気象レーダー間の共用条件

汎用型レーダーの高性能型レーダーとの共用検討

気象レーダー間の干渉の有無やその程度を考慮し、その情報を基に将来的なチャネルプランを 検討するため、以下のレーダーの干渉保護基準(案)を検討した。

- ・高性能型レーダー
- ・汎用型レーダー

また、現時点での汎用型レーダーの展開計画に基づき、汎用型レーダーの展開が計画通りに実施されることを仮定して、以下について試算を行った。

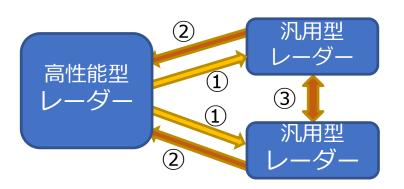
- ・XRAINのような既存の高性能型レーダーに対して、どの程度干渉を起こす可能性があるか
- ・汎用型レーダーがどの程度干渉を受け、どの程度利用可能か

検討項目

- 1. 電波干渉発生モデルと共用条件
- 2. 電波干渉計算に必要な諸元
- 3. レーダー諸元モデル
- 4. レーダー間の電波干渉計算モデル
- 5. 想定設置場所での干渉シミュレーション

1. 電波干渉発生モデルと共用条件

(1) 電波干渉発生モデル


アンテナビーム会合	パターン(*1)	干渉レベル	発生頻度				
与干渉局	被干涉局						
メイン	メイン	干渉レベルは最も高い	時間的・確率的に極度に低い				
メイン	サイド	干渉レベルは高い	時間的には限定的				
サイド	サイド	干渉レベルは低い	時間的には常時				
サイド	メイン	メイン一	ナイド同等				

メイン―メインは発生頻度から、また、サイドーメインはメインーサイドと同等なため、 **メイン―サイド、サイドーサイド**の2つの条件で共用検討を行う。

(*1) 送受利得が同一のアンテナの場合(パラボラアンテナ等) メイン/サイド:空中線のメインローブ/サイドローブ、を意味する

1. 電波干渉発生モデルと共用条件

(2)干渉保護基準(共用条件案)

レーダータイプ	記号	干渉保護基準案
高性能型	1	汎用型に与える干渉に対しては制限しない。
汎用型	2	高性能型に対してはメインーサイド及び サイドーサイドの干渉は与えない。
	3	汎用型間ではメインーサイド干渉を許容し、 サイドーサイド干渉を2台まで許容する。(*2)

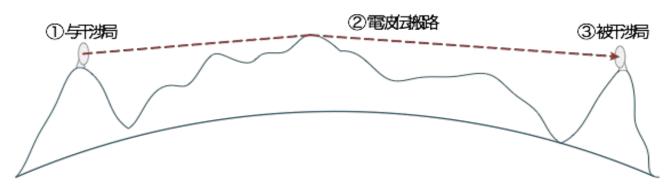
- (*2)・汎用型レーダーは設置可能台数が多くなるように考慮した干渉保護基準。
 - ・これは送信パルスのデューティー比を10%以下とした場合、70%以上の受信時間を確保できることを意味する。

(3)干渉許容レベル(共用条件)

	高性能型レーダー	汎用型レーダー
干渉許容レベル	メインーサイドの干渉で I/N -10dB 以下	サイドーサイドの干渉で I/N OdB 以下

2.電波干渉計算に必要な諸元

与干渉側	備考
設置場所	緯度・経度・標高
送信周波数	fO
送信電力	送信給電損失及び空中線利得と併せ EIRP表現も可
送信給電損失	送信機一空中線間
空中線利得	メイン及びサイド
送信スペクトラム	中心から±80MHz 0.5MHz刻み以下
パルス変調方式	PONまたはQON (QONの場合変調周波数幅も示す)


被干渉側	備考
設置場所	緯度・経度・標高
受信周波数	f1
空中線利得	メイン及びサイド
受信給電損失	空中線一受信機入力間
受信フィルタ特性	中心から±80MHz 0.5MHz刻み以下
最小受信感度	Smin
干渉許容レベル	決められた I/N 以下
干渉除去機能 及びその条件	干渉パルスの幅、送信繰り返 電力等

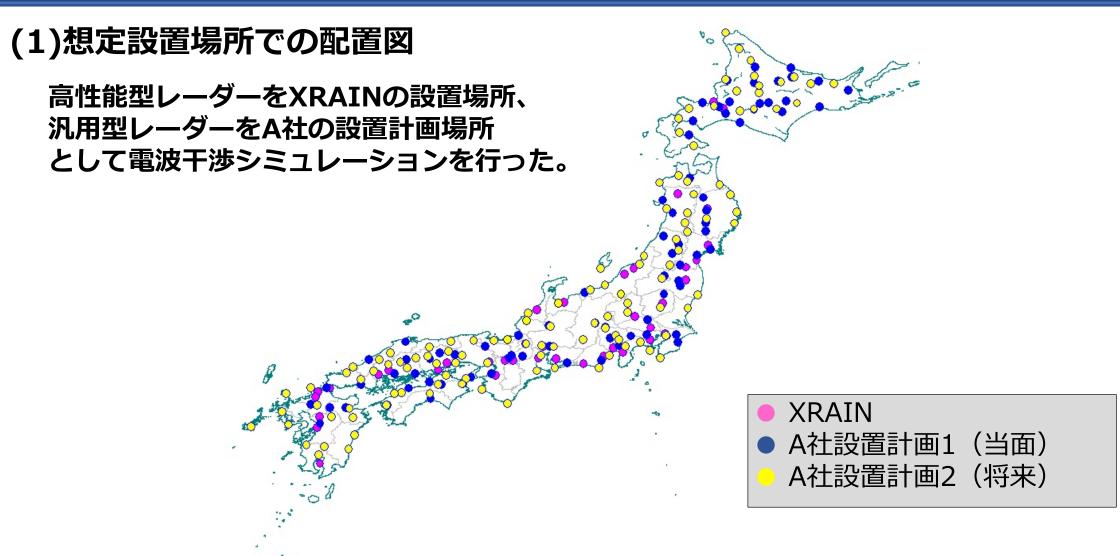
3.レーダー諸元モデル

項目	高性能型レーダー	汎用型レーダー
空中線電力(H/V合計值)	10 kW	400 W
送信給電損失	2 dB	2 dB
空中線利得	42 dB	38 dB
サイドローブ減衰量(*3)	-30 dB	-27 dB
送信周波数離隔減衰量 5MHz 以上	50 dB	50 dB
送信周波数離隔減衰量 10MHz 以上	60 dB	60 dB
受信フィルタ周波数特性 5MHz離隔 以上	50 dB	50 dB
受信フィルタ周波数特性 10MHz離隔 以上	60 dB	60 dB
受信給電損失	2 dB	2 dB
最小受信電力	-110 dB	-110 dB
干渉許容受信電力 I/N	-10 dB	0 dB

4.レーダー間の電波干渉計算モデル

(1)電波干渉概念図

①与干渉局情報			②電波伝搬損失情報				③被干渉局情報	
空山伯	空中線利得	Gt		両局間離隔距離	r	かった	空中線利得	Ġ
空中線	給電損失	Lt	伝搬損失	送信周波数	ft	空中線	給電損失	Lr
	送信電力	Pt		十年に トスロゼナギ病			受信周波数	fr
送信機	送信周波数	ft	電波の屈折	大気による屈折を考慮した等価地球が多条数	4/3	受信機	最小受信感度	Smin
	送信電力スペクトラム	T(f)		した寺価地球千径派数			受信フィルタ特性	R(f)
	緯度・経度		11>%=#5	山岳等の電波伝搬経			緯度・経度	
冶果梅根	標高		リッジ回折	路における障害物(地	Lp	冶果梅 起	標高	
位置情報	空中線高		頂大	球高度マップ情報)		位置情報	空中線高	
			大気減衰	電波の大気による減衰	Kr			


4.レーダー間の電波干渉計算モデル

(2)干渉電波強度計算

ightharpoonup 被干渉局における受信機入力端での**干渉電力強度(P_i)**は以下の式で計算される。 P_i =EIRP – L_p + G_r – L_r – $A(\Delta f)$ (dBm) ここで

- ・EIRP:与干渉局放射電波強度(dBm)・・・(送信電力-給電損失+空中線利得)
- L_p : 電波伝搬損失(dB) (*4)
- ・ G_r : 被干渉局空中線利得(dBi)・・・(干渉条件によりメイン/サイド)
- · *L_r* :被干渉局受信給電損失(dB)
- ・ $A(\Delta f)$: 被干渉局と与干渉局の周波数差($\Delta f = f_r f_t$)から生ずる離調減衰量 (dB)

(*4) L_{p0} :自由空間伝搬損失, L_d :リッジ回折損失, Kr:大気減衰 の合計値

(2) 干渉計算結果 (XRAINの割当てが無い9705MHzで実施)

A社の設置計画レーダーがXRAINに干渉を与える件数、 A社レーダー間で干渉を生ずる件数およびXRAINがA社レーダーに干渉を与える件数を表にまとめた。

(A) メインーサイド干渉

		被干涉(*4、*5)										
		高性能型(レーダーの台数)	A社(レーダーの台数)									
	レーダーグループ	既設(39台)	設置計画1(113台)	設置計画2(120台)								
与	高性能型(39台)	-	90[49台]	50[29台]								
干	A社 設置計画1(113台)	76 [42台]	294[84台]	225[87台]								
涉	A社 設置計画2(120台)	44[22台]	224[82台]	144[65台]								

^{*4} 表中の数字はレーダーグループ間で干渉を生じる組合せを示す。この数字は、1台のレーダーから複数のレーダーに干渉を与える場合、その干渉数が内数に含まれる。

*5 「]内の数字は、干渉に関わるレーダーの台数。

(2)干渉計算結果 (XRAINの割当てが無い9705MHzで実施)

(B) サイドーサイド干渉

		高性能型(レーダー数)	レーダー数)										
	レーダーグループ	既設(39台)	設置計画1(113台)	設置計画2(120台)									
与	高性能型(39台)	-	24[22台]	10[9台]									
干	A社 新設計画1(113台)	12[12台]	130[59台]	93[56台]									
涉	A社 新設計画2(120台)	8[8台]	46[52台]	38[21台]									

[]内の数字は干渉に関わるレーダーの台数を示す。

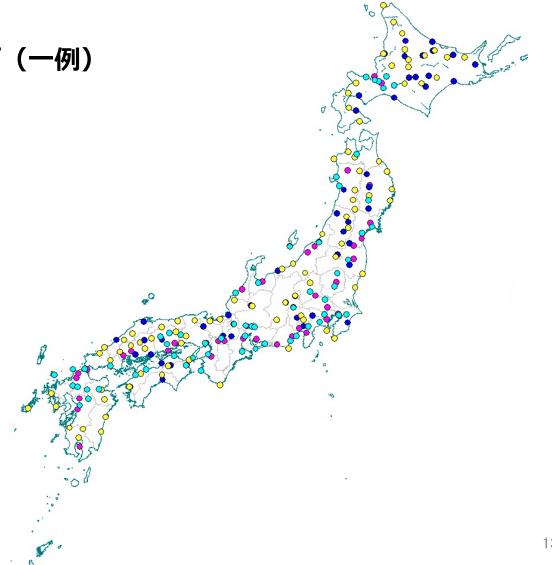
- (2)干渉計算結果 (XRAINの割当てが無い9705MHzで実施)
 - (C) 高性能型レーダーに対する干渉計算結果のまとめ

汎用型レーダーが高性能型レーダーに与える干渉と、高性能型から受ける干渉のレーダーの台数のまとめ

表中の数字は関与する汎用型レーダーの台数を示す。

		A社汎用型レーダー (設置計画台数						
干渉方向	ビーム会合条件	設置計画1(113)	設置計画2(120)					
高性能型レーダー	メインーサイド	42	22					
に与える干渉	サイドーサイド	12	8					
高性能型レーダー	メインーサイド	49	29					
から受ける干渉	サイドーサイド	22	9					
個別レー	ダー数(*6)	49	29					

(*6) すべてのケースにおいて関与するA社レーダーの個別台数


- (2)干渉計算結果 (XRAINの割当てが無い9705MHzで実施)
 - (C) 汎用型レーダー1サイトが干渉を受ける与干渉数

サイドーサイド干渉		干渉を生ずるレーダー台数									2台以上						
A社計画 (レーダー台数)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	合計
設置計画1 (113台)	34	20	23	9	6	7	6	3	3	0	0	1	1	0	0	0	36
設置計画2 (120台)	64	23	18	1	5	2	3	1	1	1	0	1	0	0	0	0	15

赤字は干渉許容台数(2台)を超えたサイト数

(D) A社新設計画レーダーが高性能型 レーダーに干渉を与えるサイトのマップ(一例)

- 高性能型レーダ
- A社設置予定1
- A社設置予定2
- 設置予定局が高性能型レーダに 干渉を与えるあるいは受けるサイト

まとめ

- ・汎用型レーダーの中心周波数を9705MHzとしたときの、高性能型レーダーへの干渉、及び汎用型レーダーが他局から受ける干渉の可能性について試算を行った。
- ・計画通りに設置した場合、チャネルとして9705MHzのみを使用したとき、
 - 1. 高性能型レーダーに対して、汎用型レーダーの64局(全体の27%)が干渉を与える(メインーサイドでの干渉条件)
 - 2. 汎用型レーダーについて、定常的に他の2局以上から干渉を受ける局が51局(全体の22%)ある(サイドーサイドでの干渉条件)
- ・汎用型レーダーが利用できる局数を増やすためには、例えば、送信スペクトルのマスクをより細かく厳しく設定し、隣接チャネルへの影響を少なくする 等の改良や、局ごとの送信ブランキング等の対策が必要