

Future topics from Call2 iKaaS members

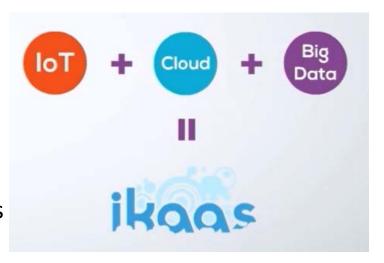
Klaus Moessner

Vienna, December 3rd 2018

Presentation Structure

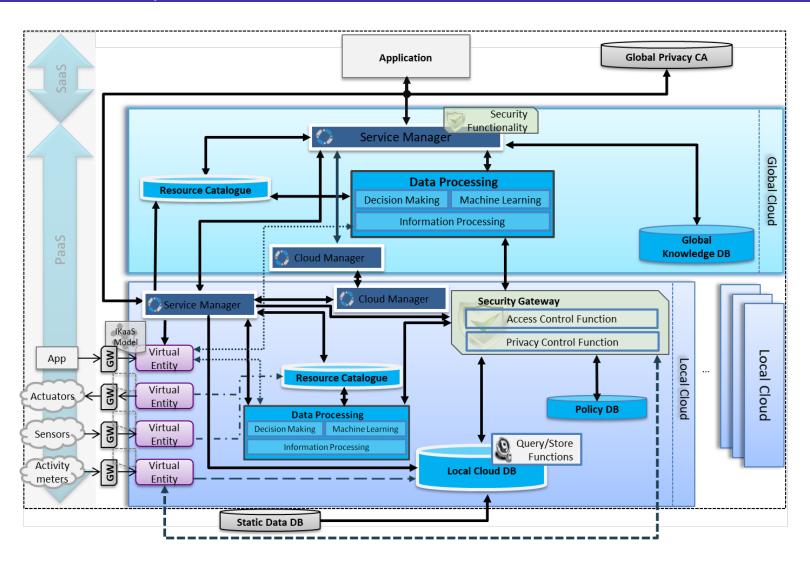
- Project overview
- Some project achievements
- Future research topics

The problem:



- In the current computing paradigm, users are just consumers of services offered by cloud service providers
- However these days even "everyday" users may have significant resources that just "sit" or are underutilized for plain trivial tasks
- Users can range from individuals to organizations and councils
- Resources can be:
 - hardware resources (running nothing)
 - software resources (with nowhere to run)
 - data (nowhere to be stored or processed)

The vision



- A "multi-cloud" (crossborder!)-based ecosystem where users:
 - Can be providers of resources
 - Can consume resources offered by other "users as providers"
- Benefits include:
 - Range and scope/scale extension of offered IoT services
 - Creation of an otherwise not possible knowledge base due to
 - lack of needed data
 - lack of Big Data analytics capabilities
 - both
 - Empowerment of the Knowledge-as-a-Service (KaaS) concept

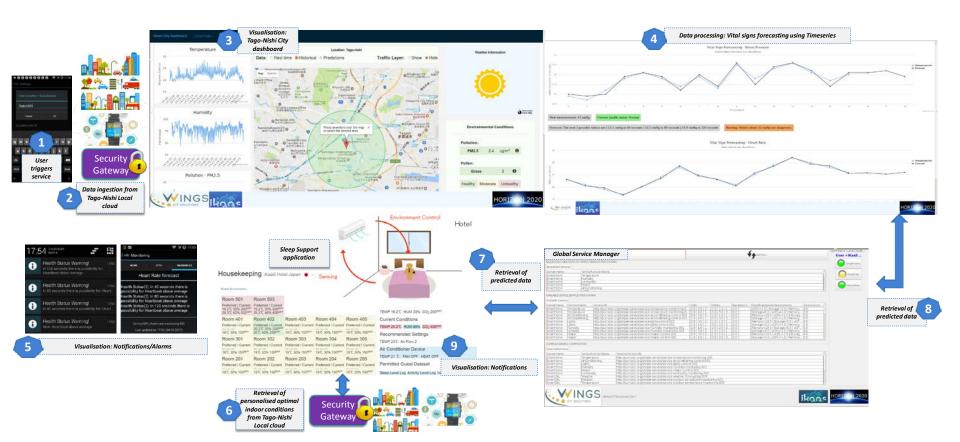
The architecture and components of the iKaaS platform

iKaaS toolbox (for public use)

iKaaS toolbox

Component	EU Partner
Virtual Entity	UNIS, ATOS, EMT,
	WINGS
Data Processing	UNIS, ATOS, WINGS,
	EMT, Madrid-City
Service Manager	WINGS
Resource Catalogue	WINGS
Local Cloud DB	ATOS/EMT
Application	WINGS, EMT

Component	JP Partner
Data Processing	Uni-Tohoku
Security Gateway	KDDR
Policy DB	KDDR
Local Cloud DB	KKC, Hitachi


Scenarios and demos

- iKaaS implemented and tested 5 diverse use cases in the broader Smart City/Smart Home arena that addressed real-life diverse problems
 - Environmental service
 - Assisted living
 - Health support
 - Town management
 - Combinations of them
 - All well received by users and stakeholders
- Allowed us to benchmark how well the iKaaS approach fares when using cloud technologies in the considered context

Example: Cross-border application

Tago-Nishi cross-border application scenario integrated with AAL Smart City components

Cross-border transfer of data and ethical issues

- The regulatory trends in EU and Japan have been followed
 - EU Data Protection Regulation 2016/679; comes into force 2018
 - JP Act on the Protection of Personal Information (APPI) 2015; came into force 2017
- iKaaS Data Protection and Ethical Committee (DPEC) was set in Japan
- The issues that can affect the flow of data between EU and Japan have been recognized
- Ethical and privacy issues of the selected use cases have been analysed and considered in iKaaS implementation and testing

Explicit informed consent is considered best suited for the purposes of iKaaS for cross-border transfer of personal data (Kato et al. LNICST 181, pp. 23–28, 2017)

- It does not require multiple contracts in cases of multilateral data transfer
- Allows for transfer of potentially identifiable information (e.g. location data)

Roadmap and Recommendation for future EU-Japan Collaborations

- Blockchains and smart contracts:
 - automated incentivizing of stakeholders to share their resources and data
 - rewards in terms of cryptocurrencies can be given to contributing stakeholders
 - automated and undisputable logging of resources use (operations performed, inline or not with terms/clauses, etc.)
 - a very good fit for the multi-party ecosystem of the iKaaS platform
 - have certain issues and limitations related e.g. to scalability and efficiency when used in large scale deployments like the ones corresponding to Smart Cities

Thank you!

