少や住民の高齢化等といった潜在的な問題を抱えており、それによって県内の消費や労働集約的な従来型産業の規模は縮小することが懸念されている。県民の豊かな生活の維持、県内企業の活力向上のためには、技術革新や未来志向のビジネスモデルの創出によって“稼ぐ力”を高める必要がある。そのため、福井県では地方発のイノベーションを目指し、超小型衛星の開発を通して県内製造系企業が人工衛星製造ノウハウの蓄積、部材開発等を通じ、今後増大すると予想される人工衛星関連需要を受注すること、また、システム系企業が衛星から得られるデータを活用したソフト開発等を通じ、福井県をモデルユーザーとするビジネスモデルを創出する機会を提供すべく県民衛
星プロジェクトを発足した。

【衛星データ利活用の検討候補】
a). データ一次利用

<table>
<thead>
<tr>
<th>利用対象</th>
<th>目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>山</td>
<td>砂防指定地の管理</td>
</tr>
<tr>
<td></td>
<td>堰堤の土砂堆積状況、土砂崩れ等発生状況の把握</td>
</tr>
<tr>
<td></td>
<td>森林の管理</td>
</tr>
<tr>
<td></td>
<td>保安林内等での開発行為、不法投棄等を監視</td>
</tr>
<tr>
<td></td>
<td>林野火災等山林被害の把握</td>
</tr>
<tr>
<td>河・海</td>
<td>河川の管理</td>
</tr>
<tr>
<td></td>
<td>違法係留船等の監視</td>
</tr>
<tr>
<td></td>
<td>海岸の管理</td>
</tr>
<tr>
<td></td>
<td>汀線等の侵食状況の確認</td>
</tr>
<tr>
<td></td>
<td>海域の監視</td>
</tr>
<tr>
<td></td>
<td>漂流物、藻場、赤潮の監視</td>
</tr>
<tr>
<td>まち</td>
<td>土地や建物の状況確認</td>
</tr>
<tr>
<td></td>
<td>建築確認が必要な建築物の状況確認</td>
</tr>
<tr>
<td></td>
<td>公共工事の進捗状況の見える化</td>
</tr>
</tbody>
</table>

b). データ二次利用例

IoT・AIの活用等による地上データとの連携を通じたサービスの提供

＜農業＞
衛星データによってタンパク質含有量をマクロに観測し、またドローン等によってタンパク質含有量をミクロに観測する。これらのデータを蓄積することで適期の施肥などを予測する。

＜鳥獣害対策＞
衛星データによって植生等を観測し、また地上システムによって下草等を観測する。これらのデータを蓄積することで、野生生物の移動経路を予測、また防除を自動化する機器の開発を行う。

【人工衛星製造拠点化の取り組み】
福井県ではものづくり企業の強みを生かして、同県が日本における超小型衛星の生産拠点になることをめざし、振動試験や熱真空試験などの環境試験設備の整備を進めている。この施設は、県外の事業者の利用も受け入れる見込みで
ある。

図 2.1-1 福井県における小型衛星環境試験設備

② 文部省・私立大学研究ブランディング事業「ふくい PHOENIX プロジェクト」（福井工業大学）

【概要】
私立大学研究ブランディング事業とは、文部科学省の取り組みのひとつであり、学長のリーダーシップの下、優先課題として全学的な独自色を大きく打ち出す研究に取り組む私立大学に対し、施設費・装置費・設備費と経常費を一体的に支援するものである。本事業は社会展開型のタイプ A と世界展開型のタイプ B で選考が分かれているが、福井工業大学の「ふくい PHOENIX プロジェクト」は地域の経済・社会、雇用、文化の発展や特定の分野の発展・深化に寄与する研究が扱われるタイプ A の事業として採択された。
本事業では、NASA 地球観測衛星群及び福井工業大学が開発する人工衛星が取得したデータを福井工業大学が保有する地球局などで受信し、さらに他の大型衛星取得データや地上測定データと併せて地域環境データベースを作成し情報発信することで、地域発の新たなソリューションの提示をすることを計画している。事業の成果目標には 3 つのテーマを掲げており、一つ目に宇宙研究軸として衛星利用研究の推進、二つ目に観光文化研究軸として宇宙を題材にした地域イメージアップ、三つ目に地域振興研究軸として宇宙関連産業の育成を目指している。

【ミッション】
・ 夜間における人工光分布の高解像度観測
活用例：人工光分布・時間変化観測、海洋監視（違法操業、不審船の監視）、防災（被災状況の早期把握）
・ スペクトルデータに基づく植生の生育診断
活用例：スペクトル測定による水稲・麦の生育診断、現場測定データ・ドローンによる測定データとの比較、鹿による森林・圃場被害データとの比較
・ 3U 衛星の姿勢制御
目的：特定地域をポインティング観測する実験

【地域ブランドニング】
本事業では、人工衛星で取得したデータを利用し、既往の地域資源に新しい価値を付加した新たなソリューションを創出することで、最終的には地域の収入増、移住による人口増を実現すべく検討を進めており、そのソリューションの一例として福井の美しい星空の維持・復活プロジェクトを検討している。福井の豊かな自然環境の象徴である美しい星空は、生活の一部であると同時に重要な観光資源でもある。そこで人工衛星から取得する地上の人工光の分布や地上測定による夜空の暗度のデータを組み合わせることで福井の星空の価値を見える化し、福井の観光資源として確立することで新たな観光産業の振興や地域の連携を促すことに挑戦している。

(3). 企業の技術向上
昨今では、民間企業による小型衛星の開発によって企業が独自に技術力や経験を蓄積させている。以下に衛星開発・利用に携わる民間企業の開発事例を紹介する。

① キヤノン電子株式会社（CE-SAT-1）
独自開発の衛星の販売、または開発した衛星で撮影した画像の販売をめざして、キヤノン電子は小型衛星 CE-SAT-1を開発した。日本の民間企業において独自で事業化を目指す衛星としては史上初の小型衛星である。CE-SAT-1は2017年6月に打ち上げられ、軌道投入に成功した。同社における衛星利用計画の第一段階の目標は CE-SAT-1の打ち上げと実証によって技術力の底上げ、士気向上、優秀な人材の獲得、内製ミッション機器・OBC等の軌道上実証、観測データ提供することであった。今後第二段階としては内製コンポーネント・衛星バスの軌道上実証及び高解像・高頻度地表観測、データ提供を行っていく。また、同社は小型ロケットの開発にも制御系機器のメーカーとして参画しており、今後も衛星開発やデータ販売だけでなくロケットの機器開発など様々な分野における宇宙産業への進出を計画している。

② 株式会社アクセルスペース
株式会社アクセルスペースは、重さ100kg以下の超小型人工衛星の設計開発
及びそのデータ提供を中心事業とし、東京大学発のベンチャー企業として 2008年に創業を開始した。創業以来、世界初の民間商用超小型衛星（WNISAT-1）やWNISAT-1R、ほどよし1号機の開発を通じて独自の衛星開発技術を発展させてきた。同社は自社発の衛星開発だけを生業としているのではなく、衛星設計、製造を他企業や他機関から請負うことも事業の一つとしている。現在もいくつかの衛星の製造に取り組んでいる。
第3章 周波数の国際調整と事前公表資料（API）
無線設備を設置し、それを操作する者が電波を発射するためには、無線局の免許申請手続きを行い、総務大臣の免許を受けられる必要がある。また衛星通信網を使用する無線局免許の取得の際には、国内外における周波数調整が実施されていないなければならない。本章では、国内外における周波数調整及び周波数調整に向けて国際電気通信連合（ITU-R）への提出が必須である事前公表資料（API）について概要を説明するとともに、周波数調整の事例やAPIの作成概要等を紹介する。

第1節 国際周波数調整の概要
（1）国際周波数調整とは
国際周波数調整とは、新たにITUに申請する無線通信網による周波数の使用・運用が、他国の衛星および地上の無線通信網と有害な干渉の受与がないように、各国の主管庁の間で行われる技術調整である。ITUに申請し認められた周波数の利用権益は各主管庁に帰属するため、基本的には国際周波数調整は主管庁を通じて行われる。また、衛星網の国際調整に加えて、地球局調整が必要となる場合がある。

（2）電波干渉の発生例
無線通信をする際に、他の通信の電波が到達し得る範囲で周波数が重複すると干渉が発生することがある。人工衛星と地球局が通信する際に発生しうる他の衛星通信網および地上通信網への干渉例を図3.1-1および図3.1-2に図示する。

図3.1-1 衛星通信網への与干渉
北陸総合通信局 第1回 小型衛星研究会 総務省 国際周波数政策室作成資料より抜粋
図3.1-2 地上通信網への与干渉
北陸総合通信局 第1回 小型衛星研究会 総務省 国際周波数政策室作成資料より抜粋

（3）ITUおよび無線通信規則（RR）
① ITUの概要
ITUは国際連合の専門機関の一つであり、International Telecommunication Unionの略称である。本部をジュネーブに構え、1865年に設立された。

② 無線通信規則（RR）
ITUの無線通信規則は、衛星の国際周波数調整に関し、周波数毎の使い方や手続きなどを規定した無線通信規則（RR）に基づき以下を実施している。
- 構成国からの衛星通信網の申請などの処理・申請・公表
- 構成国間の連絡支援
- 国際周波数登録原簿（MIFR）の管理など
第2節. 国際周波数調整の流れ

(1) 国際周波数登録原簿（MIFR）への登録までの流れ

使用を計画する周波数割当てが、他の主管庁の無線通信業務に有害な干渉を与えるおそれがある場合、国際通信に使用される場合、調整手続きを行う必要がある場合、国際的な認知を得たい場合など、いずれかに該当する際には RR に基づき ITU へ当該周波数割当てを通告し、MIFR に登録する必要がある。総務省は MIFR への登録を計画する衛星通信網について、運用開始の 2～7 年前に ITU に事前公表資料 (API) を提出することが望ましいとされている。受領した API の内部処理後 ITU から 2 週間に一度週刊回章（IFIC）が公表され、この公表情報を基に各主管庁は 4 ヶ月以内に API の発行元の主管庁に対して意見の申し立てを行う。また、意見の申し立てがなかった場合にはその衛星通信網に対して異議なしとみなされる可能性がある。各主管庁との国際調整は API の提出から概ね 7 ヶ月以後に開始され、各国からの意見の申し立ては書簡として受け取る。各国からの意見申し立ては様々であり適宜対処を検討しながら、原則として周波数割当てに同意がとれるまで調整努力をする。調整が完了した後は ITU に通告を出し ITU で RR の周波数の分配表への適合や調整手続きへの適合が審査された後、問題ない場合に、MIFR への登録が行われる。この通告は周波数の使用開始の 3 年前から可能となる。その後特に問題なければ衛星の打ち上げ後周波数の使用開始通知を ITU 事務局に通達し MIFR への登録が完了する。周波数の使用開始は、API の ITU 受領後 7 年以内に行われなければ、当該 API に含まれる周波数の使用権利を失うこととなる。衛星の運用開始は、静止衛星の場合、公称の軌道位置で連続 90 日間運用を行った場合に認められ、90 日間の運用後 30 日以内に ITU に周波数の使用開始通知がなされなければならない。非静止衛星の場合、上述の API 受領後 7 年以内の使用開始が求められる以外に、RR 上特段の定めはないが、衛星の打ち上げ後速やかに使用開始通知がなされることが望ましい。衛星通信網における周波数情報の MIFR への登録まで流れを図 3.2-1 に示す。特に赤四角で示
される手続きが国際周波数調整と呼ばれている。国際周波数調整の流れについては次項で説明する。

図 3.2-1 衛星通信網における周波数情報の MIFR への登録までの流れ

北陸総合通信局 第1回 小型衛星研究会 総務省 国際周波数政策室作成資料より抜粋
(2) 国際周波数調整の流れ
小型衛星における国際周波数調整の主な流れは以下の手続きで行われる。

i 各主管庁（わが国では総務省）から ITU へ事前公表資料（詳細は後述）を提出する。

ii ITU が審査、内部処理をした後、周波数週刊回章（IFIC¹）にて世界中に資料を公開する。

iii 各主管庁は公開された情報を基に、定められた期限内に必要があればコメントを当該資料の責任主管庁に送付し、その写しを ITU へも送付する。

iv 受領したコメントは、総務省から各衛星事業者へ展開する。

v 衛星事業者は受領書簡に対して必要に応じて返答書簡等で対応する。

他国との調整は複雑でなければ書簡で行われ、お互いの主管庁が必要と認める場合には二国間調整会議が開催される。あるいは直接事業者同士が調整を実施し、後に主管庁の合意を得る事業者間調整会議が行われる場合もある。小型衛星の場合は、書簡による調整で済まされることがほとんどである。

上述の流れは、衛星通信事業者が API を提出し外国衛星通信網への与干涉に合意を求める調整をする手続きであるが、被干涉の検討の際には、被干涉衛星側が IFIC にて公表される外国衛星通信網の諸元情報を基に影響を検討して、外国主管庁に対してコメントを送付し、自分の衛星通信網の保護を求めることが可能である。

(3) 国際周波数調整の手続きの位置づけ
国際周波数調整の調整状況は無線局免許申請時に審査される。ITU 調整と免許申請の流れを図3.2-2に示す。

¹ IFIC: 周波数週刊回章（International Frequency Information Circular の略）である。ITU より 2 週間に 1 度、MIFR への周波数登録に関する各種周波数調整資料を公表している。事前公表資料や通告資料もこれによって公表される。
第3節．国際周波数調整の例

国際周波数調整は、各衛星ミッションの様相、衛星通信網の特性、あるいは調整の戦略や方針によって千差万別であるため、一概に国際調整の対応方法をまとめることは難しい。そのため本節では、今後の国際調整の参考として小型衛星事業者が実際に受領した書簡例とその対応例、JAXA の国際調整の実例を紹介する。ただし、周波数に関する情報やそれに伴う調整の詳細は、事業者独自の技術情報や各種のノウハウによることが非常に大きい。

(1) 小型衛星事業者の周波数調整例
 (1) 事例その 1
 【状況】
 事前公表資料（API）の公表後、A 国の a 衛星に対して有害な干渉の可能性があり調整が必要であるとの書簡を受領した。

 【対応】
 ① 周波数重複の有無を確認した。
 ② a 衛星のサービスエリアおよび互いの衛星の可視性を確認した。
 ③ 周波数干渉解析を実施した。
干渉解析において ITU 勧告等による有害な干渉を判断する閾値を参照し、有害な干渉の可能性が低いことを示すことでもできる。

使用する ITU 勧告の例：ITU-R 勧告 SA.609
10/N0、I/N において
地球局への干渉電力密度≧-216dBW/Hz となる時間率 0.1%以下
宇宙局への干渉電力密度≧-177dBW/kHz となる時間率 0.1%以下

④ ①～③の確認および検討結果を基とし、総務省に a 衛星に対して有害な干渉は与えない根拠を示した相手主管庁への返答書簡案を送付した。

(2) 事例その 2
【状況】
API の公表後、B 国の衛星に対して有害な干渉の可能性があり調整が必要であるとの書簡を受領した。（相手国衛星通信網の特定なし）

【対応】（以下実際の対応ではなく、こうしたケースの場合取りうる対応を示す。）
＜時間がある場合＞
相手国衛星通信網の特定を相手側主管庁に要請する返答書簡案を総務省に提出する。
＜時間がない場合＞
調整対象衛星を特定せずに【事例その 1】と同じ対処をする。

(3) 事例その 3
【状況】
API の公表後、C 国の地上局に対して干渉の可能性があり調整が必要であるとの書簡を受領した。

【対応】
① 相手側地上局と自分の衛星の可視性を確認した。
② ITU 無線通信規則 21 条 PFD 制限値を満足していることを確認した。
③ ①、②の確認結果を踏まえて、C 国の地上局に対して有害な干渉は与えない根拠を示した総務省に相手主管庁への返答書簡案を提出した。

(4) 相手国の反応の例とその後の対応
① 合意または調整完了の内容の書簡を受領した場合には調整が完了となる。
② 更なる懸念や情報提供要求を伝える書簡を受領した場合には調整継続となり、再度書簡を送付することになる。
(2) JAXA の国際調整の例および周波数選定の経験

(1) JAXA の周波数調整の例

以下に JAXA の衛星通信網で実際に行われた国際調整の概要を「しきさい」（GCOM-C）を例に挙げて紹介する。

- GCOM-C は国際調整資料上の衛星通信網名称を「GCOM-C1」として公表されている。周波数帯は、アップリンクにおけるコマンド、レンジングとして S 帯、ダウンリンクにおけるテレメトリ、レンジングとして S 帯、ミッションデータのダウンリンクとして X 帯を使用している。国内だけでなく海外の地球局をもって通信を送受信している。図 3.3-1 に GCOM-C の国際調整資料の概要を図示する。また、参考として GCOM-C 衛星の概要を図 3.3-2 に示す。

2. 周波数の国際調整の事例（「しきさい」（GCOM-C））

(2)「しきさい」（GCOM-C）の国際調整資料の概要

国際調整資料（ファイリング）上の衛星名称：GCOM-C1

使用周波数（帯域幅）
アップリンク：2.0GHz 帯 （コマンド、レンジング）
ダウンリンク：2.2GHz 帯
8GHz 帯 （テレメトリ、レンジング）
（ミッションデータ）

図 3.3-1 「しきさい」（GCOM-C）の国際調整資料の概要
北陸総合通信局 第 3 回 小型衛星研究会 JAXA 周波数管理室作成資料より抜粋
2. 周波数の国際調整の事例（「しきさい」（GCOM-C））

（1）気象変動観測衛星「しきさい」（GCOM-C）の概要

目的：「しきさい」は、地球の温暖化など気象変動の監視や気象変動メカニズムを解明するため、大気、海洋、陸、雪氷といった地球環境をグローバルかつ継続的に観測することを目的としている。「しきさい」は、多波長光学放射計（SGLI）を搭載し、雲、エアロゾル（大気の中のちり）、海色、植生、雪氷などを観測する。

予定軌道：太陽同期准同軸軌道
- 軌道高度：約 788km
- 軌道傾斜角：約 98.6度
- 降交点通過地方太陽時：10時30分±15分
- 周期：約 101分

設計寿命：5年以上
打上げ時重量：約2トン
寸法：2翼式太陽電池パドルを有する箱型
- 収納時：高さ 約 4.6m × 幅 約 3.1m × 奥行 約 2.5m
- 太陽電池パドル展開時：約 16.5m

電力：約 4.0 kW（軌道上5年後の発生電力）
ミッション機器：多波長光学放射計（SGLI）
- 可視・近赤外放射計部（VNR）
 - 可視放射観測（VIS-I1ch）、分解能250m、走査幅1150km
 - 近赤外放射観測（VIS-I2ch）
- 可視・近赤外放射計部（IIRS）
 - 可視放射観測（VIS-I4ch）、分解能250m/1km、走査幅1400km
- 遠赤外放射観測（TIR-I1ch）、分解能350m、走査幅1400km

図 3.3-2 「しきさい」（GCOM-C）の衛星概要
北陸総合通信局 第3回 小型衛星研究会 JAXA 周波数管理室作成資料より抜粋

- GCOM-C が国際調整に要した年月は、JAXA 内において国際調整の実施を決定してから通告資料の提出まで7年かかっている。国際調整は、衛星の打ち上げよりもずっと前から対応しなければならない。図 3.3-3 に国際調整に関連した動きを時系列で示す。
2. 周波数の国際調整の事例（「しきさい」（GCOM-C））

(3) 国際調整に要した年月

<table>
<thead>
<tr>
<th>年度</th>
<th>事前手続き</th>
<th>国際調整手続き</th>
<th>国内免許手続き等</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008年</td>
<td>プロジェクト設定</td>
<td>(過去のJAXA衛星の使用実績を基に周波数選定)</td>
<td></td>
</tr>
<tr>
<td>2010年3月</td>
<td>JAXA内において国際調整の実施決定</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012年4月</td>
<td>事前公開資料を総務省に提出</td>
<td>総務省からITU BRへ送付</td>
<td>同年9月 IFIC掲載</td>
</tr>
<tr>
<td>同年6月</td>
<td>ITU BR受付</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017年3月</td>
<td>通知資料を総務省に提出</td>
<td>総務省からITU BRへ送付</td>
<td>同年6月 IFIC掲載</td>
</tr>
<tr>
<td>同年4月</td>
<td>ITU BR受付</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(打上げ後)</td>
<td>使用開始通知を総務省経由でITU BRへ提出予定</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014年</td>
<td>総務省へ無線周波免許の相談開始</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016年</td>
<td>総務省へ相談 (打上げ1年延期)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017年5月</td>
<td>無線局免許申請書を提出</td>
<td>無線局免許申請書を提出</td>
<td>同年12月 (打上げ)総務省免許 (打上げ)総務省免許 (打上げ)総務省免許</td>
</tr>
<tr>
<td>同年9月</td>
<td>予備免許付き</td>
<td>承認検査 (総務省検査以外)</td>
<td>2017年9月 (打上げ)総務省検査 (打上げ)総務省検査 (打上げ)総務省検査</td>
</tr>
</tbody>
</table>

図 3.3-3 「しきさい」（GCOM-C）の国際調整に関連する対応の時系列表

北陸総合通信局 第3回 小型衛星研究会 JAXA 周波数管理室作成資料より抜粋

- APIに対して20カ国程度から書簡などで海外事業者からのクレームを受領したため、JAXAで内容を検討し、検討結果を基に相手国衛星通信網などへの影響がない旨などを記載した返答書簡を総務省から相手国に発出した。

- すべての書簡に対して回答を送付したため、現在はJAXAに要対応事項がない状況である。

(2) 国際調整の経験から得た知見（JAXAでの例）

- 周回衛星における国際調整は書簡でのやりとりが基本であるが、二国間調整会議などの対面での調整を実施することがある。ロシアからは、書簡への返答が来ないため対面での調整となる。

- 他国からの全ての書簡に対して回答を送付する。

- 個別の調整方針、対処方法は各衛星網、相手国で異なる。調整の仕方の例として、使用周波数といった詳細諸元の限定や運用時間での調整などがある。

- 衛星の諸元（周波数、帯域幅、変調方式など）の決定に時間を要してしまう、APIの提出が遅くなってしまうと、国際調整、国内免許取得のスケジュールが切迫する。
API や調整資料の作成には ITU の指定ツールを使用するが、使い方を習熟していないと作成に時間を要する。

国際調整資料での諸元と、国内無線局免許の諸元が異なる場合があるが、国内無線局免許の申請諸元値は国際調整の範囲に収めなくてはならない。国内無線局免許申請や技術的理由から、諸元が再検討となる可能性を考えたうえで国際調整を行う必要がある。

JAXA の周回衛星については、被干渉によるミッションへの影響が少なくなったりするためにこれまで被干渉を許容しており、与干渉についての調整だけで済ませていた。しかしながら、衛星数の増加といった周波数の利用環境が変化したこともあり、被干渉での影響を考慮する必要性が高まってきた。そのため、干渉検討などの調整に要する手間が増えると見込んでる。

その他、国内衛星事業者や地上系の無線局と周波数共用などの調整を行う場合がある。

第4節．小型衛星に利用されている周波数帯

ITU が発行し、加盟国が遵守すべき国際規約である無線通信規則 (RR) および国内の電波法において、衛星の筐体の大きさによる周波数割当ての分類は 2018 年 3 月現在では存在しない。RR および電波法での周波数割当ての判断基準となるのは、各周波数帯における通信の業務の種別、どの地域または国をサービスするか、もしくはどのような衛星軌道であるのかという点である。しかしながら、小型衛星は搭載できる機器の大きさが限られており、また確保できる予算の関係、技術的ハードルから、ある特定の周波数帯の割当てを多く採用する傾向にある。本節では電波法で定める利用可能な周波数割当てを示すとともに、小型衛星に使用実績がある周波数を紹介する。

(1) 我が国の周波数割当て

無線通信における周波数割当ては、業務毎に電波法の周波数割当計画に規定されている。例外を除き、原則として選定する周波数割当ては、この周波数割当計画に準拠している必要がある。周波数割当て計画は、総務省本省および各総合通信局で閲覧できるほか、総務省の電波利用ホームページから入手が可能である。周波数割当計画は改訂が入ることもあるため、常に最新版を参照しなければならない点に注意が必要である。以下に周波数割当計画を取得できる URL を掲載する。

周波数割当計画

http://www.tele.soumu.go.jp/search/share/index.htm
(2) 小型衛星が多く利用する周波数帯

小型衛星のコンポーネントは搭載できる機器の制限があるため小型軽量な通信機器が採用されやすい。開発予算と技術的ハードルの高さ、宇宙空間での通信実績の有無から比較的低い周波数帯を使用する通信機器が採用される。日本の小型衛星は、主に地球観測衛星業務、宇宙探査業務での通信の利用が多いことから、これらを踏まえて日本の小型衛星が多く利用する周波数帯を以下に示す。

- **UHF帯**
 ① 401-402 MHz
 分配されている衛星業務：宇宙運用業務（ダウンリンク）、地球探査業務（アップリンク）、気象衛星業務（アップリンク）
 ◆UHF帯は、比較的軽量安価な通信機器であるため小型衛星で多く採用される。また、UHF帯は電波の指向性が弱く姿勢制御がS帯などと比べて不要であるため、ペイロードを稼ぐことができることも利点の一つである。ただし、その一方で指向性が弱いため干渉を回避しにくい欠点もある。

【特記事項】

ITUにおける2019年世界無線通信会議（WRC-19）に向けて、日本の小型の地球探査衛星でTT&Cのアップリンクとしてしばしば利用される401-403 MHzの周波数帯において、Data Collection System（DCS）の持続的な保護のため、この帯域の通信については送信電力制限に関する検討が進められている。

② 467.65-468.54375 MHz J872（JXXは総務省の周波数割当計画における脚注である）
分配されている衛星業務：気象衛星業務（ダウンリンク）J86
◆①と概ね同様だが、分配衛星業務は気象衛星（ダウンリンク）しかないことに留意が必要である。

2 J87: 460-470 MHz および1690-1710 MHzの周波数帯は無線通信規則に定める周波数分配表に従って運用する局に有害な混信を生じさせないことを条件として、気象衛星業務以外の地球探査衛星業務による宇宙から地球への伝送に使用することができる。
S 帯

① 2025-2110 MHz J142
分配されている衛星業務: 宇宙運用業務（アップリンク、衛星間）、地球探査衛星業務（アップリンク、衛星間）、宇宙研究業務（アップリンク、衛星間）

＞昨今では、通信技術の発達と高データレートの要求から、TT&CをS帯に移行することを検討する事業者も登場してきている。ただし、この帯域は宇宙機関の衛星や実用衛星のTT&Cに広く利用されているため混雑しており、周波数干渉のリスクと周波数調整の難度は増す可能性がある。S帯は通信の制約に関するITU-R勧告も適用されるため、利用の際にはこれに留意する必要がある。

② 2200-2290 MHz J142
分配されている衛星業務: 宇宙運用業務（ダウンリンク、衛星間）、地球探査衛星業務（ダウンリンク、衛星間）、宇宙研究業務（ダウンリンク、衛星間）

＞①と同様

【特記事項】
地球局のパラボラアンテナ整備では数億円の費用が掛かる場合があり、他機関のアンテナを借用する場合もある。

X 帯

① 8025-8175 MHz J191A
分配されている衛星業務: 固定衛星業務（アップリンク）、地球探査衛星業務（ダウンリンク）

② 8175-8215 MHz J191A
分配されている衛星業務: 固定衛星業務（アップリンク）、地球探査衛星業務（ダウンリンク）、気象衛星業務（アップリンク）

③ 8215-8400 MHz J191A
分配されている衛星業務: 地球探査衛星業務（ダウンリンク）

＞X帯は、上記のとおり 8025-8400MHz 帯で地球探査衛星業務のダウンリンクが分配されている。この帯域は宇宙機関などの地球探査衛星の通信をよく利用されており、周波数調整の難度および頻度は比較的高い。また、地球周回衛
星では特に高緯度地域において周波数が混雑しているため、高緯度局に地球局を設置する場合には調整が難航することがある。また、X帯は様々な業務に使用されているため国内調整にも時間を要する。

【特記事項】
地球局のパラボラアンテナ整備では数億円の費用が掛かる場合があり、他機関のアンテナを借用する調整をする場合もある。

④ 8400–8500 MHz
分配されている衛星業務：宇宙研究業務（ダウンリンク） J192

◆脚注 J192 のとおり、8400–8450MHz の周波数帯は深宇宙研究業務に分配されている。宇宙研究業務の周波数帯を使用する場合には隣接帯に深宇宙への分配があるため、不要放射による干渉を十分留意する必要がある。また、8025–8400MHz のように、この帯域は宇宙機関などの通信によく利用されており、周波数調整の難度および頻度は比較的高い。また、地球周回衛星では特に高緯度地域において周波数が混雑しているため、高緯度局に地球局を設置する場合には調整が難航することがある。また、X帯は様々な業務に使用されているため国内調整にも時間を要する。

各周波数帯における周波数利用のメリットとデメリットを図 3.4–1 にまとめる。

<table>
<thead>
<tr>
<th>周波数帯域</th>
<th>400MHz帯</th>
<th>460MHz帯</th>
<th>S帯</th>
<th>X帯</th>
</tr>
</thead>
<tbody>
<tr>
<td>メリット</td>
<td>・コストが安い（地球局を含む）</td>
<td>・比較的高データレート通信</td>
<td></td>
<td></td>
</tr>
<tr>
<td>デメリット</td>
<td>・低データレート通信</td>
<td>・姿勢が安定しないと良好な通信ができない。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・コストが高い</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>地球局のパラボラアンテナ整備で数億円するケースがある。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>他機関と借用の調整をすることも</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 2.4–1 : 各周波数帯における周波数利用のメリットとデメリット

北陸総合通信局 第 2 回 小型衛星研究会 宇宙技術開発株式会社作成資料より抜粋

J192 : 宇宙研究業務（宇宙から地球）による 8400–8450MHz の周波数帯は、深宇宙での使用に限る。
第5節 事前公表資料（API）概要

事前公表資料（API）は第3節において既に言及したように、国際周波数登録原簿（MIFR）への周波数登録に向けて衛星通信網の通信諸元や軌道情報などをまとめた資料であり、各主管庁からITUに提出された後、2週間に一度公表される週刊回転（IFIC）にて世界中に公表されることとなっている。各主管庁は公表されたAPIをもとに国際周波数調整の必要性を判断している。つまり、APIを提出することが国際周波数調整の第一歩ということになる。ただし、申請する周波数帯によっては、より詳細な調整手続きが必要である場合もあるので注意が必要である。APIはその用途によって3種類の文書に分類されており、衛星通信網における諸元情報の事前公表はAPI/Aで取扱われる。図3.5-1にAPI/Aの例を添付する。

図3.5-1（1/2）事前公表資料の例
北陸総合通信局 第1回 小型衛星研究会 総務省 国際周波数政策室作成資料より抜粋
図 3.5-1（2/2）事前公表資料の例
北陸総合通信局 第1回 小型衛星研究会 総務省 国際周波数政策室作成資料より抜粋

第6節．事前公表資料（API）作成時の基本事項・注意事項

作成する API は図や特記事項のテキストを除き、基本的には Microsoft Access データベース (.mdb) 形式にて ITU へ提出することとなっており、これは ITU から発行されているフリーソフトウェア「SpaceCap」を使用して作成することができる。「SpaceCap」を含む ITU のフリーソフトは ITU-R の web サイトなどで取得できる

ITU-R ホームページ （ソフトウェアのダウンロード）
https://www.itu.int/ITU-R/go/space-software/en

また一方で、総務省では日本独自に上記 ITU のソフトウェアに準拠し、日本語対応の API の作成ツールを開発しており、これを用いて提出用の API データベースファイルを作成することも可能である。API 作成ツールの詳細や利用方法については後述し、本節では API 作成における基礎知識や基本事項、および注意すべき事項を説明する。

（1）基礎知識
資料作成時に必要となるパラメータは、無線通信規則（RR）のAppendix4 に記載されている。以下に入力パラメータの一覧を表 3.6-1 に示す。パラメータの種別はA〜Cに分類されており、Aは該当衛星通信網の一般的情報、Bは宇宙局、地球局の
各ビームに関わる情報、C は宇宙局、地球局の各ビームの周波数割当てに関わる情報を持っています。

表 3.6-1 入力パラメーター一覧
（総務省 電波利用ホームページ 「小型衛星通信網の国際周波数調整手続きに関するマニュアル 初版」
(http://www.tele.soumu.go.jp/resource/j/freq/process/freqint/001.pdf) を参考に庶務が表を作成した）

<table>
<thead>
<tr>
<th>項目</th>
<th>Appendix 4 の記述</th>
<th>説明</th>
<th>事前公表資料への記載</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1.a</td>
<td>identity of the satellite network</td>
<td>衛星通信網の名称</td>
<td>必須</td>
</tr>
<tr>
<td>A1.f.1</td>
<td>symbol of the notifying administration</td>
<td>主管庁の記号（日本は J）</td>
<td>必須</td>
</tr>
<tr>
<td>A.2.b</td>
<td>period of validity of the frequency assignment (see Resolution 4)</td>
<td>周波数割当ての有効期限</td>
<td>必須</td>
</tr>
<tr>
<td>A.3.a</td>
<td>symbol for the operating administration or agency (see the Preface)</td>
<td>運用する主管庁の記号</td>
<td>必須</td>
</tr>
<tr>
<td>A.3.b</td>
<td>symbol for the operating administration to which communication should be sent on urgent matters (see Article 15)</td>
<td>緊急時の連絡先主管庁</td>
<td>必須</td>
</tr>
<tr>
<td>A.4.b.1</td>
<td>number of orbital planes</td>
<td>軌道面の数</td>
<td>必須</td>
</tr>
<tr>
<td>A.4.b.2</td>
<td>reference body code</td>
<td>宇宙局が周回する天体（例 T: 地球、L : 月など）</td>
<td>必須</td>
</tr>
<tr>
<td>A.4.b.4.a</td>
<td>angle of inclination of the plane with respect to the Earth’s equatorial plane (degree)</td>
<td>軌道傾斜角</td>
<td>必須</td>
</tr>
<tr>
<td>A.4.b.4.b</td>
<td>number of satellites in the orbital plane</td>
<td>軌道面内の衛星数</td>
<td>必須</td>
</tr>
<tr>
<td>A.4.b.4.c</td>
<td>period (day-hour: second)</td>
<td>軌道周期</td>
<td>必須</td>
</tr>
<tr>
<td>A.4.b.4.d</td>
<td>altitude, in kilometers of the apogee of the space station （km）</td>
<td>遠地点高度</td>
<td>必須</td>
</tr>
<tr>
<td>A.4.b.4.e</td>
<td>altitude, in kilometers of the perigee of the space station （km）</td>
<td>近地点高度</td>
<td>必須</td>
</tr>
<tr>
<td>A.4.b.4.f</td>
<td>The minimum altitude of the space</td>
<td>宇宙局が電波を発射する最</td>
<td>必須</td>
</tr>
<tr>
<td></td>
<td>station above the surface of the Earth at which any satellite transmits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>B.1.a</td>
<td>designation of the satellite antenna beam</td>
<td>アンテナビーム名</td>
<td></td>
</tr>
<tr>
<td>B.2</td>
<td>transmission/reception indicator for the beam of the space station or the associated space station</td>
<td>(衛星側から見て)受信 R または放射 E</td>
<td></td>
</tr>
<tr>
<td>B.3.a.1</td>
<td>maximum co-polar isotropic gain, in dB</td>
<td>最大等方向アンテナ利得</td>
<td></td>
</tr>
<tr>
<td>B.3.c.1</td>
<td>Antenna radiation pattern</td>
<td>アンテナ放射パターン</td>
<td></td>
</tr>
<tr>
<td>B.4.a.1</td>
<td>reference number of each orbital plane in which the space antenna characteristics are used</td>
<td>宇宙局アンテナを使用する軌道面の数 (通常は 1)</td>
<td></td>
</tr>
<tr>
<td>B.4.a.2</td>
<td>if the antenna characteristics of the space station are not common to every satellite, the reference number of each satellite in the specified plane</td>
<td>全ての宇宙局のアンテナ特性が異なる場合特定の軌道面内の衛星数 (通常は 0)</td>
<td></td>
</tr>
<tr>
<td>C.1.a</td>
<td>lower limit of the frequency (MHz)</td>
<td>最小周波数</td>
<td></td>
</tr>
<tr>
<td>C.1.b</td>
<td>upper limit of the frequency (MHz)</td>
<td>最大周波数</td>
<td></td>
</tr>
<tr>
<td>C.4.a</td>
<td>class of station, using the symbols from the Preface</td>
<td>局種 (例 EC: 固定衛星業務など)</td>
<td></td>
</tr>
<tr>
<td>C.4.b</td>
<td>nature of service performed, using the symbols from the Preface</td>
<td>業務の種類</td>
<td></td>
</tr>
<tr>
<td>C.5.a</td>
<td>lowest total receiving system noise temperature, in Kelvin, referred to the output of the receiving antenna of the space station (Kelvin)</td>
<td>受信アンテナ出力換算の最小受信雑音温度</td>
<td></td>
</tr>
<tr>
<td>C.6.a</td>
<td>type of polarization (see the Preface)</td>
<td>偏波方式</td>
<td></td>
</tr>
<tr>
<td>C.7.a</td>
<td>necessary bandwidth and the class of emission</td>
<td>必要帯域幅および放射の型式</td>
<td></td>
</tr>
<tr>
<td>C.8.a.1</td>
<td>maximum value of the peak</td>
<td>最大尖頭包絡電力</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Japanese</td>
<td>Must</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>C.8.a.2</td>
<td>maximum power density, in dB (W/Hz), required if neither C.8.b.2 nor C.8.b.3 is provided</td>
<td>最大電力密度</td>
<td>必須</td>
</tr>
<tr>
<td>C.8.b.1</td>
<td>total peak envelope power in dBW, required if neither C.8.a.1 nor C.8.b.3.a is provided</td>
<td>全尖頭包絡電力</td>
<td></td>
</tr>
<tr>
<td>C.8.b.2</td>
<td>maximum power density, in dB (W/Hz), required if neither C.8.b.2 nor C.8.b.3.b is provided</td>
<td>最大電力密度</td>
<td>必須</td>
</tr>
<tr>
<td>C.8.c.1</td>
<td>minimum value of the peak envelope power in dBW, if not provided, the reason for absence under C.8.c.2</td>
<td>最小尖頭包絡電力</td>
<td></td>
</tr>
<tr>
<td>C.8.c.3</td>
<td>minimum power density, in dB (W/Hz), if not provided, the reason for absence under C.8.c.4</td>
<td>最小電力密度</td>
<td>必須</td>
</tr>
<tr>
<td>C.8.e.1</td>
<td>greater of either the carrier-to-noise ratio, in dB if not provided, the reason for absence under C.8.c.2</td>
<td>搬送波対雑音比</td>
<td></td>
</tr>
<tr>
<td>C.10.b.1</td>
<td>for an associated earth station, the name of the station</td>
<td>地球局名</td>
<td>必須</td>
</tr>
<tr>
<td>C.10.b.2</td>
<td>the type of station (specific or typical)</td>
<td>地球局の種別: 一般 (T) または特定 (S)</td>
<td>必須</td>
</tr>
<tr>
<td>C.10.c.1</td>
<td>for a specific associated earth station, the geographical coordinates of antenna site (latitude/longitude in degree)</td>
<td>特定地球局の緯度・経度</td>
<td>C.10.b.2 が S の場合は必須</td>
</tr>
<tr>
<td>C.10.c.2</td>
<td>country or geographical area in which the earth station is located</td>
<td>地球局が設置される国・地域</td>
<td>必須</td>
</tr>
<tr>
<td>C.10.d.1</td>
<td>for an associated earth station, class of station</td>
<td>局種</td>
<td>必須</td>
</tr>
<tr>
<td>C.10.d.2</td>
<td>for an associated earth station, nature of service</td>
<td>業務の種類</td>
<td>必須</td>
</tr>
<tr>
<td>C.10.d.3</td>
<td>isotropic gain , in dBi, of the</td>
<td>最大放射方向の等方向利得</td>
<td>必須</td>
</tr>
</tbody>
</table>
アンテナ指向最大放射パターン。アンテナ同一偏波または直行偏波放射パターン。

衛星アンテナビームの業務域。

また、パラメータの入力にあたり、項目によっては ITU が定めるパラメータ記号を用いる必要がある。小型衛星の申請で頻出する記号を以下に示す。なお、それらの情報は ITU-R の web サイトなどに掲載される Preface にて確認することができる。Preface は改訂になる場合があるので、常に最新版を参照するように注意が必要である。

IFIC Preface

① 宇宙局の局種
本項の記載内容は総務省 電波利用ホームページ 「小型衛星通信網の国際周波数調整手続きに関するマニュアル 初版」を一部改編したものである。

<table>
<thead>
<tr>
<th>記号</th>
<th>宇宙局の局種</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>宇宙研究業務（能動）</td>
</tr>
<tr>
<td>E2</td>
<td>宇宙研究業務（受動）</td>
</tr>
<tr>
<td>E3</td>
<td>地球探査衛星業務（能動）</td>
</tr>
<tr>
<td>E4</td>
<td>地球探査衛星業務（受動）</td>
</tr>
<tr>
<td>EA</td>
<td>アマチュア衛星業務</td>
</tr>
<tr>
<td>ED</td>
<td>宇宙遠隔指令（コマンド）</td>
</tr>
<tr>
<td>EH</td>
<td>宇宙研究業務</td>
</tr>
<tr>
<td>EK</td>
<td>宇宙追尾（トラッキング）</td>
</tr>
<tr>
<td>ER</td>
<td>宇宙遠隔測定（テレメトリ）</td>
</tr>
<tr>
<td>ET</td>
<td>宇宙運用業務</td>
</tr>
<tr>
<td>EW</td>
<td>地球探査衛星業務</td>
</tr>
</tbody>
</table>
宇宙研究業務： 宇宙科学に関連した観測、実験、研究を行うことがこの業務に該当する。衛星に搭載された何らかの観測装置が地球の方向を向いており、地球の表面もしくは地球の内部の観測、雲の動きなど地表面に近い大気の状態の観測を行う場合、その業務は宇宙研究業務ではなく地球探査衛星業務に該当する。

地球探査衛星業務： 地球の表面もしくは地球の内部の観測、雲の動きなど地表面に近い大気の状態の観測を行うことがこの業務に該当する。

アマチュア衛星業務： アマチュア無線周波数による通信を行うことがこの業務に該当する。

宇宙運用業務： 衛星の状態を監視し、必要に応じて衛星を制御して、衛星をミッションが遂行可能な状態に保つことがこの業務に該当する。コマンドを計画して衛星に対して送信する（＝宇宙遠隔指令（コマンド））、また衛星のハウスキーピングデータを受信、解析する（＝宇宙遠隔測定（テレメトリ））、コマンドとテレメトリのために衛星を追尾する（宇宙追尾（トラッキング））ことが、この宇宙運用業務の中に含まれる。地上からの管制、制御が全然ないという非常に特殊な場合を除き、通常はこの宇宙運用業務を局種として選択すること。それに付随して、宇宙遠隔指令、宇宙遠隔測定、宇宙追尾も局種として選択すること。

宇宙局の局種の表のうち、宇宙追尾（トラッキング）、宇宙遠隔測定（テレメトリ）、宇宙遠隔指令（コマンド）は上記の宇宙運用業務のところで記述したように宇宙運用業務のために必要なことであって、これら自体は「業務」ではない。一方、宇宙局の局種の記号については、業務と業務を行うために必要な事項が区別されていないということを覚えておくこと。宇宙運用業務、宇宙追尾（トラッキング）、宇宙遠隔測定（テレメトリ）、宇宙遠隔指令（コマンド）の詳細については、それぞれ無線通信規則（RR：Radio Regulations）1.23号、1.136号、1.133号、1.135号で定義されているので参照のこと。

② 地球局の局種

<table>
<thead>
<tr>
<th>記号</th>
<th>地球局の局種</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA</td>
<td>アマチュア衛星業務の地球局</td>
</tr>
<tr>
<td>TD</td>
<td>宇宙遠隔指令の地球局</td>
</tr>
<tr>
<td>TH</td>
<td>宇宙研究業務の地球局</td>
</tr>
<tr>
<td>TK</td>
<td>宇宙追尾（トラッキング）の地球局</td>
</tr>
</tbody>
</table>
TR 宇宙遠隔測定（テレメトリ）の地球局
TT 宇宙運用業務の地球局
TW 地球観測業務の地球局

③ 業務の性質

<table>
<thead>
<tr>
<th>記号</th>
<th>業務の性質</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>専ら公用の通信のために使用される業務</td>
</tr>
<tr>
<td>CP</td>
<td>公衆通信のために使用される業務</td>
</tr>
<tr>
<td>CR</td>
<td>限定された公衆通信のために使用される業務</td>
</tr>
<tr>
<td>CV</td>
<td>専ら私的機関のために使用される業務</td>
</tr>
<tr>
<td>FS</td>
<td>人命の安全のために設定された地球局</td>
</tr>
</tbody>
</table>

④ 偏波の種類

<table>
<thead>
<tr>
<th>記号</th>
<th>偏波の種類</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>水平偏波</td>
</tr>
<tr>
<td>V</td>
<td>垂直偏波</td>
</tr>
<tr>
<td>CR</td>
<td>右旋円偏波（偏波面が送信側からみて右に回転）</td>
</tr>
<tr>
<td>CL</td>
<td>左旋円偏波（偏波面が送信側からみて左に回転）</td>
</tr>
<tr>
<td>M</td>
<td>上記の偏波の混在</td>
</tr>
</tbody>
</table>

衛星局が電波を発射し、送受信をするサービスエリアを指定する必要がある。ここでは指定したエリア以外の場所では、原則無線局は電波を発射することができない。衛星局の打ち上げ直後から地球局を設置する国だけでなく、将来に地球局を設置して電波を発射する可能性のある国も全て記載しなくてはならない。下記にサービスエリアを指定する記号の例を示す。下記以外の国、地域についてはIFIC Preface Section IV Table 1B参照のこと。

<table>
<thead>
<tr>
<th>記号</th>
<th>サービスエリアを指定する記号例</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>日本</td>
</tr>
<tr>
<td>NOR</td>
<td>ノルウェー</td>
</tr>
<tr>
<td>S</td>
<td>スウェーデン</td>
</tr>
<tr>
<td>XAA</td>
<td>全地球</td>
</tr>
<tr>
<td>XR1</td>
<td>第一地域</td>
</tr>
<tr>
<td>XR2</td>
<td>第二地域</td>
</tr>
<tr>
<td>XR3</td>
<td>第三地域（日本を含む）</td>
</tr>
<tr>
<td>XVE</td>
<td>可視域</td>
</tr>
</tbody>
</table>

46
(2) API 作成における基本事項
API 作成時には以下を意識して API を作成するとよい。

① 周波数選定作業の実施
◆ミッションの成立に必要な帯域幅や搬送波周波数を選定し、それを基に API に申請する割当て周波数を決定する。

② 軌道決定
◆API には軌道情報を掲載する必要がある。軌道は打ち上げるロケットにも依存するため輸送手段は早期に決定しなくてはならない。手続きをすすめる途中で軌道が変更になると、周波数調整がやり直しになる場合があるので注意が必要である。

③ ビームの整理
◆API で申請するビームの諸元情報を適切に整理する。アップリンク、ダウンリンク別に通常は周波数帯で分けて申請する。

④ 回線計算、精査
◆電力やアンテナ利得といった諸元を決定し、申請する値で回線計算が成立するかを精査する。回線計算表の例を図 3.6-1 に示す。また、回線計算には JAXA の「RF 回線設計標準」も参考となる。

JAXA「RF 回線設計標準」
図3.6-1 回線計算表の例

北陸総合通信局 第2回 小型衛星研究会 総務省 基幹・衛星移動通信課作成資料より抜粋

⑤ サービスエリア、使用地球局の選定
◆アップリンクおよびダウンリンクにおけるサービスエリアおよび使用する地球局を確定する。アップリンク、ダウンリンクそれぞれのサービスエリアの定義は以下のとおり。

・アップリンク サービスエリア
アップリンクビームを送信するための局を設置する可能性がある範囲。この範囲に設置した局からアップリンクを行う。

・ダウンリンク サービスエリア
ダウンリンクビームを受信するための局を設置する可能性がある範囲。この範囲に設置した局からダウンリンクを行う。

⑥ 諸元の確定、根拠確認
◆申請する各種諸元を確定し、またその値が必要である根拠を確認しておくこと。
(3) 注意事項

① 諸元の値の大きさは API ≧通告資料 ≧無線局申請値 となっていること。
 ◆この原則は周波数帯、電力、電力密度、占有周波数帯幅が対象である。もし、
 手続きを進める途中で、どうしても超過することが免れない場合には、周波
 数調整がやり直しになる場合があるので注意が必要となる。

② サービスエリアは出来るだけ多くすること。
 ◆手続きを進める途中で、どうしても追加せざるを得ない場合には、周波数調整
 がやり直しになる場合があるので注意が必要となる。

③ 回線計算が成立していること。
 ◆API にはエビデンスを添付する必要はないが、申請値で回線計算が成立してい
 なければ、当然、登録後に通信が成立しないので確認は必要である。ただし、
 免許申請時にはエビデンスが必要となる。詳細は第 4 章の手続きにて説明す
 る。

④ ITU 無線通信規則（RR）21 条の電力束密度（PFD）の制約を満足すること。
 ◆実際の PFD 制限値については最新版の RR を参照のこと。後述する API ツール
 では PFD 制限値を満たすかどうか確認することができる。

⑤ API の提出に際し、必要に応じて特記事項を記載する「note」やアンテナパター
 ンなどの「figure」を付加することを忘れないこと。
 ◆特記すべき事項や図はテキストファイルや画像ファイルを必要に応じて添付
 しなければならない。

第7節．事前公表資料（API）ツールの使用方法

総務省は国際調整に係る知識が十分にない小型衛星の運用計画者等でも、衛星通信網
の国際調整に必要な資料を日本語によるインターフェースで効率的に作成できること
を目的として、日本独自の API 作成ツールを開発した。資料には、事前公表資料（API）、
衛星通信網の通告資料、地球局の調整資料、地球局の通告資料といったものが含まれて
いる。ツールの使用を希望する場合は各総合通信局に直接相談すること。ツールの使用
マニュアルも用意されているので API 作成の手助けとなるはずである（マニュアルも web
公開されていないので必要な場合は各総合通信局に相談すること）。本節では API ツー
ルの使用方法について簡単に説明する。詳細については適宜マニュアルを参照のこと。

(1) API 作成機能
 ① API ツールの起動
 API ツールを起動し、作成する ITU 資料を選択する。
図 3.7-1 API ソール起動画面
北陸総合通信局 第1回 小型衛星研究会 総務省 国際周波数政策室作成資料より抜粋

② API ソールの構造

API 作成時に必要な情報は4種類に分類されている（i. 衛星通信網の一般的な情報（衛星通信網の名称や軌道情報）、ii. 地球局の一般的な情報（地球局の名称や位置情報、仰角情報）、iii. 宇宙局、地球局のビーム情報（ビームの名称やビームの特徴に関する情報）、iv. 宇宙局、地球局の周波数割当てに関する情報（グループの周波数割当てや偏波特性、サービスエリアなどの情報）。画面ツリーはビームおよびグループの追加、上記の各種情報入力画面を呼び出す機能がある。また、API は通信の構成に応じて適宜ビーム・グループを編成し、通信の諸元を申請する必要があり、API ソールではこのビーム・グループの構成をツリー構造で表示することでビームの構成を理解しやすいようになっている。
③ 申請値の入力
基本的な入力方法としてはまず、画面ツリーにてビームおよびグループを追加し申請する通信の構成を作成する。
その後作成したビームおよびグループについて作成した各項目をダブルクリックして詳細情報を入力していく。
図 3.7-4 APIツール画面ツリー（情報入力画面の呼び出し）
北陸総合通信局 第1回 小型衛星研究会 総務省 国際周波数政策室作成資料より抜粋

④ 入力項目の適合性チェック
全ての入力が終了した後、入力項目の適合性を確認することができる。
ここで確認される適合性は、API作成時の必要項目が全て埋められているか、数値の入力範囲を逸脱していないかなど ITU が定める提出フォーマットに準拠しているかという観点からチェックが行われる。
入力内容のチェック

図 3.7-5 API ツール入力内容の確認
北陸総合通信局 第1回 小型衛星研究会 総務省 国際周波数政策室作成資料より抜粋

入力項目の適合性の確認結果を参照し、これを基に適切に API が作成されるまでセルフレビューを繰り返す。
図 3.7-6 APIツール入力内容の確認結果
北陸総合通信局 第1回 小型衛星研究会 総務省 国際周波数政策室作成資料より抜粋

⑤ 要確認事項のチェック機能
入力が必要な各項目について、漏れがないか確認した結果を一覧で表示することが可能。必要な値が入力されている場合は「○」、未入力の場合は「×」、チェックの対象外の場合は「-」と表示される。結果をCSVファイルとして出力することができる。

(2) 電力束密度（PFD）のチェック
APIツールの機能の一つに、前章（3）④で述べた無線通信規則（RR）の第21条で定められている電力束密度（PFD）の制限値をAPIツールでの入力値で計算されるPFDが超過しないか確認する機能がある。PFD制限は周波数每、地球局の各仰角で制限値があり、APIツールでのPFD確認機能では一覧で判定結果を表示することができる。判定結果の根拠となる計算経緯をCSVファイルで出力でき、適切な値の検討に役立てることができる。
図 3.7-7 APIツール電力束密度（PFD）の確認結果
北陸総合通信局 第1回 小型衛星研究会 総務省 国際周波数政策室作成資料より抜粋

図 3.7-8 APIツール電力束密度（PFD）の確認結果（詳細）
北陸総合通信局 第1回 小型衛星研究会 総務省 国際周波数政策室作成資料より抜粋
(3) 回線成立性チェック

APIツールの機能の一つに、回線成立性の簡易チェック機能がある。APIツールで入力した値の他に、衛星送信、衛星受信、それぞれの伝送距離、ビットレートを入力することで回線の成立性を確認することができる。ツールに入力した要求C/Nに対して等価もしくはプラスマージンならば「成立」、マイナスマージンならば「未成立」と表示される。このチェック機能もPFDと同様にCSVファイルにて計算経緯を出力することができる。

図3.7-9 APIツール回線成立性の確認結果
北陸総合通信局 第1回 小型衛星研究会 総務省 国際周波数政策室作成資料より抜粋

第8節 地球局調整

(1) 地球局調整概要

衛星と通信する地球局については、他国の地球局及び地上無線業務の局への有害な干渉を回避するために、国際調整をしなければならない場合がある。この他国の地球局及びその他地上無線業務への干渉回避を目的とした地球局の調整を地球局調整と呼ぶ。例えば地球局から他国の地上無線業務の局への調整は、RR9.17号で規定されており、衛星業務と地上業務が同じ業務ステータス（一次業務同士等）で運用される場合であって、地球局の調整エリアが他国の領土に含まれる場合に行う必要がある。干渉の概念図を図3.8-1に示す。
地球局調整の必要性については、まず ITU のフリーソフトウェアにてコンター図（地球局からの送信ビームが到達し、地上局に対して有害な干渉を及ぼす可能性がある地域（調整区域）をマッピングしたもの）から判断をする（参考：図 3.8-2（概念図）、図 3.8-3（実際のコンター図））。地球局の調整区域が外国領土における場合、調整の必要となる可能性があるが実際に地球局調整を行うかは総務省が判断をする。そのため、原則として衛星事業者は明らかに調整を必要としない場合を除き、必ず地球局のコンター図を作成して総務省へ提出し、地球局調整の要否を確認すること。
図 3.8-2 調整区域の概念図
総務省電波利用ホームページ掲載資料 衛星周波数の国際調整について（小型衛星への適用に焦点を当てて）より一部改変の上抜粋
図 3.8-3：地球局コンター図の例（円形の黒線の範囲が調整区域を示す。この場合ロシアと韓国の領土が調整区域内に入っていることが示されている。）

地球局調整の基本的な流れを以下に示す。

i 外国の領土に地球局の調整区域がかかる場合は、当該地球局に関する以下の資料を作成し、総務省に提出する。

 - 地球局情報資料：ITU のソフトウェアを使って作成する地球局のファイル。無線局の位置や通信の特性情報を含む。
 - コンター図：地球局の調整範囲が地図上に図示されたもの。ITU の地球局情報資料から ITU のソフトウェアを使用して作成する。
 - 補足資料：地球局情報資料に記載した地球局の特性の根拠情報などを必要に応じて記載する。

ii 総務省から対象国宛に地球局調整資料を送付する。

iii 対象国は有害な干渉の有無を検討し、4 ヶ月以内に総務省にその結果を通知する。
各国の意見を基に調整（主として書簡送付等による）を行い、運用開始する前に合意を得る必要がある。この合意は、総務省での地球局の免許審査の際には不可欠である。

第9節. コンター図作成要領

本節では、地球局調整資料の中でも特に重要となるコンター図作成の概要をまとめる。なお、コンター図作成手順は総務省電波利用ホームページ「小型衛星通信網の国際周波数調整手続きに関するマニュアル 初版」(http://www.tele.soumu.go.jp/resource/j/freq/process/freqint/001.pdf)に詳細な説明があるのでそちらを参照のこと。

(1) 使用するソフトウェア

コンター図はITUのフリーソフト「Ap7Capture」（コンター図の作成の入力情報となる、地球局情報資料を作成するために使用する。）および「GIBC」（コンター図を出力するために使用する）を用いて作成する。「GIBC」の機能の一部で「GIMS」（同じくITUフリーソフトウェア）の機能を呼び出しているので、これもインストールする必要がある。また、作成作業にあたり便利なソフトウェアとして「SpacePub」（地球局情報資料を閲覧しやすいドキュメントの形式で印刷、ファイル出力することができる。）をインストールしておくと作成の補助となる。これらのソフトウェアは第6節で紹介したITUのwebサイト上でインストールすることができる（https://www.itu.int/ITU-R/go/space-software/en）。

(2) コンター図作成概要

① AP7Capture を使用して地球局情報を集約した地球局情報資料をmdb（Microsoft Access データベース）ファイル形式にて作成する。

地球局情報資料の作成の際にAP7Capture にて入力が必要となる主なパラメータは以下の通りである。

表 3.9-1 コンター図作成時に必要なパラメーター一覧

<table>
<thead>
<tr>
<th>項目</th>
<th>説明</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific/Typical</td>
<td>地球局の位置が固定されているかそうでないか</td>
<td>地球局の位置情報が確定していれば Specific、確定してなければ Typical</td>
</tr>
<tr>
<td>Earth Station Name</td>
<td>地球局の名称</td>
<td></td>
</tr>
<tr>
<td>Longitude (Long :)</td>
<td>地球局の緯度</td>
<td></td>
</tr>
<tr>
<td>Latitude (Lat :)</td>
<td>地球局の経度</td>
<td></td>
</tr>
<tr>
<td>Administration (Adm :)</td>
<td>主管庁</td>
<td></td>
</tr>
<tr>
<td>Country (Ctry :)</td>
<td>国</td>
<td></td>
</tr>
<tr>
<td>表示名</td>
<td>日文名称</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Satellite Name</td>
<td>衛星の名称</td>
<td></td>
</tr>
<tr>
<td>Satellite Beam Name</td>
<td>衛星のビームの名称</td>
<td></td>
</tr>
<tr>
<td></td>
<td>必ずしも事前公表資料に記載されている名称と同じである必要はない</td>
<td></td>
</tr>
<tr>
<td>E/R</td>
<td>送信ビームか、受信ビームか</td>
<td></td>
</tr>
<tr>
<td></td>
<td>地球局から見て、送信するビームであればE、受信するビームであればR</td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>アンテナゲイン</td>
<td></td>
</tr>
<tr>
<td>Class of Station</td>
<td>地球局の局種</td>
<td></td>
</tr>
<tr>
<td>Minimum frequency in MHz (Min freq in MHz)</td>
<td>最小周波数</td>
<td></td>
</tr>
<tr>
<td>Maximum frequency in MHz (Max freq in MHz)</td>
<td>最大周波数</td>
<td></td>
</tr>
<tr>
<td>Maximum Power density (Pwr ds max)</td>
<td>最大電力密度</td>
<td></td>
</tr>
<tr>
<td>Noise Temperature (Noise Temp)</td>
<td>雑音温度</td>
<td></td>
</tr>
<tr>
<td>Antenna pattern</td>
<td>アンテナパターン</td>
<td></td>
</tr>
<tr>
<td>Horizon Elevation</td>
<td>アンテナから見た地平線 (スカイライン)</td>
<td></td>
</tr>
<tr>
<td>Min Antenna Elevation</td>
<td>アンテナを使用する最低の仰角</td>
<td></td>
</tr>
</tbody>
</table>

② 作成したmdbファイルをGIBCで処理してコンター図を出力する。処理結果として調整区域のマッピング（図3.9-1）と、調整の可能性がある国を示したファイル（図3.9-2）が出力される。
図3.9-1：GIBC処理結果の出力例（コンター図）

図3.9-2：GIBC処理結果の出力例（調整の可能性がある国の表示）
第10節 周波数選定・調整の苦労点

本章の最後に周波数の国際調整において、ポイントとなる周波数選定、地球局、衛星への混信検討の位置付け、流れなどをまとめる。また研究会のヒアリングなどで紹介された調整の苦労点を記載する。

（1）周波数選定について

通信に使用する電波の周波数については、国際調整に先んじて決めておく必要があり、事前公表資料（API）に記載して調整を実施することになる。周波数選定にはハードウェア設計での観点が当然重要であるが、国際調整の観点から選定の選択肢を検討することも可能である。周波数によっては調整相手が多く、作業の負荷や時間に影響を及ぼす場合がある。実験試験局の周回衛星では、主に2GHz帯（TT&C）、8GHz帯（データ伝送）が使用されており、通常国際調整の相手国は20カ国程度が見込まれる。周波数選定を工夫することで、これらの相手国の削減や調整に要する手間、時間を軽減することが期待できる。

国際調整の観点から周波数選定を行う場合、最も基本的な考え方は、周波数の重複する相手衛星網数が少ない周波数帯を選ぶことである。任意の周波数帯における重複を確認するために、有用かつ代表的なツールとして、ITUから提供されているフリーソフト「BR-SIS」のSpaceQry機能が挙げられる。

(URL:https://www.itu.int/ITU-R/go/space-software/en)。BR-SISの起動画面を図3.10-1に示す。
図 3.10-1: BR-SIS の起動画面

周波数の選定方法として、国際調整の対応負荷の予測がつき、また過去の周波数調整の手法がそのまま利用できる可能性があるという理由から、できれば過去の衛星で使用実績のある周波数を利用することが望ましい。教育機関であれば、教育機関同士の横のつながりを利用することで、周波数情報を共有することや、小型衛星打ち上げの経験が豊富な機関への相談がでれば有用である。

過去の小型衛星の周波数選定の例を以下に示す。

① ケース 1

S 帯で TT&C、X 帯でミッションデータダウンリンクを使用する計画で、免許申請手続き開始したところ、干渉検討の結果から LSTD±TBD の範囲のみの免許となった。その結果、小型衛星打ち上げ後わずかな期間（約 1 ヶ月弱）しか運用できなかった。
② ケース 2
国の重要無線通信周波数を回避し、国内の衛星との周波数重複状況を確認し、その帯域を回避した。結果として、S帯 TT&C の周波数で、アップリンク 2025〜2110MHz、ダウンリンク 2200〜2290MHz で申請することとした。

③ ケース 3
小型衛星で運用実績がある周波数帯で国際調整、無線局申請手続きを始め、地球局設備は共同研究などにより借用した。

(2) 調整の苦労点について
以下に衛星担当者にヒアリングした結果、得られた周波数国際調整の苦労点を示す。
- 周波数調整、免許申請は手続きに時間がかかり、打上げまでの期間の確保が難しい。教育機関での小型衛星に関しては、学生が在籍している間に打ち上げを完了したいが、スケジュール的に厳しい実情である。
- 衛星通信目的の衛星の使用可能周波数と必要な帯域幅が分からない。
- 一般的に周波数に関する手続きは面倒であり初心者には困難である。用語や手続きを理解するのが難しい。

ITU 調整資料作成に必要なソフトウェアの使用方法に苦慮するが、総務省が ITU のソフトウェア関連のマニュアルを整備した結果便利となった。
第4章 手続き
第1節 宇宙無線通信を行う実験試験局の免許までの流れ

日本で衛星通信業務を行う人工衛星の無線局又は地球局を利用するためには、電波法関係法令に基づく手続きが必要であり、微弱な電波を利用する無線局等を除き、総務大臣の免許を受けなければならない。衛星関連無線局の電波法関係法令に基づいた免許手続きの流れを図4.1-1に示す。

![免許手続きの流れ](image)

図4.1-1 電波法関係法令に基づいた免許手続きの流れ
出典：総務省ホームページ

しかしながら、特に初心者の場合は免許申請に当たって不明点があり、手続きを開始することも困難な場合が多い。総務省では免許申請の事前相談を受け付けており、これを踏まえた流れを図4.1-2に示す。図の下半分がこれに該当する。詳細は第2節に記載する。
図 4.1-2 宇宙無線通信を行う実験試験局の免許取得フロー
北陸総合通信局 第 2 回小型衛星研究会 総務省 基幹・衛星移動通信課作成資料より抜粋（第 3 章の図 3.2-2 に同じ）

免許申請については、所定の様式に必要な事項を記載するとともに、総務省の審査に必要な書類を準備し、提出する。詳細は後述する。

総務省で申請書が受理された場合、次の点について審査が行われる。
① 工事設計書が電波法第 3 章に定める技術基準に適合していること。（周波数の偏差、スプリアス発射強度等の適合性、等）
② 周波数の割当てが可能であること。（周波数割当計画に合致しているかどうか、他の無線局に妨害を与えないかどうか、等）
③ 無線局の開設の根本的基準に合致していること。（適切な実験計画をもっているかどうか、等）

以上の審査を行い、その結果、申請書の内容がこれらすべての事項に適合していると判断した場合、予備免許が与えられることとなっている。審査についての留意事項、詳細を第 4 節に記載する。
予備免許を受けた後、無線局の工事が落成したときは、その後の手続きが必要である。検査は、無線設備、無線従事者の資格を確認し、時計及び書類の確認が必要である。

この検査を行った結果、予備免許をした工事設計に合致し、無線従事者、時計及び書類が法令に違反していないと認められた場合、免許が付与される。

落成検査についての留意事項、詳細を第5節に記載する。

第2節 免許申請相談時の留意事項
総務省に免許申請を相談する場合には必要な項目を整理しておくと、その後の手続きがスムーズに進む。必要な項目について、図4.2-1に示す。

総務省への相談

相談時のヒアリング事項

<table>
<thead>
<tr>
<th>申請相談者名</th>
<th>郵便番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>住所</td>
<td>郵便番号</td>
</tr>
<tr>
<td>電話番号</td>
<td>郵便番号</td>
</tr>
<tr>
<td>主たる実験目的</td>
<td></td>
</tr>
<tr>
<td>地球測量</td>
<td></td>
</tr>
<tr>
<td>その他（）</td>
<td></td>
</tr>
<tr>
<td>人工衛星の情報</td>
<td>打ち上げ予定時間</td>
</tr>
<tr>
<td>打ち上げ方法</td>
<td>JAXA 照会</td>
</tr>
<tr>
<td>（）</td>
<td>ISS 放出</td>
</tr>
<tr>
<td>地理局相当実験試験局の情報</td>
<td>設置場所住所</td>
</tr>
<tr>
<td>設置場所住所</td>
<td>設置場所住所</td>
</tr>
<tr>
<td>希望周波数、占有周波数帯、電波型式、空中線電力等</td>
<td>ダウンリンク（人工衛星相当実験試験局）</td>
</tr>
<tr>
<td>アップリンク（地球局相当実験試験局）</td>
<td>国際周波数調整の状況</td>
</tr>
<tr>
<td>国際周波数調整の状況</td>
<td>国際周波数調整の状況</td>
</tr>
<tr>
<td>国際周波数調整の状況</td>
<td>国際周波数調整の状況</td>
</tr>
<tr>
<td>その他参考情報</td>
<td>その他参考情報</td>
</tr>
</tbody>
</table>

図4.2-1 免許申請の相談時に必要な事項
北陸総合通信局　第2回小型衛星研究会　総務省　基幹・衛星移動通信課作成資料より抜粋

人工衛星を用いる無線局開設には国際周波数調整が必須であり、その手続きには時間と費用を要することを考慮し、初期の段階では総合通信局に、無線局開設の計画が具体的化してからは基幹・衛星移動通信課に時間を余裕を持って相談すべきである。その際には実験の目的、内容、スケジュールを記載した実験計画書を準備しておく。各項目の記載のポイントを以下に示す。
実験の目的が科学技術の進歩・発達や電波の有効利用に資するものであるか
実験の内容について、実験を遂行する適当な能力・設備を持っているか。既設の無線局の運用や電波監視等に影響を与えないか。将来実用化を目指すものであれば、それを考えしたものとなっているか。
実験スケジュールは実験の遂行に必要かつ冗長でない、スケジュールとなっているか。
また、総務省の周波数割当表等を参考に、あらかじめ使用を希望する周波数を決めておくことが望ましい。小型衛星で主に使用される周波数帯を図4.2-2に示す。ただし、401MHz-402MHzについては、ITUの2019年世界無線通信会議（WRC-19）に向けて、Data Collection System（DCS）の持続的な保護のため、この帯域の通信について送信電力を制限しようとする検討が進められており、DCSの通信のみ成立する程度の電力制限が課される可能性がある。

小型衛星の主な使用周波数

<table>
<thead>
<tr>
<th>帯</th>
<th>周波数</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF</td>
<td>401-402</td>
<td>固定衛星（地球から宇宙）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>地球探査衛星（地球から宇宙）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>気象衛星（地球から宇宙）</td>
</tr>
<tr>
<td></td>
<td>467.65-468.54375</td>
<td>移動気象衛星（宇宙から地球）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>移動気象衛星（宇宙から地球）</td>
</tr>
<tr>
<td>S</td>
<td>2025-2110</td>
<td>移動気象衛星（宇宙から地球）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>移動地球探査衛星（地球から宇宙）</td>
</tr>
<tr>
<td></td>
<td>2200-2290</td>
<td>移動地球探査衛星（地球から宇宙）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>移動地球探査衛星（宇宙から地球）</td>
</tr>
<tr>
<td>X</td>
<td>8025-8175</td>
<td>移動気象衛星（宇宙から地球）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>移動地球探査衛星（地球から宇宙）</td>
</tr>
<tr>
<td></td>
<td>8175-8215</td>
<td>固定衛星（地球から宇宙）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>地球探査衛星（地球から宇宙）</td>
</tr>
<tr>
<td></td>
<td>8215-8400</td>
<td>固定衛星（地球から宇宙）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>地球探査衛星（地球から宇宙）</td>
</tr>
<tr>
<td></td>
<td>8400-8500</td>
<td>固定衛星（地球から宇宙）</td>
</tr>
</tbody>
</table>

図4.2-2 小型衛星で主要に使用される周波数帯
北陸総合通信局 第2回小型衛星研究会 総務省 基幹・衛星移動通信課作成資料より抜粋

第3節 無線局免許申請
無線局免許申請書は所定の様式が用意されている（URL: http://www.tele.soumu.go.jp/j/download/proc/index.htm）。人工衛星局相当実験試験局、地球局相当実験試験
局については、以下の様式を使用する。
なお、平成 31 年 1 月施行予定の無線局免許手続規則の改正に向けて、申請様式変更の作業が進められており、改正の施行日以降は新様式で申請する必要がある。
無線局免許申請書：上記 URL の 1 の区分 2 人工衛星局相当実験試験局の無線局事項書及び工事設計書：上記 URL の 2 の区分 11 地球局相当実験試験局の無線局事項書及び工事設計書：上記 URL の 2 の区分 4
記載する上では、同区分のところにある記載要領が参考になる。また申請書記載に必要なコードは、上記 URL の 3 を参照する。人工衛星局相当実験試験局の記載の例を図 4.3-1 に示す。

第 2 節記載の実験計画のポイントを参考に記載する。

<table>
<thead>
<tr>
<th>無線局事項書</th>
<th>申告番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 申請(届出)の区分</td>
<td>■開設 □変更 □再免許</td>
</tr>
<tr>
<td>2 無線局の種別コード</td>
<td>EX</td>
</tr>
<tr>
<td>3 免許の番号</td>
<td></td>
</tr>
<tr>
<td>4 欠格事由</td>
<td>□有 ■無</td>
</tr>
<tr>
<td>5 開設、変更、又は変更を必要とする理由</td>
<td></td>
</tr>
<tr>
<td>6 工事落成の予定期日</td>
<td>■日付指定：20XX. XX.XX. □予備免許の日から月目の日</td>
</tr>
<tr>
<td>7 希望する運用許容時間</td>
<td>■免許の日から月以内の日 □免許の日から月以内の日</td>
</tr>
<tr>
<td>8 工事落成の予定期日</td>
<td>■日付指定：20XX. XX.XX. □予備免許の日から月目の日</td>
</tr>
<tr>
<td>9 希望する免許の有効期間</td>
<td>■免許の日 □無</td>
</tr>
<tr>
<td>10 運用開始の予定期日</td>
<td>■免許の日 □無</td>
</tr>
<tr>
<td>11 運用開始の予定期日</td>
<td>■免許の日 □無</td>
</tr>
<tr>
<td>12 最初の免許の年月日</td>
<td>■予備免許の日から月目の日</td>
</tr>
<tr>
<td>13 法人型の届出者</td>
<td></td>
</tr>
<tr>
<td>14 無線局の目的コード</td>
<td></td>
</tr>
<tr>
<td>15 通信事項コード</td>
<td></td>
</tr>
<tr>
<td>16 通信の相手方</td>
<td></td>
</tr>
<tr>
<td>17 電気の相手方</td>
<td></td>
</tr>
<tr>
<td>18 電気の相手方</td>
<td></td>
</tr>
</tbody>
</table>

図 4.3-1 (1/2) 無線局事項書記載例
<table>
<thead>
<tr>
<th>無線局の区分</th>
<th>XXXX</th>
<th>※ 整理番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 人工衛星の軌道又は位置</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 打上げ予定時期</td>
<td>平成XX年X月</td>
<td></td>
</tr>
<tr>
<td>23 目的を遂行できる位置の範囲</td>
<td>XXXX</td>
<td></td>
</tr>
<tr>
<td>24 軌道に関する事項</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 予備衛星の数</td>
<td>人工衛星の数</td>
<td>打上げ予定時期</td>
</tr>
<tr>
<td>26 人工衛星の打ち上げ場所</td>
<td>日本 种子島宇宙センター</td>
<td></td>
</tr>
<tr>
<td>27 同一の特性をもつ宇宙物体であって地上にあるもの</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 人工衛星の姿勢制御方式</td>
<td>三軸安定方式</td>
<td></td>
</tr>
<tr>
<td>29 人工衛星の国際標識番号</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 人工衛星の数</td>
<td>XXXX</td>
<td></td>
</tr>
<tr>
<td>31 人工衛星の所有者</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 受信のみを目的とする無線設備の設置場所又は移動範囲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 備考</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 4.3-1（2/2） 無線局事項書記載例
第4節 人工衛星局相当・地球局相当実験試験局の審査について

（1）国内周波数調整概要

国内周波数調整は、日本国内における新設無線局による周波数の使用・運用が、衛星及び地上の既設無線局の通信に対して有害な干渉の受与がないように、免許の交付以前に免許人との間で行われる国内での事前調整のことを指す。調整は以下の流れで行われる。

i 総務省が申請された諸元を既設免許人へ展開し、コメントを募集する。

ii 既設免許人から何らかのコメントがある場合には、申請者に直接コメントが提出される、もしくは総務省が仲介してコメントの受領をする（ただし、経験上、ほとんど前後の手続きである。）

iii 必要に応じて調整を行う。

iv 基本的には全てのコメントについて合意を取る。

（2）無線局免許申請における国内周波数調整の手続きの位置づけ

無線局の申請をする場合には、最初から総務省へ免許申請書を提出するのではなく、まず各地域の窓口となっている各総合通信局への相談を経て申請のドラフトを総務省本省及び総合通信局へ提出している。その後申請のドラフト案についてドラ
フローショップがかけられ、問題なければ審査の約3ヶ月後に実際の免許申請をすることとなるが、このドラフト審査の際に国内周波数調整を完了していることが確認される。宇宙無線通信を行う実験試験局の免許の申請から免許の交付までの過程を図4.4-1に示す。

図4.4-1 宇宙無線通信を行う実験試験局の免許取得の流れ
北陸総合通信局 第2回 小型衛星研究会 総務省 基幹・衛星移動通信課作成資料より一部改編

(3) 人工衛星局相当・地球局相当実験試験局の審査
人工衛星局については特則があり、人工衛星局の無線設備は、遠隔により電波発射を直ちに停止できる必要がある（電波法第36条の2）。また衛星から発射される電波の、地表面での電力束密度には制限がある（電波法施行規則第32条の6）。
主な衛星周波数帯の電力束密度許容値を表4.4-1に示す。
なおUHF帯には電力束密度の制限は無い。

表4.4-1 人工衛星局の電力束密度の許容値

<table>
<thead>
<tr>
<th>周波数帯</th>
<th>仰角δ</th>
<th>電力束密度の許容値</th>
</tr>
</thead>
<tbody>
<tr>
<td>2200MHzから2300MHz</td>
<td>0deg～5deg</td>
<td>-154dBW/m2/4kHz</td>
</tr>
<tr>
<td></td>
<td>5deg～25deg</td>
<td>-154+0.5*(δ-5)dBW/m2/4kHz</td>
</tr>
<tr>
<td></td>
<td>25deg～90deg</td>
<td>-144dBW/m2/4kHz</td>
</tr>
<tr>
<td>8025MHzから8500MHz</td>
<td>0deg～5deg</td>
<td>-150dBW/m2/4kHz</td>
</tr>
<tr>
<td></td>
<td>5deg～25deg</td>
<td>-150+0.5*(δ-5)dBW/m2/4kHz</td>
</tr>
<tr>
<td></td>
<td>25deg～90deg</td>
<td>-140dBW/m2/4kHz</td>
</tr>
</tbody>
</table>

地球局については、発射される電波の地表線に対する等価等方幅射電力の制限値がある（電波法施行規則第32条の2）。主な地球局送信周波数帯の等価等方幅射電力許容値を表4.4-2に示す。
なおUHF帯には電力束密度の制限は無い。
表 4.4-2 地球局の等価等方輻射電力の許容値

<table>
<thead>
<tr>
<th>周波数帯</th>
<th>地表線仰角 θ</th>
<th>等価等方輻射電力の許容値</th>
</tr>
</thead>
<tbody>
<tr>
<td>2025MHz から 2110MHz</td>
<td>0deg 以下</td>
<td>40dBW/4kHz</td>
</tr>
<tr>
<td></td>
<td>0deg～5deg</td>
<td>40+3θ dBW/4kHz</td>
</tr>
</tbody>
</table>

周波数の割当て可能性の審査については、周波数分配に適合する必要性がある。分配表は総務省のHP（URL: http://www.tele.soumu.go.jp/j/adm/freq/search/share/plan.htm）に公表されている。また開設する局の周波数について、既存の無線局（地上局等含む）の運用に支障を与えないか審査が実施される。必要に応じて国内免許人の無線局との調整指示が与えられる場合がある。これについては第3章第1節に記載した。

なお審査の観点から以下の資料が必要になる。
① 実験計画書
② 回線設計書
③ 国際調整値との比較表
④ 占有周波数帯幅の算定根拠
⑤ 地球局の送受信コンター図
⑥ 国際調整の状況確認票
⑦ 宇宙通信概念図
⑧ その他

②〜⑧について例を図4.4-1〜図4.4-7に示す。
図4.4-1 回線設計書の例
北陸総合通信局第2回小型衛星研究会 総務省基幹・衛星移動通信課作成資料より抜粋

JAXAの「RF回線設計標準」も参考となる。

図4.4-2 国際調整値との比較表の例
北陸総合通信局第2回小型衛星研究会 総務省基幹・衛星移動通信課作成資料より抜粋
占有周波数帯幅の算定根拠

S帯テレメトリ回線（2285MHz、帯域幅400kHz）

S帯テレメトリ回線では、変調形式BPSK(G1D)、回線速度200ksp(sピタピ符号化後の回線速度100kbps)を予定している。S帯のBPSK変調におけるロールオフフィルタには、装置の小型化、省電力化考慮して4次のベッセルでBT=Time-Band Product=0.7のアナログフィルタを用いている。

理論式を用いて占有周波数帯幅Bを計算すると、k=0.7、fcl=200kHzとして、

\[
B = 2x0.7x200k = 280k\text{kHz}
\]

また、ソフトウェアを用いた詳細なシミュレーション結果を図1に示す。この図は、回線速度200kHzで変調したときのスペクトルを求めたものであり、横軸の刻みは200kHz、縦軸の刻みは10dBである。

黒い実線が電力スペクトル、赤い線がOBW（全電力の99%が含まれる帯域幅）の範囲を示す。

シミュレーション結果よりOBWとして298kHzが与えられが、アナログフィルタを採用しているため、製造時における使用素子の定数のばらつき、温度による定数の変化による帯域の拡がりを経験的に35%（すなわち、安全係数=1.35）と設定すると、99%電力の帯域幅はOBW=400kHzとなる。

地球局の送受信コンター図

国際周波数調整資料に用いたコンター図を添付

占有周波数帯幅の算定根拠の例
北陸総合通信局第2回小型衛星研究会　総務省基幹・衛星移動通信課作成資料より抜粋

地球局の送受信コンター図の例
北陸総合通信局第2回小型衛星研究会　総務省基幹・衛星移動通信課作成資料より抜粋
⑥国際調整の状況確認表

国際調整の状況確認表の例

<table>
<thead>
<tr>
<th>主管庁</th>
<th>Group ID</th>
<th>調整状況</th>
<th>調整ステータス</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>111111111</td>
<td>○○は、RR表21-4のpfd制限値を満たしており、A国の地上系への影響は与えないと説明済み。調整完了を確認中。</td>
<td>完了見込み</td>
</tr>
<tr>
<td>B</td>
<td>111111111</td>
<td>□月□日 Bへ回答書簡発出し。□月□日 Bより問い合わせ書簡受領。□月□日 Bへ回答書簡発出し。</td>
<td>調整中</td>
</tr>
<tr>
<td>C</td>
<td>111111111</td>
<td>日C周波数調整会議にて調整合意済み。</td>
<td>完了</td>
</tr>
<tr>
<td>D</td>
<td>111111111</td>
<td>DへITU-R勧告SA.609の条件を満たしていることを説明済み。調整完了を確認中。</td>
<td>完了見込み</td>
</tr>
</tbody>
</table>

図4.4-5 国際調整の状況確認表の例
北陸総合通信局第2回小型衛星研究会 総務省基幹・衛星移動通信課作成資料より抜粋

⑦小型衛星の宇宙通信概念図の例

図4.4-6 宇宙通信概念図の例
北陸総合通信局第2回小型衛星研究会 総務省基幹・衛星移動通信課作成資料より抜粋
図4.4-7 その他必要な書類の例
北陸総合通信局第2回小型衛星研究会 総務省基幹・衛星移動通信課作成資料より抜粋

第5節 落成検査
人工衛星局は、実運用時には宇宙空間に置かれる特殊な無線局であるため、打上げ前と打上げ後に検査が行われる。打上げ前の無線設備の点検を通称で単体検査と呼び、打上げ後の無線設備の点検を通称で総合検査と呼ぶ。

・単体検査
予備免許に記載された指定事項である電力、周波数、占有周波数帯幅、それに加えてスプリアス発射の強度について検査が行われる。電力等の指定事項は、基本的には免許人にて提出した無線局申請で希望した値と同一である。法定の校正を受けたパワーメーター、周波数カウンタ、スペクトラムアナライザで測定を行う。

・総合検査
実際に通信が行えることを確認する。そのためのコマンドを送信し、正常な反応をテレメトリで確認する。

予備免許交付後、落成検査を受けるまでに「無線従事者選（解）任届」を提出する。無線局の運用には、適切な無線従事者の選任が必要であり、落成検査時にはこの無線従事者の選任状況も点検される。2kW までの出力に必要な資格は第1級陸上無線技術士、もしくは第2級陸上無線技術士であり、出力 500W までは第1級陸上特殊無線技術士が必要である。主な無線従事者の資格と操作の範囲を表5.1-1に示す。
表 4.5-1 公益財団法人日本無線協会 HP より 無線従事者の資格と操作等の範囲

<table>
<thead>
<tr>
<th>分区</th>
<th>無線局の無線設備</th>
<th>技術操作</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>すべて</td>
</tr>
<tr>
<td>第一級無線無線通信士</td>
<td>すべての無線設備</td>
<td></td>
</tr>
<tr>
<td></td>
<td>２kW以下の無線設備（テレビジョン放送局のものを除く。）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500W以下（テレビジョン放送局の無線設備）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>レーダー（1）もの以外のもの</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100kW以下の無線航路の3〜6MHz以上の電波を使用するもの</td>
<td></td>
</tr>
</tbody>
</table>

注 1. 電波の無線設備は、海事、海岸警備、船舶等、航空局、航空自衛隊、防衛省、空港、地方自治体、無線放送局及び航空局以外の無線局をいう。
2. 外部の経路送信機で電波の質に影響及ぼさないものを除く。

<table>
<thead>
<tr>
<th>分区</th>
<th>無線局の無線設備</th>
<th>技術操作</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>すべて</td>
</tr>
<tr>
<td>第一級無線無線通信士</td>
<td>25W以下の無線設備（レーダー及び人工衛星用のものを除く）を使用するものを除く。</td>
<td></td>
</tr>
<tr>
<td>第二級無線無線通信士</td>
<td>25W以下の無線設備（レーダー及び人工衛星用のものを除く）を使用するものを除く。</td>
<td></td>
</tr>
<tr>
<td>第三級無線無線通信士</td>
<td>25W以下の無線設備（レーダー及び人工衛星用のものを除く）を使用するものを除く。</td>
<td></td>
</tr>
</tbody>
</table>

注 1. 電波の無線設備は、海事、海岸警備、船舶等、航空局、航空自衛隊、防衛省、空港、地方自治体、無線放送局及び航空局以外の無線局をいう。
2. 外部の経路送信機で電波の質に影響及ぼさないものを除く。

<table>
<thead>
<tr>
<th>分区</th>
<th>無線局の無線設備</th>
<th>操作することができるもの</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>すべて</td>
</tr>
</tbody>
</table>

80
なお、検査を受けようとする無線設備等について、総務省の登録を受けた登録検査等事業者が総務省令で定めるところにより行う制度（登録検査等事業者）が活用できる。

第6節 無線局免許申請での苦労点

以下に、衛星担当者にヒアリングした結果得られた、周波数国際調整の苦労点を示す。

・ 特に注意が必要なケースは、国の重要無線通信と周波数が重複することである。重複してしまうと、運用時間の制限を受けざるをえないことがあるので、十分な調整は必要である。

・ 営利企業の衛星は、運用制約を受けることは好ましくないので、調整は厄介である。

・ 無線局申請向けの回線計算は、マージンの取り方や前提条件の設定が難しい

・ ITU申請値≧無線局申請値とする必要があり、さらに設計マージンをコントロールするのが困難である。