センサーネットワークの運用形態及び共用のための提案

【運用形態】

代表的な利用シーン	エネルギー, 環境の監視	防災等の画像監視
利用場所	屋外	屋外
利用期間	常時	常時
1日のうちの利用時間	24時間 (通信している時間は限定的)	24時間 (画像などの場合は常時)
使用周波数の変更	可能	可能

【ホワイトスペース利用システム相互間で共用するための方策】

- スペクトラムの相互干渉を防ぐ(無線局開局時)
 - *地図データベースの使用。(使用周波数の重複の回避,干渉の回避) WSデバイスの地図上の位置から、帯域、最大ERPを知る事が出来、WSの使用可否を判定。
 - *スペクトラム・マスクの適切な設定で干渉を避ける。(必要なスペクトルマスク性能)
 - *使用状態をデータベースへ報告し、データベースのリコメンド機能で適切な帯域、帯域幅を指定。(IEEE P1900.4の機能など)
 - *スペクトラム・センシングで使用可能な帯域を知る。(30m内外のような狭域で使用) 認識しやすいように、WSデバイスは特徴的なCP(Continuous Pilot)を送信する。
- 〇時間の干渉を避ける(同一の周波数を複数のデバイスで共用)(無線局開局後の運用)
 - * Wi-Fi的手法のCSMA/CD(Carrier Sense Multiple Access/Collision Avoidance)による共存。 通信フレームがないことを知って送信。