

Worldwide Standardization in Radar

76GHz帯小電カミリ波レーダー高度化作業班 コンチネンタル・オートモーティブ株式会社 橋本直樹 2022年2月16日

> Autonomous Mobility (AM) Advanced Driver Assistance Systems (ADAS)

https://www.continental.com

Evolution of Frequency Ranges for Automotive Radar Worldwide Allocations

Frequency band / range		List of typical Use-cases	Key parameters	
76–77 GHz	Adaptive cruise control Front cross traffic alert Blind-spot detection, lane change assistance, rear cross traffic alert, pre-crash rear, exit assistance.		High Performance	
24 GHz (ISM) 24.05 – 24.25 GHz		Distance warning, Blind-spot detection, lane change assistance, rear cross traffic alert, pre-crash rear, exit assistance	Basic performance, Low cost	
24 GHz (UWB) 24.25– 26.65 GHz	Contraction of the second	Stop-and-go, Blind-spot detection, lane change assistance, rear cross traffic alert, pre-crash rear, exit assistance	Market entry for automotive radar Phased out in Europe/US by 2022	

New dimension in Radar Regulations Vehicle and sensor level

Level	Scope	Requirement	Basis of Regulation	
Vehicle	Driver Functions	Acceptance criteria for driving functions, Sensor aging, Environmental degradation	ISO standards, UN ECE, NCAP => Minimum Performance required (Min Limit)	Vehicle
Sensor	Radio Spectrum regulation	Power, Frequency, Bandwidth, Spurious, Interference	National Radio Laws and technical standards => Limits the Performance (Max Limit)	Min

- 1. Vehicle and Sensor: both requirements to be fulfilled
- 2. Spectrum requirements limits performance of driving functions
- 3. Examples for radar performance criteria in ISO standardization
 - a) Motor bike detection in 55m [UNECE_ACSF_ESF*]
 - b) Aging of sensor detection range: 20% max over lifetime
 - c) Environmental degradation of sensor detection range: 20% max (weather)

*) Working Group on Automatically Commanded Steering Functions / Emergency Steering Functions

Worldwide Radar Frequency Regulation in 76-77 GHz

Country / Region Limit		Other info		
China	Peak: 55 dBm	Released New regulation in Dec-2021 Automotive Radar in 76 - 79 GHz band		
Europe	Average: 50 dBm Peak: 55 dBm	High power limits		
Japan	10 dBm conducted burst power all Tx	Burst power all Tx Maximum antenna gain limit is 40 dBi		
South Korea	20 mW conducted (Average: 50 dBm, Peak: 55 dBm)	Changed in Radio Law in Aug-2019 Increase Antenna TX power 10mW -> 20mW (single Tx) Apply limits to individual Tx antenna		
USA / Canada	Average: 50 dBm Peak: 55 dBm	Released New standards in 2017/2018 High power limits 76-77 GHz and 77-81 GHz bands merged		

Driving functions - ISO and UN ECE regulations Selected examples

Low speed following system	 > ISO 22178:2009 > Control vehicle speed adaptively to a forward vehicle by using information like ranging and motion 	ISO
Forward vehicle collision mitigation systems	 > ISO 22839:2013 > To be able to reduce the severity of forward vehicle collisions that cannot be avoided 	ISO
Advance Emergency Braking System (AEBS)	 > UN ECE/TRANS/WP.29/GRVA/2019/5 > Uniform provisions concerning the approval of motor vehicles about the Advanced Emergency Braking System (AEBS) 	UNECE

> Driving functions are baseline for automated driving


- > Driving functions challange radar performance
- Driving functions according to ISO standards require worldwide radar harmonisation in frequency regulation

Vehicular radar technology

Evolution and benchmarks in radio technology

technology is required	Example: 3/4/8/10 Tx [Transmit] High resolution in azimuth and elevation
power >	EIPR target in range of 30 – 40 dBm Detection Range following radar equation Target detection range: 160 m to 250 m, depending on object type
Antenna design focus	Typical gain 10 – 20 dBi, higher antenna gain is not beneficial 35 - 40 dBi in Japan radar regulation will not capitalize in higher performance
	Output power typ. 10 mW – 15 mW for individual Tx Aggregation of power by multi-Chip integration 10 Tx Antennas = 10*15 mW = 150 mW Output power

Multi Tx high radar will have higher conducted output power exceeding 10mW limit

Transmit Power / Physical detection range relationship Comparing different sensor functions *Source: ETSI TR 103 593 V1.1.1 Table 5

Radar type	Sensor Function		Bandwidth requirement	Radio power requirement [Average e.i.r.p]	Detection range
Short range	Blind spot detection		800 MHz	26 dBm	Child at 20 m Pedestrian at 23 m Bicycle at 31 m
Mid range	Lane change assist, Front and rear traffic alert		450 MHz	35 dBm	Child at 44 m Pedestrian at 58 m Bicycle at 69 m Motorcycle at 94 m Vehicle at 166 m
Long range	Adaptive cruise control Emergency Brake	Contra	250 MHz	40 dBm	Motorcycle at 166 m Vehicle at 296 m

Under current regulations, Radar sensors cannot meet future requirements for the detection range of objects

Radar detection range for MIMO sensor design Conducted output power versus Radiated power [example]

Conducted power TRP calculation for 10 Tx antennas [assume 25mW (14dBm) output per antenna] > EU / US: No limit 24 dBm = 250 mW = 10 Tx * 25 mW (= 14 dBm)
 > Japan: Limited to 10 mW + 50% production tolerance 12 dBm = 15 mW

Radiated power EIRP = Conducted antenna power + Antenna Gain [assume antenna gain =13 dBi] > EU / US: Average power 37 dBm EIRP = 24 dBm + 13 dBi
> Japan: Burst power test method (3dB reduction) 22 dBm EIRP = 12 dBm + 13 dBi - 3 dB

	Detection Range Comparison EU/ US and Japan	Child Bicycle Motor Bike Vehicle	RCS [sqm] 0.1 0.3 1 10	22 dBm 22 m 29 m 39 m 70 m	37 dBm 53 m 69 m 93 m 166 m
	Based on radar equation:	$Range = \sqrt[4]{rac{P_r}{(4\pi)^2}}$	$\frac{\sigma c^2 G_r^2}{g_O^2 P_{min}}$		

@ntinental <u></u>∱

Summary Importance of worldwide standardization in radar

- ISO / UN ECE standards will drive performance in radar technology
- > Driving function requirements challenges frequency regulation
- For global automotive market: Worldwide alignment in frequency regulation and band allocation needed
- New radar technology and chip set technology towards higher number of antennas needed for high performance radars
- Japan regulation in methods and limits should be reconsidered based on new radar technology and upcoming driving function rules

