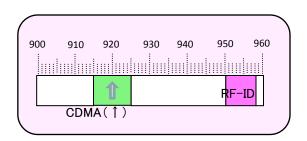
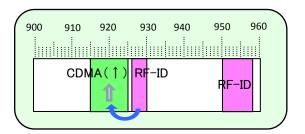
資料920MHz帯作4-7

早期暫定利用920MHz帯電子タグシステムと 800MHz帯CDMA2000携帯電話システム(上り) との共用検討

2011年4月25日


KDDI株式会社



(1)周波数配置

① 現在の周波数配置(~2012年7月24日)

② 早期暫定利用電子タグの希望周波数配置

(2)前提条件

2012年7月までの暫定的な期間における926~930MHzでの電子タグシステムの早期利用にあたり、CDMA2000携帯電話システム(上り)への干渉を調査する。

干渉調査を実施する電子タグシステム(アクティブシステム)については、CDMA上り周波数帯域の最近端から、20mW設備は2MHz、1mW設備は1MHzのオフセットを前提条件とする。

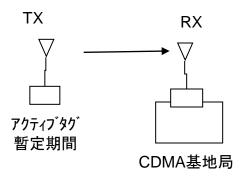
- (3)過去の答申結果を準用した干渉検討の省略ついて(電子タグシステムアンテナ高1.5mの場合) 干渉検討を行う電子タグシステムのうち、アンテナ高が1.5mとなるアクティブシステムについて は、「高出力型950MHz帯パッシブタグシステムの技術的条件」(平成16年12月15日一部答申) および「小電力無線システムの高度化に必要な技術的条件のうち950MHz帯アクティブ系小電 力無線システムの技術的条件及び移動帯識別システム(UHF帯電子タグシステム)の技術的 条件のうち950MHz帯パッシブタグシステムの高度化に必要な技術的条件」(平成19年12月20日 一部答申)における「PDCへの干渉」で検討を行った装置と同等のパラメータであり、同検討 結果が準用可能であるため、CDMA2000携帯電話システムとの干渉検討を省略する。
- (4)干渉検討を行う組合せについて(電子タグシステムアンテナ高15mの場合) 与干渉となる電子タグシステムについては、パラメータが新たに追加されたアンテナ高15m タイプの干渉検討を実施する。

被干渉となるCDMA2000携帯電話システムについては、早期暫定期間に影響を受けると想定される装置として、基地局タイプに対する干渉検討を実施する。

2. 電子タグシステム → CDMA基地局 (対向モデル)

調査モデル

TX


水平方向指向性:0 deg 垂直方向指向性:0 deg

送信アンテナ高:-m

RX

水平方向指向性:0 deg 垂直方向指向性:0 deg

受信アンテナ高:-m

水平離隔距離512m

調査モデルによる結合損

	自由空間	奥村-秦	Walfisch-池上
周波数帯域	925MHz	-	-
送信アンテナ利得	3.0dBi	-	-
送信指向性減衰量		-	-
水平方向	0dB	ı	-
垂直方向	0dB	1	ı
送信給電系損失	0dB	ı	-
アンテナ高低差	0m	1	1
水平離隔距離	512m	1	ı
上記離隔距離における空間 伝搬損失	-86.0dB	-	-
壁等による減衰	0dB	-	-
受信アンテナ利得	14.0dBi	ı	-
受信指向性減衰量		1	1
水平方向	0dB	ı	-
垂直方向	0dB	-	-
受信給電系損失	−5.0dB	-	-
検討モデルによる結合損	74.0dB	-	-

所要改善量

	①与干渉量	②被干渉許容量	③所要結合損	④検討モデルによる 結合損	⑤所要改善量 ⑤=③一④
帯域内干渉	-45.0dBm/MHz	−119.0dBm/MHz	74.0dB	74.0dB	0dB
帯域外干渉	13.0dBm	−40dBm	53.0dB	74.0dB	−21.0dB

(10) → 10 3. 電子タグシステム(15m) → CDMA基地局 (指向性減衰考慮) e c it!

調査モデル

TX

水平方向指向性:0 deg 垂直方向指向性:8 deg 送信アンテナ高:15m

RX

(40m)

水平方向指向性:0 deg 垂直方向指向性:-8 deg 受信アンテナ高:40m

TX RX RX アクティフ ダク CDMA基地局

水平離隔距離178m

暫定期間(15m)

調査モデルによる結合損

			i
	自由空間	奥村-秦	Walfisch-池上
周波数帯域	925MHz	_	_
送信アンテナ利得	3.0dBi	_	_
送信指向性減衰量		_	_
水平方向	0dB	_	-
垂直方向	0dB	-	_
送信給電系損失	0dB	_	-
アンテナ高低差	25.0m	-	_
水平離隔距離	178m	-	-
上記離隔距離における空間 伝搬損失	−76.9dB	-	-
壁等による減衰	0dB	-	-
受信アンテナ利得	14.0dBi	-	-
受信指向性減衰量		-	_
水平方向	0dB	_	-
垂直方向	−0.4dB	-	_
受信給電系損失	−5.0dB	-	_
検討モデルによる結合損	65.3dB	_	_

所要改善量

	①与干渉量	②被干渉許容量	③所要結合損	④検討モデルによる 結合損	⑤所要改善量 ⑤=③一④
帯域内干渉	−45.0dBm/MHz	−119.0dBm/MHz	74.0dB	65.3dB	8.7dB
帯域外干渉	13.0dBm	−40dBm	53.0dB	65.3dB	−12.3dB

2011/4/25

4. 机上干渉検討におけるまとめ

(1)干渉検討結果について

CDMA2000基地局と早期暫定利用の電子タグシステムにおける1対1モデルの検討を実施し、空中線の垂直面指向特性を考慮した検討において、帯域内干渉の所要改善量が8.7dBのプラスとなった。

(2)電子タグシステムの利用条件

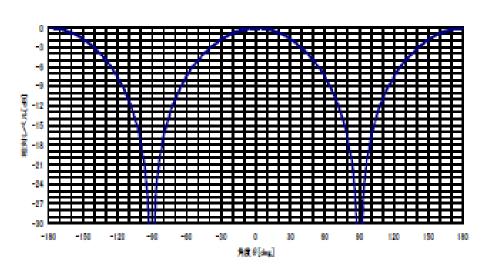
早期暫定期間における電子タグの利用については、以下の条件を考慮することが可能である。

- 期間中における運用台数は、限定的であること。
- ・電波発射時間は10msec/回程度であること。
- ・電波発射頻度は、1時間に2回程度であること。
- ・電子タグのスプリアスについては、提案条件である2MHz(20mW)または1MHz(1mW)以上のガードバンドを確保することにより、スプリアスマスクに対して、実力値による改善が期待できること。

(3)共用判断

上記の条件を考慮することにより、共用可能である。

5. 電子タグシステムパラメータ

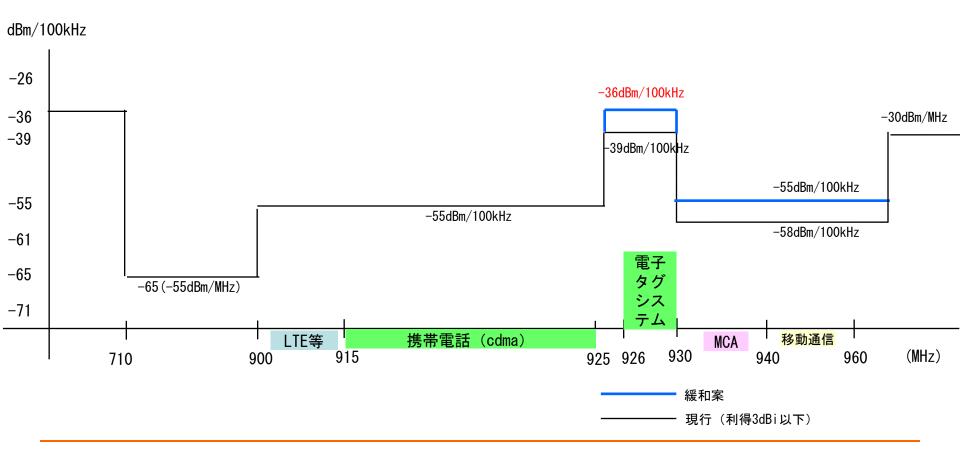

(1) 送信側パラメータ

	アクティブタグシステム		
	中出力型	低出力型	
送信周波数	927-928MHz	926-930MHz	
空中線電力	13dBm	0dBm	
帯域幅	200kHz	200kHz	
空中線利得	3dBi	3dBi	
アンテナ高	15m/1.5m	1.5m	
最大送信時間	1秒	1秒	
DUTY比	10%以下	10%以下	

(2) 中/低出力型、アクティブ型アンテナパターン(水平)

基本波950MHz指向性

※垂直特性は無指向性



検討用スプリアスマスク条件

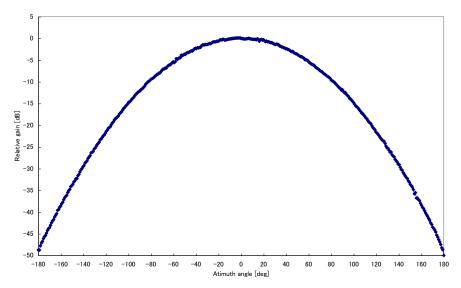
(H24.7.24まで)

アクティブシステムの不要発射の許容値の規定

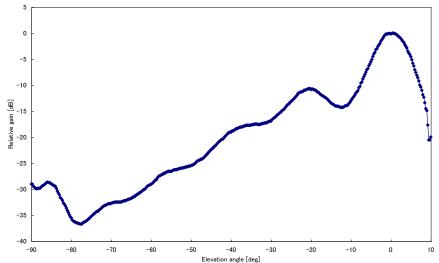
(915-925MHz携帯電話システムとのGB検討用)

8

6. CDMA基地局パラメータ


(1) 受信側パラメータCDMA(受信側に係る情報)

	CDMA基地局	
受信周波数帯	915-925MHz	
許容干渉電力	−119dBm/MHz (I/N=−10dB)	
許容感度抑圧電力	−40dBm	
受信空中線利得	14dBi	
送信給電線損失	5dB	
空中線高	40m	
その他の損失	-	



6. CDMA基地局パラメータ

(2) CDMA基地局の送受信アンテナパターン(水平面)

(3) CDMA基地局の送受信アンテナパターン(垂直面)

(「携帯電話等周波数有効利用方策委員会報告」(平成18年12月21日) 図3. 2-1を引用)

(「携帯電話等周波数有効利用方策委員会報告」(平成18年12月21日) 図3.2-2を引用)