## アメリカにおける脳関連研究の 現状と、脳情報通信融合研究の 将来性について

ボストン大学 神経科学センター、心理学科、 認知神経学科 渡邊武郎

## アメリカにおける脳科学の現状

#### アメリカ:

研究大学(not 教育大学)が研究の中心 神経科学の名の下に生物学、生理学、心理学、医療 工学、通信科学の統合が加速度化(心理学が中心の 一つ)

神経科学センターーー>神経科学部 NIH: 神経科学が最重点領域の一つ 大学の周りに企業が林立

#### 日本:

カリキュラムの制約があるため、大学において旧来の枠組みの各学科を発展的に統合するのは困難 心理学が蚊帳の外、理学系と工学系の統合の動き が鈍

ー→研究所が主体となって行う、新たな研究センター をつくる

## 脳科学と通信情報

#### サブリミナル情報の影響とメカニズ ムを脳科学の視点から解明する

サブリミナル信号に誘導された犯行は、 犯行を行う主体が動機を有していないと言う点に おいて従来の刑法体系に対する重大な挑戦となりうる 平野龍一(刑法学者)

#### Newsome display-like display



Noise



**Coherent motion** 



50% coherent motion

Newsome & Pare, 1988



# Perceptual learning as a result of exposure to a task-irrelevant subthreshold feature



#### Questions

- A number of studies have shown weak or subthreshold stimuli greatly influence some types of brain processing.
- How does a top-down attention system play a role?

#### Experiment 1 (Topic 1)

Effects of coherent motion percentage on RSVP performance were examined.

- Note that the experiment was not for learning.
- Task: RSVP
- Coherent motion percentage was varied in five steps
  - 0%, 5%, 10%, 20%, 50%
- After the RSVP experiment, a subject's coherent motion direction threshold was measured.



#### Two hypotheses about the effects of taskirrelevant motion strength on RSVP

#### Hypothesis 1

 With increasing coherence, the performance on an RSVP task should become worse.

#### Hypothesis 2

 A coherence percentage difference should not influence the performance on an RSVP task, due to attentional filtering.



#### Results of Experiment 1



# Results of Experiment 1



Tsushima, Sasaki & Watanabe, Science 2006

## Results of Experiment 1





## Regions of interest



- MT+
  - Functionally defined
- DLPFC
  - The anterior part of the middle frontal gyrus

#### fMRI results



Tsushima, Sasaki & Watanabe, Science 2006

# Model



# Model



# Model



# Model



#### Model



The model could explain a number of phenomena in which subthreshold stimuli greatly influence various types of brain processing.

#### Conclusion

- When task-irrelevant signals are strong, they are subject to attentional suppression.
- When task-irrelevant signals are subthreshold, the top-down attention system fails to detect and, therefore, to suppress the signals.

### 通信情報との関わり

- 通信情報では、いかにノイズのない情報を 伝達するかが重要
- 物理学、情報工学 ノイズが小さければ小さい程良いー>ノイズを最小にする努力
- 神経科学(人間との関わり)からの知見 小さくて知覚されないノイズが人間の情報処 理に悪影響、小さいノイズを押さえる努力を すべき

Thanks a lot!