ワイヤレスブロードバンド実現のための周波数確保等に関する意見

意見提出元	ルネサスエレクトロニクス株式会社
	株式会社サイバー創研
	東北大学 電気通信研究所

意見項目	意見内容
(1) ワイヤレスブロードバン	2015 年から2020 年ごろのワイヤレスモバイル
ドの今後の展望	ネットワークは、①大容量の伝送を行う情報系を
	中心としたネットワークと、②エコを目指した低
	遅延で高度なフィードバック制御機能を実行する
	ためのネットワークが並存すると考えられます。
	さらに、③車車間・路車間での高速移動体サービ
	ス事業とのリンクも必要となります。
	①はLTE で達成されようとしていますが、②に
	関しては低炭素社会構築のために、スマートグリ
	ッド/スマートコミュニティを目指して、電気自
	動車(EV)の走行状況や電池の充電状況をリアルタ
	イムで把握して、充電ステーションから電力供給
	系統へ低遅延で効率良く還元することが必要で
	す。さらに③は、道路や交差点の混雑状況、事故
	状況、公共車両内の混雑状況等の映像を車車間で
	共有することで安全安心のためのパブリックセー
	フティの要求も満足できます。
	このためのシステムは、国際標準化が進められ
	ているmachine to machine でのコンピュータ間制
	御に適すると考えられる狭域の通信(たとえば
	WAVE)と、広域の通信(たとえばWi MAX)をシームレ
	スに融合した通信システムが必須と考えられま
	す。 (図1~図4)
(2) ワイヤレスブロードバン	上記社会システムを構築するためには50MHz か
ドを実現するための課題	ら60MHz の帯域を確保する必要があります。
	たとえば、東京23 区をWAVE とWiMAX によりサ
	ービスする場合、ユーザレート2Mbps、呼率0.02erl
	とした場合の試算では、10MHz 帯域での収容可能
	ユーザ数は概略40万台となり、収容数を100万台
	とすれば25MHz 必要、収容数200 万台のときは
	50MHz 必要となります。
	国際標準化に関してはWAVE はIEEE802.11 委員
	会で、 WiMAX は802.16 委員会で標準化が行われ
	ており、WAVE は米国や欧州で採用される予定で

	す。このWAVE は米国規格案において70MHz 幅が確 保されています。
	WAVE とWiMAX の融合システムの研究開発は、国
	際標準化活動が必須です。なお現在、ルネサスエ
	レクトロニクスと東北大学、北京大学が共同研究
	として行うことになっており、その成果を活用す
	るのも有効と考えられます。
(3) 関連する国内外の動向と	(1) 国際標準化が進められている狭域の通信
課題	(WAVE)と広域の通信(WiMAX)をシームレスに融合
	するシームレスハンドオーバ技術、車載ゲートウ
	ェイの開発、帯域可変WAVE 機器の開発、MIMO の
	適用やWAVE とWiMAX の電波環境を認知してコグニ
	ティブ無線の適用により周波数利用効率の向上。
	(2) エコシステムを実現するためのネットワーク
	階層化とインタフェース規定とオープンなM2M
	(Machine-to-Machine)プロトコルの確立と評価
	(3) WiMAX とWAVE を統合した車載器を搭載、都内
	で車両を走行させて受信電力、スループット、ハ
	ンドオーバ切替時間を測定するとともにサービス
	の受容性を評価するための実証実験の実施
(4) その他 原本のロイヤー	参考図添付(図5)
(4) その他、将来のワイヤレ	少有凶冰"P(凶 O)
スブロードバンドによるサ	
ービスやシステムに関する	
事項	

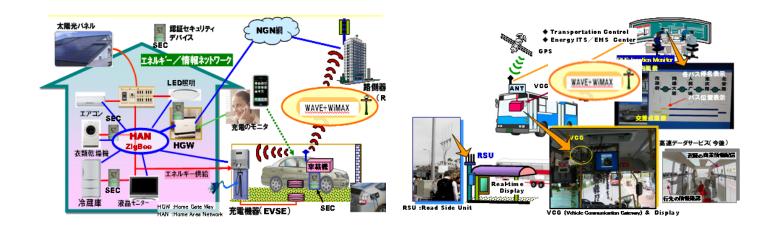


図1 WAVE-WiMAX 融合システムのサービスイメージ

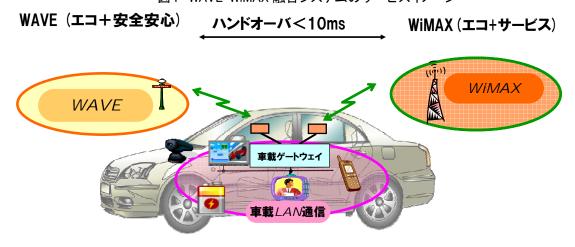


図2 車載システムのイメージ

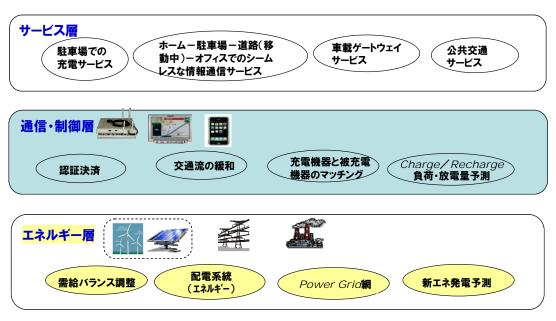
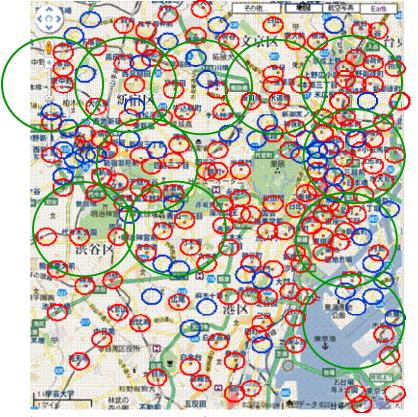



図3 エコシステムを実現するためのネットワーク階層化

赤丸:地下鉄駅周辺(WAVE)、青丸:主要交差点(WAVE)、緑丸:WiMAX

図 4 東京地区でのエリア構成例

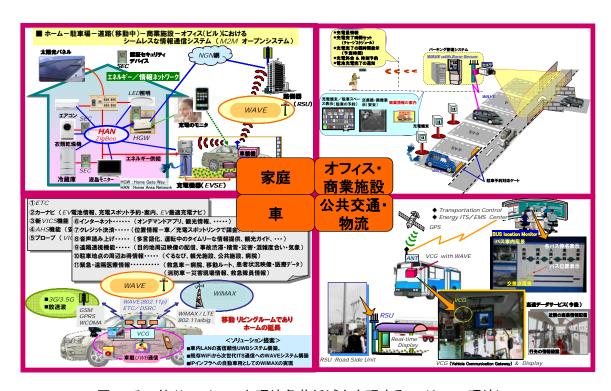


図 5. その他(シームレスな環境負荷低減を実現するワイヤレス環境)