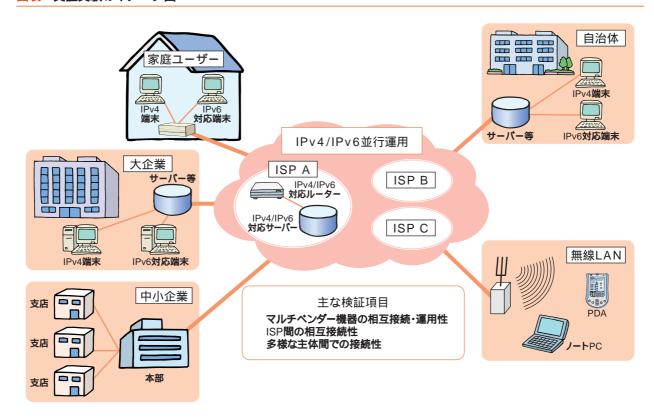
(1) IPv6への移行の推進

インターネット基盤全体のIPv6への円滑な移行のための実証実験を実施


IPv6 (Internet Protocol version 6) は、インターネッ トによるデータ通信を行うために必要な通信規約(イ ンターネット・プロトコル)の次期規格であり、現在、 インターネットで広く利用されているIPv4 (Internet Protocol version 4) に比べ、付与できるIPアドレス数が ほぼ無尽蔵であるとともに、セキュリティの強化、 QoS (Quality of Service) の確保、各種設定の簡素化等 が実現される。このため、「e-Japan戦略」・「e-Japan 重点計画-2003」等において、IPv6を備えたインターネ ット網への移行の必要性が指摘され、また、平成14年 8月の情報通信審議会「21世紀におけるインターネッ ト政策の在り方」第2次中間答申において、IPv6への 移行のためのロードマップが策定されるとともに、政 府によるモデル実証実験等の推進が提言された。

この中間答申及び各種政府決定を踏まえ、総務省で は、平成15年度から、家庭ユーザー、企業ユーザー、 地方自治体等の各インターネット利用主体から構成さ れるネットワークにおいて、インターネット基盤全体

のIPv4からIPv6への移行に関する実証実験を実施し、 ネットワーク運用上の課題の解決を図るとともに、現 在のIPv4に影響を与えずにIPv6に円滑に移行するため の各利用主体に最適な移行モデルを策定することとし ている。また、国際的なIPv6への移行を促進するため、 本実証実験で得られたIPv6への移行ノウハウを、実証 実験の成果の公表等により諸外国に発信していくこと としている(図表)。

本施策により得られるIPv4とIPv6の混在環境下での 移行技術、ネットワーク管理技術、セキュリティモデ ル等の検証結果、及び各主体に応じた移行モデル等の 成果の活用により、インターネットのIPv6への移行の 推進が図られ、利用者がより簡便かつ安全にインター ネットを使用できるとともに、パソコン以外のあらゆ る機器がネットワークに接続可能な環境が整備される など、「世界最高水準の高度情報通信ネットワークの 形成」のために大きく寄与することが期待される。

図表 実証実験のイメージ図

(2)IP電話サービスの本格的な普及に向けて

電気通信番号に関する指定要件の明確化等

昨今の急速なブロードバンドの普及に伴い、IP電話 サービスの普及も加速度的に進展している。総務省で は、IP電話の一層の普及に向けた制度整備として、一 般加入電話からIP電話(IP電話網に直接接続されてい る端末)にダイヤルするための番号として、「050」か ら始まる11桁の番号を利用できるようにするため、平 成14年6月、電気通信番号規則の一部を改正した。050 番号については、平成15年度末時点で25社に割り当て られており、平成15年10月には一般電話からの着信が 可能となったところである(図表)

また、平成14年3月から平成14年度電気通信番号に 関する研究会が開催され、平成15年9月に従来の一 種・二種の事業区分の廃止に伴う番号計画の見直し等 を内容とする最終報告が取りまとめられた。

総務省では、この報告を受けて、電気通信番号の指 定対象事業者の拡大への対応、番号指定時における要 件の明確化等を内容とする電気通信番号規則の改正を 行った(図表)

図表 IP電話番号の指定状況(平成15年度末)

(株)エヌ・ティ・ティ・エムイー	(株)ケーブルテレビ富山	(株)シーテック
(株)ゼットティヴィ	日本テレコム(株)	(株)長野県協同電算
ピー・ピー・テクノロジー(株)	アイテック阪神(株)	中部テレコミュニケーション(株)
フュージョン・コミュニケーションズ(株)	アットネットホーム(株)	(株 NTT PC コミュニケーションズ
ケイディーディーアイ(株)	(株)エヌ・ティ・ティネオメイト	ジャパンケーブルネット(株)
九州通信ネットワーク(株)	(株)ケイ・オプティコム	東北インテリジェント通信(株)
エヌ・ティ・ティ・コミュニケーションズ(株)	ケイエムエヌ(株)	イッツ・コミュニケーションズ(株)
(株)ぷららネットワークス	関西マルチメディアサービス(株)	
(株)パワードコム	(株)STNet	計25社

図表 電気通信番号の指定要件の明確化等

【改正前】 <一種・二種/サービスに着目して指定>

事業者の「設備」を識別する番号

固定電話用番号 (地理識別番号)

OAB~J番号 例) 03-5253-5111

(一種事業者に指定)

携帯電話用番号 (地理的識別性なし)

090・080番号 (携帯電話)

070番号 (PHS)

(一種事業者に指定)

事業者を識別する番号

00XY、002YZ**番号 例)**0077(KDDI),0088(JT)

(一種事業者に指定)

0091N₁N₂番号 (二種事業者に指定)

サービスを識別する番号

IP雷話の番号

050番号(全事業者に指定)

付加機能識別番号

OABO**番号 例)着信課金サービス**0120

(一種事業者に指定)

UPTサービス(追いかけ電話サービス)の番号 060番号(一種事業者に指定)

【改正後】 <設備/サービスに着目して指定>

「アナログ電話」及び「アナログ電話相当のIP電話等」の設備

端末系伝送路を直接収容・識別する交換機の設置 技術基準適合維持義務 (音声品質・安定品質等) 地理的識別地域で利用されるための技術的措置 相当程度の需要

緊急通報が原則として利用可能であること 等

携帯電話・PHSの設備 (端末系伝送路設備(無線基地局等)の設置等)

中継ルーティングのための設備 (第一種指定設備と網間信号接続等)

00XY、002YZ番号:回線設備設置事業者の中継設備等に指定 0091N₁N₂番号:回線設備を設置しない事業者の設備に指定

第一種電気通信指定設備との網間信号接続 品質基準 (音声品質) 呼制御機能を有する機器の設置

第一種電気通信指定設備との網間信号接続 サービス制御機能を有する機器の設置

第一種電気通信指定設備との網間信号接続 サービス制御機能を有する機器の設置

(3)次世代ネットワークインフラの整備に関する検討

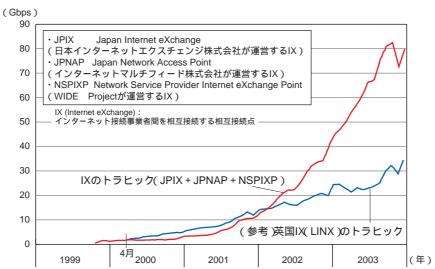
インターネット・インフラ政策の新たな展開

我が国では、これまでの競争政策や振興政策の推進 により、DSL加入者は1,000万人を超え、家庭向け光フ ァイバ (FTTH) サービス加入数は100万契約を超える など、世界で最も高速かつ低廉な料金によるブロード パンドサービスが進展している。プロードバンド利用 者の増加に伴い、アクセス網における通信量(トラヒ ック)も急増しており、今後、電子政府、遠隔医療及 び遠隔教育等のネットワークの高度利用が進展するに 伴い、アクセス網、さらにはそれを支えるバックボー ン回線のトラヒックがより一層増加することも予想さ

れる(図表)

このため、総務省では、今後想定されるIP化、プロ ードバンド化の更なる進展を踏まえ、将来的なトラヒ ックの急増に対応し得る次世代のネットワークインフ ラの整備の在り方について展望するとともに、インフ ラ整備に対する政策支援の在り方等について検討する ため、平成16年2月から次世代IPインフラ研究会を開 催し、同年6月に第1次報告が取りまとめられる予定で ある。

図表 IXにおけるトラヒックの増勢傾向


我が国のIXにおけるトラヒックの最大値(単位:Gbps)

	2001年末	2002 年末	2003年末
NSPIXP(東京+大阪)	5.5	13.0	18.6
JPIX(東京)	6.5	20	32
JPNAP(東京+大阪)	2	10.6	40
合 計	14	43.6	90.6

約3倍

約2倍

IXにおけるトラヒックの伸び(月間平均値)

- LINX: The London Internet Exchange
- 1日のピークトラヒックの1か月の平均値
- 各IXのデータを参考に作成。なお、英国IX(LINX)については、HP等を参考に作成

(4) IPアドレス・ドメイン名の管理

インターネットの安定的運用

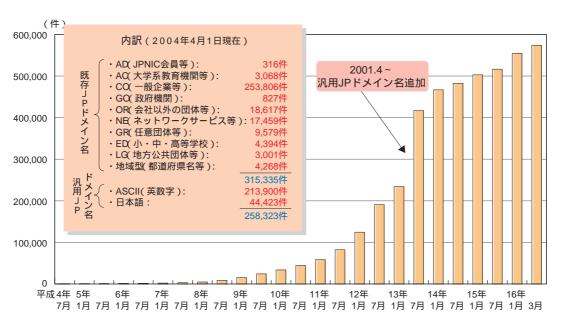
1 ICANNの役割

世界中の人々がインターネットを安心して利用でき るためには、インターネットを利用する上で必要不可 欠なIPアドレス、ドメイン名等の適切な管理が極めて 重要であり、現在、民間の国際非営利組織である ICANN (Internet Corporation for Assigned Names and Numbers)が、これらインターネット資源の適切な管 理を行っている。

ICANNは最高意思決定機関である理事会を頂点にし て組織されており、各種委員会のうち各国政府及び国 際機関の代表者から構成される政府諮問委員会(GAC) には、総務省が我が国唯一の正式登録メンバーとして 参加し、我が国のインターネット利用者の意志を国際 的な議論に反映させつつ、アジア・太平洋地区をはじ めとする国際的な協力体制の確立に取り組んでいる。

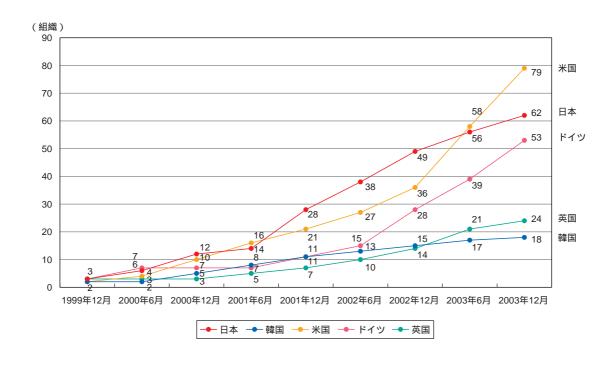
2 ドメイン名の適切な管理

ドメイン名は、「.com」や「.net」のような国の区別 なく世界中で自由に取得可能な分野別ドメイン名 (gTLD: generic Top Level Domain)及び「.jp」のよう な国別ドメイン名 (ccTLD: country-code Top Level Domain)の大きく2種類に分けることができる。分野 別ドメイン名は米国VGRS社をはじめとする登録管理 組織、また、JPドメイン名は日本レジストリサービス (JPRS) 社によって管理されており、ともに、ISP等の 登録事業者を通じて取得することができる(図表 、


日本語をはじめとする国際化ドメイン名について は、2003年3月7日に、IETF (Internet Engineering Task Force) において、3つのRFC (Request for Comments) が発行され、技術標準が確定した。その後、総務省を 含めた日本関係者等が技術標準に基づくサービスの早 期開始を働きかけたことにより、2003年6月にICANN が国際化ドメインネームの登録管理サービスに関する ガイドラインを公表し、7月から当該ガイドライン及 びIETFのRFC準拠による日本語JPドメインのサービス が開始されている。

このほか、ドメイン名における地理的名称(国名等) の保護、ドメイン名に関する紛争処理手続(DRP: Dispute Resolution Policy) やWhoisデータの正確性等、 我が国のインターネット利用者にとって分かりやすく 使いやすいドメイン名の利用環境整備の実現には、国 際的調整が極めて重要であり、総務省としても、 ICANN政府諮問委員会等を通じて積極的に働きかけて いくこととしている。

3 国際的なインターネットの安定性の確保

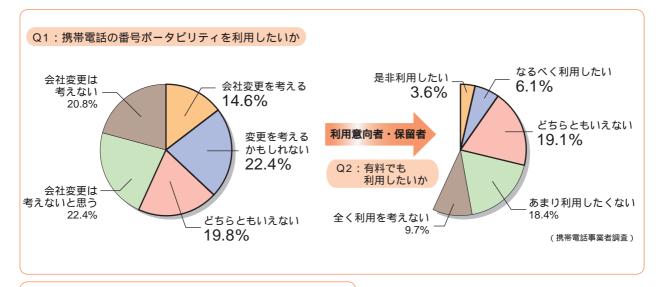

2001年9月11日に発生した米国同時多発テロを受け、 国際的な広がりを持つインターネットの安定性の確保 は極めて重要な課題となっている。また、2003年1月 に韓国等で発生した大規模なインターネット障害は、 我が国には大きな影響はなかったものの、韓国におい て深刻な事態をもたらし、情報通信政策を推進する上 で情報セキュリティの確保が極めて重要な課題である ことを明らかにした。総務省は、ルートネームサーバ ーをはじめとするインターネット基盤が安定的に機能 するように、ICANN等の国際的なインターネットの運 営体制を支援しつつ、これらと連携し、必要な措置を 講じていくこととしている。

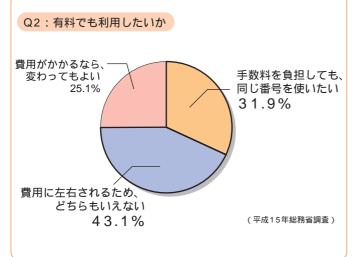
図表 JPドメイン名の登録件数の推移

(出典) JPRS資料

図表 主要国のIPv6アドレスブロック割当て組織数の推移

(5)携帯電話の番号ポータビリティに関する検討


携帯電話の利用者の利便性の向上及び事業者間の競争促進


携帯電話の利用者が、加入している事業者を変更す る際に、これまでと同じ番号を引き続き使用できるよ うにする「番号ポータビリティ」は、利用者の利便性 の向上及び事業者間の競争促進の観点からのメリット が期待されるが、導入には、相当の費用が必要なこと 等から、利用者の利用意向や導入の効果を十分に検討 する必要がある。

このため、総務省では、平成15年11月から携帯電話 の番号ポータビリティの在り方に関する研究会におい て検討を行い、平成16年4月、報告書が取りまとめら れた。

報告書では、 携帯電話利用者の3割前後(約2,400 万加入に相当)の利用意向があること、 諸外国では 導入が進んでおり、競争の促進により通話料金が引き 下げられるなどの効果が生じていること、 番号ポー タビリティの利用者のほか、すべての携帯電話利用者 にも広くメリットがある可能性が高いこと、 果の試算の結果、導入による便益が導入コストを上回 ること等から、携帯電話のポータビリティについては、 平成18年度(2006年度)のなるべく早い時期を目途に 導入することが適当であると提言を行っている (図 表》

携帯電話の番号ポータビリティに対する利用意向

携帯電話の番号ポータビリティに対するニーズは、 存在する

(Q1:37~57%)

しかしながら、有料となる場合には、その利用意向 は低下し、また金額に大きく依存する

(Q2:10~30% (携帯電話事業者調査) 32~75% (平成15年度総務省調查))

調査方法の違いによる結果の相違があるものの、 携帯電話利用者の30%前後の利用ニーズがある ものと考えられる

(出典)総務省「携帯電話の番号ポータビリティの在り方に関する研究会報告書」

(6)移動通信システムの高度化に向けた取組

第3世代移動通信システムの高度化及び第4世代移動通信システムの実現に向けて

1 第3世代移動通信システムの高度化

第3世代移動通信システム (IMT-2000: International Mobile Telecommunications-2000) は、NTTドコモグル ープ、KDDIグループ及びボーダフォンの3グループに よる提供が本格化している。総務省では、近年の高速 のデータ通信ニーズを受け、第3世代移動通信システ ムの技術の進展について調査等を行うとともに、最大 14Mbps程度の高速データ伝送が可能なW-CDMA方式 の高度化技術であるHSDPA (High-Speed Downlink Packet Access) 技術の導入に関する検討及び800MHz 帯におけるW-CDMA方式の導入に関する検討を行うた め、平成15年10月に情報通信審議会において審議を開 始した。

2 第4世代移動通信システムの実現

総務省では、IMT-2000の次の世代となる第4世代移 動通信システムを含む「新世代移動通信システム」の 基本コンセプト等について、平成13年6月の情報通信 審議会答申に基づき、ITUに対し我が国のビジョンを

提案した。これを踏まえ、平成15年6月の無線通信総 会(RA-2003)において、systems beyond IMT-2000 (IMT-2000後継システム) に関する実用時期・コンセ プト等が、フレームワーク勧告として正式に承認され た。また、平成15年7月の世界無線通信会議 (WRC-2003) においては、systems beyond IMT-2000の周波数 関連事項についての検討がWRC-2007の議題に設定さ れた。

さらに、第4世代移動通信システムについては、「e-Japan**重点計画-2003」において、「2005年までに必要と** される要素技術を確立し、2010年までに実現を図る」 こととされており、総務省としては、光ファイバ並み の超高速の伝送速度 (100Mbps) をマイクロ波帯 (3 ~10GHz) で実現するための超広帯域移動通信伝送技 術、最適な通信手段をソフトウェアにより実現するた めのソフトウェア無線技術等に関する研究開発に取り 組んでいる。

図表 新世代移動通信システムのイメージ及びスケジュール

モバイルITの進展:超高速通信 ワイヤレスIPv6 ソフトウェア無線

新世代のモバイル像

どこでも場所の制約なくオフィスと同様のインターネット環境を享受 どんなものでもモバイル端末

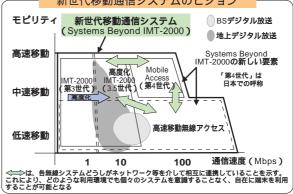
ナンバーポータビリティに優れ、ユーザーが自在にサービス、アプリケ ーション、ネットワークを選択

高度なモバイルFCを実現 新たな技術を柔軟にシステム、サービスに導入

第4世代移動通信システムのイメージ

相互に親和性を高めたセルラーシステムと高速移動無線アクセ スシステムを機能的に融合した新しい世代の移動通信システム 次のような高度化を実現

- 1 第4世代移動通信システム
- ・下り(基地局 端末)の伝送速度が50~100Mbps程度の第4世代移動通 信システムを2010年頃までに実現。伝送速度が30Mbps程度の3.5世代 移動通信システムを2005年頃に実現 (IMT-2000は上下とも最大2Mbps)
- ・ソフトウェア無線技術(周波数や通信方式等をソフトウェアによって 柔軟な変更を可能とする技術)等の次世代移動通信技術を導入
- 高速移動無線アクセスシステム


ホットスポットでも利用可能な100Mbps以上の高速移動無線アクセス システムを実現

- システムの機能融合と高度化を実現
- ・高精細な動画像伝送を含むマルチメディアモバイル通信を実現
- ・インターネットプロトコルとの親和性を高め、IPv6に対応(ユーザ・ がサービス、アプリケーション、ネットワークを自在に選択可能)
- ・次世代Bluetooth、無線ホームリンク等の近距離無線リンク及びデジ タル放送等も含めた他メディアとのシームレス性
- ・高セキュリティ、認証性に優れたシステム

実現に向けたスケジュール

- ・基本コンセプトの検討(ITU) 2002年 2005年
 - ・既存システムの高度化(3.5世代)の実現
 - ・第4世代の必要な要素技術の確立
- 2007年 ・第4世代用周波数の検討(WRC-2007)
- 2010年 ・第4世代の実用化

新世代移動通信システムのビジョン

電気通信審議会 現情報通信審議会 答申により作成

(7)無線インターネットの高度化

超高速無線LANの実現に向けて

無線アクセスシステム (無線LANを含む。) は、パ ソコンとプリンターを無線で接続するものや、喫茶店 や駅等の公共スペースに設置されたアクセスポイント を利用してインターネットにアクセスするもの、また、 オフィスや家庭と電気通信事業者等との間を直接無線 で接続しインターネットにアクセス可能なものなど、 近年、急速に需要が増大している。現在、2.4GHz帯、 5GHz帯、18GHz帯、22GHz帯、26GHz帯、38GHz帯等 の周波数帯域が使用され、数Mbpsから百数十Mbps程 度の大容量通信が可能となっている(図表)

総務省では、地方公共団体等におけるブロードバン ド環境の整備促進等のため、18GHz帯を用いた簡易に 設置可能な無線アクセスシステムの制度化のため、平 成15年10月、所要の総務省令の改正を行った。

また、平成15年7月、世界無線通信会議(WRC-03) した。 において、無線アクセスシステム用として新たに

5GHz帯の周波数が世界的に分配されたことを受け、 我が国における制度化を図るため、平成15年10月、技 術的条件について情報通信審議会に諮問し、平成16年 10月を目途に答申がされる予定である。

一方、将来の新たなアプリケーション(3次元画像 や超高精細画像の伝送や、大量の情報の並列・分散処 理等)に対応するため、ギガビットクラスの通信が可 能な超高速無線LANの実現が求められており、「e-Japan重点計画-2003」においても、「屋内等におけるギ ガビットクラスの通信を可能とするため、2010年度ま でに超高速無線アクセスの実現を図る」とされている ところであり、これらを踏まえ、総務省では、世界最 先端のモバイル□環境の構築に資するべく、超高速無 線LANの実現に向けた研究開発を平成16年度から開始

図表 無線アクセスシステムの概要

周波数帯	主な利用形態	伝送速度	免 許	動向
2.4GHz	1 オフィス等での無線LAN 2 無線インターネットアクセス	54Mbps	不要	平成14年2月省令改正 (高度化)
5GHz	無線インターネットアクセス	54Mbps	基地局:要 端末:不要 一部の高出力端末は必要	平成14年9月省令改正
5.2GHz (屋内)	1 オフィス等での無線LAN2 無線インターネットアクセス3 家庭内ネットワーク	54Mbps	不要	平成12年3月省令改正
18GHz	公共業務用無線アクセス	156Mbps	要	平成15年10月省令改正
22/26/38GHz	加入者系無線アクセス	10Mbps(P-MP) 156Mbps(P-P)	要	平成10年12月省令改正
25/27GHz	1 無線インターネットアクセス 2 アクセスポイントへの中継用回線 3 オフィス等での無線LAN 4 家庭内ネットワーク	100Mbps 400Mbps (近距離)	不要	平成14年2月省令改正

通信速度は、ベストエフォート

(コラム3)

安心して無線LANを利用するために

- 無線LANセキュリティに関するガイドラインの公表

手段として大きく期待され、その利便性から急 速に普及している。無線LANは無線を利用する ことから、無線に対応した適切なセキュリティ 設定を行わないままで使用すると、傍受、情報 の改ざん、漏えい、破壊などの重大な被害を受 けかねない。しかしながら、このような危険性 に対するユーザーの認識は低く、セキュリティ 対策が十分に行われていない状況にある。

総務省はこうした状況を踏まえ、無線LANの 健全な利用を促進するため、平成15年9月から無 線LANセキュリティ調査研究会を開催し、無線

無線LANは、ブロードバンドへのアクセスの LANの技術動向、課題、セキュリティ対策等に ついて検討を行った。同研究会の検討結果を受 け、総務省は平成16年4月に「無線LANセキュリ ティに関するガイドライン」(安心して無線LAN を利用するために)を公表した。

> 本ガイドラインでは、無線LANを利用する代 表的な場面として、「家庭」、「オフィス」、「公衆 無線LANサービス」、「店舗開放型無線LANサービ ス」を取り上げ、それぞれの利用環境における 無線LANのセキュリティレベルごとに、確認・ 設定すべき項目を具体的にまとめている(図表)

図表 家庭で利用する際の無線LANセキュリティの確認・設定項目(ガイドライン抜粋)

レベル	アナロジー(比喩)	セキュリティレベルの説明	設定項目	効果
レベルロ	内緒話を大声で行っ ている状況。誰にで も聞こえてしまいま すね	無線LANのセキュリティ対策を全く施さない極めて危険なレベル。家の外から他人が勝手に接続できるレベルです。すぐに現在の利用環境を見直してください	なにもしていません	
	内緒話はしないで封書にした状況。ただし透かしてみたら、 字が読めてしまうことがあるかもしれま		WEP	通信内容の暗号化の実現
レベル1	これまでに多数市販されてきている無線LAN製品でも実現可能なセキュリティ対策。まず初めに暗号化を行ってください(WEPの設定)	MACアドレス フィルタリング	アクセスポイントに接続可能な無線 LAN端末を制限することが可能	
		SSID	個人を特定しにくくすることで、攻撃 先にならないようにする。 アクセスポイントの存在の秘匿	
レベル2	封書にして文書も暗 号化した状況。これ なら安心ですね	家庭で利用するにあたり高いセキュリティレベル。ただしWPAは比較的新しい製品のみで対応しています。今後購入を予定している場合にはセキュリティの観点からWPA搭載の無線LAN製品を一つの基準に入れて選択してください	WPA-PSK	強固な暗号方式を実現

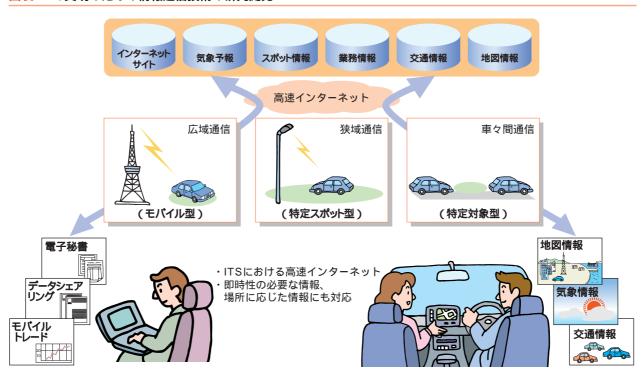
(8)ITS(高度道路交通システム)の推進

人・道路・車両を一体化した情報通信ネットワークを実現

ITS (高度道路交通システム: Intelligent Transport Systems) は、道路交通に関する総合的な情報通信シ ステムであり、交通渋滞の軽減、交通事故の減少、輸 送の効率化、地球環境との調和等の国民生活に身近な 道路交通問題解決の切り札と考えられている。

我が国では、ITS関係省庁が「高度道路交通システ ム(ITS)推進に関する全体構想」を策定し、ITSが目 標とする機能、開発・展開計画について、20年先まで のビジョンを示し取り組んできた。

現在、ITSの一部のシステムが実用化され、交通渋 滞情報等をドライバーにリアルタイムで提供する道路 交通情報通信システム (VICS: Vehicle Information and Communication System)は、全47都道府県において提 供されており、VICSユニットの出荷累計は平成15年12 月末現在で約846万台となっている。また、有料道路 の料金所を停車することなく無線通信を用いて通行料 金の支払を可能とするノンストップ自動料金支払いシ ステム (ETC: Electronic Toll Collection System)は、 平成15年度中に高速道路の基本的にすべての料金所に おいて整備が完了しており、ETC車載器の普及台数は 平成16年3月末現在で約270万台となっている。


総務省では、ITSの更なる推進を図るため、主に以 下の施策に取り組んでいる。

場所やアプリケーションにより複数のメディア を効率的に活用し、移動する自動車を最適にイン ターネットにつなぐ、インターネットITSの研究 開発を、平成16年度まで行うこととしている(図 表》

地域においてITSに取り組む際の環境整備を行 うため、地方公共団体や関係機関等の協力を得て、 地域のITS情報通信システムの相互接続性の確保 等を図るためのモデルシステムの調査開発を平成 15年度まで行った。

ITUへの貢献のほか、ITS情報通信技術の国際展 開に関する調査研究を行っている。これらの活動 の成果として我が国のDSRC(狭域通信: Dedicated Short Range Communications) システム の無線通信方式は平成14年(2002年)7月、ITU国 際標準として勧告された。

図表 ITS実現のための情報通信技術の研究開発

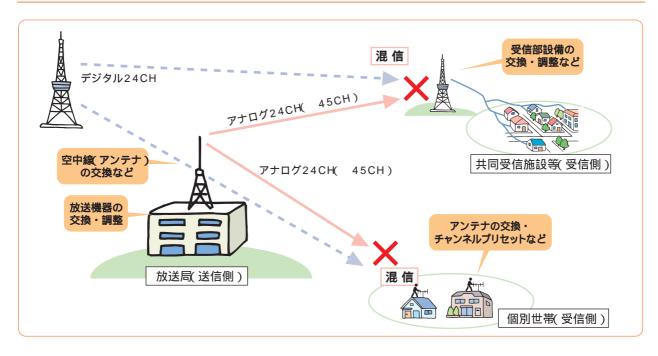
2 放送の高度化の推進

(1)地上放送のデジタル化の推進

アナログ周波数変更対策の着実な実施

1 アナログ周波数変更対策の着実な実施

総務省では、地上デジタルテレビジョン放送の円滑 な導入に向けて、各種の環境整備を進めている。我が 国の厳しい周波数事情において、デジタル放送用の電 波を発射できるよう、地上デジタル放送への移行に先 立ち、一部の地域において既存のアナログ放送の周波 数を変更する必要があるため、そのアナログ周波数変 更に伴い必要となる対策経費について、国が電波利用 料により措置するよう、平成13年7月に電波法の一部 改正が行われた。

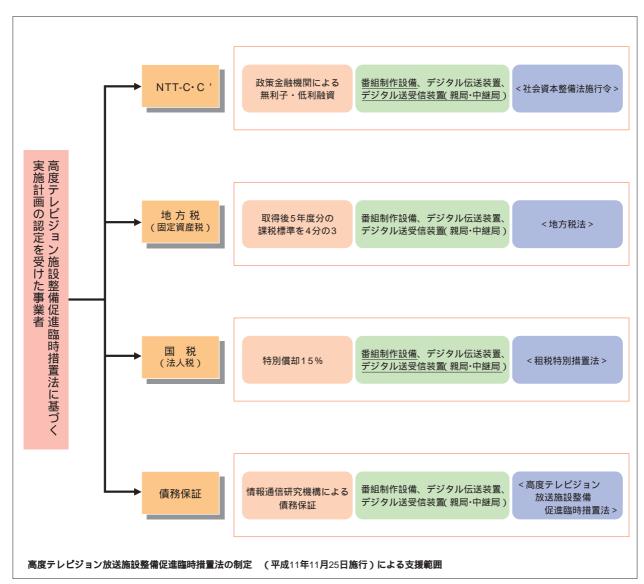

また、平成13年7月には、NHK、民放、総務省の三 者からなる全国地上デジタル放送推進協議会が設立さ れ、アナログ周波数変更の対策手法、対策経費等の概 算及び今後の進め方等について検討が進められた結 果、平成14年8月に、対策経費1.800億円程度、対策局 所数801局所、対策世帯数約426万世帯程度との見通し 等が取りまとめられた。総務省では、検討結果を踏ま え、三大広域圏においては、平成14年8月から送信側 の対策を、また、平成15年2月から個別世帯等におけ る受信対策を、その他の地域においては、同年9月か ら瀬戸内海関連の対策を開始しており、さらに平成16 年度においては、前倒しして集中的に全国各地域の対 策を実施することとなった(図表)

2 地トデジタル放送施設整備の推進

総務省では、平成14年9月、地上デジタルテレビジ ョン放送を行う放送局の免許方針を制定し、これに従 い、同年12月には、NHK並びに関東、中京及び近畿広 域圏内の民間放送事業者16社から地上デジタルテレビ ジョン放送局の免許申請が行われ、平成15年12月には これらの事業者が地上デジタル放送のサービスを開始 した。

地上デジタル放送を行うための施設整備を促進する ためには、「高度テレビジョン放送施設整備促進臨時 措置法」に基づく実施計画の認定を受けた放送事業者 (平成15年度末までに119社認定)に対し、税制及び金 融上の支援措置を設けている。さらに、平成15年度税 制改正により対象設備の拡充を図るなど、事業者の投 資負担の一層の軽減を図るとともに、放送番組制作事 業者に対しても、国税(法人税又は所得税の特別償却) 及び財政投融資に係る支援措置が適用されている(図 表。

図表 アナログ周波数変更対策のイメージ図



また、地上デジタル放送の普及のためにはケーブル テレビ施設の高度化が重要であり、総務省では、ケー ブルテレビ施設の高度化を促進するため、「高度有線 テレビジョン放送施設整備促進事業」により、税制及 び金融上の支援措置を設けている。

さらに、地上デジタル音声放送については、平成13 年9月、(社)デジタルラジオ推進協会に実用化試験局 2局の予備免許を付与しており、平成15年10月、東京 地区及び大阪地区で実用化試験放送が開始された。

地上デジタル放送施設の整備に対する支援スキーム 図表

【支援措置】 【対象設備】 【根拠法令】 政策金融機関による 放送設備、中継局設備、 財政投融資 低利融資 土地及び建物等

平成15年度税制改正において、国税、NTT-C・C の対象設備にデジタル送受信装置(親局・中継局)が拡充され、番組制作設備にデジタル副調整設備が追加(下線部分)

2 放送の高度化の推進

(2)衛星放送の高度化

衛星放送を取り巻く環境変化への取組

総務省では、BSアナログ放送用に現在利用されて いる衛星BSAT-1aが平成19年 (2007年) に設計寿命を 終え、その後継衛星を確保する必要があることから、 平成15年8月からBS放送のデジタル化に関する検討会 を開催し、平成19年からのBS放送の在り方及び次期放 送衛星の確保の在り方についての検討を行った(図 表)。平成15年12月に取りまとめられた同検討会の報 告を受け、総務省では、平成16年4月、まず次期衛星 によるBS放送を受託国内放送とし、第9チャンネルを 平成19年からデジタル放送に使用することとする放送 普及基本計画等の一部変更を行い、第5世代BS

(BSAT-1a**の後継衛星として、平成**19年からのBS放送 を行う放送衛星)に係る受託放送事業者の免許に関す る比較審査事項を定め、その免許申請の募集を開始し た。今後、平成19年からのBS放送に向けた具体的な周 波数の割当て等が行われる予定となっている。

また、総務省では、平成16年5月から放送分野にお ける個人情報保護及びIT時代の衛星放送に関する検討 会を開催し、より魅力のある衛星放送に向けた制度・ 運用の在り方や、安心して放送を契約・視聴できるた めの方策等についての検討を開始した。

「BS放送のデジタル化に関する検討会」報告書の概要 図表

はじめに

(略)

第 I 章 BS放送の経過と現状

(略)

第II章 平成19年(2007年)からのBS放送の在り方

- 1 次期衛星によるBSアナログ放送の免許の在り方について 当初から、全中継器について受託委託放送制度を適用することが 望ましい
- 2 平成19年(2007年)からの第9チャンネルの利用について (1) データ放送及びテレビジョン放送の容量拡大

基本的に、現在のBSデジタル放送サービスの充実のため 割り当てることとし、具体的には、次のような方針により行 うことが適当である

データ放送に関しては、ADSLサービスで広く一般的に実 現している実効速度に遜色がない程度の伝送容量が基本的 に確保されること

テレビジョン放送に関しては、高精細度テレビジョン放送 を基軸とした放送を充実すること。標準テレビジョン放送 については、降雨減衰対策や高画質化の要請に配慮するこ

- (2)新たな技術を活用した取組みを行う事業者への割当て 上記追加割当てを行った上でなお割当てが可能な場合には 新たな技術を活用した取組みを行う放送事業者に対して優先 的に割り当てることが適当である
- (3)現在の受信機での視聴の確保 平成19年(2007年)の第9チャンネルの割当てに当たっては、 現行受信機での円滑な視聴に配慮する必要がある
- 3 BSアナログ放送終了後の第5・7・11チャンネル、第17・19・ 21・23チャンネルの利用について

新しい技術の進展動向、需要の実態動向、その他の動きを見た上 で、受信機・受信システムの円滑な対応のための準備期間及び BSAT - 2aの後継衛星の調達スケジュールを考慮し、遅くとも平成 19年(2007年)頃までにはチャンネル利用の在り方について方針を 決定することが適当である

平成23年(2011年)以後に第5・7・11・17・19・21・23チャンネ ルのデジタル放送利用の可能性がある前提で、受信機・受信システ ムの対応が行われるよう、総務省において関係者に要望していくこ とが望まれる

第Ⅲ章 次期放送衛星の確保の在り方

衛星の確保の時期

BSAT - 1aの設計寿命が終わる平成19年(2007年)の時点で、 BSAT - 1a後継衛星を打ち上げることが必要と考えられる

2 衛星の搭載チャンネル数

現時点では、平成19年(2007年)に打ち上げる衛星において8チ ャンネルに対応させることで十分と考えられる

3 衛星の仕様、運用等の在り方

放送の公正かつ能率的な普及に向けて、安定性、信頼性及び経済性の確保、並びに委託放送事業者の意向の反映が重要であり、 例えば、次のような、具体的な指標を設定して審査基準とするこ とが必要と考えられる

衛星調達方法 安定的運用 障害・災害への日常的な対応 放送衛星に障害が生じた場合の対応 委託放送事業者への情報開示 季託放送事業者の負担額 委託放送事業者の意向の反映

実際の役務提供にあたって、受託放送事業者が不当に申請内容 に反する内容の提供条件の設定又は変更を行うことのないような 措置を採ることが必要と考えられる

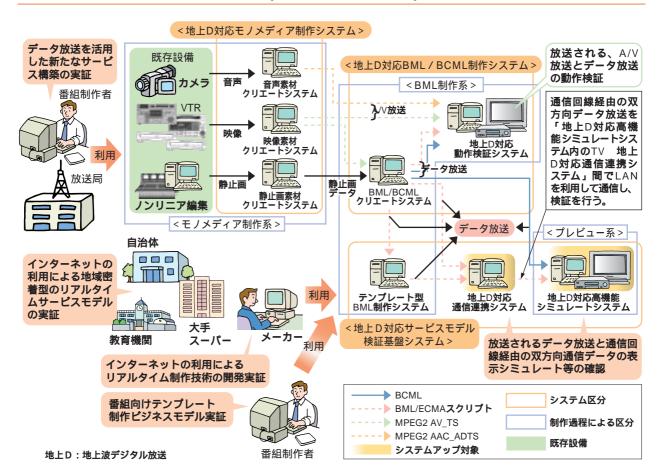
第IV章 今後のBS放送の発展に向けて

本報告書で提案を行った措置が着実に行われていくことを当検 討会では期待している

BS放送において安定的に良質なコンテンツが提供される体制を 整えていくため、関係者における一層の努力が期待される

3 通信と放送の融合

通信・放送融合に資する技術開発の促進


地上デジタル放送の開始に伴う「地上波デジタル対応設備」の増設

デジタル放送はインターネットとの親和性が高く、 特にIPv6を備えたインターネットと組み合わせること により、従来の放送コンテンツを放送以外の多様なメ ディアに流通させることが一層容易になるなど、通信 と放送が融合した新たなサービスの可能性が増してき ている。

総務省では、平成13年11月に施行された「通信・放 送融合技術の開発の促進に関する法律」に基づき、通 信・放送融合サービスの基盤となる技術の開発を行う 民間事業者等に対する助成金の交付及びこれらの者の 共用に供する電気通信システム等の整備を行うことに より、当該技術の開発を行う者を支援し、通信・放送 融合サービスの開発の加速・推進を図っている。

本施策については、通信・放送機構(現独立行政法 人情報通信研究機構)を通じて、平成13年度からイン ターネットとデジタル放送を合わせて利用することを 可能とする技術 (通信・放送融合技術)を開発する者 に対して助成金を交付するとともに、平成14年度から は通信・放送融合技術の有効性を実証するテストベッ ドの構築・運用を実施している。平成15年度には、3 大都市圏における地上デジタル放送の開始に対応し て、放送局及び関連企業の早期の参画を促し、地上デ ジタル放送による新たなビジネスモデルの創造の加 速・推進に資するため、通信・放送融合技術開発テス トベッドに「地上波デジタル対応設備」を増設した (図表)

通信・放送融合技術開発テストベッド(地上波デジタル対応設備)の概要

