2008年6月17日
衛星デジタル放送高度化作業班

高度衛星デジタル放送 伝送路符号化方式
報告書案（技術的条件）
○ 伝送路符号化方式の概要

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>変調方式</td>
<td>$\pi/2$シフトBPSK, QPSK, 8PSK, 16APSK, 32APSK</td>
</tr>
<tr>
<td>内符号</td>
<td>LDPC(符号長44880)</td>
</tr>
<tr>
<td>符号化率</td>
<td>1/4 (11/40), 1/3 (41/120), 2/5 (49/120), 1/2 (61/120), 3/5 (73/120), 2/3 (27/40), 3/4 (89/120), 4/5 (97/120), 5/6 (101/120), 7/8, 9/10 (109/120) (公称値(真値))</td>
</tr>
<tr>
<td>外符号</td>
<td>BCH (65535, 65343, t=12)短縮符号</td>
</tr>
<tr>
<td>変調方式</td>
<td>$\pi/2$シフトBPSK</td>
</tr>
<tr>
<td>内符号</td>
<td>LDPC(31680, 9614): LDPC(44880, 22814)の短縮符号</td>
</tr>
<tr>
<td>外符号</td>
<td>BCH(9614, 9422): BCH(65535, 65343)の短縮符号</td>
</tr>
<tr>
<td>制御単位</td>
<td>スロット単位の伝送制御</td>
</tr>
<tr>
<td>制御情報</td>
<td>• 変調方式および符号化率の制御</td>
</tr>
<tr>
<td></td>
<td>• 多重データフォーマット制御(MPEG-2 TS, 可変長パケット)</td>
</tr>
<tr>
<td></td>
<td>• 階層化伝送制御</td>
</tr>
<tr>
<td></td>
<td>• 緊急警報放送出動制御</td>
</tr>
<tr>
<td></td>
<td>• 複数独立TS識別制御</td>
</tr>
<tr>
<td></td>
<td>• バルク伝送</td>
</tr>
<tr>
<td></td>
<td>• サイトダイバーシティ情報</td>
</tr>
<tr>
<td></td>
<td>• 衛星中継器動作点設定情報</td>
</tr>
<tr>
<td>フレーム構造</td>
<td>• 120スロット/フレーム</td>
</tr>
<tr>
<td></td>
<td>• MPEG-2 TS長の整数倍のスロット長</td>
</tr>
<tr>
<td>シンボルレート</td>
<td>32.5941 Mbaud</td>
</tr>
<tr>
<td>ロールオフ率</td>
<td>0.1</td>
</tr>
<tr>
<td>その他</td>
<td>• 同期補強パーストをTMCCと兼用することでTMCC容量を現行の384ビットから9422ビットへ拡大</td>
</tr>
<tr>
<td></td>
<td>• パイロット信号により、衛星非線形特性による受信性能劣化を改善</td>
</tr>
<tr>
<td>2.2 伝送路符号化方式</td>
<td>2.2.1 伝送路符号化方式検討の基本的な考え方</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>2.2.2 採用する伝送路符号化方式の概要</td>
<td>4</td>
</tr>
<tr>
<td>2.2.3 伝送路符号化部の基本構成</td>
<td>4</td>
</tr>
<tr>
<td>2.2.4 多重信号のフレーム構成</td>
<td>5</td>
</tr>
<tr>
<td>2.2.5 変調信号のフレーム構成</td>
<td>9</td>
</tr>
<tr>
<td>2.2.6 誤り訂正方式</td>
<td>11</td>
</tr>
<tr>
<td>2.2.7 TMCC 用誤り訂正方式</td>
<td>14</td>
</tr>
<tr>
<td>2.2.8 エネルギー拡散方式</td>
<td>15</td>
</tr>
<tr>
<td>2.2.9 インターリーブ</td>
<td>17</td>
</tr>
<tr>
<td>2.2.10 変調方式</td>
<td>20</td>
</tr>
<tr>
<td>2.2.11 伝送シンボルレートと許容偏差</td>
<td>22</td>
</tr>
<tr>
<td>2.2.12 ロールオフ率</td>
<td>25</td>
</tr>
<tr>
<td>2.2.13 パイロット信号</td>
<td>27</td>
</tr>
<tr>
<td>2.2.14 TMCC 信号</td>
<td>27</td>
</tr>
</tbody>
</table>

付録（LDPC 符号の検査行列を定義する符号テーブル） 38

3. 回線設計例 56
2.2 伝送路符号化方式
2.2.1 伝送路符号化方式検討の基本的な考え方

伝送路符号化方式については、高度 BS デジタル放送および高度広帯域 CS デジタル放送（以下、高度衛星デジタル放送）の要求条件に示されている「現行のデジタル HDTV やこれを超える高画質な放送サービスなどを伝送できるように、できるだけ高い伝送容量を確保できる方式であること」および「インターネットなどの通信系を利用したサービス（現行の双方向データ放送サービスも含む）や蓄積系のサービスについても考慮すること」を基本とし、現行の衛星デジタル放送の状況を考慮して検討した。

2.2.2 採用する伝送路符号化方式の概要

誤り訂正符号については、強力な誤り訂正能力をもつ LDPC 符号を採用することとした。変調方式については、BPSK を非線形伝送路による占有帯域幅の拡大を低減するよう改善したπ/2 シフト BPSK、現行の衛星デジタル放送でも採用されている QPSK、8PSK に加え、より高能率な 16APSK および 32APSK を利用可能な方式とした。特に APSK については、衛星中継器の TWTA の非線形特性による劣化が生じやすいため、非線形の影響があっても最適な LDPC 復号を可能とするパイロット信号を導入した。ロールオフ率については、0.1 という急峻なフィルタ特性を採用することにより高いシンボルレートの採用を可能とした。伝送制御信号（TMCC 信号）については、現行の衛星デジタル放送方式における同信号の機能に加え、大容量のデータを複数の衛星中継器を用いて伝送するバルク伝送、IP パケットなど可変長パケットを伝送するための制御信号も追加した。

2.2.3 伝送路符号化部の基本構成

図 2.2-1 に示す構成を基本とする。主信号として MPEG-2 TS、および TLV 形式のストリーム (TS1, TS2, ..., TSn, TLV1, TLV2, ..., TLVm)、および各ストリームを伝送する際の伝送パラメータ（TMCC1, TMCC2, ..., TMCCk）を入力し、この伝送パラメータをもとに TMCC 信号を生成する。また、TMCC 信号をもとにフレームを構成し、主信号および TMCC 信号はフレーム単位で処理する。フレームを構成した後、主信号については、外符号符号化、エネルギー拡散、内符号符号化を行い、変調方式が 8PSK、16APSK、32APSK の場合にはビットインターリーブを施す。TMCC 信号についてもほぼ同様に、外符号符号化、エネルギー拡散、内符号符号化を行う。これらの信号に加え、同期信号（フレーム同期、パケット同期）およびエネルギー拡散をしたパイロット信号をそれぞれに割り当てられた変調方式で変調し、時分割多重して変調波を生成する。

図 2.2-1 伝送路符号化基本構成（信号処理）
理由
主信号と伝送制御信号を時分割多重して伝送することで、変調方式や誤り訂正符号化率の柔軟な選択や変更が可能な構成とした。

2.2.4 多重信号のフレーム構成
(1) 主信号のフレーム構成
主信号のフレーム構成を図 2.2-2 に示す。主信号の多重フレームは、120 のスロットで構成し、各スロットはヘッダ、データ、BCH パリティ、スタッフビット、LDPC パリティで構成する。
データには、MPEG-2 TS または TLV 形式のパケットを配置するが、MPEG-2 TS の場合にはパケット先頭の同期バイット(0x47)を除く 187 パイトを各スロットのデータ領域の先頭から順次配置する。
BCH パリティはヘッダとデータについて計算し、データの後に配置する。BCH パリティの後に、6 ビットのスタッフピット(0x3F)を配置し、ヘッダ、データ、BCH パリティ、スタッフビットに対してエネルギー拡散を施したのち LDPC パリティを計算し、スタッフビットの後に配置する。各符号化率に対するスロットのビット配分を表 2.2-1 に、また、スロットの割り当て示則を表 2.2-2 に示す。スロットへの変調方式の割り当ては 5 スロット単位とし、複数の変調方式・符号化率で伝送する場合のスロットへの変調方式・符号化率の割り当てについては、TMCC 信号により、スロット番号 1 から順番に、
(a) 多値数の大きい変調方式
(b) (a)が同じなら、符号化率の高いものから順にスロットへの割付を行う。
TMCC 信号により 1 フレーム内で併用できる変調方式と符号化率の組み合わせは最大 8 とする。無効(ダミー)スロットが必要な変調方式をスロットに割り当てる場合、有効スロットを割り当てたものの最初に配置する。スロット割り当ての例を図 2.2-3 に示す。

図 2.2-2 主信号のフレーム構成
表 2.2-1 各符号化率のスロット構成
<table>
<thead>
<tr>
<th>符号化率</th>
<th>スロットヘッダ</th>
<th>データ長 (TSパケット数)</th>
<th>BCHパリティ</th>
<th>スタッフビット</th>
<th>LDPCパリティ</th>
<th>総合符号化率※3</th>
<th>LDPC符号化率※2</th>
<th>BCH+ヘッダ+スタッフ符号化率※1</th>
<th>参考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>44880</td>
<td>176</td>
<td>14960 (10)</td>
<td>192</td>
<td>6</td>
<td>0.333</td>
<td>0.342</td>
<td>0.976</td>
<td>1/3=33.33%</td>
</tr>
<tr>
<td>2/5</td>
<td>44880</td>
<td>176</td>
<td>17952 (12)</td>
<td>192</td>
<td>6</td>
<td>0.400</td>
<td>0.408</td>
<td>0.980</td>
<td>2/5=40%</td>
</tr>
<tr>
<td>1/2</td>
<td>44880</td>
<td>176</td>
<td>22440 (15)</td>
<td>192</td>
<td>6</td>
<td>0.500</td>
<td>0.508</td>
<td>0.984</td>
<td>1/2=50%</td>
</tr>
<tr>
<td>3/5</td>
<td>44880</td>
<td>176</td>
<td>26928 (18)</td>
<td>192</td>
<td>6</td>
<td>0.600</td>
<td>0.608</td>
<td>0.986</td>
<td>3/5=60%</td>
</tr>
<tr>
<td>2/3</td>
<td>44880</td>
<td>176</td>
<td>29920 (20)</td>
<td>192</td>
<td>6</td>
<td>0.667</td>
<td>0.675</td>
<td>0.988</td>
<td>2/3=66.67%</td>
</tr>
<tr>
<td>3/4</td>
<td>44880</td>
<td>176</td>
<td>32912 (22)</td>
<td>192</td>
<td>6</td>
<td>0.733</td>
<td>0.742</td>
<td>0.989</td>
<td>3/4=75%</td>
</tr>
<tr>
<td>4/5</td>
<td>44880</td>
<td>176</td>
<td>35904 (24)</td>
<td>192</td>
<td>6</td>
<td>0.800</td>
<td>0.808</td>
<td>0.990</td>
<td>4/5=80%</td>
</tr>
<tr>
<td>5/6</td>
<td>44880</td>
<td>176</td>
<td>37400 (25)</td>
<td>192</td>
<td>6</td>
<td>0.833</td>
<td>0.842</td>
<td>0.990</td>
<td>5/6=83.33%</td>
</tr>
<tr>
<td>7/8</td>
<td>44880</td>
<td>176</td>
<td>38896 (26)</td>
<td>192</td>
<td>6</td>
<td>0.867</td>
<td>0.875</td>
<td>0.990</td>
<td>7/8=87.5%</td>
</tr>
<tr>
<td>9/10</td>
<td>44880</td>
<td>176</td>
<td>40392 (27)</td>
<td>192</td>
<td>6</td>
<td>0.900</td>
<td>0.908</td>
<td>0.991</td>
<td>9/10=90%</td>
</tr>
</tbody>
</table>

※1 データ長/(データ長+BCHパリティ+スロットヘッダ+スタッフビット)・・・(a)
※2 (データ長+BCHパリティ+スロットヘッダ+スタッフビット)/(データ長+BCHパリティ+スロットヘッダ+スタッフビット+LDPCパリティ)・・・(b)
※3 (a)×(b)

表 2.2-2 スロット割り当て規則

<table>
<thead>
<tr>
<th>変調</th>
<th>周波数効率 [bps/Hz]</th>
<th>規格化効率</th>
<th>割当単位 [slot]</th>
<th>データ [slot]</th>
<th>ダミー [slot]</th>
</tr>
</thead>
<tbody>
<tr>
<td>32APSK</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>16APSK</td>
<td>4</td>
<td>4/5</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>8PSK</td>
<td>3</td>
<td>3/5</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>QPSK</td>
<td>2</td>
<td>2/5</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>π/2シフトBPSK</td>
<td>1 1/5</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

総合符号化率=LDPC符号化率×総合符号化率

総合符号化率=LDPC符号化率×総合符号化率

総合符号化率=LDPC符号化率×総合符号化率
(2) 制御信号のフレーム構成

制御信号のフレーム構成を図 2.2-4 に示す。制御信号の多重フレームは、同期信号 2880 ビット、パイロット信号 3840〜19200 ビット、TMCC 信号 31680 ビットで構成する。

図 2.2-3 スロット割り当ての例

図 2.2-4 制御信号のフレーム構成
理由

MPEG-2 TS および TLV 形式のパケットストリームの複数混在伝送、およびストリーム毎に独立の変調方式の適用を可能とするため、図 2.2-2 に示すフレーム内の各スロットのストリームの種別と変調方式の情報を TMCC 信号で伝送し、この情報に従い複数ストリームをフレーム単位で送受信の信号処理を行う。フレームを構成するスロット数については、現行の衛星デジタル放送においてはフレームあたり 48 スロットとなっており、1 スロットあたりのビットレートは約 1 Mbps である。高度衛星デジタル放送方式における最大効率の変調方式は 32APSK(9/10)であり、現行の衛星デジタル放送の TC8PSK(2/3)の約 2.5 倍の伝送容量を持つことから、スロットあたりの伝送容量が同等となるように、スロット数を現行の 2.5 倍の 120 とした。

フレームを構成するスロットの長さについては、MPEG-2 TS パケットを効率的に伝送できるように選んだ。MPEG-2 TS のパケットは固定長であり、その先頭バイトに配置される同期バイトは既知である。また、フレームおよびスロットの固定の位置からパケットの配列が順次行われることから、伝送路符号化部ではパケット同期は不要である。そこで、この同期バイトはフレーム構成の際に一旦削除し、受信後に再び付加することで伝送効率を改善した。このため、MPEG-2 TS パケットの先頭の同期バイトを除いた 187 パイト長のデータを適密に配置して伝送できるよう、スロット長を 187 パイトの整数倍に選んだ。さらに、1 スロット分のデータが、π/2 シフト BPSK(1 ビット/シンボル)、QPSK(2 ビット/シンボル)、8PSK(3 ビット/シンボル)、16APSK(4 ビット/シンボル)、32APSK(5 ビット/シンボル)のいずれの場合にも過不足なく信号点上にマッピングされるように符号長 1～5 全ての最小公倍数 60 を素因数にもつスロット長とした。これらの条件よりスロット長を 44880 ビットとした。

表 2.2-2 に示すダミースロットの挿入規則については、現行の衛星デジタル放送方式と同様に、変調方式の組み合わせに関わらず、フレームのビットレートを固定でき、回路構成を容易にすることを目的としている。

主信号については、TMCC 信号により 5 スロット単位で変調方式および符号化率を指定する。この割当て単位を 5 スロットとしているのは、フレーム構成変更に伴う処理を簡素化するためである。

複数の変調方式・符号化率を併用して伝信する場合のスロットへの割り当て順序については、大きなバッケージが設定される(小さい電力で時分割多重される)変調方式・符号化率の順とすることで、変調信号の急激な振幅変化の起こるポイントを減らし、同期の安定化を図ることを目的としている。
2.2.5 変調信号のフレーム構成

フレーム構成された多重信号から変調信号を生成するためのブロック図を図 2.2-5 に、また変調信号のフレーム構成を図 2.2-6 示す。

図 2.2-5 変調信号の生成
図2.2-6 変調信号のフレーム構成

(理由)

主信号および制御信号に対し生成した図2.2-2および図2.2-4のフレーム構成のデータをもとに、所定の順序に配列された図2.2-6の時分割多重変調信号を生成するよう図2.2-5の機能ブロックを構成した。

複数変調方式の時分割多重伝送については、現行の衛星デジタル放送方式でも採用されており、送受信における変調・復調回路や誤り訂正符号の符号化・復号回路を時分割にパラメタ設定することで共用できるなどのメリットがある。

TMCC信号については、π/2シフトBPSK変調により、4シンボルずつ分散させて、1フレーム内でπ/2シフトBPSK変調信号を多重するため、TMCC信号を同期補強信号としても利用可能となる。現行の衛星デジタル放送のように同期補強信号を別途入れる必要がなく、伝送効率の改善とTMCC信号の容量拡大を図った。

同期信号については、1フレーム内で以下の順序で24ビットのフレーム同期とパケット同期が等間隔で交互に60回ずつπ/2シフトBPSK変調で間欠的に伝送する。

フレーム同期1(FSync=0x52F866)
パケット同期1(PSync=0x36715A)
フレーム同期2(IFSync=0xAD0799)
パケット同期2(PSync=0x36715A)
フレーム同期3(IFSync=0xAD0799)
パケット同期3(PSync=0x36715A)

フレーム同期60(IFSync=0xAD0799)
パケット同期60(PSync=0x36715A)

但し、「IFSync」は「FSync」の各ビットの「1」と「0」を反転したビットパターンを示す。

従って、1フレームに含まれる同期信号は24ビット×(60回+60回)=2880ビットである。実証実験における同期限界測定では、約-3dBの低受信C/Nの下でも同期捕捉が確認でき、十分な性能が示された。

パイロット信号については、1フレーム内で32シンボルの信号点を等間隔で120回、スロットに指定した変調方式で伝送する。最小多値数のπ/2シフトBPSKの場合、1シンボルが1ビットの情報に対応することから、32シンボル×1ビット/シンボル×120回=3840ビットとなる。一方、最大多値数の32APSKの場合、1シンボルが5ビットの情報に対応することから、32シンボル×5ビット/シンボル×120回=19200ビットとなる。したがって、パイロット信号は、スロットに割り当てる変調方式の組み合わせにより、3840ビット～19200ビットの間で変化する。擬似衛星中継器による実証実験では、32APSK(符号化率4/5)の受信
においてパイロット信号を使った受信の場合、使わなかった場合に比べて約 1.4dB 所要 C/N の低減効果を確認した。

2.2.6 誤り訂正方式
(1) 外符号符号化方式
訂正能力 t=12 の BCH(65535,65343)の短縮符号とし、短縮化前の BCH 符号化生成多項式は、表 2.2-3 の全ての多項式の積で表されるものとする。

<table>
<thead>
<tr>
<th>$g_i(x)$</th>
<th>$1 + x + x^3 + x^{12} + x^{16}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_2(x)$</td>
<td>$1 + x^2 + x^3 + x^4 + x^8 + x^9 + x^{11} + x^{12} + x^{16}$</td>
</tr>
<tr>
<td>$g_3(x)$</td>
<td>$1 + x + x^2 + x^3 + x^2 + x^7 + x^9 + x^{10} + x^{11} + x^{13} + x^{16}$</td>
</tr>
<tr>
<td>$g_4(x)$</td>
<td>$1 + x + x^3 + x^6 + x^7 + x^{11} + x^{12} + x^{13} + x^{16}$</td>
</tr>
<tr>
<td>$g_5(x)$</td>
<td>$1 + x + x^2 + x^3 + x^5 + x^7 + x^8 + x^9 + x^{11} + x^{13} + x^{16}$</td>
</tr>
<tr>
<td>$g_6(x)$</td>
<td>$1 + x + x^2 + x^6 + x^9 + x^{10} + x^{12} + x^{13} + x^{16}$</td>
</tr>
<tr>
<td>$g_7(x)$</td>
<td>$1 + x + x^2 + x^6 + x^9 + x^{10} + x^{11} + x^{15} + x^{16}$</td>
</tr>
<tr>
<td>$g_8(x)$</td>
<td>$1 + x + x^3 + x^6 + x^8 + x^9 + x^{12} + x^{15} + x^{16}$</td>
</tr>
<tr>
<td>$g_9(x)$</td>
<td>$1 + x + x^4 + x^6 + x^8 + x^{10} + x^{11} + x^{12} + x^{13} + x^{15} + x^{16}$</td>
</tr>
<tr>
<td>$g_{10}(x)$</td>
<td>$1 + x + x^2 + x^4 + x^6 + x^8 + x^9 + x^{10} + x^{11} + x^{15} + x^{16}$</td>
</tr>
<tr>
<td>$g_{11}(x)$</td>
<td>$1 + x^6 + x^8 + x^9 + x^{10} + x^{12} + x^{14} + x^{15} + x^{16}$</td>
</tr>
<tr>
<td>$g_{12}(x)$</td>
<td>$1 + x + x^2 + x^3 + x^5 + x^6 + x^7 + x^{10} + x^{11} + x^{15} + x^{16}$</td>
</tr>
</tbody>
</table>

以下の演算により、情報系列 $m = (m_{k_{k_0}} - 1, m_{k_{k_0}} - 2, \cdots, m_1, m_0)$ の符号語
$c = (m_{k_{k_0}} - 1, m_{k_{k_0}} - 2, \cdots, m_1, m_0, d_{n_{k_0} - k_{k_0}} - 1, \cdots, d_1, d_0)$ 上への BCH 符号化を行う。

・メッセージ多項式 $m(x) = m_{k_{k_0}} - 1 x^{k_{k_0}} - 1 + m_{k_{k_0}} - 2 x^{k_{k_0}} - 2 + \cdots + m_1 x + m_0$ に $x^{n_{k_0} - k_{k_0}}$ を乗算
・$x^{n_{k_0} - k_{k_0}} m(x)$ を被除数とし、生成多項式 $g(x)$ を除数とする除算
$d(x) = d_{n_{k_0} - k_{k_0}} - 1 x^{n_{k_0} - k_{k_0}} - 1 + \cdots + d_1 x + d_0$ を剰余とする
$c(x) = x^{n_{k_0} - k_{k_0}} m(x) + d(x)$ を符号語多項式とする
(2) 内符号符号化方式
符号長44880ビットのLDPC符号とし、符号化率は、表2.2-4の10種類とする。

<table>
<thead>
<tr>
<th>符号化率（公称値）</th>
<th>真値</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>41/120</td>
</tr>
<tr>
<td>2/5</td>
<td>49/120</td>
</tr>
<tr>
<td>1/2</td>
<td>61/120</td>
</tr>
<tr>
<td>3/5</td>
<td>73/120</td>
</tr>
<tr>
<td>2/3</td>
<td>27/40</td>
</tr>
<tr>
<td>3/4</td>
<td>89/120</td>
</tr>
<tr>
<td>4/5</td>
<td>97/120</td>
</tr>
<tr>
<td>5/6</td>
<td>101/120</td>
</tr>
<tr>
<td>7/8</td>
<td>7/8</td>
</tr>
<tr>
<td>9/10</td>
<td>109/120</td>
</tr>
</tbody>
</table>

ただし、同表の真値が実際の符号化率であり、公称値は真値を簡単な分数で近似したものである。
内符号の誤り訂正情報付加の手順を以下に示す。なお、説明中 n_{ldpc} をLDPC符号長、 k_{ldpc} をLDPC符号長からパリティを除いた長さとする。

・全パリティビットをゼロに設定 \(p_0 = p_1 = p_2 = \ldots = p_{n_{ldpc} - k_{ldpc} - 1} = 0 \)

・最初の情報ビット \(i_0 \) に対応するパリティビットを付表の該当する表の1行目から参照し、積算する。符号化率2/3（該当付表5）の例を次に示す。

\[
\begin{align*}
 p_{4958} &= p_{4958} \oplus i_0 \\
 p_{6639} &= p_{6639} \oplus i_0 \\
 p_{6721} &= p_{6721} \oplus i_0 \\
 p_{8238} &= p_{8238} \oplus i_0 \\
 p_{9540} &= p_{9540} \oplus i_0 \\
 p_{9550} &= p_{9550} \oplus i_0 \\
 p_{10491} &= p_{10491} \oplus i_0 \\
 p_{11742} &= p_{11742} \oplus i_0 \\
 p_{11641} &= p_{11641} \oplus i_0 \\
 p_{12092} &= p_{12092} \oplus i_0 \\
 p_{13056} &= p_{13056} \oplus i_0 \\
 p_{13460} &= p_{13460} \oplus i_0 \\
\end{align*}
\]

・373 までの情報ビット \(i_m, m = 1, 2, \ldots, 373 \) は、 \(i_m \) に対応するパリティビット
\(\{x + (m \mod 374) \times q\} \mod (n_{ldpc} - k_{ldpc}) \) を積算する。ここで、 \(x \) は \(i_0 \) に対応したパリティビット、 \(q \) は表2.2-5に示す符号化率により決まる定数である

例として符号化率2/3 で \(q = 39 \) となるときの情報ビット \(i_i \) について次に示す。

\[
\begin{align*}
 p_{4997} &= p_{4997} \oplus i_1 \\
 p_{6678} &= p_{6678} \oplus i_1 \\
 p_{6760} &= p_{6760} \oplus i_1 \\
 p_{8277} &= p_{8277} \oplus i_1 \\
 p_{9579} &= p_{9579} \oplus i_1 \\
 p_{9589} &= p_{9589} \oplus i_1 \\
\end{align*}
\]
\[p_{10530} = p_{10530} \oplus i_1 \]
\[p_{11781} = p_{11781} \oplus i_1 \]
\[p_{11680} = p_{11680} \oplus i_1 \]
\[p_{12131} = p_{12131} \oplus i_1 \]
\[p_{13095} = p_{13095} \oplus i_1 \]
\[p_{13499} = p_{13499} \oplus i_1 \]

・375番目以降の情報ビット \(i_{374} \sim i_{547} \) に対応するパリティビット積算は付表 1から付表 11の各表の2行目を使用する。
・374個の新たな情報ビット毎に、同様に付表 1から付表 11の各表から新たな行をパリティビット積算に使用する。

全ての情報ビットに対して積算を終えたら、最後のパリティビットは次のとおり算出する。
・\(i=1 \)から開始し、次の演算を順次実行する。
\[p_i = p_i \oplus p_{i-1} \quad i = 1, \ldots, n_{ldpc} - k_{ldpc} - 1 \]
・\(p_i \)の最終結果は\(p_i \)のパリティビットに等しい。\(i = 1, \ldots, n_{ldpc} - k_{ldpc} - 1 \)

表 2.2-5 q 値

<table>
<thead>
<tr>
<th>符号化率</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>79</td>
</tr>
<tr>
<td>2/5</td>
<td>71</td>
</tr>
<tr>
<td>1/2</td>
<td>59</td>
</tr>
<tr>
<td>3/5</td>
<td>47</td>
</tr>
<tr>
<td>2/3</td>
<td>39</td>
</tr>
<tr>
<td>3/4</td>
<td>31</td>
</tr>
<tr>
<td>4/5</td>
<td>23</td>
</tr>
<tr>
<td>5/6</td>
<td>19</td>
</tr>
<tr>
<td>7/8</td>
<td>15</td>
</tr>
<tr>
<td>9/10</td>
<td>11</td>
</tr>
</tbody>
</table>

(理由)
LDPC符号の符号長は、符号化・復号処理をスロット単位で行えるよう、スロット長と同じ44880ビットとした。

列重みは LDGM 部分の 1, 2 以外、3または 4 を基本とし、一部を 10 前後とする非正則行列とし、cycle-4を完全除去し、cycle-6以上を最小化することで、急峻なウォーターフォール特性を確保しつつ、エラーフロアを所要のレベル以下(BER=10^{-7}以下)に抑圧している。

LDPC符号復号後のエラーフロアについては、一符号語あたり 12 ビットの訂正能力を持つ外符号(BCH符号)により実用のビット誤り率以下まで訂正可能である。
2.2.7 TMCC 用誤り訂正方式
外符号については、主信号用と同じものを使用する。内符号については、主信号用LDPC(1/2)を短縮化して利用する（図2.2-7参照）。LDPC符号のデータとして、NULLデータ(1870ビット、オールゼロ)、TMCCデータ(9422ビット)、BCHパリティ(192ビット)、およびNULLデータ(11330ビット、オールゼロ)に対し、符号化率1/2のLDPCパリティ(22066ビット)を付加し、NULLデータを削除したものをTMCCシンボルとして伝送する。受信側では、NULLデータ部分については理想的に0が伝送された場合のシンボルを挿入した後、符号化率1/2のLDPC符号復号を行う。

図 2.2-7 TMCC 符号化

（理由）
TMCC情報の符号化には、主信号用のLDPC符号をマザーコードとした短縮化符号を採用した。これにより、複数変調方式および符号化率が混在した主信号とLDPC符号復号器を共用し時分割で処理を行うことができる。

短縮化にあたっては、特に訂正能力の低い部分を2箇所抽出し、短縮化用のヌルデータを割り当てることで、符号性能の向上を図った。
2.2.8 エネルギー拡散方式

(1) 主信号用
スロットのエネルギー拡散においては、スロットの構成要素のうち、ヘッダ、データ、BCH パリティ、およびスタッフビットに対して行い、LDPC パリティ部分およびダミースロットについては、エネルギー拡散は行わない。エネルギー拡散の周期は 1 フレームとする。エネルギー拡散回路は図 2.2-8 に示すように 25 次 PRBS と拡散対象との MOD2 加算により行う。エネルギー拡散を行わない区間については、エネルギー拡散回路のシフトレジスタを停止させる。

図 2.2-8 エネルギー拡散（スロットデータ用）

(2) TMCC 信号用
TMCC のエネルギー拡散においては、図 2.2-9 の 15 次 PRBS 発生器によるエネルギー拡散を行う。エネルギー拡散の周期は 1 フレームとする。エネルギー拡散回路は図 2.2-9 に示すように 15 次 PRBS と拡散対象との MOD2 加算により行う。TMCC データおよび BCH パリティ部分について拡散を行い、それ以外の区間については、エネルギー拡散回路のシフトレジスタを停止させる。

図 2.2-9 エネルギー拡散（TMCC 用）

(3) パイロット信号用
パイロット信号のエネルギー拡散においては、図 2.2-10 の 15 次 PRBS 発生器によるエネルギー拡散を行う。エネルギー拡散の周期は 1 フレームとする。エネルギー拡散回路は図 2.2-10 に示すように 15 次 PRBS の 0/1 に応じて、I-Q 直交座標上の信号点座標を 0 度/180 度回転させることにより行う。パイロットシンボル部分について拡散を行い、それ以外の区間については、エネルギー拡散回路のシフトレジスタを停止させる。

図 2.2-10 エネルギー拡散（パイロットシンボル用）
理由

主信号については、例えば、ヌルパケットが連続して伝送される場合など、「1」または「0」が連続して伝送する場合がある。この場合、特定周波数に線スペクトルを発生し、電力束密度が規定値を超える可能性があり、また、受信機の同期再生系にも悪影響を与える。そこで、PRBS 発生器(PN 符号発生器)により発生させた擬似ランダムパターンとの排他的論理和をとることで、ビット列のランダム化によるエネルギー拡散を行う。拡散符号長としては、1フレーム分の LDPC パリティを除くデータ長(4,891,920 ビット)以上とする必要があるため、23 次以上の拡散符号を使用する必要があるため、ここでは 25 次の拡散符号を採用した。

TMCC 信号についても、拡張領域など、「1」または「0」が連続する場合が想定される。TMCC のデータ長は 9614 ビットであるため、14 次以上の拡散符号が必要となるため、ここでは 15 次の拡散符号を採用した。

パイロット信号については、固定パターンの繰り返しとなるため、やはり、線スペクトルの発生要因となる。パイロット信号の 1フレームあたりの総シンボル数は 31680 シンボルであるため、15 次以上の拡散符号が必要であり、ここでは TMCC 用と同じ PRBS 発生器を初期値を変えて利用することとした。
2.2.9 インターリーブ

LDPC符号化部からの出力はブロックインターリーバによりビットインターリーブする。表2.2-6に各変調方式のビットインターリーブの大きさを、また図2.2-11～図2.2-16に構成図を示す。データはインターリーバに列方向に上から下へ書き込み、行方向に左(MSB)から右(LSB)へ読み出し順方向読み出しと、右(LSB)から左(MSB)へ読み出す逆方向読み出しがある。いずれを使用するかは、表2.2-7のように符号化率によって異なる。

表2.2-6 ビットインターリーブ

<table>
<thead>
<tr>
<th>変調</th>
<th>行</th>
<th>列</th>
</tr>
</thead>
<tbody>
<tr>
<td>8PSK</td>
<td>14960</td>
<td>3</td>
</tr>
<tr>
<td>16APSK</td>
<td>11220</td>
<td>4</td>
</tr>
<tr>
<td>32APSK</td>
<td>8976</td>
<td>5</td>
</tr>
</tbody>
</table>

図2.2-11 ビットインターリーブ 8PSK（順方向読み出し）

図2.2-12 ビットインターリーブ 8PSK（逆方向読み出し）
書き込み

読み出し

図2.2-13 ビットインターリーブ 16APSK（順方向読み出し）

書き込み

読み出し

図2.2-14 ビットインターリーブ 16APSK（逆方向読み出し）

書き込み

読み出し

図2.2-15 ビットインターリーブ 32APSK（順方向読み出し）
書き込み
読み出し
スロットのMSB
スロットのLSB
図2.2-16 ビットインターリーブ 32APSK（逆方向読み出し）

表2.2-7 インターリーブ読み出し

<table>
<thead>
<tr>
<th>変調</th>
<th>符号化率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/5以下</td>
</tr>
<tr>
<td>8PSK</td>
<td>逆</td>
</tr>
<tr>
<td>16APSK</td>
<td>逆</td>
</tr>
<tr>
<td>32APSK</td>
<td>逆</td>
</tr>
</tbody>
</table>

(理由)

LDPC 符号は、符号語内で訂正能力が不均一に分布して部分的に訂正能力に差があり、一般的にはバリティに近い側で訂正能力が低くなる傾向にある。

一方、8PSK 変調以上の多値変調についても、シンボルを構成する複数のビット (8PSK の場合 3 ビット) 間で、C/N-BER 特性に性能差が存在し、誤りの発生しやすいビットとそうでないビットが混在している。採用している信号点配置においては、シンボルを構成するビットのうち LSB 側でビット誤りが発生しにくい傾向にある。

こうした LDPC 符号と変調方式の性質を踏まえ、順方向のインターリーブとして、訂正能力の高い LDPC 符号の MSB 側が、各変調方式のシンボルを構成するビットのうち誤り率の高い MSB 側に供給されるようにインターリーブを構成している。

ただし、一部の低符号化率の LDPC 符号については、訂正能力の分布が逆転しているものが存在するため、この場合には逆方向インターリーブを採用した。
2.2.10 変調方式

表 2.2-8 に示す 5 つの変調方式を採用する。フレーム同期、パケット同期、および TMCC 信号は π/2 シフト BPSK とする。各変調方式の信号点配置は、図 2.2-17 のとおりである。

<table>
<thead>
<tr>
<th>変調方式</th>
<th>用途</th>
<th>周波数効率</th>
</tr>
</thead>
<tbody>
<tr>
<td>π/2 シフト BPSK</td>
<td>フレーム同期、パケット同期、TMCC 信号（パイロット信号含む）</td>
<td>1 bps/Hz</td>
</tr>
<tr>
<td>QPSK</td>
<td>主信号（パイロット信号含む）</td>
<td>2 bps/Hz</td>
</tr>
<tr>
<td>8PSK</td>
<td>主信号（パイロット信号含む）</td>
<td>3 bps/Hz</td>
</tr>
<tr>
<td>16APSK</td>
<td></td>
<td>4 bps/Hz</td>
</tr>
<tr>
<td>32APSK</td>
<td></td>
<td>5 bps/Hz</td>
</tr>
</tbody>
</table>

なお、π/2 シフト BPSK については、フレーム先頭（第 1 シンボル）を含む奇数番目のシンボルにおいては、シンボル 0 のとき 1 象限、1 のとき 3 象限の信号点を取り、第 2 シンボル以降の偶数番目のシンボルについては、反時計回りに 90 度の位相回転を与えた信号点位置で変調する。

16APSK および 32APSK については、最適性能を得るため、符号化率により、表 2.2-11 および表 2.2-10 に示す半径比 γ (=R₂/R₁) および γ₁ (=R₂/R₁), γ₂ (=R₂/R₁) をとる。また、(a) ～ (c) では半径 1 とし、電力を 1 に規格化しているが、(d) および (e) については電力を 1 に規格化する場合、4R₁² + 12R₂² = 16 および 4R₁² + 12R₂² + 16R₃² = 32 とする。

図 2.2-17 各変調方式の信号点配置
表 2.2-11 16APSK の半径比

<table>
<thead>
<tr>
<th>符号化率</th>
<th>半径比γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>3.09</td>
</tr>
<tr>
<td>2/5</td>
<td>2.97</td>
</tr>
<tr>
<td>1/2</td>
<td>3.93</td>
</tr>
<tr>
<td>3/5</td>
<td>2.87</td>
</tr>
<tr>
<td>2/3</td>
<td>2.92</td>
</tr>
<tr>
<td>3/4</td>
<td>2.97</td>
</tr>
<tr>
<td>4/5</td>
<td>2.73</td>
</tr>
<tr>
<td>5/6</td>
<td>2.67</td>
</tr>
<tr>
<td>7/8</td>
<td>2.76</td>
</tr>
<tr>
<td>9/10</td>
<td>2.69</td>
</tr>
</tbody>
</table>

表 2.2-10 32APSK の半径比

<table>
<thead>
<tr>
<th>符号化率</th>
<th>半径比γ1</th>
<th>半径比γ2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>3.09</td>
<td>6.53</td>
</tr>
<tr>
<td>2/5</td>
<td>2.97</td>
<td>7.17</td>
</tr>
<tr>
<td>1/2</td>
<td>3.93</td>
<td>8.03</td>
</tr>
<tr>
<td>3/5</td>
<td>2.87</td>
<td>5.61</td>
</tr>
<tr>
<td>2/3</td>
<td>2.92</td>
<td>5.68</td>
</tr>
<tr>
<td>3/4</td>
<td>2.97</td>
<td>5.57</td>
</tr>
<tr>
<td>4/5</td>
<td>2.73</td>
<td>5.05</td>
</tr>
<tr>
<td>5/6</td>
<td>2.67</td>
<td>4.80</td>
</tr>
<tr>
<td>7/8</td>
<td>2.76</td>
<td>4.82</td>
</tr>
<tr>
<td>9/10</td>
<td>2.69</td>
<td>4.66</td>
</tr>
</tbody>
</table>

(理由)

伝送路符号化方式に関する要求条件のうち、低 C/N 動作特性、周波数利用効率、衛星中継器の非線形動作に適合する衛星放送用変調方式として、PSK(BPSK,QPSK,8PSK)変調方式がある。これらは、現行の衛星デジタル放送の放送方式でも採用されており、実績のある安定な変調方式であることから、本方式でも採用することとした。ただし、BPSK については、非線形伝送路通過後の帯域拡大が QPSK および 8PSK よりも大きく周波数利用効率が若干低下するため、ゼロクロスが原理的に生じず非線形伝送路通過後の帯域拡大が QPSK および 8PSK よりも小さい π/2 シフト BPSK を採用した。

以上の変調方式に加え、より高ビットレートの伝送が可能な APSK (16APSK および 32APSK) も利用可能とした。これらの変調方式は、複数の同心円上に等間隔に信号点を配置しており、同心円の半径比の最適値が符号化率ごとに異なる。表 2.2-9 および表 2.2-10 に示す半径比は、計算機シミュレーションにより、一定の雑音を加えた状態で、半径比を変化させ、ビット誤り率最小となる半径比を探索して求めたものである。このシミュレーションにおいては、使用する衛星が特定できないため、衛星中継器の特性は考慮せず、線形伝送路を想定した。従来、半径比の最適化は理想符号を用いてなされているが、ここでは実際に用いる LDPC 符号と組み合わせた状態での最適化を図っており、実際に使用する条件において性能を上げる設計方法を採用した。
2.2.11 伝送シンボルレートと許容偏差

34.5MHz 電波中継器を用いる場合の伝送シンボルレートを 32.5941Mbaud とする。
許容偏差は±20ppm とする。

理由

許容偏差については、迅速な同期確保のため現実的な範囲で送信機側の許容偏差を厳しくし、±20ppm とした。

伝送シンボルレートは周波数有効利用の観点から衛星の運用条件、電波監理上の条件および他衛星への干渉条件により妥当な範囲で高いシンボルレートにすることが望ましい。そこで、擬似中継器を使った室内伝送実験の結果に加え、以下の運用上の諸条件を考慮して、シンボルレートを決定を行った。

(a) 干渉あり
(b) ODU あり
(c) 占有帯域幅 34.5MHz 以内 かつ 現行の衛星デジタル放送の占有帯域幅以内
(d) 想定受信アンテナ径 45cm (8PSK 3/4)、1.2m (32APSK 4/5)
(e) 最悪月サービス時間率 99.7% (8PSK 3/4)、99.5% (32APSK 4/5)

擬似中継器による室内伝送実験

実験においては、ロールオフ率 α を 0.1、0.15、0.2、0.25 とした場合の、占有帯域幅 34.5MHz を満たす最大シンボルレートを計算機シミュレーションにより求め、これを超えないシンボルレート数点について、所要 C/N を測定した。ここでは、10^10 ビット観測してエラーが発生しない最小 C/N を所要 C/N とした。表 2.2-11 に占有帯域幅 34.5MHz を満たす最大シンボルレートを示す。

表 2.2-11 占有帯域幅 34.5MHz を満たす最大シンボルレート

<table>
<thead>
<tr>
<th>ロールオフ率 α</th>
<th>最大シンボルレート</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>33.6 Mbaud</td>
</tr>
<tr>
<td>0.15</td>
<td>32.7 Mbaud</td>
</tr>
<tr>
<td>0.2</td>
<td>31.9 Mbaud</td>
</tr>
<tr>
<td>0.25</td>
<td>31.2 Mbaud</td>
</tr>
</tbody>
</table>

測定は、以下の条件において行なった。

(1) 干渉なし・ODU なし
(2) 干渉あり・ODU なし
(3) 干渉あり・ODU あり

8PSK 3/4 および 32APSK 4/5 の実験結果を図 2.2-18 および図 2.2-19 に示す。なお、8PSK 3/4 の場合の所要 C/No の値は 85.30dBHz 以下(受信アンテナ 45cm、最悪月サービス時間率 99.7%以上)、32APSK 4/5 の場合の所要 C/No の値は 96.83dBHz 以下(受信アンテナ 1.2m、最悪月サービス時間率 99.5%以上)とし、ODU を挿入した状態で、パイロット信号を使用した受信を行うものとした。測定値は C/No に換算して示した。同図において、プロットを線で結んだものは、同一シンボルレートの高度衛星デジタル放送の 8PSK を干渉波として多重し、さらに ODU を通した状態で所要 C/N を測定したものである。また、干渉波を現行の衛星デジタル放送方式 (28.86Mbaud, α=0.35) の 8PSK とした場合も同図に示す。

図 2.2-18 より、高度衛星デジタル放送方式および現行の衛星デジタル放送方式の 8PSK を干渉波とした場合の所要 C/No はほぼ同じ値であった。8PSK については、表 2.2-11 に示す各ロールオフ率に対する最大シンボルレートにおいて、所要 C/No の設定値を満たした。
図2.2-19より、高度衛星デジタル放送方式の8PSKを干渉波とした場合の所要C/Noは、現行の衛星デジタル放送方式の8PSKを干渉波とした場合に比べて0.1dB程度劣化した。32APSKについても、表2.2-11に示す各ロールオフ率に対する最大シンボルレートにおいて、所要C/Noの設定値を満たした。なお、32APSKについては、(3)の条件で33Mbaud、ロールオフ率0.1、パイロットを使った受信機能をOFFとした場合の結果も図2.2-19に併記した（凡例のPILOT OFF参照）。パイロットONにした場合は、約1.4dBの性能改善が見られた。併せて、ロールオフ率α=0.1およびα=0.2について、1.5MHz離調からの同期限界C/Nを求める実験も行った。結果を以下に示す。シンボルレートは33Mbaudとした。

○α=0.1キャプチャC/N=−2.6dB、ロックC/N=−2.8dB
○α=0.2キャプチャC/N=−3.7dB、ロックC/N=−3.9dB
これらの結果より、ロールオフ率によって1.1dBの差が見られたものの、いずれも充分低いC/Nまで良好に同期可能であった。
シンボルレートの決定

擬似中継器実験においては、8PSK3/4, 32APSK ともに表2.2-11に示す最大シンボルレート以下において、設定した C/No 値を満足した。したがって、最も高いビットレートが確保できるロールオフ率 0.1、シンボルレート 33.6Mbaud という条件も選択肢となるが、現行の衛星デジタル放送の占有帯域幅(33.77MHz、シミュレーション値)も考慮し、ロールオフ率 0.1 において、BS デジタル放送の占有帯域幅 33.77MHz となるシンボルレート(32.68Mbaud、シミュレーション値)以下とした。

また、シンボルレートの検討にあたっては、以下の条件も考慮する。

(a) スロットあたりのビットレートが整数となること
(b) シンボルレート[Mbps]の小数点以下が 4 桁以内となること

(a)、(b)は放送事業者のビットレート管理のしやすさを考慮した条件である。

まず、条件(a)について検討する。シンボルレート Sr 時のスロットあたりのビットレートは、符号化率 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 7/8, 9/10 に対して以下の式で求められる。

\[
S_r \times \frac{5}{120} \times (10, 12, 15, 18, 20, 22, 24, 25, 26, 27) / 5810 \times 188 \\
= (10, 12, 15, 18, 20, 22, 24, 25, 26, 27) \times 188 \times \frac{5}{120} \times \frac{5}{5810} \\
= (10, 12, 15, 18, 20, 22, 24, 25, 26, 27) \times \frac{5}{34860} \\
\]

上式より、34860 の倍数でシンボルレートを選択すれば、スロットあたりのビットレートは、47bps の整数倍のビットレートとなり条件(a)を満足する。

(b) シンボルレート[Mbaud]の小数点以下が 4 桁以内となるためには、34860 に 5 の倍数を乗じたもののとする必要がある。従って、34860×5 の倍数で、32.68×10^8を超えない最大シンボルレートは、以下となる。

\[
34860 \times 935 = 32.5941 \text{Mbaud} \quad \text{(スロットあたりのビットレートは 10bps の整数倍)} \\
\]

以上の結果より、

ロールオフ率 0.1
シンボルレート 32.5941 Mbaud

とするのが望ましいと考えられる。このシンボルレートの場合の情報ビットレート（188 バイトの MPEG-2 TS のレート）を表2.2-12に示す。

<table>
<thead>
<tr>
<th>変調方式</th>
<th>8PSK 3/4</th>
<th>16APSK 3/4</th>
<th>32APSK 4/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>情報ビットレート</td>
<td>69.60888 Mbp</td>
<td>92.81184 Mbp</td>
<td>126.56160 Mbp</td>
</tr>
</tbody>
</table>

注 120slot 全てを同一変調方式とした場合の値
2.2.12 ロールオフ率

搬送波の帯域制限を行うフィルタ特性は、総務省令第7号第8条第4号別表第6号に定めるレイズドコサイン特性とし、そのロールオフ率を0.1とする。送信側と受信側でのロールオフ特性の割り当ては、ルート配分とする。なお、送信側でX/SIN(X)（f_Nで示す）のアパーグチャ補正を行う。

ナイキスト周波数f_Nは、16.29705MHz（占有周波数帯域幅34.5MHz）とする。

また、変調器出力の周波数スペクトルの相対減衰量、および変調器出力フィルタの群遅延特性の許容値は、図2.2-20、および図2.2-21（詳細値は表2.2-13）に示す範囲とする（図は修正）。

図2.2-20 変調器出力のスペクトル相対減衰許容値

図2.2-21 変調器出力フィルタの群遅延許容値
表 2.2-13 変調器出力のスペクトラム相対減衰量と出力フィルタ群遅延の許容値（表も修正）

<table>
<thead>
<tr>
<th>点</th>
<th>周波数</th>
<th>相対減衰量 [dB]</th>
<th>群遅延</th>
<th>規定の種類</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0 fn</td>
<td>0.25</td>
<td>+0.07 / fn</td>
<td>上限</td>
</tr>
<tr>
<td>B</td>
<td>0.0 fn</td>
<td>-0.25</td>
<td>-0.07 / fn</td>
<td>下限</td>
</tr>
<tr>
<td>C</td>
<td>0.2 fn</td>
<td>0.25</td>
<td>+0.07 / fn</td>
<td>上限</td>
</tr>
<tr>
<td>D</td>
<td>0.2 fn</td>
<td>-0.40</td>
<td>-0.07 / fn</td>
<td>下限</td>
</tr>
<tr>
<td>E</td>
<td>0.4 fn</td>
<td>0.25</td>
<td>+0.07 / fn</td>
<td>上限</td>
</tr>
<tr>
<td>F</td>
<td>0.4 fn</td>
<td>-0.40</td>
<td>-0.07 / fn</td>
<td>下限</td>
</tr>
<tr>
<td>G</td>
<td>0.95 fn</td>
<td>0.15</td>
<td>+0.07 / fn</td>
<td>上限</td>
</tr>
<tr>
<td>H</td>
<td>0.95 fn</td>
<td>-1.10</td>
<td>-0.07 / fn</td>
<td>下限</td>
</tr>
<tr>
<td>I</td>
<td>0.97 fn</td>
<td>-0.50</td>
<td>+0.07 / fn</td>
<td>上限</td>
</tr>
<tr>
<td>J</td>
<td>1.0 fn</td>
<td>-2.00</td>
<td>+0.07 / fn</td>
<td>上限</td>
</tr>
<tr>
<td>K</td>
<td>1.0 fn</td>
<td>-4.00</td>
<td>-0.07 / fn</td>
<td>下限</td>
</tr>
<tr>
<td>L</td>
<td>1.05 fn</td>
<td>-8.00</td>
<td>-</td>
<td>上限</td>
</tr>
<tr>
<td>M</td>
<td>1.05 fn</td>
<td>-11.00</td>
<td>-</td>
<td>下限</td>
</tr>
<tr>
<td>N</td>
<td>1.38 fn</td>
<td>-35.00</td>
<td>-</td>
<td>上限</td>
</tr>
<tr>
<td>P</td>
<td>1.13 fn</td>
<td>-16.00</td>
<td>-</td>
<td>上限</td>
</tr>
<tr>
<td>Q</td>
<td>1.28 fn</td>
<td>-24.00</td>
<td>-</td>
<td>上限</td>
</tr>
<tr>
<td>S</td>
<td>1.56 fn</td>
<td>-40.00</td>
<td>-</td>
<td>上限</td>
</tr>
</tbody>
</table>

(理由)
ロールオフ率については前小節で述べた理由により決定した。
スペクトルマスクの形状については、図 2.2-20 および図 2.2-21 の点 A～点 M については、小さいロールオフ率を採用した規格である高度狭帯域 CS デジタル放送の理想スペクトル形状(ロールオフ率 0.2)の各周波数に対応する減衰量を求め、ロールオフ率 0.1 の理想スペクトル形状において、これと同じ減衰量に対応する周波数をこれらの点に適用した。
点 N、P、Q、S については、高度狭帯域 CS デジタル放送のスペクトルマスクの各点における周波数に、帯域幅の比 1.1/1.2 を乗じた値を採用した。
2.2.13 パイロット信号

パイロット信号は、TMCCにより当該変調スロットに指定された変調方式の信号点を順次伝送する。例えば、32APSKの場合、シンボル00000、00011、00100、00111、・・・11111の順にその信号点を伝送する。16APSKの場合、00000、00010、00100、00110、・・・11111の順に信号点を2回伝送する。8PSKの場合、00000、00010、01000、01010、・・・11110の順に信号点を4回伝送する。QPSKの場合、00000、00010、01000、01010、・・・11110の順に信号点を8回伝送する。

(理由)

16APSKや32APSKの利用に際し、衛星中継器の進行波管増幅器の非線形特性が伝送特性劣化をもたらすことを考慮し、非線形特性の影響を受けた後の信号点配置を受信機に伝送する手段として、パイロット信号を導入した。受信機側で各変調方式の各信号点について、繰り返し伝送されるパイロット信号をベクトル平均することにより、非線形特性の影響を受けた後の信号点配置を取得することができ、この信号点配置をもとに内符号復号を行うことで性能改善を図った。擬似中継器実証実験では、32APSK(符号化率4/5)において、所要C/Nを1.4dB低減する効果を確認している。

複数変調の併用時には、特に多値変調の最外周円上の信号点に同期位相が引き込まれやすく、バックオフ量の異なる変調方式については、同期位相が理想点からずれる傾向にある。このため、8PSK以下の変調方式を含む全ての変調方式毎の信号点を伝送することで、受信特性の改善を図った。さらに、全変調方式について統一的な処理とすることでハードウェアの簡素化が可能である。

2.2.14 TMCC信号

TMCC信号は、各スロットに対する伝送ストリームの割り当てや伝送方式との関係など、伝送制御に関する情報を伝送する。TMCC信号の伝送に利用できる領域は1フレームあたり9422ビットである。伝送方式等の切り替えが行われる場合には、TMCC信号は実際の切り替えタイミングに対して2フレーム先行して切り替え後の情報を伝送する。

なお、TMCC信号の最小更新間隔は1フレームとする。また受信機においては、これらの制御情報を確実に受信するため、TMCC信号の情報を常時監視する。

TMCC信号の制御情報の構成を図2.2-22に示す。

<table>
<thead>
<tr>
<th>変更指示</th>
<th>フレームカウンタ</th>
<th>伝送モード／ストリーム情報</th>
<th>ストリーム種別／相対ストリーム情報</th>
<th>パケット形式／相対ストリーム情報</th>
<th>ポインタ／ストリーム情報</th>
<th>ストリーム接続／相対ストリーム情報</th>
<th>相対ストリーム／伝送ストリーム番号対応表</th>
<th>相対ストリーム／伝送ストリーム番号情報</th>
<th>送受信制御情報</th>
<th>評価情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>8ビット</td>
<td>8ビット</td>
<td>192ビット</td>
<td>128ビット</td>
<td>896ビット</td>
<td>3840ビット</td>
<td>512ビット</td>
<td>480ビット</td>
<td>256ビット</td>
<td>8ビット</td>
<td>3094ビット</td>
</tr>
</tbody>
</table>

図2.2-22 TMCC信号の制御情報の構成

(理由)

高度衛星デジタル放送方式では、一つの変調波内で複数のMPEG-2TSおよびTLV形式のバケットストリームを伝送可能とし、さらに委託放送事業者毎に変調方式を切り替える運用を可能とするため、120スロットからなる伝送フレームを有する構成としている。これはMPEG-2Systemsの範疇外の情報であり、各スロットの伝送モードやストリーム種別との関係を明確化するための制御情報を伝送する必要がある。

伝送モードやストリームの編成に関しては、委託放送事業者の運用により任意のタイミングで変更される可能性があり、また、送受信制御も任意のタイミングで行われるため、受信機においては電源投入時や
チャンネル変更時のみならず、すべてのフレームで伝送されているTMCC信号を監視することを前提とする。
なお、TMCC信号の各パラメータのリザーブ値については、サービス要求に応じて、将来追加・変更される可能性がある。

(1) 変更指示
変更指示は、TMCC信号の情報内容に変更が生じる度に1ずつ加算される信号とし、その値が「11111111」の次は「00000000」に戻る。

(理由)
TMCC情報の変更と伝送誤りを明確に区別するために、変更指示のビットを設けることにした。

(2) フレームカウンタ
フレームカウンタは、1フレーム毎に1ずつ加算される信号とし、その値が「11111111」の次は「00000000」に戻る。バルク伝送において接続されるチャンネル間では同一の値にセットする。

(理由)
バルク伝送を行う場合、バルク伝送時に使用する複数の衛星中継器間で動作クロックが同期している必要がある。さらに、送信機の電源投入タイミングなどにより生じる遅延時間差については、受信機側で遅延補償をする必要がある。フレームカウンタを導入し、バルク伝送時に使用する複数の衛星中継器間のカウンター値を同一値にセットして伝送することで、受信機側でフレーム単位の遅延補正を可能とした。

(3) 伝送モード／スロット情報
伝送モード／スロット情報は、主信号に使用する変調方式、内符号符号化率、および衛星出力バックオフ値を示す。
伝送モード／スロット情報の構成を図2.2-23に、またフィールドの値を、表2.2-14～表2.2-16に示す。

<table>
<thead>
<tr>
<th>伝送モード1の変調方式</th>
<th>伝送モード1の符号化率</th>
<th>伝送モード1への割り当てスロット数</th>
<th>伝送モード1への衛星出力バックオフ</th>
<th>...</th>
<th>伝送モード8の変調方式</th>
<th>伝送モード8への割り当てスロット数</th>
<th>伝送モード8への衛星出力バックオフ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4ビット</td>
<td>4ビット</td>
<td>8ビット</td>
<td>8ビット</td>
<td></td>
<td>4ビット</td>
<td>4ビット</td>
<td>8ビット</td>
</tr>
</tbody>
</table>

図2.2-23 伝送モード／スロット情報の構成
表2.2-14 伝送モードの変調方式

<table>
<thead>
<tr>
<th>値</th>
<th>変調方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>リザーブ</td>
</tr>
<tr>
<td>0001</td>
<td>π/2シフトBPSK</td>
</tr>
<tr>
<td>0010</td>
<td>QPSK</td>
</tr>
<tr>
<td>0011</td>
<td>8PSK</td>
</tr>
<tr>
<td>0100</td>
<td>16APSK</td>
</tr>
<tr>
<td>0101</td>
<td>32APSK</td>
</tr>
<tr>
<td>0110</td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>割り当て方式なし</td>
</tr>
</tbody>
</table>

表2.2-15 伝送モードの符号化率

<table>
<thead>
<tr>
<th>値</th>
<th>符号化率</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>リザーブ</td>
</tr>
<tr>
<td>0001</td>
<td>1/3</td>
</tr>
<tr>
<td>0010</td>
<td>2/5</td>
</tr>
<tr>
<td>0011</td>
<td>1/2</td>
</tr>
<tr>
<td>0100</td>
<td>3/5</td>
</tr>
<tr>
<td>0101</td>
<td>2/3</td>
</tr>
<tr>
<td>0110</td>
<td>3/4</td>
</tr>
<tr>
<td>0111</td>
<td>4/5</td>
</tr>
<tr>
<td>1000</td>
<td>5/6</td>
</tr>
<tr>
<td>1001</td>
<td>7/8</td>
</tr>
<tr>
<td>1010</td>
<td>9/10</td>
</tr>
<tr>
<td>1011</td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>割り当て方式なし</td>
</tr>
</tbody>
</table>

表2.2-16 伝送モードの衛星出力バックオフ

<table>
<thead>
<tr>
<th>値</th>
<th>衛星出力バックオフ</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td>0.0 dB</td>
</tr>
<tr>
<td>00000001</td>
<td>0.1 dB</td>
</tr>
<tr>
<td>00000010</td>
<td>0.2 dB</td>
</tr>
<tr>
<td>00000011</td>
<td>0.3 dB</td>
</tr>
<tr>
<td>00000100</td>
<td>0.4 dB</td>
</tr>
<tr>
<td>00000101</td>
<td>0.5 dB</td>
</tr>
<tr>
<td>00000110</td>
<td>0.6 dB</td>
</tr>
<tr>
<td>00000111</td>
<td>0.7 dB</td>
</tr>
<tr>
<td>11111100</td>
<td>24.8 dB</td>
</tr>
<tr>
<td>11111101</td>
<td>24.9 dB</td>
</tr>
<tr>
<td>11111110</td>
<td>25.0 dB</td>
</tr>
<tr>
<td>11111111</td>
<td>25.1 dB</td>
</tr>
<tr>
<td>11111110</td>
<td>25.2 dB</td>
</tr>
<tr>
<td>11111111</td>
<td>25.3 dB</td>
</tr>
<tr>
<td>11111111</td>
<td>25.4 dB</td>
</tr>
</tbody>
</table>

衛星出力バックオフ値に書き込む値は、衛星中継器の無変調飽和出力に対する、当該伝送モード変調波出力の比のデシベル絶対値に10を乗じ、2進数表示した値とする。

伝送フレーム内での変調方式、符号化率の順（信号点数の多い変調方式、同一変調方式内では大きな符号化率の順）に伝送モード1〜8を割り当てる。また、使用する変調方式が8に満たない場合は、残りの変
調方式の値を「1111」、符号化率の値を「1111」、割り当てスロット数を「00000000」、バックオフを「00000000」とする。

割り当てスロット数は、その直前のフィールドで示された変調方式と符号化率に割り当てられるダミースロットを含んだスロット数を示す。各伝送モードへ割り当てるスロット数は5の倍数とし、伝送モード割り当てスロット数の合計を120(1伝送フレームのスロット数)とする。

(理由)
事業者の要求に応じた変調方式と符号化率の組み合わせを選択、変更できるように、変調方式と符号化率は独立して指定できるようにした。ただし、製造工程におけるチェック工程削減のため、実際運用の選択肢とする組み合わせの運用制限などについては、運用規定の策定時に議論が必要である。

衛星出力バックオフ量については、パイロット信号の導入により受信機における非線形伝送路通過後の信号点配置を取得できる仕組みとなっているため基本的には不要であるが、初期同期を高速・安定に行う際の補助情報として導入した。

(4) ストリーム種別／相対ストリーム情報
ストリーム種別／相対ストリーム情報は、相対ストリーム／スロット情報（7参照）の項目で示す各スロットに割り当てる相対ストリーム番号毎に、パケットストリームの種別を示す。

ストリーム種別／相対ストリーム情報の構成を図2.2-24に、また、ストリーム種別の値を表2.2-17に示す。

<table>
<thead>
<tr>
<th>相対ストリーム0 のストリーム種別</th>
<th>相対ストリーム1 のストリーム種別</th>
<th>相対ストリーム2 のストリーム種別</th>
<th>...</th>
<th>相対ストリーム15 のストリーム種別</th>
</tr>
</thead>
<tbody>
<tr>
<td>8ビット</td>
<td>8ビット</td>
<td>8ビット</td>
<td>8ビット</td>
<td></td>
</tr>
</tbody>
</table>

図2.2-24 ストリーム種別／相対ストリーム情報の構成

<table>
<thead>
<tr>
<th>表2.2-17 ストリーム種別</th>
<th>値</th>
<th>ストリーム種別</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td>リザーブ</td>
<td></td>
</tr>
<tr>
<td>00000001</td>
<td>MPEG-2 TS</td>
<td></td>
</tr>
<tr>
<td>00000010</td>
<td>TLV</td>
<td></td>
</tr>
<tr>
<td>00000111</td>
<td>リザーブ</td>
<td></td>
</tr>
<tr>
<td>～111111110</td>
<td>割り当て種別なし</td>
<td></td>
</tr>
</tbody>
</table>

(理由)
本情報の導入により、MPEG-2 TSやTLV形式など複数種類のパケットストリームの伝送を行う際、受信機においてパケット種別を受信機で識別してパケット同期やパケットの無効化を可能とした。

(5) パケット形式／相対ストリーム情報
パケット形式／相対ストリーム情報は、相対ストリーム／スロット情報（7参照）で各スロットに割り当てる相対ストリーム番号毎に、パケットの形式を示す。パケット形式／相対ストリーム情報の構成を図2.2-25に示す。
パケット長には、相対ストリーム 0 から相対ストリーム 15 のそれぞれについて、パケットのパイト長を記載する。

同期パターンビット長には、相対ストリーム 0 から相対ストリーム 15 のそれぞれについて、パケットの先頭に付加される同期パターンのビット長を記載する。

同期パターンには、相対ストリーム 0 から相対ストリーム 15 のそれぞれについて、パケットの先頭に付加される同期パターンを記載する。

同期パターンビット長が 32 ビット未満の場合、フィールドの先頭から伝送パケットの同期パターンを書き込み、余剰ビットは「0」で埋める。

(理由)
降雨減少などにより受信できないパケットが存在した場合、そのパケットをそのままそれが処理に渡してしまうと、不具合が発生する場合がある。たとえば、同一ストリーム内で複数の伝送モードを併用する階層変調を行う場合、受信不能な階層のパケットの識別子が、ビット誤りにより受信可能な階層のパケットの識別子に化けることがある。これを避けられるために、受信できなかったパケットについてはパケットの無効化を行う。パケットの無効化をヌルパケットへの置換に変換を行う場合、送信側で置換すべきパケット形式を指定できるよう、相対ストリームごとに、パケット長および同期パターンについての情報を指定できるようになった。これにより、受信側で受信不能パケットが発生した場合に、データ部分の無化処理、パケット先頭部分に同期符号やヘッダ情報を書き出して出力するなどの処理が可能となり、より柔軟なパケット無効化処理が可能となる。

(5) ポインタ／スロット情報
ポイント／スロット情報は、スロットごとに含まれられる最初のパケットの先頭位置と最後のパケットの末尾の位置を示す。ポイント／スロット情報の構成を図 2.2-26 に示す。トップポイントは、スロット中の最初のパケットの先頭バイトの位置を、ヘッダを除いたスロット先頭からのバイト数で示す。ただし、0xFFFF は先頭バイトの不在を示す。
ラストポインタは、スロット中の最後の配置完了パケットの最終バイトのヘッダを除いたスロット先頭からのバイト数に1を加えた値を示す。ただし、0xFFFFは最終バイトの不在を示す。

<table>
<thead>
<tr>
<th>スロット1のトップポインタ</th>
<th>スロット1のラストポインタ</th>
<th>スロット2のトップポインタ</th>
<th>スロット2のラストポインタ</th>
<th>……</th>
<th>スロット120のトップポインタ</th>
<th>スロット120のラストポインタ</th>
</tr>
</thead>
<tbody>
<tr>
<td>16ビット</td>
<td>16ビット</td>
<td>16ビット</td>
<td>16ビット</td>
<td>16</td>
<td>16ビット</td>
<td>16ビット</td>
</tr>
</tbody>
</table>

図2.2-26 ポインタ/スロット情報の構成

(理由)
IPパケットなど可変長パケットを伝送する場合はTLV形式のパケットストリームを伝送するが、TLV形式のパケットストリームでは同期用の符号は伝送されない。パケット同期を取るためには、パケットの切れ目を識別するポインタ情報が必要である。そのため、スロット内に最初に現れるパケット先頭バイトの位置を示すトップポインタと、スロット内に最後に現れるパケット末尾バイトの位置を示すラストポインタを導入した。これらにより、パケット同期を取ることが可能となるほか、受信エラーにより受信できなかったパケットをヌルパケットに置換するなどパケットの無効化が正確にできるようにした。

(6) ストリーム接続／相対ストリーム情報
ストリーム接続／相対ストリーム情報は、バルク伝送を行う際の相対ストリーム番号0から15についてのストリームの接続情報である。ストリーム接続／相対ストリーム情報の構成を図2.2-27に示す。

<table>
<thead>
<tr>
<th>相対ストリーム0の接続情報</th>
<th>相対ストリーム1の接続情報</th>
<th>……</th>
<th>相対ストリーム0の接続情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>前接続フラグ</td>
<td>後接続フラグ</td>
<td>前接続メディア</td>
<td>後接続メディア</td>
</tr>
<tr>
<td>1ビット</td>
<td>1ビット</td>
<td>2ビット</td>
<td>2ビット</td>
</tr>
</tbody>
</table>

図2.2-27 ストリーム接続／相対ストリーム情報の構成

各相対ストリームについて、以下の情報を伝送する。

| ア 前接続フラグ:当該相対ストリームの前に接続して受信すべきストリームが存在する場合1、それ以外は0とする。 |
| イ 後接続フラグ:当該相対ストリームの後に接続して受信すべきストリームが存在する場合1、それ以外は0とする。 |
| ウ 前接続メディア:前接続フラグが1である場合に、接続先のメディアの種別を示す。接続メディア種別の値を表2.2-18に示す。 |
| エ 後接続メディア:後接続フラグが1である場合に、接続先のメディアの種別を示す。接続メディア種別の値を表2.2-18に示す。 |
表 2.2-18 接続メディア種別

<table>
<thead>
<tr>
<th>値</th>
<th>ストリーム種別</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>BS</td>
</tr>
<tr>
<td>01</td>
<td>110度 CS</td>
</tr>
<tr>
<td>10,11</td>
<td>リザーブ</td>
</tr>
</tbody>
</table>

オ前接続物理チャンネル：前接続フラグが1である場合に、接続先のメディアの物理チャンネルを示す。接続物理チャンネルの値を表2.2-19に示す。

カ後接続物理チャンネル：後接続フラグが1である場合に、接続先のメディアの物理チャンネルを示す。接続物理チャンネルの値を表2.2-19に示す。

表 2.2-19 接続物理チャンネル

<table>
<thead>
<tr>
<th>值</th>
<th>BSの場合</th>
<th>110度 CSの場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>割り当てチャンネルなし</td>
<td></td>
</tr>
<tr>
<td>000001</td>
<td>BS-1</td>
<td>ND1</td>
</tr>
<tr>
<td>000010</td>
<td>BS-2</td>
<td>ND2</td>
</tr>
<tr>
<td>000011</td>
<td>BS-3</td>
<td>ND3</td>
</tr>
<tr>
<td>000100</td>
<td>BS-4</td>
<td>ND4</td>
</tr>
<tr>
<td>000101</td>
<td>BS-5</td>
<td>ND5</td>
</tr>
<tr>
<td>000110</td>
<td>BS-6</td>
<td>ND6</td>
</tr>
<tr>
<td>000111</td>
<td>BS-7</td>
<td>ND7</td>
</tr>
<tr>
<td>001000</td>
<td>BS-8</td>
<td>ND8</td>
</tr>
<tr>
<td>001001</td>
<td>BS-9</td>
<td>ND9</td>
</tr>
<tr>
<td>001010</td>
<td>BS-10</td>
<td>ND10</td>
</tr>
<tr>
<td>001011</td>
<td>BS-11</td>
<td>ND11</td>
</tr>
<tr>
<td>001100</td>
<td>BS-12</td>
<td>ND12</td>
</tr>
<tr>
<td>001101</td>
<td>BS-13</td>
<td>ND13</td>
</tr>
<tr>
<td>001110</td>
<td>BS-14</td>
<td>ND14</td>
</tr>
<tr>
<td>001111</td>
<td>BS-15</td>
<td>ND15</td>
</tr>
<tr>
<td>010000</td>
<td>BS-16</td>
<td>ND16</td>
</tr>
<tr>
<td>010001</td>
<td>BS-17</td>
<td>ND17</td>
</tr>
<tr>
<td>010010</td>
<td>BS-18</td>
<td>ND18</td>
</tr>
<tr>
<td>010011</td>
<td>BS-19</td>
<td>ND19</td>
</tr>
<tr>
<td>010100</td>
<td>BS-20</td>
<td>ND20</td>
</tr>
<tr>
<td>010101</td>
<td>BS-21</td>
<td>ND21</td>
</tr>
<tr>
<td>010110</td>
<td>BS-22</td>
<td>ND22</td>
</tr>
<tr>
<td>010111</td>
<td>BS-23</td>
<td>ND23</td>
</tr>
<tr>
<td>011000</td>
<td>BS-24</td>
<td>ND24</td>
</tr>
<tr>
<td>011001~111111</td>
<td>割り当てチャンネルなし</td>
<td></td>
</tr>
</tbody>
</table>

キ 前接続相対ストリーム：前接続フラグが1である場合に、接続先の物理チャンネルの相対ストリーム番号を示す。

ク後接続相対ストリーム：後接続フラグが1である場合に、接続先の物理チャンネルの相対ストリーム番号を示す。

ケ接続イネーブル：前接続フラグまたは後接続フラグが1になった後、実際にバルク伝送が開始されるタイミングを示す。接続イネーブルが0から1に変わった2フレーム後からバルク伝送が開始される。また、1から0に変わった2フレーム後からバルク伝送が解除される。
理由

現行衛星デジタル放送では、1つの中継機内で柔軟な伝送制御が可能となっている。高度衛星デジタル放送方式においては、複数衛星中継機間で柔軟な伝送制御を可能とするため、スロットを制御単位とするバルク伝送機能を導入した。バルク伝送により受信した複数のストリームを正しく接続するため、各ストリームについて、前および後に接続すべきストリームがあるか否かを示す接続フラグおよび後接続フラグを導入した。さらに、接続先の仮想メディアを選択指定する前接続メディアおよび後接続メディア、前接続物理チャンネル番号および後接続物理チャンネル番号、前接続相対ストリーム番号および後接続相対ストリーム番号を導入し、接続先のストリームを伝送する伝送メディアの変更を開始するために一定の時間を要するため、予め、バルク伝送に関する以上のパラメータを TMCC 信号にセットした後、実際のバルク伝送開始のタイミングを受信機に通知するための接続インイネーブル信号も導入した。

(7) 相対ストリーム/スロット情報

相対ストリーム/スロット情報は、スロット 1 から順に各スロットで伝送する相対ストリーム番号を示す。

一つの変調波内では最大 16 のストリームを伝送可能とし、4 ビットで相対ストリーム番号を示す。また、ダミースロットにも同じ番号を割り当てる。図 2.2-28 に相対ストリーム/スロット情報の構成を示す。

![図 2.2-28 相対ストリーム/スロット情報の構成](image)

(8) 相対ストリーム/伝送ストリーム番号対応表

相対ストリーム/伝送ストリーム番号対応表は、相対ストリーム/スロット情報で使用される相対ストリーム番号と、MPEG-2 Systems の場合には 4 ビットの TS_ID および TLV 形式の場合には TLV ストリーム ID との対応関係を示す。MPEG-2 Systems の TS_ID および TLV ストリーム ID をまとめて伝送ストリーム ID と呼ぶ。相対ストリーム/伝送ストリーム番号対応表の構成を図 2.2-29 に示す。
相対ストリーム番号は、システムの関係を示すために相対的なストリーム番号を使用しているため、変調部と伝送ストリームとのインターフェースでは、相対ストリーム番号と伝送ストリーム（MPEG-2 TS や TLV 形式）の対応付けの必要がある。ここでは、MPEG-2 TS の TS_ID および TLV 形式のパケットストリームの TLV ストリーム ID を伝送ストリーム ID と呼んでいる。

相対ストリーム番号と伝送ストリーム ID の対応付けは多重化部側に持たせることも可能であるが、TMCC 信号と PSI 変更タイミングの不整合が生じる可能性があり、委託放送事業者の良好な運用性を確保するために相対ストリーム番号の使用は変調部内で完結させることとしている。

図 2.2-29 相対ストリーム/伝送ストリーム番号対応表の構成

(理由)
TMCC 信号では、スロットとストリームの関係を示すために相対的なストリーム番号を使用しているため、変調部と伝送ストリームとのインターフェースでは、相対ストリーム番号と伝送ストリーム（MPEG-2 TS や TLV 形式）の対応付けの必要がある。ここでは、MPEG-2 TS の TS_ID および TLV 形式のパケットストリームの TLV ストリーム ID を伝送ストリーム ID と呼んでいる。

相対ストリーム番号と伝送ストリーム ID の対応付けは多重化部側に持たせることも可能であるが、TMCC 信号と PSI 変更タイミングの不整合が生じる可能性があり、委託放送事業者の良好な運用性を確保するために相対ストリーム番号の使用は変調部内で完結させることとしている。

図 2.2-29 相対ストリーム/伝送ストリーム番号対応表の構成

(9) 送受信制御情報
送受信制御情報は、緊急警報放送における受信機起動制御のための信号や、アップリンク局切り替えのための制御信号を伝送する。送受信制御情報の構成を図 2.2-30 に示す。

図 2.2-30 送受信制御情報の構成

起動制御信号は、受信機の起動制御が行われている場合に「1」、起動制御が行われていない場合に「0」とする。
サイトダイバーシティ実施フレーム指示は、サイトダイバーシティを行う数フレーム前に「1」とし、サイトダイバーシティ終了後数フレーム後に「0」とする。
主局指示は、主局からアップリンクする信号の場合には「1」、それ以外は「0」とする。
副局指示は、副局からアップリンクする信号の場合には「1」、それ以外は「0」とする。
なお、サイトダイバーシティによって主局指示および副局指示が変更されても、変更指示はインクリメントしない。

図 2.2-30 送受信制御情報の構成

(理由)
起動制御信号は、緊急警報放送受信のための受信機の待機電力を削減するために設けた信号である。緊急警報受信信号自体は、MPEG-2 TS の PSI 部分に多重するため、受信機が緊急警報信号を受信するためには TS 復号部まで通電されている必要がある。TMCC 信号で起動制御信号を伝送することにより、受信機は、復号部さえ常時通電されていれば起動制御信号の受信後に後段の処理回路を起動するような構成が可能となり、受信機待ち受け時の省電力化が図れる。
アップリンク制御信号は、降雨減衰時などにおけるアップリンク局切り替えの際に受託放送事業者に不可欠な信号であり、また、最も低階層の部分で伝送する必要があるため、TMCC 信号で伝送する。ビット割り当てについては、現行の衛星デジタル放送と同様とした。
拡張情報
拡張情報は、将来の TMCC 信号拡張のために使用するフィールドである。TMCC 信号拡張の際には、拡張フラグを「1」とし、その後に続くフィールドが有効であることを示す。拡張情報の構成を図 2.2-31 に示す。拡張フラグが「0」の場合には、拡張フィールドは「1」でスタッフィングする。

<table>
<thead>
<tr>
<th>拡張フラグ</th>
<th>拡張フィールド</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ビット</td>
<td>3003 ビット</td>
</tr>
</tbody>
</table>

図 2.2-31 拡張情報の構成

(理由)
将来の拡張用として、十分な要領を確保した。
付録
付録（LDPC符号の検査行列を定義する符号テーブル）

本方式で採用するLDPC符号の検査行列を定義する符号テーブルを付表1～付表11に示す。

付表1 符号化率1/3の符号テーブル

<table>
<thead>
<tr>
<th></th>
<th>1750</th>
<th>2125</th>
<th>3750</th>
<th>15250</th>
<th>18750</th>
<th>19250</th>
<th>27375</th>
<th>29000</th>
</tr>
</thead>
<tbody>
<tr>
<td>625</td>
<td>1750</td>
<td>2125</td>
<td>3750</td>
<td>15250</td>
<td>18750</td>
<td>19250</td>
<td>27375</td>
<td>29000</td>
</tr>
<tr>
<td>4375</td>
<td>6750</td>
<td>7125</td>
<td>7500</td>
<td>13125</td>
<td>16250</td>
<td>19375</td>
<td>28875</td>
<td>29250</td>
</tr>
<tr>
<td>1500</td>
<td>6125</td>
<td>6533</td>
<td>13500</td>
<td>23500</td>
<td>25500</td>
<td>26000</td>
<td>27625</td>
<td>28750</td>
</tr>
<tr>
<td>6500</td>
<td>7625</td>
<td>9625</td>
<td>14875</td>
<td>16875</td>
<td>18000</td>
<td>18500</td>
<td>27500</td>
<td>27750</td>
</tr>
<tr>
<td>250</td>
<td>4204</td>
<td>6000</td>
<td>12500</td>
<td>17125</td>
<td>21204</td>
<td>21875</td>
<td>22079</td>
<td>23750</td>
</tr>
<tr>
<td>125</td>
<td>9125</td>
<td>11250</td>
<td>11875</td>
<td>12000</td>
<td>14125</td>
<td>15875</td>
<td>24125</td>
<td></td>
</tr>
<tr>
<td>4875</td>
<td>9875</td>
<td>11000</td>
<td>11125</td>
<td>13000</td>
<td>16500</td>
<td>19000</td>
<td>25125</td>
<td>26375</td>
</tr>
<tr>
<td>2941</td>
<td>8500</td>
<td>12362</td>
<td>15125</td>
<td>16375</td>
<td>18250</td>
<td>20250</td>
<td>21375</td>
<td>24000</td>
</tr>
<tr>
<td>0</td>
<td>750</td>
<td>19875</td>
<td>21625</td>
<td>21750</td>
<td>22125</td>
<td>23250</td>
<td>27329</td>
<td>28375</td>
</tr>
<tr>
<td>875</td>
<td>2750</td>
<td>3125</td>
<td>8625</td>
<td>18875</td>
<td>20000</td>
<td>23375</td>
<td>26125</td>
<td>26829</td>
</tr>
<tr>
<td>500</td>
<td>5533</td>
<td>18375</td>
<td>18625</td>
<td>20125</td>
<td>20375</td>
<td>24625</td>
<td>25250</td>
<td>27875</td>
</tr>
<tr>
<td>1250</td>
<td>10000</td>
<td>10658</td>
<td>17000</td>
<td>17750</td>
<td>19500</td>
<td>19625</td>
<td>25875</td>
<td>29375</td>
</tr>
<tr>
<td>2250</td>
<td>3000</td>
<td>4000</td>
<td>5250</td>
<td>9375</td>
<td>11750</td>
<td>14750</td>
<td>24875</td>
<td>29500</td>
</tr>
<tr>
<td>5000</td>
<td>5750</td>
<td>12375</td>
<td>16625</td>
<td>17579</td>
<td>18125</td>
<td>21250</td>
<td>22625</td>
<td>26625</td>
</tr>
<tr>
<td>2500</td>
<td>3783</td>
<td>4625</td>
<td>9250</td>
<td>10875</td>
<td>15500</td>
<td>17625</td>
<td>22375</td>
<td>28500</td>
</tr>
<tr>
<td>1125</td>
<td>5500</td>
<td>9737</td>
<td>13329</td>
<td>13750</td>
<td>13875</td>
<td>16829</td>
<td>22750</td>
<td>24375</td>
</tr>
<tr>
<td>375</td>
<td>6875</td>
<td>10454</td>
<td>11375</td>
<td>12875</td>
<td>13375</td>
<td>14250</td>
<td>19750</td>
<td>23125</td>
</tr>
<tr>
<td>3375</td>
<td>4750</td>
<td>8375</td>
<td>10125</td>
<td>14500</td>
<td>17875</td>
<td>22500</td>
<td>24829</td>
<td>25829</td>
</tr>
<tr>
<td>1625</td>
<td>3500</td>
<td>5625</td>
<td>6783</td>
<td>8987</td>
<td>12250</td>
<td>21158</td>
<td>23625</td>
<td>24250</td>
</tr>
<tr>
<td>100</td>
<td>12750</td>
<td>16204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3875</td>
<td>15000</td>
<td>16000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14625</td>
<td>15375</td>
<td>21500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7875</td>
<td>11625</td>
<td>24500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1875</td>
<td>2875</td>
<td>9000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8875</td>
<td>20500</td>
<td>28625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14375</td>
<td>17375</td>
<td>27125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>20875</td>
<td>26500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11500</td>
<td>20750</td>
<td>22329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4329</td>
<td>7250</td>
<td>12625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7750</td>
<td>13704</td>
<td>25000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3329</td>
<td>5875</td>
<td>23875</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>17250</td>
<td>28250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5125</td>
<td>7375</td>
<td>22875</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8125</td>
<td>26875</td>
<td>29125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25625</td>
<td>26250</td>
<td>28000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1375</td>
<td>15750</td>
<td>19125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td>10625</td>
<td>15625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2079</td>
<td>9750</td>
<td>10250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2375</td>
<td>6250</td>
<td>28125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20625</td>
<td>23000</td>
<td>27000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8250</td>
<td>10750</td>
<td>25375</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1165</td>
<td>4327</td>
<td>5257</td>
<td>6652</td>
<td>8977</td>
<td>14185</td>
<td>16417</td>
<td>17440</td>
<td>21346</td>
</tr>
<tr>
<td>2002</td>
<td>2653</td>
<td>3769</td>
<td>7467</td>
<td>10930</td>
<td>19672</td>
<td>19951</td>
<td>23392</td>
<td>23671</td>
</tr>
<tr>
<td>5908</td>
<td>7768</td>
<td>12489</td>
<td>13441</td>
<td>13999</td>
<td>15487</td>
<td>16324</td>
<td>16882</td>
<td>17161</td>
</tr>
<tr>
<td>1072</td>
<td>1422</td>
<td>1723</td>
<td>3304</td>
<td>4513</td>
<td>5815</td>
<td>6187</td>
<td>8605</td>
<td>12024</td>
</tr>
<tr>
<td>3025</td>
<td>4699</td>
<td>9349</td>
<td>9677</td>
<td>10279</td>
<td>12210</td>
<td>15766</td>
<td>17905</td>
<td>20974</td>
</tr>
<tr>
<td>2910</td>
<td>6280</td>
<td>6931</td>
<td>8539</td>
<td>10186</td>
<td>10651</td>
<td>14907</td>
<td>18326</td>
<td>19021</td>
</tr>
<tr>
<td>700</td>
<td>4048</td>
<td>5443</td>
<td>8047</td>
<td>12675</td>
<td>14721</td>
<td>17768</td>
<td>19858</td>
<td>22462</td>
</tr>
<tr>
<td>4026</td>
<td>4792</td>
<td>6001</td>
<td>6838</td>
<td>9163</td>
<td>10235</td>
<td>13534</td>
<td>18818</td>
<td>20695</td>
</tr>
<tr>
<td>235</td>
<td>2095</td>
<td>7210</td>
<td>15022</td>
<td>19486</td>
<td>20416</td>
<td>20952</td>
<td>21718</td>
<td>21953</td>
</tr>
<tr>
<td>1515</td>
<td>2188</td>
<td>4141</td>
<td>5071</td>
<td>6537</td>
<td>11608</td>
<td>11674</td>
<td>11767</td>
<td>19464</td>
</tr>
<tr>
<td>1909</td>
<td>5629</td>
<td>8233</td>
<td>10886</td>
<td>14535</td>
<td>16816</td>
<td>17347</td>
<td>18698</td>
<td>20509</td>
</tr>
<tr>
<td>4420</td>
<td>9721</td>
<td>16975</td>
<td>20230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6094</td>
<td>12325</td>
<td>25717</td>
<td>26275</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7024</td>
<td>9907</td>
<td>16789</td>
<td>22090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1537</td>
<td>3862</td>
<td>14092</td>
<td>24880</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6559</td>
<td>7117</td>
<td>11116</td>
<td>24415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12303</td>
<td>18649</td>
<td>21625</td>
<td>24043</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>935</td>
<td>6373</td>
<td>9442</td>
<td>17068</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>886</td>
<td>8419</td>
<td>15930</td>
<td>17719</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8884</td>
<td>14371</td>
<td>16138</td>
<td>18928</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2445</td>
<td>8698</td>
<td>18277</td>
<td>22369</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>421</td>
<td>5421</td>
<td>15952</td>
<td>23857</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3211</td>
<td>5793</td>
<td>7861</td>
<td>21253</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7653</td>
<td>11581</td>
<td>12511</td>
<td>25066</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>328</td>
<td>8791</td>
<td>24136</td>
<td>24579</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11209</td>
<td>14557</td>
<td>15301</td>
<td>20673</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1258</td>
<td>3397</td>
<td>10465</td>
<td>24973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>2932</td>
<td>5164</td>
<td>20044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6745</td>
<td>10093</td>
<td>16045</td>
<td>16231</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3260</td>
<td>4234</td>
<td>14814</td>
<td>16510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7374</td>
<td>16696</td>
<td>19207</td>
<td>25252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10443</td>
<td>10837</td>
<td>21439</td>
<td>25438</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1630</td>
<td>9699</td>
<td>11860</td>
<td>23950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2538</td>
<td>8512</td>
<td>17998</td>
<td>20859</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2560</td>
<td>9327</td>
<td>9814</td>
<td>23578</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12954</td>
<td>13047</td>
<td>18091</td>
<td>21997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>13233</td>
<td>20323</td>
<td>23020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14278</td>
<td>15208</td>
<td>15580</td>
<td>18742</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12697</td>
<td>13069</td>
<td>19579</td>
<td>24694</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607</td>
<td>3676</td>
<td>4978</td>
<td>17604</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12046</td>
<td>12790</td>
<td>13813</td>
<td>22927</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1050</td>
<td>2423</td>
<td>11302</td>
<td>15394</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3583</td>
<td>7959</td>
<td>8211</td>
<td>9141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4606</td>
<td>11488</td>
<td>15115</td>
<td>23299</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3490</td>
<td>7489</td>
<td>17812</td>
<td>19114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5536</td>
<td>13627</td>
<td>15000</td>
<td>25996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1887</td>
<td>2746</td>
<td>4885</td>
<td>21904</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>514</td>
<td>13419</td>
<td>13906</td>
<td>20279</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8025</td>
<td>10558</td>
<td>23764</td>
<td>25700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>符号</td>
<td>1/2の符号テーブル</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>935</td>
<td>1458 2280 7022 7261 10304 13046 14232 14442 19132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1219</td>
<td>2960 12710 16907 17635 18558 18607 20783 21275 21527</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1713</td>
<td>3083 3992 8208 11182 14002 15040 19443 19860 21268</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4595</td>
<td>8550 8796 9519 11520 15723 16495 17628 19287 20007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1324</td>
<td>5883 6312 6626 8651 11192 11796 12394 15476 16860</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2150</td>
<td>3938 5484 5966 6871 10755 13122 15299 20144 21625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2503</td>
<td>3253 3414 4829 5574 6401 8181 10063 13159 17765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2408</td>
<td>4033 4160 5921 6539 7938 9001 15716 16189 16411</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>422</td>
<td>3861 7506 11878 11939 15138 15617 17293 18581 19050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4003</td>
<td>6185 7743 8979 11367 11605 14867 16383 18641 18700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8862</td>
<td>8986 12553 13230 13908 13986 16632 18386 20073 20655</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>2041 2891 5428 9469 9497 11906 16679 16693 20615</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1483</td>
<td>2177 5196 7977 9040 9168 9712 9869 15086 18396</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>717</td>
<td>2863 2884 3614 6766 8413 12640 13271 14420 21818</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1742</td>
<td>2267 5713 6214 16642 16847 18468 20656 21540 21830</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2175</td>
<td>5642 6972 7614 9616 9955 10631 12293 12916 18984</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12742</td>
<td>19462 20458</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11100</td>
<td>11954 19267</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1120</td>
<td>3218 7998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6212</td>
<td>15705 19295</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8774</td>
<td>11612 12712</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9661</td>
<td>17108 21492</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6296</td>
<td>6815 8590</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>767</td>
<td>1804 3167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2793</td>
<td>10075 15390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4493</td>
<td>6855 21361</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7432</td>
<td>7927 16108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>879</td>
<td>9629 11718</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12879</td>
<td>16882 19590</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4982</td>
<td>19254 20006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7798</td>
<td>14941 15386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13088</td>
<td>14120 19159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5082</td>
<td>9270 12298</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1372</td>
<td>8658 20254</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4719</td>
<td>19278 21161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3106</td>
<td>3773 5181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3892</td>
<td>11004 19423</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17566</td>
<td>18234 22002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10589</td>
<td>11280 18876</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6845</td>
<td>9704 18378</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17541</td>
<td>19105 19788</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7463</td>
<td>17311 21787</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11607</td>
<td>19830 21371</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4359</td>
<td>12892 19222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2419</td>
<td>12692 14590</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>10303 14235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4683</td>
<td>7984 14856</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3228</td>
<td>14298 15614</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3549</td>
<td>16686 17386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1733</td>
<td>7291 20212</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1502</td>
<td>12471 17171</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10919</td>
<td>16678 18344</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1559</td>
<td>19353 21032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15999</td>
<td>20879 21230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5138</td>
<td>16012 17488</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>507</td>
<td>18359 19398</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2745</td>
<td>4062 11305</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
付表 3 符号化率1/2の符号テーブル（つづき）

<table>
<thead>
<tr>
<th>4976</th>
<th>4994</th>
<th>11744</th>
</tr>
</thead>
<tbody>
<tr>
<td>3390</td>
<td>16158</td>
<td>20308</td>
</tr>
<tr>
<td>2524</td>
<td>9477</td>
<td>17992</td>
</tr>
<tr>
<td>3977</td>
<td>13357</td>
<td>16270</td>
</tr>
</tbody>
</table>
付表 4 符号化率3/5の符号テーブル

<table>
<thead>
<tr>
<th>符号率</th>
<th>符号テーブル</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/5</td>
<td>付表 4 符号化率3/5の符号テーブル</td>
</tr>
<tr>
<td></td>
<td>357 954 7119 7201 7951 8660 8833 10002 13537 15019 16162 17393 17414 415 1005 2768 4478 6376 6992 10421 11744 13008 13294 16054 16103 17398</td>
</tr>
<tr>
<td></td>
<td>33 1278 5158 7309 7692 7725 10635 12376 12386 14426 14624 15432 17361 1005 2169 2215 3348 3667 4112 6118 8391 9296 9353 14480 16954 17519</td>
</tr>
<tr>
<td></td>
<td>789 1675 1751 6153 6377 13166 13887 13905 14217 14507 14753 15707 15896 355 1880 2959 3279 3328 6405 7962 9391 9398 14480 16954 17134</td>
</tr>
<tr>
<td></td>
<td>1140 2561 2662 2668 3505 4851 5341 6138 10407 12194 13150 13223 13239 3068 3856 4550 8151 8244 9602 9752 11365 11636 11768 12134 13566 17105</td>
</tr>
<tr>
<td></td>
<td>1435 1664 2304 3212 4974 8135 11314 11588 11667 12195 15385 15715 16714 1741 1947 2773 4045 4340 8244 9170 9583 12382 13645 13768 14027 16709</td>
</tr>
<tr>
<td></td>
<td>4247 5364 12994 24 1585 9160 5678 9509 12795 1584 2932 7313 5311 6685 16318 1053 9398 14842 9448 12744 13810 3040 3679 7686 9816 11028 13609 352 3396 7645 293 6003 12642 6840 11000 13886 3030 6910 11489 4601 16312 16351 5633 5708 9483 6931 12266 15863 4080 11013 16587 6077 6901 8660 11160 12563 16833 12610 13589 17255 597 6780 12541 3572 5296 16178 2772 10557 16953 8315 9497 12811 9076 10590 17513 9464 11633 12939 117 11613 11782 4008 7056 12120 2156 6956 9614 11255 11681 14684 374 5204 5316 5750 10140 10754 3246 15326 16788 4839 13725 14859 3760 13834 16089 2988 3455 12733 5093 8924 16859 3592 3621 16569 6053 7951 8316 7331 13216 17181 8094 11141 16500 1956 3488 10371 2852 5454 8847 3016 3177 10250 2990 12736 13293 8599 10333 12826 11154 13241 16994</td>
</tr>
</tbody>
</table>
付表 4 符号化率3/5の符号テーブル（つづき）

<table>
<thead>
<tr>
<th>6472</th>
<th>14558</th>
<th>15541</th>
</tr>
</thead>
<tbody>
<tr>
<td>309</td>
<td>3770</td>
<td>15650</td>
</tr>
<tr>
<td>3890</td>
<td>6732</td>
<td>12686</td>
</tr>
<tr>
<td>1791</td>
<td>5409</td>
<td>16925</td>
</tr>
<tr>
<td>10464</td>
<td>14384</td>
<td>14699</td>
</tr>
<tr>
<td>1282</td>
<td>10278</td>
<td>15135</td>
</tr>
<tr>
<td>5851</td>
<td>9569</td>
<td>10063</td>
</tr>
<tr>
<td>9527</td>
<td>13932</td>
<td>17090</td>
</tr>
<tr>
<td>4192</td>
<td>6788</td>
<td>17248</td>
</tr>
<tr>
<td>2322</td>
<td>2357</td>
<td>9161</td>
</tr>
<tr>
<td>1381</td>
<td>7313</td>
<td>16246</td>
</tr>
<tr>
<td>196</td>
<td>3561</td>
<td>7252</td>
</tr>
<tr>
<td>5881</td>
<td>10640</td>
<td>14399</td>
</tr>
<tr>
<td>1451</td>
<td>14495</td>
<td>17425</td>
</tr>
<tr>
<td>2911</td>
<td>8369</td>
<td>9439</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>4958</td>
<td>6639</td>
<td>6721</td>
</tr>
<tr>
<td>4975</td>
<td>4835</td>
<td>7828</td>
</tr>
<tr>
<td>918</td>
<td>2825</td>
<td>3050</td>
</tr>
<tr>
<td>899</td>
<td>1746</td>
<td>2968</td>
</tr>
<tr>
<td>5226</td>
<td>6516</td>
<td>10983</td>
</tr>
<tr>
<td>4085</td>
<td>6389</td>
<td>8894</td>
</tr>
</tbody>
</table>
付表 5 符号化率2/3の符号テーブル（つづき）

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3685</td>
<td>7642</td>
<td>7992</td>
<td></td>
</tr>
<tr>
<td>2209</td>
<td>2453</td>
<td>3177</td>
<td></td>
</tr>
<tr>
<td>2978</td>
<td>4341</td>
<td>8029</td>
<td></td>
</tr>
<tr>
<td>846</td>
<td>3478</td>
<td>12943</td>
<td></td>
</tr>
<tr>
<td>2332</td>
<td>10276</td>
<td>13322</td>
<td></td>
</tr>
<tr>
<td>1871</td>
<td>8802</td>
<td>13277</td>
<td></td>
</tr>
<tr>
<td>2580</td>
<td>4292</td>
<td>10329</td>
<td></td>
</tr>
<tr>
<td>3277</td>
<td>7785</td>
<td>14210</td>
<td></td>
</tr>
<tr>
<td>6832</td>
<td>12949</td>
<td>13117</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>4257</td>
<td>4425</td>
<td></td>
</tr>
<tr>
<td>2158</td>
<td>4782</td>
<td>13568</td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>11096</td>
<td>11723</td>
<td></td>
</tr>
<tr>
<td>3183</td>
<td>12564</td>
<td>14152</td>
<td></td>
</tr>
<tr>
<td>403</td>
<td>6842</td>
<td>9509</td>
<td></td>
</tr>
<tr>
<td>9895</td>
<td>14161</td>
<td>14474</td>
<td></td>
</tr>
<tr>
<td>487</td>
<td>3318</td>
<td>11590</td>
<td></td>
</tr>
<tr>
<td>2517</td>
<td>6266</td>
<td>14306</td>
<td></td>
</tr>
<tr>
<td>3031</td>
<td>3769</td>
<td>11928</td>
<td></td>
</tr>
<tr>
<td>3029</td>
<td>3154</td>
<td>11846</td>
<td></td>
</tr>
<tr>
<td>6268</td>
<td>14052</td>
<td>14585</td>
<td></td>
</tr>
<tr>
<td>3933</td>
<td>5327</td>
<td>11826</td>
<td></td>
</tr>
<tr>
<td>6514</td>
<td>12785</td>
<td>13158</td>
<td></td>
</tr>
<tr>
<td>7888</td>
<td>11414</td>
<td>12662</td>
<td></td>
</tr>
<tr>
<td>数値</td>
<td>表示</td>
<td>数値</td>
<td>表示</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1372</td>
<td>1492</td>
<td>2242</td>
<td>2362</td>
</tr>
<tr>
<td>3775</td>
<td>4732</td>
<td>6682</td>
<td>7942</td>
</tr>
<tr>
<td>1086</td>
<td>2482</td>
<td>2812</td>
<td>2932</td>
</tr>
<tr>
<td>1282</td>
<td>2844</td>
<td>5543</td>
<td>6147</td>
</tr>
<tr>
<td>682</td>
<td>986</td>
<td>2274</td>
<td>5780</td>
</tr>
<tr>
<td>1552</td>
<td>3000</td>
<td>5218</td>
<td>5182</td>
</tr>
<tr>
<td>473</td>
<td>2431</td>
<td>4224</td>
<td>4952</td>
</tr>
<tr>
<td>1262</td>
<td>1582</td>
<td>1793</td>
<td>3865</td>
</tr>
<tr>
<td>1109</td>
<td>1225</td>
<td>2302</td>
<td>3382</td>
</tr>
<tr>
<td>1922</td>
<td>4882</td>
<td>4972</td>
<td>5307</td>
</tr>
<tr>
<td>1111</td>
<td>2123</td>
<td>3833</td>
<td>4711</td>
</tr>
<tr>
<td>563</td>
<td>2003</td>
<td>3988</td>
<td>3748</td>
</tr>
<tr>
<td>689</td>
<td>1102</td>
<td>1735</td>
<td>2724</td>
</tr>
<tr>
<td>1384</td>
<td>1882</td>
<td>3594</td>
<td>4385</td>
</tr>
<tr>
<td>1316</td>
<td>1373</td>
<td>2040</td>
<td>4287</td>
</tr>
<tr>
<td>5243</td>
<td>7344</td>
<td>7493</td>
<td></td>
</tr>
<tr>
<td>1710</td>
<td>3597</td>
<td>11007</td>
<td></td>
</tr>
<tr>
<td>3472</td>
<td>6323</td>
<td>10974</td>
<td></td>
</tr>
<tr>
<td>1649</td>
<td>3082</td>
<td>5812</td>
<td></td>
</tr>
<tr>
<td>6444</td>
<td>9481</td>
<td>9809</td>
<td></td>
</tr>
<tr>
<td>1134</td>
<td>3352</td>
<td>9502</td>
<td></td>
</tr>
<tr>
<td>4553</td>
<td>8782</td>
<td>10972</td>
<td></td>
</tr>
<tr>
<td>4462</td>
<td>7073</td>
<td>8814</td>
<td></td>
</tr>
<tr>
<td>4781</td>
<td>10023</td>
<td>9989</td>
<td></td>
</tr>
<tr>
<td>2303</td>
<td>5754</td>
<td>6262</td>
<td></td>
</tr>
<tr>
<td>3055</td>
<td>5513</td>
<td>7162</td>
<td></td>
</tr>
<tr>
<td>3053</td>
<td>8337</td>
<td>9952</td>
<td></td>
</tr>
<tr>
<td>4012</td>
<td>4853</td>
<td>7015</td>
<td></td>
</tr>
<tr>
<td>3685</td>
<td>4583</td>
<td>10709</td>
<td></td>
</tr>
<tr>
<td>4588</td>
<td>5184</td>
<td>5242</td>
<td></td>
</tr>
<tr>
<td>3952</td>
<td>4288</td>
<td>7884</td>
<td></td>
</tr>
<tr>
<td>3112</td>
<td>5303</td>
<td>11152</td>
<td></td>
</tr>
<tr>
<td>803</td>
<td>5999</td>
<td>9144</td>
<td></td>
</tr>
<tr>
<td>688</td>
<td>1734</td>
<td>3202</td>
<td></td>
</tr>
<tr>
<td>2363</td>
<td>9412</td>
<td>9862</td>
<td></td>
</tr>
<tr>
<td>3052</td>
<td>7223</td>
<td>7794</td>
<td></td>
</tr>
<tr>
<td>8453</td>
<td>9954</td>
<td>11572</td>
<td></td>
</tr>
<tr>
<td>562</td>
<td>5093</td>
<td>9172</td>
<td></td>
</tr>
<tr>
<td>4709</td>
<td>5693</td>
<td>10095</td>
<td></td>
</tr>
<tr>
<td>5752</td>
<td>8573</td>
<td>11004</td>
<td></td>
</tr>
<tr>
<td>2244</td>
<td>4403</td>
<td>8452</td>
<td></td>
</tr>
<tr>
<td>4258</td>
<td>9442</td>
<td>9534</td>
<td></td>
</tr>
<tr>
<td>3263</td>
<td>5157</td>
<td>10919</td>
<td></td>
</tr>
<tr>
<td>7553</td>
<td>8932</td>
<td>11488</td>
<td></td>
</tr>
<tr>
<td>1402</td>
<td>3683</td>
<td>4644</td>
<td></td>
</tr>
<tr>
<td>3353</td>
<td>6684</td>
<td>8062</td>
<td></td>
</tr>
<tr>
<td>2093</td>
<td>8002</td>
<td>10164</td>
<td></td>
</tr>
<tr>
<td>2820</td>
<td>7432</td>
<td>7824</td>
<td></td>
</tr>
<tr>
<td>5363</td>
<td>6804</td>
<td>9232</td>
<td></td>
</tr>
<tr>
<td>3203</td>
<td>7734</td>
<td>10167</td>
<td></td>
</tr>
<tr>
<td>8518</td>
<td>9085</td>
<td>9052</td>
<td></td>
</tr>
<tr>
<td>2723</td>
<td>2995</td>
<td>9802</td>
<td></td>
</tr>
<tr>
<td>3328</td>
<td>9112</td>
<td>10614</td>
<td></td>
</tr>
<tr>
<td>3474</td>
<td>5046</td>
<td>8583</td>
<td></td>
</tr>
<tr>
<td>653</td>
<td>7137</td>
<td>7434</td>
<td></td>
</tr>
<tr>
<td>1294</td>
<td>6059</td>
<td>11484</td>
<td></td>
</tr>
<tr>
<td>1224</td>
<td>1343</td>
<td>1912</td>
<td></td>
</tr>
<tr>
<td>2184</td>
<td>4253</td>
<td>8512</td>
<td></td>
</tr>
<tr>
<td>1764</td>
<td>6474</td>
<td>8367</td>
<td></td>
</tr>
<tr>
<td>4915</td>
<td>6237</td>
<td>7914</td>
<td></td>
</tr>
</tbody>
</table>
付表 6 符号化率3/4の符号テーブル（つづき）

<table>
<thead>
<tr>
<th>数値</th>
<th>数値</th>
<th>数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>1073</td>
<td>10494</td>
<td>11182</td>
</tr>
<tr>
<td>2453</td>
<td>2997</td>
<td>3292</td>
</tr>
<tr>
<td>4468</td>
<td>6954</td>
<td>10497</td>
</tr>
<tr>
<td>5964</td>
<td>6273</td>
<td>7252</td>
</tr>
<tr>
<td>3773</td>
<td>8572</td>
<td>8664</td>
</tr>
<tr>
<td>2008</td>
<td>2097</td>
<td>2064</td>
</tr>
<tr>
<td>4858</td>
<td>4942</td>
<td>8939</td>
</tr>
<tr>
<td>623</td>
<td>4764</td>
<td>8392</td>
</tr>
<tr>
<td>2760</td>
<td>6983</td>
<td>10192</td>
</tr>
<tr>
<td>982</td>
<td>2573</td>
<td>2694</td>
</tr>
<tr>
<td>1732</td>
<td>3743</td>
<td>9024</td>
</tr>
<tr>
<td>6712</td>
<td>9332</td>
<td>11223</td>
</tr>
<tr>
<td>1252</td>
<td>11363</td>
<td>11544</td>
</tr>
<tr>
<td>4312</td>
<td>6365</td>
<td>8662</td>
</tr>
<tr>
<td>3303</td>
<td>6925</td>
<td>11135</td>
</tr>
<tr>
<td>2753</td>
<td>6811</td>
<td>7225</td>
</tr>
<tr>
<td>4314</td>
<td>10823</td>
<td>11062</td>
</tr>
<tr>
<td>3448</td>
<td>3924</td>
<td>9562</td>
</tr>
<tr>
<td>5453</td>
<td>7704</td>
<td>9622</td>
</tr>
<tr>
<td>742</td>
<td>6628</td>
<td>7174</td>
</tr>
<tr>
<td>867</td>
<td>833</td>
<td>5632</td>
</tr>
<tr>
<td>6481</td>
<td>6717</td>
<td>11373</td>
</tr>
<tr>
<td>2452</td>
<td>7583</td>
<td>9324</td>
</tr>
<tr>
<td>2640</td>
<td>7222</td>
<td>8902</td>
</tr>
<tr>
<td>6173</td>
<td>9352</td>
<td>10889</td>
</tr>
<tr>
<td>1222</td>
<td>1522</td>
<td>7582</td>
</tr>
<tr>
<td>5758</td>
<td>6234</td>
<td>11452</td>
</tr>
<tr>
<td>2100</td>
<td>7020</td>
<td>10822</td>
</tr>
<tr>
<td>2633</td>
<td>4792</td>
<td>8214</td>
</tr>
</tbody>
</table>
付表 7 符号化率4/5の符号テーブル

<table>
<thead>
<tr>
<th>1215</th>
<th>1303</th>
<th>1606</th>
<th>1628</th>
<th>1804</th>
<th>2200</th>
<th>2244</th>
<th>5522</th>
<th>8475</th>
<th>8514</th>
</tr>
</thead>
<tbody>
<tr>
<td>1364</td>
<td>2122</td>
<td>3569</td>
<td>4163</td>
<td>4554</td>
<td>4906</td>
<td>5418</td>
<td>4109</td>
<td>7150</td>
<td>8250</td>
</tr>
<tr>
<td>1043</td>
<td>1220</td>
<td>2916</td>
<td>4604</td>
<td>4827</td>
<td>6094</td>
<td>6492</td>
<td>6996</td>
<td>7527</td>
<td>8275</td>
</tr>
<tr>
<td>1134</td>
<td>2530</td>
<td>4052</td>
<td>3072</td>
<td>6060</td>
<td>5711</td>
<td>6170</td>
<td>6210</td>
<td>6938</td>
<td>8409</td>
</tr>
<tr>
<td>1321</td>
<td>1672</td>
<td>2073</td>
<td>2426</td>
<td>3481</td>
<td>4480</td>
<td>7678</td>
<td>7421</td>
<td>7835</td>
<td>8519</td>
</tr>
<tr>
<td>1598</td>
<td>1611</td>
<td>2200</td>
<td>2024</td>
<td>4938</td>
<td>5106</td>
<td>5216</td>
<td>6434</td>
<td>7750</td>
<td>8011</td>
</tr>
<tr>
<td>1932</td>
<td>1677</td>
<td>2800</td>
<td>3345</td>
<td>5811</td>
<td>6161</td>
<td>7132</td>
<td>7326</td>
<td>7713</td>
<td>7524</td>
</tr>
<tr>
<td>1855</td>
<td>1084</td>
<td>5315</td>
<td>5399</td>
<td>5846</td>
<td>6047</td>
<td>6497</td>
<td>7567</td>
<td>8414</td>
<td>7907</td>
</tr>
<tr>
<td>1262</td>
<td>3747</td>
<td>4097</td>
<td>5788</td>
<td>5733</td>
<td>6109</td>
<td>6832</td>
<td>6976</td>
<td>8437</td>
<td>8489</td>
</tr>
<tr>
<td>902</td>
<td>2082</td>
<td>1986</td>
<td>2479</td>
<td>2926</td>
<td>3666</td>
<td>4527</td>
<td>6857</td>
<td>8145</td>
<td>8522</td>
</tr>
<tr>
<td>1067</td>
<td>2848</td>
<td>4332</td>
<td>4822</td>
<td>4603</td>
<td>4759</td>
<td>5250</td>
<td>6182</td>
<td>6296</td>
<td>7900</td>
</tr>
<tr>
<td>2465</td>
<td>4449</td>
<td>4402</td>
<td>8147</td>
<td>7062</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3939</td>
<td>5505</td>
<td>5033</td>
<td>7480</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4444</td>
<td>5346</td>
<td>8942</td>
<td>7925</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td>3235</td>
<td>4116</td>
<td>5033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2427</td>
<td>4335</td>
<td>7480</td>
<td>8343</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3834</td>
<td>5128</td>
<td>6248</td>
<td>8492</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1877</td>
<td>2377</td>
<td>2513</td>
<td>6954</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2179</td>
<td>5632</td>
<td>3874</td>
<td>7900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3332</td>
<td>7656</td>
<td>9010</td>
<td>8379</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>930</td>
<td>2332</td>
<td>6424</td>
<td>4011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>804</td>
<td>6056</td>
<td>7350</td>
<td>5414</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2757</td>
<td>6645</td>
<td>7174</td>
<td>3239</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3547</td>
<td>5232</td>
<td>6940</td>
<td>7806</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2229</td>
<td>5493</td>
<td>9743</td>
<td>5588</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>2794</td>
<td>2884</td>
<td>7788</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2135</td>
<td>3158</td>
<td>8743</td>
<td>6798</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1149</td>
<td>2883</td>
<td>8010</td>
<td>9020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4423</td>
<td>4445</td>
<td>8379</td>
<td>6036</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>688</td>
<td>3036</td>
<td>4011</td>
<td>3882</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3272</td>
<td>3882</td>
<td>5414</td>
<td>3822</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>890</td>
<td>1722</td>
<td>3239</td>
<td>6638</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4453</td>
<td>5638</td>
<td>7806</td>
<td>4847</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2730</td>
<td>5888</td>
<td>7788</td>
<td>3058</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1240</td>
<td>3058</td>
<td>7788</td>
<td>6798</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4533</td>
<td>6954</td>
<td>8666</td>
<td>6715</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3037</td>
<td>6715</td>
<td>8766</td>
<td>3640</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>871</td>
<td>3640</td>
<td>6426</td>
<td>8097</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2797</td>
<td>8097</td>
<td>8421</td>
<td>3549</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1830</td>
<td>3549</td>
<td>3762</td>
<td>3938</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3786</td>
<td>3938</td>
<td>4229</td>
<td>3549</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3702</td>
<td>4752</td>
<td>7722</td>
<td>4752</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>748</td>
<td>1023</td>
<td>7568</td>
<td>4752</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2150</td>
<td>2136</td>
<td>2913</td>
<td>1023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3307</td>
<td>8301</td>
<td>8580</td>
<td>8301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1543</td>
<td>5172</td>
<td>6956</td>
<td>5172</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>684</td>
<td>6249</td>
<td>7876</td>
<td>6249</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6030</td>
<td>7041</td>
<td>7634</td>
<td>7041</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2048</td>
<td>2597</td>
<td>5109</td>
<td>2597</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2795</td>
<td>4555</td>
<td>6842</td>
<td>4555</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3306</td>
<td>4050</td>
<td>5214</td>
<td>4050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3631</td>
<td>4957</td>
<td>8272</td>
<td>4957</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2514</td>
<td>4889</td>
<td>8541</td>
<td>4889</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2784</td>
<td>6759</td>
<td>8234</td>
<td>6759</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3940</td>
<td>5084</td>
<td>8382</td>
<td>5084</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6297</td>
<td>6634</td>
<td>6580</td>
<td>6634</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
付表 7 符号化率4/5の符号テーブル（つづき）

1129	8300	8470
2420	3349	7239
1480	6475	6804
841	2028	6436
3301	5766	6116
552	5045	7539
3279	4539	7422
2333	6820	8118
2268	6870	8316
4026	5921	8013
731	1212	6167
3438	5509	6688
1282	5594	8123
1903	3791	7551
893	1440	1501
1914	4340	6628
2647	2994	5018
2786	3245	8016
1614	3743	5258
1018	5065	6293
4291	6937	7640
3636	6077	7992
1265	1586	5765
3830	4599	6716
1122	7508	8213
1567	3213	6471
4978	5544	5874
2993	4405	5786
1826	4885	5681
4664	5907	6338
2621	3542	6491
2178	6143	6974
4105	7267	7282
1232	1431	5808
947	6103	7182
3752	5173	6060
2816	3635	6073
1343	4226	7744
3241	7047	7546
付表 8 符号化率5/6の符号テーブル

836	3140	3644	3968	4238	5858	5930	6470	6542	6866
1183	2385	3689	3248	3680	4112	4616	4868	5210	6344
494	1179	2908	3158	3715	5432	5426	5617	6998	6600
1325	2485	3466	5228	4605	5244	6102	6286	5107	6955
880	2704	3752	4204	4493	5403	6368	6308	5265	6950
538	1209	1201	1330	2205	2887	2931	3016	3613	6036
1699	2414	2441	1307	3886	4716	5761	6712	6817	5491
1299	1143	1974	2683	3880	4554	4851	5714	5811	6896
913	2626	4797	2922	3181	4324	5023	5936	6717	2455
2620	2983	3267	3036	4460	5026	5366	6428	6442	6644
2115	3862	3472	4369	4889	6431	6995	6743	7086	6093
3375	5631	7082							
972	1348	5296							
1001	1365	1684							
1396	4861	4841							
5103	5607	6192							
1089	2876	5303							
2731	4742	5733							
1214	1594	5145							
2046	4078	5566							
3252	6375	6528							
2138	2942	6892							
983	3759	5216							
1402	1888	4552							
4033	6110	6794							
2510	4725	6459							
1188	3936	6868							
430	900	3284							
651	6083	6115							
2973	4458	4475							
2592	3141	5737							
2194	5620	6060							
3785	4332	4562							
1652	4412	4736							
778	2943	7104							
695	2619	6133							
2104	3650	6099							
1680	6920	6970							
1526	2109	3268							
732	1075	3914							
2958	3393	5055							
1858	6297	6926							
3673	3667	6852							
3445	5500	6503							
787	3071	6512							
477	712	2852							
914	2121	2898							
2187	3251	3769							
391	4383	6766							
1338	1713	5858							
1182	1905	2622							
459	685	2150							
2048	4077	4976							
389	2360	2858							
482	3852	5918							
1666	4881	6507							
1304	2709	5788							
578	5561	6276							
付表 8 符号化率5/6の符号テーブル（つづき）

1938	2456	4323
929	1559	5859
1941	3070	3266
2710	3820	4452
4295	5300	5717
841	1845	4461
2087	3257	5057
3199	4322	4796
3992	4258	4639
3547	3786	5040
1099	3646	5320
1199	1593	2116
1835	6078	6693
1360	4214	5686
1655	2661	5662
3478	5227	5993
3201	4482	5066
659	1701	6062
4720	5070	6264
2408	4415	6264
2259	5124	7054
5558	5810	5863
3205	4959	6353
1305	3467	6132
639	4348	5894
567	3050	4065
1082	2497	4129
2006	5420	5247
1358	1600	3883
1060	1136	2716
1620	2407	6841
1899	6146	6386
1492	1792	4762
606	1648	4064
679	2534	7084
4403	6195	6601
3704	4840	5560
612	2406	2755
523	5545	6783
2296	3774	6996
1413	4713	7033
2386	3119	5283
3291	4930	6981
付表 9 符号化率7/8の符号テーブル

<table>
<thead>
<tr>
<th>93</th>
<th>986</th>
<th>2504</th>
<th>2631</th>
<th>2810</th>
<th>2877</th>
<th>3763</th>
<th>4354</th>
<th>4824</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>385</td>
<td>1193</td>
<td>1434</td>
<td>3481</td>
<td>3979</td>
<td>4379</td>
<td>4436</td>
<td>4587</td>
</tr>
<tr>
<td>160</td>
<td>350</td>
<td>911</td>
<td>964</td>
<td>1180</td>
<td>1428</td>
<td>2212</td>
<td>3465</td>
<td>4738</td>
</tr>
<tr>
<td>130</td>
<td>389</td>
<td>620</td>
<td>865</td>
<td>1966</td>
<td>1999</td>
<td>2315</td>
<td>3714</td>
<td>4392</td>
</tr>
<tr>
<td>139</td>
<td>2226</td>
<td>2900</td>
<td>2932</td>
<td>3167</td>
<td>3550</td>
<td>4630</td>
<td>5155</td>
<td>5271</td>
</tr>
<tr>
<td>163</td>
<td>519</td>
<td>902</td>
<td>1789</td>
<td>2809</td>
<td>3731</td>
<td>3759</td>
<td>5270</td>
<td>5287</td>
</tr>
<tr>
<td>390</td>
<td>2117</td>
<td>2436</td>
<td>2877</td>
<td>3378</td>
<td>3731</td>
<td>4882</td>
<td>5205</td>
<td>5463</td>
</tr>
<tr>
<td>2131</td>
<td>3304</td>
<td>3681</td>
<td>4382</td>
<td>4462</td>
<td>4594</td>
<td>4808</td>
<td>4929</td>
<td>4985</td>
</tr>
<tr>
<td>592</td>
<td>676</td>
<td>3162</td>
<td>3391</td>
<td>3817</td>
<td>4392</td>
<td>4847</td>
<td>5492</td>
<td>5513</td>
</tr>
<tr>
<td>640</td>
<td>1392</td>
<td>1583</td>
<td>1742</td>
<td>2649</td>
<td>3827</td>
<td>3918</td>
<td>4029</td>
<td>4319</td>
</tr>
<tr>
<td>479</td>
<td>669</td>
<td>1097</td>
<td>1380</td>
<td>2222</td>
<td>2538</td>
<td>2809</td>
<td>3727</td>
<td>3750</td>
</tr>
<tr>
<td>1214</td>
<td>1592</td>
<td>2559</td>
<td>3574</td>
<td>3966</td>
<td>4108</td>
<td>4284</td>
<td>4646</td>
<td>4930</td>
</tr>
<tr>
<td>205</td>
<td>641</td>
<td>1947</td>
<td>2048</td>
<td>2066</td>
<td>2589</td>
<td>3277</td>
<td>3999</td>
<td>4869</td>
</tr>
<tr>
<td>424</td>
<td>662</td>
<td>1243</td>
<td>1414</td>
<td>1873</td>
<td>1943</td>
<td>2212</td>
<td>3271</td>
<td>3493</td>
</tr>
<tr>
<td>993</td>
<td>1122</td>
<td>1453</td>
<td>2626</td>
<td>3469</td>
<td>3568</td>
<td>3981</td>
<td>4930</td>
<td>5392</td>
</tr>
<tr>
<td>892</td>
<td>928</td>
<td>3979</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>2273</td>
<td>4406</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1890</td>
<td>2999</td>
<td>3206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2411</td>
<td>4980</td>
<td>5104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>712</td>
<td>3958</td>
<td>4361</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>497</td>
<td>1159</td>
<td>3611</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3145</td>
<td>4022</td>
<td>4896</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1120</td>
<td>2568</td>
<td>3522</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>888</td>
<td>980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>934</td>
<td>1275</td>
<td>2660</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2797</td>
<td>3622</td>
<td>5588</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2797</td>
<td>4621</td>
<td>5312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4070</td>
<td>4922</td>
<td>5171</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851</td>
<td>2474</td>
<td>3190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>2355</td>
<td>2527</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3254</td>
<td>3519</td>
<td>5061</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>1948</td>
<td>4085</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>405</td>
<td>1895</td>
<td>5547</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4288</td>
<td>4338</td>
<td>5337</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1695</td>
<td>4773</td>
<td>5356</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>810</td>
<td>2881</td>
<td>5523</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1077</td>
<td>2731</td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>796</td>
<td>3631</td>
<td>5170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1028</td>
<td>1679</td>
<td>3049</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1138</td>
<td>3176</td>
<td>3866</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2928</td>
<td>3499</td>
<td>4448</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1079</td>
<td>1322</td>
<td>4875</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1651</td>
<td>2305</td>
<td>3871</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3223</td>
<td>3792</td>
<td>5541</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>833</td>
<td>2418</td>
<td>5504</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918</td>
<td>3292</td>
<td>5534</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2953</td>
<td>4430</td>
<td>5553</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1487</td>
<td>4715</td>
<td>4964</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2396</td>
<td>2686</td>
<td>3438</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4201</td>
<td>4519</td>
<td>5427</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>1193</td>
<td>3181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>848</td>
<td>987</td>
<td>2822</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1136</td>
<td>2399</td>
<td>4467</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2909</td>
<td>3650</td>
<td>4553</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>1325</td>
<td>5190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3046</td>
<td>5252</td>
<td>5403</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4120</td>
<td>4290</td>
<td>4687</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>3304</td>
<td>5605</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
付表 9 符号化率7/8の符号テーブル（つづき）

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>4685</td>
<td>5478</td>
</tr>
<tr>
<td>2910</td>
<td>3667</td>
<td>4453</td>
</tr>
<tr>
<td>2471</td>
<td>2565</td>
<td>4228</td>
</tr>
<tr>
<td>1694</td>
<td>4247</td>
<td>4900</td>
</tr>
<tr>
<td>2116</td>
<td>4092</td>
<td>4412</td>
</tr>
<tr>
<td>3003</td>
<td>4733</td>
<td>5351</td>
</tr>
<tr>
<td>1377</td>
<td>1432</td>
<td>5404</td>
</tr>
<tr>
<td>1024</td>
<td>3100</td>
<td>3224</td>
</tr>
<tr>
<td>681</td>
<td>2154</td>
<td>5526</td>
</tr>
<tr>
<td>1844</td>
<td>1985</td>
<td>4974</td>
</tr>
<tr>
<td>330</td>
<td>2520</td>
<td>3746</td>
</tr>
<tr>
<td>2573</td>
<td>3454</td>
<td>5496</td>
</tr>
<tr>
<td>2088</td>
<td>4939</td>
<td>5384</td>
</tr>
<tr>
<td>1072</td>
<td>3111</td>
<td>3171</td>
</tr>
<tr>
<td>3672</td>
<td>3858</td>
<td>5543</td>
</tr>
<tr>
<td>2211</td>
<td>5080</td>
<td>5325</td>
</tr>
<tr>
<td>673</td>
<td>1822</td>
<td>2238</td>
</tr>
<tr>
<td>2003</td>
<td>2825</td>
<td>4007</td>
</tr>
<tr>
<td>2880</td>
<td>3302</td>
<td>4719</td>
</tr>
<tr>
<td>2080</td>
<td>2877</td>
<td>5362</td>
</tr>
<tr>
<td>402</td>
<td>756</td>
<td>2132</td>
</tr>
<tr>
<td>2318</td>
<td>2523</td>
<td>5597</td>
</tr>
<tr>
<td>241</td>
<td>1344</td>
<td>5488</td>
</tr>
<tr>
<td>3164</td>
<td>3215</td>
<td>5465</td>
</tr>
<tr>
<td>24</td>
<td>1943</td>
<td>2458</td>
</tr>
<tr>
<td>1704</td>
<td>5151</td>
<td>5608</td>
</tr>
<tr>
<td>1071</td>
<td>2514</td>
<td>3944</td>
</tr>
<tr>
<td>645</td>
<td>2392</td>
<td>3526</td>
</tr>
<tr>
<td>1484</td>
<td>1586</td>
<td>5052</td>
</tr>
<tr>
<td>3551</td>
<td>4029</td>
<td>5016</td>
</tr>
<tr>
<td>891</td>
<td>2493</td>
<td>5049</td>
</tr>
<tr>
<td>1686</td>
<td>3183</td>
<td>5438</td>
</tr>
<tr>
<td>3366</td>
<td>3538</td>
<td>3698</td>
</tr>
<tr>
<td>2033</td>
<td>3490</td>
<td>3792</td>
</tr>
<tr>
<td>1366</td>
<td>5137</td>
<td>5476</td>
</tr>
<tr>
<td>635</td>
<td>2040</td>
<td>5395</td>
</tr>
<tr>
<td>1678</td>
<td>1694</td>
<td>4675</td>
</tr>
<tr>
<td>268</td>
<td>849</td>
<td>1655</td>
</tr>
<tr>
<td>1400</td>
<td>2723</td>
<td>5093</td>
</tr>
<tr>
<td>363</td>
<td>1781</td>
<td>5053</td>
</tr>
<tr>
<td>1925</td>
<td>2804</td>
<td>2956</td>
</tr>
<tr>
<td>505</td>
<td>1267</td>
<td>2720</td>
</tr>
<tr>
<td>1880</td>
<td>2601</td>
<td>4547</td>
</tr>
<tr>
<td>2258</td>
<td>3386</td>
<td>5337</td>
</tr>
<tr>
<td>2094</td>
<td>5123</td>
<td>5159</td>
</tr>
<tr>
<td>1881</td>
<td>2988</td>
<td>3881</td>
</tr>
<tr>
<td>201</td>
<td>690</td>
<td>1016</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>583</td>
<td>103</td>
<td>302</td>
</tr>
<tr>
<td>880</td>
<td>1335</td>
<td>2704</td>
</tr>
<tr>
<td>544</td>
<td>556</td>
<td>2092</td>
</tr>
<tr>
<td>1504</td>
<td>1660</td>
<td>2152</td>
</tr>
<tr>
<td>1336</td>
<td>3700</td>
<td>3891</td>
</tr>
<tr>
<td>1564</td>
<td>2320</td>
<td>4024</td>
</tr>
<tr>
<td>1168</td>
<td>2644</td>
<td>4060</td>
</tr>
<tr>
<td>1958</td>
<td>2056</td>
<td>3712</td>
</tr>
<tr>
<td>938</td>
<td>2992</td>
<td>3004</td>
</tr>
<tr>
<td>3100</td>
<td>3459</td>
<td>4047</td>
</tr>
<tr>
<td>1045</td>
<td>1576</td>
<td>3050</td>
</tr>
<tr>
<td>278</td>
<td>1826</td>
<td>2235</td>
</tr>
<tr>
<td>1000</td>
<td>1984</td>
<td>3255</td>
</tr>
<tr>
<td>1178</td>
<td>3662</td>
<td>3724</td>
</tr>
<tr>
<td>172</td>
<td>2907</td>
<td>3532</td>
</tr>
<tr>
<td>160</td>
<td>2380</td>
<td>3064</td>
</tr>
<tr>
<td>628</td>
<td>1116</td>
<td>1790</td>
</tr>
<tr>
<td>579</td>
<td>2212</td>
<td>3328</td>
</tr>
<tr>
<td>302</td>
<td>435</td>
<td>1264</td>
</tr>
<tr>
<td>1479</td>
<td>1792</td>
<td>3796</td>
</tr>
<tr>
<td>1300</td>
<td>3591</td>
<td>3901</td>
</tr>
<tr>
<td>820</td>
<td>1143</td>
<td>3856</td>
</tr>
<tr>
<td>724</td>
<td>1093</td>
<td>2968</td>
</tr>
<tr>
<td>1106</td>
<td>3099</td>
<td>3604</td>
</tr>
<tr>
<td>255</td>
<td>2164</td>
<td>2656</td>
</tr>
<tr>
<td>951</td>
<td>1684</td>
<td>3472</td>
</tr>
<tr>
<td>592</td>
<td>2027</td>
<td>2308</td>
</tr>
<tr>
<td>2473</td>
<td>2487</td>
<td>3887</td>
</tr>
<tr>
<td>1024</td>
<td>1288</td>
<td>2269</td>
</tr>
<tr>
<td>736</td>
<td>1851</td>
<td>3172</td>
</tr>
<tr>
<td>1166</td>
<td>2436</td>
<td>2547</td>
</tr>
<tr>
<td>374</td>
<td>1312</td>
<td>2848</td>
</tr>
<tr>
<td>854</td>
<td>1924</td>
<td>3304</td>
</tr>
<tr>
<td>456</td>
<td>1108</td>
<td>1372</td>
</tr>
<tr>
<td>950</td>
<td>2091</td>
<td>2799</td>
</tr>
<tr>
<td>915</td>
<td>1708</td>
<td>1970</td>
</tr>
<tr>
<td>304</td>
<td>1059</td>
<td>3804</td>
</tr>
<tr>
<td>292</td>
<td>2030</td>
<td>2620</td>
</tr>
<tr>
<td>841</td>
<td>1240</td>
<td>1827</td>
</tr>
<tr>
<td>1492</td>
<td>2376</td>
<td>3160</td>
</tr>
<tr>
<td>546</td>
<td>976</td>
<td>1813</td>
</tr>
<tr>
<td>2127</td>
<td>2786</td>
<td>3972</td>
</tr>
<tr>
<td>604</td>
<td>2871</td>
<td>3652</td>
</tr>
<tr>
<td>471</td>
<td>2822</td>
<td>3040</td>
</tr>
<tr>
<td>290</td>
<td>640</td>
<td>3544</td>
</tr>
<tr>
<td>2282</td>
<td>2824</td>
<td>3784</td>
</tr>
<tr>
<td>1204</td>
<td>3500</td>
<td>4055</td>
</tr>
<tr>
<td>699</td>
<td>1743</td>
<td>3364</td>
</tr>
<tr>
<td>527</td>
<td>1599</td>
<td>2978</td>
</tr>
<tr>
<td>1250</td>
<td>3748</td>
<td>4074</td>
</tr>
<tr>
<td>316</td>
<td>373</td>
<td>2692</td>
</tr>
<tr>
<td>3220</td>
<td>3324</td>
<td>3490</td>
</tr>
<tr>
<td>925</td>
<td>3431</td>
<td>3736</td>
</tr>
<tr>
<td>1934</td>
<td>2007</td>
<td>3904</td>
</tr>
<tr>
<td>734</td>
<td>1971</td>
<td>2584</td>
</tr>
<tr>
<td>2055</td>
<td>3279</td>
<td>3964</td>
</tr>
<tr>
<td>1551</td>
<td>1672</td>
<td>4108</td>
</tr>
<tr>
<td>1596</td>
<td>2488</td>
<td>2560</td>
</tr>
</tbody>
</table>
付表 10 符号化率9/10の符号テーブル（つづき）

<table>
<thead>
<tr>
<th>数値</th>
<th>数値</th>
<th>数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>1518</td>
<td>3614</td>
<td>3916</td>
</tr>
<tr>
<td>2607</td>
<td>3013</td>
<td>4012</td>
</tr>
<tr>
<td>663</td>
<td>2942</td>
<td>3940</td>
</tr>
<tr>
<td>1659</td>
<td>3267</td>
<td>3730</td>
</tr>
<tr>
<td>1740</td>
<td>2559</td>
<td>2752</td>
</tr>
<tr>
<td>496</td>
<td>1539</td>
<td>1800</td>
</tr>
<tr>
<td>2437</td>
<td>2798</td>
<td>4094</td>
</tr>
<tr>
<td>817</td>
<td>1420</td>
<td>3649</td>
</tr>
<tr>
<td>1480</td>
<td>1863</td>
<td>2200</td>
</tr>
<tr>
<td>2031</td>
<td>2187</td>
<td>2884</td>
</tr>
<tr>
<td>274</td>
<td>2716</td>
<td>3049</td>
</tr>
<tr>
<td>1491</td>
<td>2960</td>
<td>3232</td>
</tr>
<tr>
<td>1899</td>
<td>2523</td>
<td>3316</td>
</tr>
<tr>
<td>844</td>
<td>1655</td>
<td>2428</td>
</tr>
<tr>
<td>2339</td>
<td>2474</td>
<td>3919</td>
</tr>
<tr>
<td>388</td>
<td>2869</td>
<td>3952</td>
</tr>
<tr>
<td>999</td>
<td>2139</td>
<td>3508</td>
</tr>
<tr>
<td>1180</td>
<td>2115</td>
<td>2668</td>
</tr>
<tr>
<td>2379</td>
<td>3520</td>
<td>3589</td>
</tr>
<tr>
<td>564</td>
<td>2728</td>
<td>3903</td>
</tr>
<tr>
<td>616</td>
<td>1153</td>
<td>3196</td>
</tr>
<tr>
<td>697</td>
<td>759</td>
<td>3388</td>
</tr>
<tr>
<td>975</td>
<td>1864</td>
<td>3347</td>
</tr>
<tr>
<td>711</td>
<td>1418</td>
<td>2307</td>
</tr>
<tr>
<td>405</td>
<td>827</td>
<td>1712</td>
</tr>
<tr>
<td>1466</td>
<td>3107</td>
<td>3396</td>
</tr>
<tr>
<td>2691</td>
<td>3480</td>
<td>3992</td>
</tr>
<tr>
<td>952</td>
<td>2173</td>
<td>2605</td>
</tr>
<tr>
<td>519</td>
<td>543</td>
<td>1744</td>
</tr>
<tr>
<td>1146</td>
<td>1931</td>
<td>2812</td>
</tr>
<tr>
<td>1702</td>
<td>2919</td>
<td>3411</td>
</tr>
<tr>
<td>687</td>
<td>1593</td>
<td>1634</td>
</tr>
<tr>
<td>3384</td>
<td>3460</td>
<td>3528</td>
</tr>
<tr>
<td>856</td>
<td>2232</td>
<td>3170</td>
</tr>
<tr>
<td>195</td>
<td>411</td>
<td>1443</td>
</tr>
<tr>
<td>2522</td>
<td>3190</td>
<td>3988</td>
</tr>
<tr>
<td>1406</td>
<td>2377</td>
<td>2464</td>
</tr>
<tr>
<td>387</td>
<td>3202</td>
<td>3976</td>
</tr>
<tr>
<td>1320</td>
<td>2248</td>
<td>2795</td>
</tr>
<tr>
<td>243</td>
<td>2087</td>
<td>2367</td>
</tr>
<tr>
<td>448</td>
<td>1227</td>
<td>3698</td>
</tr>
<tr>
<td>1478</td>
<td>2999</td>
<td>3208</td>
</tr>
<tr>
<td>2546</td>
<td>2619</td>
<td>2632</td>
</tr>
<tr>
<td>196</td>
<td>1107</td>
<td>2272</td>
</tr>
<tr>
<td>2943</td>
<td>3178</td>
<td>3855</td>
</tr>
<tr>
<td>1252</td>
<td>1742</td>
<td>3551</td>
</tr>
<tr>
<td>364</td>
<td>591</td>
<td>3076</td>
</tr>
<tr>
<td>807</td>
<td>1404</td>
<td>1900</td>
</tr>
<tr>
<td>1192</td>
<td>3239</td>
<td>3579</td>
</tr>
<tr>
<td>890</td>
<td>2068</td>
<td>3650</td>
</tr>
<tr>
<td>793</td>
<td>1850</td>
<td>4048</td>
</tr>
</tbody>
</table>
3. 回線設計例

カバレッジエリア中部、カバレッジエリア端、外国との国境近傍という観点からの代表的な受信地点として、東京、那覇、対馬についての回線設計をおこなった。表1に回線計算のための前提条件を示す。表2に受信点の降雨減衰量を示す。表3に受信アンテナ開口径ごとの最悪月サービス時間率を示す。表4〜表12に回線設計の計算例を示す。

<table>
<thead>
<tr>
<th>項目</th>
<th>計算条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>伝送シンボルレート</td>
<td>32.5941 Mbaud</td>
</tr>
<tr>
<td>アップリンク C/N</td>
<td>24 dB注1)</td>
</tr>
<tr>
<td>計算周波数</td>
<td>12 GHz</td>
</tr>
<tr>
<td>出力バックオフ(OBO)注2)</td>
<td>0.9dB (8PSK 3/4)</td>
</tr>
<tr>
<td></td>
<td>1.7dB (16APSK 3/4)</td>
</tr>
<tr>
<td></td>
<td>2.9dB (32APSK 4/5)</td>
</tr>
<tr>
<td>衛星EIRP</td>
<td>60 dBW(東京)、57 dBW(那覇、対馬)（飽和出力時）</td>
</tr>
<tr>
<td>衛星回線伝搬路</td>
<td>東京:37931.3 Km(アンテナ仰角38.1度)、</td>
</tr>
<tr>
<td></td>
<td>那覇:36859.3 Km(アンテナ仰角53.6度)、</td>
</tr>
<tr>
<td></td>
<td>対馬:37427.9 Km(アンテナ仰角44.8度)</td>
</tr>
<tr>
<td>降雨減衰</td>
<td>ITU-R P.618-8計算式による</td>
</tr>
<tr>
<td>受信アンテナ開口径</td>
<td>45cmφ、60cmφ、75cmφ、120cmφ</td>
</tr>
<tr>
<td>受信アンテナ開口効率</td>
<td>70%</td>
</tr>
<tr>
<td>アンテナ雑音温度</td>
<td>晴天時のアンテナ雑音温度を50Kとし、下記算出式を用いた注3)</td>
</tr>
<tr>
<td>LNC雑音指数</td>
<td>1 dB</td>
</tr>
<tr>
<td>ナイキスト帯域幅</td>
<td>32.5941 MHz</td>
</tr>
<tr>
<td>占有帯域幅(99%電力)</td>
<td>34.5 MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>外国衛星からの干渉(C/I)</th>
<th>アンテナ径</th>
<th>45cm</th>
<th>60cm</th>
<th>75cm</th>
<th>120cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC8PSK 2/3(参考)注4)</td>
<td>東京</td>
<td>51.1 dB</td>
<td>53.6 dB</td>
<td>55.5 dB</td>
<td>59.8 dB</td>
</tr>
<tr>
<td></td>
<td>那覇</td>
<td>49.8 dB</td>
<td>52.3 dB</td>
<td>54.2 dB</td>
<td>58.2 dB</td>
</tr>
<tr>
<td></td>
<td>対馬</td>
<td>29.0 dB</td>
<td>31.5 dB</td>
<td>33.4 dB</td>
<td>37.3 dB</td>
</tr>
<tr>
<td>所要C/N</td>
<td>10.7 dB注5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8PSK 3/4</td>
<td>8.7 dB(OBO含まず)注6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16APSK 3/4</td>
<td>11.6 dB(OBO含まず)注6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32APSK 4/5</td>
<td>16.2 dB(OBO含まず)注6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
注)
1. アップリンクのC/Nについては、降雨減衰を想定した場合の値として24dBとした。

平成2年度電通技審答申 諮問44号より引用。

2. OBOの定義は、図1に示すように、OMUX出力における無変調信号の飽和点出力に対する、変調信号の動作点出力の差分値とした。

図1 出力バックオフの定義

3. 平成2年度電通技審答申 諮問44号より引用。

4. 隣接チャンネル干渉としては、韓国衛星からの干渉を考慮した。

韓国衛星からの干渉(C/I)=(日本衛星のe.i.r.p.)-(韓国衛星の干渉e.i.r.p.)
+(交差偏波識別度)+(周波数重複量)

計算には以下の条件を用いた。
(1) 評価地点 東京（東経139.7度、北緯35.7度）

那覇（東経127.7度、北緯26.2度）

対馬（東経129.3度、北緯34.7度）

(2) 韓国衛星 東経116度（e.i.r.p.63.7dBW）、帯域幅27MHz

(3) 日本の衛星 東経110度、帯域幅34.5MHz

東京方向のe.i.r.p.60dBW

那覇方向のe.i.r.p.57dBW

対馬方向のe.i.r.p.57dBW

(4) 韓国衛星の干渉e.i.r.p.は韓国プラグビームを仮定。

東京から見た110度と116度衛星間隔6.68度、干渉e.i.r.p.43.5dBW

那覇から見た110度と116度衛星間隔6.88度、干渉e.i.r.p.42.2dBW

対馬から見た110度と116度衛星間隔6.77度、干渉e.i.r.p.62.8dBW
(5) 交差偏波識別度 (勧告 ITU-R BO.1213)
東京（離角 6.68 度） 45cm 受信: 32.6 dB、 60cm 受信: 35.3 dB
那覇（離角 6.88 度） 60cm 受信: 35.4 dB、 90cm 受信: 39 dB
対馬（離角 6.77 度） 60cm 受信: 35.3 dB、 90cm 受信: 38.8 dB

(6) 周波数重複量 1.7dB (=10*log(34.5/23.14)
・放送衛星プランのチャンネル間隔 38.36MHz
・日本衛星のチャンネル帯域幅 34.5MHz
・韓国衛星のチャンネル帯域幅 27MHz

図2 チャンネル配置

5. 平成9年度 電気通信技術答申 諮問74号から引用。現行方式 (ISDB-S、TC8PSK 2/3) の所要 C/Nは、搬送波のときの中継器飽和点出力電力と変調波にしたときの出力電力の差（本検討ではこれをOBOとしている）を含む値として10.7dBを用いた。
6. 所要 C/N(LNC、受信機、干渉を考慮)、衛星中継器OBO値は衛星伝送実験結果の値を用いた。

表2 受信点の降雨減衰量

<table>
<thead>
<tr>
<th>受信点</th>
<th>最悪月サービス時間率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>99.5 %</td>
</tr>
<tr>
<td>東京</td>
<td>2.4 dB</td>
</tr>
<tr>
<td>那覇</td>
<td>3.1 dB</td>
</tr>
<tr>
<td>対馬</td>
<td>2.2 dB</td>
</tr>
</tbody>
</table>
表 3 受信アンテナ開口径と最悪月サービス時間率との関係

<table>
<thead>
<tr>
<th>受信点</th>
<th>EIRP</th>
<th>伝送方式 (OBO)</th>
<th>アップリンク C/N [dB]</th>
<th>アンテナ開口径 45cm</th>
<th>アンテナ開口径 60cm</th>
<th>アンテナ開口径 75cm</th>
<th>アンテナ開口径 120cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>東京</td>
<td>60dBW</td>
<td>TC8PSK(2/3)(0dB)(参考)</td>
<td>24 99.85 %</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8PSK(3/4)(0.9dB)</td>
<td>24 99.88 % 99.93 % 99.95 % 99.98 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16APSK(3/4)(1.7dB)</td>
<td>24 99.66 % 99.81 % 99.89 % 99.96 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32APSK(4/5)(2.9dB)</td>
<td>24 受信不能 97.67 % 99.14 % 99.79 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>那覇</td>
<td>57dBW</td>
<td>TC8PSK(2/3)(0dB)(参考)</td>
<td>24 99.45 % 99.71 %</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8PSK(3/4)(0.9dB)</td>
<td>24 99.58 % 99.79 % 99.87 % 99.94 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16APSK(3/4)(1.7dB)</td>
<td>24 98.28 % 99.36 % 99.65 % 99.82 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32APSK(4/5)(2.9dB)</td>
<td>24 受信不能 受信不能 94.73 % 99.28 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>対馬</td>
<td>57dBW</td>
<td>TC8PSK(2/3)(0dB)(参考)</td>
<td>24 99.69 %</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8PSK(3/4)(0.9dB)</td>
<td>24 99.78 % 99.88 % 99.93 % 99.97 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16APSK(3/4)(1.7dB)</td>
<td>24 98.77 % 99.60 % 99.79 % 99.93 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32APSK(4/5)(2.9dB)</td>
<td>24 受信不能 受信不能 95.55 % 99.53 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表中の灰色の部分は、最悪月サービス時間率が 99.5%以上(勧告 ITU-R BO.1696)であることを示す。
表4 回線設計(8PSK(3/4) 受信点:東京 受信アンテナ径:45cm)

<table>
<thead>
<tr>
<th>項目</th>
<th>單位</th>
<th>晴天時</th>
<th>降雨時</th>
</tr>
</thead>
<tbody>
<tr>
<td>アップリンク C/Nu</td>
<td>dB</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>衛星EIRP Pe</td>
<td>dBW</td>
<td>60.0</td>
<td>60.0</td>
</tr>
<tr>
<td>出力バックオフ Bo</td>
<td>dB</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>自由空間損失 Lf</td>
<td>dB</td>
<td>205.6</td>
<td>205.6</td>
</tr>
<tr>
<td>大気吸収減衰の合計</td>
<td>dB</td>
<td>0.3</td>
<td>6.0</td>
</tr>
<tr>
<td>大気減衰</td>
<td>dB</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>雨減衰 Lr</td>
<td>dB</td>
<td>0.0</td>
<td>5.8</td>
</tr>
<tr>
<td>雲による減衰 Lc</td>
<td>dB</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>シンチレーション</td>
<td>dB</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>受信アンテナ口径 D</td>
<td>cm</td>
<td>45.0</td>
<td>45.0</td>
</tr>
<tr>
<td>受信アンテナ開口効率 η</td>
<td>%</td>
<td>70.0</td>
<td>70.0</td>
</tr>
<tr>
<td>受信アンテナ利得 Gr</td>
<td>dBi</td>
<td>33.5</td>
<td>33.5</td>
</tr>
<tr>
<td>ポインティング損失</td>
<td>dB</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>受信機入力 C p.f.d.</td>
<td>dB</td>
<td>-113.6</td>
<td>-119.3</td>
</tr>
<tr>
<td>ボルツマン定数 K</td>
<td>dB/Hz</td>
<td>-228.6</td>
<td>-228.6</td>
</tr>
<tr>
<td>アンテナ雑音温度</td>
<td>K</td>
<td>50.0</td>
<td>263.1</td>
</tr>
<tr>
<td>LNC雑音指数 NF</td>
<td>dB</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>LNC雑音指数 NF'</td>
<td>K</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>受信機雑音温度 T</td>
<td>K</td>
<td>125.1</td>
<td>338.2</td>
</tr>
<tr>
<td>受信機雑音温度 T'</td>
<td>dBK</td>
<td>21.0</td>
<td>25.3</td>
</tr>
<tr>
<td>性能指数 G/T</td>
<td>dB/K</td>
<td>12.5</td>
<td>8.2</td>
</tr>
<tr>
<td>受信帯域幅 B</td>
<td>MHz</td>
<td>32.5941</td>
<td>32.5941</td>
</tr>
<tr>
<td>受信帯域幅 B'</td>
<td>dB·Hz</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>雑音入力 N</td>
<td>dBW</td>
<td>-132.5</td>
<td>-128.2</td>
</tr>
<tr>
<td>ダウンリンク C/Nd</td>
<td>dB</td>
<td>18.9</td>
<td>8.8</td>
</tr>
<tr>
<td>C/(Nu+Nd)</td>
<td>dB</td>
<td>17.7</td>
<td>8.7</td>
</tr>
<tr>
<td>隣接チャンネル干渉</td>
<td>dB</td>
<td>51.1</td>
<td>51.1</td>
</tr>
<tr>
<td>総合 C/(N+1)</td>
<td>dB</td>
<td>17.7</td>
<td>8.7</td>
</tr>
<tr>
<td>所要 C/N(8PSK 3/4)</td>
<td>dB</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>システムマージン</td>
<td>dB</td>
<td>9.0</td>
<td>0.0</td>
</tr>
<tr>
<td>年間サービス時間率</td>
<td>%</td>
<td>-</td>
<td>99.97</td>
</tr>
<tr>
<td>最悪月サービス時間率</td>
<td>%</td>
<td>-</td>
<td>99.88</td>
</tr>
</tbody>
</table>
表 5 回線設計（8PSK(3/4) 受信点：那覇 受信アンテナ径：45cm）

<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>晴天時</th>
<th>降雨時</th>
</tr>
</thead>
<tbody>
<tr>
<td>アップリンク C/Nu</td>
<td>dB</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>衛星EIRP Pe</td>
<td>dBW</td>
<td>57.0</td>
<td>57.0</td>
</tr>
<tr>
<td>バックオフ Bo</td>
<td>dB</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>自由空間損失 Lf</td>
<td>dB</td>
<td>205.4</td>
<td>205.4</td>
</tr>
<tr>
<td>大気吸収減衰の合計</td>
<td>dB</td>
<td>0.2</td>
<td>4.0</td>
</tr>
<tr>
<td>大気減衰</td>
<td>dB</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>降雨減衰 Lr</td>
<td>dB</td>
<td>0.0</td>
<td>3.5</td>
</tr>
<tr>
<td>雲による減衰 Lc</td>
<td>dB</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>シンチレーション</td>
<td>dB</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>受信アンテナ口径 D</td>
<td>cm</td>
<td>45.0</td>
<td>45.0</td>
</tr>
<tr>
<td>受信アンテナ開口効率 η</td>
<td>%</td>
<td>70.0</td>
<td>70.0</td>
</tr>
<tr>
<td>受信アンテナ利得 Gr</td>
<td>dBi</td>
<td>33.5</td>
<td>33.5</td>
</tr>
<tr>
<td>ポインティング損失</td>
<td>dB</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>受信機入力 C</td>
<td>dB</td>
<td>-116.3</td>
<td>-120.1</td>
</tr>
<tr>
<td>p.f.d.</td>
<td>dBW/m²</td>
<td>-105.3</td>
<td>-105.3</td>
</tr>
<tr>
<td>ボルツマン定数 K</td>
<td>dB/Hz</td>
<td>-228.6</td>
<td>-228.6</td>
</tr>
<tr>
<td>アンテナ雑音温度 K</td>
<td>K</td>
<td>50.0</td>
<td>209.9</td>
</tr>
<tr>
<td>LNC雑音指数 NF</td>
<td>dB</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>LNC雑音指数 NF’</td>
<td>K</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>受信機雑音温度 T</td>
<td>K</td>
<td>125.1</td>
<td>284.9</td>
</tr>
<tr>
<td>受信機雑音温度 T’</td>
<td>dBK</td>
<td>21.0</td>
<td>24.5</td>
</tr>
<tr>
<td>性能指数 G/T</td>
<td>dB/K</td>
<td>12.5</td>
<td>9.0</td>
</tr>
<tr>
<td>受信帯域幅 B</td>
<td>MHz</td>
<td>32.5941</td>
<td>32.5941</td>
</tr>
<tr>
<td>受信帯域幅 B’</td>
<td>dB・Hz</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>雑音入力 N</td>
<td>dBW</td>
<td>-132.5</td>
<td>-128.9</td>
</tr>
<tr>
<td>ダウンリンク C/Nd</td>
<td>dB</td>
<td>16.2</td>
<td>8.8</td>
</tr>
<tr>
<td>C/(Nu+Nd)</td>
<td>dB</td>
<td>15.5</td>
<td>8.7</td>
</tr>
<tr>
<td>隣接チャンネル干渉</td>
<td>dB</td>
<td>49.8</td>
<td>49.8</td>
</tr>
<tr>
<td>総合 C/(N+I)</td>
<td>dB</td>
<td>15.5</td>
<td>8.7</td>
</tr>
<tr>
<td>所要 C/N(8PSK 3/4)</td>
<td>dB</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>システムマージン</td>
<td>dB</td>
<td>6.8</td>
<td>0.0</td>
</tr>
<tr>
<td>年間サービス時間率 %</td>
<td></td>
<td></td>
<td>99.89</td>
</tr>
<tr>
<td>最悪月サービス時間率 %</td>
<td></td>
<td></td>
<td>99.58</td>
</tr>
</tbody>
</table>
表6 回線設計（8PSK(3/4) 受信点：対馬 受信アンテナ径：45cm）

<table>
<thead>
<tr>
<th>項目</th>
<th>單位</th>
<th>晴天時</th>
<th>降雨時</th>
</tr>
</thead>
<tbody>
<tr>
<td>アップリンク C/Nu</td>
<td>dB</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>衛星EIRP Pe</td>
<td>dBW</td>
<td>57.0</td>
<td>57.0</td>
</tr>
<tr>
<td>バックオフ Bo</td>
<td>dB</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>自由空間損失 Lf</td>
<td>dB</td>
<td>205.5</td>
<td>205.5</td>
</tr>
<tr>
<td>大気吸収減衰の合計</td>
<td>dB</td>
<td>0.2</td>
<td>3.8</td>
</tr>
<tr>
<td>大気減衰</td>
<td>dB</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>降雨減衰 Lr</td>
<td>dB</td>
<td>0.0</td>
<td>3.6</td>
</tr>
<tr>
<td>雲による減衰 Lc</td>
<td>dB</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>シンチレーション</td>
<td>dB</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>受信アンテナ口径 D</td>
<td>cm</td>
<td>60.0</td>
<td>45.0</td>
</tr>
<tr>
<td>受信アンテナ開口効率 η</td>
<td>%</td>
<td>70.0</td>
<td>70.0</td>
</tr>
<tr>
<td>受信アンテナ利得 Gr</td>
<td>dBi</td>
<td>36.0</td>
<td>33.5</td>
</tr>
<tr>
<td>ポインティング損失</td>
<td>dB</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>受信機入力 C</td>
<td>dB</td>
<td>-113.9</td>
<td>-120.0</td>
</tr>
<tr>
<td>p.f.d.</td>
<td>dBW/m2</td>
<td>-105.5</td>
<td>-105.5</td>
</tr>
<tr>
<td>ボルツマン定数 K</td>
<td>dB/Hz</td>
<td>-228.6</td>
<td>-228.6</td>
</tr>
<tr>
<td>アンテナ雑音温度</td>
<td>K</td>
<td>50.0</td>
<td>214.4</td>
</tr>
<tr>
<td>LNC雑音指数 NF</td>
<td>dB</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>LNC雑音指数 NF'</td>
<td>K</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>受信機雑音温度 T</td>
<td>K</td>
<td>125.1</td>
<td>289.5</td>
</tr>
<tr>
<td>受信機雑音温度 T'</td>
<td>dBK</td>
<td>21.0</td>
<td>24.6</td>
</tr>
<tr>
<td>性能指数 G/T</td>
<td>dB/K</td>
<td>15.0</td>
<td>8.9</td>
</tr>
<tr>
<td>受信帯域幅 B</td>
<td>MHz</td>
<td>32.5941</td>
<td>32.5941</td>
</tr>
<tr>
<td>受信帯域幅 B'</td>
<td>dB・Hz</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>雑音入力 N</td>
<td>dBW</td>
<td>-132.5</td>
<td>-128.9</td>
</tr>
<tr>
<td>ダウンリンク C/Nd</td>
<td>dB</td>
<td>18.6</td>
<td>8.8</td>
</tr>
<tr>
<td>C/(Nu+Nd)</td>
<td>dB</td>
<td>17.5</td>
<td>8.7</td>
</tr>
<tr>
<td>隣接チャンネル干渉</td>
<td>dB</td>
<td>29.0</td>
<td>29.0</td>
</tr>
<tr>
<td>総合 C/(N+1)</td>
<td>dB</td>
<td>17.5</td>
<td>8.7</td>
</tr>
<tr>
<td>所要 C/N(8PSK 3/4)</td>
<td>dB</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>システムマージン</td>
<td>dB</td>
<td>8.8</td>
<td>0.0</td>
</tr>
<tr>
<td>年間サービス時間率</td>
<td>%</td>
<td>-</td>
<td>99.95</td>
</tr>
<tr>
<td>最悪月サービス時間率</td>
<td>%</td>
<td>-</td>
<td>99.78</td>
</tr>
</tbody>
</table>
表7 回線設計（16APSK(3/4) 受信点: 東京 受信アンテナ径: 45cm）

<table>
<thead>
<tr>
<th>項目</th>
<th>單位</th>
<th>晴天時</th>
<th>降雨時</th>
</tr>
</thead>
<tbody>
<tr>
<td>アップリンク C/Nu</td>
<td>dB</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>衛星EIRP Pe</td>
<td>dBW</td>
<td>60.0</td>
<td>60.0</td>
</tr>
<tr>
<td>バックオフ Bo</td>
<td>dB</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>自由空間損失 Lf</td>
<td>dB</td>
<td>205.6</td>
<td>205.6</td>
</tr>
<tr>
<td>大気吸収減衰の合計</td>
<td>dB</td>
<td>0.3</td>
<td>3.3</td>
</tr>
<tr>
<td>大気減衰</td>
<td>dB</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>降雨減衰 Lr</td>
<td>dB</td>
<td>0.0</td>
<td>3.1</td>
</tr>
<tr>
<td>雲による減衰 Lc</td>
<td>dB</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>シンチレーション</td>
<td>dB</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>受信アンテナ口径 D</td>
<td>cm</td>
<td>45.0</td>
<td>45.0</td>
</tr>
<tr>
<td>受信アンテナ開口効率 η</td>
<td>%</td>
<td>70.0</td>
<td>70.0</td>
</tr>
<tr>
<td>受信アンテナ利得 Gr</td>
<td>dBi</td>
<td>33.5</td>
<td>33.5</td>
</tr>
<tr>
<td>ポインティング損失</td>
<td>dB</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>受信機入力 C</td>
<td>dB</td>
<td>-114.2</td>
<td>-117.3</td>
</tr>
<tr>
<td>p.f.d.</td>
<td>dBW/m2</td>
<td>-102.6</td>
<td>-102.6</td>
</tr>
<tr>
<td>ボルツマン定数 K</td>
<td>dB/Hz</td>
<td>-228.6</td>
<td>-228.6</td>
</tr>
<tr>
<td>アンテナ雑音温度</td>
<td>K</td>
<td>50.0</td>
<td>197.7</td>
</tr>
<tr>
<td>LNC雑音指数 NF</td>
<td>dB</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>LNC雑音指数 NF'</td>
<td>K</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>受信機雑音温度 T</td>
<td>K</td>
<td>125.1</td>
<td>272.8</td>
</tr>
<tr>
<td>受信機雑音温度 T'</td>
<td>dBK</td>
<td>21.0</td>
<td>24.4</td>
</tr>
<tr>
<td>性能指数 G/T</td>
<td>dB/K</td>
<td>12.5</td>
<td>9.1</td>
</tr>
<tr>
<td>受信帯域幅 B</td>
<td>MHz</td>
<td>32.5941</td>
<td>32.5941</td>
</tr>
<tr>
<td>受信帯域幅 B'</td>
<td>dB・Hz</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>雑音入力 N</td>
<td>dBW</td>
<td>-132.5</td>
<td>-129.1</td>
</tr>
<tr>
<td>ダウンリンク C/Nd</td>
<td>dB</td>
<td>18.3</td>
<td>11.9</td>
</tr>
<tr>
<td>C/(Nu+Nd)</td>
<td>dB</td>
<td>17.3</td>
<td>11.6</td>
</tr>
<tr>
<td>隣接チャンネル干渉</td>
<td>dB</td>
<td>51.1</td>
<td>51.1</td>
</tr>
<tr>
<td>総合 C/(N+I)</td>
<td>dB</td>
<td>17.3</td>
<td>11.6</td>
</tr>
<tr>
<td>所要 C/(16APSK 3/4)</td>
<td>dB</td>
<td>11.6</td>
<td>11.6</td>
</tr>
<tr>
<td>システムマージン</td>
<td>dB</td>
<td>5.7</td>
<td>0.0</td>
</tr>
<tr>
<td>年間サービス時間率</td>
<td>%</td>
<td>~</td>
<td>99.91</td>
</tr>
<tr>
<td>最悪月サービス時間率</td>
<td>%</td>
<td>~</td>
<td>99.66</td>
</tr>
</tbody>
</table>
表 8 回線設計(16APSK(3/4) 受信点:那覇 受信アンテナ径:75cm)

<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>晴天時</th>
<th>降雨時</th>
</tr>
</thead>
<tbody>
<tr>
<td>アップリンク C/Nu</td>
<td>dB</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>衛星EIRP Pe</td>
<td>dBW</td>
<td>57.0</td>
<td>57.0</td>
</tr>
<tr>
<td>バックオフ Bo</td>
<td>dB</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>自由空間損失 Lf</td>
<td>dB</td>
<td>205.4</td>
<td>205.4</td>
</tr>
<tr>
<td>大気吸収減衰の合計</td>
<td>dB</td>
<td>0.2</td>
<td>4.5</td>
</tr>
<tr>
<td>大気減衰</td>
<td>dB</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>降雨減衰 Lr</td>
<td>dB</td>
<td>0.0</td>
<td>3.9</td>
</tr>
<tr>
<td>雲による減衰 Lc</td>
<td>dB</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>シンチレーション</td>
<td>dB</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>受信アンテナ口径 D</td>
<td>cm</td>
<td>75.0</td>
<td>75.0</td>
</tr>
<tr>
<td>受信アンテナ開口効率 η</td>
<td>%</td>
<td>70.0</td>
<td>70.0</td>
</tr>
<tr>
<td>受信アンテナ利得 Gr</td>
<td>dBi</td>
<td>33.5</td>
<td>37.9</td>
</tr>
<tr>
<td>ポインティング損失</td>
<td>dB</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>受信機入力 C</td>
<td>dB</td>
<td>-117.1</td>
<td>-116.9</td>
</tr>
<tr>
<td>p.f.d.</td>
<td>dBW/m²</td>
<td>-105.3</td>
<td>-105.3</td>
</tr>
<tr>
<td>ボルツマン定数 K</td>
<td>dB/Hz</td>
<td>-228.6</td>
<td>-228.6</td>
</tr>
<tr>
<td>アンテナ雑音温度 K</td>
<td>K</td>
<td>50.0</td>
<td>222.4</td>
</tr>
<tr>
<td>LNC雑音指数 NF</td>
<td>dB</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>LNC雑音指数 NF’</td>
<td>K</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>受信機雑音温度 T</td>
<td>K</td>
<td>125.1</td>
<td>297.4</td>
</tr>
<tr>
<td>受信機雑音温度 T’</td>
<td>dBK</td>
<td>21.0</td>
<td>24.7</td>
</tr>
<tr>
<td>性能指数 G/T</td>
<td>dB/K</td>
<td>12.5</td>
<td>13.2</td>
</tr>
<tr>
<td>受信帯域幅 B</td>
<td>MHz</td>
<td>32.59</td>
<td>32.59</td>
</tr>
<tr>
<td>受信帯域幅 B’</td>
<td>dB・Hz</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>雑音入力 N</td>
<td>dBW</td>
<td>-132.5</td>
<td>-128.7</td>
</tr>
<tr>
<td>ダウンリンク C/Nd</td>
<td>dB</td>
<td>15.4</td>
<td>11.9</td>
</tr>
<tr>
<td>C/(Nu+Nd)</td>
<td>dB</td>
<td>14.8</td>
<td>11.6</td>
</tr>
<tr>
<td>隣接チャンネル干渉</td>
<td>dB</td>
<td>54.2</td>
<td>54.2</td>
</tr>
<tr>
<td>総合 C/(N+I)</td>
<td>dB</td>
<td>14.8</td>
<td>11.6</td>
</tr>
<tr>
<td>所要 C/N(16A PSK 3/4)</td>
<td>dB</td>
<td>11.6</td>
<td>11.6</td>
</tr>
<tr>
<td>システムマージン</td>
<td>dB</td>
<td>3.2</td>
<td>0.0</td>
</tr>
<tr>
<td>年間サービス時間率</td>
<td>%</td>
<td>-</td>
<td>99.91</td>
</tr>
<tr>
<td>最悪月サービス時間率</td>
<td>%</td>
<td>-</td>
<td>99.65</td>
</tr>
</tbody>
</table>
表 9 回線設計(16APSK(3/4) 受信点:対馬 受信アンテナ径:60cm)

<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>晴天時</th>
<th>降雨時</th>
</tr>
</thead>
<tbody>
<tr>
<td>アップリンク C/Nu</td>
<td>dB</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>衛星EIRP Pe</td>
<td>dBW</td>
<td>57.0</td>
<td>57.0</td>
</tr>
<tr>
<td>バックオフ Bo</td>
<td>dB</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>自由空間損失 Lf</td>
<td>dB</td>
<td>205.5</td>
<td>205.5</td>
</tr>
<tr>
<td>大気吸収減衰の合計</td>
<td>dB</td>
<td>0.2</td>
<td>3.1</td>
</tr>
<tr>
<td>大気減衰</td>
<td>dB</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>降雨減衰 Lr</td>
<td>dB</td>
<td>0.0</td>
<td>2.5</td>
</tr>
<tr>
<td>雲による減衰 Lc</td>
<td>dB</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>シンチレーション</td>
<td>dB</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>受信アンテナ口径 D</td>
<td>cm</td>
<td>60.0</td>
<td>60.0</td>
</tr>
<tr>
<td>受信アンテナ開口効率 η</td>
<td>%</td>
<td>70.0</td>
<td>70.0</td>
</tr>
<tr>
<td>受信アンテナ利得 Gr</td>
<td>dBi</td>
<td>36.0</td>
<td>36.0</td>
</tr>
<tr>
<td>ポインタリング損失</td>
<td>dB</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>受信機入力 C</td>
<td>dB</td>
<td>-114.7</td>
<td>-117.6</td>
</tr>
<tr>
<td>p.f.d.</td>
<td>dBW/m2</td>
<td>-105.5</td>
<td>-105.5</td>
</tr>
<tr>
<td>ボルツマン定数 K</td>
<td>dB/Hz</td>
<td>-228.6</td>
<td>-228.6</td>
</tr>
<tr>
<td>アンテナ雑音温度 K</td>
<td>K</td>
<td>50.0</td>
<td>177.3</td>
</tr>
<tr>
<td>LNC雑音指数 NF</td>
<td>dB</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>LNC雑音指数 NF'</td>
<td>K</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>受信機雑音温度 T</td>
<td>K</td>
<td>125.1</td>
<td>252.4</td>
</tr>
<tr>
<td>受信機雑音温度 T'</td>
<td>dBK</td>
<td>21.0</td>
<td>24.0</td>
</tr>
<tr>
<td>性能指数 G/T</td>
<td>dB/K</td>
<td>15.0</td>
<td>12.0</td>
</tr>
<tr>
<td>受信帯域幅 B</td>
<td>MHz</td>
<td>32.5941</td>
<td>32.5941</td>
</tr>
<tr>
<td>受信帯域幅 B'</td>
<td>dB・Hz</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>雑音入力 N</td>
<td>dBW</td>
<td>-132.5</td>
<td>-129.4</td>
</tr>
<tr>
<td>ダウンリンク C/Nd</td>
<td>dB</td>
<td>17.8</td>
<td>11.9</td>
</tr>
<tr>
<td>C/(Nu+Nd)</td>
<td>dB</td>
<td>16.9</td>
<td>11.6</td>
</tr>
<tr>
<td>隣接チャンネル干渉</td>
<td>dB</td>
<td>31.5</td>
<td>31.5</td>
</tr>
<tr>
<td>総合 C/(N+I)</td>
<td>dB</td>
<td>16.9</td>
<td>11.6</td>
</tr>
<tr>
<td>所要 C/N(16A PSK 3/4)</td>
<td>dB</td>
<td>11.6</td>
<td>11.6</td>
</tr>
<tr>
<td>システムマージン</td>
<td>dB</td>
<td>5.3</td>
<td>0.0</td>
</tr>
<tr>
<td>年間サービス時間率 %</td>
<td></td>
<td>99.89</td>
<td></td>
</tr>
<tr>
<td>最悪月サービス時間率 %</td>
<td></td>
<td>99.60</td>
<td></td>
</tr>
</tbody>
</table>
表10 回線設計（32APSK（4/5） 受信点：東京 受信アンテナ径：120cm）

<table>
<thead>
<tr>
<th>項目</th>
<th>單位</th>
<th>晴天時</th>
<th>降雨時</th>
</tr>
</thead>
<tbody>
<tr>
<td>アップリンク C/Nu</td>
<td>dB</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>衛星EIRP Pe</td>
<td>dBW</td>
<td>60.0</td>
<td>60.0</td>
</tr>
<tr>
<td>バックオフ Bo</td>
<td>dB</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>自由空間損失 Lf</td>
<td>dB</td>
<td>205.6</td>
<td>205.6</td>
</tr>
<tr>
<td>大気吸収減衰の合計</td>
<td>dB</td>
<td>0.3</td>
<td>4.9</td>
</tr>
<tr>
<td>大気減衰</td>
<td>dB</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>降雨減衰 Lr</td>
<td>dB</td>
<td>0.0</td>
<td>4.2</td>
</tr>
<tr>
<td>雲による減衰 Lc</td>
<td>dB</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>シンチレーション</td>
<td>dB</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>受信アンテナ口径 D</td>
<td>cm</td>
<td>120.0</td>
<td>120.0</td>
</tr>
<tr>
<td>受信アンテナ開口効率 η</td>
<td>%</td>
<td>70.0</td>
<td>70.0</td>
</tr>
<tr>
<td>受信アンテナ利得 Gr</td>
<td>dBi</td>
<td>42.0</td>
<td>42.0</td>
</tr>
<tr>
<td>ポインティング損失</td>
<td>dB</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>受信機入力 C</td>
<td>dB</td>
<td>-107.1</td>
<td>-111.7</td>
</tr>
<tr>
<td>p.f.d.</td>
<td>dBW/m2</td>
<td>-102.6</td>
<td>-102.6</td>
</tr>
<tr>
<td>ボルツマン定数 K</td>
<td>dB/Hz</td>
<td>-228.6</td>
<td>-228.6</td>
</tr>
<tr>
<td>アンテナ雑音温度 K</td>
<td>K</td>
<td>50.0</td>
<td>228.8</td>
</tr>
<tr>
<td>LNC雑音指数 NF</td>
<td>dB</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>LNC雑音指数 NF’</td>
<td>K</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>受信機雑音温度 T</td>
<td>K</td>
<td>125.1</td>
<td>303.9</td>
</tr>
<tr>
<td>受信機雑音温度 T’</td>
<td>dBK</td>
<td>21.0</td>
<td>24.8</td>
</tr>
<tr>
<td>性能指数 G/T</td>
<td>dBi/K</td>
<td>21.0</td>
<td>17.2</td>
</tr>
<tr>
<td>受信帯域幅 B</td>
<td>MHz</td>
<td>32.5941</td>
<td>32.5941</td>
</tr>
<tr>
<td>受信帯域幅 B’</td>
<td>dB・Hz</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>雑音入力 N</td>
<td>dBW</td>
<td>-132.5</td>
<td>-128.6</td>
</tr>
<tr>
<td>ダウンリンク C/Nd</td>
<td>dB</td>
<td>25.4</td>
<td>17.0</td>
</tr>
<tr>
<td>C/(Nu+Nd)</td>
<td>dB</td>
<td>21.7</td>
<td>16.2</td>
</tr>
<tr>
<td>隣接チャンネル干渉</td>
<td>dB</td>
<td>59.8</td>
<td>53.5</td>
</tr>
<tr>
<td>総合 C/(N+H)</td>
<td>dB</td>
<td>21.7</td>
<td>16.2</td>
</tr>
<tr>
<td>所要 C/N(32APSK 4/5)</td>
<td>dB</td>
<td>16.2</td>
<td>16.2</td>
</tr>
<tr>
<td>システムマージン</td>
<td>dB</td>
<td>5.5</td>
<td>0.0</td>
</tr>
<tr>
<td>年間サービス時間率</td>
<td>%</td>
<td>~</td>
<td>99.95</td>
</tr>
<tr>
<td>最悪月サービス時間率</td>
<td>%</td>
<td>~</td>
<td>99.79</td>
</tr>
</tbody>
</table>
表11 回線設計（32APSK(4/5) 受信点:那覇 受信アンテナ径:120cm）

<table>
<thead>
<tr>
<th>項目</th>
<th>單位</th>
<th>晴天時</th>
<th>降雨時</th>
</tr>
</thead>
<tbody>
<tr>
<td>アップリンク C/Nu</td>
<td>dB</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>衛星EIRP Pe</td>
<td>dBW</td>
<td>57.0</td>
<td>57.0</td>
</tr>
<tr>
<td>パックオフ Bo</td>
<td>dB</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>自由空間損失 Lf</td>
<td>dB</td>
<td>205.4</td>
<td>205.4</td>
</tr>
<tr>
<td>大気吸収減衰の合計</td>
<td>dB</td>
<td>0.2</td>
<td>3.0</td>
</tr>
<tr>
<td>大気減衰</td>
<td>dB</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>降雨減衰 Lr</td>
<td>dB</td>
<td>0.0</td>
<td>2.4</td>
</tr>
<tr>
<td>雲による減衰 Lc</td>
<td>dB</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>シンチレーション</td>
<td>dB</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>受信アンテナ口径 D</td>
<td>cm</td>
<td>120.0</td>
<td>120.0</td>
</tr>
<tr>
<td>受信アンテナ開口効率 η %</td>
<td></td>
<td>70.0</td>
<td>70.0</td>
</tr>
<tr>
<td>受信アンテナ利得 Gr</td>
<td>dBi</td>
<td>42.0</td>
<td>42.0</td>
</tr>
<tr>
<td>ポイントイング損失</td>
<td>dB</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>受信機入力 C</td>
<td>dB</td>
<td>-109.8</td>
<td>-112.5</td>
</tr>
<tr>
<td>p.f.d.</td>
<td>dBW/m2</td>
<td>-105.3</td>
<td>-105.3</td>
</tr>
<tr>
<td>ポルツマン定数 K</td>
<td>dB/Hz</td>
<td>-228.6</td>
<td>-228.6</td>
</tr>
<tr>
<td>アンテナ雑音温度 K</td>
<td></td>
<td>50.0</td>
<td>174.9</td>
</tr>
<tr>
<td>LNC雑音指数 NF</td>
<td>dB</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>LNC雑音指数 NF'</td>
<td>K</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>受信機雑音温度 T</td>
<td>K</td>
<td>125.1</td>
<td>250.0</td>
</tr>
<tr>
<td>受信機雑音温度 T'</td>
<td>dBK</td>
<td>21.0</td>
<td>24.0</td>
</tr>
<tr>
<td>性能指数 G/T</td>
<td>dB/K</td>
<td>21.0</td>
<td>18.0</td>
</tr>
<tr>
<td>受信帯域幅 B</td>
<td>MHz</td>
<td>32.59</td>
<td>32.59</td>
</tr>
<tr>
<td>受信帯域幅 B'</td>
<td>dB*Hz</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>雑音入力 N</td>
<td>dBW</td>
<td>-132.5</td>
<td>-129.5</td>
</tr>
<tr>
<td>ダウンリンク C/Nd</td>
<td>dB</td>
<td>22.7</td>
<td>17.0</td>
</tr>
<tr>
<td>C/(Nu+Nd)</td>
<td>dB</td>
<td>20.3</td>
<td>16.2</td>
</tr>
<tr>
<td>隣接チャンネル干渉</td>
<td>dB</td>
<td>58.2</td>
<td>58.2</td>
</tr>
<tr>
<td>総合 C/(N+1)</td>
<td>dB</td>
<td>20.3</td>
<td>16.2</td>
</tr>
<tr>
<td>所要 C/N(32APSK 4/5)</td>
<td>dB</td>
<td>16.2</td>
<td>16.2</td>
</tr>
<tr>
<td>システムマージン</td>
<td>dB</td>
<td>4.1</td>
<td>0.0</td>
</tr>
<tr>
<td>年間サービス時間率 %</td>
<td></td>
<td>-</td>
<td>99.80</td>
</tr>
<tr>
<td>最悪月サービス時間率 %</td>
<td></td>
<td>-</td>
<td>99.28</td>
</tr>
<tr>
<td>項目</td>
<td>営業時</td>
<td>降雨時</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>アップリンク C/Nu dB</td>
<td>24.0</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>衛星EIRP Pe dBW</td>
<td>57.0</td>
<td>57.0</td>
<td></td>
</tr>
<tr>
<td>バックオフ Bo dB</td>
<td>2.9</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>自由空間損失 Lf dB</td>
<td>205.5</td>
<td>205.5</td>
<td></td>
</tr>
<tr>
<td>大気吸収減衰の合計 dB</td>
<td>0.2</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>大気減衰 dB</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>降雨減衰 Lr dB</td>
<td>0.0</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>雲による減衰 Lc dB</td>
<td>0.1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>シンチレーション dB</td>
<td>0.1</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>受信アンテナ口径 D cm</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
</tr>
<tr>
<td>受信アンテナ開口効率 % η</td>
<td>70.0</td>
<td>70.0</td>
<td></td>
</tr>
<tr>
<td>受信アンテナ利得 Gr dBi</td>
<td>42.0</td>
<td>42.0</td>
<td></td>
</tr>
<tr>
<td>ポインティング損失 dB</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>受信機入力 C dB</td>
<td>-109.9</td>
<td>-112.5</td>
<td></td>
</tr>
<tr>
<td>p.f.d. dBW/m2</td>
<td>-105.5</td>
<td>-105.5</td>
<td></td>
</tr>
<tr>
<td>ボルツマン定数 K dB/Hz</td>
<td>-228.6</td>
<td>-228.6</td>
<td></td>
</tr>
<tr>
<td>アンテナ雑音温度 K</td>
<td>50.0</td>
<td>168.7</td>
<td></td>
</tr>
<tr>
<td>LNC雑音指数 NF dB</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>LNC雑音指数 NF' K</td>
<td>75.1</td>
<td>75.1</td>
<td></td>
</tr>
<tr>
<td>受信機雑音温度 T dBK</td>
<td>125.1</td>
<td>243.8</td>
<td></td>
</tr>
<tr>
<td>受信機雑音温度 T' dB/K</td>
<td>21.0</td>
<td>23.9</td>
<td></td>
</tr>
<tr>
<td>性能指数 G/T dB/K</td>
<td>21.0</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>受信帯域幅 B MHz</td>
<td>32.5941</td>
<td>32.5941</td>
<td></td>
</tr>
<tr>
<td>受信帯域幅 B' dB/Hz</td>
<td>75.1</td>
<td>75.1</td>
<td></td>
</tr>
<tr>
<td>雑音入力 N dBW</td>
<td>-132.5</td>
<td>-129.6</td>
<td></td>
</tr>
<tr>
<td>ダウンリンク C/Nd dB</td>
<td>22.6</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td>C/(N+Nd) dB</td>
<td>20.3</td>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td>隣接チャンネル干渉 dB</td>
<td>37.3</td>
<td>37.3</td>
<td></td>
</tr>
<tr>
<td>総合 C/(N+I) dB</td>
<td>20.2</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>所要 C/N(32APSK 4/5) dB</td>
<td>16.2</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>システムマージン dB</td>
<td>4.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>年間サービス時間率 %</td>
<td>-</td>
<td>99.88</td>
<td></td>
</tr>
<tr>
<td>最悪月サービス時間率 %</td>
<td>-</td>
<td>99.53</td>
<td></td>
</tr>
</tbody>
</table>
参考資料
目次

参考資料 1-1 スロットの割り当て規則
参考資料 1-2 PCR の管理
参考資料 1-3 PCR 付け替え方法の例
参考資料 1-4 シンボルレートと帯域幅の関係
参考資料 1-5 信号点配置
参考資料 1-6 TMCC 符号化方式の伝送性能
参考資料 1-7 TMCC 信号のストリーム制御機能
参考資料 1-8 パイロット信号による受信特性の改善
参考資料 1-9 TMCC 信号によるバルク伝送機能
参考資料 1-10 バルク伝送の運用イメージと今後の課題
参考資料 1-11 32APSK を小型受信アンテナで受信する場合のサービス時間率向上について
参考資料 1-12 略語・用語集
スロットの割り当て規則

複数の変調方式を同一搬送波で伝送する場合は、多値数の多い変調方式の順、また、ひとつの変調方式の中で複数の符号化率を併用する場合には、符号化率の高い順に、各情報を伝送フレーム内の先頭スロットから順に配置する。

無効（ダミー）スロットが必要な場合、有効スロットを割当てスロット内の最初に配置する。（参考例 図1参照）

図1 スロット割り当ての例

複数の変調方式を伝送する複数TSの合成においては、各TSの時間基準を送受間で保持するため、それぞれのTSでのダミースロットをヌルパケットとしてPCRを設定する。（参考例 図2参照）

図2 複数TS合成の例
PCR の管理

受信機の負担を軽くするため、受信機側では簡単な速度変換のみを行うだけで、適切な PCR 値を含む MPEG-2 TS を再生できることが望ましい。

図 1(a)に示すように、スロット#1～#5 を使って、変調方式 16APSK、符号化率 1/3 で伝送する場合を考えると、受信機側で再生される信号は図(b)のようになり、同期バイトを除く 187 バイト長 TS がバースト状に得られることになる。受信機内では、この TS の先頭に同期バイトを付加した上で、適切な PCR 値を含む等間隔の TS パケットとして MPEG デコーダに渡す必要がある。このような条件を満足する PCR に付け替える方法を参考資料 1-3 に示す。
PCR の付け替え方法の例

変調方式 16ASPK、符号化率 1/3 により、1フレーム中5スロット(有効スロットは4スロット)を割り当てられた委託事業者が、MPEG-2 TS を伝送する場合を例に説明する。

表 1 各符号化率のスロット構成

<table>
<thead>
<tr>
<th>符号化率</th>
<th>スロット長=LDPC符号長</th>
<th>データ長 (TSパケット数)</th>
<th>BCH パリティ</th>
<th>スタッフビット</th>
<th>LDPC パリティ</th>
<th>総合符号化率※3</th>
<th>LDPC符号化率※2</th>
<th>BOCH+ヘッダ*スタッフ符号化率※1</th>
<th>参考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>44880</td>
<td>14960(10)</td>
<td>192</td>
<td>6</td>
<td>29546</td>
<td>0.333</td>
<td>0.342</td>
<td>0.976</td>
<td>1/3=33.33%</td>
</tr>
<tr>
<td>2/5</td>
<td>44880</td>
<td>17952(12)</td>
<td>192</td>
<td>6</td>
<td>26554</td>
<td>0.400</td>
<td>0.408</td>
<td>0.980</td>
<td>2/5=40%</td>
</tr>
<tr>
<td>1/2</td>
<td>44880</td>
<td>22440(15)</td>
<td>192</td>
<td>6</td>
<td>22066</td>
<td>0.500</td>
<td>0.508</td>
<td>0.984</td>
<td>1/2=50%</td>
</tr>
<tr>
<td>3/5</td>
<td>44880</td>
<td>26928(18)</td>
<td>192</td>
<td>6</td>
<td>17578</td>
<td>0.600</td>
<td>0.608</td>
<td>0.986</td>
<td>3/5=60%</td>
</tr>
<tr>
<td>2/3</td>
<td>44880</td>
<td>29920(20)</td>
<td>192</td>
<td>6</td>
<td>14586</td>
<td>0.667</td>
<td>0.675</td>
<td>0.988</td>
<td>2/3=66.67%</td>
</tr>
<tr>
<td>3/4</td>
<td>44880</td>
<td>32912(22)</td>
<td>192</td>
<td>6</td>
<td>11594</td>
<td>0.733</td>
<td>0.742</td>
<td>0.989</td>
<td>3/4=75%</td>
</tr>
<tr>
<td>4/5</td>
<td>44880</td>
<td>35904(24)</td>
<td>192</td>
<td>6</td>
<td>8602</td>
<td>0.800</td>
<td>0.808</td>
<td>0.990</td>
<td>4/5=80%</td>
</tr>
<tr>
<td>5/6</td>
<td>44880</td>
<td>37400(25)</td>
<td>192</td>
<td>6</td>
<td>7106</td>
<td>0.833</td>
<td>0.842</td>
<td>0.990</td>
<td>5/6=83.33%</td>
</tr>
<tr>
<td>7/8</td>
<td>44880</td>
<td>38896(26)</td>
<td>192</td>
<td>6</td>
<td>5610</td>
<td>0.867</td>
<td>0.875</td>
<td>0.990</td>
<td>7/8=87.5%</td>
</tr>
<tr>
<td>9/10</td>
<td>44880</td>
<td>40392(27)</td>
<td>192</td>
<td>6</td>
<td>4114</td>
<td>0.900</td>
<td>0.908</td>
<td>0.991</td>
<td>9/10=90%</td>
</tr>
</tbody>
</table>

※1 データ長/(データ長+BCH パリティ+スロットヘッダ+スタッフビット)・・・(a)
※2 (データ長+BCH パリティ+スロットヘッダ+スタッフビット)/(データ長+BCH パリティ+スロットヘッダ+スタッフビット+LDPC パリティ) ・・・(b)
※3 (a)×(b)

表 1 によれば、符号化率 1/3 で伝送できる 1スロットあたりの TS パケットは 10パケットである。したがって、有効4スロットを使って伝送できるパケット数は図 1(a)に示すように 10×4=40パケットとなる。

受託放送事業者は、このパケットストリームをスロット割り当てする前に、PCRの付け替えを行う。PCRの付け替えは5スロット(同期、パイロット、TMCCを含む)分のメモリ(5810×5Byte=46480×5bit=232400bit、図2を参照)上で行う。

5スロット分の時間に含まれる 188×8×40=60160 ビットのデータを同時間内で 232400ビットのメモリーに展開するため、図1(b)に示すように、232400/60160=3905/752 の速度変換を行う。また展開を行う際、1TSを書き込む毎に、19.5バイト分の間隔をあけて、次のTSを書き込む。ここで書き込んだTSとそれに後続する19.5バイトの間隔を合わせてここではセルと呼ぶことにすると、展開に使うメモリ1スロットは28のセルで構成され、ここでは最初の10セルのみ使用、残り18セルにはNULLパケットを書き込むこととする。以上のメモリ上への展開が完了したら、展開されたTSに対し適当な値をとるPCRに付け替えを行う。

PCRの付け替えが完了したら、同図(c)に示すように、書き込んだときの120/5倍の速度で読み出しを行い、他の同様の処理を施したTSと共に、フレームのスロット上へPCRを付け替ええたTSを先頭の同期パイロット除去して配置する。この状態で受託放送事業者の伝送路符号化部への信号受け渡しを行う。

伝送路符号化部では、この信号に伝送路符号化を行い送信する。また受信機では、この信号を受信し、
120/5 に時間伸張する。すなわち、受信機側でも同図(c)の信号が得られることになる。

受信機では同図(c)の信号に対し、同図(d)の 232400bit 上のセルに同期バイトを付加した TS を展開する。展開を行う際、1TS を書き込む毎に、19.5 バイト分の間隙をあけて、次の TS を書き込む。また 10 セル書き込んだ後の 18 セルには同様の間隔を設けながら、NULL パケットを充填する。

展開が終了したら、メモリ上から間隔を廃棄しながら、207.5/188 の時間伸張を行う。これにより、適切な PCR を含む等間隔の 188 バイト長 TS のストリームが復元できる。

なお、複数のストロット単位を跨いでストリームが多重されている場合や、さらに複数のストリームが混在している場合については、5 スロット単位で同様の処理を行うものとし、PCR の打ち直しに際しては、同一のストリーム内で PCR の処理を行い、異なるストリームのパケットは NULL パケットとみなし処理する。またストリームとして抽出する場合には、それ以外のストリームのパケットは NULL パケットに置換する。
図1 PCR付け替えの例
変調方式の組み合わせにより24〜120の範囲で変わる

図2 フレーム構成
シンボルレートと帯域幅の関係

1. シミュレーション系統図

シンボルレートに対する占有帯域幅を求めるために用いたシミュレーションの系統図を図 1 に示す。変調器のルートロールオフフィルタのロールオフ率は 0.1, 0.15, 0.2, および 0.25 とし、デジタル変調方式として BPSK, QPSK, 8PSK, 16APSK, 32APSK, \(\pi/2\) シフト BPSK についてシミュレーションを行なった。なお、衛星中継器は放送衛星の IMUX フィルタ、TWTA、および OMUX フィルタで構成した。TWTA の動作点は、OMUX フィルタ出力が変調波において最大となる動作点とした。

2. 各変調方式のシンボルレートと帯域幅

ロールオフ率 0.1 とし、変調時の出力飽和点を動作点としたときの、各変調方式のシンボルレートと占有帯域幅の関係を図 2 及び表 1 に示す。32Mbaud 付近で、BPSK は QPSK および 8PSK に比べ、約 3.7%占有帯域幅が広がっていること、逆に、\(\pi/2\) シフト BPSK は QPSK および 8PSK に比べ、約 1%占有帯域幅が狭まっていることが確認できる。
3. シミュレーション結果とシンボルレート候補値

以上の結果から、占有帯域幅を決定する変調方式は QPSK および 8PSK となるが、この 2 方式については同一シンボルレートで、ほぼ同じ占有帯域幅となる。ここでは、主に利用される変調方式である 8PSK について、シンボルレートと帯域幅の関係を求めた。シミュレーション結果を図 3 に示す。この結果から、ロールオフ率 0.2 において、占有帯域幅が 34.5MHz 以内となる最大シンボルレートは、31.9MBaud となる。したがって、実証実験におけるシンボルレートの候補としては、31.9MBaud 以下とする。同様にロールオフ率を 0.1 〜 0.25 とした場合の、最大シンボルレートを表 2 にまとめる。

図 3 シミュレーション結果

参考: 各変調方式の信頼点の軌跡(理想送信路)

表 2 ロールオフ率と最大シンボルレートの関係

<table>
<thead>
<tr>
<th>ロールオフ率</th>
<th>最大シンボルレート [MBaud]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>33.6</td>
</tr>
<tr>
<td>0.15</td>
<td>32.7</td>
</tr>
<tr>
<td>0.2</td>
<td>31.9</td>
</tr>
<tr>
<td>0.25</td>
<td>31.1</td>
</tr>
</tbody>
</table>
信号点配置

1. BPSK 変調の信号点配置の変更について
当初案では、同期、TMCC 信号伝送用に BPSK 変調が提案されている。また、主信号伝送用変調方式のひとつとしても BPSK が利用可能となっている。BPSK 変調は信号点の遷移において、50%の確率でゼロクロスすることから、非線形特性をもつ衛星伝送路において飽和点増幅を行った場合、QPSK や 8PSK に比べ占有帯域幅が約 3%拡大する。したがって、占有帯域幅の要求値に対して BPSK がシンボルレートを決定する主要因となる。一方、π/2 シフト BPSK では原理的にゼロクロスを生じないため、帯域幅は QPSK や 8PSK に比べ占有帯域幅が約 1.5%縮小することから、シンボルレートは 8PSK や QPSK によって決定される。そこで、BPSK 変調をπ/2 シフト BPSK に変更することを提案する。

2. APSK 信号点配置の半径比の決定について
APSK の信号点配置は、提案する LDPC 符号を適用したときにおいて最適な特性となるよう設計した※。16APSK および 32APSK の信号点配置を図 1・表 1 および図 2・表 2 に示す。

※ DVB-S2 においては、APSK の信号点配置を、使用する符号化率を決め、そのときの所要 C/N が理想的な符号化・変調が伴なされたときに最小となるように設計している。
TMCC 用誤り訂正方式の伝送性能

高度衛星デジタル放送方式におけるTMCC信号の誤り訂正符号としては、内符号については、主信号用LDPC(1/2)を短縮化して利用する(図1参照)。LDPC符号のデータとして、NULLデータ(1870ビット、オールゼロ)、TMCCデータ(9422ビット)、BCHパリティ(192ビット)、およびNULLデータ(11330ビット、オールゼロ)に対し、符号化率1/2のLDPCパリティ(22066ビット)を付加し、NULLデータを削除したものをTMCCシンボルとして伝送する。受信側では、NULLデータ部分については理想的に0が伝送された場合のシンボルを挿入した後、符号化率1/2のLDPC符号復号を行う。

短縮化するデータの位置については、伝送性能が良くなるよう適切な位置を選んで短縮化を行った。図2にTMCC符号化方式のC/N対ビット誤り率特性を示す。図2には同等の符号化率を有するπ/2シフトBPSK符号化率1/3の特性も併せて示す。図2より、TMCC符号化方式の所要C/Nは-4.4dB、π/2シフトBPSK符号化率1/3の所要C/Nは-4dBであり、本方式が通常の符号化率1/3よりも性能が改善していることが分かる。

図1:TMCC符号化方式

図2:TMCC符号化方式 C/N 対ビット誤り率特性
TMCC信号によるストリーム制御機能

1 ストリーム制御の必要性

放送用途で主流となっているパケットは図1に示すように、188バイトの固定長で、その先頭には8ビットのユニークワードが同期バイトとして付加されている。こうした固定長で、かつ同期バイトが付加されるパケットストリームにおいては、既知の同期バイトが既知のパケット間隔で捕捉できるポイントを探索することで、容易にパケット先頭を捕捉できる。

一方、図2に示すIPパケットの例を挙げると、パケット先頭に同期符号に相当するものがあり、パケット長も可変である。こうしたパケットストリームを送受信する場合、パケットの先頭を知るため、同期バイトを付加する、あるいはパケット先頭が分かる信号を別途伝送する、といった対策が必要となる。同期バイトを付加する場合、その到来周期がパケット長によって変化するため、擬似同期の検出が困難となる。

そこで、衛星デジタル放送方式においては、各スロットの何パイト目からパケットが多重されているかを示すポインタ情報をTMCC信号により伝送している。さらに、IPパケット以外の可変長パケットストリームやMPEG-2 TSパケットストリームなど、スロット単位で複数処理で伝送できる仕組みなども取り入れている。以下の章ではTMCC信号によるストリーム制御機能について説明する。
2 TMCC信号のストリーム制御関連情報

TMCC信号のストリーム制御関連情報を表1にまとめる。

<table>
<thead>
<tr>
<th>名称</th>
<th>bit</th>
<th>内訳</th>
<th>bit</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>スロット/相対Stream番号対応表</td>
<td>480</td>
<td>スロット1の相対ストリーム番号</td>
<td>4</td>
<td>相対Stream番号: 0-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>スロット120の相対ストリーム番号</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>相対Stream番号/Transmission StreamID対応表</td>
<td>256</td>
<td>相対ストリーム番号16のTransmission_Stream_ID</td>
<td>16</td>
<td>MPEG-2 TSの場合TS_ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLVの場合TLV_Stream_ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>スロット/Stream種別情報</td>
<td>128</td>
<td>相対ストリーム0のストリーム種別</td>
<td>8</td>
<td>Stream種別</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000000: reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000001: MPEG-2 TS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000010: TLV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000011-11111110: reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11111111: 割り当てなし</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>相対ストリーム15のストリーム種別</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stream種別</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000000: reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000001: MPEG-2 TS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000010: TLV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000011-11111110: reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11111111: 割り当てなし</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポインタ情報</td>
<td>3840</td>
<td>スロット1のトップポイントタ</td>
<td>16</td>
<td>トップポイント：スロット中の最初のパケットの先頭バイトを指定。ただし、0xFFFFは先頭バイト不在。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>スロット1のラストポイントタ</td>
<td>16</td>
<td>ラストポイント：スロット中の最後の配置完了パケットの最終バイト+1を指定。ただし、0xFFFFは最終バイト不在。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>スロット120のトップポイントタ</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>スロット120のラストポイントタ</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>パケット長</td>
<td>256</td>
<td>相対ストリーム0のパケット長</td>
<td>16</td>
<td>パケット長をパケット単位で指定。不確定の場合、0x0000。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>スロット120のパケット長</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>同期パターンビット長</td>
<td>128</td>
<td>相対ストリーム0の同期パターンビット長</td>
<td>8</td>
<td>ムルス形成を行う際、その先頭信号ビットには同期パターンを置く必要があります場合、その同期パターンの長さを0(0x00)～32(0x20)のビット長で記載する</td>
</tr>
<tr>
<td></td>
<td></td>
<td>相対ストリーム15の同期パターンビット長</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>同期パターン</td>
<td>512</td>
<td>相対ストリーム0の同期パターン</td>
<td>32</td>
<td>同期パターンを記載。MSBから同期パターンビット長分のビット数を有効とする。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>相対ストリーム15の同期パターン</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

(1) 複数ストリーム伝送

高度衛星デジタル放送方式においては、最大16のストリームをひとつの衛星中継器で伝送可能である。

「スロット/相対Stream番号対応表」は、多重フレームを構成する120のスロットそれぞれに対して、0から15のいずれかの相対ストリーム番号を割り当て、同一の相対ストリーム番号をもつスロットのデータは、ひとつのストリームであることを示す。

また、「相対Stream番号/Transmission Stream ID対応表」は、相対Stream番号0～15の各ストリームに16ビットの識別番号Transmission_Stream_IDを割り当てられるようにしている。StreamがMPEG-2 TSの場合、Transmission Stream_IDはTS_IDとし、また、TLVの場合にはTLV_Stream_IDとする。

「スロット/Stream種別情報」は、各相対ストリーム番号のストリームの種別を表し、0x01をMPEG-2 TS、0x02をTLV、0xffを割り当てなしとし、それ以外を将来に備え予約としている。

(2) パケット同期

「ポインタ情報」は各スロットに対するトップポイントタとラストポイントタで構成され、主にパケット同期とパケット無効化に用いられる。
図3にスロットのデータ領域にパケットを収納する例を示す。トップポインタは各スロットに収納されるパケットのうち、最初のパケット先頭バイト位置を示す。またラストポインタは各スロットに収納されるパケットのうち、最後のパケット末尾バイト位置+1を示す。

これらのうち、パケット同期は主にトップポインタを使って行われるラストポインタは、後述のパケットの無効化で利用される。

（3）パケットの無効化

LDPC符号＋BCH符号による誤り訂正能力を超えた誤りが発生し、受信不能なスロットが発生した場合、これをそのまま以降の処理に流してしまうと、ビット誤りによってパケット識別などが別サービスのパケット識別に偶然一致し、別のサービスに悪影響を与える場合がある。したがって、訂正できなかったスロットに格納されたパケットについては、ヌルパケットまたはヌルデータに置換するか、パケット内にエラーインジケータフラグがある場合、これをエラー有りにセットすることにより、パケットの無効化をしてから以降の処理に受け渡す必要がある。

パケット無効化の方法を図4に示す。各スロットについて、BCH符号の復号を行う場合、正しく復号できたかどうか判定を行う。ここで訂正不能であった場合、当該スロットで伝送されたパケットの無効化を行う。パケット無効化の範囲は、訂正不能であったスロットに全体または一部が含まれるパケットすべてが対象となる。したがって、スロット#Nが訂正不能であった場合、スロット#N-1のラストポインタからスロット#N+1のトップポインタ1がパケット無効化の範囲となり、MPEG-2TSの場合、トランスポートエラーインジケータに1をセットし、それ以外の場合ヌルデータに置換する。

TLV伝送時のパケットの無効化では、TLV形式のNULLパケットに置換するものとする。NULLパケットの長さは、4バイト～65535バイトの任意のバイト長に選ぶことができる。

TLV伝送時のパケット無効化の具体例を図5に示す。同図の例ではスロット#N+1およびスロット#N+2がBCH訂正不能であった場合を示している。この場合、スロット#Nのラストポインタから、スロット#N+3のトップポインタまでが無効化の対象となる。無効化に当たっては、TLVに規定されたNULLパケットに置換することになるが、その方法としては、(a)に示す、スロットごとにNULLパケットで置換する方法や、(b)に示す、ひとつのNULLパケットで置換する方法などが考えられるが、TLVインタフェースではいずれの方法でも、無視される対象は共通となることから、受信機側ではいずれの方法によっても構わない。ただし、TLVの最低バイト長が4バイトであるため、(a)の方法による場合、TVLnull#1およびTVLnull#4が4以下となる場合、TVLnull#1とTVLnull#2およびTVLnull#3とTVLnull#4を連結し、1つのTLVnullパケットに置換するなど例外処理が必要となる。

なお、TMCC信号の「パケット長」は各相対ストリームのパケットが固定長である場合、そのパケット長を、「同期パターン長」は各相対ストリームのパケット先頭に同期パターンがある場合、その同期パターン長と、「同期パターン」は各相対ストリームのパケット先頭に同期パターンがある場合、その同期パターンを示す。これらの情報から、パケット長が固定値であって、同期パターンが指定されている場合、ヌルデータに置換した部分の先頭に指定された同期パターンを上書きすることで、未知のTSやTLV以外の未知のストリームであっても、パケットの形式に整えて、以降の処理に受け渡すことも可能である。
図3 トップポイントとラストポイント

図4 受信機におけるヌルパケット置換

図5 無効化区間のTLV NULLパケットへの置換
パイロット信号による受信特性の改善

1. 想定される受信機の同期確立プロセスの概要

想定される受信機の同期確立フローを図1に示す。

受信機は電源が投入(a)された後、まずシンボル同期が確立される(b)。その後、スロット同期の捕捉が試行(c)される。場合によっては、受信機の同期範囲設計目標の周波数範囲をステップスキャンし、捕捉できるポイントを探す(d)。

スロット同期が捕捉されると、スロット同期またはフレーム同期の変調シンボルの多重されている位置がわかるため、これら信号位置のゲート信号を、AGC回路に与える(e)。AGC回路はこれをもとに同期信号シンボルの電力を測定し、これをもとにAGC利得の調節を行う。これは、バックオフ運用される変調方式が時分割多重されると、衛星中継器のALCが誤動作するのと同様の理由で、受信機のAGCにおいても誤動作するためである。

この後、フレーム同期を捕捉する(f)。同期捕捉後、同期シンボルの信号点位置の受信位相回転量からキャリア再生用発振器の周波数誤差を検出することが可能である。ここで、周波数誤差を±115kHz以内に合わせることが望ましい。これは、この後TMCCバーストを使ったキャリア再生に移行したとき、擬似同期がバースト周期分の1の周波数間隔で発生するためである(g)。

また、この時点ではTMCCバーストの位置が判別できるように、同期およびTMCCのπ/2シフトBPSKシンボル区間示すゲート信号を生成(h)し、π/2シフトBPSK区間のみにゲートをかけてπ/2シフトBPSKによるキャリア再生を行うことが可能となる(i)。ここで位相同期のロック検出を行おうとしながら、キャリア再生周波数の微調整を行う(j)。

キャリア再生がロックした後、TMCC信号の復号を行う(k)。TMCC信号には、すべての変調シンボルの変調方式やバックオフ量に関する情報が含まれているので、この情報をもとに、各変調方式区間を判別するためのゲート信号を生成し(l)。キャリア再生を同期とTMCCだけでなく、すべてのシンボルを使ってキャリア再生を行う(m)。このとき使用する位相誤差テーブルは、16APSKおよび32APSKについては、初動用の位相誤差テーブルを使用するものとし、TMCCに含まれるAPSK変調のバックオフ情報(n)を考慮し生成されるものとする。これにより、位相ジッタの少ないキャリア再生に移行することができる。また、同期・TMCC以外に飽和増幅する変調方式があれば、それらも含めた区間を示すゲート信号を生成し、AGC回路に与える(o)ことで、AGCレベル設定の精度を上げる。
2. パイロット信号
2.1 パイロット信号の機能

高度衛星デジタル放送の伝送方式では、図2に示すように、各フレームの変調スロットごとに、32シンボルを使ってパイロット信号を伝送している。32APSKについては、各シンボルを1回伝送する(図3参照)。また、その他の変調方式においても32シンボルを使い、16APSKについては各シンボルを2回、8PSKについては各シンボルを4回、QPSKについては各シンボルを8回、π/2シフトBPSKについてには各シンボルを16回伝送している。受信機側でこのパイロット信号を平均化することで、非線形の影響を受けたあとの信号点配置を知ることができる。

以下の2〜3章では、以上の動作のうち、補足が必要な部分について詳しく説明する。
図 4 パイロット平均化による非線形通過後の信号点配置の取得

図 4 に(a)送信時の信号点配置、(b) 非線形伝送路通過後の受信信号点、(c) パイロット平均化後の信号点配置の例を示す。 (b)においては、外周円ほど信号点が内側に押圧され、位相が回転している。また、(c)においてはパイロット平均化によって得られた信号点配置が受信信号点のほぼ中央に得られていることが確認できる。パイロット平均化で得られた信号点をもとに、LDPC 復号に用いる尤度テーブルおよび同期再生用位相誤差テーブルを更新することで、非線形による C/N-BER 特性およびサイクルスリップ特性の劣化を抑圧できる。なお、信号点配置が変更になった場合にも、受信機側でその変更を認識し、それに合わせた受信を行うことも可能である。

2.2 尤度テーブルおよび位相誤差テーブルへの応用

上述のように、パイロット信号から、変調方式毎に各シンボルの信号点を取得し、これを同一シンボルについて、数十フレーム間で平均化することで雑音を除去することで、伝送路の非線形性の影響を受けたあとの信号点配置を知ることができる。図 5 に受信機の一般的な構成を示す。このうち、チャンネル選択後の直交検波を行う際に用いる位相誤差テーブルや LDPC 符号復号の際に用いる尤度テーブルをパイロットから取得した信号点配置をもとに生成することで、非線形の影響を極力排除した搬送波再生およびLDPC符号復号が可能となる。

図 5 受信機の構成

2.3 キャリア再生用位相誤差テーブル

図 5 の受信機構成の直行検波回路の詳細を図 6 に示す。パイロットによる非線形補償を行う場合に必要となる部分を「追加部分」とした。通常、ルートロールオフフィルタの出力を図 7 に示すような位相誤差テーブルを使って、受信された信号点 P と理想的な信号点との位置関係から、再生キャリアの位相誤差 (+Δφ) を検出し、周波数誤差が小さくなるように、数値制御発振器を制御する。この場合、APSK 変調を非線形伝送路で伝送すると、外周の円上の信号点ほど、振幅の抑圧を受け、更に位相回転を受け、更に位相回転を受けることをから、理想伝送路を想定した図 7 の位相誤差テーブルを使ってキャリア再生を行うと、同期限界 C/N の上昇や、サイクルスリップ確率の上昇などの弊害を生ずる。
パイロット信号を利用して、ルートロールオフフィルタの出力からパイロット信号を抽出し、ストロット内の同一シンボル毎に平均化を行う。平均化された信号点情報をもとに、位相誤差テーブルを構成するデータを生成し、位相誤差テーブルを書き換える。
2.4 LDPC 復号用尤度テーブル

図 5 の受信機構成の直行 LDPC 復号回路の詳細を図 8 に示す。パイロットによる非線形補償を行う場合に必要となる部分を「追加部分」とした。通常、LDPC 復号を行う場合、その信号が伝送されている変調方式、符号化率、およびその変調方式のシンボルを構成する各ビット（32APSK の場合であれば 5 ビット）ごとに、尤度テーブルを用意し、ルートロールオフフィルタから出力される受信信号点に対し、シンボルを構成する各ビットの、1 と思われる確率と 0 と思われる確率の対数比 LLR (Log Likelihood Ratio) を求め、この LLR に対して LDPC 復号を行う。この場合、APSK 変調を非線形伝送路で伝送すると、外周の円上の信号点ほど、振幅の抑圧を受け、更に位相回転を受けることから、理想伝送路を想定した尤度テーブルを使って LDPC 復号を行うと、所要 C/N の上昇などの弊害を生ずる。

2.5 パイロットの所要平均時間

パイロットの平均化不足による所要 C/N 劣化量が 0.1dB 以下となる所要平均化時間を求めると、32APSK4/5 については、平均フレーム回数を 44 回(所要時間 1.52 秒)、16APSK3/4 では 22 回(所要時間 0.756 秒)、8PSK3/4 では 11 回(所要時間 0.378 秒)、QPSK1/2 では 6 回(所要時間 0.206 秒)、π/2 シフト BPSK1/2 では 3 回(所要時間 0.103 秒)、QPSK1/4 では 6 回(所要時間 0.206 秒)となる。したがって、2 秒程度のパイロット平均化でいずれの場合もほぼ十分な精度が得られる。

3 TMCC 信号における衛星中継器のバックオフ情報

3.1 TMCC 信号

3.2 パイロット信号を使用し、ルートロールオフフィルタの出力からパイロット信号を抽出し、スロット内の同一シンボル毎に平均化を施す。平均化された信号点情報をもとに、尤度テーブルを構成するデータを生成し、尤度テーブルを書き換える。
方式、符号化率、およびバックオフが指定できる。受信機は、この情報を使って初期受信用にバックオフを考慮した位相誤差テーブルと尤度テーブルを生成できるようにしている。

変調方式の指定に当たっては、表 8 に示すように、32APSK 以外の変調方式を割り当てる場合は、5 スロット単位とし、32APSK に比べ効率が低下する割合をダミースロットに置き換える。たとえば 16APSK をスロットに割り当てるときは、5 スロットのうちデータ伝送に使用できるのは 4 スロットで、残り 1 スロットにはダミーデータを挿入するものとする。このダミーデータは実際には伝送されないが、フレームのビットレートを一定にする効果を持つため、現行の衛星デジタル放送でも同様な考え方が用いられている。

表 7 TMCC 信号のスロット/変調方式情報

<table>
<thead>
<tr>
<th>名称</th>
<th>bit</th>
<th>内訳</th>
<th>bit</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>伝送モード/スロット情報</td>
<td>192</td>
<td>4</td>
<td>変調方式5種類</td>
<td></td>
</tr>
<tr>
<td>伝送モード1(変調)</td>
<td>4</td>
<td>0000: reserved</td>
<td>0001: π/2シフトBPSK</td>
<td></td>
</tr>
<tr>
<td>伝送モード1(符号化率)</td>
<td>4</td>
<td>0010:QPSK</td>
<td>0011:8PSK</td>
<td></td>
</tr>
<tr>
<td>伝送モード1への割り当てスロット数(5の整数倍)</td>
<td>8</td>
<td>0100:16APSK</td>
<td>0101:32APSK</td>
<td></td>
</tr>
<tr>
<td>伝送モード1の衛星出力バックオフ</td>
<td>8</td>
<td>0110-1110:reserved</td>
<td>1111:割当なし</td>
<td></td>
</tr>
<tr>
<td>伝送モード8(変調)</td>
<td>4</td>
<td>内符号11種類</td>
<td></td>
<td></td>
</tr>
<tr>
<td>伝送モード8(符号化率)</td>
<td>4</td>
<td>0000: reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>伝送モード8への割り当てスロット数(3の整数倍)</td>
<td>8</td>
<td>0010:1/3</td>
<td>0011:1/2</td>
<td></td>
</tr>
<tr>
<td>伝送モード8の衛星出力バックオフ</td>
<td>8</td>
<td>0100:2/3</td>
<td>0101:3/4</td>
<td></td>
</tr>
</tbody>
</table>

表 8 スロット割り当て規則

<table>
<thead>
<tr>
<th>変調</th>
<th>周波数効率 [bps/Hz]</th>
<th>規格化効率</th>
<th>割当単位 [slot]</th>
<th>データ [slot]</th>
<th>ダミー [slot]</th>
</tr>
</thead>
<tbody>
<tr>
<td>32APSK</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>16APSK</td>
<td>4</td>
<td>4/5</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>8PSK</td>
<td>3</td>
<td>3/5</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>QPSK</td>
<td>2</td>
<td>2/5</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>π/2シフトBPSK</td>
<td>1</td>
<td>1/5</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

符号化率とバックオフについても、5 スロット単位での指定が可能である。ここでいうバックオフは、衛星中継器における当該変調方式の增幅動作点を指し、変調飽和増幅レベルを基準にした平均電力を dB 表示したものである。符号化率ごとにバックオフ指定ができるようにしているのは、同じ変調方式であっても、符号化率が大きいほど、大きなバックオフを必要とするからである。

受信機では TMCC 信号のバックオフ情報を使い、図 9 に示すように基準となる信号点配置を更新し、これに合わせた位相誤差テーブルおよび尤度テーブルを生成または選択し初期受信を行う。
図9 TMCC信号「スロット/変調方式情報」による位相誤差テーブル・尤度テーブル用基準信号点の更新
TMCC 信号によるバルク伝送機能

1. バルク伝送

ISDB-S 方式を使った現行の BS デジタル放送では最悪月時間率 99.7%で 52.17Mbps の伝送容量を確保している。ロールオフ率の低減や LDPC 符号などの最新の技術を使った場合でも、現在の衛星 EIRP や帯域幅の条件下で、同様のサービス時間率を確保した場合の伝送容量は概ね 70Mbps が限度である。

高度衛星デジタル放送の伝送方式においては、サービス時間率を確保しつつ大容量のデータを伝送するため、バルク(bulk)伝送技術を導入している。バルク伝送は、複数の伝送路を合成してひとつの伝送路として使い、大容量データの伝送を行う技術である。一例として、ISDN の転送容量 64kbps のチャネルを 2 つ同時に使用して、128kbps でのデータ転送を行うようなサービスなどが知られている。

2. 高度衛星デジタル放送におけるバルク伝送

高度衛星デジタル放送においては、図 1(a)に示すような単純な複数チャンネル合成のほか、同図(b)のように、スロット単位での合成伝送も可能である。

3. TMCC 信号のバルク伝送関連情報

TMCC 信号のバルク伝送関連情報を表 1 にまとめる。

<table>
<thead>
<tr>
<th>名称</th>
<th>bit</th>
<th>内訳</th>
<th>bit</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>フレームカウンタ</td>
<td>8</td>
<td></td>
<td>8</td>
<td>1フレームごとにインクリメント</td>
</tr>
<tr>
<td>他チャネル Stream</td>
<td>512</td>
<td>相対ストリーム0の他 c h 接続情報</td>
<td>32</td>
<td>相続フラグ(2bit)</td>
</tr>
<tr>
<td>接続情報</td>
<td></td>
<td>相対ストリーム15の他 c h 接続情報</td>
<td>32</td>
<td>前接: 有(1)/無(0),後接: 有(1)/無(0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>相対メディア</td>
<td></td>
<td>相続メディア</td>
</tr>
<tr>
<td></td>
<td></td>
<td>前接(2bit): BS(0),110CS(1),・・・</td>
<td></td>
<td>前接(2bit): BS(0),110CS(1),・・・</td>
</tr>
<tr>
<td></td>
<td></td>
<td>後接(2bit): BS(0),110CS(1),・・・</td>
<td></td>
<td>後接(2bit): BS(0),110CS(1),・・・</td>
</tr>
<tr>
<td></td>
<td></td>
<td>前接物理ch番号(6bit):</td>
<td></td>
<td>前接物理ch番号(6bit):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>後接物理ch番号(6bit):</td>
<td></td>
<td>後接物理ch番号(6bit):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>前接相続Stream番号(4bit):</td>
<td></td>
<td>前接相続Stream番号(4bit):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>後接相続Stream番号(4bit):</td>
<td></td>
<td>後接相続Stream番号(4bit):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>接続イネーブル(1bit):</td>
<td></td>
<td>接続イネーブル(1bit):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reserved (5bit):</td>
<td></td>
<td>reserved (5bit):</td>
</tr>
</tbody>
</table>
フレームカウンタ
フレームカウンタは1フレームごとにインクリメントするカウンターであり、バルク伝送を行う際のチャネル間同期をとるために利用する。
バルク伝送を行う場合、利用するチャネル間で送信機の
- 動作クロックが同期している
- フレームカウンタの値が一致している
という条件が必要がある。
フレームカウンタの値を強制的に同じ値にセットすることは容易であるが、チャネル間でフレームのタイミングは、電源投入のタイミングなどでもずれるため、チャネル間では±1フレーム未満の時間ずれが生じ得ることになる。
受信機側では、フレーム同期とフレームカウンタの値が合致するように、フレームタイミングが進んでいる方のチャネルに遅延素子を入れてタイミングを合わせることで、チャネル間の同期をとることが可能となる。

他チャンネル Stream 接続情報
他チャンネル Stream 接続情報は、バルク伝送に使われるストリームが組み合わせられる相手チャネルの情報が含まれている。高度衛星デジタル放送では1チャネルあたり16ストリームまで伝送可能であるが、それぞれのストリームについて、構成スロット群の前・後に接続されるストリームの有・無、接続先のメディア（BS、広帯域CS、その他）、接続先のチャンネル番号（BS:1〜23ch、広帯域CS:ND1〜ND24ch）、接続先の相対ストリーム番号に加え、バルク伝送を開始するタイミング信号として、接続イネーブルも伝送される。

受信機の動作
受信機は、受信中のストリームの接続フラグを常時監視し、フラグが立ったとき、その接続メディアおよび接続チャンネル番号を確認し、対応するバルク伝送受信用チューナーを起動する。バルク伝送用チャネルが受信状態に入ったら、接続元のチャネルとタイミングが一致するように、フレーム同期およびフレームカウンタを参照してチャネル間の遅延量を調整し、バルク伝送接続先のストリーム受信を開始する。接続イネーブルがアサートされたら、そのTMCC信号が伝送されたフレームの2フレーム後にバルク伝送を開始する。また、接続イネーブルがネガティブになったら、そのTMCC信号が伝送されたフレームの2フレーム後にバルク伝送を終了し、バルク伝送接続先のチューナーの電源をOFFにする。
バルク伝送の運用イメージと今後の課題

高度衛星デジタル放送の伝送路符号化方式においては、1 中継器の伝送容量を超えるコンテンツの伝送や複数の中継器間における柔軟な伝送スロットの割り当てが可能なバルク伝送の機能を規定している。本資料では、バルク伝送による放送の運用イメージと今後の課題を示す。

1. バルク伝送の運用イメージ

図1にバルク伝送を含む番組編成のイメージを例示する。この例では、編成1から編成3が時間枠により変わる“まだら運用”を想定している。

編成1 : 中継器 A および中継器 B で、各々HDTV(1080/60/I)番組を4番組伝送する。

編成2 : 中継器 A および中継器 B で、各々UHDTV(2160/60/P)の番組を1番組伝送する。

編成3 : 中継器 A と中継器 B にまたがって、バルク伝送によるUHDTV(4320/60/P)番組を1番組伝送する。

時間枠については、数時間の場合から数日にわたる場合など様々な場合が想定され、これらは各映像フォーマットのコンテンツの供給バランスや編成意図などによって決まるものと考えられる。

2. 今後の課題

衛星デジタル放送高度化作業班における議論において、バルク伝送の運用を想定した場合の以下のような課題が提起された。

・ 通常の運用とバルク伝送による運用を時間枠ごとに切替える“まだら運用“とするか固定運用とするか。

・ 通常の運用とバルク伝送の運用を切り替える際に必要なシームレス性。

・ EPG による予約録画を行う場合に、バルク伝送による運用であることや受信に必要なチューナーの数（利用するトラポン数）の受信機への告知の手段。

・ バルク伝送非対応受信機の存在を想定する場合の、非対応受信機の動作。

今後、バルク伝送を運用するための要求条件を整理し、標準規格および運用規定策定時において運用形態も含めた議論を行う必要がある。
APSK を小型受信アンテナで受信する場合の
サービス時間率向上について

16APSK および 32APSK は所要 C/N が高いことともとに、衛星中継器動作において 3dB 程度の出力バッ防オフが必要であることから、所定のサービス時間率を得るためには、現状の衛星中継器システムでは大きな受信アンテナが必要である。16APSK および 32APSK を用いる場合の小型デジタル放送用受信アンテナによる受信でサービス時間率を向上する方法として以下が考えられる。

ただし、これらの方策の実現のためには、今後、機器の研究開発が必要であり、また、経済性の観点からも検討が必要である。

(1) 衛星搭載中継器の定格出力の増大
所要の出力バックオフ時に衛星 e.i.r.p. が規定値となるように、定格出力の大きな中継器を衛星に搭載する。手段としては、定格出力の大きな TWT または、複数の TWT 出力を合成する。

(2) サービスエリア内の衛星 e.i.r.p. の均一化
現状のサービスエリアの衛星 e.i.r.p. が、ビーム中心部に比べてサービスエリア端部では約 3dB 程度低いため、サービスエリア端部においては大きな開口径の受信アンテナが必要となる。中心部とエリア端部における衛星 e.i.r.p. の差を小さくする手段として、衛星搭載アンテナの放射パターンを全国均一化するとともに、中継器出力を增大させる方法がある。

(3) アップリンクの高 C/N 化
アップリンクとダウンリンクの合計で、所要の C/N を確保するために、アップリンク側でも高い C/N を確保する必要がある。このため、アップリンク地球局において、高出力の送信機を用いることやサイトダイバーシティ技術の検討などの方法がある。

表 1(a)、表 1(b) に方法（1）と放送（3）を組み合わせた場合の受信アンテナ開口径と最悪月サービス時間率との関係を示す。なお、アップリンクの C/N を 29dB と仮定した。表 1(a) より、16APSK（3/4）の場合は、東京で 45cm、那覇、対馬で 60cm アンテナで概ね最悪月 99.5% のサービス時間率を確保できる。

<table>
<thead>
<tr>
<th>受信点</th>
<th>EIRP</th>
<th>伝送方式</th>
<th>アンテナ開口径</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>45cm</td>
</tr>
<tr>
<td>東京</td>
<td>60dBW</td>
<td>16APSK(3/4)</td>
<td>99.80%</td>
</tr>
<tr>
<td>那覇</td>
<td>57dBW</td>
<td>(OBO が 1.7 dB のとき、中心部で e.i.r.p. が 60dBW となるような定格出力)</td>
<td>99.20%</td>
</tr>
<tr>
<td>対馬</td>
<td>57dBW</td>
<td></td>
<td>99.47%</td>
</tr>
</tbody>
</table>

参考資料 1-11
表1(b)より、32APSK（4/5）の場合は、東京で60cm、那覇、対馬で90cmアンテナで概ね最悪月99.5%のサービス時間率を確保できる。

<table>
<thead>
<tr>
<th>受信点</th>
<th>EIRP</th>
<th>伝送方式</th>
<th>アンテナ開口径</th>
<th>アンテナ開口径</th>
<th>アンテナ開口径</th>
<th>アンテナ開口径</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>45cm</td>
<td>60cm</td>
<td>75cm</td>
<td>90cm</td>
</tr>
<tr>
<td>東京</td>
<td>60dBW</td>
<td>32APSK(4/5)（OBOが2.9dBのとき、中心部でe.i.r.p.が60dBWとなるような定格出力）</td>
<td>98.94%</td>
<td>99.53%</td>
<td>99.75%</td>
<td>99.84%</td>
</tr>
<tr>
<td>那覇</td>
<td>57dBW</td>
<td>16APSK(3/4)（OBOが1.7dBのとき、e.i.r.p.が60dBWとなるような定格出力）</td>
<td>84.01%</td>
<td>97.93%</td>
<td>99.10%</td>
<td>99.48%</td>
</tr>
<tr>
<td>対馬</td>
<td>57dBW</td>
<td>32APSK(4/5)（OBOが2.9dBのとき、中心部でe.i.r.p.が60dBWとなるような定格出力）</td>
<td>75.29%</td>
<td>98.44%</td>
<td>99.40%</td>
<td>99.67%</td>
</tr>
</tbody>
</table>

表2(a)方法（1）と（2）を組み合わせた場合の受信アンテナ開口径と最悪月サービス時間率の関係(16APSK)

<table>
<thead>
<tr>
<th>受信点</th>
<th>EIRP</th>
<th>伝送方式</th>
<th>アンテナ開口径</th>
<th>アンテナ開口径</th>
<th>アンテナ開口径</th>
<th>アンテナ開口径</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>45cm</td>
<td>60cm</td>
<td>75cm</td>
<td>90cm</td>
</tr>
<tr>
<td>東京</td>
<td>60dBW</td>
<td>16APSK(3/4)（OBOが1.7dBのとき、e.i.r.p.が60dBWとなるような定格出力）</td>
<td>99.80%</td>
<td>99.89%</td>
<td>99.93%</td>
<td>99.95%</td>
</tr>
<tr>
<td>那覇</td>
<td>60dBW</td>
<td>16APSK(3/4)（OBOが1.7dBのとき、e.i.r.p.が60dBWとなるような定格出力）</td>
<td>99.69%</td>
<td>99.84%</td>
<td>99.89%</td>
<td>99.92%</td>
</tr>
<tr>
<td>対馬</td>
<td>60dBW</td>
<td>16APSK(3/4)（OBOが1.7dBのとき、e.i.r.p.が60dBWとなるような定格出力）</td>
<td>99.81%</td>
<td>99.91%</td>
<td>99.94%</td>
<td>99.96%</td>
</tr>
</tbody>
</table>
表2(b)より、32APSK (4/5) の場合は、東京で60cm、那覇で75cm、対馬で60cmの受信アンテナで最悪月99.5%のサービス時間率を確保できる。
略語・用語集

本報告書で使用される略語の綴りと意味を示す。

<table>
<thead>
<tr>
<th>略語</th>
<th>定義</th>
</tr>
</thead>
</table>
| **16APSK** | 16-ary Amplitude and Phase Shift Keying 16-ary Amplitude and Phase Shift Keying
振幅・位相の異なる 16 点の信号点配置で構成されるデジタル振幅位相変調方式。 |
| **32APSK** | 32-ary Amplitude and Phase Shift Keying 32-ary Amplitude and Phase Shift Keying
振幅・位相の異なる 32 点の信号点配置で構成されるデジタル振幅位相変調方式。 |
| **8PSK** | 8-ary Phase Shift Keying 8-ary Phase Shift Keying
8 相のデジタル位相変調方式。 |
| **AGC** | Automatic Gain Control Automatic Level Control
自動利得制御。入力信号レベルが変化しても、出力信号レベルが一定になるよう、増幅器の利得を制御する回路。 |
| **ALC** | Automatic Gain Control Automatic Level Control
自動レベル制御。入力信号レベルが変化しても、出力信号レベルが目的の値となるよう、利得を制御する回路。 |
| **BER** | Bit Error Ratio ビット誤り率 |
| **BCH code** | Bose-Chaudhuri-Hocquenghem code ランダム誤り検出/訂正用のブロック符号方式の 1 つ。 |
| **BPF** | Band Pass Filter ある周波数範囲の周波数の信号だけを通過させ、それ以外の周波数の信号を減衰させるフィルタ。 |
| **BPSK** | Binary Phase Shift Keying 2 相のデジタル位相変調方式。 |
| **BS** | Broadcasting Satellite 11.7-12.2GHz のチャンネルプランされた周波数帯での衛星放送サービスまたは衛星放送のための衛星本体。 |
| **C/N** | Carrier-to-Noise power ratio CN 比。搬送波電力と雑音電力の比。 |
| **DVB-S2** | Digital Video Broadcasting via Satellite (2nd generation) DVB が策定したデジタル衛星放送・衛星素材伝送の仕様。 |
| **FEC** | Forward Error Correction 一定のアルゴリズムにより受信側でビット誤りを訂正すること、またはそのための符号化方式の総称。 |

参考資料 1-12
<table>
<thead>
<tr>
<th>メンバーシップ</th>
<th>英単語</th>
<th>サンプル（日本語）</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBO</td>
<td>Input Back Off</td>
<td>入力バックオフ</td>
</tr>
<tr>
<td>IMUX</td>
<td>Input Multiplexer</td>
<td>入力マルチプレクサ</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
<td>インターネットプロトコル</td>
</tr>
<tr>
<td>ISDB-S</td>
<td>Integrated Services Digital Broadcasting for Satellite</td>
<td>現在の BS デジタル放送および広帯域 CS デジタル放送方式</td>
</tr>
<tr>
<td>LDPC</td>
<td>Low Density Parity Check (codes)</td>
<td>低密度パリティ検査符号。非常に疎な検査行列により定義される線形符号。</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
<td>数値をバイナリで表しした場合の最下位ビット</td>
</tr>
<tr>
<td>MPEG-2</td>
<td>Moving Picture Experts Group phase 2</td>
<td>MPEG により策定された規格のひとつ。映像圧縮、音声圧縮、多重化技術などからなる</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
<td>数値をバイナリで表しした場合の最上位ビット</td>
</tr>
<tr>
<td>OBO</td>
<td>Output Back Off</td>
<td>出力バックオフ</td>
</tr>
<tr>
<td>ODU</td>
<td>Out-Door Unit</td>
<td>BS 受信アンテナの周波数コンバーター部</td>
</tr>
<tr>
<td>OMUX</td>
<td>Output Multiplexer</td>
<td>出力マルチプレクサ</td>
</tr>
<tr>
<td>PCR</td>
<td>Program Clock Reference</td>
<td>MPEG-2 システムの基準クロックを送受で同期させるために伝送する時間基準信号</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadrature Phase Shift Keying</td>
<td>4相のデジタル位相変調方式。</td>
</tr>
<tr>
<td>TMCC</td>
<td>Transmission and Multiplexing Configuration Control</td>
<td>複数の伝送モード(変調方式・誤り訂正符号化率)など伝送や多重に関する制御を行う制御信号。</td>
</tr>
<tr>
<td>TS</td>
<td>Transport Stream</td>
<td>MPEG-2 のシステムのパケットストリーム。</td>
</tr>
<tr>
<td>TLV</td>
<td>Type Length Value</td>
<td>可変長パケットを伝送するための信号形式。後続するデータの形式、バイト長を示す情報の後にデータが続く。</td>
</tr>
<tr>
<td>TWTA</td>
<td>Traveling Wave Tube Amplifier</td>
<td>進行波管増幅器。特に衛星通信・放送で用いられ、マイクロ波帯用の増幅器として利用される。</td>
</tr>
</tbody>
</table>