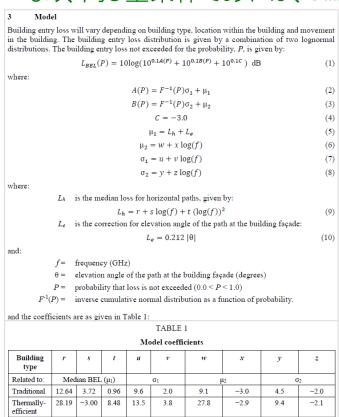
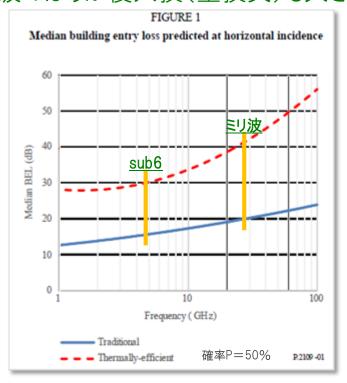
資料21-3

ロー力ル5G ~建物侵入損に関する補足~

2024年3月27日 阪神電気鉄道株式会社 情報·通信統括部

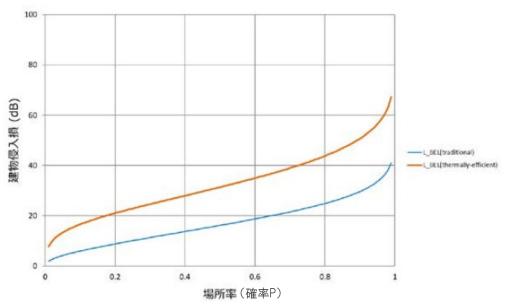
はじめに


位置づけ


- □本資料は、ローカル5G検討作業班・第20回会合で提案のあった、「電波法関係審査基準」における『建物侵入損が大きい壁面について明記』に関し、考え方を整理するための補足情報としてまとめたものです
 - ✓前回作業班会合の質問では、ローカル5G開発実証における断熱効果(遮蔽効果)の高い壁損失の測定データのうち、sub6を中心にまとめられていると感じられたため、ITU-R P.2109に基づく「Thermally-efficient」の値を扱う提案への導きにおいて、ミリ波についてもう少し説明を加えた方がよいのでは?という趣旨から意見を述べたものです
- □本資料では、sub6/ミリ波の測定データの組合せによる考察、および 追加の測定データを示した上で、あらためて勧告ITU-R P.2109で求め られる建物侵入損のうち「Thermally-efficient」についても、断熱効果 (遮蔽効果)の高い壁損失の標準的な数値として、免許申請者が(選 択して)扱えるよう提案するものです
 - ✓ sub6:31.4dB @Thermally-efficient %16.2dB @Traditional
 - ✓ミリ波:41.5dB @Thermally-efficient ※20.1dB @Traditional

【参考】勧告ITU-R P.2109について

- [Prediction of building entry loss]
 - ■80MHz~73GHzの実験データを基にした数式モデル
 - ✓ 2つの建物侵入損が計算できる(traditional、thermally-efficient)
 - ✓ 2GHz以上では、運用周波数が高くなると損失も大きくなる
 - ✓ つまり、同じ壁条件であれば、sub6よりもミリ波のほうが侵入損(壁損失)も大きくなる


【参考】現在の審査基準で使われている値

・過去の共用検討(最悪値条件)を基に設定

□基地局を屋内に設置する場合の建物侵入損(sub6、ミリ波)

✓勧告ITU-R P.2109に基づく算出

建物の種別 ^(注)	場所率に応じた建物侵入損				
连初07程加 ·····	5%	10%	20%	50%	
Traditional	4. 2dB	6. 0dB	8. 8dB	16. 2dB	
Thermally-efficient	13. 3dB	16. 6dB	21. 0dB	31. 4dB	

(注) Thermally-efficient: 金属化ガラス、金属ホイルを裏打ちしたパネルを用いた建物、

Traditional: 前記以外の建物

	100 -						
	80 -						
損 (dB)	60 -						
建物侵入損 (dB)	40 -						L_BEL(traditional) L_BEL(thermally-efficient)
	20 -						
		0	.2 0.			.8 1	
				場所率(確	率P)		

建物の種別 ^(注)	場所率に応じた建物侵入損				
姓物の性別 …	5%	10%	20%	50%	
Traditional	4. 8dB	6. 9dB	10. 6dB	20. 1dB	
Thermally-efficient	15. 0dB	19. 4dB	26. 2dB	41. 5dB	

(注)Thermally-efficient: 金属化ガラス、金属ホイルを裏打ちしたパネルを用いた建物、

Traditional:上記以外の建物

・測定結果および考察

■Sub6の場合

✓ 断熱効果の高い壁条件で、評価値(31.4dB)を超える損失データが確認できた

■ミリ波の場合

- ✓ミリ波を扱う実証事業が少なく、また、断熱効果の高い壁条件での測定データが ないため、評価値(41.5dB)を超えるデータは確認できなかった
- ✓ 一方で、sub6における測定では「41.5dB」を超えるデータが多数確認できている ことから、同一の壁条件であれば、ミリ波の方がより大きな損失となることが期待で きる

ローカル5G開発実証の測定結果 ※ローカル5G検討作業班·第20回会合の報告書より(2024年2月28日)

測定場所における建物の壁や環境条件	sub6	ミリ波	備考	実証実施年度
コンクリート99%、金属開口部1%	31.4dB		火力発電所	R3年度
石膏ボード+グラスウール+コンクリート	54.0dB		コンサートホール	R3年度
鉄筋枠+鋼製サンドイッチパネル	≥44.7dB		データセンター	R4年度
内壁(移動観客席、金属メッシュの空調設備)+外壁	34.4dB		体育館	R4年度
放射線遮へい壁+内壁(石膏ボード)+外壁(コンクリート、ガラス)	55.7dB		病院	R4年度
外壁(フレキシブルボード+木材)など複数		35.4dB	公共施設	R4年度
コンクリート壁や金網、ホーム側面の開放箇所を含む地点		30.8dB	駅	R4年度

ローカル5G開発実証から得られたデータ② いる 神の 電車

- ローカル5Gの更なる高度化等に向けた技術実証業務(R4年度)
 - □実証コンソーシアムの測定データ(不足等)を補完する目的で実証を実施
 - ✓ 主に28GHz帯における「電波伝搬モデルの精緻化」「エリア構築の柔軟性向上」を対象
 - ■測定結果 ※1)
 - (1) フロア上下階における損失R値(屋内実証)
 - ▶ ビル4階フロアの受信電力(-81.25dBm)に対し、3階・5階フロアでは測定範囲外となったことから、測定器の測 定限界(-130dBm以下)との差から48.75dB以上の遮蔽効果が得られたとまとめている
 - ② 電波反射板の遮蔽効果における損失R値(屋内実証)
 - ▶ ビルの廊下を塞ぐように設置したアルミ板を用いた測定で、アルミ板近傍の受信電力(-83.6dBm)に対し、反対 側で測定範囲外となったことから、測定器の測定限界(-130dBm以下)との差から40dB以上の遮蔽効果が得 られたとまとめている
 - □本測定結果についても、ミリ波における評価値「41.5dB」と同程度、あるいは超える損 失データとして扱えるものと考えられる

技術実証業務における損失R値の測定結果 ※1)

測定場所における建物の壁や環境条件	ミリ波	備考	実証実施年度
デッキプレート構造による床(天井)の遮蔽構造	48.75dB以上	オフィスビル	R4年度
アルミ板(厚さ3mm)における遮蔽環境	40dB以上	オフィスビル	R4年度

※1)出典:令和4年度 課題解決型ローカル5G等の実現に向けた開発実証【開発実証事業】ローカル5Gの更なる高度化等に向けた技術実証業務成果報告書(2023 年3月)より抜粋して掲載(97ページ、348ページ等)

まとめ

結論

- □以上により、ローカル5G開発実証の成果を踏まえ、断熱効果(遮蔽効果)の高い壁損失の標準的な数値として、勧告ITU-R P.2109による "Thermally-efficient"の数値を『審査基準』で適用することは、基本的に問題ないものと考えられる
- □ただし、免許申請者が自由に選択できるようになることから、審査基準における記載や確認・記録方法(例えば、壁の種類・材質の情報提出や、干渉発生時の情報開示など)については、十分な配慮が有効になると考えられる

sub6/ミリ波のエリア算出におけるR値の追加(案)

R値	一般的な壁損失 (Traditional)	断熱効果・遮蔽効果の高い壁損失 (Thermally-efficient)
sub6	16.2dB	<u>31.4dB</u>
ミリ波	20.1dB	<u>41.5dB</u>

※) 勧告ITU-R P.2109の実験式で、確率P=50%で求めた値

参考資料

P. 8

【参考】ローカル5G開発実証の報告より

・R3年度の実証の精緻化R

実証 No	実証場所	<u>壁面</u>	精緻化R
No.02	牛舎	プラスチック材、ビニール材、コンクリートで構成	3.5
		扉の常時開放状態で開口部が多い	5.6
		プラスチック材、ビニール材、コンクリートで構成	3.6
		窓などの開口部が多い壁面	8.4
No.07	工場	石膏ボード76%、鉄14%、ガラス10%	18.5
		石膏ボード76%、鉄14%、ガラス10%	17.5
No.09	火力発電所	コンクリート99%、金属開口部1%	31.4
No.18	国際会議場	石膏ボード	5.5
		壁2枚、内壁:石膏ボード+外壁:コンクリート80%、ペアガラス20%	16.3
		Low-E複層ガラス	11.4
		合わせガラス	2.9
No.20	ドーム球場	コンクリートの4層構造、店舗や通路がある	29.8
No.21	コンサートホール	石膏ボード+グラスウール+コンクリート	54.0
No.22	体育館	コンクリート85%、ガラス15% + 内壁5層程度	22.4
		コンクリート95%、ガラス5%	15.6
		コンクリート40%、ガラス60% + 内壁2層程度	8.2
		コンクリート40%、ガラス60% + 内壁2層程度	9.6
No.25	市街地	集合住宅	12.0
No.26	救命救急センター	28GHz コンクリート70%、ガラス30%	17.6

【参考】ローカル5G開発実証の報告より

•R4年度の実証の精緻化R

実証No	実証場所	伝搬路概況	精緻化R
開07	データセンター	鉄筋枠+鋼製サンドイッチパネル	≥44.7
開14	体育館	内壁(移動観客席、金属メッシュの空調設備)+外壁(コンクリート)、ガラス	19.6
		内壁(金属メッシュの空調設備)+ガラス	19.6
		内壁(移動観客席、金属メッシュの空調設備)+外壁	34.4
		内壁(金属メッシュの空調設備)+外壁	19.6
		内壁(移動観客席)+倉庫+外壁	34.4
		内壁最大3層+外壁最大2層	34.4
		内壁(移動観客席)	34.4
		内壁(移動観客席)、ガラス	19.6
開17	公共施設	28GHz帯、外壁(フレキシブルボード+木材)など複数	35.4
開18	病院	バルコニー構造、床面(デッキプレート)	58.3
開19	病院	放射線遮へい壁+内壁(石膏ボード)+外壁(コンクリート、ガラス)	55.7
		放射線遮へい壁+内壁+外壁	49.4
		放射線遮へい壁+内壁+外壁	59.9

実証No	実証場所	伝搬路概況	精緻化R
特02	首都高速	高架	22.9
		28GHz帯、遮音壁(ポリカーボネート製)	2.0
		28GHz帯、遮音壁(ポリカーボネート製)	5.5
特03	駅	28GHz帯、指向方向上の線路及び道路上	29.4
		28GHz帯、コンクリート壁や金網、ホーム側面の開放箇所を含む地点	30.8
		28GHz帯、隣接建物によって隔てられた地点	25.6

EOF