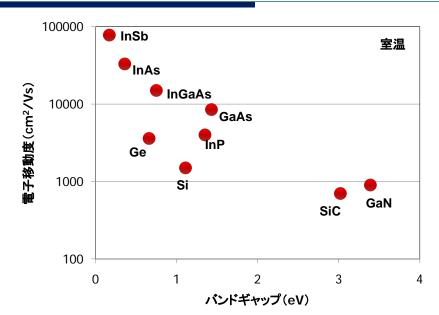

THzエレクトロニクス時代おける 化合物半導体デバイス技術

NTTフォトニクス研究所 榎木孝知 2011. 1. 14

光ファイバ伝送実用システムの進展

光の物理資源(時間・波長・位相・偏波・振幅・空間)を活用して、情報伝送

概要


- ◆ 通信を支えるハードウェア技術
- ◆ 高周波化合物半導体電子デバイスの役割
- ◆ 高周波化合物半導体電子デバイスの現状と可能性
- ◆ 海外での取り組み例
- ◆ 持続的なデバイス開発の課題

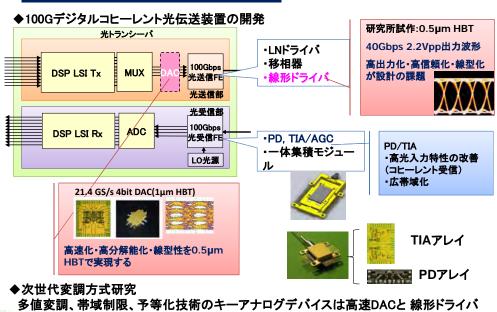
NTT Photonics Laboratories

2

半導体の電子移動度

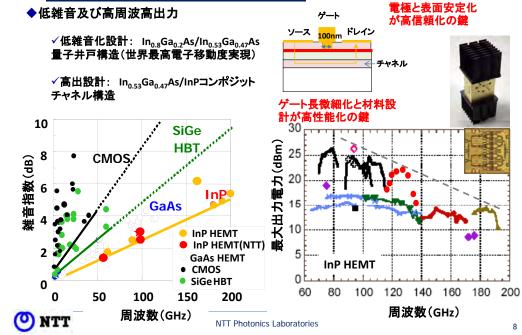


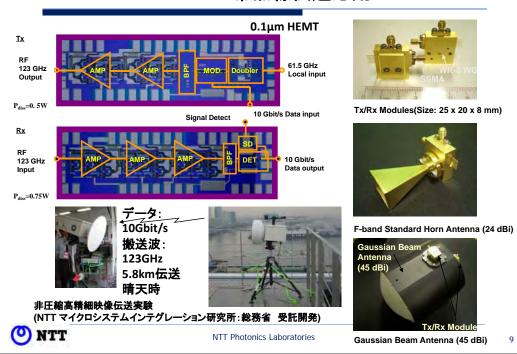
NTT Photonics Laboratories


超100GHz(THz)エレクトロニクス 電波天文/国防応用(1990~) 10000 ▲トランジスタ帯域 THz帯利用開拓が活発化 論文トップデータ ●増幅器IC帯域 依然として未開拓周波数帯 超100GHzシステム開発の先行 1000 周波数(GHz) センサ・イメージング 1mm 120GHz帯10Gbps無線伝送 60G 無線リンク 40G 光通信 10 ハイブリッド集積 10G 光通信 無線LAN 0cm 無線LAN 1960 1970 1980 1990 2000 O NTT **NTT Photonics Laboratories**

InP系HBT(光通信IC)

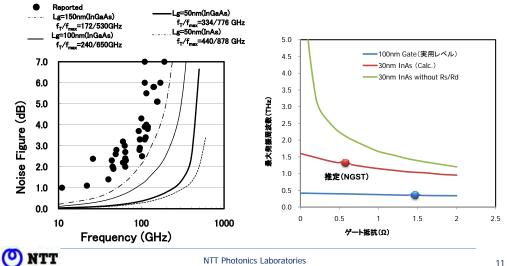
低電流で高利得(バイポーラトランジスタの特徴)であり、広帯域(ベースバンド)増幅 器に有利


次世代伝送システムを支える高速光エレクトロニクス技術

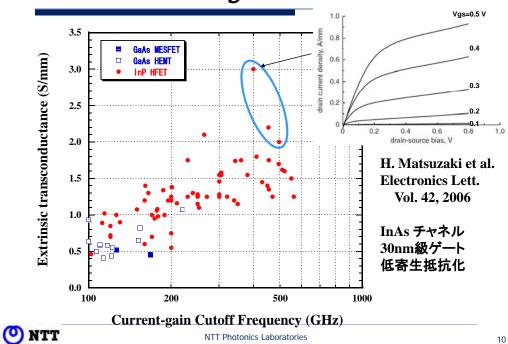

NTT Photonics Laboratories

O NTT

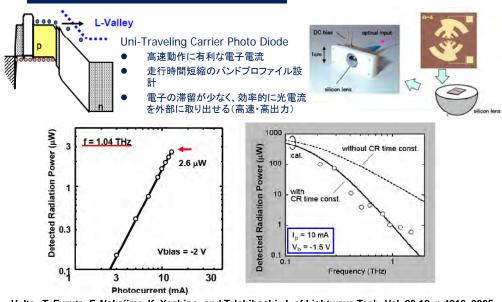
InP系HEMT(ミリ波IC)



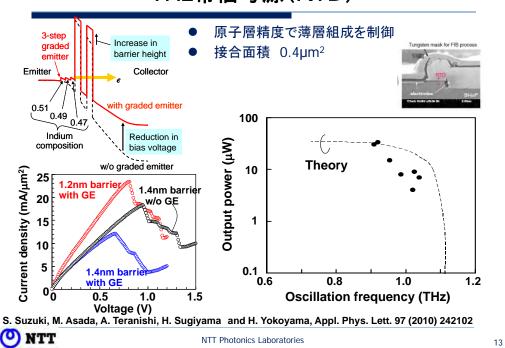
120-GHz帯無線伝送応用

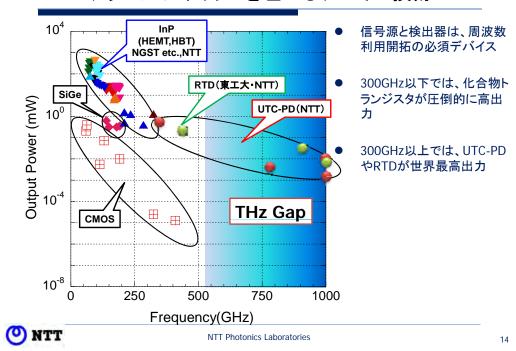


極限性能(計算值)


- 高電子移動度チャネル(InAs、In、Ga_{1-x}As, x>0.53) と50nm以下のゲート長微細化 →300GHz帯LNA NF<4dB)の可能性
- Rs, Rd等寄生素子低減のエンジニアリングで2THz級の帯域も期待できる

 f_T and g_m of HEMT


THz帯フォトミキサ

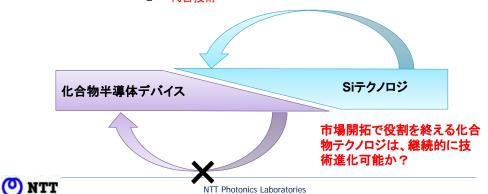


H. Ito, T. Furuta, F. Nakajima, K. Yoshino, and T. Ishibashi, J. of Lightwave Tech. Vol. 23,12, p.4016, 2005

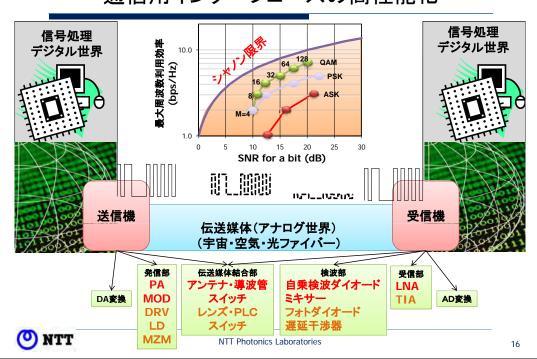
THz带信号源(RTD)

テラヘルツギャップを埋めるデバイス技術

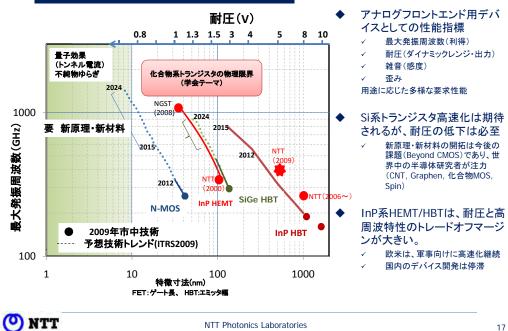
従来の周波数開拓モデル


基礎研究 Pioneer

市場開拓 Frontier


市場拡大 Colony

市場成熟 Survivor


- 新材料研究 ■ 新原理導入
- ニッチユーザ
 - 探索
- 信頼性·製造
- 体制
- 代替技術
- 大型設備投資 製造体制維持
- 量産・低コスト化
- サプライチェーン
- 高機能化

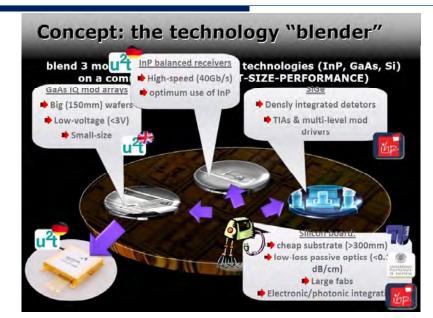
通信用インターフェースの高性能化

ナノテクノロジと高速トランジスタの技術動向

NTT Photonics Laboratories 17

Monolithic v.s. Hybrid

ICレベル	Monolithic	Hybrid	
アナログ性能	0	0	
回路設計性	© /	0	
サイズ	◎ 高均		
信頼性		度配線	
量産性(コスト)	0	0	
サブシステムレベル	More Moore	Heterogeneous (実装)	
サブシステムレベル アナログ性能			
		(実装)	ICの性能を引き出
アナログ性能	0	(実装) ◎ △ A △ す	·ICの性能を引き出 新実装(集積化)技
アナログ性能回路設計性	(555) O (0	(実装) ◎ △ △ △ △ △ △ △ △ △ △ △ △	ICの性能を引き出


SoC可能なアナログ・ディジタルシステムは、Siのアナログ特性と市場規模により決まる 多様且つハイエンドなシステムには、Siと化合物の融合(ヘテロジニアス集積)が必要

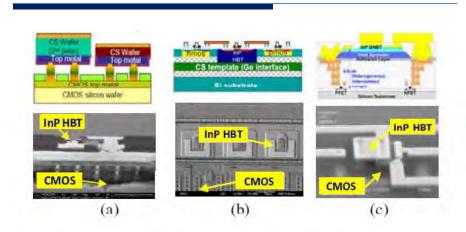
NTT Photonics Laboratories

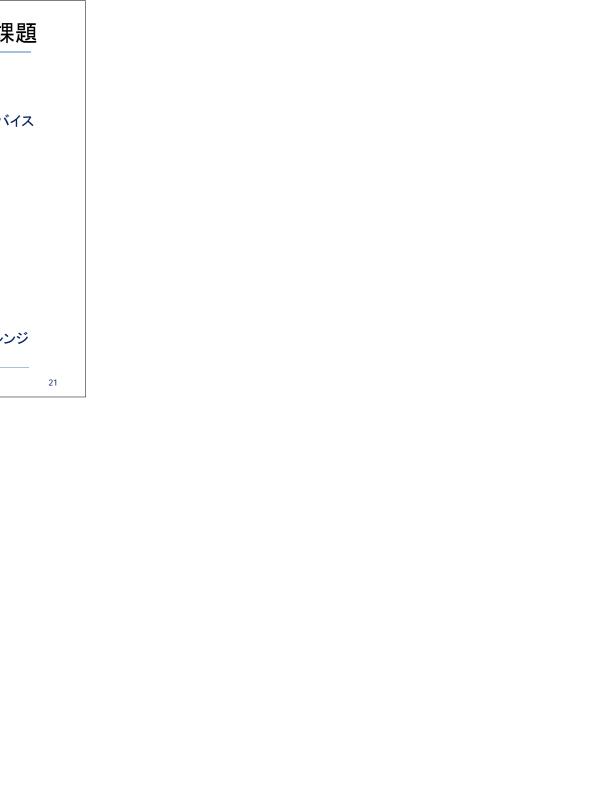
18

欧米の取り組み

http://cordis.europa.eu/fp7/ict/photonics/docs/concertation/conc20oct2010-galactico en.pdf Lars Zimmermann, IHP, Germany

COSMOS in DARPA




Figure 1. Heterogeneous integration processes: (a) micrometer scale assembly, (b) epitaxial layer printing, and (c) monolithic epitaxial growth.

THzエレクトロニクス時代のデバイス開発の課題

- 究極的高性能デバイス特性を必要とするTHzエレクトロニクス
- 米国を中心に研究加速
- 多様なアナログ特性に対応するため、ヘテロジニアス集積で各種デバイス の性能を最大限に発揮する
- 新規周波数開拓は新市場開拓 持続的なデバイス開発には、見合う市場が必須
 - 戦略の沿ったデバイス開発
 - 十分な市場規模までの成長を待ちきれない
 - 代替技術の台頭
 - 一定市場に複数企業が参入しパイ分割
 - 新規開発が困難
- Pioneer/Frontierとして開発段階から異業種連携と技術融合にチャレンジ

NTT Photonics Laboratories

