資料22-3-6

諮問第3号

「国際無線障害特別委員会(CISPR)の諸規格について」

のうち

「情報技術装置からの妨害波の許容値と測定法」

| 目 次 |  |
|-----|--|
|-----|--|

| 総論                                                         |
|------------------------------------------------------------|
| 1. 適用範囲および目的 ····································          |
| 2. 引用規格1                                                   |
| 3. 定義                                                      |
| 4. 情報技術装置 (ITE) の区分                                        |
| 4. 1 クラスB情報技術装置                                            |
| 4. 2 クラスA情報技術装置                                            |
| 5. 電源ポートおよび通信ポートの伝導妨害波の許容値6                                |
| <ol> <li>1 電源ポートの伝導妨害波電圧の許容値</li></ol>                     |
| <ol> <li>3 通信ポートの伝導コモンモード妨害波の許容値</li></ol>                 |
| <ol> <li>6. 放射妨害波の許容値</li></ol>                            |
| 6.1 1GHz以下の許容値8                                            |
| 6.2 1GHz以上の許容値                                             |
| 7. CISPR無線妨害波許容値の解釈10                                      |
| 7.1 CISPR許容値の意義10                                          |
| 7. 2 量産装置の適合試験での許容値の適用10                                   |
| 8. 一般測定条件                                                  |
| 8. 1 周囲雑音                                                  |
| 8. 2 一般試験配置                                                |
| 8.3 供試装置(EUT)の配置15                                         |
| 8. 4 供試装置(EUT)の動作                                          |
| 9. 電源ポートおよび通信ポートにおける伝導妨害波の測定法19                            |
| 9.1 測定用検波器                                                 |
| 9. 2 測定用受信機                                                |
| 9. 3 擬似電源回路網(AMN) ······20                                 |
| 9.4 大地面                                                    |
| 9.5 供試装置の試験配置 ····································         |
| <ol> <li>9.6 通信ポートにおける伝導妨害波の測定法</li></ol>                  |
| 9.7 測定の記録                                                  |
| 10. 放射妨害波の測定法 ····································         |
| 10.1 測定用検波器                                                |
| 10.2 1GHz以下の測定用受信機                                         |
| 10.3 1GHz以下のアンテナ                                           |
| 10.4 1GHz以下の放射妨害波測定用の測定サイト                                 |
| 10.5 1GHz以下の供試装置の試験配置 ···································· |
| 10.6 1GHz以上の放射妨害波の測定法                                      |
| 10.7 放射妨害波測定値の記録                                           |

| 10.8 高レベルの | 周囲雑音の存在下での測定 | 2 |
|------------|--------------|---|

| 付則A(規定)-代替テストサイトでのサイトアッテネーション測定法45 |
|------------------------------------|
| 付則B(規定)-尖頭値測定の判定ツリー                |
| 付則C(規定)-コモンモード妨害波測定のための可能な試験配置     |
| 付則D(情報)-擬似通信回路網(ISN)の構成例67         |
| 付則E(情報)-通信ポートにおける信号のパラメータ          |
| 付則F(情報)-通信ポートの妨害波測定方法の妥当性80        |
| 付則G(情報)-数種類のITEに対する動作モード           |
|                                    |

| 図1-テストサイト                               |
|-----------------------------------------|
| 図2-代替テストサイトの最小寸法                        |
| 図 3 - 金属大地面の最小寸法                        |
| 図4-卓上型装置の試験配置例(伝導および放射妨害波測定)(平面図)       |
| 図5-卓上型装置の試験配置例(伝導妨害波測定 · 試験配置1a)        |
| 図6-卓上型装置の試験配置例(伝導妨害波測定 ・試験配置1b)         |
| 図7-卓上型装置の試験配置例(伝導妨害波測定 - 試験配置2)         |
| 図 8 - 床置型装置の試験配置例(伝導妨害波測定)              |
| 図9-卓上型装置と床置型装置との組み合わせの試験配置例(伝導妨害波測定)40  |
| 図10-卓上型装置の試験配置例(放射妨害波測定)                |
| 図11-床置型装置の試験配置例(放射妨害波測定)42              |
| 図12-床置型装置(架上配線)の試験配置例(伝導および放射妨害波測定)43   |
| 図13-試験配置例 卓上型装置と床置型装置との組み合わせ(放射妨害波測定)44 |
|                                         |
| 図A.1-代替テストサイトでのNSA測定のための代表的なアンテナ配置      |
| 図A.2-推奨の最小領域での代替テストサイトのためのアンテナ配置        |
|                                         |
| 図B.1-尖頭値測定の判定ツリー                        |
|                                         |
| 図C.1-IEC61000-4-6に示されたCDNをCDNまたはISNとして  |
| 使用する測定法                                 |
| 図C.2-150Ω負荷をシールドの外側表面に接続する方法            |
| (設置場所でのCDNまたはISN)                       |
| 図C.3-電流プローブと容量性電圧プローブの組合せによる方法          |
| 図C.4-シールドと大地面との接続がなくISNもない方法63          |
|                                         |

| 図C. | 5 - | - 較正方法  |      |      | • • • • • • • • • • |      | <br> | <br> | • • • • • • • • • • • | 65 |
|-----|-----|---------|------|------|---------------------|------|------|------|-----------------------|----|
| 図C. | 6 - | - 試験方法: | を選択す | るための | フロー                 | チャート | <br> | <br> |                       |    |

図D.2-シールドのない1対および2対の平衡線に使用できるLCLの高いISN ………68

図D.3-シールドのない1対,2対,3対および4対の平衡線用のLCLの高いISN ………69

図D.4-電圧測定ポートに50Ωの整合回路を有するシールドのない平衡2対線用のISN ……70

図D.6 - 電圧測定ポートに50 $\Omega$ の整合回路を有するシールドのない平衡4対線用のISN ……72

- 図D.8-中心導体と外部導体を例えばフェライトコアにバイファイラー巻きした

コモンモードチョークコイルを内部に有するシールドのある多線ケーブル用の I S N 75 図D.11-内部にミニチュア同軸ケーブルとフェライトコアで構成した

コモンモードチョークコイルを有するシールドのある多線ケーブル用のISN………75

図F.1-TCMインピーダンス150Ωで定義された許容値を考えるための基本回路 ………83

- 図F.2-未知のTCMインピーダンスにおける測定の基本回路 ……………………………83
- 図F.3-図C.2の構成要素のインピーダンス配置 …………………………………………85

図F.4-150Ωとフェライトによる合成インピーダンスの基本試験配置……………87

- 表A.1-正規化サイトアッテネーション(A<sub>N</sub>)
- (半波長同調ダイポールアンテナを用いる場合に適用) (水平偏波) ……………………47
   表A.2-正規化サイトアッテネーション (A<sub>N</sub>)
   (半波長同調ダイポールアンテナを用いる場合に適用) (垂直偏波) ………………48
- 表A.3 同調ダイポールアンテナを用いた正規化サイトアッテネーション測定に使用する

相互インピーダンス補正係数(ΔAFTOT)

(自由空間におけるアンテナ係数を用いる場合) ………………………………………………………49

表A.4-同調ダイポールアンテナを用いた正規化サイトアッテネーション測定に使用する

- 相互インピーダンス補正係数(ΔAFTOT)
- 表A.5-同調ダイポールアンテナを用いた正規化サイトアッテネーション測定に使用する

相互インピーダンス補正係数(ΔAFTOT)

- 表A.6-正規化サイトアッテネーション(AN)
- 表A.7-80MHz同調ダイポールアンテナ(固定長)を用いた正規化サイトアッテネーション 測定に使用する相互インピーダンス補正係数(ΔAF ror)
- 表 F.1 付則 C に記載されている測定法の利点と欠点 …………………………………………………………81

総論

本規格は、国際電気通信標準会議(IEC)/国際無線障害特別委員会(CISPR)より勧告された国際規格CISPR22第5.2版(2006-03)「情報技術装置(ITE)からの妨害波の許容値と 測定法」に準拠するものである。

なお、付則A、BおよびCは、この規格の一部であり、付則D、E、FおよびGは情報である。

本規格を適用する無線周波数の範囲は、9kHz~400GHzであるが、許容値は、無線放送お よび通信サービスを保護し、適切な距離で他の機器が意図するよう動作するために装置が十分に低い 放射レベルに抑制されるよう検討され、限られた周波数範囲についてのみ定められている。

1. 適用範囲および目的

本規格は、3.1項で定義する情報技術装置(ITE)に適用する。ITEが発生するスプリアス 信号レベルの測定法、および9kHz~400GHzの周波数範囲におけるクラスA情報技術装置お よびクラスB情報技術装置の両方の許容値を規定している。許容値が規定されていない周波数範囲で は、測定の必要はない。

本規格の目的は、適用範囲に含まれる装置の無線妨害波レベルに対して統一的な要求条件を確立す ること、妨害波の許容値を定めること、測定法を明確にすること、動作条件および結果の解釈を標準 化することである。

2. 引用規格

次に示す引用規格は、本規格を適用する上で不可欠なものである。発行年月が記された引用規格は、 その版のみを適用する。発行年月が無い引用規格については、修正文書も含めて引用規格の最新版を 適用する。

- JISC8303:1993
   配線用差込接続器
- (2) JISC61000-4-6:2006 電磁両立性(EMC)-試験および測定方法

-無線周波数電磁界によって誘導される伝導妨害波イミュニティ

- (3) CISPR11:2003 工業、科学および医療用(ISM)高周波利用設備

   -電磁妨害特性-許容値および測定方法
- (4) 情報通信審議会諮問第3号「国際無線障害特別委員会(CISPR)の諸規格について」のうち、「無線妨害波及びイミュニティ測定装置の技術的条件」について(平成19年度答申) 「音声およびテレビジョン放送受信機並びに関連機器の無線妨害波特性の許容値と測定法 (CISPR 13 第4版: 2001、修正1:2003、修正2:2006)」
- (5) 情報通信審議会諮問第3号「国際無線障害特別委員会(CISPR)の諸規格について」のうち、「無線妨害波及びイミュニティ測定装置の技術的条件」について(平成19年度答申)
   「第1部:無線周波妨害波及びイミュニティ測定装置
   第1編:測定用受信機 (CISPR 16-1-1 第2.1版: 2006)」

1

(6) 情報通信審議会諮問第3号「国際無線障害特別委員会(CISPR)の諸規格について」のうち、「無線妨害波及びイミュニティ測定装置の技術的条件」について(平成19年度答申)
 「第1部:無線周波妨害波及びイミュニティ測定装置

第2編:補助機器 - 伝導妨害波 (CISPR 16-1-2 第1版:2003、修正1:2004)」

- (7) 情報通信審議会諮問第3号「国際無線障害特別委員会(CISPR)の諸規格について」のうち、「無線妨害波及びイミュニティ測定装置の技術的条件」について(平成19年度答申)
   「第1部:無線周波妨害波及びイミュニティ測定装置
   第4編:補助機器 放射妨害波 (CISPR 16-1-4 第2.0版: 2007)」
- (8) CISPR16-2-3:2003 無線妨害波およびイミュニティの測定装置特性および 測定法-無線妨害波およびイミュニティの測定方法-放射妨害波測定 修正1(2005)
- (9) CISPR16-4-2:2003 無線妨害波およびイミュニティの測定装置特性および 測定法-測定の不確かさ、統計および許容値モデル-EMC測定における不確かさ
- (10) JISX5150:2004 構内情報配線システム(ISO/IEC 11801:2002)

<sup>1)</sup>上記CISPR16-1-2:2003には、第1版と修正1を合わせた第1.1版(2004)がある。

#### 3. 定 義

本規格の目的のために、次の定義を適用する。

3.1 情報技術装置(ITE)

次のような全ての装置、

- a) データ又は通信メッセージの入力、蓄積、表示、変換、転送、処理、スイッチング、又は制御 のいずれか(又は、それらを組み合わせたもの)の主機能を持つもので、通常、情報の転送を 行わせるために一つ以上の端末ポートを持つこともある。
- b) 定格供給電圧が600Vを超えないもの。

例えば、これには、情報処理装置、事務用機器、電子事務用装置、および電気通信装置が含まれる。

国際電気通信連合(ITU)の無線規則(RR)に規定される無線伝送および/または受信を主機 能とする全ての装置(または情報技術装置(ITE)の部分)は、本規格の適用範囲から除外する。

注)いかなる装置であっても、国際電気通信連合(ITU)の無線規則(RR)で規定される無線伝送および/または受信機能を有するものは、CISPR22が有効であるか否かにかかわらず、国の無線規則に従う。

この周波数範囲におけるすべての妨害要求条件が、明らかに国内法令に規格化されている装置および機器、並びに他の国際電気標準会議(IEC)規格または国際無線障害特別委員会(CISPR)規格の適用を受ける装置については、本規格の適用範囲から除外する。

また、次のものについても適用を除外する。

- (1) 情報技術機能が二次的な動作となっている装置(例えば工業用プラント制御装置)。
- (2) 電気通信事業者が管理する建物内でのみ使用される電気通信施設用物品。

3.2 供試装置(EUT)

代表的な1台の情報技術装置(ITE)、または1台以上のホスト装置を含み機能的に相互作用のある情報技術装置(ITE)のグループ(システム)で、評価に供されるもの。

3.3 ホスト装置

情報技術装置(ITE)システムの一部分またはモジュールのための機械的収納部を有するユニット で、無線周波発信源を有することもあり、または他の情報技術装置(ITE)に電源を分配することも ある。ホスト装置とモジュール、または他の情報技術装置(ITE)との間の電源分配は交流、直流又 はその両方の場合がある。

3.4 モジュール

機能を実行する情報技術装置(ITE)の一部分であって、無線周波発信源を有することがある。

3.5 同一モジュールおよび情報技術装置 (ITE)

量産されたモジュールおよび情報技術装置(ITE)で、指定の製造仕様に対して通常の製造誤差の 許容範囲内に入っているもの。

3.6 通信/ネットワークポート

複数利用者に直接接続する広域電気通信ネットワーク(例:公衆電気通信ネットワーク(PSTN)、 ISDN、xDSL他)、ローカルエリアネットワーク(例:イーサネット、トークンリング他)お よび類似のネットワークに接続することを意図して音声、データ、信号伝送を行うための接続ポイン ト。

注;試験中のITEシステムにおいて各機器間を相互接続するポート(例:RS232、IEEE規格1284(パ ラレルプリンター)、USB、IEEE規格1394(Fire Wire)、他)は、本項の通信/ネット ワークポートに該当しない。

3.7 多機能装置

本規格および他規格に該当する二つまたはそれ以上の機能が同一ユニット内に含まれる情報処理装置。

注:この例としては、

-通信機能または放送受信機能付きパーソナルコンピュータ、

-計測機能付きパーソナルコンピュータ等がある。

- 3.8 トータルコモンモードインピーダンス(TCMインピーダンス)
   試験中のEUTポートに接続されたケーブルと基準大地面間のインピーダンス。
- 注:ケーブル全体が回路の一線路と見なされ、大地面がもう一つの線路として見なされる。 TCM波は電気エネルギーの伝送モードであり、そのケーブルが実際に布線された状態では、電磁エネルギーを 放射する原因となりうる。逆に、外部電磁界の中にそのケーブルを曝した場合には、ケーブル上に電気エネルギー を発生する結果となる。
- 3.9 試験配置(アレンジメント) 試験エリア内に接続されている周辺機器および関連装置を含むEUTの物理的な配置。
- 3.10 試験設定(コンフィギュレーション) EUTの動作モードおよびその他動作上の条件。
- 3.11 関連装置(AE)

EUTの動作を助けるために必要とされる機器。関連装置は物理的に試験エリア外に設置される場合もある。

4. 情報技術装置(ITE)の区分

ITEをクラスA情報技術装置、およびクラスB情報技術装置の二つに区分する。

4.1 クラスB情報技術装置

クラスB情報技術装置は、クラスB情報技術装置の妨害波の許容値を満足する機器である。

クラスB情報技術装置は、主に住宅環境<sup>注)</sup>において使用するよう意図されており、例えば、次の ものが含まれる。

- 固定した場所で使用しない装置、例えば、内蔵電池から給電される携帯用装置

- 電気通信回線網から給電される電気通信端末装置

-パーソナルコンピュータおよび補助的に接続される装置

注)住宅環境とは、当該機器から10m以内の範囲において、放送用受信機および テレビジョン受信機を使用することが予想される環境を意味している。

4.2 クラスA情報技術装置

クラスA情報技術装置は、クラスA情報技術装置の許容値を満足するが、クラスB情報技術装置の 許容値は満足しない全てのITEである。このような種類の装置については、販売に際して制限を加 えるべきではないが、次のような注意書きを取扱説明書に記載しておかなければならない。

注 意

注意書きの例

この製品はクラスA情報技術装置です。住宅環境で使用する場合は、電波障害を発生させる恐れがあります。その際、この製品の利用者は、適切な手段を講ずることが必要とされることがあります。

5. 電源ポートおよび通信ポートの伝導妨害波の許容値

供試装置(EUT)は、第9項に記述される測定法に従って平均値測定用受信機および準尖頭値 測定用受信機を使用し、それぞれの測定値が表1と表3または表2と表4の許容値を満たすこと。表 3または表4の電圧許容値と電流許容値は、いずれか一方を満たすこと。ただし、付則C.1.3に示す 測定では電圧許容値と電流許容値の両者を満たすこと。準尖頭値測定用受信機を使用した測定値が平 均値許容値を満たす場合、EUTは両方の許容値を満たしていると見なされ、平均値測定用受信機に よる測定を必要としない。

測定用受信機の指示値が許容値に近いところで変動する場合、それぞれの測定周波数について、少なくとも15秒間指示値を観察しなければならない。瞬時の孤立した高い値は無視し、それ以外の最 も高い指示値を記録すること。

5.1 電源ポートの伝導妨害波電圧の許容値

| 周波数範囲                   | 許容値 dB(µV) |     |  |  |
|-------------------------|------------|-----|--|--|
| MH z                    | 準尖頭値       | 平均值 |  |  |
| $0.15{\sim}0.50$        | 79         | 6 6 |  |  |
| $0.50 \sim 30$          | 73         | 6 0 |  |  |
| 注)周波数の境界では低い方の許容値を適用する。 |            |     |  |  |

表1-クラスA情報技術装置の電源ポート伝導妨害波電圧の許容値

表2-クラスB情報技術装置の電源ポート伝導妨害波電圧の許容値

| 周波数範囲                                                                      | 許容値 dB             | $(\mu V)$       |  |  |
|----------------------------------------------------------------------------|--------------------|-----------------|--|--|
| MH z                                                                       | 準尖頭値               | 平均值             |  |  |
| $0.15{\sim}0.50$                                                           | $6 \ 6 \sim 5 \ 6$ | $5\ 6\sim 4\ 6$ |  |  |
| $0.50 \sim 5$                                                              | 56                 | 4 6             |  |  |
| $5 \sim 30$                                                                | 6 0                | 5 0             |  |  |
| 注1)周波数の境界では低い方の許容値を適用する。<br>2)0.15MHz~0.50MHzの範囲での許容値は周波数の対数値に対して直線的に減少する。 |                    |                 |  |  |

5.2 通信ポートの伝導コモンモード(非対称モード)妨害波の許容値<sup>2)</sup>

表3 クラスA機器の周波数範囲0.15MHz~30MHzにおける通信ポートの 伝導コモンモード(非対称モード)妨害波許容値

|                                                                                                     | 電圧計<br>dB(µ | 午容値<br>V) | 電流許容値<br>dB(µA) |              |  |
|-----------------------------------------------------------------------------------------------------|-------------|-----------|-----------------|--------------|--|
| 周波茲範囲<br>(MHz)                                                                                      | 準尖頭値        | 平均值       | 準尖頭値            | 平均值          |  |
| $0.15 \sim 0.5$                                                                                     | 97~87       | 84~74     | $53 \sim 43$    | $40 \sim 30$ |  |
| $0.5 \sim 30$                                                                                       | 87          | 74        | 43              | 30           |  |
| 注1:許容値は、0.15~0.5MHzの範囲で周波数の対数に対して直線的に減少する<br>注2:電圧許容値と電流許容値の変換係数は20 log <sub>10</sub> 150=44 dBである。 |             |           |                 |              |  |

注3:但し、本規格を適用する時期ついては、2010年4月1日とする。

表4 クラスB機器の周波数範囲0.15MHz~30MHzにおける通信ポートの

| 周波数範囲                                                                                                                                        | 電圧許容値<br>dB(uV) |              | 電圧許容値     電流許容値       dB(µV)     dB(µA) |       |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-----------------------------------------|-------|
| (MHz)                                                                                                                                        | 準尖頭値            | 平均值          | 準尖頭値                                    | 平均值   |
| 0.15~0.5                                                                                                                                     | 84~74           | $74{\sim}64$ | $40 \sim 30$                            | 30~20 |
| $0.5 \sim 30$                                                                                                                                | 74              | 64           | 30                                      | 20    |
| 生1):許容値は、0.15~0.5MHzの範囲で周波数の対数に対して直線的に減少する<br>生2):電圧許容値と電流許容値の変換係数は20 log <sub>10</sub> 150=44 dBである。<br>注3):但し、本規格を適用する時期ついては、2010年4月1日とする。 |                 |              |                                         |       |

伝導コモンモード(非対称モード)妨害波許容値

2) 3.6項参照

6. 放射妨害波の許容値

6.1 1GHz以下の許容値

第10項に記述される方法に従って測定距離Rで測定した場合、供試装置(EUT)は表5又は表 6の許容値を満たさなければならない。測定用受信機の指示値が許容値に近いところで変動する場合、 それぞれの測定周波数について、少なくとも15秒間指示値を観察しなければならない。瞬時の孤立 した高い値は無視し、それ以外の最も高い指示値を記録すること。

表5-測定距離10mでのクラスA情報技術装置の放射妨害波の許容値

| 周波数範囲<br>MH z                                                 | 準尖頭値許容値<br>d B (µV/m) |  |  |  |
|---------------------------------------------------------------|-----------------------|--|--|--|
| $3 \ 0 \sim 2 \ 3 \ 0$                                        | 4 0                   |  |  |  |
| $2 \ 3 \ 0 \sim 1 \ 0 \ 0 \ 0$                                | 4 7                   |  |  |  |
| 注1)周波数の境界では低い方の許容値を適用する。<br>注2)妨害が発生した場合は、追加の保護手段が要求されることがある。 |                       |  |  |  |

表6-測定距離10mでのクラスB情報技術装置の放射妨害波の許容値

| 周波数範囲<br>MH z                                                 | 準尖頭値許容値<br>d B(µV/m) |  |  |  |
|---------------------------------------------------------------|----------------------|--|--|--|
| $3 \ 0 \sim 2 \ 3 \ 0$                                        | 3 0                  |  |  |  |
| $2 \ 3 \ 0 \sim 1 \ 0 \ 0 \ 0$                                | 3 7                  |  |  |  |
| 注1)周波数の境界では低い方の許容値を適用する。<br>注2)妨害が発生した場合は、追加の保護手段が要求されることがある。 |                      |  |  |  |

第10項に記述される方法および下記に記述された条件付き試験手順に従って測定した場合、供試 装置(EUT)は表7または表8の許容値を満たさなければならない。

表7-測定距離3mでのクラスA情報技術装置の放射妨害波の許容値

| 周波数範囲<br>GHz                           | 平均値許容値<br>dB(μV/m)           | 尖頭値許容値<br>d B (µV∕m) |  |
|----------------------------------------|------------------------------|----------------------|--|
| 1~3                                    | 56                           | 76                   |  |
| $3 \sim 6$                             | 6 0                          | 8 0                  |  |
| 注1)周波数の境界では低い方の許容<br>注2)但し、本規格を適用する時期つ | 値を適用する。<br>いては、2010年4月1日とする。 |                      |  |

表8-測定距離3mでのクラスB情報技術装置の放射妨害波の許容値

| 周波数範囲<br>G H z                                                 | 平均値許容値<br>dB(μV/m) | 尖頭値許容値<br>d B (µV∕m) |  |  |  |
|----------------------------------------------------------------|--------------------|----------------------|--|--|--|
| $1 \sim 3$                                                     | 5 0                | 7 0                  |  |  |  |
| $3 \sim 6$                                                     | 54                 | 74                   |  |  |  |
| 注1)周波数の境界では低い方の許容値を適用する。<br>注2)但し、本規格を適用する時期ついては、2010年4月1日とする。 |                    |                      |  |  |  |

条件付き試験手順

EUTの最も高い内部使用周波数は、EUT内部で発生または使用されるか、EUTを作動または 調整する最高周波数として規定される。

EUT内部使用周波数の最高周波数が108MHz未満であれば、測定は1GHzまで実施する。

EUT内部使用周波数の最高周波数が108MHzから500MHz未満の間であれば、測定は2GHzまで実施する。

EUT内部使用周波数の最高周波数が500MHzから1GHz未満の間であれば、測定は5GHzまで実施する。

EUT内部使用周波数の最高周波数が1GHz以上であれば、測定は最高周波数の5倍の周波数または6GHzのどちらか低い周波数まで実施する。

7. CISPR無線妨害波許容値の解釈

7.1 CISPR許容値の意義

- 7.1.1 CISPR許容値は、国内規格、関連する法規および公的規定に取り込むように各国の主管 庁に勧告している許容値である。国際機関にもこれらの許容値を使用するよう勧告している。
- 7.1.2 装置に対する許容値の意義は、統計的に、量産品の少なくとも80%が、少なくとも80% の信頼度で許容値に適合していることである。

7.2 量産装置の適合試験での許容値の適用

- 7.2.1 試験は、次のいずれかに対して行うこと。
- 7.2.1.1 7.2.3項に規定する統計的な評価法を用いる当該型式の装置の複数台のサンプル。
- 7.2.1.2 または、簡略化のために、1台の装置。
- 7.2.2 特に、7.2.1.2項による場合は、生産品から無作為に選ばれた装置に対して、随時、その後の 試験が必要である。

7.2.3 統計的な適合評価は、次のように行うこと。

この試験は、最低5台以上12台以下のサンプルに対して行うこと。しかし、例外的な場合として、 5台が入手できない場合、3台又は4台のサンプルに試験を行うこと。適合の可否は、次の関係から 判断する。

# $\overline{X}$ + $kS_n \leq L$

ここで、

 $\overline{X}$ はサンプル<sub>n</sub>台の測定値の算術平均値である。

$$S_n^2 = \frac{1}{(n-1)} \Sigma (X_n - \overline{X})^2$$

 $X_n$ は、個々の装置の測定値である。

Lは、適用する許容値。

*k*は、当該装置の80%が許容値を満足することを、80%の信頼度で保証する 非心 t 分布の表から導かれている。

kの値は、サンプル台数nによって決まり、下表に示す。

 $X_n$ 、 $\overline{X}$ 、 $S_n$ およびLの値は、dB( $\mu$ V)、又はdB( $\mu$ V/m)のように対数的に表される。

| n | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|---|------|------|------|------|------|------|------|------|------|------|
| k | 2.04 | 1.69 | 1.52 | 1.42 | 1.35 | 1.30 | 1.27 | 1.24 | 1.21 | 1.20 |

7.2.4 適合可否に対する審理の結果として、販売の禁止又は型式認定の取り消しは、7.2.1.1項に 従って統計的評価法を利用して試験が行われた後にのみ、検討されること。 8. 一般測定条件

8.1 周囲雑音

測定サイトでは、EUTからの妨害波と周囲雑音が識別できなければならない。この観点から、サ イトの適性は、EUTを停止して(注:EUTからの妨害波が出ない状態にして)周囲雑音を測定し、 それらが5項および6項に規定される許容値より少なくとも6dB低いことを確認することによって 決定する。

ある周波数帯域で周囲雑音が規定の許容値より6dB下回っていない場合、10.8項に示す方法 を規定の許容値に対するEUTの適合を示すために使用してもよい。

放射源からの放射妨害波および周囲雑音の合成値が規定の許容値を超えない場合には、周囲雑音レベルを規定の許容値から6dB低い値に減少させる必要はない。この場合、妨害源からの放射妨害波は規定の許容値を満足していると見なす。

妨害源からの放射妨害波および周囲雑音の合成値が規定の許容値を超える場合でも、当該測定周波 数において、次の二つの条件を満足しない限り、EUTが規定の許容値を満たしていないと判断して はならない。

- a)周囲雑音レベルが妨害源からの放射妨害波と周囲雑音レベルの合成値より少なくとも6 d B 低いこと。
- b)周囲雑音レベルが規定の許容値より少なくとも4.8 d B 低いこと。

8.2 一般試験配置

ここに規定されない場合は、代表的な使用例に従ってEUTを構成し、組み合わせ、配置して動作 させること。可能であれば製造業者が指定または推奨する設置方法を試験配置に適用すること。この 配置は通常の代表的な設置方法であること。EUTのインタフェースポートの各タイプごとに最低一 つのインタフェースケーブル/負荷/装置を接続しておくこと。装置の実際の代表的な使用法に従っ て、各ケーブルは終端すること。

同一タイプの複数のインタフェースポートがある場合、追加の接続ケーブル/負荷/装置は事前確 認測定の結果に基づいてEUTに加えられなければならない。追加するケーブルまたはワイヤの数は、 ケーブルまたはワイヤの追加が放射レベルに大きく影響しない条件(例えば2dB以下の変動でEU Tが適合し続けている)に制限してもよい。装置の配置およびポートの負荷の選択の根拠をテストレ ポートに記述すること。

相互接続ケーブルは、個々の装置の要求条件に規定された形式および長さが望ましい。種々の長さのケーブルが用意されている場合は、最大妨害波を発生する長さにすること。

適合性を得るために、シールド・ケーブルまたは特別なケーブルを使用した場合は、このような ケーブルを使う必要があることを示す注意書きを取扱説明書に記述すること。 余分な長さのケーブルは、0.3m から 0.4m の長さでケーブルのほぼ中央で束ねておくこと。 ケーブルの大きさや固さのため、またはユーザ設置場所での試験のため、束ねることが出来ない場合 には、余分なケーブルの処理を試験報告書に詳細に記録しておくこと。

同じ形式のインタフェースポートが複数ある場合、その当該形式の一つのポートにのみケーブルを 接続してもよい。ただし、同じ形式の他のポートにケーブルを追加しても、測定結果に重要な影響を 与えないことを確認しておくこと。

測定結果が再現できるように、ケーブルおよび装置の配置や向きの詳細な説明を測定結果に添付し なければならない。許容値に適合するために使用上の特別な条件がある場合は、それらの条件、例え ば、ケーブルの長さ、ケーブルの形式、シールドおよび接地などを規定し、文書化すること。これら の条件は、使用者用の説明書に記載しなければならない。

複数のモジュール(ドロア、プラグイン・カード、ボード等)を使用するようになっている装置は、 通常の使用例に従って複数組み合わせ、代表的な状態で試験すること。追加するボードまたはプラグ イン・カードの数は、ボードまたはプラグイン・カードの追加が放射レベルに大きく影響しない条件 (例えば2dB以下の変動で、EUTが適合し続けている)に制限してもよい。モジュールのタイプ および数について選択の根拠をテストレポートに記述すること。

多くの独立したユニットからなるシステムは、最小の代表的な構成例となるように配置すること。 この試験配置に含まれる複数の組み合わせのユニットは、通常の使用状態を代表するものであること。 ユニットを選択した根拠をテストレポートに記述すること。

代表的な最小構成のシステムを次に示す。

パーソナルコンピュータまたはパーソナルコンピュータの周辺装置の場合、最小構成のシステムは、 次に分類される装置から構成され、一緒に試験される。

- a) パーソナルコンピュータ
- b) キーボード
- c) 画像表示装置
- d) 使用可能な二つの異なったタイプの I / O プロトコル(例えば、シリアル、パラレル等)の 各々に対する外部周辺装置
- e) EUTが特別の目的を持つ装置、例えばマウス、ジョイスティック等のための専用ポートを 持つ場合、その装置は最小構成の一部であること。
- 注)あるシステムの場合、a)、b)および/またはc)は、同じシャーシに組み立てられている。
   a)、b)、c)、マウスまたはジョイスティックコントロールが、d)の代わりに使用されることはない。

POS端末の場合、最小構成(適切な程度に)のシステムは、次に分類される装置から構成され、 一緒に試験される。

- a) アクティブプロッセッサ
- b) 現金引き出し機
- c) キーボード類
- d) ディスプレイユニット(操作者および顧客用)
- e)代表的な周辺装置(バーコード読み取り機)
- f) 手持ち機器 (バーコード読み取り機)

EUTとして評価されるITEの内部のモジュールは、それぞれのタイプごとに一つのモジュール を動作させること。EUTがシステムの場合、システムを構成することができるITEは、それぞれ のタイプごとに一つのITEをEUTの中に含むこと。

広い場所に分散されたシステムの部分を構成する装置のユニット(例えば、情報端末装置、ワーク ステーション、PBX等)およびそれ自体がサブシステムとなる装置のユニットは、ホストまたはシ ステムから独立して試験してもよい。分散型ネットワーク、例えば、LANは、テストサイト上で、 ある長さのケーブルと、実際の周辺装置あるいは遠隔ネットワーク通信シミュレータを用いてシミュ レートしてもよい。ただし、それらは測定値に影響を与えないことを保証するのに十分な距離に設置 する必要がある。

各型式のモジュールまたはITEを一つずつもつEUTの評価の結果は、二つ以上のモジュールまたはITEをもつ構成に適用できる。この適用が認められる理由は、複数の同一のモジュールまたはITE(3.5項参照)からの放射妨害波は、現実には加算的ではないことが一般に知られているからである。

電源インタフェースがホスト装置に依存する任意のITEも含めて、機能的に他のITEと相互に 影響しあうEUTの場合、代表的な動作状態を得るため、実際にインタフェース機能をもつITEま たはシミュレータのいずれかを使用することができる。ただし、シミュレータを使用する場合、シ ミュレータの影響を分離できるかまたは確認できることが必要である。もしITEが他のITEに対 してホスト装置になるように設計されている場合、ホストとなるITEは、通常の条件の下でホスト 装置として動作するように接続しなければならない。

インタフェース機能を持つ実際のITEのかわりに使用されるシミュレータは、当該ITEの電気 的特性、特にRF信号およびインピーダンス、場合によっては機械的特性を適切に持つことが重要で ある。この手順に従うことによって個々のITEの測定結果は、異なった製造業者によって製造およ び測定されたITEを含めて、他の同様に試験されたITEのシステムの一体化や応用にも有効とな る。

ホスト装置の様々な拡張のために別売りされるプリント配線板アッセンブリ(PWBA、例: IS DNインタフェース・ボード、CPUボード、アダプタ・カード等)の適合性を確認するためには、 プリント配線板アッセンブリ(PWBA)が搭載されることを意図するホスト装置群から製造業者が 選択した少なくとも1台の代表的なホスト装置に搭載して試験しなければならない。

ホスト装置は、代表的な製造サンプルであること。

クラスB情報技術装置に搭載することを意図するPWBAは、クラスA情報技術装置に属するホスト装置に搭載して試験をしてはならない。

PWBAに添付する説明書には、PWBAを搭載して試験・評価したホスト装置についての情報、 およびPWBAがいずれの区分(クラスA情報技術装置またはクラスB情報技術装置)のホスト装置 に適合しているか判別できるような情報を記載しておくこと。

**8.2.1** 最大放射配置の決定

事前確認測定は、許容値に対する最大妨害波の発生周波数を確認するものである。EUTの設置方 法を代表する配置において、典型的な動作モード、ケーブル配置でEUTを動作させながら確認する こと。

多くの有意な周波数の妨害波を調べることによって、許容値に対応する最大妨害波の周波数を確認 すること。最大妨害波を発生すると予想される周波数、付属ケーブル、EUTの配置および動作モー ドを見極めることが可能となる。

事前確認測定は、図4から図13に従ってEUTを適切に配置すること。

最終測定は、伝導妨害波および放射妨害波の各々について、9項および10項に定める方法を用い て実施すること。

8.3 EUT配置

基準大地面に対するEUTの位置は、使用時の状態と同等とすること。すなわち、床置型装置は基 準大地面上に絶縁した状態で設置し、卓上型の装置は非導電性テーブルに設置する。

壁掛け装置は卓上型EUTとして試験を実施すること。装置の置き方(向き)は通常の設置方法に 合わせること。

上記タイプのEUTの組み合わせ型装置は、通常の設置方法で配置すること。卓上型および床置型 の両方の型として設計された装置は、通常の設置方法が床置きである場合を除き卓上型装置として試 験を実施すること。

他ユニット、ISNまたは関連装置に接続しないEUT付属の信号線の末端は、必要であれば、適切な終端インピーダンスで終端すること。

15

試験領域外(注:テストサイトの外あるいは基準大地面の下等)に置かれた関連装置への通信線も しくは接続線は、床に垂らし、そしてテストサイトの出口まで引き回すこと。

関連装置は通常の設置方法で設置すること。関連装置がテストサイト上に置かれる場合は、EUT に対して適用される条件で配置すること(例、大地面からの距離、床置きの場合の大地面からの絶縁、 ケーブルの配置、等々)。

注)特別な大地面の要求事項は、伝導妨害波測定については9.4項、放射妨害波測定については10.4.4項、特別な試験配置については9.5項および10.5項で規定する。

図4から図13は試験配置例と手引きのみである。文中で記述された要求事項が優先する。

8.3.1 卓上型装置の配置

一般条件は8.3項を適用する。

卓上型装置は非導電性テーブルに配置すること。テーブル寸法は通常 1.5m×1.0m とするが、最終的にはEUTの水平方向の寸法に依存する。

EUTシステムを構成する全ての装置ユニット(EUT並びに接続された周辺装置および関連装置 または機器)は、隣接するユニットとの間隔を通常 0.1m として配置すること(図4を参照)。ユ ニットが通常積み重ねて置かれる場合、そのユニットは他ユニットの上に直接配置すること(例、モ ニタとデスクトップPC)、そしてEUT配列の後ろ側に配置すること(図4に示された周辺機器の 位置1または2)。

配置の後ろ側は、可能な場合もしくは通常の使用状態であるならば、テーブルの後面に沿って配列 することが望ましい。このことは、テーブルの拡張を必要とする場合もある。後面に沿った配置がで きない場合、追加のユニットは図4に示すようにテーブルの両サイドの周りに配置する。位置1およ び位置2は、図4のように二つまでのユニットに使用すること。二つを越えるユニットで、各々が通 常近接配置しない場合、試験配置におけるユニットの間隔は実際上可能な限り 0.1m という距離を 維持すること。

ユニット間のケーブルはテーブルの後面で垂れ下げること。ケーブルが水平大地面(または床面) に 0.4m より近づく場合、ケーブルの余長を中心付近で 0.4m 以内に束ね、束ねたケーブルの高さ は水平基準大地面上で少なくとも 0.4m となること。

キーボード、マウス、マイクロフォン等のような機器のケーブルは、通常使用するように配置すること。

外部電源供給ユニットの配置は下記に従うこと:

- a) 外部電源供給ユニットの電源入力線の長さが 0.8m を超える場合、外部電源供給ユニットをホ ストユニットから通常 0.1m 離して卓上に配置すること。
- b) 外部電源供給ユニットの電源入力線の長さが 0.8m より短い場合、外部電源供給ユニットを入 力電源コードが大地面上で垂直方向に十分に伸ばしきるような高さに配置すること。
- c) 電源プラグが外部電源供給ユニットに組み込まれている場合、そのユニットを卓上に配置するこ と。外部電源供給ユニットと電源(テストサイトのEUT用電源)の間に延長コードを使用す ること。延長コードは、外部電源供給ユニットと電源の間で最短の経路になるように接続する こと。

上記の配置で、EUTと外部電源供給ユニット間のケーブルは、EUTの各機器を接続するケーブルと同様に配置すること。

8.3.2 床置型装置の配置

一般条件は8.3項を適用する。

EUTは水平基準大地面に通常使用される置き方で、また、15cm 以下の絶縁材で基準大地面の金 属面との接触を分離して配置すること。

ケーブルは水平基準大地面から絶縁すること(15cm 以内で)。装置の接地が指定されている場合、水平大地面にボンディングすること。

ユニット間のケーブル(EUTを構成するユニット間、EUTと関連装置間)は、水平基準金属面から絶縁された状態で水平基準金属面に垂れ下げること。ケーブルの余長を中心付近で 0.4m 以内に束ねるか、または蛇行させて配置すること。

ユニット間のケーブルが水平基準面に垂れ下げる程の十分な長さではないが水平基準面に 0.4m より近づく場合、ケーブルの余長を中心付近で 0.4m 以内に束ねること。束ねたケーブルは、水平 基準大地面上 0.4m、または、水平基準大地面に 0.4m より近づく場合はケーブルコネクタの位置 の高さに配置すること(図8および図11を参照)。

ケーブルラックを有する装置の場合、ケーブルラックの数は代表的な設置方法とすること。ケーブ ルラックは非導電性で、装置の最も近い部分と最も近接する垂直ケーブルの間隔を 0.2m に維持す ること。ケーブルラック構造物が導電性の場合、装置の最も近い部分とケーブルラックの間隔を少な くとも 0.2m とすること。 8.3.3 卓上型装置と床置型装置との組み合わせの配置

8.3.1項および8.3.2項に加えて下記の要求事項を適用すること。

卓上型装置と床置型装置の間を接続するケーブルは、ケーブルの余長を 0.4m 以内に束ねること。 束ねたケーブルは、水平基準大地面上 0.4m、または、水平基準大地面に 0.4m より近づく場合は ケーブル入力/接続位置の高さに配置すること(図9を参照)。

8.4 EUTの動作

EUTの動作条件は、最も高い放射レベルとなるであろうEUTの代表的な使用例に従って製造 者が決定すること。決定された動作モードと、その条件の根拠をテストレポートに記載すること。数 種類のITEに関する推奨動作モードを付則Gに示している。

EUTについては、設計された定格(定常)動作電圧、および規定の負荷条件(機械的、電気的 またはその両方)で動作させなければならない。可能な場合、通常、実負荷を使用すること。シミュ レータを使用する場合には、シミュレータは無線周波特性および機能特性が実負荷と同等であること。

装置を動作させる試験プログラムやその他の手段は、全てのシステムからの妨害波を測定できるようにシステムの各部を動作させるものであること。例えば、コンピュータシステムのテープおよび ディスク装置は、読み取り/書き込み/消去の一連の動作手順を用意しておき、記憶装置はアドレッ シングを行い、機械的動作を行う装置は的確な動作を実施させること。画像表示装置は、付則Gに 従って動作させること。EUTが他の装置と機能的に相互に関連するものである場合には、実際のイ ンタフェース装置の利用が望ましい。

**8.4.1** 多機能装置の動作

本規格の異なる項目、および/または他規格が同時に適用される多機能装置は、装置内に手を加え ること無くそれぞれの機能を分離して動作させることができるのであれば、それぞれの機能毎に分離 して試験すること。このように試験された装置は、各機能が関連の項目/規格の要求事項を満たして いるならば、全ての項目/規格の要求事項に適合していると判断できる。例えば、放送受信機能付の パーソナルコンピュータは、装置が通常動作で各機能を分離して動作できる場合、放送受信機能を停 止して本答申案に従って試験を実施し、更に、放送受信機能を動作させてCISPR13:2001 に従った試験を実施すること。

各機能を分離動作させて試験を実施することが現実的でない装置の場合、または特定機能を分離し てしまうとその主要機能を果たすことが出来なくなる場合、もしくは、いつくかの機能の同時動作が 測定時間の節約となる場合、その装置は必要な機能を動作させた状態で関連する項目/規格に関する 規定を満たすならば適合していると判断できる。例えば、放送受信機能付のパーソナルコンピュータ がコンピュータ機能から放送受信機能を分離して動作できない場合、そのパーソナルコンピュータは 本答申案およびCISPR13:2001の要求事項に従ってコンピュータ機能と放送受信機能を共 に動作させて試験を実施してもよい。

ある規格において、特定のポートまたは周波数を除くことを許容する場合、多機能装置の関連機能 が異なった規格に対して試験される場合でも、同じく除くことを許容してもよい(例えば、放送受信 機能を含む装置を本答申案に従って試験する際に局発の基本波と高調波の周波数を除く)。同様に、 特別の終端が必要な場合がある、例えば、本答申案に従った測定で、放送受信機のアンテナポートは そのポートに対する設計インピーダンスに等しい無誘導抵抗で終端する必要がある。

注)局発から発生する妨害は、同調受信周波数/チャンネルを変化することで他妨害源と区別することができる。

上記の処置方法にかかわらず、

- CISPR13:2001による電源ポートの妨害電圧測定は、EUTが本答申案の関連する許容値に適合しているならば除外してもよい。
- CISPR13:2001による妨害電力測定は、EUTが本答申案の放射妨害波の電界強度許 容値に適合しているならば除外してもよい。
- CISPR13:2001による放射妨害波の電界強度測定は、EUTからのすべての放射妨害 波が本答申案の関連する許容値に適合しているならば除外してもよい。

9. 電源ポートおよび通信ポートにおける伝導妨害波の測定法

9.1 測定用検波器

測定には、9.2項に記述される準尖頭値検波器および平均値検波器を使用すること。2種類の検 波器を一つの受信機に組み込み、準尖頭値および平均値検波器を交互に使用して測定してもよい。

注)伝導妨害波の測定はシールド室内で行うことが望ましい。

試験時間を短縮するために、尖頭値検波器を準尖頭値検波受信機または平均値検波受信機の代わり に使用してもよい。疑義が生じた場合には、準尖頭値許容値の測定には、準尖頭値検波受信機が優先 され、平均値許容値の測定には、平均値検波受信機が優先される。(付則B、参照)

9.2 測定用受信機

準尖頭値検波器付き受信機は、「電気通信技術審議会答申:CISPR16-1国内規格」の2項 に従ったものでなければならない。

平均値検波器付き受信機は、「電気通信技術審議会答申:CISPR16-1国内規格」の4項に 従い、「電気通信技術審議会答申:CISPR16-1国内規格」の2項の規定に従った6dBの 帯域幅を持つものでなければならない。

尖頭値検波器付き受信機は、「電気通信技術審議会答申:CISPR16-1国内規格」の3項に 従い、「電気通信技術審議会答申:CISPR16-1国内規格」の2項の規定に従った6dBの 帯域幅を持つものでなければならない。

9.3 擬似電源回路網(AMN)

伝導妨害波電圧測定点において、電源供給線と大地間の高周波での規定されたインピーダンスを得るため、および電源供給線側からの外来雑音から供試回路を分離するために擬似電源回路網(AMN)が必要である。

AMNには「電気通信技術審議会答申:CISPR16-1国内規格」の11.3項に規定される 公称インピーダンス(50 $\Omega$ /50 $\mu$ Hまたは50 $\Omega$ /50 $\mu$ H+5 $\Omega$ )を持ったネットワークを使 用すること。

伝導妨害波は、基準大地面とそれぞれの電線(電圧側電線、接地側電線、中性線など)の間で測定すること。両方の測定値は、適用する許容値の範囲内であること。

放送波が伝導性周囲雑音として侵入してくるため、周波数によっては測定が不可能な場合がある。 このような場合、適切な無線周波フィルタをAMNと供給電源の間に挿入するか、電磁シールド室で 測定を行うこと。無線周波フィルタを構成する部品は測定システムの基準接地点に直接接続した金属 ケースに収納しておくこと。追加の無線周波フィルタを接続した場合でも、測定周波数におけるAM Nのインピーダンス要求条件を満足すること。

9.4 基準大地面

垂直または水平の基準大地面はEUTの境界から少なくとも 0.5m 外側に広げておき、その最小 寸法を 2m×2m とすること。

AMNおよび擬似通信回路網(ISN)の基準接地点は、できる限り短い導線を用いて基準大地面に接続しておくこと。

9.5 EUTの試験配置

9.5.1 概要

測定する装置の電源コードは擬似電源回路網(AMN)に接続すること。EUTがシステムの場合、 即ち1台以上のホスト装置を持つITEの集合体であって、ITEが各々電源コードを持つ場合、A MNの接続先は次の規定によって決定される。

- a) 標準設計の電源プラグ(例えばJISC8303)で端末処理してある各電源コードは、個別に 試験すること。
- b) 製造業者によってホスト装置を経由して接続するように規定されていない電源コードまたは端子

は、個別に試験すること。

- c) 製造業者によってホスト装置または他の電力供給装置を経由して接続するように規定されている 電源コードまたは現場配線端子は、当該ホスト装置または他の電力供給装置に接続すること。さら に、当該ホスト装置または他の電力供給装置の電源コードもしくは電源ポートをAMNへ接続し、 試験すること。
- d) 特別な接続が規定されている場合、製造業者は、接続を効果的にするために必要な治具を、この 試験のために用意すること。

AMNは、供試装置の境界から 0.8m になるように離しておき、基準大地面の上に配置されたA MNに対する基準大地面にボンディングすること。この距離はAMNとEUTとのもっとも近接した 間隔である。他のEUTや関連装置はAMNから少なくとも、0.8m 以上離しておくこと。

代替法として、AMNを基準大地面の下に配置して、電源コードをAMNに直接接続するか、また は基準大地面の上に搭載したテーブルタップに接続してもよい。基準大地面の下に配置したAMNに 電源コードを接続する場合は、AMNの上に位置する基準大地面とEUTとのもっとも近い間隔が 0.8m になるように離しておくこと。AMNに接続したテーブルタップを使用するときは、AMNに 対するインピーダンス要求はテーブルタップを接続した状態で適合すること。また、EUTの電源 コードをテーブルタップに接続した点とEUTとのもっとも近い間隔が 0.8m になるように離して おくこと。

電源コードが製造業者によって用意されている場合、この電源コードは 1m の長さとするか、または 1m を超える長さのときは、できる限り余分な電源コードを、0.4m を超えない長さで前後に 折って束ねること。電源コードが製造業者によって規定されていない場合または用意されていない場 合は、1m のケーブルをEUTとAMNの間に接続すること。

供試装置の中の他の装置の電源コードはすべて第二のAMNに接続すること。測定する装置のAM Nを基準大地面に対して接続するのと同じ方法で、第二のAMNも基準大地面にボンディングする。 AMNの定格を超えないかぎり、複数のコンセントを持つテーブルタップを使用して、複数の電源 コードを1台のAMNに接続してもよい。またはAMNを追加して使用してもよいが、この場合、い ずれのAMNといずれのユニットとのもっとも近い間隔はどこでも 0.8m 以上であること。

電源ポートの伝導妨害波を測定するとき、通信ポートや信号ポートは適切な関連装置または代表的 な終端器を使用して正しく終端すること。電源ポートの伝導妨害波を測定するとき、ISNを通信 ポートに接続する場合には、ISNの受信機との接続ポートは50Ωで終端し、そのLCLはその ポートが接続される通信網の代表的な値であること。(例えばカテゴリ5)

ISNを使用して通信ポートを測定するときは、ISNはEUTから 0.8m 離して基準大地面 にボンディングすること。EUTの他の装置も、ISNから少なくとも 0.8m 以上離しておくこ と。

安全のために接地接続が要求されている場合、接地はAMNの基準接地点で接続すること。接地線 が製造業者によって規定されていない場合または用意されていない場合は、接地線は 1m の長さで、 0.1m 以下の間隔で電源供給線と平行に配線すること。

他の接地接続(例えばEMCを目的とする)が、安全接地接続用と同じ端子に接続するように製造 業者によって規定されまたは供給されている場合は、それらを同様にAMNの基準接地点に接続する こと。

9.5.2 卓上型装置の配置

8.3.1、および9.5.1の一般条件を適用する。

二種類の試験配置がある。

(1) 試験配置1:垂直基準大地面を使用して試験する。

EUTは水平基準大地面から 0.8m の高さの非導電性テーブル上に設置すること。EUTの裏面 は垂直基準大地面から 0.4m 離して設置すること。垂直基準大地面は水平基準大地面にボンディン グすること。したがって、使用するAMNやISNは垂直基準大地面または基準大地面とみなされる 他の金属面のいずれか一方にボンディングしてよい。配置例を図5(試験配置1a)、図6(試験配置1 b)に示す。

(2) 試験配置2:水平基準大地面を使用して試験する。(例えばオープンテストサイト(OAT S) やシールド室)

EUTは水平基準大地面から高さ 0.4m の非導電性テーブル上に設置すること。配置例を図7に示す。

いずれの場合も、EUTは、当該EUTや関連装置の一部ではない他の金属面や大地面から少なく とも0.8m離しておくこと。

どちらの試験方法を測定に使用したかを、テストレポートに記載すること。

さらに、

- ・AMNをEUTから 0.8m 離しておくことという基準に合わせるため、卓上型装置の試験中、A MNをテーブルの横に配置しなければならないことがある。
- ・信号ケーブルは、できるだけ、全長にわたって基準大地面から 0.4m 離して配置すること。 (必要なら非導電性の支持台を使用して)

さらに、試験配置2に対して

・インタフェースケーブルをテーブルの裏側に垂らす場合、超過する部分は中心部で束にして 0.4m 以下に折り込んで、その束がテーブル上にくるようにすること。

配置例を図4~図7に示す。

9.5.3 床置型装置の配置

8.3.2および、9.5.1の一般条件を適用する。

配置例を図8と図12に示す。

9.5.4 卓上型装置と床置型装置の組み合わせの配置 卓上型装置の試験配置は9.5.2によること。

床置型装置の試験配置は9.5.3によること。

配置例を図9に示す。

9.6 通信ポートにおける伝導妨害波の測定法

この試験の目的は、EUTの通信ポートから放射されるコモンモード妨害波を測定することである。 希望信号がコモンモード妨害波の一因となる場合もある。希望信号から生成されるコモンモード妨害 波は、付則Eに述べられている要因を適切に考慮することにより、(通信の)インタフェース技術の 設計段階で制御することができる。

9.6.1 適合確認方法

測定は、通信ポートにおいて、対地不平衡減衰量(LCL)が9.6.2項で定められた ISNを用いて実施すること。

製造業者は、ユーザに提供する装置説明書に定めたケーブル分類に従った ISNを用いて試験した 際に、装置が表3および表4の許容値を超えないことを示さなければならない。

議論が生じた場合、適切なISNを使用する9.6.2項の適合確認方法を優先する。

注) 平衡対ケーブルのカテゴリは、低速から高速までの通信システムにどのような平衡対ケーブルを 適用すればよいのかを明確にするため、各種の平衡対ケーブルが有する電気的特性に基づいて ケーブルを分類したものである。

一般的に使用されている通信ケーブルのカテゴリを表9に示す。

| 区分    | 内容                                                            |  |  |  |
|-------|---------------------------------------------------------------|--|--|--|
| カテゴリ1 | <ul> <li>・音声や低速のデータ伝送に使用される。</li> </ul>                       |  |  |  |
| および2  | ・一般にLANでは使用されない。                                              |  |  |  |
|       | 例)通常の電話線など。                                                   |  |  |  |
| カテゴリ3 | ・ケーブル特性:16 MHzまでの信号伝送。                                        |  |  |  |
|       | <ul> <li>・10 Mbpsまでのデータ伝送に使用される。</li> </ul>                   |  |  |  |
|       | 例) IEEE 802.3 10BASE-T、IEEE 802.5トークンリングの                     |  |  |  |
|       | 4MbpsのUTP*)版、25 MbpsのATM-LAN/100VG-Any LAN。                   |  |  |  |
|       | *)UTP: Unshielded twist-pair cable                            |  |  |  |
| カテゴリ4 | ・ケーブル特性:20 MHzまでの信号伝送。                                        |  |  |  |
|       | <ul> <li>・16 Mbpsまでのデータ伝送に使用される。</li> </ul>                   |  |  |  |
|       | 例) IEEE 802.5トークンリングの16 MbpsのUTP版                             |  |  |  |
| カテゴリ5 | ・ケーブル特性:100 MHzまでの信号伝送。                                       |  |  |  |
|       | <ul> <li>・100 Mbpsまでのデータ伝送に使用される。</li> </ul>                  |  |  |  |
|       | 例) CDDI* <sup>)</sup> 、100BASE-TX、156 MbpsのATM-LAN、1000BASE-T |  |  |  |
|       | *)CCDI: Copper Distributed Data Interface                     |  |  |  |
| カテゴリ6 | ・ケーブル特性:250 MHzまでの信号伝送。                                       |  |  |  |
|       | <ul> <li>・1 G b p s までのデータ伝送に使用される。</li> </ul>                |  |  |  |
|       | 例) 1000BASE-TX、1.2 GbpsのATM-LAN                               |  |  |  |

表9 平衡対ケーブルのカテゴリ

参照) JISX5150:2004

### 9.6.2 擬似通信回路網(ISN)

電源ポートの伝導妨害波電圧を9.3項に従って測定する際には、測定に使用するAMNを経由し て電源電圧をEUTに供給すること。

シールドのない平衡2対線のコモンモード(非対称モード)電流または電圧の妨害波の評価は、通 信ポートにケーブルを介してISNを接続した状態で実施すること。このISNは、妨害波測定中に 通信ポート側から見たコモンモード終端インピーダンスを定めるものであること。ISNは、EUT とEUTの動作に必要な補助装置/関連装置(AE)または負荷との間の信号ケーブルに挿入し、E UTの通常の動作に影響を与えないこと。

ISNの構造は試験対象の通信ポートの構成に依存するため、汎用的に使用可能なISNを規定す ることはこれまでのところ不可能である。不平衡ケーブルに適したISNが明確になるまでの間、こ のようなケーブルにはISNの代わりにAEや擬似装置を接続することを許容する。(測定に使用し た)実際の負荷ならびにコモンモードインピーダンスを測定した結果を試験報告書に記載すること。 どのような場合でも、EUTは表3および表4の許容値に適合していること。 電流プローブを使用する場合、当該ケーブルを接続部分から取り外すことなく、測定するケーブル にそれを装着できること。電流プローブには共振のない均一な周波数特性を有し、一次巻線を流れる 動作電流によって飽和することなく機能するものでなければならない。

電流プローブを使用する場合、ISNから 0.1m 以内で離してケーブルに装着すること。電流プ ローブの挿入インピーダンスは1Ω以下でなければならない(「電気通信技術審議会答申:CISP R16-1国内規格」の12.1項参照)。

ISNは以下のような特性をもつこと。ISNは、EUTやAEを接続するために必要なあらゆる アダプタを含めて較正する。

- a) 周波数範囲 0.15~30MHzのコモンモード終端インピーダンスは150Ω±20Ω、位相 角は0°±20°であること。
- b) ISNは供試通信ポートに接続されたAEまたは負荷からの妨害波を分離できること。ISNに おける、AEから発生するコモンモード妨害波電流または電圧の減衰は、測定用受信機の入力にお いて、これらの妨害波の測定レベルが、少なくとも許容値より10dB以上低いものであること。

AEから発生するコモンモード妨害波電流または電圧の望ましい分離度は、

- 150kHz~1.5MHzの範囲では35~55dB以上(周波数の対数に対して直線的に増加)
- 1.5 MHz~30 MHzの範囲では、55dB以上
  - 注)分離度とは、結果的に I S N の供試ポートに現れる A E から発生するコモンモード妨害波の減結合の度合で ある。
- c)1) カテゴリ6(またはこれ以上)のシールドのない平衡対線ケーブルに接続するポートでの測定に使用するISN

不平衡減衰量(LCL)の周波数 f (MHz)に対する変動は下記の方程式によって規定すること。

$$LCL(dB) = 75 - 10 \log_{10} \left[ 1 + \left(\frac{f}{5}\right)^2 \right] \text{ dB}$$

150KHzから2MHzの範囲では、±3dB 2MHz から 30MHzの範囲では、-3dB/+6dB

c)2) カテゴリ5(またはこれ以上)のシールドのない平衡対線ケーブルに接続するポートでの測定に使用するISN

不平衡減衰量(LCL)の周波数f (MHz)に対する変動は下記の方程式によって規定すること。

$$LCL(dB) = 65 - 10 \log_{10} \left[ 1 + \left(\frac{f}{5}\right)^2 \right] dB$$

150kHzから2MHzの範囲では、±3 dB 2 MHz から 30 MHzの範囲では、-3dB/+4.5 dB

c)3) カテゴリ3(またはこれ以上)のシールドのない平衡対線ケーブルに接続するポートでの測定に使用するISN

不平衡減衰量(LCL)の周波数 f(MHz)に対する変動は下記の方程式によって規定すること。

$$LCL(dB) = 55 - 10 \log_{10} \left[ 1 + \left(\frac{f}{5}\right)^2 \right] \text{ dB}$$

150kHzから30MHzの範囲で、±3 dB

c)4) 平衡度の悪いケーブルに接続するポートでの測定に使用する ISN

カテゴリ1およびカテゴリ2のケーブル接続を意図した通信ポートの場合は、カテゴリ3のISN を使用すること。議論が生じた場合、付則C.1.3の適合確認方法を優先する。

- 注1) 上記の不平衡減衰量(LCL)と周波数 f (MHz)に対する仕様は、代表的な環境に設置される典型的な シールドのない平衡ケーブルのLCLの近似値である。カテゴリ3ケーブル(9.6.2 c)3)項)は代表的な通信アク セス網のLCLの代表値とみなされる。これらは継続して検討中であり、将来の修正がありうる。
- 注2) 関連する不確かさについては検討中であり、その作業後にCISPR16-3<sup>3)</sup>の参照が追加されることになる。
- d) ISNの存在によって発生する、希望信号周波数帯域における減衰ひずみや信号品質の劣化は、 EUTの正常な動作に大きな影響を与えないこと。
- e) 電圧変換係数は下記のように定義する。 定義:電圧測定点に与えられる ISNの電圧変換係数は

電圧変換係数= 
$$20\log_{10} \frac{Vcm}{Vmp}$$
 dB

ここで、Vcmは、ISNによりEUTに提供されるコモンモードインピーダンスに現れるコモン モード電圧であり、Vmpは、電圧測定点で直接測定される受信電圧である。

電圧変換係数は、電圧測定ポートで直接測定された受信機電圧に加算されるものであり、その結果 を表3または表4の許容値と比較する。電圧変換係数の精度は±1dBであること。

<sup>3)</sup> CISPR 16-3 無線妨害とイミュニティの測定装置および方法の仕様、 第3部CISPR技術報告書

9.6.3 通信ポートでの測定

EUTは、図4~図9に示す卓上型装置、床置型装置、および卓上型と床置型の組み合せの配置に 従って配置すること。

LANとして使用する頻度が高い場合に信頼性のある伝導妨害波測定を行うため、 LANとして 使用する場合にのみ10%を超えるLAN利用条件を、最低 250ms 維持することが必要である。試験 トラフィックの内容は、実際のデータ伝送(例、ランダム:圧縮または暗号化したファイル、周期 的:圧縮していない画像ファイル、メモリーダンプ、スクリーン更新、ディスクイメージ)を模擬す るため、周期的メッセージと擬似ランダムメッセージの両者を含む必要がある。もしLANがアイド ル時間中も送信を続けている場合には、その時間についても測定を行うこと(E.3項、[7]参照)。

9.6.3.1 シールドのない平衡対線の接続を意図する平衡通信ポートの電圧測定

妨害波電圧の測定を行う場合、測定用受信機への接続に適した電圧測定ポートを備え、通信ポート のコモンモード終端インピーダンスの要求条件を満たす ISNを使用すること。

シールドのない平衡1対線の妨害波電圧を測定する場合は、適切な2線用のISNを使用すること。 シールドのない平衡2対線を測定する場合は、適切な4線用のISNを使用すること。平衡4対を収 納するシールドのないケーブルを測定する場合は、適切な8線用のISNを使用すること。(付則D を参照)

C.1.1項の測定方法を用いること。

5対以上の平衡線を収納するケーブルについては、9.6.3.5項を参照。

9.6.3.2 シールドのない平衡対線の接続を意図する平衡通信ポートの電流測定

シールドのない平衡1対線または平衡2対線、または平衡4対線の妨害波電流測定を行う場合、 ケーブルは妨害波電圧測定と同様に終端すること。 C.1.1項の測定方法を用いること。

5対以上の平衡線を収納するケーブルについては、9.6.3.5項を参照。

9.6.3.3 シールドケーブルまたは同軸ケーブルの接続を意図する通信ポートの電圧測定

C.1.1項またはC.1.2項の測定方法を用いること。

9.6.3.4 シールドケーブルまたは同軸ケーブルの接続を意図する通信ポートの電流測定

C.1.1項またはC.1.2項の測定方法を用いること。

9.6.3.5 5対以上の平衡対線または不平衡線の接続を意図する通信ポートの測定

C.1.3項の測定方法を用いること。各周波数において、C.1.3項の方法を使用して、要求条件に適合 すること。(C.1.4項は適用しない)

9.7 測定の記録

測定された妨害波について、供試装置の通信ポートおよび電源ポートの各々について、許容値に対 して最大妨害波を発生する異なった周波数を少なくとも6点を記録すること。許容値より20dB以 上低いレベルの測定値は、記録する必要はない。電源ポートにおいては、測定された妨害波の記録に 被測定導体を記述すること。

さらに、試験報告書には妨害波測定に使用した測定器とその関連する接続部を含めた測定の不確か さを含めること。11項を参照。

10. 放射妨害波の測定法

10.1 測定用検波器

周波数範囲30MHz~1000MHzでは、測定は準尖頭値測定用受信機で行うこと。

試験時間を短縮するために、準尖頭値測定用受信機の代わりに尖頭値測定用受信機を使用してもよい。 疑義が生じた場合には、準尖頭値検波受信機が優先される。

10.2 1GHz以下の測定用受信機

準尖頭値測定用受信機はCISPR16-1-1の4項の要求条件に従うこと。尖頭値測定用受信 機は、CISPR16-1-1の5項に従い CISPR16-1-1の4項の規定に従った6dB の帯域幅を持つものでなければならない。 10.3 1GHz以下のアンテナ

アンテナは平衡型ダイポールであること。周波数が80MHz以上の場合、アンテナは共振長とし、80MHz未満の場合は、アンテナは80MHz共振長と同じ長さとする。詳細については、CIS PR16-1-4、4項を参照のこと。

注)測定結果が許容できる精度で平衡型ダイポールアンテナと相関がとれる場合には、他のアンテナを利用しても よい。

10.3.1 アンテナと供試装置(EUT)の距離

放射妨害波の測定は、EUTの外周線からの水平距離が6項の規定に等しくなるようにアンテナを 配置して行うこと。EUTの外周線とは、EUTを取り囲んだ仮想の直線で囲まれた単純な幾何学図 形で定義される。全てのITEシステム内のケーブル及び接続されているITEは、この仮想直線内 に含まれること。(図2参照)

注)高い周囲雑音、又は他の理由で、10mでの電界強度測定ができない場合は、より近い距離、例えば3mで、 ITEのEUTの測定を行なってもよい。適合性の検討のために、測定されたデータを規定された距離に変換 する場合、距離の10倍当たり20dBの反比例係数を用いること。30MHzに近い周波数では、近傍電界 の影響のため、大きなEUTを3mで測定する場合は注意すること。

10.3.2 アンテナと大地面の距離

アンテナは、大地面より1mから4mの高さの間で、各試験周波数で最大の値が得られるように調 整すること。

10.3.3 アンテナと供試装置(EUT)の相対方向

最大の電界強度指示値を見つけるために、測定の間、EUTに対するアンテナの相対方向を変化させること。測定の目的のためにEUTを回転させてもよい。これが実施できない場合、EUTを固定し、EUTの周囲にアンテナを移動して測定を行う。

10.3.4 アンテナの偏波面

最大の電界強度指示値を見つけるために、測定の間、EUTに対するアンテナ偏波面を水平及び垂 直に変えること。

10.4 1GHz以下の放射妨害波測定用の測定サイト

## 10.4.1 共通

テストサイトは、周波数範囲30MHz~1000MHzにおいて、水平および垂直偏波の電界強度のサイトアッテネーション測定を実施することにより、その有効性を確認しておくこと。

送受信アンテナ間の距離は、EUTの放射妨害波測定に使用する距離と同じものであること。

10.4.2 サイトアッテネーション測定

水平及び垂直サイトアッテネーションの測定結果が理想サイト(「電気通信技術審議会答申:CI SPR16-1国内規格」、参照)の理論的サイトアッテネーション値の±4dB以内である場合に は、その測定サイトを適切なサイトとする。

10.4.3 オープンテストサイト

オープンテストサイトは、 平坦であり、架空電線及び近接した反射物がなく、規定の距離におい てアンテナの設置ができるように十分に広く、アンテナ及びEUTと反射物との間隔が十分に広いこ と。反射物とは、その構成物質が導電性を持つものと定義される。テストサイトは、10.4.4項に定め る水平金属大地面を備えること。図1及び図2に、これら二つのテストサイトの概要を示す。

テストサイトは、「電気通信技術審議会答申:CISPR16-1国内規格」のオープンテスト サイトのサイトアッテネーション要求条件を満足するものであること。

10.4.4 導電性大地面

導電性大地面は、EUTの外周線及び一番大きい測定アンテナから少なくとも1mは外側に広がっ ており、EUTとアンテナ間の全面積を覆っているものであること。この大地面は、一番高い測定周 波数の波長の1/10以上の大きい寸法を有する穴、又はすきまがないこと。もし測定用テストサイ トのサイトアッテネーション要求条件を満足しないのであれば、更に大きい導電性大地面を必要とす ることもある。

10.4.5 代替テストサイト

10.4.3項(オープンテストサイト)に述べる物理的特性をもたない他の他のテストサイトにおいて試験を実施してもよい。このような場合には、そのような代替サイトでの測定によって正当な結果が得られることを明らかにしておくこと。付則Aの規定によるサイトアッテネーション測定値が10.4.2項のサイトアッテネーション条件と10.4.4項の導電性大地面の条件を満足する場合、その代替サイトは、妨害波の試験を実施するために適していると言える。

代替サイトの一つの例は、電波吸収体を貼付した電磁シールド室である。

注)対応する測定法がCISPR16-1に規定された場合、付則Aは置き換えられる。

10.5 1GHz以下の供試装置の試験配置

## 10.5.1 共通

電源ケーブルは基準大地面に垂らさなければならない。そして、電源コンセントに接続すること。

電源コンセントは基準大地面に、その基準面から飛び出さないように取り付けなければならない。 AMNを使用する場合は基準大地面より下に設置すること。 10.5.2 卓上型装置の配置

8.3.1項と10.5.1項の共通条件を適用すること。

水平基準大地面(10.4.4項参照)より高さ 0.8m の非導電性テーブル上にEUTを置くこと。

配置例を図10に示す。

10.5.3 床置型装置の配置

8.3.2項と10.5.1項の共通条件を適用すること。

試験配置例を図11と図12に示す。

10.5.4 卓上型装置と床置型装置が組み合わされた装置の配置

EUTの卓上部分の配置は、10.5.2項に従うこと。EUTの床置部分の配置は、10.5.3項に従うこと。

試験配置例を図13に示す。

 10.6 1GHz以上の放射妨害波の測定法 測定機器はCISPR16-1-1の8.2項の仕様に従う。 測定用アンテナはCISPR16-1-4の4.6項の仕様に従う。 測定用サイトはCISPR16-1-4の8項の記載内容に従う。 測定方法はCISPR16-2-3の7.3項の規定に従う。

高電圧放電現象である、アークやスパークで発生する妨害波には尖頭値許容値を適用してはならない。このような妨害は、インダクタンス内の電流を制御するスイッチ、または静電気を発生するサブシステム(例えば紙を扱う装置)をITEが持っているか、あるいは制御する場合に発生する。アークやスパークによる妨害波には、平均値許容値を適用し、ITEから発生するその他の妨害波には尖頭 値許容値と平均値許容値の両方を適用する。

10.7 放射妨害波測定値の記録

測定された妨害波について、許容値に対して最大妨害波を発生する異なった周波数を少なくとも6 点を記録すること。許容値より20dB以上低いレベルの測定値を記録する必要はない。測定された 妨害波の記録にはアンテナの偏波面を記述すること。

さらに、試験報告書には妨害波測定に使用した測定器とその関連する接続部を含めた測定の不確か さを含めること。11項を参照。
10.8 高レベルの周囲雑音の存在下での測定

一般的に、周囲雑音は許容値を超えてはならない。しかし、周波数によっては、放送波、人工のお よび自然の放射源から発生する周囲雑音によって、測定点でのEUTからの放射妨害波の測定が不可 能な場合がある。

規定の測定距離での周囲雑音が高い場合(第8項参照)、EUTの適合性検証のために以下の方法 を用いることができる。

a) 短い距離<sub>d2</sub>で測定を行い、次の関係式を用いて規定の距離d1での換算された測定値M1を決 定する。

$$M_1 = M_2 \big( d_2 / d_1 \big)$$

ただし、M2は短い距離d,での測定値(µV/m)とする。

規定の距離<sub>d</sub>における換算された測定値M<sub>1</sub>を用い、第8項に規定される適合試験条件および環境条件を満たすかを調べること。

- b) 第8項に規定する周囲雑音レベルを超える(周囲雑音の測定レベルが、許容値より6dB低い値を超える)周波数帯域においては、近接する妨害波レベルから補間法を用いることで EUTの妨害波レベルを得ることができる。補間法による値は、周囲雑音に近接する妨害 波が連続性を示すと見なした曲線上にあるとしている。
- c) もう一つの可能な方法として、無線送信機からの信号が存在する状態での放射妨害波の測定 では、次の規定を用いてもよい(CISPR11の付則C、参照)。

準尖頭値測定用受信機の指示値の変化が、測定時に±0.5 d Bを超えないような安定した 動作周波数を持ったEUTにおいては、以下の式を用いて十分な精度で放射妨害波の電界強 度を計算することができる。

$$E_g^{1.1} = E_t^{1.1} - E_S^{1.1}$$

ここで、

- Egは、計算されたEUTからの放射妨害波の電界強度(µV/m)
- Etは、測定された放射妨害波の電界強度(µV/m)

(周囲無線送信信号との合成電界強度)

Esは、周囲無線送信信号の電界強度(µV/m)

周囲無線送信信号が、測定しようとする放射妨害波の振幅の2倍までの全振幅を有するA M、FM音声送信機またはTV送信機からの信号である場合は、この式が有効であることが 明らかになっている。 放射妨害波の周波数、振幅レベルが安定していないEUTの場合や移動無線機等、振幅レベルが変動する無線送信機からの信号を避けることができない場合には、この式の利用は制限を受ける。このような場合の放射妨害波測定にあたっては、掃引受信機またはスペクトラムアナライザを使用すべきであり、上記の式の利用は適切ではない。

10.9 ユーザ設置場所でのテスト

場合によっては、ユーザ設置場所でクラスA ITEの測定が必要である。この場合、ユーザの敷 地の境界で測定を行うのが好ましい。もし、EUTから敷地の境界までの距離が10m未満の場合、 測定はEUTから10mの距離で行うこと。

この適合性の検証法は、設置場所の特性が測定に影響を与えるので、設置場所固有なものとなる。 すでにタイプ試験で適合している ITEをシステムに追加しても、この設置場所の適合状態の評価は 無効とはならない。

この測定法は物理的に大きなITE(例えば、通信センタ装置)の適合評価に使用できないことが ある。このような装置の測定法及び許容値は検討中である。

11. 測定の不確かさ

ITEからの放射妨害波測定結果は、CISPR16-4-2の測定装置の不確かさに対する事項 を参照しなければならない。

この規格の許容値に適合していることの決定は、適合性評価測定結果に基づいて行われること。測 定装置の不確かさは考慮しないこと。しかしながら、測定装置および測定系に関連する様々な不確か さを計算し、測定結果と不確かさの計算結果の両方を試験報告書に記載すること。

注)設置場所試験においては、測定場所に係わる不確かさの要因は不確かさの計算から除く。

| 衣10 凶中に用いた頭子語 |         |  |
|---------------|---------|--|
| AE            | 関連装置    |  |
| AMN           | 擬似電源回路網 |  |
| EUT           | 供試装置    |  |
| ISN           | 擬似通信回路網 |  |

表10 図中に用いた頭字語



- 注) テストサイトの特性については10.4項を、測定距離Rの値については第6項も参照のこと。
  - 図1 テストサイト



この図に従った外周エリアによって大地面上に定義され, EUTまたはアンテナのいずれか高い方 から3m以上の高さにある水平面によって定義される空間の内部に,反射物があってはならない。

注)標準テストサイト(測定距離10m)に代わるテストサイトの適用については、10.4.3項を参照。 また、供試装置(EUT)の仮想の外周線については、10.3.1項を参照のこと

図2 代替テストサイトの最小寸法





図4-卓上型装置の試験配置例 (伝導および放射妨害波測定)(平面図)



垂直基準大地面

図 5 - 卓上型装置の試験配置例 (伝導妨害波測定 - 試験配置1a)



図 6 - 卓上型装置の試験配置例 (伝導妨害波測定 – 試験配置 1 b)



図 7 - 卓上型装置の試験配置例 (伝導妨害波測定 - 試験配置 2)



図 8 -床置型装置の試験配置例 (伝導妨害波測定)



図 9 - 卓上型装置と床置型装置との組み合わせの試験配置例 (伝導妨害波測定)



図10-卓上型装置の試験配置例 (放射妨害波測定)



図11-床置型装置の試験配置例 (放射妨害波測定)



図12-床置型装置(架上配線)の試験配置例 (伝導および放射妨害波測定)



図13-試験配置例 卓上型装置と床置型装置との組み合わせ (放射妨害波測定)

#### 付則A(規定)

#### 代替テストサイトの正規化サイトアッテネーション測定法

代替テストサイトにおいては、その設備の天井や壁を構成する構造材または電波吸収材からの反射 波の影響を見付けるのに、1回のNSA測定だけでは不十分である。このようなサイトでは、例えば ターンテーブルを用いて、最大寸法の被測定装置あるいは被測定システムをその中心の周りに360° 回転させた軌跡によって作られる体積を"試験体積"と定義する。

代替テストサイトの適合性確認試験は、原則として、表A.1および表A.2に従って半波長同調ダ イポールアンテナを用いて水平偏波および垂直偏波でNSAを測定する。この場合、図A.1 a、図A. 1 bに示されている水平面内で5箇所(中央、および中央から測定アンテナを結ぶ直線に関して前後 左右)、2種類の偏波(水平および垂直)、1種類の高さ(水平偏波に関して2m、垂直偏波に関し て2.75m)で行う必要がある。なお、この測定に使用する相互インピーダンス補正係数ΔAFror を、アンテナ較正時のアンテナ高に対応して表A.3~表A.5に示す。

但し、代替テストサイトの大きさの制約から、80MHz以下の周波数帯において半波長同調ダイ ポールアンテナを使用できない場合は、表A.6に従って80MHz同調ダイポールアンテナ(固定 長)を使用して、水平偏波および垂直偏波でNSAを測定する。この場合は、図A.1aおよび図A.1 bに示すように、最大で20回の独立したサイトアッテネーション測定、すなわち、水平面内で5箇 所(中央、および中央から測定アンテナを結ぶ直線に関して前後左右)、2種類の偏波(水平および 垂直)、2種類の高さ(水平偏波に関して1m及び2m、垂直偏波に関して1m及び1.5m)で行 う必要がある。なお、この測定に適用する相互インピーダンス補正係数ΔAFrorを、アンテナ較正時 のアンテナ高に対応して表A.7および表A.8に示す。

80MHz同調ダイポールアンテナ(固定長)の特性は、周波数が80MHzより低くなればなる ほど、アンテナエレメント長によって大きく変化する。従って、NSA測定時およびアンテナ較正時 にエレメント長が変化しないように、十分注意すること。また、このアンテナは同軸ケーブルとの整 合状態も余り良くないため、測定結果の再現性が低下しやすい。従って、アンテナのバランに整合用 減衰器が内蔵されていない場合は、アンテナに6dB以上の減衰器を接続し、減衰器を付加した状態 で一個のアンテナとして取り扱い、較正を行うこと。

送信および受信アンテナは、アンテナ素子を互いに平行に、かつ測定軸と直交させて並べること。

垂直偏波に関しては、中心以外の送信アンテナの水平面内位置は、試験体積の境界上である。水平 偏波に関しては、左右の位置での測定において、横壁の構造物または吸収体と供試装置の境界との距 離が1m以下であれば、アンテナの中心を中央へ移動させ、アンテナの先端が試験体積の境界上か、 あるいは試験体積直径の10%以上境界から離れない位置とする。前後の位置は、試験体積の境界上と する。

なお、80MHz同調ダイポールアンテナ(固定長)を用いて周波数30MHzから80MHzの

45

範囲で測定を行う場合、下記の条件を満たすならば、測定回数を減らしてもよい。

- (a) 試験体積の後部境界から構造物または吸収材の最も近い点までの距離が1mより大きい場合は、後部位置での垂直および水平偏波の測定を省略できる。
  - 放射源が誘電体の境界近くに置かれると電流分布が変化するため、その場所におけ る放射源の放射特性に影響が出ることが知られている。供試装置がその境界近くに置 かれる場合、追加のサイトアッテネーション測定が必要である。
- (b) 左右の位置をつなぐ試験体積の直径に沿って行う水平偏波の測定回数は、アンテナの投影が直径の90%を覆うのに充分な数まで減らすことができる。
- (c) 80MHz同調ダイポールアンテナ(固定長)を用いる測定では、供試装置の最上部の 高さが、テーブルを含んで1.5mを越えなければ、送信高1.5mの高さにおける垂直 偏波の測定は省略してもよい。
- (d) テーブルを使用する場合は、それも含めた試験体積が、奥行き1m×幅1.5m×高 さ1.5m以内であれば、水平偏波測定は、中心、前方、後方の位置でのみ行うことと する。上記の項目(a)を適用する場合、後部位置は省略できる。この場合、最小の8 箇所での測定でよい。すなわち図A.3および図A.4に示すように、垂直偏波では一つの高さで 位置(左、中心、右、前方)の4配置で、水平偏波の測定では、二つの高さで位置(中心と前 方)の4配置で測定する。

NSAの測定に当たっては、送信アンテナと受信アンテナの距離を表A.1および表A.2若しくは 表A.6に従って離すこと。図A.1~図A.4に示すように、受信アンテナは規定の距離を維持しなが ら、ターンテーブル中心線に沿って動かさなければならない。

# 表A.1 正規化サイトアッテネーション(AN)

(半波長同調ダイポールアンテナを用いる場合に適用)

| 偏波面                                                | 水兰    | 平偏波         |  |  |  |
|----------------------------------------------------|-------|-------------|--|--|--|
| R                                                  | 3m    | 10m         |  |  |  |
| $h_1$                                              | 2m    | 2m          |  |  |  |
| f                                                  | 1m~4m | $1m\sim 4m$ |  |  |  |
| (MHz)                                              | (     | dB)         |  |  |  |
| 30                                                 | 11.0  | 24.1        |  |  |  |
| 35                                                 | 8.8   | 21.6        |  |  |  |
| 40                                                 | 7.0   | 19.4        |  |  |  |
| 45                                                 | 5.5   | 17.5        |  |  |  |
| 50                                                 | 4.2   | 15.9        |  |  |  |
| 60                                                 | 2.2   | 13.1        |  |  |  |
| 70                                                 | 0.6   | 10.9        |  |  |  |
| 80                                                 | -0.7  | 9.2         |  |  |  |
| 90                                                 | -1.8  | 7.8         |  |  |  |
| 100                                                | -2.8  | 6.7         |  |  |  |
| 120                                                | -4.4  | 5.0         |  |  |  |
| 140                                                | -5.8  | 3.5         |  |  |  |
| 160                                                | -6.7  | 2.3         |  |  |  |
| 180                                                | -7.2  | 1.2         |  |  |  |
| 200                                                | -8.4  | 0.3         |  |  |  |
| 250                                                | -10.6 | -1.7        |  |  |  |
| 300                                                | -12.3 | -3.3        |  |  |  |
| 400                                                | -14.9 | -5.8        |  |  |  |
| 500                                                | -16.7 | -7.6        |  |  |  |
| 600                                                | -18.3 | -9.3        |  |  |  |
| 700                                                | -19.7 | -10.6       |  |  |  |
| 800                                                | -20.8 | -11.8       |  |  |  |
| 900                                                | -21.8 | -12.9       |  |  |  |
| 1000                                               | -22.7 | -13.8       |  |  |  |
| 注) 本表の測定に適用する相互インピーダンス補正係数<br>ΔAF TOTは表A.3~A.5を参照。 |       |             |  |  |  |

表A.2 正規化サイトアッテネーション(AN)

(半波長同調ダイポールアンテナを用いる場合に適用)

| 偏波面               | 垂直偏波                 |                        |                      |                |  |  |
|-------------------|----------------------|------------------------|----------------------|----------------|--|--|
| $\mathbf{f}_{m}$  | R=                   | =3m<br>2 75m           | R=1<br>h1=2          | 0m<br>75m      |  |  |
| (MHz)             | $h_2$                | A <sub>N</sub>         | $h_2$                | A <sub>N</sub> |  |  |
|                   | (m)                  | (dB)                   | (m)                  | (dB)           |  |  |
| 30                | $2.75 \sim 4$        | 12.4                   | $2.75 \sim 4$        | 18.8           |  |  |
| 35                | $2.39 \sim 4$        | 11.3                   | $2.39 \sim 4$        | 17.4           |  |  |
| 40                | $2.13 \sim 4$        | 10.4                   | 2.13~4               | 16.2           |  |  |
| 45                | $1.92 \sim 4$        | 9.5                    | $1.92 \sim 4$        | 15.1           |  |  |
| 50                | $1.75 \sim 4$        | 8.4                    | $1.75 \sim 4$        | 14.2           |  |  |
| 60                | $1.50 \sim 4$        | 6.3                    | $1.50 \sim 4$        | 12.6           |  |  |
| 70                | $1.32 \sim 4$        | 4.4                    | $1.32 \sim 4$        | 11.3           |  |  |
| 80                | 1.19~4               | 2.8                    | 1.19~4               | 10.2           |  |  |
| 90                | $1.08 \sim 4$        | 1.5                    | $1.08 \sim 4$        | 9.2            |  |  |
| 100               | 1~4                  | 0.6                    | 1~4                  | 8.4            |  |  |
| 120               | 1~4                  | -0.7                   | 1~4                  | 7.5            |  |  |
| 140               | 1~4                  | -1.5                   | 1~4                  | 5.5            |  |  |
| 160               | 1~4                  | -3.1                   | 1~4                  | 3.9            |  |  |
| 180               | 1~4                  | -4.5                   | 1~4                  | 2.7            |  |  |
| 200               | 1~4                  | -5.4                   | 1~4                  | 1.6            |  |  |
| 250               | 1~4                  | -7.0                   | 1~4                  | -0.6           |  |  |
| 300               | 1~4                  | -8.9                   | 1~4                  | -2.3           |  |  |
| 400               | 1~4                  | 11.4                   | 1~4                  | -4.9           |  |  |
| 500               | 1~4                  | -13.4                  | 1~4                  | -6.9           |  |  |
| 600               | 1~4                  | -14.9                  | 1~4                  | -8.4           |  |  |
| 700               | 1~4                  | -16.3                  | 1~4                  | -9.7           |  |  |
| 800               | 1~4                  | -17.4                  | 1~4                  | -10.9          |  |  |
| 900               | 1~4                  | -18.5                  | 1~4                  | -12.0          |  |  |
| 1000              | 1~4                  | -19.4                  | 1~4                  | -13.0          |  |  |
| 注) 受信アンテ<br>アンテナの | ナ高h2の下限値<br>の下端が大地面な | 直は周波数によっ<br>いら25cm以上離ネ | て異なるが、これ<br>れるようにするた | いは、<br>こめである。  |  |  |

本表の測定に適用する相互インピーダンス補正係数 Δ A F TOTは、

表A.3~A.5を参照。

# 表A.3 同調ダイポールアンテナを用いた正規化サイトアッテネーション測定 に使用する相互インピーダンス補正係数(ΔAF<sub>TOT</sub>)

|                                             | 補正                         | E係数 ΔAF <sub>TOT</sub>               | , (dB)                          |                                      |
|---------------------------------------------|----------------------------|--------------------------------------|---------------------------------|--------------------------------------|
| 測定距離                                        | R=                         | =3m                                  | R=                              | 10m                                  |
| 周波数                                         | 水平偏波                       | 垂直偏波                                 | 水平偏波                            | 垂直偏波                                 |
| fm<br>(MHz)                                 | $h_1=2m$<br>$h_2=1\sim 4m$ | $h_1 = 2.75 m$<br>$h_2 = 1 \sim 4 m$ | $h_1 = 2m$<br>$h_2 = 1 \sim 4m$ | $h_1 = 2.75 m$<br>$h_2 = 1 \sim 4 m$ |
| 30                                          | 3.9                        | 3.4                                  | 1.8                             | 2.6                                  |
| 35                                          | 4.1                        | 2.5                                  | 1.5                             | 1.5                                  |
| 40                                          | 3.6                        | 1.6                                  | 0.8                             | 1.3                                  |
| 45                                          | 2.8                        | 1.1                                  | 0.7                             | 1.0                                  |
| 50                                          | 2.2                        | 0.9                                  | 1.0                             | 0.6                                  |
| 60                                          | 0.7                        | 1.4                                  | 1.5                             | 0.8                                  |
| 70                                          | -0.7                       | 1.5                                  | 0.8                             | 1.0                                  |
| 80                                          | -1.1                       | 1.3                                  | -1.1                            | 0.9                                  |
| 90                                          | -0.8                       | 1.0                                  | -1.4                            | 0.9                                  |
| 100                                         | -0.7                       | 0.7                                  | -1.1                            | 0.7                                  |
| 120                                         | -0.1                       | 0.1                                  | 0.2                             | 0.1                                  |
| 140                                         | 0.3                        | 0.4                                  | 0.0                             | 0.6                                  |
| 160                                         | -1.2                       | 0.6                                  | -0.9                            | 0.4                                  |
| 180                                         | -0.9                       | 0.4                                  | -0.6                            | 0.4                                  |
| 200                                         | 0.3                        | 0.4                                  | 0.0                             | 0.4                                  |
| 250                                         | -0.2                       | 0.5                                  | -0.7                            | 0.3                                  |
| 300                                         | 0.2                        | 0.3                                  | -0.4                            | 0.3                                  |
| 注) 垂直偏波の測定では、受信アンテナの下端を大地面から25cm以上<br>離すこと。 |                            |                                      |                                 |                                      |

(自由空間におけるアンテナ係数を用いる場合)

表A.4 同調ダイポールアンテナを用いた正規化サイトアッテネーション測定
 に使用する相互インピーダンス補正係数(ΔAF<sub>TOT</sub>)
 (地上高2mにおけるアンテナ係数を用いる場合)

|                                             | 補正                         | E係数 ΔΑF <sub>TOT</sub>        | , (dB)                     |                                    |
|---------------------------------------------|----------------------------|-------------------------------|----------------------------|------------------------------------|
| 測定距離                                        | R=                         | =3m                           | R=                         | 10m                                |
| 周波数                                         | 水平偏波                       | 垂直偏波                          | 水平偏波                       | 垂直偏波                               |
| fm<br>(MHz)                                 | $h_1=2m$<br>$h_2=1\sim 4m$ | $h_1=2.75m$<br>$h_2=1\sim 4m$ | $h_1=2m$<br>$h_2=1\sim 4m$ | $h_1 = 2.75m$<br>$h_2 = 1 \sim 4m$ |
| 30                                          | 4.0                        | 3.5                           | 1.8                        | 2.6                                |
| 35                                          | 2.7                        | 1.1                           | 0.1                        | 0.2                                |
| 40                                          | 1.3                        | -0.7                          | -1.6                       | -1.0                               |
| 45                                          | 0.0                        | -1.8                          | -2.1                       | -1.9                               |
| 50                                          | -0.8                       | -2.1                          | -2.0                       | -2.4                               |
| 60                                          | -1.5                       | -0.9                          | -0.8                       | -1.5                               |
| 70                                          | -1.3                       | 0.9                           | 0.2                        | 0.4                                |
| 80                                          | 0.2                        | 2.5                           | 0.2                        | 2.2                                |
| 90                                          | 1.3                        | 3.1                           | 0.7                        | 2.9                                |
| 100                                         | 0.7                        | 2.0                           | 0.3                        | 2.1                                |
| 120                                         | -1.2                       | -1.0                          | -0.9                       | -0.9                               |
| 140                                         | -0.5                       | -0.4                          | -0.8                       | -0.3                               |
| 160                                         | -0.3                       | 1.5                           | 0.1                        | 1.3                                |
| 180                                         | -0.4                       | 0.9                           | -0.1                       | 0.9                                |
| 200                                         | -0.5                       | -0.4                          | -0.8                       | -0.5                               |
| 250                                         | 0.4                        | 1.1                           | -0.1                       | 0.9                                |
| 300                                         | 0.3                        | 0.4                           | -0.4                       | 0.3                                |
| 注) 垂直偏波の測定では、受信アンテナの下端を大地面から25cm以上<br>離すこと。 |                            |                               |                            |                                    |

# 表A.5 同調ダイポールアンテナを用いた正規化サイトアッテネーション測定 に使用する相互インピーダンス補正係数(ΔAF<sub>TOT</sub>) (地上高3mにおけるアンテナ係数を用いる場合)

| 測定距離        | R                          | =3m                                | R=                       | =10m                               |
|-------------|----------------------------|------------------------------------|--------------------------|------------------------------------|
| 周波数         | 水平偏波                       | 垂直偏波                               | 水平偏波                     | 垂直偏波                               |
| fm<br>(MHz) | $h_1=2m$<br>$h_2=1\sim 4m$ | $h_1 = 2.75m$<br>$h_2 = 1 \sim 4m$ | $h_1=2m \\ h_2=1\sim 4m$ | $h_1 = 2.75m$<br>$h_2 = 1 \sim 4m$ |
| 30          | 1.0                        | 0.5                                | -1.1                     | -0.3                               |
| 35          | 1.1                        | -0.5                               | -1.5                     | -1.4                               |
| 40          | 1.3                        | -0.6                               | -1.5                     | -0.9                               |
| 45          | 1.7                        | 0.0                                | -0.4                     | -0.1                               |
| 50          | 2.6                        | 1.3                                | 1.4                      | 1.0                                |
| 60          | 2.8                        | 3.4                                | 3.6                      | 2.9                                |
| 70          | 0.1                        | 2.2                                | 1.5                      | 1.7                                |
| 80          | -2.1                       | 0.2                                | -2.1                     | -0.1                               |
| 90          | -2.0                       | -0.2                               | -2.6                     | -0.3                               |
| 100         | -0.6                       | 0.8                                | -1.0                     | 0.8                                |
| 120         | 0.4                        | 0.6                                | 0.7                      | 0.6                                |
| 140         | -0.5                       | -0.3                               | -0.8                     | -0.2                               |
| 160         | -0.5                       | 1.3                                | -0.1                     | 1.2                                |
| 180         | -1.4                       | 0.0                                | -1.1                     | 0.0                                |
| 200         | 0.3                        | 0.5                                | 0.0                      | 0.4                                |
| 250         | -0.2                       | 0.5                                | -0.7                     | 0.3                                |
| 300         | 0.2                        | 0.4                                | -0.4                     | 0.3                                |

表A.6 正規化サイトアッテネーション(AN)

(80MHz同調ダイポールアンテナ(固定長)を用いる場合に適用)

| R                                                      |       | 3m          |                   |                   |                        | 10    | )m    |             |
|--------------------------------------------------------|-------|-------------|-------------------|-------------------|------------------------|-------|-------|-------------|
| 偏波面                                                    | 水平    | 偏波          | 垂直                | 偏波                | 水平                     | 偏波    | 垂直    | 偏波          |
| $h_1$                                                  | 1m    | 2m          | 1m                | 1.5m              | 1m                     | 2m    | 1m    | 1.5m        |
| $h_2$                                                  | 1m~4m | $1m\sim 4m$ | $1 \text{m} \sim$ | $1 \text{m} \sim$ | 1m~4m                  | 1m~4m | 1m~4m | $1m\sim 4m$ |
|                                                        |       |             | 4m                | 4m                |                        |       |       |             |
| f m<br>(MHz)                                           |       |             |                   | (                 | A <sub>N</sub><br>(dB) |       |       |             |
| 30                                                     | 15.8  | 11.0        | 8.2               | 9.3               | 29.8                   | 24.1  | 16.7  | 16.9        |
| 35                                                     | 13.4  | 8.8         | 6.9               | 8.0               | 27.1                   | 21.6  | 15.4  | 15.6        |
| 40                                                     | 11.3  | 7.0         | 5.8               | 7.0               | 24.9                   | 19.4  | 14.2  | 14.4        |
| 45                                                     | 9.4   | 5.5         | 4.9               | 6.1               | 22.9                   | 17.5  | 13.2  | 13.4        |
| 50                                                     | 7.8   | 4.2         | 4.0               | 5.4               | 21.1                   | 15.9  | 12.3  | 12.5        |
| 60                                                     | 5.0   | 2.2         | 2.6               | 4.1               | 18.0                   | 13.1  | 10.7  | 11.0        |
| 70                                                     | 2.8   | 0.6         | 1.5               | 3.2               | 15.5                   | 10.9  | 9.4   | 9.7         |
| 80                                                     | 0.9   | -0.7        | 0.6               | 2.6               | 13.3                   | 9.2   | 8.3   | 8.6         |
| 注)本表の測定に適用する相互インピーダンス補正係数ΔAFTOTは表A.7および表A.8を<br>用いること。 |       |             |                   |                   |                        |       |       |             |

# 表A.7 80MHz同調ダイポールアンテナ(固定長)を用いた

# 正規化サイトアッテネーション測定に使用する相互インピーダンス補正係数(ΔAF<sub>ror</sub>)

| 補正係数 ΔAF <sub>TOT</sub> (dB) |                |                |                   |                |                |                |                |                |
|------------------------------|----------------|----------------|-------------------|----------------|----------------|----------------|----------------|----------------|
| 測定距離                         |                | R=             | -3m               |                |                | R =            | 10m            |                |
| (月) 人工 正二 两世                 | 水平             | 偏波             | 垂直偏波              |                | 水平偏波           |                | 垂直偏波           |                |
| 周波数                          | $h_1 \!=\! 1m$ | $h_1 = 2m$     | $h_1 \!=\! 1m$    | $h_1 = 1.5m$   | $h_1 = 1m$     | $h_1 = 2m$     | $h_1 = 1m$     | $h_1 = 1.5m$   |
| fm<br>(MHz)                  | $h_2=1\sim 4m$ | $h_2=1\sim 4m$ | $h_2 = 1 \sim 4m$ | $h_2=1\sim 4m$ |
| 30                           | 1.7            | 1.1            | 0.2               | -0.1           | 0.3            | 0.4            | -0.6           | -0.3           |
| 35                           | 0.6            | 1.4            | -0.1              | -0.3           | 0.3            | 0.3            | -0.7           | -0.4           |
| 40                           | 0.6            | 1.1            | -0.4              | -0.5           | 0.1            | 0.2            | -0.8           | -0.4           |
| 45                           | 0.9            | 0.8            | -0.7              | -0.7           | -0.2           | 0.1            | -0.9           | -0.5           |
| 50                           | 0.4            | 0.8            | -0.7              | -0.8           | -0.5           | -0.2           | -1.0           | -0.5           |
| 60                           | -0.9           | 0.5            | -0.8              | -0.9           | -1.4           | -0.4           | -1.2           | -0.7           |
| 70                           | -2.1           | -0.3           | 0.0               | -0.8           | -1.5           | -0.2           | -0.1           | -0.3           |
| 80                           | 2.3            | 0.2            | 4.1               | 2.1            | 2.2            | 0.2            | 3.0            | 1.8            |

(地上高2mにおけるアンテナ係数を用いる場合)

表A.8 80MHz同調ダイポールアンテナ(固定長)を用いた

正規化サイトアッテネーション測定に使用する相互インピーダンス補正係数(ΔAF<sub>TOT</sub>)

| 補正係数 ΔAF <sub>TOT</sub> (dB) |            |            |            |              |            |            |            |              |
|------------------------------|------------|------------|------------|--------------|------------|------------|------------|--------------|
| 測定距離                         |            | R=         | 3m         |              |            | R=         | 10m        |              |
|                              | 水平         | 偏波         | 垂直偏波       |              | 水平偏波       |            | 垂直偏波       |              |
| 周波数<br>f                     | $h_1 = 1m$ | $h_1 = 2m$ | $h_1 = 1m$ | $h_1 = 1.5m$ | $h_1 = 1m$ | $h_1 = 2m$ | $h_1 = 1m$ | $h_1 = 1.5m$ |
|                              | $h_2 =$    | $h_2 =$    | $h_2 =$    | $h_2 =$      | $h_2 =$    | $h_2 =$    | $h_2 =$    | $h_2 =$      |
| (MHz)                        | $1\sim 4m$ | $1\sim 4m$ | $1\sim 4m$ | $1\sim 4m$   | $1\sim 4m$ | $1\sim 4m$ | $1\sim 4m$ | $1\sim 4m$   |
| 30                           | 1.7        | 1.1        | 0.2        | -0.1         | 0.3        | 0.4        | -0.6       | -0.3         |
| 35                           | 0.6        | 1.4        | -0.1       | -0.3         | 0.3        | 0.3        | -0.7       | -0.4         |
| 40                           | 0.6        | 1.1        | -0.4       | -0.5         | 0.1        | 0.2        | -0.8       | -0.4         |
| 45                           | 0.9        | 0.8        | -0.7       | -0.7         | -0.2       | 0.1        | -0.9       | -0.5         |
| 50                           | 0.4        | 0.8        | -0.7       | -0.8         | -0.5       | -0.2       | -1.0       | -0.5         |
| 60                           | -0.1       | 1.3        | 0.0        | -0.1         | -0.6       | 0.4        | -0.4       | 0.1          |
| 70                           | 0.2        | 1.9        | 2.2        | 1.5          | 0.8        | 2.1        | 2.2        | 2.0          |
| 80                           | -0.3       | -2.1       | 1.6        | -0.4         | -0.3       | -2.1       | 0.5        | -0.7         |



図A.1a)代替テストサイトでのNSA測定のための代表的なアンテナ配置 (垂直偏波)



図A.1 b) 代替テストサイトでのNSA測定のための代表的なアンテナ配置 (水平偏波)



図A.2 a) 代替テストサイトでのNSA測定のための代表的なアンテナ配置 EUTの大きさが1m(奥行き)×1.5m(幅)×1.5m(高さ)以内で、その外周が 望ましくない反射を生じさせうる最も近い物質から1m以上離れている場合(垂直偏波)



図A.2 b) 代替テストサイトでのNSA測定のための代表的なアンテナ配置 EUTの大きさが1m(奥行き)×1.5m(幅)×1.5m(高さ)以内で、その外周が 望ましくない反射を生じさせうる最も近い物質から1m以上離れている場合(水平偏波)

# A.2 参考

- [1] Smith, A.A., German, R.F., Pate, J.B., "Calculation of site attenuation from antenna factors", IEEE Transactions on EMC, Vol EMC-24, 1982.
- [2] German, R.F., "Comparison of semi-anechoic chamber and open-field site attenuation measurements", 1982 IEEE International Symposium Record on Electromagnetic Compatibility, pp260-265.
- [3] Pate, J.B., "Potential measurement errors due to mutual coupling between dipole antenna and radio frequency absorbing material in close proximity", 1984 IEEE National Symposium Record on Electromagnetic Compatibility.

### 付則B (規定)

#### 尖頭値測定の判定ツリー

周波数:150kHz~30MHzまでの電源線ポート及び通信ポートの伝導妨害波測定の測定時間を節約するために尖頭値検波器付き受信機を用いる場合、合否判定は図B.1に示す判定ツリーを用いて実施すること。

測定周波数に連れて自動的に変わるRFプリセレクタ付きのスペクトラムアナライザを用いる場合は、十分に長い掃引時間をかけ、増幅器の飽和エラーを生じないように行うこと。

さらに、測定結果に影響しないように、スペクトラムアナライザのビデオ帯域幅(VBW)は分解能(RBW、測定帯域幅)に等しいか広くしておくこと。



| ΡK  | 尖頭値  |
|-----|------|
| QΡ  | 準尖頭値 |
| AVG | 平均値  |

図B.1 尖頭値測定の判定ツリー

#### 付則C (規定)

#### コモンモード妨害波測定のための可能な試験配置

C.1 はじめに

付則Cは、本規格が要求している通信線の(トータルコモンモード:TCM)伝導妨害波の測定に 使用可能な測定法を述べている。ケーブルのタイプにより、それぞれ利点と欠点(詳細は付則Fを参 照)を有する異なる測定法を使用することが可能である。

C.1.1 JISC61000-4-6に記載されているCDNをCDNまたはISNとして用いる 方法

シールドのない平衡1対線または平衡2対線の測定には、9.6.2 項に従うISNを使用する。他の タイプのケーブル(シールドのあるケーブル、シールドのないケーブル)については、入手が可能で あり、EUTを接続するケーブルに挿入した時EUTの通常動作を確保することが可能である場合は、 JISC61000-4-6に記述されているCDNを使用することができる。CDNのLCLは、 9.6.2 項に示されているEUTに接続されるケーブルのカテゴリに適切なISNの低い側の偏差の値 を超えてはならない。

本測定法の適用が可能な場合、付則 C.1.1 の測定法は、測定の不確かさが最小となる最良な測定結 果を提供する。

場合によっては、適切なCDNまたはISNが入手不能であったり、システムの動作がCDNまたはISNの挿入により影響を受けたりする。このため専用のCDNまたはISNを使用しない別の測 定法が必要である。付則 C.1.2~付則 C.1.4 はこのような場合に適用可能な代替案を示している。

JISC61000-4-6に基づくCDNを用いて本規格に基づく伝導妨害波測定を実施する場合、当該のCDNのLCLが、本規格に示されたISNに対する(LCLの)要求条件を上回らないように較正されている必要がある。

- CDNまたはISNを直接、基準大地面に接続する。
- ・ 電圧測定を行う場合は、CDNまたはISNの測定ポートで電圧を測定し、当該CDNまたはISNの電圧変換係数(9.6.2e)項で定義)で補正を行って電圧許容値と比較する。
- ・ 電流測定を行う場合は、電流プローブで電流を測定し、電流許容値と比較する。
- CDNまたはISNを用いた測定の場合は、電圧許容値と電流許容値の両者を適用する必要 はない。電流測定の場合は、CDNまたはISNの測定端子に50Ωの負荷を接続すること。





1) 垂直または水平基準金属面までの距離

2) 基準金属面までの距離は厳密でなくてよい。

図C.1 JISC61000-4-6に示されたCDNをCDNまたはISNとして使用する 測定法 C.1.2 150Ω負荷をシールドの外側表面に接続する方法(設置場所でのCDNまたはISN)

C.1.2 に示された測定法は、全ての同軸ケーブルまたはシールドのある多対ケーブルの測定に適用 可能である。

(本測定法は) C.1.1 に示した測定法のようにEUTの被測定ポートに接続されたケーブルを切断 する必要はない。しかしながら、ケーブルのシールド面を露出するためケーブルの外皮を剥く必要が ある。

- ・絶縁外被を破り150Ωの抵抗をシールドの外側表面と大地面の間に接続する。
- ・フェライトチューブまたはクランプを、接続した150ΩとAEとの間に装着する。
- ・電流プローブで電流を測定し、電流許容値と比較する。150Ωの抵抗から右側(AE側)を みたコモンモードインピーダンスは、測定に影響を与えないように十分大きいこと。
   EUTからの妨害波周波数の測定に影響を与えないように、このインピーダンスは150Ω
   より十分に大きい必要があり、このインピーダンスの測定はC.2項の方法を使用すること。
- ・150Ωの抵抗に高インピーダンスのプローブを並列接続することにより、またはJISC
  61000-4-6に記載されている「50Ω/150Ωのアダプタ」を150Ω負荷として使用し 適切な補正(50Ω/150Ωのアダプタの場合は9.6dB)を行うことにより、電圧測定を行うこと
   も

可能である。



図C.2 150Ω負荷をシールドの外側表面に接続する方法(設置場所でのCDNまたはISN)

- C.1.3 電流プローブと容量性電圧プローブの組合せによる方法
  - ・電流プローブで電流を測定する。
  - ・CISPR16-1-2の 5.2.2項で規定された容量性電圧プローブで電圧を測定する。
  - ・測定された電圧を電圧許容値と比較する。
  - ・測定された電流を電流許容値と比較する。
  - ・EUTは電圧許容値と電流許容値の両者を満足すること。



AE:関連装置 EUT:供試装置

1) 垂直または水平基準金属面までの距離

2) 基準金属面までの距離は厳密でなくてよい。

図C.3 電流プローブと容量性電圧プローブの組合せによる方法

C.1.4 シールドと大地面との接続がなく ISNもない方法

もしC.1.4に示された方法とC.1.3に示された方法とを組み合わせる場合、両測定法の短所に煩わされることなく、両測定法の長所を活用できる。

最初にC.1.3に示された方法でEUTを測定する。もし測定結果が許容値以下であった場合、EU Tは許容値に適合しているとみなせる。もしC.1.3に示された方法でEUTを測定し、一つ以上の周 波数の妨害波レベルが許容値を上回っている場合、これらの周波数についてのみC.1.4に示された方 法を用いて測定することができる。この組み合わせ測定法において、C.1.3に示された方法は、測定 に時間がかかるがより精度の高い測定法であるC.1.4に示された方法を用いて、より詳細な測定を必 要とする周波数を選定するための方法として使用される。

- ・フェライト材を使用する。
- ・初期測定においてEUTからの妨害波周波数を決定する。
- ・EUTからの妨害波周波数についてC.2項に示した手順を用いて、ケーブル、フェライト

およびAE(で構成される系)のコモンモードインピーダンスを記録する。このコモンモー ドインピーダンスは150Ω±20Ωであること。較正を行った時のフェライトの装着位置を 記録しておき、適合のための測定を実施する際はその位置に装着すること。

注) 150Ω±20Ωを実現するためには、異なる周波数に対して異なるタイプのフェライト が要求されるかもしれない。

 ・電流プローブで電流を測定する。図における第2番目のプローブは、 C.2項に示した較正 を行う際に用いる注入プローブである。このプローブは、コモンモードインピーダンスを確認 する時に使用するものであって、適合のための測定を実施する際は使用しないこと。

・測定された電流を電流許容値と比較する。



AE:関連装置 EUT:供試装置

1) 垂直または水平基準金属面までの距離

2) 基準金属面までの距離は厳密でなくてよい。

図C.4 シールドと大地面との接続がなく ISN もない方法

C.1.5 測定方法を選定するためのフローチャート

様々なポート(シールドのない対より線、シールドのある対より線、同軸ケーブル、AC電源線 等)に適用する測定法を選定するためのフローチャート(図C.6参照)を採用する。たとえばシー ルドのある(STP)ケーブル、シールドのない(UTP)ケーブルのように、異なる型のケーブル への適用が可能な場合は、両者について測定を行って本規格に対する適合を確認すること。

シールドケーブルまたは同軸ケーブルの妨害波測定において、適切なISNが存在しない場合は C.1.3項の測定方法で測定し適合を確認すること。C.1.3項の測定方法を用いて測定する場合、C.1.4 項及びC.2項に示された測定方法は適用しないこと。

C.2 ケーブル、フェライトおよびAE (で構成される系)のコモンモードインピーダンスの測定

- ・注入プローブおよび測定プローブを50Ωのシステム(図C.5参照)で較正する。 注入電圧(V<sub>1</sub>)を発振器から注入プローブに入力し、測定プローブの電流(I<sub>1</sub>)を記録する。
- ・ケーブルをEUTから外し、外したケーブルをEUTの端で大地面に短絡する(図C.5参照)。
- ・同一の注入プローブを用いて注入電圧(V<sub>1</sub>)をケーブルに印加する。
- ・同一の測定プローブを用いて電流を測定し、測定された電流値(I<sub>2</sub>)と、最初に測定した電 流値(I<sub>1</sub>)とを比較することにより、ケーブル、フェライトおよびAE(で構成される系)の コモンモードインピーダンスを計算する。(コモンモードインピーダンスは、50×I1/I<sub>2</sub>) 例えば、I<sub>1</sub>がI<sub>2</sub>の半分であるとすると、コモンモードインピーダンスは100Ωである。

このTCMインピーダンスの測定技術は以下の条件のもとでのみ使用する。

図C.5における50Ωの較正冶具のループ長(円周)は、図C.4の総ループ長の±10%である こと、および両者のループ長は1.25m以下であること。これらの条件は、インピーダンス測定に 影響を与え測定の不確かさを増加させるループの共振現象を最小限に抑えるために必要である。以下 に示す二つの方法のいずれかをTCMインピーダンスの測定に使用する。

- 方法1:インピーダンスアナライザを、図C.4に示すスイッチの点でEUTの被測定ポートの ケーブルに接続する。インピーダンスアナライザをEUTの被測定ポートのケーブル と基準大地面との間に接続する。EUTはこの測定のために接続を取り外し、EUTの 被測定ポートに接続されている全てのワイヤをインピーダンスアナライザに接続され ている点に接続する。本測定には上述したケーブル長に関する条件を適用する必要があ る。この測定法における測定配置は図F.4と同様である。
- 方法2:ネットワークアナライザ、電流プローブ、容量性電圧プローブを用いてコモンモード 電圧および電流を測定する。ネットワークアナライザで測定された、EUTの被測定 ポートに接続されているケーブルの電圧と電流の比でTCMインピーダンスを求める。 この測定法における測定配置は図F.4と同様である。



図C.5 較正方法



図C.6 試験方法を選定するためのフローチャート

## 付則D (情報)

擬似通信回路網(ISN)の回路構成例



注 1: 9.5.2 e) 項で定義される電圧変換係数= 9.5 dB(公称値)

注 2: Zcat はISNの平衡度 (LCL)をネットワークの平衡度に合わせるため、9.5.2 c)項で規定される値を 有するインピーダンス

図D.1 シールドのない平衡1対線用のISN


L3 および L4 (各対線の線間インダクタンス)=4 x 3.1 mH = 12.4 mH

EUT = 供試装置 AE = 関連装置

注 1:9.5.2 e) 項で定義される電圧変換係数=9.5 dB(公称値)

注 2: Zcat はISNの平衡度(LCL)をネットワークの平衡度に合わせるため、9.5.2 c)項で規定される値を 有するインピーダンス

注 3: このISNはシールドのない1対および2対の平衡対線のコモンモード妨害波測定に使用できる。

図D.2 シールドのない1対および2対の平衡線に使用できるLCLの高いISN



L3, L4, L5, and L6 =  $2 \times 3.1$ 

L3, L4, L5およびL6(各対線の線間インダクタンス) = 4 x 3.1 mH = 12.4 mH

EUT = 供試装置 AE = 関連装置

注 1:9.5.2 e) 項で定義される電圧変換係数=9.5 dB(公称値)

注 2: Zcat はISNの平衡度(LCL)をネットワークの平衡度に合わせるため、9.5.2 c)項で規定される値を 有するインピーダンス

注 3: このISNはシールドのない1対、2対、3対および4対の平衡対線のコモンモード妨害波測定に使用できる。

図D.3 シールドのない1対,2対,3対および4対の平衡線用のLCLの高いISN



Rx = 受信機の入力インピーダンス

- EUT = 供試装置 AE = 関連装置
- 注 1:9.5.2 e) 項で定義される電圧変換係数=34 dB(公称値)
- 注 2: Zcat はISNの平衡度(LCL)をネットワークの平衡度に合わせるため、9.5.2 c)項で規定される値を 有するインピーダンス

図D.4 電圧測定ポートに50Ωの整合回路を有するシールドのない平衡2対線用のISN



Rx = 受信機の入力インピーダンス

EUT = 供試装置 AE = 関連装置

注 1:9.5.2 e)項 で定義される電圧変換係数=9.5 dB(公称値)

注 2: Zcat はISNの平衡度(LCL)をネットワークの平衡度に合わせるため、9.5.2 c)項で規定される値を 有するインピーダンス

警告:このISNは平衡2対線のうち1対しか使用されていないケーブルの測定に使用してはならない

図D.5 シールドのない平衡2対線用のISN



Rx = 受信機の入力インピーダンス

- EUT = 供試装置 AE = 関連装置
- 注 1:9.5.2 e)項 で定義される電圧変換係数= 34 dB(公称値)
- 注 2: Zcat はISNの平衡度(LCL)をネットワークの平衡度に合わせるため、9.5.2 c)項で規定される値を 有するインピーダンス
- 警告:このISNは平衡4対線のうち4対未満しか使用されていないケーブルの測定に使用してはならない
  - 図D.6 電圧測定ポートに50Ωの整合回路を有するシールドのない 平衡4対線用のISN



Rx = 受信機の入力インピーダンス

EUT = 供試装置

AE = 関連装置

- 注 1:9.5.2 e) 項で定義される電圧変換係数=9.5 dB(公称値)
- 注 2: Zcat はISNの平衡度(LCL)をネットワークの平衡度に合わせるため、 9.5.2 c)項で規定される値を有す るインピーダンス
- 警告:このISNは平衡4対線のうち1対(訳注:4対未満が正しい)しか使用されていないケーブルの測定に使用してはならない

図D.7 シールドのない平衡4対線用ISN



図D.8 中心導体と外部導体を例えばフェライトコアにバイファイラー巻きしたコモンモード チョークコイルを内部に有する同軸ケーブル用 ISN



図D.9 内部にミニチュア同軸ケーブルとフェライトコアで構成したコモンモードチョークコイル を有する同軸ケーブル用の ISN



図D.10 中心導体と外部導体を例えばフェライトコアにバイファイラー巻きしたコモンモード チョークコイルを内部に有するシールドのある多線ケーブル用のISN



図D.11 内部にミニチュア同軸ケーブルとフェライトコアで構成したコモンモードチョークコイ ルを有するシールドのある多線ケーブル用のISN

# 付則E (情報)

### 通信ポートにおける信号のパラメータ

E.1 概要

本規格では、ディファレンシャル電流または電圧信号レベルに対する許容値は定めない。

しかしながら、通信ポートのディファレンシャルモードの最大信号レベルは、仮に希望信号がグラ ンドに対するコモンモードインピーダンス上で、許容することができない妨害波として現れないよう にするのであれば、通信ポートおよびケーブル、またはこれらが接続することを意図しているネット ワークの電気的な平衡または不平衡減衰量(LCL) [1、2]に依存し、かつ制限される。

信号ポート、ケーブルまたはネットワークのLCLによっては、これらの端子、ケーブル、または ネットワーク上のディファレンシャル信号の一部が、本規格で許容値を定めたコモンモード妨害波に 変換される[3]、[4]、[5]。コモンモード妨害波(この環境ではこれが放射妨害波の原因となるので、 アンテナモード妨害波とも呼ばれる)は、全ての種類の無線信号を受けて起こる障害を最小限とする のであれば、限定されなければならない。平衡な信号ポートまたは、例えば撚った銅の対線のような 伝達媒体で生成されるコモンモード妨害波は、これらのポートや伝達媒体の全体がシールドされてい るかどうかにかかわらず、コントロールされ制限されなければならない。シールドされた媒体を使用 する場合、シールドコネクタ内だけでなくシールド自体の欠陥によって発生する重大な電気的不連続 性により、シールド環境内で生成されシールド外に現れるコモンモード妨害波となるであろう。

多くのネットワークで想定される平衡性およびLCLの最悪値は、ネットワークが望む信号の伝送 特性と漏話特性に依存し、本規格で考えているコモンモード妨害波のコントロールについては必ずし も注意を払う必要はない。

通信ネットワークの物理レイヤー仕様により、許容できない電磁妨害波が偶発的に発生しないよう にするために、ネットワーク規格を検討する初期の段階で、いくつかのクリティカルなパラメータに 対しては電磁両立性(EMC)を考慮した仕様を考えることが不可欠である。

撚り対線を用いた通信ネットワークのEMCを達成するために考慮すべき最も重要なパラメータを 以下に示す。

- ・希望線間またはディファレンシャルモード電気信号の規定レベル
- ・希望ディファレンシャル信号用に規定されたラインコード(AMI、CMI、NRZ 等の伝送符号形式)のスペクトル特性
- ・希望ディファレンシャル信号のプロトコルのデザイン
- ・(システムの)設置場所において、希望電気信号が伝送される物理的な銅の媒体に予測 される電気的平衡度、またはLCL
- ・物理的媒体に接続するユニットの通信ポートの電気的平衡度、またはLCL
- ・希望ディファレンシャル信号が伝送される物理的媒体に予測されるディファレンシャル

モードおよびコモンモードインピーダンス

- ・(物理的媒体に接続する)ユニットの希望ディファレンシャル信号が現われる通信
  ポートに対して規定された、ディファレンシャルモードおよびコモンモードインピーダンス
- ・シールドした媒体が使われる場合は、コネクタおよびシールドに期待されるシールド効果

結果として生じたコモンモード妨害波レベルに対する希望ディファレンシャル信号の絶対レベルの 影響を精査する必要はない。非線形がない場合は、通信端子や物理的媒体の電気的不平衡に起因する ディファレンシャルモードからコモンモードへの変換によって生じたコモンモード妨害波のレベルは、 希望ディファレンシャル信号のレベルに正比例する。

希望ディファレンシャル信号に規定されたスペクトル特性およびプロトコルも、物理的媒体に現れるコモンモード妨害波のレベルに大きな影響を与える。

データ速度が与えられた場合、信号の持つパワーを広い周波数範囲に広がるよう設計されたライン コーディングを使用するディファレンシャル信号は、信号の持つパワーを狭い周波数範囲内に集中す るよう設計されたラインコーディングを使用する場合よりも、許容できないコモンモード妨害波を発 生させる可能性が低い。

信号のプロトコルの選定はディファレンシャル信号のスペクトル特性に大きな影響を与える。は じめと終わりを示すデリミッター(区分信号)、フレーミングおよび同期ビットパターン、トーク ンのビットパターン、そして最終的にはアクセスコントロールプロトコルが、通信ネットワークの 様々な作動状態(高トラフィック時、低トラフィック時、アイドル時)で、ディファレンシャル信 号の持つパワーを狭い周波数範囲にどれくらい集中するかに大きな影響を与える。

ネットワーク上のディファレンシャル信号から生成されるコモンモード妨害波のレベルを最小限にするのであれば、周期性の高い波形が長時間持続して発生することを避ける必要がある。

E.2 コモンモード妨害波レベルの評価

重要な電気パラメータとスペクトルパラメータとの関係がわかれば、希望ディファレンシャル信号 の、ディファレンシャルモードからコモンモードへの変換により発生するコモンモードレベルの評価 を行うことができる。特に、ディファレンシャル信号から変換されたコモンモード妨害波がコモン モード妨害波許容値を越えない場合は、ディファレンシャル信号の最高許容レベルの評価を行うこと ができる。

LAN内で互いに接続されている二つの項目、例えば、特性インピーダンスで終端したシールドの ない平衡な撚り対線に接続される平衡な通信ポート、を考える。2項目の組み合わせの電気的不平衡 は、最悪(最低)LCLを生じる項目の電気的不平衡に左右されると仮定する。その(最悪LCLを 有する)項目のLCLに起因した、ディファレンシャルモードからコモンモードへの変換により発生 するコモンモード妨害波のおおよその強さは、以下のように求められる。

$$I_{cm}(dB\mu A) \approx U_T(dB\mu V) - LCL(dB) - 20\log_{10}\left| 2 Z_0 \cdot \frac{Z_{cm} + Z_{ct}}{Z_0 + 4Z_{cm}} \right|$$
(E.1)

ディファレンシャル信号電圧U<sub>T</sub>によって発生するコモンモード電流 I cmを求める時、 および

$$U_{cm}(dB\mu V) \approx U_T(dB\mu V) - LCL(dB) - 20\log_{10}\left|\frac{2Z_0}{Z_{cm}} \cdot \frac{Z_{cm} + Z_{ct}}{Z_0 + 4Z_{cm}}\right| \qquad (E.2)$$

ディファレンシャル信号電圧U<sub>T</sub>によって発生するコモンモード電圧Ucmを求めるとき、

ここで、

Zcmは、最悪(最低)のLCLをもった項目により与えられるコモンモードインピーダンス。 Zctは、より高いLCLのある項目により与えられるコモンモードインピーダンス。 Zoは、通信ポートでの線間またはディファレンシャルモードインピーダンス。

上記の式は、[6] で詳しく説明した関係から引き出され、組み合わせた両方の項目が線間または ディファレンシャルインピーダンスZoを与えることを想定している。

等式内のコモンモード妨害波レベルをコモンモード妨害波許容値と等しくすることにより、許容で きる最大の線間またはディファレンシャル信号レベルを求めることができる。

上記の等式を使用する場合、コモンモード妨害波許容値は定められた帯域幅(例えば9kHz)で規 定された検波機能(準尖頭値あるいは平均値)によって測定される量であることに注意する必要があ る。それゆえ、与えられたLCLにおいて上記の方法で評価される許容可能な最大ディファレンシャ ル信号レベルは、同一の検波機能で測定された場合に同一の帯域幅内に発生することが許されるもの である。 E.3 参照文献

- [1] ITU-T Recommendation G.117: 1996, Transmission aspects of unbalance about earth
- [2] ITU-T Recommendation O.9: 1988, Measuring arrangements to assess the degree of unbalance about earth
- [3] Danffel, H.R. and Ryser, H., "Problem on the ISDN subscriber S and U interface," ISSLS 86, pp.145-149, 1986
- [4] Davies, W.S., Macfarlane, I.P. and Ben-Meir, D., "Potential EMI from ISDN basic access systems," Electronic Letters, Vol.24, No.9, pp.533-534, April 1988
- [5] Kuwabara, N., Amemiya, F. and Ideguchi, T., "Interference field emission due to unbalance in telecommunication lines," IEEE Int. Symp. on EMC, Nagoya, pp.487-492, Sept. 1989
- [6] van Maurik, R.M., "Potential Common Mode Currents on the ISDN S and T-interface Caused by Cable Unbalance," IEE Eighth International Conference on EMC, Edinburgh, 21-24, September, 1992, IEE Conference Publication No, 362, pp.202-206
- [7] Haas,Lee & Christensen, Ken, LAN Traffic Conditions for EMI Compliance Testing, IBM Corporation, Research Triangle Park, NC.

## 付則F(情報)

### 通信ポート妨害波測定及び測定法に関する妥当性

F.1 許容値

妨害波電圧(あるいは電流)の許容値は、150Ωのトータルコモンモード(TCM)負荷インピー ダンス(測定中にEUTによってAEポートからみえる)に対して決められている。このことは、A E及びEUTの未知のTCMインピーダンスによらず、再現性のある測定を行うために必要である。

一般的にAEポートにおいてEUTによってみえるTCMインピーダンスは、ISNやCDNを使用しない限り決まらない。仮にAEがシールド室の外に設置される場合、AEポートにおいてEUTによってみえるTCMインピーダンスは、試験系とシールド室外部との間にあるフィルタのTCMインピーダンスによって決まる。 π型のフィルタはTCMインピーダンスが低く、その一方でT型のフィルタはTCMインピーダンスが高い。

ITEが使用する全てのケーブルに対して、CDNやISNが存在するわけではない。したがって、 CDNやISNを使用しない代替測定法(ノンインベイシブ測定法)が必要である。

付則CではEUTの測定対象ポートに接続されたケーブルのみが図示されている。通常、EUTに は他に幾つかのケーブル(もしくはポート)がある。多くの場合、少なくとも電源への接続がある。 測定対象以外の接続(接地を含む)のTCMインピーダンスや、測定におけるこれら接続の有無は、 特に小型EUTの場合に測定結果に重大な影響を与えうる。したがって、小型EUTについて、測定 を行っていない接続のTCMインピーダンスを決める必要がある。測定対象のポートに加え少なくと も二つのポートについて、150ΩのTCMインピーダンスに接続すれば(通常、測定端子を50Ω終 端したISNもしくはCDNが用いられる。)、この影響を無視できる程度に軽減することができる。

非シールド平衡対に適用される結合装置は、測定する通信ポートの仕様に基づいて最も低いケーブ ルカテゴリの典型的な不平衡減衰量(LCLの最悪値)を模擬しなければならない。この要求条件は、 平衡信号が不平衡信号に変換され、EUTが実際に運用される時に放射に寄与するであろうことを考 慮するためにある。ISNの不平衡度は規定のLCLを得るために設定されている。この不平衡度はE UTの不平衡度を強めたり弱めたりする。最大放射条件を決定するため、及び測定の再現性を最大限 とするために、9.6.2項に定義された適切なISNを用いて、それぞれの線の不平衡状態を変えて測定を 繰り返すべきである。

それぞれの平衡対の不平衡度はコモンモード伝導エミッションに寄与するので、全ての平衡対に関 するあらゆる不平衡の組み合わせについて考慮すべきである。平衡1対線の場合、2本の線が逆向き になっているため、測定に及ぼす影響は小さい。しかしながら平衡2対線の場合、LCL負荷の組み 合わせ(例えば試験構成)は4である。平衡4対線の場合、LCL負荷の組み合わせは16に膨らむ。 こうした数は測定時間及び測定記録に、重大な影響を与える。こうした測定は注意して行う必要があ り、もしここに記載された内容を実施した場合には、適切に記録する必要がある。

ISN及びCDNの測定端子は、測定器に接続されていない場合は50Ω終端すること。

表F.1は付則Cに記載されている測定法の利点と欠点を示している。

|    | 測定法C.1.1                                      | 測定法C.1.2    | 測定法C.1.3        | 測定法C.1.4                    |
|----|-----------------------------------------------|-------------|-----------------|-----------------------------|
| 利点 | 測定の不確かさが                                      | ノンインベイシブ    | ノンインベイシブ        | ノンインベイシブ                    |
|    | 最小である。                                        | である。        | である。            | である。                        |
|    | (適切な伝送特性                                      | (シールドケーブ    |                 |                             |
|    | のISN及びCDNが                                    | ルの絶縁層を取り    | 常時適用可能であ        | 測定の不確かさが                    |
|    | 適用可能な場合の                                      | 除くこと以外)     | る。              | 小さい。                        |
|    | み)                                            |             |                 |                             |
|    |                                               | シールドケーブル    |                 |                             |
|    | LCLを考慮すべき                                     | に常時適用可能で    | 過小評価にならな        | <ul><li>(図F.1及びF.</li></ul> |
|    | である。CDNは被                                     | ある。         | い。(最悪評価)        | 2 の $Z_2$ が 150±20          |
|    | 測定ケーブルの種                                      |             |                 | Ωに調整できる場                    |
|    | 類に対して最小の                                      | 高い周波数では測    |                 | 合のみ)                        |
|    | LCLを満足するこ                                     | 定の不確かさが小    |                 |                             |
|    | と。                                            | さい。         |                 |                             |
| 欠点 | 全ての場合に適用                                      | 低周波(<1MHz)  | Z2が150 Ωと大き     | 全ての場合に適用                    |
|    | できるわけではな                                      | で測定の不確かさ    | く異なる場合に、        | できるわけではな                    |
|    | い。(適切なISN/                                    | が増加する。      | 過大評価となる可        | $V_{\circ}$                 |
|    | CDNが必要であ                                      |             | 能性がある。          |                             |
|    | る。)                                           | ケーブルの絶縁体    |                 | 多くの時間を浪費                    |
|    |                                               | を破壊する必要が    | 極端な周波数及び        | する。(測定周波                    |
|    | インベイシブ(適                                      | ある。         | インビーダンス条        | 数毎にフェフイト                    |
|    | 切なケーブル接続                                      |             | 件において、不確        | の調整が必要であ                    |
|    | が必要である。)                                      | AE側からの奶害    | かさが増大する。        | る。)                         |
|    | ら ゴルの任物た                                      | 波に対する絶縁か    |                 |                             |
|    | クーノルの種類毎                                      | (U.I.I と比較し | AE側からの奶害        | Aと側からの奶害                    |
|    | に(結果としてか                                      | ()小さくなる。    |                 |                             |
|    |                                               |             | い。(0.1.1と比      | (0.1.1と比較し                  |
|    | る) ISN/CDN //・<br>立西伝生ズ                       |             | 較して             | ()小さくなる。                    |
|    | 必安じめる。                                        |             | FITに埣結そわ        | FITに捽結そわ                    |
|    | AFからの亚術信                                      |             | エロエに按照されるケーブル細の | エロエに按照されるケーブル細の             |
|    | A<br>こからの<br>干険<br>旧<br>号<br>を<br>絶縁<br>オスISN |             |                 |                             |
|    | が無い                                           |             | 御信号から変換さ        | 御信号から変換さ                    |
|    | 14 · 777 V ·                                  |             | れた訪宝波を証価        | れた訪宝波を評価                    |
|    |                                               |             | オステレができた        | することができた                    |
|    |                                               |             |                 | N.                          |

表F.1-付則Cに記載されている測定法の利点と欠点

F.2 電流プローブと容量性電圧プローブの併用

C.1.3項に示す測定法は、全てのケーブルに対してノンインベイシブの測定が行えるという利点がある。しかしながら、EUTからAE側をみたインピーダンスが150Ωでないかぎり、測定結果は過小評価にはならないものの過大評価(妨害波の最悪評価)となる。

# F.3 容量性電圧プローブの原理

図C.3は容量性電圧プローブをコモンモード妨害波の測定に適用した場合である。容量性電圧プ ローブには二つの構成がある。いずれの場合も、TCMインピーダンスが150Ωの場合、容量性電圧 プローブとEUTの被測定ポートに接続されたケーブルとの間の容量は、TCMインピーダンス15 0Ωに対する並列負荷として表される。

TCMインピーダンスの公差は、周波数 0.1 5 MH z から 3 0 MH z において±2 0 Ωである。仮に 容量性電圧プローブに負荷が接続されたことによって、TCMインピーダンス 1 5 0 Ωがせいぜい 1 2 0 Ωにしか低下しないようにするためには、容量性電圧プローブとEUTの被測定ポートに接続された ケーブルとの間の容量は、3 0 MH z (最悪条件の周波数)で5 pF未満でなければならない。3 0 M H z において 5 pFはほぼ – j 1.0 6 2 Ωであり、1 5 0 Ωとの並列によるTCMインピーダンスはほ ぼ 1 4 8 Ωとなる。

一つ目の容量性電圧プローブの構造は、EUTの被測定ポートに接続されたケーブルとの距離に よって容量が5pF未満となることを見込んだ単一構造のプローブである。この形態の容量性電圧プ ローブは、CISPR16-1-2の5.2.2項に記述されている。

二つ目の構造はEUTの被測定ポートに接続されたケーブルに対して、非常に近接した容量性結合 装置を用いたものである。(容量性結合装置は実際には、EUTの被測定ポートに接続されたケーブ ルの絶縁体に物理的に接触している。)容量5pF未満でインピーダンスが10MΩより大きい標準的 なオシロスコープのプローブは、容量性結合装置と直列に接続される。容量性結合装置に直列に接続 されたプローブの容量は、原理的にEUTの被測定ポートに接続されたケーブルに対するプローブの 容量として表される。実際には、容量性結合装置の物理的な大きさによって、プローブ容量に大きな 浮遊容量が並列に接続されると考えられる。こうした場合、最終的な容量負荷はプローブそのものの 容量よりも大きくなり、5pF未満という要求条件を満足できない。この技術を適用する場合、容量負 荷を理論によることなく測定により確認しなければならない。

この容量の測定は、周波数150kHzから30MHzで使用可能な、あらゆる容量測定器により 実施することができる。容量は、EUTの被測定ポートに接続されたケーブル(ケーブル内の全ての 導線を一まとめにして測定器に接続する)と基準大地面との間について測定する。容量の測定には、 伝導妨害波測定に用いるものと同じものを使用しなければならない。

注)この測定法は、EUTとAE間のケーブル長が1.25m未満のときに、不確かさが最小となる。十分に長いケーブ ルの場合定在波が発生して、反対に電圧や電流の測定に影響を及ぼす。ケーブル長が長く、電圧及び電流許容値と もに満足しない場合は、C.1.5項の電力測定法の適用を推奨する(現在検討中の方法である)。

F.4 電流及び電圧許容値の併用

TCMインピーダンスが150Ωではない場合、電圧もしくは電流単独の測定は容認できない。これ

は、不定かつ未知のTCMインピーダンスによって測定の不確かさが非常に大きくなるためである。 しかしながら電圧及び電流測定の双方を行い、電圧及び電流許容値を同時に適用するのであれば、以 下に示すように結果は妨害波の最悪条件の評価となる。

許容値を定義する基本回路を図F.1に示す。この回路は電流許容値と電圧許容値の派生についても 参照される。他のあらゆる測定法は、この基本回路と比較しなければならない。 $Z_1$ はEUTの未知の パラメータである。 $Z_2$ は基準測定において150 $\Omega$ である。



図F.1 TCMインピーダンス150Ωで定義された許容値を考えるための基本回路

仮にEUTからみたTCMインピーダンスを決めずに測定を行った場合、回路構成は図F.2で示される。このときEUTからみたTCMインピーダンスZ2は、AEによって決まりかつあらゆる値となり得る。したがってZ1同様Z2も測定における未知のパラメータとなる。



図F.2 未知のTCMインピーダンスにおける測定の基本回路

図 F.1 の回路に基づいて測定が行われた場合、電流許容値と電圧許容値は等価となる。電流と電圧の関係は常に150 $\Omega$ であり、どちらも許容値に対する適合確認に用いることができる。このことは $Z_2$ が150 $\Omega$ ではない場合にはあてはまらない。(図 F.2 参照)

許容値に対する適合確認を行うのは電圧源U<sub>0</sub>ではないことに気づくことが重要である。妨害波電圧 はZ<sub>2</sub>が150 $\Omega$ を標準として測定される必要があり、Z<sub>1</sub>,Z<sub>2</sub>及びU<sub>0</sub>に依存する。EUTが高インピーダ ンスZ<sub>1</sub>で高い電圧源U<sub>0</sub>を持つ場合、もしくは低インピーダンスZ<sub>1</sub>に接続された低い電圧源U<sub>0</sub>を持つ場 合に、妨害波が許容値近くのレベルになると考えられる。

より一般的である $Z_2$ が決まっていない図F.2のケースの場合、正確な妨害波電圧を測定することは 不可能である。 $Z_1$ 及び $U_0$ が未知であるため、たとえ $Z_2$ が既知(測定もしくはI及びUから算出)であっ たとしても妨害波電圧を導出することはできない。例えば仮に許容値をこえるエミッションを持つE UTについて、AE側の $Z_2$ が低い(150 $\Omega$ 未満の)測定系において電圧のみを測定した場合、このE UTは許容値に適合しているようにみえると考えられる。また、もし同じEUTについて、高いイン ピーダンス $Z_2$ (例えばフェライトの付加による)で電流のみを測定した場合、EUTはやはり許容値 に適合しているようにみえると考えられる。

しかしながら、このことから言えるのは、電流許容値と電圧許容値を同時に適用すれば、電流許容値を超えていること( $Z_2$ が150 $\Omega$ 未満の場合)、もしくは電圧許容値を超えていること( $Z_2$ が150 $\Omega$ より大きい場合)のいずれかによって、常に許容値を超えていることがわかる。

仮にAEのTCMインピーダンス( $Z_2$ )が150Ωにほど遠い場合、 $Z_2$ が150Ωの状態で許容値に 適合したEUTであっても、許容値に適合しない可能性がある。しかしながら、許容値に適合してい ないEUTが $Z_2$ の条件によって許容値に適合することは起こりえない。ゆえにC.1.3に基づく測定はエ ミッションの最悪評価であるといえる。この測定法によって許容値に適合していないEUTが、 $Z_2$ が 150Ωの状態で測定した場合に許容値に適合する可能性はある。この方法で測定された妨害波につい て、電流及び電圧許容値から導出された電力許容値と比較することで、150Ω条件での妨害の潜在力 をより正確に測定することができる。伝導電力測定の方法に関してはCISPR/Iで検討中である。

F.5 フェライトによるTCMインピーダンスの調整

幾つかの場合(仮にAE側のTCMインピーダンスがもともと150Ωよりも小さい場合)、EUT の被測定ポートに接続されたケーブルにフェライトを付加することで、TCMインピーダンスを調整 することができる。C.1.4項では、各測定周波数においてTCMインピーダンスが150Ω±20Ωとな るようTCMインピーダンスの測定とフェライトによる調整を要求している。したがって、この方法 は全ての周波数スペクトルに適用した場合、非常に煩雑で時間を浪費するものである。仮にAE側の TCMインピーダンスがもともと150Ωより高い場合、フェライトを付加したり、その設置場所を変 えることで、30MHz以下の周波数においてTCMインピーダンスを150Ωに調整する方法は無い。 (特定の周波数においてTCMインピーダンスを調整する別の方法が考案されれば別であるが。) F.6 付則Cにおいてフェライトを使用する場合の要求条件

C.1.2項では同軸ケーブルのシールド層上の伝導エミッションについて測定系が定義されている。図 C.2に示したように同軸ケーブルのシールド層と基準大地面間を接続する150Ω負荷が規定されて いる。フェライトが150Ω負荷とAEとの間の同軸ケーブルのシールド層の上に設置されている。以 下は、C.1.2の要求条件を満足するために必要な、フェライトの機能要求について述べている。



 $V_{EUTem}$  EUTにより発生したコモンモード電圧  $Z_{EUTem}$  EUTのコモンモードソースインピーダンス  $V_{AEem}$  AEにより発生したコモンモード電圧  $Z_{AEem}$  AEのコモンモードソースインピーダンス  $Z_{ferrite}$  フェライトのインピーダンス Z 150  $\Omega$ , Zferrite及びZ<sub>AEem</sub>による合成インピーダンス

図F.3 図C.2の構成要素のインピーダンス配置

図F.3は図C.2に含まれる全ての基本的なインピーダンスを示している。C.1.2で規定されている フェライトは高いインピーダンスを提供している。その結果「150Ω抵抗から右側のTCMインピー ダンスは測定に影響を及ぼさないよう十分に高くなければならない」状態となっている。このイン ピーダンスは図F.3はZで表されている。

上記のC.1.2から引用された事項は、 $Z_{ferrite}$ 及び $Z_{AE}$ comの直列インピーダンスが、150 $\Omega$ 抵抗の負荷 としてみえないことを結論づけている。コモンモード負荷150 $\Omega$ の公差のCISPR22における一 般的な値は、周波数0.15MHzから30MHzにおいて±20 $\Omega$ である。これら二つの考えを合わせ ると、150 $\Omega$ 抵抗に並列となる $Z_{ferrite}$ 及び $Z_{AE}$ cmの直列インピーダンス(図F.3のZ)は、130 $\Omega$ よ り高くなければならない。このことはまた逆に、 $Z_{AE}$ cmの値を考慮しなくてよいためにはこの関係を維 持しなければならないことを証明している。 フェライトのインピーダンス特性を確立するために、 $Z_{AEcm}$ が開放回路の場合と $Z_{AEcm}$ が短絡回路の場合の二つのケースについてのみ考慮すればよい。条件を満足したフェライトを選択すれば、あらゆる値の $Z_{AEcm}$ が適用できる。

・ケース1: $Z_{AECM}$ が開放回路の場合

 $Z_{ferrite}$ 及び $Z_{AEcm}$ の直列インピーダンスも開放回路となる。 $150\Omega$ 抵抗に開放回路が並列に接続されても負荷は $150\Omega$ である。 $Z_{ferrite}$ は任意の値でよい。

・ケース2: $Z_{AEcm}$ が短絡回路の場合

 $Z_{ferrite}$ 及び $Z_{AEcm}$ の直列インピーダンスは $Z_{ferrite}$ と等しくなる。 $150\Omega$ と並列に接続される $Z_{ferrite}$ は下記関係式より130 $\Omega$ より高くなければならない。

# $\left[150 \cdot \left(Z_{ferrite}\right)\right] / \left(150 + Z_{ferrite}\right) \ge 130\Omega$

上記式よりZferriteは1000 Ωと求められる。これは、この方法に適用されるフェライトは、周波数0. 15MH z から30MH z の範囲において、最低1000 Ωのインピーダンスでなければならないことを 意味している。フェライトの場合、最小インピーダンス(joL)は最低周波数0.15MH z での値と なる。

上記二点を鑑みると、ケース2における0.15MHzでの値がフェライトのインピーダンスの最小 値となる。この値以上の任意の値がフェライトのインピーダンスとして容認される。

選択したフェライトが意図した機能を果たしているかどうかを明らかにするために、図F.4に示し た測定系が示唆されている。従前のインピーダンスメータ及びインピーダンスアナライザが、Z点と基 準大地面間のインピーダンス測定に用いることができる。別の方法として、Z点の電流と電圧(図F. 4のI及びV)を個々に測定し、インピーダンスを算出するものがある。最低限インピーダンスの測定 は0.15MHzで実施されなければならない。しかしながら、フェライトと同軸ケーブル間の浮遊容 量によって、フェライトのインピーダンスが劣化していないことを確認するために、全ての周波数0. 15MHzから30MHzにわたって測定することを推奨する。このことは、フェライトを通る1本 の同軸ケーブルの場合、要求されるインピーダンスが実現できそうにないという実験データに関係し ている。フェライトを通る複数の経路が必要である。これは浮遊容量がフェライトのインピーダンス に影響を及ぼす機会を増やすものである。要求されるインピーダンスの周波数特性を実現する可能性 については、実験室レベルで実証されている。



図F.4 150Ωとフェライトによる合成インピーダンスの基本試験配置

# 付則G (情報)

# 数種類の ITEに対する動作モード

# G.1 画像表示装置の動作

EUTに画像表示装置またはモニタが含まれている場合には、次の動作条件を適用すること。

- ・コントラストの調整を最大とすること。
- ・輝度調整を最大とするか、ラスタの見えなくなる状態が最大輝度より少し下の場合には、ラス タの見えなくなる状態に調整すること。
- ・ポジティブ表示またはネガティブ表示の両方を利用できる場合には、いずれか最悪条件を選択 すること。
- ・画面上で代表的な最大数の文字が表示できるように1行あたりの文字の寸法及び数を選択する こと。
- ・グラフィックス機能を有するモニタの場合は、全て"H"から構成されるパターンを表示させること。テキストのみの機能を有する供試装置では、無作為テキストから構成されるパターンを表示させること。もし、上記のいずれの方法も適用することができない場合には、代表的な表示を採用すること。

EUTは、上記の動作規定を満たしつつ、最大放射レベルを発生させる動作モードで動作させること。

G.2 ファクシミリ装置の動作

ファクシミリ装置は供試装置の最も精細なイメージモードで、ITU-Tの規定するファクシミリ 受信テストチャートを用いて、待機状態、受信および送信モードで試験すること。

注)ファクシミリ装置の最大妨害レベルを得るためにテストパターンを何度も繰り返すことが必要なこともある。

G.3 電話機の動作

デジタル信号で音声情報の伝送が可能な電話機は、ITU-Tの規定する標準音声の受信状態で、 待機状態、受信および送信モードで試験すること。

# 参照文献

CISPR16-2 (all parts), Specification for radio disturbance and immunity measuring apparatus and method –Part 2: Methods of measurement of disturbances and immunity

CISPR16-3, Specification for radio disturbance and immunity measuring apparatus and method – Part 3: CISPR technical reports

IEEE Standard 1284-1, IEEE Standard for Information Technology & Transport Independent Printer/System Interface (TIP/SI)

IEEE Standard 1394, IEEE Standard for a High Performance Serial Bus - Firewire

ISO/IEC11801, Information technology – Generic cabling for customer premises