第9回X帯SWG資料(気レX参9-1)

衛星放送受信設備との共用検討の状況

(2019/5/27版)

気象レーダ作業班 BS/CS 受信設備への X 帯気象レーダ送信波の影響評価実験実施チーム(*)

1. BS/CS 受信設備への X 帯気象レーダの送信波の影響調査の目的

BS/CS 受信設備へ X 帯気象レーダ送信波が画像破綻などの悪影響を起こさず、利用可能となる条件を明らかにする。

具体的には、以下の式の各項の値を評価する。

気象レーダーから BS/CS 受信アンテナへの許容干渉 pfd Ir は以下の式で表される。

pfd Ir = BS/CS 受信 *pfd* - *Cave/Ipeak* - *M* + *S* + *D*

BS/CS 受信 pfd : BS の場合、東京では -118.0dBW/m2/MHz, 那覇では-119.7dBW/m2/MHz 程度になる。

Cave/Ipeakは晴天時に画像破綻する値であるが、BS/CSは降雨時に、画像が干渉で破綻しやすくなる。このため、マージン: Mをとる必要がある。

受信アンテナ込みイメージ妨害抑圧比 S: 受信アンテナ利得が最大となる方向から BS/CS 所望波と干渉波が 同じ pfd(電力束密度)で入力したときの、IF 帯での BS/CS 所望波と干渉波出力の比。この値が大きいほど、 BS/CS アンテナは干渉に強い。イメージ妨害抑圧比 Sは、正の値とする。

アンテナ識別度 D(放射パターン)測定 : BS/CS アンテナは静止衛星軌道に向けるのに対し、気象レーダーからの干渉波は、通常、水平方向からやってくるので、アンテナ利得が正面方向より低下していて、その分干渉量が小さくなる。アンテナ識別度 D は、正面方向の最大利得に対する、その方向のアンテナ利得との差である。アンテナ識別度 D は、0 あるいは正の値とする。

2. BS/CS 受信設備への X 帯気象レーダの送信波の影響調査の進捗状況

項目1	BS/CS 受信設備の X 帯気象レーダ帯域での受	2018 年 12 月	実験(1)解析完了(表1・表2)
	信アンテナ込みイメージ妨害抑圧比 S	2019 年 1 月	実験(3)解析完了(表3・表4)
項目 2	気象レーダ干渉波による BS/CS 受信画像破綻	2018 年 12 月	実験(2) 解析完了
	閾値 C_ave/I_peak の測定		干渉波としての気象レーダ模擬信号の
			レベル不十分で、一部の BS/CS 受信機
			器において画像破綻が発生せず
			→ 項目4と項目5の実施を計画
項目3	気象レーダ周波数における BS/CS 受信設備の	2019年1月	実験(3) 実験結果整理中
	アンテナ識別度 D (放射パターン)測定		
項目 4	気象レーダ干渉波信号キャプチャー	2019 年 4 月	4月12日(金)実施予定
項目 5	IF 実験による画像破綻 BS/CS 受信画像破綻	2019 年 4 月	4月実施予定
	Cave/Ipeak 閾値の測定		

3. BS/CS 受信設備への X 帯気象レーダ送信波の影響について

通常の BS/CS 受信設備では、屋外に設置されるパラボラアンテナのフィード部分において、受信 RF 信号(12GHz)が 周波数変換が行われ(図1BS コンバータブロック図参照)、IF 信号(L 帯)が屋内の受像装置に供給されます。

図 1 BS コンバータのブロック図

この周波数変換において、局発信号(Local)の上側波帯が目的の BS/CS 受信信号であり、下側波帯に気象レーダで 使用されている周波数に対応する場合があります(詳細については表1を参照)。気象レーダ近傍で気象レーダのメイ ンビームが BS/CS 受信設備を照射し、BS/CS 受信設備の周波数変換におけるイメージ妨害抑圧比を超えた信号が 入力される場合、気象レーダ送信波が BS/CS 受信設備への干渉となり、画像破綻が発生することになります。

図2で BS 信号を想定した場合の干渉発生のメカニズムを説明し、併せて今年度(2018 年度)実施した測定実験(1), (2).(3)の役割を紹介します。

図2の一番上の①は空間中での気象レーダ送信波とBS RF 信号の強度と周波数を模式的に示しています(横軸が 周波数、縦軸が強度)。BS 受信設備の受信アンテナは放送衛星(BS)を指向した状態で固定されているので、放送衛星 を指向した受信アンテナのサイドローブで気象レーダからの送信波を受信します。図で薄い藍色で示されているのが BS 受信設備の空間での気象レーダ送信波の信号強度で、BS 受信アンテナから気象レーダ方向へのアンテナサイドロ ーブによる低減効果を考えると、BS コンバータへの入力信号は濃い藍色のレベルに抑制されます。この BS 受信設備 の受信アンテナのサイドローブによる抑制効果を定量的に測定したのが、今年度(2019 年 1 月)に実施された電波暗 室での実験(3)です。実験(3)では、電波暗室中で X 帯気象レーダ帯の信号を BS/CS 受信設備のパラボラアンテナに 照射し、パラボラアンテナの設計周波数(BS/CS 周波数である 12 GHz)から異なる 9 GHz でのアンテナパターンを実 測しました。

図2の真ん中の②は BS コンバータのミキサーへの入力信号を模式的に示した図で、LNA と BPF1 により、BS RF 信号に比べて、気象レーダの信号を相対的には抑制している効果があります。

図2の一番下の③は BS コンバータの出力信号での、BS IF 信号と X 帯気象レーダのイメージ信号を模式的に示した図で同じ IF 帯の周波数の信号として出力されることになります。白の斜線で BS IF 信号を示し、その中の一部の周波数には、薄い藍色で示した X 帯気象レーダのイメージ信号が重畳されることになります。

BS コンバータの内部が構造的に簡単に分離できる構成であれば、上記の②と③のそれぞれでの測定を行い、それ ぞれの抑制効果を測定することが可能なのですが市販品の BS コンバータでは一体型であり、②と③を分離する測定 は不可能なため、これらを合わせた形での測定を実施しました。これが今年度(2018 年 12 月)に電波暗室で実施され た実験(1)です。実験(1)では電波暗室で、BS/CS と X 帯気象レーダ帯域の信号として、信号発生機から 12 GHz 帯と9 GHz 帯の連続波(CW 信号)を標準ホーンアンテナから送信し、BS/CS 受信設備で受信し、IF 信号の強度を測定するこ とを実施しました。

実験(1)に続けて実施された実験(2)は実験(1)と同じ測定系で、信号発生機からの CW 信号では無く、BS/CS 放送信 号とX 帯気象レーダの送信波を模擬された信号発生機からの信号を標準ホーンアンテナから送信し、BS/CS 受信設 備で受信し、IF 信号の強度を測定することを実施しました。この目的は図2の一番下の③の状況で、BS/CS IF 信号の レベル(C_ave)とX 帯気象レーダのイメージ信号のレベル(I_peak)の相対比 C_ave/I_peak で、BS/CS 受信信号で の画像破綻がどのレベルで発生するかの測定でした。

図 2 気象レーダ送信波の BS/CS 受信設備への干渉メカニズムと 2018 年度実施測定実験の役割

4.2018年度に実施した実験概要

◆ 実験(1) BS/CS 受信設備の X 帯気象レーダ帯域での受信アンテナ込みイメージ妨害抑圧比 S の測定

·日時 2018 年 12 月 17 日(月)~12 月 19 日(水)

・場所 NICT ミリ波電波暗室、3 号館 121 室

BS/CS 受信設備の受信アンテナ利得が最大となる方向から BS/CS 所望波と干渉波(X 帯気象レーダ送信波)が同じ pfd (電力束密度)で入力されたときの、IF 帯での BS/CS 所望波と干渉波出力の比。この値が大きいほど、BS/CS 受 信設備は干渉に強い。イメージ妨害抑圧比 S は、正の値としました。

◆ 実験(2) 気象レーダ干渉波による BS/CS 受信画像破綻閾値 C_ave/I_peak の測定

·日時 2018 年 12 月 17 日(月)~12 月 19 日(水)

・場所 NICT ミリ波電波暗室、3 号館 121 室

BS/CS 受信設備に干渉波が混入している状況で、画像破綻が発生するときの BS/CS 所望波 (C_ave)と干渉波

(I_peak)の受信機入力の比。この値が小さいほど、BS/CS 受信機は干渉に強い。受信画像破綻閾値 C_ave/I_peak は、 BS/CS 受信帯域幅のどこに干渉波が混入されているか(帯域中心か、端か)、干渉波のパルス幅、繰り返し周波数な どで値が異なると考えられます。

◆ 実験(3) 気象レーダ周波数における BS/CS 受信設備のアンテナ識別度 D (放射パターン)測定

・日時 2019 年 1 月 15 日(火)~1 月 18 日(金)

・場所 NICT 大型電波暗室、3 号館 地下1 階

BS/CS アンテナはメインビームを静止衛星軌道に向けるのに対し、気象レーダからの干渉波は、通常、水平付近方向 から照射され、アンテナ利得が正面方向より低下していて、その分干渉量が小さくなる。アンテナ識別度 D は、最大利 得となる正面方向に対するアンテナ利得で、気象レーダからの干渉波の場合には、BS/CS アンテナの設計範囲外の 周波数であることから、実際に使用されている BS/CS 受信設備で測定を実施し、アンテナパターンを測定しました。

PtxBS: BS放送周波数波のアンテナ入力電力 **PtxXR**: CS放送周波数波のアンテナ入力電力 **PtxXR**: 気象レーダー周波数波(X band Radar)のアンテナ入力電力

図 5 アンテナ放射パターン測定

5. 実験結果

(1)受信アンテナ込みイメージ妨害抑圧比 Sの測定

レーダー周 S(dB)BS 周波数 S(dB)S(dB)S(dB)ch 波数(GHz) A 社 B 社 C 社 D 社 (GHz) BS1 11.72748 66.4 54.3 60.9 73.4 9.62852 57.7 BS3 11.76584 9.59016 68.6 62.8 75.8 BS9 11.88092 74.6 77.9 9.47508 66.0 69.0 **BS15** 11.99600 9.36000 80.8 74.3 78.0 83.0 **BS17** 12.03436 9.32164 82.8 76.7 81.1 80.4 **BS23** 12.14940 87.9 90.2 9.20656 83.9 64.4

表 1 BS 受信アンテナのイメージ妨害抑圧比 S

ch | BS 周波数 | レーダー周 | *S* (dB)

表 2 CS 受信アンテナ込みイメージ妨害抑圧比 S

	(GHz)	波数(GHz)	E 社
JD17	12.268	10.132	95.7
JD1	12.508	9.892	89.6
JD12	12.673	9.727	89.5
JD16	12.733	9.667	90.2

注意:上記結果は、表3、表4の結果と合わせて評価する必要があります。

(表1、表2はミリ波用電波暗室でアンテナ間隔 6.3 m、表3、表4は大型電波暗室でアンテナ間 隔 13.9m で、測定条件としては表3、表4の方が良い条件)

- (2)気象レーダー干渉波(RF)による BS/CS 受信画像破綻 Cave/Ipeak 閾値の測定結果
- 所望波 ISDB-S、BS15ch
 受信機 J社、ディスプレーー体型 ISDB-S 受信機

干渉波 長パルス幅 30 ょ,繰り返し 2kHz (500 ょ), 6%, 2MHz チャープ 短パルス幅 1 ょ、繰り返し 2kHz,無変調

	•••••			
9.36 ± 0.0	0125	$(GH_7) \Rightarrow$	BS-15ch	帯域中心

Cave/Ipeak 長パルス [dB]	Cave/Ipeak 短パルス [dB]	破綻の有無			
8.5	7.4	画像破綻あり			
(以下参考)					
7.5	なし	画像破綻あり			
なし	5.4	画像破綻せず(短パルスは長パルスより 画像破綻寄与が小さい)			

② 所望波 ISDB-S、BS15ch

受信機 J社、ディスプレーー体型 ISDB-S 受信機

9.34385±0.0125 (GHz) ⇒ BS-15ch 帯域の端(ウエザーニュース実験局)

Cave/Ipeak 長パルス [dB]	Cave ⁄ Ipeak 短パルス [dB]	破綻の有無
7.2	9.2	画像破綻せず

③ 所望波 ISDB-S、BS15ch

- 受信機 K 社、DVD レコーダー、ISDB-S 受信
- 干渉波 長パルス幅 30 μs, 繰り返し 2kHz (500 μs), 6%, 2MHz チャープ 短パルス幅 1 μs、繰り返し 2kHz, CW 9.34385±0.0125 (GHz) ⇒ BS-15ch 帯域の端(ウエザーニュース実験局)

Cave/Ipeak 長パルス [dB]	Cave/Ipeak 短パルス [dB]	破綻の有無				
8.5	7.4	画像破綻あり (J 社受信機より劣化大)				

- ④ 所望波 ISDB-S3、BS17ch
 - 受信機 L社、4Kチューナー、ISDB-S3 受信
 - 干渉波 長パルス幅 30 ょ,繰り返し 2kHz (500 ょ), 6%, 2MHz チャープ 短パルス幅 1 ょ、繰り返し 2kHz, CW

9.32164±0.0125 (GHz) ⇒ BS-17ch 帯域中心

Cave/Ipeak 長パルス [dB]	Cave/Ipeak 短パルス [dB]	破綻の有無
5.6	5.3	画像破綻せず

⑤ 所望波 ISDB-S3、BS17ch

受信機 L 社、4K チューナー、ISDB-S3 受信

干渉波 長パルス幅 100 μs, 繰り返し 1kHz 1000 μs), 10%, 2MHz チャープ 短パルス幅 1 μs、繰り返し 2kHz, CW 9.32164±0.0125 (GHz) ⇒ BS-17ch 帯域中心

干渉波 長パルス幅 30 μs, 繰り返し 2kHz (500 μs), 6%, 2MHz チャープ 短パルス幅 1 μs、繰り返し 2kHz, CW

¹ 参考 干渉波が CW の場合の画像破綻 Cave/Ipeak は、7.7dB

Cave/Ipeak 長パルス [dB]	Cave / Ipeak 短パルス [dB]	破綻の有無
7.7	7.3	画像破綻せず
6	5.6	画像破綻あり
		古族市地 クリーク しんりょう の 日日

画像破綻 Cave/Ipeak は 6~7.7dB の間

注意:上記結果は、以後の実験結果で置き換えられる可能性がある。

(3)アンテナ放射パターン測定

現在整理中

(4)受信アンテナ込みイメージ妨害抑圧比 S アンテナ間隔 13.9m

ch	BS 周波数	レーダー周	$\mathcal{S}(dB)$	$\mathcal{S}(dB)$	$\mathcal{S}(dB)$	$\mathcal{S}(dB)$
	(GHz)	波数(GHz)	ボアサイト	那覇	ボアサイト	那覇
			B 社	B 社	D 社	D 社
BS1	11.72748	9.62852	49.5	80.1	69.0	96.6
BS7	11.84256	9.51344	55.7	87.7	74.2	101.1
BS15	11.99600	9.36000	64.5	98.4	78.7	103.8
BS23	12.14940	9.20656	73.3	105.0	58.9	87.6

表 3 BS 受信アンテナのイメージ妨害抑圧 S

ch	BS 周波数	レーダー周	$\mathcal{S}(dB)$	$\mathcal{S}(dB)$	$\mathcal{S}(dB)$	$\mathcal{S}(dB)$
	(GHz)	波数(GHz)	ボアサイト	東京	ボアサイト	那覇
			E社	E 社	F 社	F 社
JD17	12.268	10.132	109.0		77.1	106.3
JD1	12.508	9.892	93.5	107.0	87.1	107.9
JD12	12.673	9.727	94.3	108.2	99.7	118.9
JD16	12.733	9.667	95.6		107.3	120.4

- ・考察
- A) イメージ妨害抑圧比が 110dB 以上は、測定系の雑音レベルに近く、精度はとれていない。
- B) 受信アンテナを所望の衛星方向に合わせた時の水平方向のイメージ妨害抑圧比は、アン テナ裏側から、干渉波が入力する時が最小になる。これは、干渉波が反射鏡をかすめて、 直接、給電ホーンに入射する時に対応する。
- C) 前回、2018 年 12 月の測定では、送受信アンテナ間隔が 6.3m であったのに対し、今回の 測定では 13.9m の間隔がとれた。特に、9GHz 帯アンテナの利得は今回のほうが実際に 近いので、今回測定したイメージ妨害抑圧比を使うのがよい。
- 6.2019 年度計画
- IF 実験による画像破綻 BS/CS 受信画像破綻 Cave/Ipeak 閾値の測定
- ·日時 2019 年 4 月
- ·場所 埼玉大学、NHK 技研
- ·測定項目

BS/CS 衛星放送波を受信し、あるいは、別途キャプチャーした BS/CS-IF 信号に、フェーズド アレー型気象レーダ(MP-PAWR)(VON:埼玉大(さいたま市桜区下大久保 255)でキャプチャーし た信号、あるいは、模擬信号(チャープ信号、パルス信号)を IF 帯域で混合し、画像破綻 BS/CS 受信画像破綻 Cave/Ipeak 閾値を測定する。BS 所望波について、帯域(34.5MHz)の端に干渉 波があるときの Cave/Ipeak 閾値も求める。

2018 年 12 月 17 日(月)~12 月 19 日(水)に実施した、気象レーダー干渉波(RF)による BS/CS 受信画像破綻 Cave/Ipeak 閾値の測定では、干渉波レベルが不足したため、IF 帯を用 いて補足実験を行う。

MP-PAWR の送信信号のキャプチャーは 4月12日(金) 10:00-15:00 実施予定です。

・測定系統図 (BS/CS 受信画像が破綻する Cave/Ipeak)

(*)気象レーダ作業班	BS/CS 受信設備∽	ヽの X 帯気象レ-	ーダ送信波の影響評価実験実施チー	ム
-------------	-------------	------------	------------------	---

1	手柴 充博	ウェザーニューズ(株) レーダープロジェクト
2	和田 将一	東芝インフラシステムズ(株)電波システム事業部
3	木田 智史	東芝電波システムエンジニアリング(株)
4	千葉 禎章	東京エレクトロニックシステムズ(株)
5	花土 弘	情報通信研究機構 電磁波研究所
6	田島 慶一	スカパーJSAT 放送技術本部
7	浜中 太郎	NHK 技術局 計画管理部
8	島崎 智拓	NHK 技術局 送受信技術センター 企画部
9	横畑 和典	NHK 放送技術研究所 伝送システム研究部
10	小島 政明	NHK 放送技術研究所 伝送システム研究部
11	小泉 雄貴	NHK 放送技術研究所 伝送システム研究部
12	鈴木 陽一	NHK 放送技術研究所 伝送システム研究部
13	田中 祥次	B-SAT 総合企画室
14	正源 和義	B-SAT 総合企画室

12GHz帯衛星放送の周波数(RF、IF)

BW	34.5	MHz							
LO	10.678	GHz							
ch	RF Center (GHz)	f low (GHz)	fup (GHz)	F Center (MHz)	IF low (MHz)	IF up (MHz)	Image center (GHz)	Image low (GHz)	Image up (GHz)
1	11.72748	11.71023	11.74473	1049.48	1032.23	1066.73	9.62852	9.61127	9.64577
3	11.76584	11.74859	11.78309	1087.84	1070.59	1105.09	9.59016	9.57291	9.60741
5	11.80420	11.78695	11.82145	1126.20	1108.95	1143.45	9.55180	9.53455	9.56905
7	11.84256	11.82531	11.85981	1164.56	1147.31	1181.81	9.51344	9.49619	9.53069
9	11.88092	11.86367	11.89817	1202.92	1185.67	1220.17	9.47508	9.45783	9.49233
11	11.91928	11.90203	11.93653	1241.28	1224.03	1258.53	9.43672	9.41947	9.45397
13	11.95764	11.94039	11.97489	1279.64	1262.39	1296.89	9.39836	9.38111	9.41561
15	11.99600	11.97875	12.01325	1318.00	1300.75	1335.25	9.36000	9.34275	9.37725
17	12.03436	12.01711	12.05161	1356.36	1339.11	1373.61	9.32164	9.30439	9.33889
19	12.07272	12.05547	12.08997	1394.72	1377.47	1411.97	9.28328	9.26603	9.30053
21	12.11108	12.09383	12.12833	1433.08	1415.83	1450.33	9.24492	9.22767	9.26217
23	12.14944	12.13219	12.16669	1471.44	1454.19	1488.69	9.20656	9.18931	9.22381
BW	34.5	MHz							
LO	9.505	GHz							
ch	RF Center (GHz)	flow (GHz)	fup(GHz)	IF Center (MHz)	IF low (MHz)	IF up (MHz)	Image center (GHz)	Image low (GHz)	Image up (GHz)
2	11.74666	11.72941	11.76391	2241.66	2224.41	2258.91	7.26334	7.24609	7.28059
4	11.78502	11.76777	11.80227	2280.02	2262.77	2297.27	7.22498	7.20773	7.24223
6	11.82338	11.80613	11.84063	2318.38	2301.13	2335.63	7.18662	7.16937	7.20387
8	11.86174	11.84449	11.87899	2356.74	2339.49	2373.99	7.14826	7.13101	7.16551
10	11.90010	11.88285	11.91735	2395.10	2377.85	2412.35	7.10990	7.09265	7.12715
12	11.93846	11.92121	11.95571	2433.46	2416.21	2450.71	7.07154	7.05429	7.08879
14	11.97682	11.95957	11.99407	2471.82	2454.57	2489.07	7.03318	7.01593	7.05043
16	12.01518	11.99793	12.03243	2510.18	2492.93	2527.43	6.99482	6.97757	7.01207
18	12.05354	12.03629	12.07079	2548.54	2531.29	2565.79	6.95646	6.93921	6.97371
20	12.09190	12.07465	12.10915	2586.90	2569.65	2604.15	6.91810	6.90085	6.93535
22	12.13026	12.11301	12.14751	2625.26	2608.01	2642.51	6.87974	6.86249	6.89699
24	12.16862	12.15137	12.18587	2663.62	2646.37	2680.87	6.84138	6.82413	6.85863

東経124度、128度CSの周波数(RF、IF)

チャンネル番号	衛星/中継器		RF Center(GHz) IF Center (MHz)		Image Center (GHz)	Image Low (GHz)	Image High (GHz)	Pol.	BW/ · 27MHz
JD17	JCSAT-3A/K1		12.268	1068	10.132	10.1185	10.1455	V	10.11.2011
JD18	JCSAT-3A/K2		12.288	1088	10.112	10.0985	10.1255	н	LO: 11.20HZ
JD19	JCSAT-3A/K3		12.308	1108	10.092	10.0785	10.1055	V	
JD20	JCSAT-3A/K4		12.328	1128	10.072	10.0585	10.0855	н	
JD21	JCSAT-3A/K5		12.348	1148	10.052	10.0385	10.0655	V	
JD22	JCSAT-3A/K6		12.368	1168	10.032	10.0185	10.0455	н	
JD23	JCSAT-3A/K7		12.388	1188	10.012	9.9985	10.0255	V	
JD24	JCSAT-3A/K8		12.408	1208	9.992	9.9785	10.0055	Н	
JD25	JCSAT-3A/K9		12.428	1228	9.972	9.9585	9.9855	V	
JD26	JCSAT-3A/K10		12.448	1248	9.952	9.9385	9.9655	Н	
JD27	JCSAT-3A/K11		12.468	1268	9.932	9.9185	9.9455	V	
JD28	JCSAT-3A/K12		12.488	1288	9.912	9.8985	9.9255	Н	
JD17		JCSAT-4B/K1	12.268	1068	10.132	10.1185	10.1455	V	
JD18		JCSAT-4B/K2	12.283	1083	10.117	10.1035	10.1305	Н	
JD19		JCSAT-4B/K3	12.298	1098	10.102	10.0885	10.1155	V	
JD20		JCSAT-4B/K4	12.313	1113	10.087	10.0735	10.1005	Н	
JD21		JCSAT-4B/K5	12.328	1128	10.072	10.0585	10.0855	V	
JD22		JCSAT-4B/K6	12.343	1143	10.057	10.0435	10.0705	Н	
JD23		JCSAT-4B/K7	12.358	1158	10.042	10.0285	10.0555	V	
JD24		JCSAT-4B/K8	12.373	1173	10.027	10.0135	10.0405	Н	
JD25		JCSAT-4B/K9	12.388	1188	10.012	9.9985	10.0255	V	
JD26		JCSAT-4B/K10	12.403	1203	9.997	9.9835	10.0105	Н	
JD27		JCSAT-4B/K11	12.418	1218	9.982	9.9685	9.9955	V	
JD28		JCSAT-4B/K12	12.433	1233	9.967	9.9535	9.9805	Н	
JD29		JCSAT-4B/K13	12.448	1248	9.952	9.9385	9.9655	V	
JD30		JCSAT-4B/K14	12.463	1263	9.937	9.9235	9.9505	H	
JD31		JCSAT-4B/K15	12.478	1278	9.922	9.9085	9.9355	V	
JD32		JCSAT-4B/K16	12.493	1293	9.907	9.8935	9.9205	Н	
JD1	JCSAT-3A/K13	JCSAT-4B/K17	12.508	1308	9.892	9.8785	9.9055	V	
JD2	JCSAT-3A/K14	JCSAT-4B/K18	12.523	1323	9.877	9.8635	9.8905	н	
JD3	JCSAT-3A/K15	JCSAT-4B/K19	12.538	1338	9.862	9.8485	9.8755	V	
JD4	JCSAT-3A/K16	JCSAT-4B/K20	12.553	1353	9.847	9.8335	9.8605	н	
JD5	JCSAT-3A/K17	JCSAT-4B/K21	12.568	1368	9.832	9.8185	9.8455	V	
JD6	JCSAT-3A/K18	JCSAT-4B/K22	12.583	1383	9.817	9.8035	9.8305	Н	
JD7	JCSAT-3A/K19	JCSAT-4B/K23	12.598	1398	9.802	9.7885	9.8155	V	
JD8	JCSAT-3A/K20	JCSAT-4B/K24	12.613	1413	9.787	9.7735	9.8005	H	
JD9	JCSAT-3A/K21	JCSAT-4B/K25	12.628	1428	9.772	9.7585	9.7855	V	
JD10	JCSAT-3A/K22	JCSAT-4B/K26	12.643	1443	9.757	9.7435	9.7705	H	4
JD11	JCSAT-3A/K23	JCSAT-4B/K27	12.658	1458	9.742	9.7285	9.7555	V	
JD12	JCSAT-3A/K24	JCSAT-4B/K28	12.673	1473	9.727	9.7135	9.7405	H	4
JD13	JCSAT-3A/K25	JCSAT-4B/K29	12.688	1488	9.712	9.6985	9.7255	V	
JD14	JCSAI-3A/K26	JCSAI-4B/K30	12.703	1503	9.697	9.6835	9./105	H	
JD15	JCSAI-3A/K27	JCSAI-4B/K31	12.718	1518	9.682	9.6685	9.6955	V	11
JD16	LJCSAT-3A/K28	LJCSAT-4B/K32	12 733	1533	9667	9 6 5 3 5	9.6805	I H	1