
「ユビキタス センサーネットワーク技術に関する研究開発」 公開資料

三菱電機株式会社 松下電器産業株式会社

平成17年度の研究開発の実施体制

ユビキタスセンサーネットワーク技術の研究領域ターゲット 共同利用型無線 3.5G/260M Routing装置 1~3Mbps/5km 25G 36Mbps/5km IP網 携帯電話. 60 ~ 800M 32kbps/10km 900M/1.8G 384kbps/1km Routing装置 防災NW 429MHz/2.4G 松下電器 2.4kbps/250kbps/100m Meshネットワーク アドホック通信

センサー&アクチュエーター

5G/2.4G

36Mbps/hop数/300m

平成19年度での到達目標

Meshネットワーク

ユビキタスネットワーク社会を見据え、"ユビキタスセンサーネットワークの基盤技術を確立"する。 また、技術の利活用展開を見据えた2種類の実証実験システムを構築を構築する。 最も重要な基盤技術は、以下の3つ。

<u>1.アンチ・コリジョン技術</u>

センシングデータの持つ意味を残したまま、"データ容量を1/100以下に削減"し、"200台の同時協調制御"を実現する。

ネットワークのオーバフローを回避するために、

必要な映像情報を、必要な時に提供する。

映像情報のメタ情報化による、無駄な情報の削除。

菱雷機

2.アドホックネットワーク技術

通信エリア内において200台の高密度配置実現と、効率的な平面拡大(3ゾーン)を実現する。

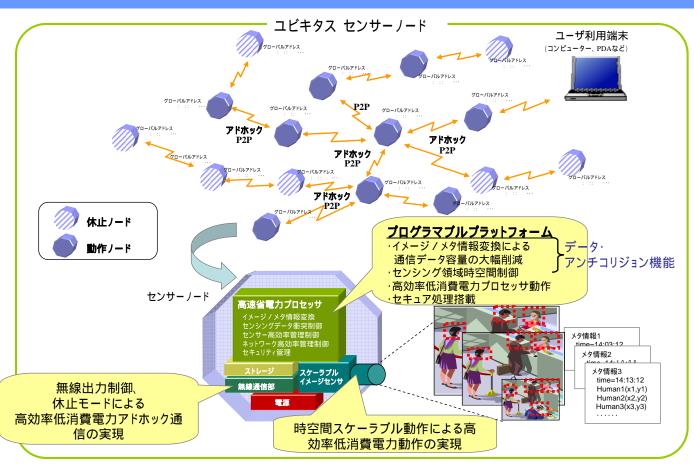
極め細かいセンシングをするために、通信エリア内の設置密度をUP

ルーティングオーバヘッド増加を抑制し、パケット損失1%以下、代替経路1秒切替を実現する。

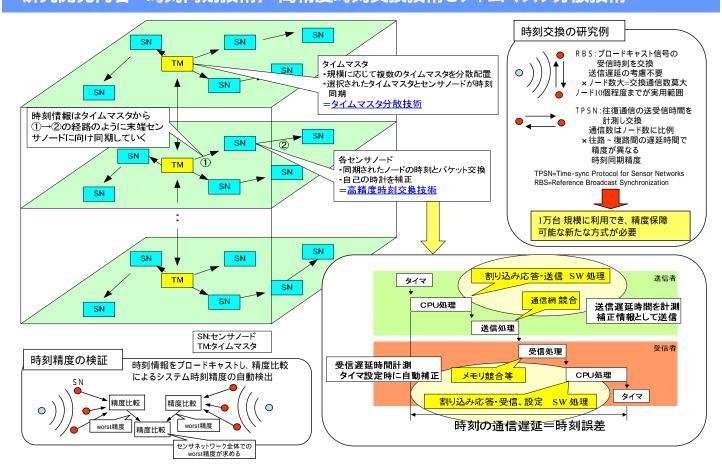
効率的にエリア平面拡大

サブゾーンを自動的に構成し、、経路探索時間: 1秒、テーブルサイズ: 数Kbyteを実現する。

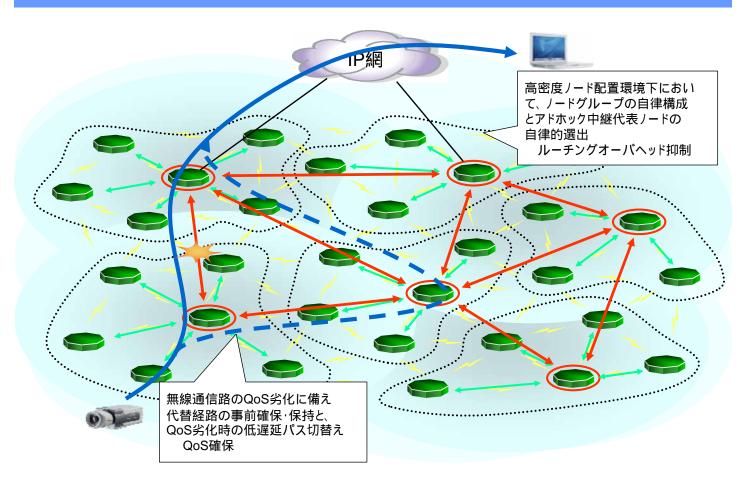
3. ネットワーク高速トレーシング技術

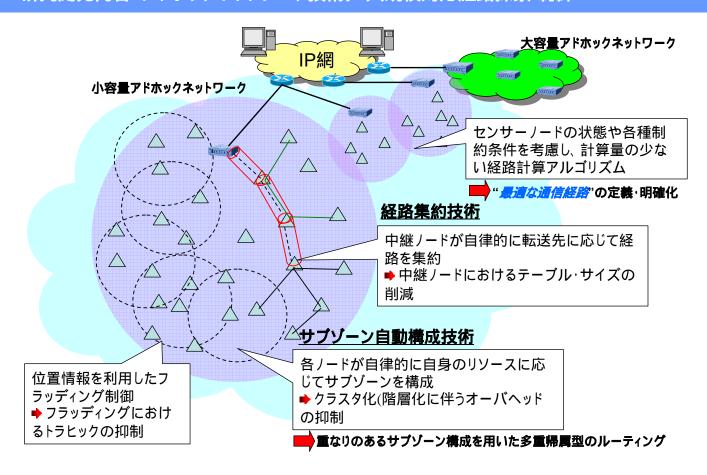

膨大な数のセンサーを効率的に接続する。また、緊急時等の優先データ転送も実現する。

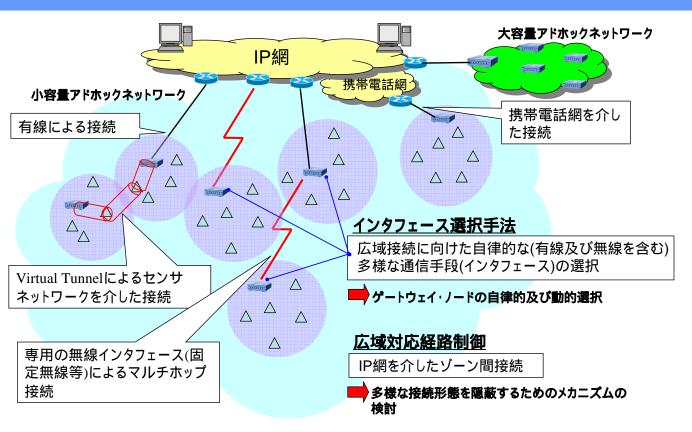
優先データをアドホック環境下で転送するために、転送遅延:0.1秒以下、パケット損失:0.1%以下を実現する。 膨大な数で、かつ、多種多様なセンサーを共通的に接続する。(非IPデバイスセンサーノードとの共用)


研究開発項目

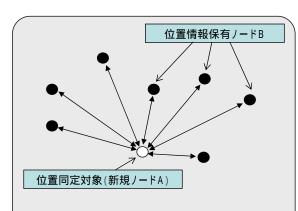
ユピキタスセンサーノード 技術に関する研究開発	アンチ・コリジョン技術	プログラマブルプラットフォーム技術の研究開発	松下	
		センシングデータ衝突回避技術の研究開発		
	時刻同期技術	高精度時刻交換技術の研究開発		
		タイムマスタ分散技術の研究開発	三菱	
		時刻精度検証技術		
センサーネットワーク制御 管理技術に関する研究開発	アドホックネットワーク技術	ルーティングアルゴリズムの研究開発	松下	
		QoS確保技術の研究開発		
		動的制御技術の研究開発	大容量	
		大規模対応経路検索/制御技術の研究開発	三菱	
		広域対応経路検索/制御技術の研究開発	小容量	
	センサー位置同定技術	遅延時間測定技術の研究開発		
		測距プロトコルの研究開発		
		マルチパス分離技術の研究開発	三菱	
		高精度クロック技術の研究開発	二菱	
	遠隔保守管理技術	故障ノード特定技術の研究開発		
	ネットワーク高速トレーシング技術	優先制御技術の研究開発		
		帯域リソース割当・管理技術の研究開発		
		帯域リソース保留技術の研究開発		
		異種ネットワーク接続技術の研究開発		
		デバイスのシームレス接続技術の研究開発		
リアルタイム大容量データ 処理・管理技術に関する 研究開発	センシングデータ処理技術	センサーノード搭載型高速検出技術の研究開発		
		システムノード搭載型変動解析技術の研究開発	松下	
		センサーノード搭載型ロバスト認証技術の研究開発		
		センサーノード搭載型高精度認知技術の研究開発		
	データマイニング技術	リアルタイム保管管理技術の研究開発		
		オブジェクト・環境認識技術の研究開発		
		ノード機能管理技術の研究開発		
		コンテキストアウェア技術の研究開発		
		動線分析技術の研究開発	三菱	


研究開発内容「アンチ・コリジョン技術」

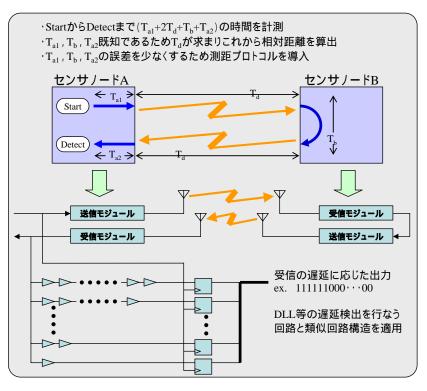

研究開発内容「時刻同期技術」 高精度時刻交換技術とタイムマスタ分散技術


研究開発内容「アドホックネットワーク技術」ルーティング オーバヘッド抑制とQoS確保

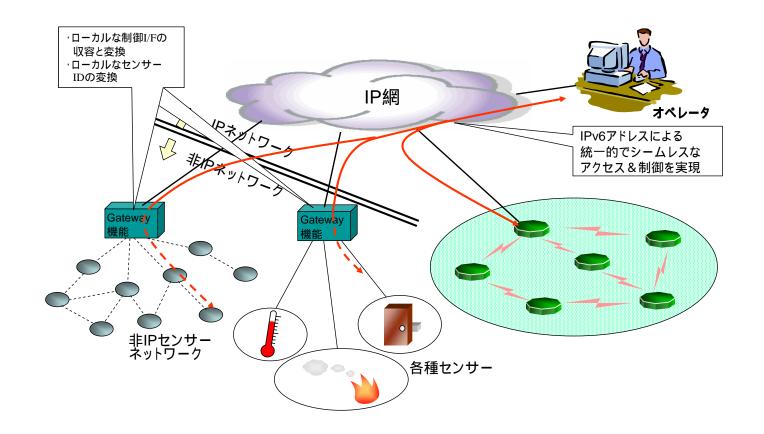
研究開発内容「アドホックネットワーク技術」 大規模対応経路探索/制御



研究開発内容「アドホックネットワーク技術」 広域対応経路探索/制御


研究開発内容「センサー位置同定技術」 無線通信遅延時間測定技術

- •位置同定のため、多数(最低3点)の 位置基準点からの距離測定
- ・無線通信遅延時間測定による センサノード間の距離測定技術
- ・多数ノード間との距離測定結果を 用いた誤差補正



- 距離に応じた測距結果信頼度評価
- 多数ノードとの測距結果により統計的位置同定
- 位置同定結果から個々の位置情報保有ノードとの 測距信頼度評価とフィードバック
- 位置同定した/ードは位置情報信頼度の重みをつけ 新たに位置情報保有/ードとなる

- 1. 新規ノードAはブロードキャスト通信により電波到達範囲のノードを探知
- 2. Aは電波到達範囲の内位置情報を持つノードBの位置情報リストを生成
- 3. 位置情報リストの全てのノードBに対して距離測定を実施
- 4. 各 / ードB の位置情報と得られた距離情報より位置を同定

研究開発内容「ネットワーク高速トレーシング技術」 デバイスのシームレス接続

研究開発内容「センシングデータ処理技術」 センサーネットワーク人物認知応用例

センサネットワークの人物認知(顔認証、虹彩認証)で実現できる応用事例

応用例1(災害現場)

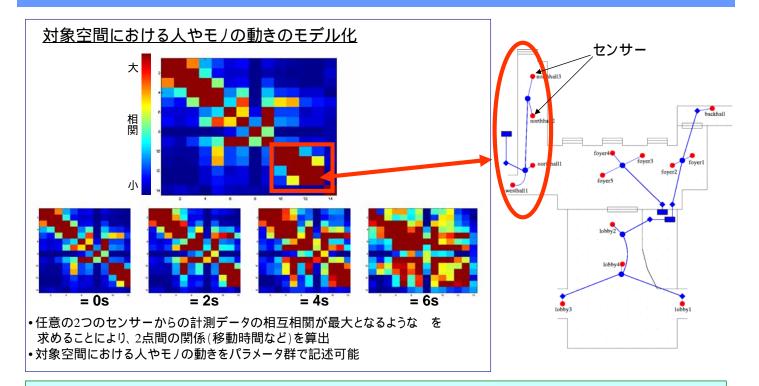
- ・行方不明の さんの最終確認位置はA5地区です。
- ·B3地区の さんは自律移動できません。
- ·救援隊Dは今X地区を北上中です。

応用例2(病院、介護施設)

- ・301号室の さんは今何処ですか。
- ・認知症の さんは正面玄関にいます。
- ・外来の さんは今レントゲン室です。

必要となる技術

- ・人物検出、トラッキング
- ·人物認知(顔認証、虹彩認証)
- ·位置同定、行動解析、


技術課題

- ・リアルタイム人物検出、 ロバスト人物検出
- ・リアルタイム人物認知、 ロバスト人物認知
- ・ノード連携行動解析
- ・顔認証…様々な現場での応用範囲が広い(様々な状況で検出・認証の可能性が高い)
- ・虹彩認証…認証精度が最も高〈ルイセキュリティーへの対応が可能

研究開発内容「リアルタイム大容量データ処理・管理技術」の活用イメージ

研究開発内容「データマイニグ技術」 動線分析技術

現在の状況の把握

- •膨大な数の組み合わせに対し、高速特異値分解により一部のデータから全体を推定
- タイムリーなサービスの提供(エレベータの最適配置、タクシーの配車、警備の必要性の有無)が可能

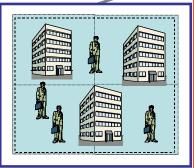
研究成果数(特許·論文等)

	平成17年度	平成18年度	平成19年度	実施期間 終了後	合 計
特許取得数	0 件	0 件	0 件	14 件	14 件
特許出願数	26 件	17 件	9 件	3 件	53 件
論文掲載数	2 件	4 件	5 件	5 件	16 件
研究発表数	18 件	14 件	8 件	3 件	38 件
報道発表数	3 件	2 件	3 件	5 件	11 件

平成18年度以降及び合計は、予定数。

「安心·安全」(松下電器産業株式会社) ユビキタス センサーネットワーク実証実験

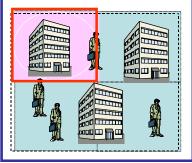
- 顔認識データの検索機能
- 特定人物の追尾機能
- イメージセンサー画像の記録機能
- 記録画像の検索機能
- 行動解析機能


センサーノード基本配置によるセンシング範囲 : センサーノード(100m間隔設置)

センサーノード高密配置によるきめ細かい センシング範囲

: センサーノード(25m間隔設置)

IP網(IPv6)


平成17年度

【基本配置】

- ·エリアの広さ 400m×400m
- ・センサーノード間距離 100m
- ·センサーノード数 25台

平成18年度

【高密度配置】

25台

・エリアの広さ 半径100m ・センサーノード間距離 25 m センサーノード数

THE RESERVE TO SERVE 1 11771111

平成19年度

【超高密度配置】

半径100m×4 ・エリアの広さ

- ・センサーノード間距離 25 m
- センサーノード数 50台×4

ユビキタス センサーネットワーク実証実験 「食・農業」(三菱電機株式会社)

- ・ 圃場の環境をセンサーノードで収集、配信、蓄積する実験システムを構築。
- 環境(温度等)を対象とした250kbps程度のビキタスセンサーネットワークの要素技術を実証評価する。

データ - センター 【サブゾーン】 農業法人、JA、 エリアの広さ 100m × 100m 生産者組合、など センサーノード間距離 センサーノード数 10 ~ 20m 国場サーバー 25~100個 広域網 ゲートウエイ 温度、湿度、日射、土壌水分 地温、etc. コーディネータ 各圃場データの収集 ンが連携してゾーン を構成 ・ゲートウエイを介して広域網に接続 ・時刻に同期したデータを収集 センサーノード

【システム機能】

生産量・質とその年の気候(温湿度、日射量、地温な ど)や土地質の関係を累積・分析し、生産量・質がべ ストとなる肥料、農薬の量や散布時期をアドバイス。

【平成19年度技術検証項目】

ゾーン間連携(3ゾーン: ノート数約300台)において

·時刻同期技術

時刻精度 5 m sec以内

条件: ノードの電波到達範囲内にタイムマスタ1個以上

・アドホックネットワーク技術(小容量)

経路探索時間: 1秒、テーブルサイズ:数kByte

・センサー位置同定技術

位置精度:25cm以内

条件:ノードの電波到達範囲内に、位置情報を持つノードが 3個以上

·遠隔保守管理技術

故障ノード特定時間:1秒以内

・ネットワーク高速トレーシング

優先パケットの伝送遅延: 0.1 sec以内、 パケット損失:0.1%以下