情報通信審議会 情報通信技術分科会

放送システム委員会

23GHz 帯無線伝送システム作業班

報告書(案)

~23GHz 帯無線伝送システムの技術的条件~

Ι	審議事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
П	委員会構成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
Ш	審議経過•••••	5
1.	放送システム委員会での審議・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2.	23GHz 帯無線伝送システム作業班での調査検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
3.	放送システム委員会における意見の募集・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
IV	審議概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
V	審議結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
	第1章 審議の背景・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
1	1.1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
1	1.2 これまでの経緯・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
复	第2章 23GHz帯無線伝送システムにおける利用形態について・・・・・・・・・・・	13
2	2.1 求められる利用形態について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
2	2.2 23GHz 帯無線伝送システム(固定局・移動局)のシステム概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
	第3章 他の無線システム等との共存条件に関する検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
3	3.1 隣接する 23GHz 帯の無線システム等について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
3	3.2 無線エントランスシステムとの干渉検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
3	3.3 電波天文業務との干渉検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
25	第4章 23GHz 帯無線伝送システムの技術的条件・・・・・・・・・・・・・・・・・・・・・・・・	26
4	1.1 一般的条件·····	26
4	1.2 無線設備の技術的条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
4	1.3 測定法·····	30
5	第5章 今後の検討課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32
参え	考資料 •••••••	41

目 次

I 審議事項

放送システム委員会は、情報通信審議会諮問第 2024 号「ケーブルテレビシステムの技術的条件」のうち「23GHz 帯無線伝送システムの技術的条件」について審議を行った。

Ⅱ 委員会構成

別表1のとおり。

Ⅲ 審議経過

1. 放送システム委員会での審議

本件に関する放送システム委員会の審議経過は、次のとおりである。

第 28 回(平成 23 年 10 月 28 日)

23GHz 帯無線伝送システムに係る審議を開始し、23GHz 帯無線伝送システム作業班を設置した。

第29回(平成24年1月13日)

23GHz 帯無線伝送システム作業班より、作業班における調査検討状況及び報告書骨子 (素案)について報告を受け、内容の審議を行った。

第 30 回(平成 24 年 5 月 8 日)

23GHz 帯無線伝送システム作業班の報告に基づき、報告書(案)を取りまとめた。

第 31 回(平成 24 年 6 月 13 日)

パブリックコメントの結果を踏まえ、審議を行い、報告書を取りまとめた。

2.23GHz 帯無線伝送システム作業班での調査検討

委員会における審議を促進するために 23GHz 帯無線伝送システム作業班を設置した。作業班の調査検討の経過は次のとおりであり、構成員を別表 2 に示す。

第1回(平成23年11月9日)

作業班における調査検討事項、調査検討の進め方について検討を行った。

第2回(平成23年12月22日)

固定局における技術的条件(素案)及び報告書骨子(素案)について調査検討を行った。

第3回(平成24年2月8日)

固定局における技術的条件(案)について調査検討を行った。

第4回(平成24年3月27日)

固定局及び移動局における技術的条件(案)及び報告書(素案)について調査検討を行った。

第5回(平成24年4月18日)

技術的条件(案)について調査検討を行い、作業班報告書を取りまとめた。

なお、隣接システムとの共存条件や、可搬型もしくは移動局として運用する場合の課題について の検討を促進するため、作業班の構成員等により、次のとおり、アドホック会合を開催した。

○ 無線アドホック会合

(平成 23 年 11 月 22 日、12 月 8 日、平成 24 年 1 月 13 日、1 月 31 日、2 月 29 日) 無線エントランスシステムとの共存条件等の検討を行った。

○ 電波天文アドホック会合

(平成 23 年 11 月 22 日、12 月 8 日、平成 24 年1月 13 日、1月 31 日、2 月 29 日)
電波天文業務との共存条件等の検討を行った。

○ 可搬型アドホック会合

(平成 23 年 11 月 22 日、12 月 8 日、平成 24 年 1 月 13 日、1 月 31 日、2 月 29 日) 可搬型もしくは移動局として運用する場合の検討課題及び移動局システムにおける要求条件 等の検討を行った。

3. 放送システム委員会における意見聴取の実施状況

O 23GHz 帯無線伝送システムの技術的条件についての意見陳述
募集期間:平成 23 年 11 月 11 日~12 月 2 日
概 要:学識経験者からの意見陳述の募集を行ったが、希望者はなかった。

〇 放送システム委員会報告(案)に対する意見の募集
募集期間:平成24年5月〇日~6月〇日
概 要:委員会報告(案)に対する意見募集を行った結果、〇件の意見の提出があった。

Ⅳ 審議概要

別添1のとおり。

V 審議結果

「ケーブルテレビシステムの技術的条件」のうち「23GHz 帯無線伝送システムの技術的条件」について、別添2のとおり答申(案)をとりまとめた。

情報通信審議会 情報通信技術分科会 放送システム委員会 構成員

(敬称略、専門委員は五十音順)

氏名		主要現職	
主査	伊東 晋	東京理科大学 理工学部 教授	
主査代理	都竹 愛一郎	名城大学 理工学部 教授	
委員	相澤彰子	国立情報学研究所 コンテンツ科学研究系 教授	
専門委員	浅見洋	社団法人日本CATV技術協会 理事待遇·審議役	
"	井家上 哲史	明治大学理工学部教授	
"	伊丹 誠	東京理科大学 基礎工学部 教授	
"	甲藤 二郎	早稲田大学 理工学部 教授	
"	門脇 直人	独立行政法人情報通信研究機構 新世代ワイヤレス研究センター長	
"	佐藤明雄	東京工科大学 コンピュータサイエンス学部 教授	
"	関根 かをり	明治大学 理工学部 教授	
"	高田潤一	東京工業大学大学院 理工学研究科 教授	
"	丹 康雄	北陸先端科学技術大学院大学 情報科学研究科 教授	
"	野田勉	一般社団法人日本ケーブルラボ 主任研究員	
"	松井 房樹	社団法人電波産業会 研究開発本部長	
"	村山 優子	岩手県立大学 ソフトウェア情報学部 教授	
11	山田孝子	関西学院大学 総合政策学部 教授	

別表2

情報通信技術分科会 放送システム委員会 23GHz 帯無線伝送システム作業班 構成員

(敬称略、構成員は五十音順)

氏名		主要現職		
主任	野田勉	(般社)日本ケーブルラボ 実用化開発グループ 主任研究員		
主任代理	河本 典之	(社)日本CATV技術協会 事業部(規格・標準)部長		
構成員	石川 涉	ヴィ・ネットワーク・システムズ(株) 技術部長		
"	片山 友幸	DXアンテナ(株) 技術第2部長		
"	金田 英郎	(社)日本ケーブルテレビ連盟 常務理事		
"	亀谷 收	国立天文台 電波天文周波数小委員会副委員長 水沢 VLBI 観測所		
"	久保 歳弘	日本放送協会 技術局送受信技術センター 受信技術部副部長		
"	小島 敏郎	京セラコミュニケーションシステム(株) エンジニアリング事業統括本部 ソリュ ーション事業部長		
"	小山 祐一	ソフトバンクモバイル(株) モバイル伝送ネットワーク部 基幹伝送課		
"	瀬戸 伸幸	(株)エヌ・ティ・ティドコモ 電波部 電波技術担当課長 (~24.3.26)		
11	谷澤 正彦	日本無線(株) 通信インフラ事業部 通信インフラ技術部 マイクロ通信グループ長		
11	中川 篤	KDDI(株) 技術企画本部 電波部長		
"	中川 永伸	(財)テレコムエンジニアリングセンター 技術グループ 部長		
"	中村 俊一	古河電気工業(株) 執行役員 情報通信カンパニー ブロードバンド事業部長		
"	山下 岳志	(株)エヌ・ティ・ティドコモ 電波部 電波技術担当主査 (24.3.27~)		
"	吉田 光男	(株)ジュピターテレコム 技術本部 副本部長		

別 添 1

審 議 概 要

第1章 審議の背景

1.1 はじめに

23GHz 帯(23.2~23.6GHz)のケーブルテレビ事業用無線伝送システムは、地上放送の受信 点からヘッドエンドまでの連絡線、河川横断用及び離島への伝送など、有線での伝送が困難な 地域においてケーブルテレビの中継伝送等に利用されており、デジタル変調方式としては、四 相位相偏移変調方式(QPSK)又は一六値直交振幅変調方式(16QAM)が制度化されている。

近年、地上デジタル放送への完全移行を踏まえたケーブルテレビによる難視地区の解消や、 災害発生時の幹線の応急復旧など、23GHz 帯の無線伝送システムを用いて、効率的にネットワ ークを構築するニーズが高まっている。

このような背景を踏まえ、ケーブルテレビネットワークで利用される直交周波数分割多重方式 (OFDM)や六四値直交振幅変調方式(64QAM)等のデジタル信号を、変調方式を変えることなく 23GHz 帯で効率的に伝送するために必要な技術的条件について検討を行ったものである。

1.2 これまでの経緯

1.2.1 ヘッドエンドへの連絡線

我が国のケーブルテレビは、難視聴対策や都市における受信障害対策を主目的として発 展してきたが、自主放送の充実や衛星放送の再送信に対応するため昭和 62 年に電気通信 審議会において、「多チャンネル化等に伴う有線テレビジョン放送施設に関する技術的条件」 (諮問第 30 号)の答申(昭和 62 年 9 月 28 日)が行われ、伝送方式、安全対策、混信妨害等 に関する技術基準が整備され、有線放送における多チャンネル伝送が可能となった。

23GHz 帯無線伝送システムについても受信空中線からヘッドエンドまで伝送する連絡線と して区域外番組の再送信等に利用されるようになった(図1)。伝送方式としては、周波数変調 を用い、単一チャンネルの伝送を行うものである。

図1 ヘッドエンドへの連絡線

1.2.2 多チャンネル同時伝送

その後、ケーブルテレビの放送区域の拡大に伴い、河川や鉄道を横断する幹線の設置に 際して、橋脚の利用の同意が得られない場合や集合住宅の同意が得られない場合が生じて きた。こうした状況を踏まえ、「有線テレビジョン放送事業用無線局の技術的条件」(諮問第 102 号)のうち「23GHz 帯を使用する有線テレビジョン放送事業に用いる固定局の技術的条件」 の一部答申(平成 10 年 6 月 29 日)が行われ、固定局の送信設備及び受信設備等の技術的 条件等が整備され、河川等の横断、離島への中継及び集合住宅等への多チャンネル同時伝 送が可能となった(図 2)。

伝送方式としては、振幅変調(FDM-SSB)を用い、アナログテレビ信号等を多チャンネル同時に伝送するものである。

図2 多チャンネル同時伝送

1.2.3 ケーブルテレビ事業者が利用可能な無線システム

ケーブルテレビ事業者が利用可能な無線伝送システムとしては、表 1 のとおり 23GHz 帯の 他に 18GHz 帯や 60GHz 帯の伝送システムがある。

18GHz 帯の無線伝送システムは、ケーブルテレビ事業者が利用する場合には、電気通信 業務用無線局の無線設備を共用するものに限定され、上り下りそれぞれ 60MHz 幅の1ブロッ クを利用して最大 9ch を伝送することができる。

一方、60GHz帯の伝送システムは、特定小電力無線局として個別免許は不要であるものの、 出力が 10mW 以下であることから伝送距離が 200m 程度に限られている。

これらのシステムに比べて 23GHz 帯無線伝送システムは、400MHz の帯域があるため、多 チャンネル伝送が可能であることや比較的長距離での伝送も可能であることから、更なる利 用が期待されている。

	23GHz 帯	18GHz 帯	60GHz 帯
 主な目的	有線テレビジョン	電気通信業務用	特定小電力無線局
	放送事業用	公共業務用	
周波数帯域幅	400MHz	上り下り各 60MHz × 4ブロック	9GHz
最大伝送	最大 65CH	最大 9CH	
チャンネル数			
特徴	CATV 多チャンネル放送の	放送/通信同時伝送	ミリ波画像伝送用及びミリ波
	無線伝送		データ伝送用
利用シーン	離島や山間部等の CATV	・地デジの受信点から共聴施	ホームリンク(配線の無線
	ネットワークエリアの拡大	設までの中継伝送路	化)
		・離島や山間部への地域イント	
		ラネットの延長ルート	
メリット	・60GHz 帯と比較して、伝送	・60GHz 帯と比較して伝送距離	個別免許が不要。
	距離が長い。	が長い。	
	・18GHz 帯と比較すると、伝	・双方向通信が可能。	
	送 CH が多くとれる。		
デメリット	ケーブルテレビの上り回線	・23GHz 帯と比較すると、伝送	・無線局免許を受けていない
	の伝送ができない。	CH が多くとれない。	ので、混信を受ける可能性
		・電気通信業務用無線局の無	がある。
		線設備と共用するものに限定。	・18GHz 帯及び 23GHz 帯と
			比較すると、伝送距離が短
			ι _`

表1 ケーブルテレビ事業者が利用可能な無線伝送システム

第2章 23GHz帯無線伝送システムの利用形態について

2.1 求められる利用形態について

現在、23GHz 帯無線伝送システムは、「第1章 審議の背景」のとおり、再放送伝送用、河川 横断用及び離島への伝送用などに利用されている。しかしながら、地上デジタル放送への完全 移行に伴い、デジタル難視聴地域における伝送手段としての固定局利用として OFDM や 64QAM のデジタル信号を伝送するニーズ(図3)や、平成23年3月11日に発生した東日本大 震災を経て、災害発生時におけるケーブルテレビの応急復旧手段の一つとして23GHz 帯無線 伝送システムを活用したいという要望が高まっている(図4)。

図3 デジタル難視聴区域での伝送イメージ

図 4 ケーブル伝送路の応急復旧イメージ

災害・障害に対して適切かつ柔軟に対応するためには、従来の固定局に加え、可搬型システム(移動局)での運用が期待されている。また、その可搬型システム(移動局)の主な利用形態としては以下のようなものが想定される。

○ 辺地用可搬型システム

災害・障害時における辺地共聴施設の切断箇所を応急復旧するための一時的な無線利用 シーン(図 5)が想定される。主な利用地域は地上デジタル放送の難視聴解消を目的としたテ レビ共同受信点が設置されている場所などであり、山間部などの地形的に電波が遮蔽される 地域での利用が考えられる。

このように隣接システム等との干渉が発生しないことが明確な地域における利用について は、他システムとの共存条件を満たすことが可能である。また、ケーブルテレビ信号のチャン ネル配列等を変更せずに伝送することで円滑な応急復旧が可能となる。

図5 辺地共聴施設の応急復旧イメージ

○ 汎用可搬型システム

辺地用可搬型システムと同様、災害・障害時におけるケーブル伝送路の切断箇所を応急 復旧するための一時的な無線利用シーン(図 4)が想定される。主な利用地域は、ケーブル テレビ事業者の有する幹線等の伝送路が考えられる。

辺地用可搬型システムと異なり、地形的に電波が遮蔽される地域に限らないため、隣接シ ステム等との共存条件を満たすことが困難になる恐れがある。したがって、当該干渉回避の ため固定局と比べて厳しいスペクトルマスクに制限することが必要となる。 2.2 23GHz 帯無線伝送システム(固定局・移動局)のシステム概要

前節での主な利用形態を踏まえ、23GHz 帯無線伝送システムの固定局及び移動局は概ね表 2のような仕様が想定される。

		移動局	
	固定局	辺地用可搬型 システム	汎用可搬型システム
使用可能	23.2~23.6GHz (割当全帯域	23.2~23.6GHz (割当全帯域	23.28~23.52GHz (割当帯域の中央
周波数帯	(副当主带域 400MHz 帯域幅)	(副当主带域 400MHz 帯域幅)	(副当带域00平文 240MHz 帯域幅)
最大送信CH数	65CH 程度	65CH 程度	40CH 程度
最大伝送距離	5km 程度	数百 m 程度	5km 程度
最大空中線 電力	1W	5mW	500mW
送信アンテナ	パラボラアンテナ (直径 30~120cm)又は セクターアンテナ	パラボラアンテナ (直径 10~30cm)	パラボラアンテナ (直径 30~60cm)

表 2 23GHz 帯無線伝送システム(固定局・移動局)のシステム概要

第3章 他の無線システム等との共存条件に関する検討

- 3.1 隣接する 23GHz 帯の無線システム等について
 - 3.1.1 23GHz 帯の周波数の割当状況

23GHz 帯の周波数の割当状況は図 6 のとおりであり、23GHz 帯無線伝送システムの下の 帯域を携帯電話事業者の無線エントランスシステムが利用しており、上の帯域は電波天文が 観測業務を行っている。

図 6 23GHz 帯における周波数の割当状況

3.1.2 無線エントランスシステム

当該システムは、図7の運用イメージのとおり電気通信事業者(主に携帯電話事業関係) が、集約局から携帯電話基地局までの間を無線で中継する回線として用いている。集約局 から携帯電話基地局までの伝送距離は、最大6km程度である。

近年、携帯電話システムの高速化により無線エントランスシステムの伝送容量では十分で なくなりつつあり、光ファイバーの利用が増加しおり、無線エントランスシステムは減少傾向 にある。

図7 無線エントランスシステムの運用イメージ

3.1.3 電波天文業務

天体から放射される電波を受信することにより、天体や宇宙空間の物理状態、さらには宇宙そのものの成因など、宇宙全体を観測するためのシステムである。このうち、23.6GHz~24.0GHz には、主にアンモニア分子輝線が存在している。この帯域は、電波天文学にとって非常に重要でかつ国内外で広く頻繁に使われている周波数帯となっている。

また、遠方の天体から放射される分子輝線は、宇宙膨張のため低い周波数にずれる(赤方 偏移)。また、微弱天体を感度よく観測するために広帯域で観測する。

国内にはこの周波数の観測を実施する、又は実施する可能性が高い電波天文業務の観測 局が16局存在している(参考資料1)。主な電波天文観測局は、図8に示すとおり。

図8 主な電波天文業務の観測局

- 3.2 無線エントランスシステムとの干渉検討
 - 3.2.1 干渉検討パラメータについて

まず、23GHz 帯無線伝送システムと無線エントランスシステムの干渉検討を行うために、両 システムの干渉検討用パラメータの検討を行った。

23GHz 帯無線伝送システムの干渉検討用パラメータとしては、平成 22 年度に実施された実験で用いられたシステム等を参考として設定した。主なパラメータは表 4 のとおり。(参考資料 2)

表 4 23GHz 帯デジタル無線分配システムのパラメータ値

項目	パラメータ値	
許容スプリアス発射強度	-33dBm/MHz 以下	
給電線損失	1dB	
	23dBi(セクターアンテナ)	
アンテナ利得	34.5dBi (30cm パラボラアンテナ)	
	40dBi(60cm パラボラアンテナ)	

また、一例として 60cm パラボラアンテナの指向特性を図 9 に示す。

図 9 23GHz 帯無線伝送システムのアンテナ指向特性(直径 60cm)

なお、23GHz 帯無線伝送システムのスプリアスレベルについては、システム諸元として干渉 検討を容易にするため、図 10(固定局及び辺地用可搬型)及び図 11(汎用可搬型)のとおり、 スペクトルマスクを絶対値で規定したモデルを用いて検討を行うこととした。

図 10 23GHz 帯デジタル無線分配システム(固定局及び辺地用可搬型)の送信スペクトルマスク(絶対値)

図 11 23GHz 帯デジタル無線分配システム(汎用可搬型)の送信スペクトルマスク(絶対値)

一方、無線エントランスシステムの干渉検討用パラメータとしては、現在利用されている標準的なシステムの値を設定することとした。アンテナ指向特性については、ITU-R 勧告 F. 699 を用いることとした。主なパラメータは表 5 のとおり。(参考資料 3)

項目	パラメータ値
許容スプリアス発射強度	-10dBm/MHz 以下
給電損失	0dB
コンニーショク	40dBi(60cmパラボラアンテナ)
アンテノ利待	46dBi(120cm パラボラアンテナ)

表5 無線エントランスシステムのパラメータ値

ー例として、60cm パラボラアンテナの指向特性を図 12 に示す。

図 12 無線エントランスシステムのアンテナ指向特性(直径 60cm)

3.2.2 干渉しきい値について

システム間における干渉検討は、被干渉システムの受信感度を基準として、熱雑音より低い値として干渉しきい値を設定する I/N 基準を用いることが一般的である。また、準ミリ波帯においては、隣接する1次業務間の干渉検討では、I/N=-10dB 程度とすることが一般的であることから、今回の検討においても、I/N=-10dB を満足することを条件とした。

具体的な干渉しきい値は、I/N 基準値、熱雑音電力及び受信機雑音指数から算出し表 6 のとおりとした。なお、全受信雑音電力は絶対温度及び帯域から算出され、受信機雑音指数 はそれぞれのシステムの標準的な値を用いることとした。

	22GHz 帯無線エントランスシステム	23GHz 帯無線伝送システム	
全受信雑音電力	−113.8 dBm/MHz	-113.8 dBm/MHz	
I/N 基準	−10 dB	−10 dB	
受信機雑音指標	8dB	5dB	
干渉しきい値	−115.8 dBm/MHz	-118.8 dBm/MHz	

表6 干渉しきい値の算出

3.2.3 干涉検討

最初に、23GHz 帯無線伝送システムから無線エントランスシステムへの干渉について、自 由空間伝搬損失と 23GHz 帯無線伝送システムの送信アンテナの指向特性のみを考慮し、干 渉しきい値を満足する所要離隔距離を求めた。(参考資料 4)

この結果、両システムのアンテナが正対した場合には 36km~253kmとかなり所要離隔距 離が必要となるため、無線エントランスシステムのアンテナ指向特性についても考慮する必要 があることが明らかとなった。そこで、送信アンテナ、受信アンテナの種類や指向特性を変え て、詳細な干渉検討を行い、所要離隔距離を試算した。また、無線エントランスシステムから 23GHz 帯無線伝送システムへの干渉についても、同様に干渉検討を行い、所要離隔距離を 試算した。(参考資料 5)

3.2.4 干涉検討結果

3.2.4.1 固定局に関する干渉検討結果

以上の検討を踏まえ、23GHz 帯無線伝送システムから無線エントランスシステムへの干 渉の有無について、図 13 のような状況を想定して、干渉検討の定式化を図った。

図 13 23G 無線伝送システムから 22G 無線エントランスシステムへの干渉

ここで、 $G_{23G}(\theta_1)$ は、23GHz 帯無線伝送システムの角度 θ_1 方向の送信アンテナ利得、 $G_{22G}(\theta_2)$ は、22GHz 帯無線エントランスシステムの角度 θ_2 方向の受信アンテナ利得、自 由空間伝搬損失(@23.2GHz)を Lp、山岳や建造物等による遮蔽損失を Ls とすると、干渉 を起こさないためには、次の式を満足する必要がある。

-33.0dBm $-1 + G_{23G}(\theta_1) - Lp - Ls + G_{22G}(\theta_2) \leq -115.8$ [dBm]

すなわち、次式のとおりとなる。

 $G_{23G}(\theta_1) + G_{22G}(\theta_2) - Lp - Ls \leq -81.8[dB]$

参考までに、 $G_{23G}(\theta_1) + G_{22G}(\theta_2)$ を縦軸に、所要離隔距離を横軸にとったグラフを図 14 に示す。ただし、Ls = 0 とし、Lp のみを考慮している。

図 14 トータルアンテナ利得と所要離隔距離の関係

逆に、22GHz帯無線エントランスシステム(与干渉)が23GHz帯無線伝送システム(被干渉)へ干渉を起こさない条件については、図 15 に示す状況を想定して、干渉検討の定式 化を図った。

図 15 22G 無線伝送システムから 23G 無線エントランスシステムへの干渉

ここで、 $G_{22G}(\theta_1)$ は、22GHz 帯無線エントランスシステムの角度 θ_1 方向送信アンテナ利得、 $G_{23G}(\theta_2)$ は、23GHz 帯無線伝送システムの角度 θ_2 方向の受信アンテナ利得、自由空間損失(@23.2GHz)を Lp、山岳や建造物等による遮蔽損失を Ls とすると、干渉を起こさないためには、次の式を満足する必要がある。

-10.0dBm + G_{22G}(θ_1) - Lp - Ls + G_{23G}(θ_2) - 1 \leq -118.8[dBm/MHz]

すなわち、次式のとおりとなる。

 $G_{22G}(\theta_1) + G_{23G}(\theta_2) - Lp - Ls \leq -107.8[dB]$

参考までに、 $G_{22G}(\theta_1) + G_{23G}(\theta_2)$ を縦軸に、所要離隔距離を横軸にとったグラフを図 16 に示す。ただし、Ls = 0 とし、Lp のみを考慮している。

図 16 トータルアンテナ利得と所要離隔距離の関係

3.2.4.2 移動局に関する干渉検討結果

辺地用可搬型システムの場合は、地形的に無線エントランスシステムに干渉を与えない ことが確実な場所での使用に限定することにより干渉を回避することが可能である。

一方、汎用可搬型システムは、利用地域が限定されてなく、隣接システム等との共存条件を満たすことが困難になる可能性があるため、図 11 に示すより厳しいスペクトルマスクを 適用することにより干渉を回避する必要がある。

なお、無線エントランスシステムから 23GHz 帯無線伝送システムの移動局への干渉については、移動局側で干渉回避策をとる必要がある。そのためには、無線エントランスシステム運用者は、必要に応じて、23GHz 帯無線伝送システムに運用者に対して、22GHz 帯無線エントランスシステムの無線局諸元情報の提供等の協力を行うことが必要である。

3.3 電波天文業務との干渉検討

3.3.1 干渉検討に用いるパラメータ

23GHz 帯無線伝送システムの干渉検討用パラメータとしては、無線エントランスシステムとの干渉検討に用いたものと同じパラメータを用いることとした。(参考資料 2)

電波天文業務の観測システムの干渉検討用のパラメータとしては、受信アンテナ利得は 0dBi として計算することとした。

3.3.2 干渉しきい値について

電波天文業務の保護基準は、ITU-R 勧告 RA. 769-2(参考資料 6)に定められているこ とから、原則としてこの保護基準を用いることとした。具体的には表 7 に示すとおり。 具体的な検討にあたっては、より厳しい連続波観測の干渉しきい値-191.6 dBm/MHz を 用いることとした。

	スペクトル線観測	連続波観測
周波数	23.7GHz	23.8GHz
干渉しきい値	−174.0 dBm/MHz	−191.6 dBm/MHz

表7 電波天文の干渉しきい値

3.3.3 干渉検討の方法

23GHz 帯における電波天文の干渉しきい値を満たすためには、自由空間伝搬損失だけで は、約8,000km の離隔距離が必要となる。しかし、周辺には山岳等もあるので、山岳等による 回折損失も考慮することとした。

山岳回折による損失としては、ナイフエッジモデルを用いた。野辺山宇宙電波観測所(NRO) 45m 電波望遠鏡についての干渉検討を山岳等の回折が見込める3地点について行った。受 信高、送信高ともに地上20mとして計算した。その結果、自由空間伝搬損失と1回の回折損 失だけでは干渉しきい値を満足できない場合もあることから、多段の山岳回折が見込める位 置に設置する必要があることが明らかである。。この計算結果等を踏まえ、2回回折までを考 慮して、電波天文局の全局について任意の3地点について減衰量を計算することとした。ここ では、受信高はアンテナ最高地点に統一した。

ここでは、自由空間伝搬損失に加えて、回折による損失は2回までを考慮して計算した。送 受信点の地形プロファイルから1回の山岳回折しか生じない場合は1回の山岳回折で計算し ている。(参考資料7)

これらの計算結果では、いずれも干渉しきい値を満足する結果が得られたが、更に数ヶ所 の送信点について山岳等による回折損失計算を行ったところ、自由空間伝搬損失と山岳 等による回折損失だけでは干渉しきい値を満足でない地点があることが明らかとなっ た。(参考資料7)

そこで、自由空間伝搬損失と山岳回折損失だけでは干渉しきい値を満足しない場合は、 23GHz 無線伝送システムの送信アンテナの指向特性を考慮し、干渉しきい値を満足する こととした。

3.3.4 干涉検討結果

3.3.4.1 固定局に関する検討

23GHz 帯無線伝送システムから電波天文業務への干渉については、上述の無線エントランスシステムとの共存条件の検討と同様、23GHz 帯無線伝送システムの θ_1 方向の送信アンテナ利得を $G_{23G}(\theta_1)$ 、電波天文台の受信アンテナ利得 $G_{\Xi}(\theta_2)$ (=0dBi)、自由空間損失(@23.6GHz)をLp、山岳等による回折損失をLsとすると、帯域外スプリアスが電波天文の干渉しきい値を超えないためには、次の式を満たす必要がある。

 $-33 dBm/MHz + G_{23G}(\theta_1) + G_{\pm\pm}(\theta_2) (=0 dBi) - Lp - Ls \leq -191.6 [dBm/MHz]$

すなわち、次式のとおりとなる。

 $G_{236}(\theta_1) + G_{\pi\pi}(\theta_2) (=0dBi) - Lp - Ls \leq -158.6[dB]$

3.3.4.2 移動局に関する検討

辺地用可搬型システムの場合は、地形的に電波天文業務に干渉を与えないことが確実な場所での使用に限定することにより干渉を回避することとする。

汎用可搬型システムは、利用地域が限定されてなく、隣接システム等との共存条件を満 たすことが困難になる可能性があるため、より厳しいスペクトルマスクを適用することにより 干渉を回避することとする。

更に、23GHz帯における観測を実施している電波天文台近傍で使用する場合は、電波天 文業務への影響を軽減するために、送信空中線の指向方向に十分留意するとともに、必要 に応じて電波天文と事前に調整を行うことにより干渉を回避することとする。事前調整に必 要な電波天文業務の観測局の連絡先を参考資料1に記載する。

なお、電波天文業務への干渉検討のための簡易マップを作成し、運用にあたっての参考 とすることが考えられる。(参考資料 8) 第4章 23GHz 帯無線伝送システムの技術的条件

- 4.1 一般的条件
 - 4.1.1 周波数帯

従来どおり、23GHz帯(23.2GHz~23.6GHz)とすることが適当である。

4.1.2 通信方式

従来どおり、単向通信方式、複信方式又は同報通信方式とすることが適当である。

4.1.3 変調方式

従来の方式に追加して、地上デジタルテレビジョン放送で使用されている標準デジタルテレ ビジョン放送方式の直交周波数分割多重変調(OFDM)及びデジタル有線テレビジョン放送方 式の 64 値直交振幅変調(64QAM)とするのが適当である。また、無線伝送間のレベルの安定 化と周波数精度の向上に用いるパイロット信号は、前提としている有線テレビジョン放送のデ ジタル信号をそのまま伝送する非再生中継方式を用いることを考慮し、安定した信号生成が 可能である無変調とすることが適当である。

4.1.4 搬送波の周波数(中心周波数)

有線における伝送が困難な区間における代替的利用であることから、チャンネル配置については、23GHz帯(23.2GHz~23.6GHz)に収まるようにし、有線放送の伝送帯域を考慮したものとするのが適当である。なお、汎用可搬型システムは、23.28GHz~23.52GHz とすることが適当である。

4.1.5 搬送波の周波数間隔

既存の 90MHz 以上 770MHz 以下の周波数帯を使用する有線テレビジョン放送施設において、デジタルテレビジョン放送の信号を非再生中継方式で無線伝送することを前提としていることから,有線伝送区間と同様に、隣接する搬送波の周波数間隔を6MHz 以上とすることが適当である。

4.1.6 回線品質

有線一般放送の品質に関する技術基準の標準デジタルテレビジョン方式による有線テレ ビジョン放送等を行う有線放送設備に係る条件である第 16 条(搬送波等の条件)において規 定されている受信者端子の信号品質を満足するものとし、無線伝送区間の回線品質は規定 しないものとする。

4.1.7 混信保護

現在規格化されているデジタル受信装置の性能を勘案すると、希望波対妨害波比(D/U) は 29dB 以上とすることが適当である。なお、降雨減衰による D/U が 29dB 以下となる時間率 は、5×10⁻⁴/年以下とすることが適当である。(参考資料 9)

4.1.8 電波防護指針への適合

電波法施行規則第 21 条の 3 では、電波のエネルギー量と生体への作用との関係が定量 的に明らかにされており、これに基づき、システムの運用形態に応じて、電波防護指針に適 合するようシステム諸元の設定に配慮する必要がある。

表8に示す電波防護指針の基準値に照らした適合性について参考資料10のとおり検討を 行ったところ、正対した状態で送信アンテナと離隔距離を15.9m以上とれば、電波防護指針を 満たすことができる。必要な離隔距離をとれない場合は送信アンテナの指向特性を考慮、も しくは人が立ち入れないよう防護柵を設けるなどの適切な措置を加えることとする。

周波数	電界強度の実効値	磁界強度の実効値	電力束密度
	(V/m)	(A/m)	(mW/cm²)
1.5GHz ~ 300GHz	61.4	0.163	1

表8 電磁界強度(平均時間6分間)の基準値(電波法施行規則別表第2号の3の2)抜粋

4.1.9 安全·信頼性基準

情報通信審議会放送システム委員会が平成23年5月17日にとりまとめた「地上デジタル テレビジョン放送等の安全・信頼性に関する技術的条件」の報告書の中で、「有線放送設備 において、稀に、伝送路設備の一部に無線設備が用いられていることがあるが、これらの無 線設備については、有線における伝送が困難な区間における代替的利用であることなど、各 区間の特殊事例を勘案しつつ、可能な範囲で有線の伝送路設備等に準じた措置を行うこと が望ましい。」と記載されている。

これを受けて、安全・信頼性確保のための各措置については各々設置条件を考慮し適切 な措置を行うこととする。特に、その利用形態から複数経路の設置が困難であることが考え られるため、予備機器等の措置においては同軸ケーブルの安全・信頼性基準上の取り扱い と同等に考えることが適当である。

- 4.2 無線設備の技術的条件
 - 4.2.1 送信装置
 - 4.2.1.1 送信周波数の許容偏差 従来どおり、3×10⁻⁴以下とすることが適当である。
 - 4.2.1.2 占有周波数帯幅の許容値
 - 4.2.1.2.1 標準デジタルテレビジョン放送方式

地上デジタル放送の標準デジタルテレビジョン放送方式と同様として 5.7MHz とすること が適当である。

4.2.1.2.2 デジタル有線テレビジョン放送方式

デジタル有線テレビジョン放送方式の 64QAM(ITU-T J.83 Annex C)では、シンボルレート 5.274Mbps、ロールオフ率 13%であり、スペクトル帯域幅は 5.95962MHz となる。したがって、スペクトル帯域幅を含む最大値として 6MHz とすることが適当である。

4.2.1.3 空中線電力

従来どおり 1W 以下とすることが適当である。なお、辺地用可搬型システムは 5mW 以下、汎用可搬型システムは 500mW 以下とすることが適当である。

4.2.1.4 空中線電力の許容偏差

現行の無線設備規則のとおり、-50%~+20%とすることが適当である。

4.2.1.5 送信スペクトルマスク

これまでの実現できている最新の技術動向を考慮し検討した結果、固定局及び辺地用 可搬型システムの移動局については図 17 に示すとおり、汎用可搬型システムの移動局 については、図 18 に示すとおりの送信スペクトルマスクを規定することが適当である。

図 17 23GHz 帯デジタル無線分配システム(固定局及び辺地用可搬型)の送信スペクトルマスク(絶対値)

図 18 23GHz 帯デジタル無線分配システム(汎用可搬型)の送信スペクトルマスク(絶対値)

4.2.1.6 不要発射の強度の許容値

現行の無線設備規則を参考とし、帯域外領域における不要発射の強度の許容値は 100 μW以下(参照帯域幅は1MHz)、スプリアス領域における不要発射の強度の許容値は 50 μW以下とする。

4.2.2 受信装置

副次的に発する電波等の限度は、他の無線設備への影響を考慮し、現行の無線設備規則 のとおり、4nW以下とすることが適当である。

4.2.3 空中線系

4.2.3.1 対向型空中線

固定局については、直径 30 センチメートルのパラボラアンテナと同等以上の利得又は指 向特性を有するものであること。また、汎用可搬型システムについては、直径 30 センチメー トル以上 60 センチメートル以下のパラボラアンテナ、辺地用可搬型システムについては直 径 10 センチメートル以上 30 センチメートル以下のパラボラアンテナと同程度の利得又は指 向特性を有するものであること。

4.2.3.2 多方向向け空中線

サービスエリアに応じた空中線の指向特性及び利得を有するものであること。

4.3 隣接システムとの共存条件

4.3.1 無線エントランスシステムとの共存条件

無線エントランスシステムとの共存条件は、「3.2 無線エントランスシステムとの干渉検討」 のとおり。

4.3.2 電波天文業務との共存条件

電波天文業務との共存条件は、「3.3 電波天文業務との干渉検討」のとおり。

4.4 測定法

国内で定められた測定法に準じて、次のとおりとすることが適当である。なお、測定系として は、標準信号発生器から UHF 帯の変調信号を送信機の同軸ケーブルインタフェースに入力す ることを想定しているが、送信機が光インタフェースの場合は、E/O 変換器を準備し、E/O 変換 器を含めた特性を評価することとする。

4.4.1 周波数の偏差

標準信号発生器から無変調搬送波を送信機に加え、送信出力を周波数計で測定する。ただし、無変調にできない場合は、特定の変調状態とし波形解析器等を用いて測定することができる。なお、波形解析器の測定周波数範囲を超える場合は、ミキサー等を用いて測定する。

ただし、AFC パイロット信号については、標準信号発生器から無変調搬送波を送信機に加え、 送信出力を周波数計で測定する。

4.4.2 占有周波数带域幅

標準信号発生器から通常の変調波を送信機に加え、得られるスペクトル分布の全電力についてスペクトルアナライザー等を用いて測定し、スペクトル分布の上限及び下限部分における電力のの1.5%となる周波数幅を測定する。

4.4.3 空中線電力

標準信号発生器から通常の変調波を送信機に加え、送信出力が最大となるまで入力信号レベルを加えた状態で、電力計を用いて平均電力(バースト波にあってはバースト内平均電力)を 測定する。

なお、AFC パイロット信号については、標準信号発生器から通常の変調波を送信機に加え、 送信出力が最大となるまで入力信号レベルを加えた状態で、電力計を用いて平均電力を測定 する。

標準信号発生器から、送信出力が最大となるまで入力信号レベルを加えた状態としているが、 一定の電力で送信を停止する機能がある場合は、送信を停止する直前の入力信号レベルとす る。

4.4.4 送信スペクトルマスク

標準信号発生器から通常の変調波を送信機に加え、送信出力が最大となるまで入力信号レベルを加えた状態で、スペクトルアナライザーを用いて平均電力(バースト波にあってはバースト内平均電力)を測定する。なお、スペクトルアナライザーの分解能帯域幅は、技術的条件で定

められた参照帯域幅に設定すること。ただし、搬送波周波数の近傍において分解能帯域幅の 特性によって測定値への影響がある場合は、分解能帯域幅を狭くして測定しても良く、この場 合、不要発射の強度は、分解能帯域幅ごとの測定結果を参照帯域幅に渡り積分した値とす る。

4.4.5 不要発射の強度

標準信号発生器から通常の変調波を送信機に加え、送信出力が最大となるまで入力信号 レベルを加えた状態で、スペクトルアナライザーを用いて平均電力(バースト波にあってはバ ースト内平均電力)を測定する。なお、スペクトルアナライザーの分解能帯域幅は、技術的条 件で定められた参照帯域幅に設定すること。ただし、搬送波周波数の近傍において分解能帯 域幅の特性によって測定値への影響がある場合は、分解能帯域幅を狭くして測定しても良く、 この場合、不要発射の強度は、分解能帯域幅ごとの測定結果を参照帯域幅に渡り積分した 値とする。

なお、複数チャンネルを同時に送信する場合にあっては、送信する全チャンネルにおいて 通常の変調波及びAFCパイロット信号を加えた信号を送信機に加えた状態で測定する。測定 周波数範囲は、30MHzから2次高調波までとする。なお、導波管を用いるものは測定周波数 の下限をカットオフ周波数の0.7倍からとすることができるほか、導波管が十分に長く技術基 準を十分満足するカットオフ減衰量が得られることが証明できる場合は、その周波数範囲の 測定を省略することができる。測定用端子が空中線端子と異なる場合は、空中線端子と測定 用端子の間の損失等を補正する。

4.4.6 受信装置の副次的に発射する電波等の強度

受信空中線端子において、スペクトルアナライザー等を用いて測定すること。送信空中線と 共存する場合は、受信状態にして測定すること。なお、副次的に発する電波等の限度の測定 周波数範囲は、30MHz から2 次高調波までとする。

なお、導波管を用いるものは測定周波数の下限をカットオフ周波数の 0.7 倍からとすること ができるほか、導波管が十分に長く技術基準を十分満足するカットオフ減衰量が得られること が証明できる場合は、その周波数範囲の測定を省略することができる。測定用端子が空中線 端子と異なる場合は、空中線端子と測定用端子の間の損失等を補正する。ただし、受信装置 がない場合は、測定を行わない。 第5章 今後の検討課題

本報告書では、地上デジタル放送への完全移行に伴い、デジタル難視地域における伝送手段、 災害発生時におけるケーブルテレビの応急復旧の伝送手段の充実のため、23GHz 帯無線伝送シ ステムの技術的条件をまとめたが、双方向機能、高度変調方式(256QAM)の適用、可搬型システ ム(移動局)の平常時における利用については、引き続き検討が必要である。

双方向機能については、多くのケーブルテレビ事業者がインターネット接続サービスを行ってい る現状を踏まえると、必要不可欠であると言える。しかしながら、23GHz 帯で利用可能な 400MHz 幅の帯域を上り下りに分割すると、テレビ信号の伝送 CH 数が減少すること等の課題があることか ら、21GHz 帯(21.2~21.4GHz)などの他の周波数帯を上り回線に用いることなどが考えられる。た だし、DOCSIS 方式(ケーブルテレビインターネット)の信号伝送や伝送に必要な変調方式について フィールド検証実験を行うなど、更に検討を行う必要がある。

256QAM 等、更に高度な変調方式については、これまでのフィールド実験においては、必要な 位相雑音の等価 C/N を満たすことができていないことから、更にフィールド実験等を行う必要があ る。

可搬型システム(移動局)の平常時における利用については、具体的な利用イメージに基づく所 要要件の設定を行った上で、事前運用調整窓口の設置等の隣接システム等との干渉回避策の検 討が必要である。

別 添 2

答 申 案

諮問第 2024 号

「ケーブルテレビシステムの技術的条件」

のうち

「23GHz 帯無線伝送システムの技術的条件」

諮問第 2024 号「ケーブルテレビシステムの技術的条件」のうち「23GHz 帯無線伝送システムの 技術的条件」については、次のとおりとすることが適当である。

- 1. 一般的条件
 - (1) 周波数带

23GHz 帯(23.2GHz~23.6GHz)とする。

(2) 通信方式

単向通信方式、複信方式又は同報通信方式とする。

(3) 変調方式

直交周波数分割多重変調(OFDM)及び 64 値直交振幅変調(64QAM)とする。なお、パイロット信号は、無変調とする。

(4) 搬送波の周波数(中心周波数)

チャンネル配置については、23GHz 帯(23.2GHz~23.6GHz)に収まるようにし、有線放送の伝送を考慮したものとする。なお、汎用可搬型システムは、23.28GHz~23.52GHz とする。

(5) 搬送波の周波数間隔

隣接する搬送波の周波数間隔を 6MHz 以上とする。

(6) 混信保護

混信保護比は、29dB 以上とする。なお、降雨減衰による D/U が 29dB 以下となる時間率は、 5×10⁻⁴/年以下とする。

(7) 電波防護指針への適合

電波防護指針に合致するよう適切な措置を行うこと。

- 2. 無線設備の技術的条件
 - (1)送信装置
 - ア 送信周波数の許容偏差 3×10⁻⁴以下とする。
 - イ 占有周波数帯幅の許容値 標準デジタルテレビジョン放送方式は 5.7MHz とし、デジタル有線テレビジョン放送方式は 6MHz とする。

ウ 空中線電力

1W 以下とする。ただし、辺地用可搬型システムは 5mW 以下、汎用可搬型システムは 500mW 以下とする。

エ 空中線電力の許容偏差

-50%~+20%とする。

オ 送信スペクトルマスク

固定局及び辺地用可搬型システムの移動局については図 1 に示すとおり、汎用可搬型シ ステムについては図 2 に示すとおりとする。

図1 23GHz帯デジタル無線分配システム(固定局及び辺地用可搬型)の送信スペクトルマスク(絶対値)

図 2 23GHz 帯デジタル無線分配システム(汎用可搬型)の送信スペクトルマスク(絶対値)

カ 不要発射の強度の許容値

スプリアス領域における不要発射の強度の許容値は 50μW 以下、帯域外領域における不 要発射の強度の許容値は 100μW 以下として参照帯域幅を 1MHz とする。

(2) 受信装置

副次的に発する電波等の限度は、4nW以下とする。

- (3) 空中線系
 - ア 対向型空中線

固定局については、直径 30 センチメートルのパラボラアンテナと同等以上の利得又は指向 特性を有するものであること。また、汎用可搬型システムについては、直径 30 センチメートル 以上 60 センチメートル以下のパラボラアンテナ、辺地用可搬型システムについては直径 10 センチメートル以上 30 センチメートル以下のパラボラアンテナと同程度の利得又は指向特性 を有するものであること。

イ 多方向向け空中線

サービスエリアに応じた空中線の利得及び指向特性を有するものであること。

- 3. 隣接システムとの共存条件
 - (1) 無線エントランスシステムとの共存条件

23GHz 帯無線伝送システムから 22GHz 帯無線伝送システムへの干渉については、次式を 満足すること。

 $G_{236}(\theta_1) + G_{226}(\theta_2) - Lp - Ls \leq -81.8[dB]$

 $G_{23G}(\theta_1): 23$ GHz 帯無線伝送システムの角度 θ_1 方向の送信アンテナ利得[dBi] $G_{22G}(\theta_2): 22$ GHz 帯無線エントランスシステムの角度 θ_2 方向の受信アンテナ利得[dBi] Lp: 自由空間伝搬損失(@23.2GHz)

Ls: 山岳や建造物等による遮蔽損失

22GHz 帯無線伝送システムから 23GHz 帯無線伝送システムへの干渉については、次式を満足すること。

 $G_{22G}(\theta_1) + G_{23G}(\theta_2) - Lp - Ls \leq -107.8[dB]$

 $G_{22G}(\theta_1): 22GHz 帯無線エントランスシステムの角度<math>\theta_1$ 方向送信アンテナ利得[dBi] $G_{23G}(\theta_2): 23GHz 帯無線伝送システムの角度<math>\theta_2$ 方向の受信アンテナ利得[dBi] Lp: 自由空間伝搬損失(@23.2GHz)
Ls:山岳や建造物等による遮蔽損失

辺地用可搬型システムは、干渉回避のため、地形的に無線エントランスシステムに干渉を与 えないことが確実な場所での使用に限定する。

汎用可搬型システムは、干渉回避のため、図2に示すスペクトルマスクを適用する。

なお、無線エントランスシステムから 23GHz 帯無線伝送システムの移動局への干渉について は、移動局側で干渉回避策をとることとする。

(2) 電波天文業務との共存条件

23GHz 帯無線伝送システムから電波天文業務への干渉については、次式を満足すること。

 $G_{23G}(\theta_1) + G_{\pm \pm}(\theta_2) (=0 dBi) - Lp - Ls \leq -158.0[dB]$

 $G_{23G}(\theta_1)$: 23GHz 帯無線伝送システムの θ_1 方向の送信アンテナ利得[dBi]

G_{天文}(θ₂): 電波天文台の受信アンテナ利得(=0dBi)

- Lp: 自由空間伝搬損失(@23.6GHz)
- Ls:山岳等による回折損失

辺地用可搬型システムは、干渉回避のため、地形的に電波天文に干渉を与えないことが確 実な場所での使用に限定する。

汎用可搬型システムは、干渉回避のため、図2スペクトルマスクを適用する。

23GHz 帯における観測を実施している電波天文台近傍で使用する場合は、電波天文業務への影響を軽減するために、送信空中線の指向方向に十分留意するとともに、必要に応じて電波 天文と事前に調整を行うことにより干渉を回避する。

4. 測定法

標準信号発生器から UHF 帯の変調信号を送信機の同軸インタフェースに入力することとし、送 信機が光インタフェースの場合は E/O 変換器を準備し、E/O 変換器を含めた特性を評価する。

(1) 周波数の偏差

標準信号発生器から無変調搬送波を送信機に加え、送信出力を周波数計で測定する。ただ し、無変調にできない場合は、特定の変調状態とし波形解析器等を用いて測定することがで きる。なお、波形解析器の測定周波数範囲を超える場合は、ミキサー等を用いて測定する。 ただし、AFC パイロット信号については、標準信号発生器から無変調搬送波を送信機に加え、 送信出力を周波数計で測定する。

(2) 占有周波数带域幅

標準信号発生器から通常の変調波を送信機に加え、得られるスペクトル分布の全電力についてスペクトルアナライザー等を用いて測定し、スペクトル分布の上限及び下限部分におけ

る電力の和が、それぞれ全電力の 0.5%となる周波数幅を測定する。

(3) 空中線電力

標準信号発生器から通常の変調波を送信機に加え、送信出力が最大となるまで入力信号 レベルを加えた状態で、電力計を用いて平均電力(バースト波にあってはバースト内平均電力) を測定する。

なお、AFC パイロット信号については、標準信号発生器から通常の変調波を送信機に加え、 送信出力が最大となるまで入力信号レベルを加えた状態で、電力計を用いて平均電力を測定 する。

標準信号発生器から、送信出力が最大となるまで入力信号レベルを加えた状態としている が、一定の電力で送信を停止する機能がある場合は、送信を停止する直前の入力信号レベル とする。

(4) 送信スペクトルマスク

標準信号発生器から通常の変調波を送信機に加え、送信出力が最大となるまで入力信号 レベルを加えた状態で、スペクトルアナライザーを用いて平均電力(バースト波にあってはバ ースト内平均電力)を測定する。なお、スペクトルアナライザーの分解能帯域幅は、技術的条 件で定められた参照帯域幅に設定すること。ただし、搬送波周波数の近傍において分解能帯 域幅の特性によって測定値への影響がある場合は、分解能帯域幅を狭くして測定しても良く、 この場合、不要発射の強度は、分解能帯域幅ごとの測定結果を参照帯域幅に渡り積分した 値とする。

(5) 不要発射の強度

標準信号発生器から通常の変調波を送信機に加え、送信出力が最大となるまで入力信号 レベルを加えた状態で、スペクトルアナライザーを用いて平均電力(バースト波にあってはバ ースト内平均電力)を測定する。なお、スペクトルアナライザーの分解能帯域幅は、技術的条 件で定められた参照帯域幅に設定すること。ただし、搬送波周波数の近傍において分解能帯 域幅の特性によって測定値への影響がある場合は、分解能帯域幅を狭くして測定しても良く、 この場合、不要発射の強度は、分解能帯域幅ごとの測定結果を参照帯域幅に渡り積分した 値とする。

なお、複数チャンネルを中継する場合にあっては、中継する全チャンネルにおいて通常の 変調波及びAFCパイロット信号を加えた信号を送信機に加えた状態で測定する。測定周波数 範囲は、30MHz から 2 次高調波までとする。なお、導波管を用いるものは測定周波数の下限 をカットオフ周波数の0.7倍からとすることができるほか、導波管が十分に長く技術基準を十分 満足するカットオフ減衰量が得られることが証明できる場合は、その周波数範囲の測定を省 略することができる。測定用端子が空中線端子と異なる場合は、空中線端子と測定用端子の 間の損失等を補正する。

(6) 受信装置の副次的に発射する電波等の強度

受信空中線端子において、スペクトルアナライザー等を用いて測定すること。送信空中線と 共存する場合は、受信状態にして測定すること。なお、副次的に発する電波等の限度の測定 周波数範囲は、30MHz から2 次高調波までとする。

なお、導波管を用いるものは測定周波数の下限をカットオフ周波数の 0.7 倍からとすること ができるほか、導波管が十分に長く技術基準を十分満足するカットオフ減衰量が得られるこ とが証明できる場合は、その周波数範囲の測定を省略することができる。測定用端子が空 中線端子と異なる場合は、空中線端子と測定用端子の間の損失等を補正する。ただし、受 信装置がない場合は、測定を行わない。

参考資料

- 参考資料1 23GHz 帯電波天文観測局及び分子輝線について
- 参考資料 2 23GHz 帯無線伝送システムの干渉検討用パラメータ
- 参考資料3 無線エントランスシステムの干渉検討用パラメータ
- 参考資料 4 23GHz 帯無線伝送システムから無線エントランスシステムへの所要離 隔距離について
- 参考資料 5 23GHz 帯無線伝送システムと無線エントランスシステムとのアンテナ指 向性を考慮した所要離隔距離の検討結果
- 参考資料 6 ITU-R 勧告 RA.769-2
- 参考資料 7 電波天文観測局との干渉検討結果
- 参考資料 8 干渉回避マップ
- 参考資料 9 混信保護比について
- 参考資料 10 電波防護指針に関する検討

参考資料1

23GHz帯電波天文観測局及び分子輝線の状況について

23GHz帯電波天文観測局一覧

	局名	所在地等	局位 置(東 ^{※世界』}	〔 <mark>経、北緯</mark> 〕 _{奎標系}
1		岩手県奥州市 0197-22-7111	141.132544	39.133493
2	VERA入来*	鹿児島県薩摩川内市 0996-21-4175,0197-22-7111	130.439993	31.747976
3	VERA小笠原*	東京都小笠原村父島 04998-2-7333,0197-22-7111	142.216773	27.09168
4	VERA石垣島*	沖縄県石垣市0980-88-0011, 0197-22-7111	124.171085	24.412453
5	水沢10m*	岩手県奥州市 国立天文台 0197-22-7111	141.132372	39.133323
6	北大苫小牧	北海道苫小牧市	141.596898	42.673814
7	高萩*	茨城県高萩市 茨城大学運用	140.694866	36.698593
8	日立*	茨城県日立市 茨城大学運用	140.692002	36.697552
9	NICT鹿島	茨城県鹿嶋市 情報通信研究機構	140.660051	35.955872
10	国土地理院つくば	茨城県つくば市	140.088902	36.103148
11	野辺山(NRO) *	長野県南佐久郡南牧村 0267-98- 4300	138.472517	35.944503
12	JAXA臼田	長野県佐久市 宇宙科学研究所	138.36201	36.132953
13	岐阜大岐阜	岐阜県岐阜市 岐阜大学	136.737092	35.467595
14	山口*	山口県山口市 山口大学運用	131.556725	34.218203
15	鹿児島6m*	鹿児島県鹿児島市平川町 鹿児島大 学運用	130.507107	31.46425
16	内之浦 ^{注1}	鹿児島県肝属郡肝付町 内之浦宇宙 空間観測所(JAXA)	131.07816	31.254432

注1:開局準備局、*は国立天文台所有 (

(連絡窓口)

国立天文台 電波天文周波数小委員会事務局

TEL:0422-34-3794、E-mail: catv-23ghz@nro.nao.ac.jp

23GHz帯(23.6GHz~24.0GHz)の アンモニア分子輝線について

23GHz帯のアンモニア分子輝線分布状況

(J,K)= (1,1):23.69450GHz付近、(2,2):23.72263GHz付近、

(3,3):23.87012GHz

輝線の強度比較によって、分子雲の温度、密度、アンモニア分子の量といった物理量を精度よく推定する事ができる。

図2 (左)アンモニア分子のエネルギーレベルと遷移 (右)分子モデル

23GHz帯無線伝送システムの干渉検討用パラメータ

	標準値	備考
周波数	23.2~23.6GHz	
空中線電力	500mW	
	23dBi	セクターアンテナ
送信アンテナ利得	34.5dBi	Ф30cmパラボラ相当
	40dBi	Φ60cmパラボラ相当
給電線損失(送信)	1dB	
受信アンテナ利得	34.6dBi	30ф
給電線損失(受信)	1dB	
受信機雑音指数	5dB	
干涉許容値 -118.8dBm/MHz		I/N = -10 dB

無線エントランスの干渉検討用パラメータ

	集約局側	基地局設置ビル側	備考
無線周波数	22.4 ~ 22.6GHz(低群),	23.0 ~ 23.2GHz(高群)	
送信出力	270	dBm	
占有周波数帯域幅	36.5MHz以1	下 (64QAM)	
変調方式	640	QAM	
アンテナ利得	46dBi (120cm)	40dBi (60cm)	送受共用アンテナ
アンテナ指向特性	ITU-R F.699 (3 ITU-R F.1245		
アンテナ地上高	50m	20m	
給電損失	OdB		冗長構成なし 無線装置とアンテナは直結
雑音指数	80	dB	
不要発射の許容値	帯域外領域:-10dBm(/10kHz~/MHz) スプリアス領域:-13dBm/MHz		
許容干渉レベル	帯域内干渉:-115.8dBm/MHz 帯域外干渉:-40dBm	z (I/N=-10dB)	

(注)本表のスペックは標準的なものであり、被干渉システムとして最悪ケースを想定したものではない。

23GHz 帯無線伝送システムからエントランスシステムへの所要離隔距離について

エントランスシステムの干渉検討用パラメータの内、干渉量が大きくなる受信アンテナとして ¢120cm パラボラアンテナとし、エントランスシステム帯域内干渉 I/N 基準(-10dB) および帯 域外干渉感度抑圧許容レベルを満足する無線局間所要離隔距離について検討した。干渉緩和要素 として、自由空間伝播損失および 23GHz 帯無線伝送システム送信空中線方向利得を考慮した。

エントランスシステムの諸元は以下とした。 受信空中線利得 Gar:46.0 (dBi) (φ120cmパラボラアンテナ) 給電線損失 Lfr:0 (dB) スプリアス許容干渉レベル IN:-115.8 (dBm/MHz) (I/N=-10dB) 感度抑圧干渉許容レベル:-40 (dBm)

23GHz 帯無線伝送システムの諸元は以下とした。
 送信空中線電力 Pt:30 (dBm)
 スプリアス発射強度 Pts:-33.0 (dBm/MHz) 以下
 スプリアス発射強度 Ptsf:-63.0 (dBm/MHz) 以下 (出力フィルタあり)
 送信給電線損失 Lft:1 (dB)
 送信アンテナ方向利得 Gat θ:以下の表とする。

23GHz 帯無線伝送システム送信アンテナによる所要離隔距離

スプリアス干渉

所要離隔距離相当の自由空間伝播損失 Lp は、

 $Lp=Pts+Gat \theta - Lft+Gar - Lfr - IN$ (dB)

 $=-33+\text{Gat}\,\theta$ -1+46-0- (-115.8) (dB)

=127.8+Gat θ (dB)

出力フィルタありでは、97.8+Gat θ (dB) となる。

周波数 f: 23200MHz (λ: 0.01293) と自由空間伝播損失 Lp から所要離隔距離 d (m) を求める。
 自由空間伝播損失は、
 Lp=(4π d/λ)²
 従って、所要離隔距離 d (m) は、d=λ√Lp/4π となる。

感度抑圧干渉

所要離隔距離相当の自由空間伝播損失Lpは、
 Lp=Pt+Gat θ - Lft+Gar - Lfr - 感度抑圧干渉許容レベル (dB)
 =30+Gat θ - 1+46-0- (-40) (dB)
 =115+Gat θ (dB)
 上記と同様に所要離隔距離d (m)を求める。

以上により、23GHz 帯無線伝送システム送信アンテナ主方向からの角度θ毎に求めた所要離隔 距離d(km)を以下の表に示す。

90 度セクターアンテナ

主方向からの角度(度)	方向利得(dBi)	備考
0~±45	23	主方向
± 60	13	
±75	5	
$\pm 90 \sim \pm 180$	-7	

30cm パラボラアンテナ

主方向からの角度(度)	方向利得(dBi)	備考
0	34. 5	主方向
±5	16.5	
±15	4. 5	
$\pm 30 \sim \pm 180$	-5.5	

60cm パラボラ (ITU-R F.699 特性)

主方向からの角度(度)	方向利得(dBi)	備考
0	40	主方向
±5	18	
±15	3	
±30	-2	
$\pm 80 \sim \pm 180$	-10	

90 度セクターアンテナ

ナナロットの分布	所要離隔距離 d(km)					
	スプリアス干渉	スプリアス干渉 出力フィルタあり	感度抑圧干渉			
0~±45	35.68	1. 13	8. 18	主方向		
±60	11. 29	0. 357	2.59			
±75	4. 50	0. 142	1.03			
±90~±180	1.13	0. 036	0. 26			

30cm パラボラアンテナ

ナナウムこの分声	所要	離隔距離 d(km)		
	スプリアス干渉	スプリアス干渉 出力フィルタあり	感度抑圧干渉	備考
0	134. 10	4. 25	30. 72	主方向
±5	16.89	0. 534	3.87	
±15	4. 25	0. 134	0. 98	
$\pm 30 \sim \pm 180$	1.35	0. 042	0. 31	

	所要離隔距離 d(km)				
上 ノ 问 からの 用 反	ップリマッエ洪	スプリアス干渉	咸귵坝匞工洪	備考	
	ヘノリアヘモル	出力フィルタあり	您度抑圧于沙		
0	252.60	7.99	57.87	主方向	
±5	20. 07	0. 634	4.60		
±15	3. 57	0. 113	0. 82		
±30	2. 01	0.063	0.46		
$\pm 50 \sim \pm 180$	0. 80	0. 025	0. 19		

60cm パラボラアンテナ

23GHz帯無線伝送システムと無線エントランスシステムとのアンテナ指向性を考慮した所要離隔距離の検討結果

<u>干渉検討用 22G無線エントランス アンテナ指向特性(ITU-R F.699 計算値)</u>

23G無線伝送システムから22G無線エントランスシステムへの干渉検討①

22G無線エントランスシステムのアンテナ指向特性を考慮した所要離隔距離の算出

θ1: 23G無線伝送システムのアンテナ主軸から22G無線エントランスシステムを見た角度

θっ: 22G無線エントランスシステムのアンテナ主軸から23G無線伝送システムを見た角度

22G無線エントランスシステム

受信レベル

23G無線伝送システム

	セクシ	\$─(θ₁=0~±4	l5°)		35.7km		1:	$20 \text{cm} (\theta_2 = \pm 0^\circ)$)
TX出力レヘル	給電線損失	アンテナ利得	レヘ゛ルA		自由空間損失		レヘ゛ルB	アンテナ利得	受信レベル
	1.0dB	23.0dBi		\rightarrow	150.8dB	\rightarrow		46.0dBi	
-33.0dBm			-11.0dBm		23.2GHz		-161.8dBm		-115.80dBm
				-					許容干渉レベル:-115.8dBm

105m 自由空間損失 100.2dB

23.2GHz

59m 自由空間損失 95.1dB

23.2GHz

セクター (<i>θ</i> 1 = 0~±45°)				
TX出力レヘル	給電線損失	アンテナ利得	レヘ゛ルA	I
	1.0dB	23.0dBi		
-33.0dBm			-11.0dBm	

	セクター ($ heta_1$ = 0〜±45°)				
TX出力レヘル	給電線損失	アンテナ利得	レヘルA		
	1.0dB	23.0dBi			
-33.0dBm			-11.0dBm		

セクター (θ ₁ =0~±45°)					
TX出力レヘル	給電線損失	アンテナ利得	レベルA		
	1.0dB	23.0dBi			
-33.0dBm			-11.0dBm		

250m		12	$0 \text{ cm} (\theta_2 = \pm$
自由空間損失		レベルB	アンテナ利得
107.7dB	\rightarrow		2.9dBi
23.2GHz	-	-118.7dBm	

-

-

-115.80dBm

$120 \text{cm} (\theta_2 = \pm 30^\circ)$					
レヘルB	アンテナ利得	受信レヘル			
	-4.6dBi				
-111.2dBm		-115.80dBm			

 $(\theta_2 = \pm 15^\circ)$

120cm ($\theta_2 = 48^\circ \sim \pm 180^\circ$)						
レヘルB	アンテナ利得	受信レベル				
	−9.7dBi					
-106.1dBm		-115.80dBm				
許容干渉レベル:-115.8dBm						

23G無線伝送システムから22G無線エントランスシステムへの干渉検討②

22G無線エントランスシステムのアンテナ指向特性を考慮した所要離隔距離の算出

θ1: 23G無線伝送システムのアンテナ主軸から22G無線エントランスシステムを見た角度

θ₂: 22G無線エントランスシステムのアンテナ主軸から23G無線伝送システムを見た角度

22G無線エントランスシステム

23G無線伝送システム

	セクシ	\$─ (θ₁=0~±4	45°)	_	17.9km		6	$\theta_2 = \pm 0^\circ$)
TX出力レヘル	給電線損失	アンテナ利得	レヘ゛ルA		自由空間損失		レヘ゛ルB	アンテナ利得	受信レヘル
	1.0dB	23.0dBi		\rightarrow	144.8dB	\rightarrow		40.0dBi	
-33.0dBm			-11.0dBm		23.2GHz		-155.8dBm		-115.80dBm
				-					許容干渉レペル:-115.8dBm

353m 自由空間損失 110.7dB

23.2GHz

149m 自由空間損失 103.2dB 23.2GHz

83m 自由空間損失 98.1dB 23.2GHz

セクター (<i>θ</i> ₁ = 0~±45°)					_
	TX出力レヘル	給電線損失	アンテナ利得	レヘブルA	
		1.0dB	23.0dBi		-
	-33.0dBm			-11.0dBm	

セクター (θ ₁ =0~±45°)					
TX出力レヘル	給電線損失	アンテナ利得	レヘルA		
	1.0dB	23.0dBi			
-33.0dBm			-11.0dBm		

セクター (θ ₁ =0~±45°)				
TX出力レヘル	給電線損失	アンテナ利得	レベルA	
	1.0dB	23.0dBi		
-33.0dBm			-11.0dBm	

	$60cm$ ($\theta_2 = \pm 15$)					
	レヘルB	アンテナ利得	受信レヘル			
		5.9dBi				
	-121.7dBm		-115.80dBm			

$60 \text{cm} (\theta_2 = \pm 30^\circ)$					
	レベルB	アンテナ利得	受信レヘル		
>		−1.6dBi			
	−114.2dBm		-115.80dBm		

60cm ($\theta_2 = 48^\circ \sim \pm 180^\circ$)					
	レヘルB	アンテナ利得	受信レヘル		
		-6.7dBi			
	-109.1dBm		-115.80dBm		
		•	許容干渉レペル :−115.8dBm		

23G無線伝送システムから22G無線エントランスシステムへの干渉検討③

22G無線エントランスシステムのアンテナ指向特性を考慮した所要離隔距離の算出

θ1: 23G無線伝送システムのアンテナ主軸から22G無線エントランスシステムを見た角度

θっ: 22G無線エントランスシステムのアンテナ主軸から23G無線伝送システムを見た角度

22G無線エントランスシステム

23G無線伝送システム

	30cr	mパラボラ (θ_1 =	0°)	_	134.1km		120cm	ヽパラボラ (θ₂= :	±0°)
TX出力レヘル	給電線損失	アンテナ利得	レヘルA		自由空間損失		レヘルB	アンテナ利得	受信レヘル
	1.0dB	34.5dBi		\rightarrow	162.3dB	\rightarrow		46.0dBi	
-33.0dBm			.5dBm		23.2GHz		-161.8dBm		-115.80dBm
				-					許容干渉レヘル:-115.8dBm

939m 自由空間損失 119.2dB 23.2GHz

396m 自由空間損失 111.7dB 23.2GHz

220m 自由空間損失 106.6dB 23.2GHz

30cmパラボラ (<i>θ</i> ₁ = 0°)				
TX出力レヘル	給電線損失	アンテナ利得	レベルA	
	1.0dB	34.5dBi		
-33.0dBm			.5dBm	

30cmパラボラ (<i>θ</i> ₁ = 0°)				
TX出力レヘル	給電線損失	アンテナ利得	レヘ゛ルA	
	1.0dB	34.5dBi		
-33.0dBm			.5dBm	

	30cr	mパラボラ (θ ₁ =	0°)	
TX出力レヘル	給電線損失	アンテナ利得	レベルA	
	1.0dB	34.5dBi		
-33.0dBm			.5dBm	

120cmパラボラ ($\theta_2 = \pm 15^\circ$)					
レヘルB	アンテナ利得	受信レヘル			
	2.9dBi				
-118.7dBm		-115.80dBm			
		許容干渉レベル:-115.8dBm			

$120 \text{cm} (9_2 - \pm 30)$					
レヘ゛ルB	アンテナ利得	受信レヘル			
	−4.6dBi				
-111.2dBm		-115.80dBm			

	120cmパラオ	ミラ (θ₂=±48°	~±180°)
	レヘルB	アンテナ利得	受信レヘル
\rightarrow		-9.7dBi	
-	-106.1dBm		-115.80dBm
			許容干渉レベル:-115.8dBm

23G無線伝送システムから22G無線エントランスシステムへの干渉検討④

22G無線エントランスシステムのアンテナ指向特性を考慮した所要離隔距離の算出

θ1: 23G無線伝送システムのアンテナ主軸から22G無線エントランスシステムを見た角度

θっ: 22G無線エントランスシステムのアンテナ主軸から23G無線伝送システムを見た角度

22G無線エントランスシステム

23G無線伝送システム

30cmパラポラ (θ ₁ = 0°)					
TX出力レヘル	給電線損失	アンテナ利得	レベルA		
	1.0dB	34.5dBi			
-33.0dBm			.5dBm		

	67.3km	
	自由空間損失	
→	156.3dB	
	23.2GHz	

 $60 \text{ cm} パラボラ (\theta_2 = \pm 0^\circ)$ 受信レベル アンテナ利得 レヘルB 40.0dBi -155.8dBm -115.80dBm

許容干渉レヘル:-115.8dBm

30cmパラボラ (<i>θ</i> ₁ = 0°)				
TX出力レヘル	給電線損失	アンテナ利得	レヘ゛ルA	
	1.0dB	34.5dBi		
-33.0dBm			.5dBm	

30cmパラボラ (
TX出力レヘル	給電線損失	アンテナ利得	レヘ゛ルA	
	1.0dB	34.5dBi		
-33.0dBm			.5dBm	

		121111	V . 101 X
	1.0dB	34.5dBi	
-33.0dBm			.5dBm

30cmパラボラ (θ ₁ = 0°)						
TX出力レベル	給電線損失	アンテナ利得	レベルA			
	1.0dB	34.5dBi		-		
-33.0dBm			.5dBm			

	1.3km	
	自由空間損失	
•	122.2dB	
	23.2GHz	

	122.2dB	\rightarrow
-	23.2GHz	-

→

560m	
自由空間損失	
114.7dB	
23.2GHz	

311m 自由空間損失 109.6dB 23.2GHz

レベルB	アンテナ利得	受信レヘル
	5.9dBi	
-121.7dBm		-115.80dBm
-		許容干渉レペル:-115.8dBm

60cmパラボラ ($\theta_{2} = \pm 15^{\circ}$)

60cmパラボラ (θ_2 = ±30°)						
レヘ [゙] ルB	アンテナ利得	受信レヘル				
	−1.6dBi					
-114.2dBm		-115.80dBm				
許容干渉レベル:-115.8dBm						

60cmパラボ	ミラ (θ₂=±48°	~±180°)
レベルB	アンテナ利得	受信レヘル
	−6.7dBi	
-109.1dBm		-115.80dBm
		許容干渉レペル:-115.8dBm

23G無線伝送システムから22G無線エントランスシステムへの干渉検討⑤

22G無線エントランスシステムのアンテナ指向特性を考慮した所要離隔距離の算出

θ1: 23G無線伝送システムのアンテナ主軸から22G無線エントランスシステムを見た角度

θっ: 22G無線エントランスシステムのアンテナ主軸から23G無線伝送システムを見た角度

22G無線エントランスシステム

23G無線伝送システム

	60cı	mパラボラ (θ ₁ =	0°)	_	252.6km		120cn	ヽパラボラ (θ₂= :	±0°)
TX出力レヘル	給電線損失	アンテナ利得	レヘブルA		自由空間損失		レヘルB	アンテナ利得	受信レヘル
	1.0dB	40.0dBi		→	167.8dB	\rightarrow		46.0dBi	
-33.0dBm			6.0dBm	1	23.2GHz		-161.8dBm		-115.80dBm
				-			-		許容干渉レヘル -115.8dBm

1.8km 自由空間損失 124.7dB 23.2GHz

746m 自由空間損失 117.2dB 23.2GHz

415m 自由空間損失 112.1dB 23.2GHz

60cmパラボラ (<i>θ</i> ₁ = 0°)					
TX出力レヘル	給電線損失	アンテナ利得	レヘルA		
	1.0dB	40.0dBi			
-33.0dBm			6.0dBm		

60cmパラボラ (<i>θ</i> ₁ = 0°)					
TX出力レヘル	給電線損失	アンテナ利得	レヘ [゙] ルA		
	1.0dB	40.0dBi			
-33.0dBm			6.0dBm		

	60cr	mパラボラ (θ ₁ =	0°)	
TX出力レヘル	給電線損失	アンテナ利得	レベルA	
	1.0dB	40.0dBi		
-33.0dBm			6.0dBm	l

120cmバラホラ ($\theta_2 = \pm 15^\circ$)							
レベルB	アンテナ利得	受信レベル					
	2.9dBi						
-118.7dBm		-115.80dBm					

	120cm	パラボラ (ፀュ= ヨ	=30°)
	レベルB	アンテナ利得	受信レヘル
•		-4.6dBi	
	-111.2dBm		-115.80dBm
			許容干渉レベル:-115.8dBm

	120cmパラオ	ドラ (θ₂=±48°	~±180°)
	レヘルB	アンテナ利得	受信レヘル
\rightarrow		-9.7dBi	
	-106.1dBm		-115.80dBm
			許容干渉レベル:-115.8dBm

23G無線伝送システムから22G無線エントランスシステムへの干渉検討⑥

22G無線エントランスシステムのアンテナ指向特性を考慮した所要離隔距離の算出

θ1: 23G無線伝送システムのアンテナ主軸から22G無線エントランスシステムを見た角度

θっ: 22G無線エントランスシステムのアンテナ主軸から23G無線伝送システムを見た角度

22G無線エントランスシステム

受信レベル

23G無線伝送システム

	60cr	nパラボラ (θ ₁ =)	0°)		126.6km		60
TX出力レヘル	給電線損失	アンテナ利得	レヘ゛ルA		自由空間損失		レベルB
	1.0dB	40.0dBi		\rightarrow	161.8dB	\rightarrow	
-33.0dBm			6.0dBm		23.2GHz	-	-155.8dBm

40.0dBi -115.80dBm 許容干渉レベル:-115.8dBm

	60cr	nパラボラ ($\theta_1 = \theta_1$	0°)
TX出力レヘル	給電線損失	アンテナ利得	レベルA
	1.0dB	40.0dBi	
-33.0dBm			6.0dBm

	60cr	mパラボラ (θ ₁ =	0°)
TX出力レヘル	給電線損失	アンテナ利得	レベルA
	1.0dB	40.0dBi	
-33.0dBm			6.0dBm

	60cr	nパラボラ (θ_1 =	0°)	
TX出力レヘル	給電線損失	アンテナ利得	レベルA	
	1.0dB	40.0dBi		
-33.0dBm			6.0dBm	

	2.5km	
	自由空間損失	
→	127.7dB	
	23.2GHz	

1.1km 自由空間損失 120.2dB

23.2GHz

586m 自由空間損失 115.1dB

23.2GHz

-

-

60cm/	パラボラ (θ₂= ±	:15°)
レベルB	アンテナ利得	受信レヘル
	5.9dBi	
-121.7dBm		-115.80dBm
		→

. .

 $60 \text{ cm パラボラ } (\theta_2 = \pm 0^\circ)$

アンテナ利得

|許容十渉レヘ ル:-115.8dBm|

60cm/	バラボラ (#₂=土	:30°)
レベルB	アンテナ利得	受信レヘル
	−1.6dBi	
-114.2dBm		-115.80dBm
		許容干渉レベル:-115.8dBm

- - 0

60cmパラボ	ラ(θ₂=±48°	~±180°)
レベルB	アンテナ利得	受信レヘル
	−6.7dBi	
-109.1dBm		-115.80dBm
		許容干渉レベル:-115.8dBm

22G無線エントランスシステムから23G無線伝送システムへの干渉検討①

22G無線エントランスシステムのアンテナ指向特性を考慮した所要離隔距離の算出

θ1: 22G無線エントランスシステムのアンテナ主軸から23G無線伝送システムを見た角度

θ₂: 23G無線伝送システムのアンテナ主軸から22G無線エントランスシステムを見た角度

22G無線エントランスシステム

120cm	ヽパラボラ (θ ₁ =:	±0°)		2709.5km		30cr	nパラボラ (θ₂=)	0°)	
TX出力レヘル	アンテナ利得	レベルA		自由空間損失		レヘルB	アンテナ利得	給電線損失	受信レヘル
	46.0dBi		\rightarrow	188.4dB	\rightarrow		34.6dBi	1.0dB	
-10.0dBm		36.0dBm		23.2GHz		-152.4dBm			-118.80dBm
									許容干渉レベル:-118.8dBm
	<u> </u>							- • •	
120cm	<u> パラボラ (θ₁=±</u>	=15°)		19.0km		30cr	mバラボラ (θ₂=	0°)	
TX出 カレヘ [・] ル	アンテナ利得	レベルA		自由空間損失		レヘ゛ルB	アンテナ利得	給電線損失	受信レヘル
	2.9dBi		\rightarrow	145.3dB	\rightarrow		34.6dBi	1.0dB	
-10.0dBm		-7.1dBm		23.2GHz		-152.4dBm			-118.80dBm
									許容干渉レベル:-118.8dBm
120cm	パラボラ (θ ₁ = ±	=30°)		8.0km		30cr	mパラボラ (θ₂=	0°)	
120cm TX出力レベル	パラボラ (θ₁ = ± アンテナ利得	=30°) レベルA		8.0km 自由空間損失		30cr レ∧゙ルB	m パラボラ (θ₂ = 	0°) 給電線損失	受信レベル
120cm TX出力レベル	パラボラ (ፀ₁ = ± アンテナ利得 -4.6dBi	=30°) レベルA	→	8.0km 自由空間損失 137.8dB	→	30cr レベルB	m パラボラ (θ ₂ =) アンテナ利得 34.6dBi	0°) 給電線損失 1.0dB	受信レベル
120cm TX出力レベル -10.0dBm	パラボラ (ፀ₁ = ± アンテナ利得 -4.6dBi	=30°) ↓∧ˆルA −14.6dBm	→	8.0km 自由空間損失 137.8dB 23.2GHz	→	30cr レ∧*ルB 	m パラボラ (θ 2=) アンテナ利得 34.6dBi	0°) 給電線損失 1.0dB	受信レペル 118.80dBm
120cm TX出力レヘル -10.0dBm	パラボラ (θ ₁ = ± アンテナ利得 -4.6dBi	= 30°) ↓∧ˆルA −14.6dBm	→	8.0km 自由空間損失 137.8dB 23.2GHz	→	30cr レ∧*ルB 	nパラボラ (θ₂ = アンテナ利得 34.6dBi	0°) 給電線損失 1.0dB	受信レベル -118.80dBm 許容干渉レペル : -118.8dBm
120cm TX出力レヘル -10.0dBm	パラボラ (θ ₁ = ± アンテナ利得 -4.6dBi	= 30°) <u> ↓</u> ^Ĵ↓A –14.6dBm	→	8.0km 自由空間損失 137.8dB 23.2GHz	→	30cr レ∧*ルB 	nパラボラ (θ₂ = アンテナ利得 34.6dBi	0°) <u>給電線損失</u> 1.0dB	受信レベル -118.80dBm 許容干渉レペル :- 118.8dBm
120cm TX出力レヘル -10.0dBm 120cmパラオ	パラボラ (θ ₁ = ± <u>アンテナ利得</u> -4.6dBi ホ ラ (θ ₁ = ±48°	=30°) └^ĴルA -14.6dBm ~±180°)	→	8.0km 自由空間損失 137.8dB 23.2GHz 4.4km	→	30cr レ∧*ルB -152.4dBm 30cr	nパラボラ (θ ₂ =) アンテナ利得 34.6dBi nパラボラ (θ ₂ =)	0°) <u>給電線損失</u> 1.0dB 0°)	受信レベル -118.80dBm 許容干渉レペル :- 118.8dBm
120cm TX出力レヘル -10.0dBm 120cmパラオ TX出力レヘル	パラボラ (θ₁ = ± <u>アンテナ利得</u> -4.6dBi ボラ (θ₁ = ±48° アンテナ利得	=30°) └^îルA -14.6dBm ~±180°) └^îルA	→	8.0km 自由空間損失 137.8dB 23.2GHz 4.4km 自由空間損失	→	30cr レ^*ルB -152.4dBm 30cr レ^*ルB	mパラボラ (02= アンテナ利得 34.6dBi mパラボラ (02= アンテナ利得	0°) 給電線損失 1.0dB 0°) 給電線損失	受信レベル -118.80dBm 許容干渉レペル :- 118.8dBm 受信レベル
120cm TX出力レヘル -10.0dBm 120cmパラオ TX出力レヘル	パラボラ (θ₁ = ± <u>アンテナ利得</u> -4.6dBi ドラ (θ₁ = ±48° <u>アンテナ利得</u> -9.7dBi	=30°) └^ĴJJA -14.6dBm ~±180°) └^ĴJJA	→ →	8.0km 自由空間損失 137.8dB 23.2GHz 4.4km 自由空間損失 132.7dB	→ →	30cr レ^*ルB -152.4dBm 30cr レ^*ルB	mパラボラ (0 ₂ =) アンテナ利得 34.6dBi mパラボラ (0 ₂ =) アンテナ利得 34.6dBi	0°) 給電線損失 1.0dB 0°) 給電線損失 1.0dB	受信レベル -118.80dBm 許容干渉レベル :- 118.8dBm

許容干渉レベル:-118.8dBm

23G無線伝送システム

22G無線エントランスシステムから23G無線伝送システムへの干渉検討②

22G無線エントランスシステムのアンテナ指向特性を考慮した所要離隔距離の算出

θ1: 22G無線エントランスシステムのアンテナ主軸から23G無線伝送システムを見た角度

θ₂: 23G無線伝送システムのアンテナ主軸から22G無線エントランスシステムを見た角度

23G無線伝送システム

22G無線エントランスシステム

60cmパラボラ ($\theta_1 = \pm 0^\circ$)		1357.9km		30cr	nパラボラ (θ₂=	0°)	
TX出力レベル アンテナ利得 レベルA		自由空間損失		レベルB	アンテナ利得	給電線損失	受信レヘル
40.0dBi	\rightarrow	182.4dB	\rightarrow		34.6dBi	1.0dB	
-10.0dBm 30.0dBm		23.2GHz		-152.4dBm			-118.80dBm
							許容干渉レペル:-118.8dBm
						0 ⁸)	
$60 \text{ cm} / フホフ (\theta_1 = \pm 15)$		26.8km		30cr	nハフホフ (θ₂=	0)	<u>.</u>
TX出力レベル アンテナ利得 レベルA		自由空間損失		レベルB	アンテナ利得	給電線損失	受信レヘル
5.9dBi	\rightarrow	148.3dB	\rightarrow		34.6dBi	1.0dB	
-10.0dBm -4.1dBm		23.2GHz		-152.4dBm			-118.80dBm
							許容干渉レペル:-118.8dBm
						o? \	
60cmパラボラ (θ ₁ = ±30°)		11.3km		30cr	nパラボラ (θ₂=	0°)	
60cmパラボラ(θ ₁ = ±30°) TX出力レヘ [*] ル アンテナ利得 レヘ [*] ルA		11.3km 自由空間損失		30cr レ∧້ルΒ	n パラボラ (θ₂= アンテナ利得	0 ^{°°}) 給電線損失	受信レベル
60cmパラボラ(θ ₁ = ±30°) TX出力レヘル アンテナ利得 レヘルA -1.6dBi	→	11.3km 自由空間損失 140.8dB	→	30cr レ∧゙ルΒ	n パラボラ (ፀ₂ = アンテナ利得 34.6dBi	0°) 給電線損失 1.0dB	受信レベル
60cmパラボラ (θ ₁ = ±30°) TX出力レヘル アンテナ利得 レヘルA -1.6dBi -11.6dBm	→	11.3km 自由空間損失 140.8dB 23.2GHz	\rightarrow	30cr レ∧`ルB 	n パラボラ (ፀ₂ = アンテナ利得 34.6dBi	0°) 給電線損失 1.0dB	受信レベル
60cmパラボラ(θ ₁ = ±30°) TX出力レヘル アンテナ利得 レヘル -1.6dBi -11.6dBm	\rightarrow	11.3km 自由空間損失 140.8dB 23.2GHz	→	30cr ↓^*ルB -152.4dBm	nパラボラ (θ₂ = アンテナ利得 34.6dBi	0°) 給電線損失 1.0dB	受信レベル -118.80dBm 許容干涉レベル:-118.8dBm
60cmパラボラ (θ ₁ =±30°) TX出力レベル アンテナ利得 レベルA -1.6dBi -10.0dBm -11.6dBm 60cmパラボラ (θ ₁ =±48°~~±180°)	→	11.3km 自由空間損失 140.8dB 23.2GHz 6.3km	→	30cr ↓^*ルB -152.4dBm 30cr	nパラボラ (θ ₂ = - <u>アンテナ利得</u> 34.6dBi	0°) 給電線損失 1.0dB	受信レ ^{ヘ*} ル -118.80dBm 許容干渉レヘ[*]ル:-118.8dBm
60cmパラボラ (θ ₁ = ±30°) TX出力レヘ [*] ル アンテナ利得 レヘ [*] ルA -1.6dBi -10.0dBm -11.6dBm 60cmパラボラ (θ ₁ = ±48° ~±180°) TX出力レヘ [*] ル アンテナ利得 レヘ [*] ルA	→	11.3km 自由空間損失 140.8dB 23.2GHz 6.3km 自由空間損失	→	30cr ↓^*ルB -152.4dBm 30cr	nパラボラ (θ ₂ = - アンテナ利得 34.6dBi nパラボラ (θ ₂ = - アンテナ利得	0°) 給電線損失 1.0dB 0°) 給電線損失	受信レ ^{ヘ*} ル -118.80dBm 許容干渉レヘ[*]ル:-118.8dBm 受信レヘ [*] ル
60cmパラボラ (θ ₁ =±30°) TX出力レヘル アンテナ利得 レヘルA -1.6dBi -10.0dBm -11.6dBm 60cmパラボラ (θ ₁ =±48°~±180°) TX出力レヘル アンテナ利得 レヘルA -6.7dBi	→ →	11.3km 自由空間損失 140.8dB 23.2GHz 6.3km 自由空間損失 135.7dB	→ →	30cr ↓^*ルB -152.4dBm 30cr ↓^*ルB	nパラボラ (θ ₂ =) アンテナ利得 34.6dBi nパラボラ (θ ₂ =) アンテナ利得 34.6dBi	0°) 給電線損失 1.0dB 0°) 給電線損失 1.0dB	受信レベル -118.80dBm 許容干渉レベル :- 118.8dBm 受信レベル
60cmパラボラ(θ₁=±30°) TX出力レヘル アンテナ利得 レヘルA -1.6dBi -10.0dBm -11.6dBm 60cmパラボラ(θ₁=±48°~±180°) TX出力レヘル アンテナ利得 レヘルA -6.7dBi -10.0dBm -16.7dBm	→ →	11.3km 自由空間損失 140.8dB 23.2GHz 6.3km 自由空間損失 135.7dB 23.2GHz	→ →	30cr ↓^*ルB -152.4dBm 30cr ↓^*ルB -152.4dBm	nパラボラ (θ ₂ =) <u>アン</u> テナ利得 34.6dBi nパラボラ (θ ₂ =) アンテナ利得 34.6dBi	0°) 給電線損失 1.0dB 0°) 給電線損失 1.0dB	受信レ ^{ヘ*} ル -118.80dBm 許容干渉レヘ*ル:-118.8dBm 受信レヘ [*] ル -118.80dBm

G_{23G}(θ₁) : 23G無線伝送システムのアンテナ主軸から22G無線エントランスシステムを見た角度における利得 G_{22G}(θ₂) : 22G無線エントランスシステムのアンテナ主軸から23G無線伝送システムを見た角度における利得

-33 - 送信給電線損失 + $G_{23G}(\theta_1)$ - 自由空間伝搬損失(@23.2GHz) + $G_{22G}(\theta_2)$ ≦ -115.8[dBm] ∴ $G_{23G}(\theta_1)$ + $G_{22G}(\theta_2)$ - 自由空間伝搬損失(@23.2GHz) ≤ -81.8[dB]

トータルアンテナ利得= $G_{23G}(\theta_1) + G_{22G}(\theta_2)$ とした場合、上式が成立する2局間距離は下図に示す距離以上である。

G_{23G}(θ₂) : 23G無線伝送システムのアンテナ主軸から22G無線エントランスシステムを見た角度における利得

-10 + $G_{22G}(\theta_1)$ - 自由空間伝搬損失(@23.2GHz) + $G_{23G}(\theta_2)$ - 受信給電線損失 ≦ -118.8[dBm] ∴ $G_{22G}(\theta_1)$ + $G_{23G}(\theta_2)$ - 自由空間伝搬損失(@23.2GHz) ≦ -107.8[dB]

Rec. ITU-R RA.769-2

1

RECOMMENDATION ITU-R RA.769-2

Protection criteria used for radio astronomical measurements

(Question ITU-R 145/7)

(1992-1995-2003)

The ITU Radiocommunication Assembly,

considering

a) that many of the most fundamental astronomical advances made in the past five decades, (e.g. the discovery of radio galaxies, quasars, and pulsars, the direct measurement of neutral hydrogen, the direct measurement of distances of certain external galaxies, and establishment of a positional reference frame accurate to ~20 arc μ s) have been made through radio astronomy, and that radio astronomical observations are expected to continue making fundamental contributions to our understanding of the Universe, and that they provide the only way to investigate some cosmic phenomena;

b) that the development of radio astronomy has also led to major technological advances, particularly in receiving and imaging techniques, and to improved knowledge of fundamental radio-noise limitations of great importance to radiocommunication, and promises further important results;

c) that radio astronomers have made useful astronomical observations from the Earth's surface in all available atmospheric windows ranging from 2 MHz to 1000 GHz and above;

d) that the technique of space radio astronomy, which involves the use of radio telescopes on space platforms, provides access to the entire radio spectrum above about 10 kHz, including parts of the spectrum not accessible from the Earth due to absorption in atmosphere;

e) that protection from interference is essential to the advancement of radio astronomy and associated measurements;

f) that radio astronomical observations are mostly performed with high-gain antennas or arrays, to provide the highest possible angular resolution, and consequently main beam interference does not need to be considered in most situations, except when there is the possibility of receiver damage;

g) that most interference that leads to the degradation of astronomical data is received through the far side lobes of the telescope;

h) that the sensitivity of radio astronomical receiving equipment, which is still steadily improving, particularly at millimetre wavelengths, and that it greatly exceeds the sensitivity of communications and radar equipment;

j) that typical radio astronomical observations require integration times of the order of a few minutes to hours, but that sensitive observations, particularly of spectral lines, may require longer periods of recording, sometimes up to several days;

k) that some transmissions from spacecraft can introduce problems of interference to radio astronomy and that these cannot be avoided by choice of site for an observatory or by local protection;

1) that interference to radio astronomy can be caused by terrestrial transmissions reflected by the Moon, by aircraft, and possibly by artificial satellites;

m) that some types of high spatial-resolution interferometric observations require simultaneous reception, at the same radio frequency, by widely separated receiving systems that may be located in different countries, on different continents, or on space platforms;

n) that propagation conditions at frequencies below about 40 MHz are such that a transmitter operating anywhere on the Earth might cause interference detrimental to radio astronomy;

o) that some degree of protection can be achieved by appropriate frequency assignments on a national rather than an international basis;

p) that WRCs have made improved allocations for radio astronomy, particularly above 71 GHz, but that protection in many bands, particularly those shared with other radio services, may still need careful planning;

q) that technical criteria concerning interference detrimental to the radio astronomy service (RAS) have been developed, which are set out in Tables 1, 2, and 3,

recommends

1 that radio astronomers should be encouraged to choose sites as free as possible from interference;

2 that administrations should afford all practicable protection to the frequencies and sites used by radio astronomers in their own and neighbouring countries and when planning global systems, taking due account of the levels of interference given in Annex 1;

3 that administrations, in seeking to afford protection to particular radio astronomical observations, should take all practical steps to reduce all unwanted emissions falling within the band of the frequencies to be protected for radio astronomy to the absolute minimum. Particularly those emissions from aircraft, high altitude platform stations, spacecraft and balloons;

4 that when proposing frequency allocations, administrations take into account that it is very difficult for the RAS to share frequencies with any other service in which direct line-of-sight paths from the transmitters to the observatories are involved. Above about 40 MHz sharing may be practicable with services in which the transmitters are not in direct line-of-sight of the observatories, but coordination may be necessary, particularly if the transmitters are of high power.

Annex 1

Sensitivity of radio astronomy systems

1 General considerations and assumptions used in the calculation of interference levels

1.1 Detrimental-level interference criterion

The sensitivity of an observation in radio astronomy can be defined in terms of the smallest power level change ΔP in the power level *P* at the radiometer input that can be detected and measured. The sensitivity equation is:

$$\frac{\Delta P}{P} = \frac{1}{\sqrt{\Delta f_0 t}} \tag{1}$$

where:

P and ΔP : power spectral density of the noise

 Δf_0 : bandwidth

t: integration time. *P* and ΔP in equation (1) can be expressed in temperature units through the Boltzmann's constant, *k*:

$$\Delta P = k \ \Delta T; \quad \text{also} \quad P = k \ T \tag{2}$$

Thus we may express the sensitivity equation as:

$$\Delta T = \frac{T}{\sqrt{\Delta f_0 t}} \tag{3}$$

where:

$$T = T_A + T_R$$

This result applies for one polarization of the radio telescope. *T* is the sum of T_A (the antenna noise temperature contribution from the cosmic background, the Earth's atmosphere and radiation from the Earth) and T_R , the receiver noise temperature. Equations (1) or (3) can be used to estimate the sensitivities and interference levels for radio astronomical observations. The results are listed in Tables 1 and 2. An observing (or integration) time, *t*, of 2000 s is assumed, and interference threshold levels, ΔP_H , given in Tables 1 and 2 are expressed as the interference power within the bandwidth Δf that introduces an error of 10% in the measurement of ΔP (or ΔT), i.e.:

$$\Delta P_H = 0.1 \,\Delta P \,\Delta f \tag{4}$$

In summary, the appropriate columns in Tables 1 and 2 may be calculated using the following methods:

- ΔT , using equation (3),
- ΔP , using equation (2),
- ΔP_H , using equation (4).

Rec. ITU-R RA.769-2

The interference can also be expressed in terms of the pfd incident at the antenna, either in the total bandwidth or as a spectral pfd, S_H , per 1 Hz of bandwidth. The values given are for an antenna having a gain, in the direction of arrival of the interference, equal to that of an isotropic antenna (which has an effective area of $c^2/4\pi f^2$, where *c* is the speed of the light and *f* the frequency). The gain of an isotropic radiator, 0 dBi, is used as a general representative value for the side-lobe level, as discussed under § 1.3.

Values of $S_H \Delta f$ (dB(W/m²)), are derived from ΔP_H by adding:

$$20 \log f - 158.5$$
 dB (5)

where f(Hz). S_H is then derived by subtracting 10 log $\Delta f(Hz)$ to allow for the bandwidth.

1.2 Integration time

The calculated sensitivities and interference levels presented in Tables 1 and 2 are based on assumed integration times of 2000 s. Integration times actually used in astronomical observations cover a wide range of values. Continuum observations made with single-antenna telescopes (as distinct from interferometric arrays) are well represented by the integration time of 2000 s, typical of good quality observations. On the other hand 2000 s is less representative of spectral line observations. Improvements in receiver stability and the increased use of correlation spectrometers have allowed more frequent use of longer integration times required to observe weak spectral lines, and spectral line observations lasting several hours are quite common. A more representative integration time for these observations would be 10 h. For a 10 h integration, the threshold interference level is 6 dB more stringent than the values given in Table 2. There are also certain observations of time varying phenomena, e.g. observations of pulsars, stellar or solar bursts, and interplanetary scintillations for which much shorter time periods may be adequate.

1.3 Antenna response pattern

Interference to radio astronomy is almost always received through the antenna side lobes, so the main beam response to interference need not be considered.

The side-lobe model for large paraboloid antennas in the frequency range 2 to 30 GHz, given in Recommendation ITU-R SA.509 is a good approximation of the response of many radio astronomy antennas and is adopted throughout this Recommendation as the radio astronomy reference antenna. In this model, the side-lobe level decreases with angular distance (degrees) from the main beam axis and is equal to $32 - 25 \log \varphi$ (dBi) for $1^{\circ} < \varphi < 48^{\circ}$. The effect of an interfering signal clearly depends upon the angle of incidence relative to the main beam axis of the antenna, since the side-lobe gain, as represented by the model, varies from 32 to -10 dBi as a function of this angle. However, it is useful to calculate the threshold levels of interference strength for a particular value of side-lobe gain, that we choose as 0 dBi, and use in Tables 1 to 3. From the model, this side-lobe level occurs at an angle of 19.05° from the main beam axis. Then a signal at the detrimental threshold level defined for 0 dBi side-lobe gain will exceed the criterion for the detrimental level at the receiver input if it is incident at the antenna at an angle of less than 19.05°. The solid angle

within a cone of angular radius 19.05° is 0.344 sr, which is equal to 5.5% of the 2π sr of the sky above the horizon that a radio telescope is able to observe at any given time. Thus if the probability of the angle of incidence of interference is uniformly distributed over the sky, about 5.5% of interfering signals would be incident within 19.05° of the main beam axis of an antenna pointed towards the sky. Note also that the 5.5% figure is in line with the recommended levels of data loss to radio astronomy observations in percentage of time, specified in Recommendation ITU-R RA.1513.

The particular case of non-GSO satellites presents a dynamic situation, that is, the positions of the satellites relative to the beam of the radio astronomy antenna show large changes within the time scale of the 2000 s integration time. Analysis of interference in this case requires integrating the response over the varying side-lobe levels, for example, using the concept of epfd defined in No. 22.5C of the Radio Regulations (RR). In addition it is usually necessary to combine the responses to a number of satellites within a particular system. In such calculations it is suggested that the antenna response pattern for antennas of diameter greater than 100 λ in Recommendation ITU-R S.1428 be used to represent the radio astronomy antenna, until a model based specifically on radio astronomy antennas is available; see § 2.2 for further discussion.

1.4 Bandwidth

Equation (1) shows that observations of the highest sensitivity are obtained when radio astronomers make use of the widest possible bandwidth. Consequently, in Table 1 (continuum observations), Δf is assumed to be the width of the allocated radio astronomy bands for frequencies up to 71 GHz. Above 71 GHz a value of 8 GHz is used, which is a representative bandwidth generally used on radio astronomy receivers in this range. In Table 2 (spectral line observations) a channel bandwidth Δf equal to the Doppler shift corresponding to 3 km/s in velocity is used for entries below 71 GHz. This value represents a compromise between the desired high spectral resolution and the sensitivity. There are a very large number of astrophysically important lines above 71 GHz, as shown in Recommendation ITU-R RA.314 and only a few representative values for the detrimental levels are given in Table 2 for the range 71-275 GHz. The channel bandwidth used to compute the detrimental levels above 71 GHz is 1000 kHz (1 MHz) in all cases. This value was chosen for practical reasons. While it is slightly wider than the spectral channel width customary in radio astronomy receivers at these frequencies, it is used as the standard reference bandwidth for space services above 15 GHz.

1.5 Receiver noise temperature and antenna temperature

The receiver noise temperatures in Tables 1 and 2 are representative of the systems in use in radio astronomy. For frequencies above 1 GHz these are cryogenically cooled amplifiers or mixers. The quantum effect places a theoretical lower limit of hf/k on the noise temperature of such devices, where *h* and *k* are Planck's and Boltzmann's constants, respectively. This limit becomes important at frequencies above 100 GHz, where it equals 4.8 K. Practical mixers and amplifiers for bands at 100 GHz and higher provide noise temperatures greater than hf/k by a factor of about four. Thus, for frequencies above 100 GHz, noise temperatures equal to 4hf/k are used in Tables 1 and 2.

The antenna temperatures in the Tables are also representative of practical systems in use in radio astronomy. They include the effects of the ionosphere or the neutral atmosphere, ground pickup in side lobes resulting from spillover or scattering, ohmic losses, and the cosmic microwave background. At frequencies above 100 GHz the atmospheric losses due to water vapour in the neutral atmosphere become very important. For these frequencies the values given are typical of the terrestrial sites used for major millimetric-wave radio astronomy facilities, such as Mauna Kea, Hawaii, or the Llano de Chajnantor at an elevation of 5 000 m in Chile, which is the site chosen for a major international radio astronomy array for frequencies in the range 30 GHz to 1 THz.

2 Special cases

The levels given in Tables 1 and 2 are applicable to terrestrial sources of interfering signals. The detrimental pfd and spectral pfd shown in Tables 1 and 2 assume that interference is received through a 0 dBi side lobe, and should be regarded as the general interference criteria for high sensitivity radio astronomy observations, when the interference does not enter the near side lobes.

2.1 Interference from GSO satellites

Interference from GSO satellites is a case of particular importance. Because the power levels in Tables 1 and 2 were calculated based on a 0 dBi antenna gain, interference detrimental to radio astronomy will be encountered when a reference antenna, such as described in Recommendation ITU-R SA.509, is pointed within 19.05° of a satellite radiating at levels in accordance with those listed in the Tables. A series of such transmitters located around the GSO would preclude radio astronomy observations with high sensitivity from a band of sky 38.1° wide and centred on the orbit. The loss of such a large area of sky would impose severe restrictions on radio astronomy observations.

In general, it would not be practical to suppress the unwanted emissions from satellites to below the detrimental level when the main beam of a radio telescope is pointed directly towards the satellite. A workable solution is suggested by observing the projection of the GSO in celestial coordinates as viewed from the latitudes of a number of major radio astronomy observations (see Recommendation ITU-R RA.517). If it were possible to point a radio telescope to within 5° of the GSO without encountering detrimental interference, then for that telescope a band of sky 10° wide would be unavailable for high-sensitivity observations. For a given observatory this would be a serious loss. However, for a combination of radio telescopes located at northern and southern latitudes, operating at the same frequencies, the entire sky would be accessible. A value of 5° should therefore be regarded as the requirement for minimum angular spacing between the main beam of a radio astronomy antenna and the GSO.

In the model antenna response of Recommendation ITU-R SA.509, the side-lobe level at an angle of 5° from the main beam is 15 dBi. Thus, to avoid interference detrimental to a radio telescope meeting the antenna side-lobe performance of Recommendation ITU-R SA.509, pointed to within 5° of the transmitter, it is desirable that the satellite emissions be reduced 15 dB below the pfd given in Tables 1 and 2. When satellites are spaced at intervals of only a few degrees along the GSO, the emission levels associated with the individual transmitters must be even lower to meet the requirement that the sum of the powers of all the interfering signals received should be 15 dB below ΔP_H in Tables 1 and 2.

It is recognized that the emission limitations discussed above cannot, in practice, be achieved so as to enable sharing of the same frequency band between radio astronomy and down-link transmissions from satellites to take place. The limitations are, however, applicable to unwanted emission from the satellite transmitters, which fall within the radio astronomy bands listed in Tables 1 and 2. These emission limitations have implications for the space services responsible for the interference, which require careful evaluation. Furthermore, the design of new radio astronomy antennas should strive to minimize the level of side-lobe gain near the main beam as an important means of reducing interference from transmitters in the GSO.

2.2 Interference from non-GSO satellites

In the case of non-GSO satellites, and in particular for low-Earth orbit satellites, the systems usually involve constellations of many individual satellites. Thus determination of interference levels requires analysis of the combined effect of many signals, most of which are received through far side lobes of the radio astronomy antenna. A more detailed side-lobe model than that of Recommendation ITU-R SA.509 is therefore desirable, and it is proposed that the model in Recommendation ITU-R S.1428 be used until such time as a more representative model for radio astronomy antennas is obtained. In using this proposed model the case for antennas with diameter greater than 100 λ is generally appropriate for radio astronomy applications. It should be noted that Note 1 of Recommendation ITU-R S.1428, which allows cross-polarized components to be ignored, cannot be applied since radio astronomy antennas generally receive signals in two orthogonal polarizations simultaneously. The motion of non-GSO satellites across the sky during a 2000 s integration period requires that the interference level be averaged over this period, that is, the response to each satellite must be integrated as the satellite moves through the side-lobe pattern. One system of analysis that includes these requirements is the epfd method described in RR No. 22.5C. Values of epfd represent the pfd of a signal entering the antenna through the centre of the main beam that would produce an equivalent level of interference power. Since the threshold levels of detrimental interference in Tables 1 and 2 correspond to pfd received with an antenna gain of 0 dBi, it is necessary to compare them with values of $(epfd + G_{mb})$, where G_{mb} is the main beam gain, to determine whether the interference exceeds the detrimental level. Making use of the epfd method, Recommendation ITU-R S.1586 has recently been developed for interference calculations between radio astronomy telescopes and FSS non-GSO satellite systems. A similar Recommendation, Recommendation ITU-R M.1583 was developed for interference calculations between radio astronomy telescopes and MSS and radionavigation-satellite service non-GSO satellite systems. The applicability of the protection criteria given in Tables 1 and 2 is described in Recommendation ITU-R RA.1513.

2.3 The response of interferometers and arrays to radio interference

Two effects reduce the response to interference. These are related to the frequency of the fringe oscillations that are observed when the outputs of two antennas are combined, and to the fact that the components of the interfering signal received by different and widely-spaced antennas will suffer different relative time delays before they are recombined. The treatment of these effects is more complicated than that for single antennas in § 1. Broadly speaking, if the strength of the received interfering signal remains constant, the effect is reduced by a factor roughly equal to the

mean time of one natural fringe oscillation divided by the data averaging time. This typically ranges from some seconds for a compact array with the longest projected spacing $L' \sim 10^3 \lambda$, where λ is the wavelength, to less than 1 ms for intercontinental arrays with $L' \sim 10^7 \lambda$. Thus, compared to a single radio telescope, the interferometer has a degree of immunity to interference which, under reasonable assumptions increases with the array size expressed in wavelengths.

The greatest immunity from interference occurs for interferometers and arrays in which the separation of the antennas is sufficiently great that the chance of occurrence of correlated interference is very small (e.g. for very long baseline interferometry (VLBI)). In this case, the above considerations do not apply. The tolerable interference level is determined by the requirement that the power level of the interfering signal should be no more than 1% of the receiver noise power to prevent serious errors in the measurement of the amplitude of the cosmic signals. The interference levels for typical VLBI observations are given in Table 3, based on the values of T_A and T_R given in Table 1.

It must be emphasized that the use of large interferometers and arrays is generally confined to studies of discrete, high-brightness sources, with angular dimensions no more than a few tenths of a second of arc for VLBI. For more general studies of radio sources, the results in Tables 1 and 2 apply and are thus appropriate for the general protection of radio astronomy.

TABLE 1

Threshold levels of interference detrimental to radio astronomy continuum observations

Centre frequency ⁽¹⁾ <i>f_c</i> (MHz)	Assumed bandwidth Δf (MHz)	Minimum antenna noise temperature <i>T_A</i> (K)	Receiver noise temperature <i>T_R</i> (K)	System sensitivity ⁽²⁾ (noise fluctuations)		Threshold interference levels ^{(2) (3)}		
				Temperature Δ <i>T</i> (mK)	Power spectral density ΔP (dB(W/Hz))	Input power ΔP _H (dBW)	pfd <i>S_H Δf</i> (dB(W/m ²))	Spectral pfd S _H (dB(W/(m ² · Hz)))
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
13.385	0.05	50 000	60	5 000	-222	-185	-201	-248
25.610	0.12	15 000	60	972	-229	-188	-199	-249
73.8	1.6	750	60	14.3	-247	-195	-196	-258
151.525	2.95	150	60	2.73	-254	-199	-194	-259
325.3	6.6	40	60	0.87	-259	-201	-189	-258
408.05	3.9	25	60	0.96	-259	-203	-189	-255
611	6.0	20	60	0.73	-260	-202	-185	-253
1 413.5	27	12	10	0.095	-269	-205	-180	-255
1 665	10	12	10	0.16	-267	-207	-181	-251
2 695	10	12	10	0.16	-267	-207	-177	-247
4 995	10	12	10	0.16	-267	-207	-171	-241
10650	100	12	10	0.049	-272	-202	-160	-240
15 375	50	15	15	0.095	-269	-202	-156	-233
22 355	290	35	30	0.085	-269	-195	-146	-231
23 800	400	15	30	0.050	-271	-195	-147	-233
31 550	500	18	65	0.083	-269	-192	-141	-228
43 000	1 000	25	65	0.064	-271	-191	-137	-227
89 000	8 000	12	30	0.011	-278	-189	-129	-228
150 000	8 000	14	30	0.011	-278	-189	-124	-223
224 000	8 000	20	43	0.016	-277	-188	-119	-218
270 000	8 000	25	50	0.019	-276	-187	-117	-216

⁽¹⁾ Calculation of interference levels is based on the centre frequency shown in this column although not all regions have the same allocations.

(2) An integration time of 2 000 s has been assumed; if integration times of 15 min, 1 h, 2 h, 5 h or 10 h are used, the relevant values in the Table should be adjusted by +1.7, -1.3, -2.8, -4.8 or -6.3 dB respectively.

(3) The interference levels given are those which apply for measurements of the total power received by a single antenna. Less stringent levels may be appropriate for other types of measurements, as discussed in § 2.2. For transmitters in the GSO, it is desirable that the levels be adjusted by -15 dB, as explained in § 2.1.

TABLE 2^*

Frequency f (MHz)	Assumed spectral line channel bandwidth Δ <i>f</i> (kHz)	Minimum antenna noise temperature <i>T_A</i> (K)	Receiver noise temperature <i>T_R</i> (K)	System sensitivity ⁽²⁾ (noise fluctuations)		Threshold interference levels ^{(1) (2)}		
				Temperature Δ <i>T</i> (mK)	Power spectral density ΔP _S (dB(W/Hz))	Input power ΔP _H (dBW)	pfd <i>S_H ∆f</i> (dB(W/m ²))	Spectral pfd S _H (dB(W/(m ² · Hz)))
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
327	10	40	60	22.3	-245	-215	-204	-244
1 420	20	12	10	3.48	-253	-220	-196	-239
1 612	20	12	10	3.48	-253	-220	-194	-238
1 665	20	12	10	3.48	-253	-220	-194	-237
4830	50	12	10	2.20	-255	-218	-183	-230
14 488	150	15	15	1.73	-256	-214	-169	-221
22 200	250	35	30	2.91	-254	-210	-162	-216
23 700	250	35	30	2.91	-254	-210	-161	-215
43 000	500	25	65	2.84	-254	-207	-153	-210
48 000	500	30	65	3.00	-254	-207	-152	-209
88 600	1 000	12	30	0.94	-259	-209	-148	-208
150 000	1 000	14	30	0.98	-259	-209	-144	-204
220 000	1 000	20	43	1.41	-257	-207	-139	-199
265 000	1 000	25	50	1.68	-256	-206	-137	-197

Threshold levels of interference detrimental to radio astronomy spectral-line observations

* This Table is not intended to give a complete list of spectral-line bands, but only representative examples throughout the spectrum.

(1) An integration time of 2 000 s has been assumed; if integration times of 15 min, 1 h, 2 h, 5 h or 10 h are used, the relevant values in the Table should be adjusted by +1.7, -1.3, -2.8, -4.8 or -6.3 dB respectively.

(2) The interference levels given are those which apply for measurements of the total power received by a single antenna. Less stringent levels may be appropriate for other types of measurements, as discussed in § 2.2. For transmitters in the GSO, it is desirable that the levels need to be adjusted by -15 dB, as explained in § 2.1.

COLUMN DESCRIPTIONS FOR TABLES 1 AND 2

Column

- (1) Centre frequency of the allocated radio astronomy band (Table 1) or nominal spectral line frequency (Table 2).
- (2) Assumed or allocated bandwidth (Table 1) or assumed typical channel widths used for spectral line observations (Table 2).
- (3) Minimum antenna noise temperature includes contributions from the ionosphere, the Earth's atmosphere and radiation from the Earth.
- (4) Receiver noise temperature representative of a good radiometer system intended for use in high sensitivity radio astronomy observations.
- (5) Total system sensitivity (mK) as calculated from equation (1) using the combined antenna and receiver noise temperatures, the listed bandwidth and an integration time of 2000 s.
- (6) Same as (5) above, but expressed in noise power spectral density using the equation $\Delta P = k \Delta T$, where $k = 1.38 \times 10^{-23}$ (J/K) (Boltzmann's constant). The actual numbers in the Table are the logarithmic expression of ΔP .
- (7) Power level at the input of the receiver considered harmful to high sensitivity observations, ΔP_{H} . This is expressed as the interference level which introduces an error of not more than 10% in the measurement of ΔP ; $\Delta P_{H} = 0.1 \Delta P \Delta f$: the numbers in the Table are the logarithmic expression of ΔP_{H} .
- (8) pfd in a spectral line channel needed to produce a power level of ΔP_H in the receiving system with an isotropic receiving antenna. The numbers in the Table are the logarithmic expression of $S_H \Delta f$.
- (9) Spectral pfd needed to produce a power level ΔP_H in the receiving system with an isotropic receiving antenna. The numbers in the Table are the logarithmic expression of S_H . To obtain the corresponding power levels in a reference bandwidth of 4 kHz or 1 MHz add 36 dB or 60 dB, respectively.

Centre frequency (MHz)	Threshold level (dB(W/m ² · Hz)))
325.3	-217
611	-212
1413.5	-211
2 6 9 5	-205
4 995	-200
10650	-193
15375	-189
23 800	-183
43 000	-175
86 000	-172

TABLE 3

Threshold interference levels for VLBI observations

電波天文観測局との干渉検討結果

全国の電波天文台への干渉について検討した。

電波天文台毎に23GHz 帯無線伝送システムの設置が想定される地点を3箇所設定し、それぞれの地 点から輻射されたスプリアスは自由空間伝搬損失と山岳等による回折損失により減衰して電波天文 台の受信設備に入力される。このレベルが干渉しきい値となる所要電波伝搬損失を求め、各電波天文 台と23GHz 帯無線伝送システムの設置位置間の電波伝搬損失を求めることで、干渉の有無を検討した。

所要電波伝搬損失は、自由空間伝搬損失+妨害波伝搬路遮蔽係数となり以下となる。

Lp+Fs=Pts+GAt+GAr-Lft-Lfr-干渉しきい値

$$=-33+40+0-0-(-191)$$

- =198 (dB)
- ここで、
 - Lp:自由空間伝搬損失(f:23600MHz)
 - Fs:妨害波伝搬路遮蔽係数(dB)
 - Pts:スプリアスの空中線電力 -33 (dBm/MHz)
 - GAt: 当該無線局空中線利得 40(dBi) (ϕ 60cm パラボラアンテナ)
 - GAr:電波天文業務の受信設備の空中線利得 0(dBi)
 - Lft:送信給電線損失 0(dB)
 - Lfr:受信給電線損失 0(dB)
 - 干渉しきい値:-191 (dBm/MHz)

従って、所要電波伝搬損失は 198(dB) となり、電波伝搬損失がこれ以上となる場合は、干渉しない。

妨害波伝搬路遮蔽係数は、ナイフエッジ回折損失で計算した。回折回数は2回までとし、主な遮蔽 物となる山岳を任意に選択した。

- A 1:23GHz 帯無線伝送システム設置位置
- B1:電波天文台位置
- M1およびM2:遮蔽山岳標高
- C1およびC2:遮蔽山岳位置の計算上の仮想標高
- A 2:2回回折計算上の仮想点の標高:

また、VERA 水沢、VERA 入来、VERA 小笠原、VERA 石垣島、野辺山(NRO)の5 局については、電波 天文台が指定する各2か所の地点での算出も追加検討した。
全国の電波天文観測局の置局状況 及び測定地点(任意)一覧

				座標(天	(文台)	座標(第	1地点)	座標(第	2地点)	座標(第	3地点)		
	局名	口径 (m)	標高 (m)	アン テナ 高(m)	アン テナ 最(m)	東経(度)	北緯(度)	東経(度)	北緯(度)	東経(度)	北緯(度)	東経(度)	北緯(度)
1	VERA水沢	20	63	22	85	141°07′57″	39°08′01″	140°50′03″	36°16′54″	140°19′52″	38°48′42″	140°01′44″	40° 10′ 32″
2	VERA入来	20	529	22	551	130°26′24″	31° 44′ 52″	131°25′56″	31° 53′ 19″	130°58′48″	31°54′14″	130°49′49″	32°12′04″
3	VERA小笠原	20	211	22	233	142°13′00″	27°05′31″	139°56′42″	34° 55′ 54″	135°45′36″	33°26′51″	138°48′19″	33°04′09″
4	VERA石垣島	20	26	22	48	124°10′16″	24°24′44″	128°44′43″	32° 35′ 57″	130°08′13″	31°24′53″	127°39′50″	26°08′58″
5	水沢10m	10	64	11	75	141°07′56″	39°08′00″	141°02′58″	39°55′42″	141°56′32″	39°38′42″	140°33′39″	39°19′35″
6	北大苫小牧	11	54	14	68	141°35′48″	42°40′25″	140° 47′ 22″	42° 30′ 40″	141°17′30″	43°08′18″	140°36′51″	42°02′01″
7	高萩	32	55	38	93	140°41′3807″	36°41′54.8″	139°55′48″	37° 28′ 49″	139°16′57″	36°20′38″	140°31′20″	36°31′47″
8	日立	32	57	39	96	140°41′33.4″	36°41′52.2″	139°57′46″	36°41′10″	140°03′41″	36°08′19″	140°38′43″	35°43′07″
9	NICT鹿島	34	27	34	61	140°39′36″	35°57′21″	140°06′52″	35° 36′ 28″	139°53′15″	35°20′33″	139°58′35″	36°38′17″
10	国土地理院 つくば	32	27	35	62	140°05′20″	36°06′11″	139°04′32″	36° 38′ 37″	140°37′19″	35°46′15″	140°20′47″	35°24′33″
11	野辺山 (NRO)	45	1349	47	1396	138°28′21″	35° 56′ 40″	137°51′01″	36° 30′ 44″	137°50′01″	35° 30′ 06″	139°27′12″	35°44′35″
12	JAXA臼田	64	1456	65	1521	138°21′46″	36°07′57″	139°15′19″	36° 16′ 01″	137°46′51″	35°29′26″	137°18′50″	36°39′26″
13	岐阜大岐阜	11	14	15	29	136°44′14″	35°28′03″	136°59′56″	34° 59′ 52″	136°14′45″	35°13′38″	136°10′12″	35° 57′ 09″
14	山口	32	110	39	149	131°33′26″	34° 12′ 58″	131°35′44″	34° 06′ 37″	131°24′19″	34° 25′ 07″	131°09′23″	34°02′38″
15	鹿児島6m	6	58	7	65	130° 30′ 25″	31° 27′ 51″	129°47′20″	31° 46′ 41″	130°44′39″	32° 13′ 20″	131°26′49″	31° 59′ 09″
16	内之浦	34	320	42	362	131°04′44″	31° 15′ 16″	130°11′05″	31°24′33″	130° 46′ 10″	31°44′56″	130°56′48″	30° 40′ 09″

全国の電波天文観測局(測定地点:任意)での 回折シミュレーション結果

パラメータ	値
送信周波数f(MHz)	23600
送信給電線損失Lt(dB)	0
受信給電線損失Lr(dB)	0

自由空間伝搬損失 Lp(dB) = 32.44+20log(f(MHz))+20log(D(km)) 総伝搬損失 「(dB) = 「0(dB)+Z(dB)

	局名	送信 点	送受信間直線 距離D(km)	自由空間伝搬 損失「0(dB)	回折損失 Z(dB)	総伝搬損 失「(dB)	スプリアス空中線電 カ(dBm/MHz)	送信局空中線 利得(dBi)	干渉値 (dBm/MHz)	干涉閾値 (dBm/MHz)	干渉マー ジン(dB)
		送信点1	98.07	159.73	58.78	218.51	-33	40	-211.51	-191	20.51
1	VERA八次 20m	送信点2	78.11	157.75	99.06	256.81	-33	40	-249.81	-191	58.81
	2011	送信点3	149.52	163.39	96.12	259.51	-33	40	-252.51	-191	61.51
		送信点1	95.23	159.47	73.52	232.99	-33	40	-225.99	-191	34.99
2	VERA入来	送信点2	53.98	154.54	59.1	213.64	-33	40	-206.64	-191	15.64
		送信点3	62.34	155.79	50.34	206.13	-33	40	-199.13	-191	8.13
		送信点1	895	178.94	62.67	241.61	-33	40	-234.61	-191	43.61
3	VERA小笠原	送信点2	938	179.34	63.54	242.88	-33	40	-235.88	-191	44.88
		送信点3	702	176.80	59.43	236.23	-33	40	-229.23	-191	38.23
		送信点1	1011	180.00	64.45	244.45	-33	40	-237.45	-191	46.45
4	VERA石垣島	送信点2	972	179.65	63.71	243.36	-33	40	-236.36	-191	45.36
		送信点3	401	171.96	51.99	223.95	-33	40	-216.95	-191	25.95
		送信点1	88.56	158.84	82.67	241.51	-33	40	-234.51	-191	43.51
5	水沢10m	送信点2	90	158.98	93.09	252.07	-33	40	-245.07	-191	54.07
		送信点3	53.8	154.51	92.08	246.59	-33	40	-239.59	-191	48.59
		送信点1	68.7	156.64	53.99	210.63	-33	40	-203.63	-191	12.63
6	北大苫小牧	送信点2	57.32	155.06	44.19	199.25	-33	40	-192.25	-191	1.25
	北大苫小牧	送信点3	107.76	160.55	53.32	213.87	-33	40	-206.87	-191	15.87
		送信点1	110.07	160.73	98.73	259.46	-33	40	-252.46	-191	61.46
7	高萩32m	送信点2	132.23	162.32	84.86	247.18	-33	40	-240.18	-191	49.18
		送信点3	24	147.50	49.63	197.13	-33	40	-190.13	-191	-0.87
		送信点1	65.18	156.18	80.73	236.91	-33	40	-229.91	-191	38.91
8	日立32m	送信点2	83.95	158.38	91.64	250.02	-33	40	-243.02	-191	52.02
		送信点3	108.69	160.62	56.58	217.20	-33	40	-210.20	-191	19.20
		送信点1	62.65	155.84	43.77	199.61	-33	40	-192.61	-191	1.61
9	NICT鹿島	送信点2	97.61	159.69	57.36	217.05	-33	40	-210.05	-191	19.05
		送信点3	97.46	159.67	39.53	199.20	-33	40	-192.20	-191	1.20
		送信点1	108.92	160.64	54.89	215.53	-33	40	-208.53	-191	17.53
10	国土地埋院	送信点2	60.6	155.55	50.36	205.91	-33	40	-198.91	-191	7.91
	2/16	送信点3	80.46	158.01	50.94	208.95	-33	40	-201.95	-191	10.95
		送信点1	84.24	158.41	96.9	255.31	-33	40	-248.31	-191	57.31
11	野辺田	送信点2	75.88	157.50	93.91	251.41	-33	40	-244.41	-191	53.41
	野辺山 (NRO)	送信点3	91.38	159.12	100	259.12	-33	40	-252.12	-191	61.12
		送信点1	81.69	158.14	38.16	196.30	-33	40	-189.30	-191	-1.70
12	JAXA臼田	送信点2	88.52	158.84	56.87	215.71	-33	40	-208.71	-191	17.71
		送信点3	110.56	160.77	102.05	262.82	-33	40	-255.82	-191	64.82
		送信点1	57.3	155.06	45.55	200.61	-33	40	-193.61	-191	2.61
13	岐阜大岐阜	送信点2	52.02	154.22	90.99	245.21	-33	40	-238.21	-191	47.21
		送信点3	74.35	157.32	98.48	255.80	-33	40	-248.80	-191	57.80
		送信点1	12.5	141.84	50.93	192.77	-33	40	-185.77	-191	-5.23
14	山口	送信点2	26.2	148.26	91.96	240.22	-33	40	-233.22	-191	42.22
		送信点3	41.6	152.28	83.53	235.81	-33	40	-228.81	-191	37.81
		送信点1	76.51	157.57	75.37	232.94	-33	40	-225.94	-191	34.94
15	鹿児島	送信点2	86.99	158.69	89.98	248.67	-33	40	-241.67	-191	50.67
		送信点3	106.2	160.42	84.14	244.56	-33	40	-237.56	-191	46.56
		送信点1	86.75	158.66	90.83	249.49	-33	40	-242.49	-191	51.49
16	内之浦	送信点2	62.16	155.77	91.05	246.82	-33	40	-239.82	-191	48.82
		送信点3	66.07	156.30	0	156.30	-33	40	-149.30	-191	-41.70

1. VERA 水沢

VERA 水沢

第1地点(98.07km)

第2地点(78.11km)

第 3 地点(149.52km)

<送信点 1—VERA 水沢 20m>

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ			
項目	記号	値	
伝送距離(ポイント間直線)	D(km)	98.07	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	86	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	30.07	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	68	
伝送距離(M1-M2間直線)	d2(km)	18	
伝送距離(M2-B1間直線)	d3(km)	12.07	
A1ポイント標高	h1(m)	184	
M1ポイント標高	hm1(m)	125	
M2ポイント標高	hm2(m)	130	
B1ポイント標高	h2(m)	85.1	
C1ポイント標高	hp1(m)	69.25	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	55.75	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	450.38	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	68.95	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	61.05	=hm2-hp2

項目	記号	値]
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	13.45	$=\sqrt{\left(\left(\lambda * d1 * d2\right)/(d1 + d2)\right)}$
M1回折パラメータ	U1	4.15	=CS1/Rm1
M1ポイントでの回折損失	Z1 (dB)	28.35	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	11.60	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	5.26	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	30.43	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	58.78	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	159.7289636	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	218.50	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ			
項目	記号	値	
伝送距離(ポイント間直線)	D(km)	78.11	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	39	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	63.11	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	15	
伝送距離(M1-M2間直線)	d2(km)	24	
伝送距離(M2-B1間直線)	d3(km)	39.11	
A1ポイント標高	h1(m)	187	
M1ポイント標高	hm1(m)	1150	
M2ポイント標高	hm2(m)	1175	
B1ポイント標高	h2(m)	85.1	
C1ポイント標高	hp1(m)	545.81	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	604.19	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	1168.81	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	537.93	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	637.07	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	10.83	$=\sqrt{\left(\left(\lambda*d1*d2\right)/(d1+d2)\right)}$
M1回折パラメータ	U1	55.78	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	50.93	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	15.76	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	40.44	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	48.14	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	99.06	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	157.7523728	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	256.82	= Γ 0+Zt

<送信点 3—VERA 水沢 20m>

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	149.52	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	119	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	100.52	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	49	
伝送距離(M1-M2間直線)	d2(km)	70	
伝送距離(M2-B1間直線)	d3(km)	30.52	
A1ポイント標高	h1(m)	28	
M1ポイント標高	hm1(m)	1110	
M2ポイント標高	hm2(m)	750	
B1ポイント標高	h2(m)	85.1	
C1ポイント標高	hp1(m)	123.37	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	986.63	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	1705.27	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	202.00	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	548.00	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	19.14	$=\sqrt{\left(\left(\lambda * d1 * d2\right)/(d1 + d2)\right)}$
M1回折パラメータ	U1	51.54	=CS1/Rm1
M1ポイントでの回折損失	Z1 (dB)	50.24	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	17.57	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	31.19	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	45.88	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	96.12	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	163.3922258	= 32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	259.51	= Γ 0+Zt

2. VERA 入来

VERA 入来

第1地点(95.23km)

第2地点(53.98km)

第 3 地点(62.34km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	95.23	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	52.5	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	73.23	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	22	
伝送距離(M1-M2間直線)	d2(km)	30.5	
伝送距離(M2-B1間直線)	d3(km)	42.73	
A1ポイント標高	h1(m)	27	
M1ポイント標高	hm1(m)	370	
M2ポイント標高	hm2(m)	470	
B1ポイント標高	h2(m)	552.1	
C1ポイント標高	hp1(m)	173.14	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	196.86	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	365.86	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	336.47	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	133.53	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	12.75	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	15.44	=CS1/Rm1
M1ポイントでの回折損失	Z1 (dB)	39.78	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	17.30	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	7.72	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	33.75	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	73.52	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	159.4737157	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	233.00	= Γ 0+Zt

<送信点 2—VERA 入来>・・・1 回回折

項目	記号	値
等価地球半径係数	K	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	53.98	=d1+d2
伝送距離(A-M1間直線)	d1(km)	6.3	
伝送距離(M1-M2間直線)	d2(km)	47.68	
A1ポイント標高	h1(m)	250	
M1ポイント標高	hm1(m)	1470	
B1ポイント標高	h2(m)	552.1	
C1ポイント標高	hp1(m)	267.57	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	1202.43	=hm1-hp1

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	8.41	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	142.97	=CS1/Rm1
M1ポイントでの回折損失	Z1 (dB)	59.10	=16+20*LOG(U1)
自由空間伝搬損失	$\Gamma 0(dB)$	154.5428977	=32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	$\Gamma(dB)$	213.65	= Г 0+Z1

<送信点 3—VERA 入来>・・・1 回回折

項目	記号	値
等価地球半径係数	K	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	62.34	= d1 + d2
伝送距離(A-M1間直線)	d1 (km)	12.3	
伝送距離(M1-M2間直線)	d2(km)	50.04	
A1ポイント標高	h1(m)	166	
M1ポイント標高	hm1(m)	790	
B1ポイント標高	h2(m)	552.1	
C1ポイント標高	hp1 (m)	205.95	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	584.05	=hm1-hp1

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	11.20	$= \sqrt{\left(\left(\frac{\lambda * d1 * d2}{d1 + d2} \right) \right)}$
M1回折パラメータ	U1	52.13	=CS1/Rm1
M1ポイントでの回折損失	Z1 (dB)	50.34	=16+20*LOG(U1)
自由空間伝搬損失	FO(dB)	155.793576	=32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	Γ(dB)	206.14	= Γ 0+Z1

3. VERA 小笠原

VERA 小笠原

第1地点(895km)

第2地点(938km)

第 3 地点(702km)

 $Prs = Pts + GAt \theta + GAr \theta - Lp - Lft - Lfr - Fs$

= -33 (dBm/MHz) + 40 (dBi) + 0 (dBi) - 178.94 (dB) - 0 (dB) - 0 (dB) - 62.67 (dB)= -234.61 (dBm/MHz)

ここで、

Pts:妨害を与える地点1無線局のスプリアスの空中線電力 -33 dBm/MHz

GAt θ : 地点1当該無線局空中線利得 40(dBi)

GAr θ:電波天文業務の受信設備の空中線利得 0(dBi)

Lp:自由空間伝搬損失(f:23600MHz、d:895km) 32.44+20logf+20logd= 178.94(dB)

Lft:送信給電線損失 0(dB)

Lfr:受信給電線損失 0(dB)

Fs:妨害波伝搬路遮蔽係数 62.67 (dB)

	スペクトル線観測	連続波観測	備考
周波数	23. 7GHz	23. 8GHz	
干涉值	-234.61 dBm/MHz	-234.61 dBm/MHz	スプリアス受信電力
干渉しきい値	−174 dBm/MHz	-191 dBm/MHz	天文規定値
マージン	60. 61dB	43.61dB	干渉しきい値-干渉値

Prs = Pts+GAt θ +GAr θ -Lp-Lft-Lfr-Fs

= -33 (dBm/MHz) + 40 (dBi) + 0 (dBi) - 179.34 (dB) - 0 (dB) - 0 (dB) - 63.54 (dB) = -235.88 (dBm/MHz)

ここで、

Pts:妨害を与える地点1無線局のスプリアスの空中線電力 -33 dBm/MHz

GAt θ :地点1当該無線局空中線利得 40(dBi)

GAr θ:電波天文業務の受信設備の空中線利得 0(dBi)

Lp:自由空間伝搬損失(f:23600MHz、d:938km) 32.44+20logf+20logd=179.34 (dB)

Lft:送信給電線損失 0(dB)

Lfr:受信給電線損失 0(dB)

Fs:妨害波伝搬路遮蔽係数 63.54 (dB)

	スペクトル線観測	連続波観測	備考
周波数	23. 7GHz	23. 8GHz	
干涉值	-235.88 dBm/MHz	-235.88 dBm/MHz	スプリアス受信電力
干渉しきい値	-174 dBm/MHz	-191 dBm/MHz	天文規定値
マージン	61.88dB	44. 88dB	干渉しきい値-干渉値

=Pts+GAt θ +GAr θ -Lp-Lft-Lfr-Fs

= -33 (dBm/MHz) + 40 (dBi) + 0 (dBi) - 176.8 (dB) - 0 (dB) - 0 (dB) - 59.72 (dB)= -229.52 (dBm/MHz)

ここで、

Pts:妨害を与える地点1無線局のスプリアスの空中線電力 -33 dBm/MHz

GAt θ : 地点 1 当該無線局空中線利得 40(dBi)

GAr θ:電波天文業務の受信設備の空中線利得 0(dBi)

Lp:自由空間伝搬損失(f:23600MHz、d:702km) 32.44+20logf+20logd=176.8 (dB)

Lft:送信給電線損失 0(dB)

Lfr:受信給電線損失 0(dB)

Fs:妨害波伝搬路遮蔽係数 59.72 (dB)

	スペクトル線観測	連続波観測	備考
周波数	23. 7GHz	23. 8GHz	
干涉值	-229.52 dBm/MHz	-229.52 dBm/MHz	スプリアス受信電力
干渉しきい値	-174 dBm/MHz	-191 dBm/MHz	天文規定値
マージン	55. 52dB	38. 52dB	干渉しきい値-干渉値

4. VERA 石垣島

VERA 石垣島

第1地点(1011km)

第 2 地点(972km)

第 3 地点(401km)

 $Prs = Pts + GAt \theta + GAr \theta - Lp - Lft - Lfr - Fs$

= -33 (dBm/MHz) + 40 (dBi) + 0 (dBi) - 180.0 (dB) - 0 (dB) - 0 (dB) - 64.45 (dB)= -237.45 (dBm/MHz)

ここで、

Pts:妨害を与える地点1無線局のスプリアスの空中線電力 -33 dBm/MHz

GAt θ : 地点 1 当該無線局空中線利得 40(dBi)

GAr θ: 電波天文業務の受信設備の空中線利得 0(dBi)

Lp:自由空間伝搬損失(f:23600MHz、d:1011km) 32.44+20logf+20logd= 180.0(dB)

Lft:送信給電線損失 0(dB)

Lfr:受信給電線損失 0(dB)

Fs:妨害波伝搬路遮蔽係数 64.45 (dB)

	スペクトル線観測	連続波観測	備考
周波数	23. 7GHz	23. 8GHz	
干涉值	-237.45 dBm/MHz	-237.45 dBm/MHz	スプリアス受信電力
干渉しきい値	-174 dBm/MHz	-191 dBm/MHz	天文規定値
マージン	63. 45dB	46. 45dB	干渉しきい値-干渉値

<送信点 2—VERA 石垣島 20m>

 $Prs = Pts + GAt \theta + GAr \theta - Lp - Lft - Lfr - Fs$

= -33 (dBm/MHz) + 40 (dBi) + 0 (dBi) - 179.65 (dB) - 0 (dB) - 0 (dB) - 63.71 (dB)= -236.36 (dBm/MHz)

ここで、

Pts:妨害を与える地点1無線局のスプリアスの空中線電力 -33 dBm/MHz GAtθ:地点1当該無線局空中線利得 40(dBi)

GAr θ:電波天文業務の受信設備の空中線利得 0(dBi)

Lp:自由空間伝搬損失(f:23600MHz、d:972km) 32.44+20logf+20logd=179.65 (dB)

Lft:送信給電線損失 0(dB)

Lfr:受信給電線損失 0(dB)

Fs:妨害波伝搬路遮蔽係数 63.71 (dB)

	スペクトル線観測	連続波観測	備考
周波数	23. 7GHz	23. 8GHz	
干涉值	-236.36 dBm/MHz	-236.36 dBm/MHz	スプリアス受信電力
干渉しきい値	-174 dBm/MHz	-191 dBm/MHz	天文規定値
マージン	62. 36dB	45. 36dB	干渉しきい値-干渉値

<送信点 3—VERA 石垣島 20m>

 $Prs = Pts + GAt \theta + GAr \theta - Lp - Lft - Lfr - Fs$

= -33 (dBm/MHz) + 40 (dBi) + 0 (dBi) - 171.96 (dB) - 0 (dB) - 0 (dB) - 51.99 (dB)= -216.95 (dBm/MHz)

ここで、

Pts:妨害を与える地点1無線局のスプリアスの空中線電力 -33 dBm/MHz GAtθ:地点1当該無線局空中線利得 40(dBi)

GAr θ:電波天文業務の受信設備の空中線利得 0(dBi)

Lp:自由空間伝搬損失(f:23600MHz、d:401km) 32.44+20logf+20logd=171.96 (dB)

Lft:送信給電線損失 0(dB)

Lfr:受信給電線損失 0(dB)

Fs:妨害波伝搬路遮蔽係数 51.99 (dB)

	スペクトル線観測	連続波観測	備考
周波数	23. 7GHz	23. 8GHz	
干涉值	-216.95 dBm/MHz	-216.95 dBm/MHz	スプリアス受信電力
干渉しきい値	-174 dBm/MHz	-191 dBm/MHz	天文規定値
マージン	42. 95dB	25. 95dB	干渉しきい値-干渉値

水沢

第1地点(88.56km)

第 2 地点(90km)

第3地点(53.8km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ	
項目	記号

距離(同で)に取行するハリハーダ			_
項目	記号	値	
伝送距離(ポイント間直線)	D(km)	88.56	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	43	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	82.56	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	6	
伝送距離(M1-M2間直線)	d2 (km)	37	
伝送距離(M2-B1間直線)	d3(km)	45.56	
A1ポイント標高	h1(m)	339	
M1ポイント標高	hm1(m)	590	
M2ポイント標高	hm2(m)	430	
B1ポイント標高	h2(m)	74.1	
C1ポイント標高	hp1(m)	338.63	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	251.37	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	631.13	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	245.34	= (ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	184.66	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	8.10	$=\sqrt{\left(\left(\lambda*d1*d2\right)/(d1+d2)\right)}$
M1回折パラメータ	U1	31.03	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	45.84	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	16.77	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	11.01	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	36.84	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	82.67	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	158.8429922	= 32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	241.52	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	90	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	67	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	68.5	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	21.5	
伝送距離(M1-M2間直線)	d2(km)	45.5	
伝送距離(M2-B1間直線)	d3(km)	23	
A1ポイント標高	h1(m)	33	
M1ポイント標高	hm1(m)	1095	
M2ポイント標高	hm2(m)	570	
B1ポイント標高	h2(m)	74.1	
C1ポイント標高	hp1(m)	147.73	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	947.27	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	1427.88	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	329.35	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	240 65	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	13.62	$=\sqrt{\left(\left(\lambda*d1*d2\right)/(d1+d2)\right)}$
M1回折パラメータ	U1	69.53	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	52.84	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	14.75	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	16.31	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	40.25	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	93.09	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	158.9830902	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	252.08	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	53.8	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	29	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	49.8	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	4	
伝送距離(M1-M2間直線)	d2 (km)	25	
伝送距離(M2-B1間直線)	d3 (km)	24.8	
A1ポイント標高	h1(m)	79	
M1ポイント標高	hm1(m)	295	
M2ポイント標高	hm2(m)	985	
B1ポイント標高	h2(m)	74.1	
C1ポイント標高	hp1(m)	198.08	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	96.92	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	191.43	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	85.85	= (ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	899.15	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	6.62	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	14.64	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	39.31	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	13.04	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	68.98	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	52.77	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	92.08	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	154.5138856	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	246.60	$= \Gamma 0 + Zt$

6. 北大苫小牧

北大苫小牧沢

第1地点(68.7km)

第 2 地点(57.32km)

第3地点(107.76km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

_距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	68.7	=d1+d2
伝送距離(A-M1間直線)	d1 (km)	25.5	
伝送距離(M1-M2間直線)	d2(km)	43.2	
A1ポイント標高	h1(m)	27	
M1ポイント標高	hm1(m)	1110	
B1ポイント標高	h2(m)	68.7	
C1ポイント標高	hp1(m)	-22.37	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	1132.37	=hm1-hp1

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	14.28	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	79.31	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	53.99	=16+20*LOG(U1)
自由空間伝搬損失	Γ0(dB)	156.6373748	=32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	Γ (dB)	210.62	= F 0+Z1

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	57.32	=d1+d2
伝送距離(A-M1間直線)	d1 (km)	27.5	
伝送距離(M1-M2間直線)	d2(km)	29.82	
A1ポイント標高	h1(m)	28	
M1ポイント標高	hm1(m)	340	
B1ポイント標高	h2(m)	57.1	
C1ポイント標高	hp1(m)	-6.32	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	346.32	=hm1-hp1

周波数に依存す	トるパラメータ

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	13.49	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	25.68	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	44.19	=16+20*LOG(U1)
自由空間伝搬損失	Γ0(dB)	155.0643637	=32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	Γ(dB)	199.26	= Γ 0+Z1

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	107.76	=d1+d2
伝送距離(A-M1間直線)	d1 (km)	7	
伝送距離(M1-M2間直線)	d2(km)	100.76	
A1ポイント標高	h1(m)	190	
M1ポイント標高	hm1(m)	810	
B1ポイント標高	h2(m)	57.1	
C1ポイント標高	hp1(m)	139.84	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	670.16	=hm1-hp1

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	9.12	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	73.47	=CS1/Rm1
M1ポイントでの回折損失	Z1 (dB)	53.32	=16+20*LOG(U1)
自由空間伝搬損失	Γ0(dB)	160.5473917	=32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	Γ(dB)	213.87	= Г 0+Z1

高萩

第1地点(110.07km)

第 2 地点(132.23km)

第 3 地点(24km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ			
項目	記号	値	
伝送距離(ポイント間直線)	D(km)	110.07	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	90	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	94.07	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	16	
伝送距離(M1-M2間直線)	d2 (km)	74	
伝送距離(M2-B1間直線)	d3(km)	20.07	
A1ポイント標高	h1(m)	242	
M1ポイント標高	hm1(m)	885	
M2ポイント標高	hm2(m)	800	
B1ポイント標高	h2(m)	80.1	
C1ポイント標高	hp1(m)	271.50	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	613.50	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	988.15	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	139.34	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	660.66	=hm2-hp2

項目	記号	値]
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	12.93	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	47.44	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	49.52	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	14.44	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	45.74	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	49.21	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	98.73	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	160.7316194	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	$\Gamma(dB)$	259.46	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)(に依存するパラメータ

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	132.23	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	119	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	99.23	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	33	
伝送距離(M1-M2間直線)	d2(km)	86	
伝送距離(M2-B1間直線)	d3(km)	13.23	
A1ポイント標高	h1(m)	104	
M1ポイント標高	hm1(m)	280	
M2ポイント標高	hm2(m)	380	
B1ポイント標高	h2(m)	80.1	
C1ポイント標高	hp1(m)	13.47	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	266.53	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	472.81	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	26.71	= (ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hn2)	CS2(m)	353 29	=hm2-hn2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	17.41	$=\sqrt{\left(\left(\lambda * d1 * d2\right)/(d1 + d2)\right)}$
M1回折パラメータ	U1	15.31	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	39.70	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	12.30	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	28.72	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	45.16	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	84.86	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	162.32484	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	247.19	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

|--|

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	24	=d1+d2
伝送距離(A-M1間直線)	d1(km)	11.25	
伝送距離(M1-B1間直線)	d2(km)	12.75	
A1ポイント標高	h1(m)	42	
M1ポイント標高	hm1(m)	470	
B1ポイント標高	h2(m)	80.1	
C1ポイント標高	hp1(m)	51.42	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*k)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	418.58	=hm1-hp1

周波数(依存する	るパラメータ

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	8.72	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	48.02	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	49.63	=16+20*LOG(U1)
自由空間伝搬損失	Γ0(dB)	147.5024649	=32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	Γ(dB)	197.13	= Γ 0+Z1

日立

第1地点(65.18km)

第2地点(83.95km)

第3地点(108.69km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ			
項目	記号	値	
伝送距離(ポイント間直線)	D(km)	65.18	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	54	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	40.18	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	25	
伝送距離(M1-M2間直線)	d2(km)	29	
伝送距離(M2-B1間直線)	d3 (km)	11.18	
A1ポイント標高	h1(m)	186	
M1ポイント標高	hm1(m)	380	
M2ポイント標高	hm2(m)	450	
B1ポイント標高	h2(m)	95.1	
C1ポイント標高	hp1(m)	265.54	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	114.46	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	399.13	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	111.71	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	338.29	=hm2-hp2

項目	記号	値]
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	13.06	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	8.76	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	34.85	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	10.85	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	31.18	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	45.88	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	80.73	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	156.1805272	= 32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	236.91	= Γ 0+Zt

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

<u>距離(高さ)に依存するパラメータ</u>

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	84	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	71.5	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	75	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	9	
伝送距離(M1-M2間直線)	d2(km)	62.5	
伝送距離(M2-B1間直線)	d3(km)	12.5	
A1ポイント標高	h1(m)	49	
M1ポイント標高	hm1(m)	345	
M2ポイント標高	hm2(m)	490	
B1ポイント標高	h2(m)	95.1	
C1ポイント標高	hp1(m)	71.40	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	273.60	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	362.00	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	82.20	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	407.80	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	10.00	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	27.36	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	44.74	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	11.63	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	35.06	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	46.90	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	91.64	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	158.3838258	= 32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	250.02	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ			
項目	記号	値	
伝送距離(ポイント間直線)	D(km)	108.69	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	27	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	98.19	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	10.5	
伝送距離(M1-M2間直線)	d2(km)	16.5	
伝送距離(M2-B1間直線)	d3(km)	81.69	
A1ポイント標高	h1(m)	29	
M1ポイント標高	hm1(m)	50	
M2ポイント標高	hm2(m)	40	
B1ポイント標高	h2(m)	95.1	
C1ポイント標高	hp1(m)	23.08	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	26.92	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	73.05	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	-51.31	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	91.31	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	9.03	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	2.98	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	25.49	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	16.06	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	5.69	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	31.10	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	56.58	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	160.6220318	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	217.20	$= \Gamma 0 + Zt$

9. NICT 鹿島

NICT 鹿島

第1地点(62.65km)

第2地点(97.61km)

第 3 地点(97.46km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	62.65	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	37	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	38.65	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	24	
伝送距離(M1-M2間直線)	d2(km)	13	
伝送距離(M2-B1間直線)	d3(km)	25.65	
A1ポイント標高	h1(m)	31	
M1ポイント標高	hm1(m)	40	
M2ポイント標高	hm2(m)	43	
B1ポイント標高	h2(m)	59.1	
C1ポイント標高	hp1(m)	20.42	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	19.58	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	86.74	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	14.55	= (ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	28.45	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	10.35	$=\sqrt{\left(\left(\lambda * d1 * d2\right) / (d1 + d2)\right)}$
M1回折パラメータ	U1	1.89	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	21.54	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	13.88	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	2.05	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	22.24	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	43.77	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	155.8366616	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	$\Gamma(dB)$	199.61	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	97.61	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	51.5	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	82.61	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	15	
伝送距離(M1-M2間直線)	d2(km)	36.5	
伝送距離(M2-B1間直線)	d3(km)	46.11	
A1ポイント標高	h1(m)	40	
M1ポイント標高	hm1(m)	43	
M2ポイント標高	hm2(m)	45	
B1ポイント標高	h2(m)	59.1	
C1ポイント標高	hp1(m)	9.23	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	33.77	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	87.65	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	-67.21	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	112.21	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	11.63	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	2.91	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	25.26	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	17.59	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	6.38	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	32.10	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	57.36	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	159.6881263	= 32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	$\Gamma(dB)$	217.05	= Γ 0+Zt

<送信点 3—NICT 鹿島 34m>

<送信点 3-NICT 鹿島>・・・1 回回折

項目	記号	値
等価地球半径係数	к	1.3333333333
地球平均半径	a(km)	6370

5日9世	(高さ)	に依右	するパラメ	-2
APPLICATION OF THE OWNER		1-12-51	1. 91	

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	97.46	=d1+d2
伝送距離(A-M1間直線)	d1 (km)	26	
伝送距離(M1-M2間直線)	d2 (km)	71.46	
A1ポイント標高	h1(m)	184	
M1ポイント標高	hm1(m)	275	
B1ポイント標高	h2(m)	59.1	
C1ポイント標高	hp1(m)	41.30	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1 (m)	233.70	=hm1-hp1

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	15.57	$=\sqrt{\left(\left(\lambda * d1 * d2\right)/(d1 + d2)\right)}$
M1回折パラメータ	U1	15.01	=CS1/Rm1
MIポイントでの回折損失	Z1 (dB)	39.53	=16+20*LOG(U1)
自由空間伝搬損失	$\Gamma 0(dB)$	159.6747682	=32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	$\Gamma(dB)$	199.20	$= \Gamma 0 + Z1$

10. 国土地理院つくば

第1地点(108.92km)

第2地点(60.6km)

第 3 地点(80.46km)

<送信点1-国土地理院つくば>・・・1回回折

項目	記号	値
等価地球半径係数	K	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	108.92	=d1+d2
伝送距離(A-M1間直線)	d1 (km)	13.5	
伝送距離(M1-M2間直線)	d2 (km)	95.42	
A1ポイント標高	h1(m)	388	
M1ポイント標高	hm1(m)	1350	
B1ポイント標高	h2(m)	55.1	
C1ポイント標高	hp1(m)	270.90	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	1079.10	=hm1-hp1

項目	記号	恒	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	12.26	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	88.01	=CS1/Rm1
M1ポイントでの回折損失	Z1 (dB)	54.89	=16+20*LOG(U1)
自由空間伝搬損失	Γ0(dB)	160.6403927	=32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	$\Gamma(dB)$	215.53	$= \Gamma 0 + Z1$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

_距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	61.6	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	17.5	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	59.6	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	2	
伝送距離(M1-M2間直線)	d2(km)	15.5	
伝送距離(M2-B1間直線)	d3(km)	44.1	
A1ポイント標高	h1(m)	31	
M1ポイント標高	hm1(m)	47	
M2ポイント標高	hm2(m)	35	
B1ポイント標高	h2(m)	55.1	
C1ポイント標高	hp1(m)	29.63	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	17.37	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	50.61	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	6.45	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	28.55	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	4.75	$=\sqrt{\left(\left(\lambda*d1*d2\right)/(d1+d2)\right)}$
M1回折パラメータ	U1	3.66	=CS1/Rm1
M1ポイントでの回折損失	Z1 (dB)	27.27	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	12.62	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	2.26	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	23.09	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	50.36	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	155.6898543	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	206.05	= Γ 0+Zt

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

月月 月日 月日 月日 月日 日本	記号	値	
伝送距離(ポイント間直線)	D(km)	80.46	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	44	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	64.46	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	16	
伝送距離(M1-M2間直線)	d2(km)	28	
伝送距離(M2-B1間直線)	d3(km)	36.46	
A1ポイント標高	h1(m)	27	
M1ポイント標高	hm1(m)	85	
M2ポイント標高	hm2(m)	27	
B1ポイント標高	h2(m)	55.1	
C1ポイント標高	hp1(m)	0.63	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	84.37	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	159.59	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	8.01	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	18.99	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	11.38	$=\sqrt{\left(\left(\lambda*d1*d2\right)/(d1+d2)\right)}$
M1回折パラメータ	U1	7.42	=CS1/Rm1
M1ポイントでの回折損失	Z1 (dB)	33.40	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	15.92	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	1.19	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	17.53	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	50.94	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	158.0098406	= 32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	208.95	$= \Gamma 0 + Zt$

11. 野辺山(NRO45m)

NRO45m

第1地点(84.24km)

第2地点(75.88km)

第3地点(91.38km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

<u>距離(高さ)に依存するパラメータ</u>

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	84.24	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	70	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	24.24	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	60	
伝送距離(M1-M2間直線)	d2(km)	10	
伝送距離(M2-B1間直線)	d3 (km)	14.24	
A1ポイント標高	h1(m)	757	
M1ポイント標高	hm1(m)	2400	
M2ポイント標高	hm2(m)	2270	
B1ポイント標高	h2(m)	1395.1	
C1ポイント標高	hp1(m)	2018.54	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	381.46	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	3427.25	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	1679.94	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	590.06	=hm2-hp2

<u>周波数に依存するパラメータ</u>

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	10.44	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	36.54	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	47.26	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	12.26	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	48.11	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	49.65	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	96.90	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	158.4086072	= 32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	255.31	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	75.98	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	46	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	33.98	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	42	
伝送距離(M1-M2間直線)	d2(km)	4	
伝送距離(M2-B1間直線)	d3(km)	29.98	
A1ポイント標高	h1(m)	489	
M1ポイント標高	hm1(m)	2470	
M2ポイント標高	hm2(m)	2520	
B1ポイント標高	h2(m)	1395.1	
C1ポイント標高	hp1(m)	2333.50	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	136.50	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	2058.74	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	1575.77	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	944.23	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	6.81	$= \sqrt{\left(\left(\lambda * d1 * d2 \right) / \left(d1 + d2 \right) \right)}$
M1回折パラメータ	U1	20.03	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	42.03	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	15.19	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	62.16	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	51.87	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	93.91	=Z1+Z2
自由空間伝搬損失	$\Gamma 0(dB)$	157.5122258	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	251.42	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	91.38	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	78	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	44.38	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	47	
伝送距離(M1-M2間直線)	d2(km)	31	
伝送距離(M2-B1間直線)	d3(km)	13.38	
A1ポイント標高	h1(m)	109	
M1ポイント標高	hm1(m)	1830	
M2ポイント標高	hm2(m)	2200	
B1ポイント標高	h2(m)	1395.1	
C1ポイント標高	hp1(m)	1283.19	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	546.81	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	1484.85	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	1346.80	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	853.20	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	15.41	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	35.49	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	47.00	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	12.05	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	70.81	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	53.00	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	100.00	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	159.1152631	= 32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	259.12	$= \Gamma 0 + Zt$

12. JAXA 臼田

JAXA 臼田

第1地点(81.69km)

第2地点(88.52km)

第3地点(110.56km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

<u>距離(高さ)に依存するパラメータ</u>

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	81.7	=d1+d2
伝送距離(A-M1間直線)	d1(km)	62	
伝送距離(M1-M2間直線)	d2(km)	19.7	
A1ポイント標高	h1(m)	61	
M1ポイント標高	hm1(m)	1280	
B1ポイント標高	h2(m)	1529.1	
C1ポイント標高	hp1(m)	1103.20	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	176.80	=hm1-hp1

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	13.79	$=\sqrt{\left(\left(\lambda*d1*d2\right)/(d1+d2)\right)}$
M1回折パラメータ	U1	12.83	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	38.16	=16+20*LOG(U1)
自由空間伝搬損失	Γ0(dB)	158.1426812	= 32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	$\Gamma(dB)$	196.30	= Γ 0+Z1

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

_距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	88.52	=d1+d2
伝送距離(A-M1間直線)	d1(km)	82	
伝送距離(M1-M2間直線)	d2(km)	6.52	
A1ポイント標高	h1(m)	633	
M1ポイント標高	hm1(m)	2400	
B1ポイント標高	h2(m)	1529.1	
C1ポイント標高	hp1(m)	1431.62	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	968.38	=hm1-hp1

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	8.76	$=\sqrt{\left(\left(\lambda*d1*d2\right)/(d1+d2)\right)}$
M1回折パラメータ	U1	110.52	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	56.87	=16+20*LOG(U1)
自由空間伝搬損失	Γ0(dB)	158.8390682	= 32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	$\Gamma(dB)$	215.71	= Γ 0+Z1

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値]
伝送距離(ポイント間直線)	D(km)	110.56	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	44	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	82.56	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	28	
伝送距離(M1-M2間直線)	d2(km)	16	
伝送距離(M2-B1間直線)	d3(km)	66.56	
A1ポイント標高	h1(m)	101	
M1ポイント標高	hm1(m)	2350	
M2ポイント標高	hm2(m)	2600	
B1ポイント標高	h2(m)	1529.1	
C1ポイント標高	hp1(m)	1664.90	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	685.10	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	1985.03	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	1631.17	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	968.83	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	11.38	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	60.22	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	51.59	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	18.35	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	52.80	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	50.45	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	102.05	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	160.7702007	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	262.82	$= \Gamma 0 + Zt$

13. 岐阜大岐阜

岐阜大岐阜

第1地点(57.3km)

第2地点(52.02km)

第 3 地点(74.35km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ			
項目	記号	値	
伝送距離(ポイント間直線)	D(km)	57.3	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	51.5	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	51.3	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	6	
伝送距離(M1-M2間直線)	d2(km)	45.5	
伝送距離(M2-B1間直線)	d3(km)	5.8	
A1ポイント標高	h1(m)	24	
M1ポイント標高	hm1(m)	45	
M2ポイント標高	hm2(m)	22	
B1ポイント標高	h2(m)	27.1	
C1ポイント標高	hp1(m)	7.70	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	37.30	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	66.22	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	13.48	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	8.52	=hm2-hp2

			-
項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	8.21	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	4.54	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	29.15	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	8.14	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	1.05	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	16.40	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	45.55	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	155.0613325	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	200.61	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	52.02	= d1 + d2 + d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	15.5	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	44.02	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	8	
伝送距離(M1-M2間直線)	d2 (km)	7.5	
伝送距離(M2-B1間直線)	d3(km)	36.52	
A1ポイント標高	h1(m)	124	
M1ポイント標高	hm1(m)	605	
M2ポイント標高	hm2(m)	800	
B1ポイント標高	h2(m)	27.1	
C1ポイント標高	hp1(m)	469.37	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	135.63	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	404.30	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	258.58	= (ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	541.42	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	7.01	$=\sqrt{\left(\left(\lambda * d1 * d2\right)/(d1 + d2)\right)}$
M1回折パラメータ	U1	19.33	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	41.73	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	11.76	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	46.03	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	49.26	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	90.99	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	154.221647	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	245.21	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

<u>距離(高さ)に依存するパラメータ</u>

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	74.35	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	51	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	48.85	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	25.5	
伝送距離(M1-M2間直線)	d2(km)	25.5	
伝送距離(M2-B1間直線)	d3(km)	23.35	
A1ポイント標高	h1(m)	36	
M1ポイント標高	hm1(m)	1100	
M2ポイント標高	hm2(m)	960	
B1ポイント標高	h2(m)	27.1	
C1ポイント標高	hp1(m)	459.72	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	640.28	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	1316.56	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	361.96	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	598.04	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	12.73	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	50.29	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	50.03	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	14.27	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	41.91	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	48.45	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	98.48	=Z1+Z2
自由空間伝搬損失	$\Gamma 0(dB)$	157.3238595	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	255.80	$= \Gamma 0 + Zt$

山口

第1地点(12.5km)

第 2 地点(26.2km)

第3地点(41.6km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高	さ)に依存す	-るパラメ-	ータ
------	--------------------------	--------	----

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	12.5	=d1+d2
伝送距離(A-M1間直線)	d1(km)	3.55	
伝送距離(M1-M2間直線)	d2(km)	8.95	
A1ポイント標高	h1(m)	45	
M1ポイント標高	hm1(m)	390	
B1ポイント標高	h2(m)	150.1	
C1ポイント標高	hp1(m)	72.98	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	317.02	=hm1-hp1

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	5.68	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	55.77	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	50.93	=16+20*LOG(U1)
自由空間伝搬損失	Γ0(dB)	141.8364403	=32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	Γ(dB)	192.76	= Γ0+Z1

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ			
項目	記号	値	
伝送距離(ポイント間直線)	D(km)	26.2	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	24	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	7.2	=d2+d3
伝送距離(A-M1間直線)	d1(km)	19	
伝送距離(M1-M2間直線)	d2(km)	5	
伝送距離(M2-B1間直線)	d3(km)	2.2	
A1ポイント標高	h1(m)	20	
B1ポイント標高	h2(m)	150.1	
M1ポイント標高	hm1(m)	500	
M2ポイント標高	hm2(m)	480	
C1ポイント標高	hp1(m)	378.57	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	121.43	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	602.84	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	185.01	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	294.99	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.01	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	7.09	$=\sqrt{\left(\left(\lambda * d1 * d2\right)/(d1 + d2)\right)}$
M1回折パラメータ	U1	17.12	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	40.67	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	5.06	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	58.28	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	51.31	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	91.98	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	148.2642659	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	240.24	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

_距離(高さ)に依存するパラメータ			
項目	記号	値	
伝送距離(ポイント間直線)	D(km)	41.6	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	39.5	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	16.6	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	25	
伝送距離(M1-M2間直線)	d2(km)	14.5	
伝送距離(M2-B1間直線)	d3(km)	2.1	
A1ポイント標高	h1(m)	24	
B1ポイント標高	h2(m)	150.1	
M1ポイント標高	hm1(m)	340	
M2ポイント標高	hm2(m)	280	
C1ポイント標高	hp1(m)	164.69	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	175.31	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	501.58	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	162.96	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	117.04	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.01	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	10.80	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	16.23	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	40.21	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	5.03	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	23.25	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	43.33	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	83.53	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	152.2801067	= 32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	235.81	$= \Gamma 0 + Zt$

15. 鹿児島 6m

鹿児島 6m

第1地点(76.51km)

第2地点(86.99km)

第3地点(106.2km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

<u>距離(高さ)に依存するパラメータ</u>
-= -

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	76.51	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	71	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	10.51	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	66	
伝送距離(M1-M2間直線)	d2 (km)	5	
伝送距離(M2-B1間直線)	d3 (km)	5.51	
A1ポイント標高	h1(m)	27	
M1ポイント標高	hm1(m)	355	
M2ポイント標高	hm2(m)	365	
B1ポイント標高	h2(m)	83.1	
C1ポイント標高	hp1(m)	321.77	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	33.23	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	498.86	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	90.01	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	274.99	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	7.69	$=\sqrt{\left(\left(\lambda*d1*d2\right)/(d1+d2)\right)}$
M1回折パラメータ	U1	4.32	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	28.72	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	8.06	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	34.11	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	46.66	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	75.37	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	157.5726041	= 32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	232.95	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ			
項目	記号	値	
伝送距離(ポイント間直線)	D(km)	87	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	60	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	72	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	15	
伝送距離(M1-M2間直線)	d2(km)	45	
伝送距離(M2-B1間直線)	d3 (km)	27	
A1ポイント標高	h1(m)	169	
M1ポイント標高	hm1(m)	705	
M2ポイント標高	hm2(m)	515	
B1ポイント標高	h2(m)	83.1	
C1ポイント標高	hp1(m)	215.76	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	489.24	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	821.32	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	216.83	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	298.17	=hm2-hp2

項目	記号	値]
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	11.96	$=\sqrt{\left(\left(\lambda * d1 * d2\right)/(d1 + d2)\right)}$
M1回折パラメータ	U1	40.91	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	48.24	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	15.39	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	19.38	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	41.75	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	89.98	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	158.6886251	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	248.67	= Γ 0+Zt

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

55歳(古キ)	にはちまてパニューク	
(い) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	に化住するハフメーダ	

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	106.2	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	68.5	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	79.7	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	26.5	
伝送距離(M1-M2間直線)	d2(km)	42	
伝送距離(M2-B1間直線)	d3(km)	37.7	
A1ポイント標高	h1(m)	28	
M1ポイント標高	hm1(m)	435	
M2ポイント標高	hm2(m)	415	
B1ポイント標高	h2(m)	83.1	
C1ポイント標高	hp1(m)	112.19	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	322.81	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	554.48	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	98.41	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	316.59	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	14.37	$=\sqrt{\left(\left(\lambda*d1*d2\right)/(d1+d2)\right)}$
M1回折パラメータ	U1	22.46	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	43.03	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	17.58	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	18.01	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	41.11	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	84.14	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	160.4207304	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	244.56	$= \Gamma 0 + Zt$

16. 内之浦

内之浦

第1地点(86.75km)

第2地点(62.16km)

第3地点(66.07km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ			_
項目	記号	値	
伝送距離(ポイント間直線)	D(km)	86.8	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	78.5	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	77.3	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	9.5	
伝送距離(M1-M2間直線)	d2(km)	69	
伝送距離(M2-B1間直線)	d3(km)	8.3	
A1ポイント標高	h1(m)	44	
M1ポイント標高	hm1(m)	265	
M2ポイント標高	hm2(m)	850	
B1ポイント標高	h2(m)	358.1	
C1ポイント標高	hp1(m)	102.95	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	162.05	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	228.36	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	307.34	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	542.66	=hm2-hp2

項目	記号	値]
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	10.30	$=\sqrt{\left(\left(\lambda*d1*d2\right)/(d1+d2)\right)}$
M1回折パラメータ	U1	15.73	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	39.93	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	9.77	$=\sqrt{((\lambda * (d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	55.55	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	50.89	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	90.83	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	158.6686346	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	249.50	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

距離(高さ)に依存するパラメータ

	1		
項目	記号	値	
伝送距離(ポイント間直線)	D(km)	62.16	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	55	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	48.66	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	13.5	
伝送距離(M1-M2間直線)	d2(km)	41.5	
伝送距離(M2-B1間直線)	d3(km)	7.16	
A1ポイント標高	h1(m)	31	
M1ポイント標高	hm1(m)	425	
M2ポイント標高	hm2(m)	680	
B1ポイント標高	h2(m)	358.1	
C1ポイント標高	hp1(m)	157.32	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	267.68	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	385.76	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	338.10	= (ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	341.90	=hm2-hp2

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ(m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	11.38	$=\sqrt{\left(\left(\lambda * d1 * d2\right)/(d1 + d2)\right)}$
M1回折パラメータ	U1	23.52	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	43.43	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	8.97	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	38.10	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	47.62	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	91.05	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	155.7684602	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	246.82	$= \Gamma 0 + Zt$

距離:66.07km 見通し自由空間損失:156.3dB

全国の電波天文観測局の置局状況 及び測定地点(電波天文台指定)一覧

			座標(天文台)		座標(追加第1地点)		座標(追加第2地点)				
	局名	口径 (m)	標高 (m)	アンテ ナ高 (m)	アンテ ナ最 高点 (m)	東経(度)	北緯(度)	東経(度)	北緯(度)	東経(度)	北緯(度)
1	VERA水沢	20	63	22	85	141° 07′ 57″	39°08′01″	141° 37′ 46.19″	39°00′54.44″	141°09′09.66″	39°42′13.03″
2	VERA入来	20	529	22	551	130°26′24″	31° 44′ 52″	130° 18′ 14.28″	31° 48′ 48.56″	130° 33′ 28.72″	31°33′36.53″
3	VERA小笠原	20	211	22	233	142° 13′ 00″	27°05′31″	142° 11′ 31.06″	27°05′39.72″	142°09′39.80″	26°38′25.03″
4	VERA石垣島	20	26	22	48	124° 10′ 16″	24°24′44″	124°09′20.06″	24°20′26.41″	125° 16′ 52.14″	24°48′19.78″
5	野辺山(NRO)	45	1349	47	1396	138°28′21″	35°56′40″	138°29′31.51″	36°01′15.15″	138°34′06.4″	35°39′50.96″

全国の電波天文観測局(測定地点:電波天 文台指定)での回折シミュレーション結果

パラメータ	値
送信周波数f(MHz)	23600
送信給電線損失Lt(dB)	0
受信給電線損失Lr(dB)	0

自由空間伝搬損失 Lp(dB) = 32.44+20log(f(MHz))+20log(D(km)) 総伝搬損失 「(dB) = 「0(dB)+Z(dB)

	天文台	送信点	送受信間 直線距離D (km)	自由空間伝搬 損失「0(dB)	回折損失Z (dB)	総伝搬損失「 (dB)	スプリアス空中線 電力(dBm/MHz)	送信局空中線 利得(dBi)	干涉値 (dBm/MHz)	干渉閾値 (dBm/MHz)	干渉マージ ン(dB)
1	VERA	追加送 信点1	44.9	152.94	95.21	248.15	-33	40	-241.15	-191	50.15
'	水沢20m	追加送 信点2	63.3	155.93	37.5	193.43	-33	40	-186.43	-191	-4.57
0	VERA	追加送 信点1	14.7	143.24	33.6	176.84	-33	40	-169.84	-191	-21.16
2	入来	追加送 信点2	23.6	147.36	44.39	191.75	-33	40	-184.75	-191	-6.25
3 VERA 小笠原	VERA	追加送 信点1	2.48	127.79	89.63	217.42	-33	40	-210.42	-191	19.42
	小笠原	追加送 信点2	50.3	153.93	97.46	251.39	-33	40	-244.39	-191	53.39
4 VERA 石垣島	追加送 信点1	8.1	138.07	44.8	182.87	-33	40	-175.87	-191	-15.13	
	石垣島	追加送 信点2	120.5	161.52	47.41	208.93	-33	40	-201.93	-191	10.93
5 野辺山 (NRO)	野辺山	追加送 信点1	8.7	138.69	42.43	181.12	-33	40	-174.12	-191	-16.88
	(NRO)	追加送 信点2	32.2	150.06	96.23	246.29	-33	40	-239.29	-191	48.29

1. VERA 水沢(電波天文台指定地点での追加算出)

追加第1地点(44.9km)

追加第 2 地点(63.3km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a (km)	6370

距離(高さ)に依存するパラメータ 項目 D18号 伝送距離(ボイント間直線) D(km) 伝送距離(第1回折ポイント間直線) d1+d2(km) 伝送距離(第1回折ポイント間直線) d2+d3(km) 伝送距離(A-M1間直線) d1(km) 伝送距離(A-M1間直線) d1(km) =d1+d2+d3 44.9 =d1+d2 =d2+d3 29 31.4 13.5 伝送距離(M1-M2間直線) 伝送距離(M2-B1間直線) A1ポイント標高 15.5 15.9 27 d2(km) d3(km) h1(m) h2(m) hm1(m) hm2(m) 85.1 680 730 B1ポイント標高 M1ポイント標高 M2ポイント標高 <u>C1ポイント標高</u> 高低差(C1-M1間)=(hm1-hp1) =(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)341.94 hp1(m) $\frac{34134}{26136} = (ha^2 + d^3 + h2^* (d^1 + d^2))/((d^1 + d^2) + d^3) - ((d^1 + hm^2/d^2))$ $\frac{26136}{26136} = (ha^2 + d^3 + h2^* (d^1 + d^2))/((d^1 + d^2) + d^3) - ((d^1 + d^2) + d^3)/(2^* K^* a)$ CS1(m) A2ポイント標高(仮想点) C2ポイント標高 ha2(m) hp2(m) 高低差(C2-M2間)=(hm2-hp2) 468.64 = hm2-hp2 CS2(m)

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.01	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	9.58	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	35.30	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	46.96	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	11.43	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	41.02	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	48.26	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	95.21	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	152.9431669	= 32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ (dB)	248.16	$= \Gamma 0 + Zt$

<追加送信点 2—VERA 水沢 20m>

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a (km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	63.3	=d1+d2
伝送距離(A-M1間直線)	d1 (km)	47.5	
伝送距離(M1-M2間直線)	d2(km)	15.8	
A1ポイント標高	h1(m)	158	
M1ポイント標高	hm1(m)	205	
B1ポイント標高	h2(m)	85.1	
C1ポイント標高	hp1(m)	59.11	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	145.89	=hm1-hp1

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	12.28	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	11.88	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	37.50	=16+20*LOG(U1)
自由空間伝搬損失	Γ0(dB)	155.9263143	=32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	Γ(dB)	193.42	= Γ0+Z1

2. VERA 入来(電波天文台指定地点での追加算出)

追加第1地点(14.7km)

追加第 2 地点(23.6km)

<追加送信点 1—VERA 入来 20m>

項目	記号	値
等価地球半径係数	K	1.333333333
地球平均半径	a (km)	6370
		7

<u>距離(高さ)に依存するパラメータ</u>

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	14.7	=d1+d2
伝送距離(A-M1間直線)	d1 (km)	5.8	
伝送距離(M1-M2間直線)	d2(km)	8.9	
A1ポイント標高	h1(m)	24	
M1ポイント標高	hm1(m)	280	
B1ポイント標高	h2(m)	552.1	
C1ポイント標高	hp1(m)	229.33	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	50.67	=hm1-hp1

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	6.68	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	7.58	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	33.60	=16+20*LOG(U1)
自由空間伝搬損失	Γ0(dB)	143.2445868	=32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	Γ(dB)	176.84	= Γ0+Z1

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

|--|

項目	記号	値
伝送距離(第1回折ポイント間直線)	D(km)	23.6 =d1+d2
伝送距離(A-M1間直線)	d1 (km)	22
伝送距離(M1-M2間直線)	d2 (km)	1.6
A1ポイント標高	h1(m)	44
M1ポイント標高	hm1(m)	630
B1ポイント標高	h2(m)	552.1
C1ポイント標高	hp1(m)	515.58 = (h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	114.42 = hm1-hp1

周波数に依存するパラメータ

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	4.35	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	26.28	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	44.39	=16+20*LOG(U1)
自由空間伝搬損失	Γ0(dB)	147.3564801	= 32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	Γ(dB)	191.75	= Γ0+Z1

3. VERA 小笠原(電波天文台指定地点での追加算出)

追加第1地点(2.48km)

追加第 2 地点(50.3km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a (km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	2.48	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	1.9	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	1.68	=d2+d3
伝送距離(A-M1間直線)	d1(km)	0.8	
伝送距離(M1-M2間直線)	d2(km)	1.1	
伝送距離(M2-B1間直線)	d3(km)	0.58	
A1ポイント標高	h1(m)	24	
B1ポイント標高	h2(m)	110	
M1ポイント標高	hm1(m)	145	
M2ポイント標高	hm2(m)	225	
C1ポイント標高	hp1(m)	108.58	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	36.42	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	86.91	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	104.53	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	120.47	=hm2-hp2

周波数に14149のハファーダ

し 項目 しんしん しんしん しんしん しんしん しんしん しんしん しんしん	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.01	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	2.43	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	15.01	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	39.53	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	2.38	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	50.69	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	50.10	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	89.63	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	127.7872737	= 32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	217.41	$= \Gamma 0 + Zt$

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a (km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	50.3	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	47.5	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	49.3	=d2+d3
伝送距離(A-M1間直線)	d1 (km)	1	
伝送距離(M1-M2間直線)	d2(km)	46.5	
伝送距離(M2-B1間直線)	d3(km)	2.8	
A1ポイント標高	h1(m)	26	
B1ポイント標高	h2(m)	110.1	
M1ポイント標高	hm1(m)	270	
M2ポイント標高	hm2(m)	270	
C1ポイント標高	hp1(m)	28.40	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	241.60	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	272.80	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	111.33	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	158.67	=hm2-hp2

周波数に依存するパラメータ

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.01	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	3.53	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	68.49	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	52.71	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	5.80	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	27.37	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	44.75	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	97.46	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	153.9295998	= 32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ (dB)	251.39	$= \Gamma 0 + Zt$

4. VERA 石垣島(電波天文台指定地点での追加算出)

追加第 2 地点(120.5km)

追加第1地点(8.1km)

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a (km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	8.1	=d1+d2
伝送距離(A-M1間直線)	d1 (km)	4.5	
伝送距離(M1-M2間直線)	d2(km)	3.6	
A1ポイント標高	h1(m)	32	
M1ポイント標高	hm1(m)	180	
B1ポイント標高	h2(m)	50.1	
C1ポイント標高	hp1(m)	41.10	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	138.90	=hm1-hp1

周波数に依存するパラメータ

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	5.04	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	27.55	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	44.80	=16+20*LOG(U1)
自由空間伝搬損失	Γ0(dB)	138.0679404	=32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	$\Gamma(dB)$	182.87	= Γ0+Z1

項目	記号	値
等価地球半径係数	К	1.3333333333
地球平均半径	a(km)	6370

<u>距離(高さ)に依存するパラメータ</u>

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	120.5	=d1+d2
伝送距離(A-M1間直線)	d1 (km)	118	
伝送距離(M1-M2間直線)	d2(km)	2.5	
A1ポイント標高	h1(m)	44	
M1ポイント標高	hm1(m)	240	
B1ポイント標高	h2(m)	50.1	
C1ポイント標高	hp1(m)	32.61	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	207.39	=hm1-hp1

周波数に依存するパラメータ

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	5.58	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	37.18	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	47.41	=16+20*LOG(U1)
自由空間伝搬損失	Γ0(dB)	161.517981	=32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	Γ(dB)	208.92	= Γ0+Z1

5. NRO45m(電波天文台指定地点での追加算出)

追加第1地点(8.7km)

追加第 2 地点(32.2km)

項目	記号	値
等価地球半径係数	K	1.333333333
地球平均半径	a (km)	6370

距離(高さ)に依存するパラメータ

項目	記号	値	
伝送距離(第1回折ポイント間直線)	D(km)	8.7	=d1+d2
伝送距離(A-M1間直線)	d1 (km)	3	
伝送距離(M1-M2間直線)	d2(km)	5.7	
A1ポイント標高	h1(m)	1061	
M1ポイント標高	hm1(m)	1280	
B1ポイント標高	h2(m)	1395.1	
C1ポイント標高	hp1(m)	1175.20	=(h1*d2+h2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1 (m)	104.80	=hm1-hp1

周波数に依存するパラメータ

項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.0127	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	5.00	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	20.97	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	42.43	=16+20*LOG(U1)
自由空間伝搬損失	Γ0(dB)	138.6886251	= 32.44+20*LOG(f)+20*LOG(d1+d2)
伝搬損失	Γ(dB)	181.12	= F0+Z1

<追加送信点 2—NRO45m>

項目	記号	値
等価地球半径係数	К	1.333333333
地球平均半径	a (km)	6370

距離(高さ)に依存するパラメ	- タ

項目	記号	値	
伝送距離(ポイント間直線)	D(km)	32.2	=d1+d2+d3
伝送距離(第1回折ポイント間直線)	d1+d2(km)	29.5	=d1+d2
伝送距離(第2回折ポイント間直線)	d2+d3(km)	15.7	=d2+d3
伝送距離(A-M1間直線)	d1(km)	16.5	
伝送距離(M1-M2間直線)	d2(km)	13	
伝送距離(M2-B1間直線)	d3(km)	2.7	
A1ポイント標高	h1(m)	302	
B1ポイント標高	h2(m)	1395.1	
M1ポイント標高	hm1(m)	1400	
M2ポイント標高	hm2(m)	1600	
C1ポイント標高	hp1(m)	1015.37	=(h1*d2+hm2*d1)/(d1+d2)-(d1*d2)/(2*K*a)
高低差(C1-M1間)=(hm1-hp1)	CS1(m)	384.63	=hm1-hp1
A2ポイント標高(仮想点)	ha2(m)	1174.81	=((d1+d2)/d2)(hm1+(d1*d2)/(2*K*a))-(d1*hm2/d2)
C2ポイント標高	hp2(m)	1371.94	=(ha2*d3+h2*(d1+d2))/((d1+d2)+d3)-((d1+d2)*d3)/(2*K*a)
高低差(C2-M2間)=(hm2-hp2)	CS2(m)	228.06	=hm2-hp2

_ 周波数に依存するパラメータ			
項目	記号	値	
伝送周波数	f(MHz)	23600	
信号波長	λ (m)	0.01	=300/f
M1ポイントでの第1フレネル半径	Rm1(m)	9.61	$=\sqrt{((\lambda *d1*d2)/(d1+d2))}$
M1回折パラメータ	U1	40.01	=CS1/Rm1
M1ポイントでの回折損失	Z1(dB)	48.04	=16+20*LOG(U1)
M2ポイントでの第1フレネル半径	Rm2(m)	5.61	$=\sqrt{((\lambda *(d1+d2)*d3)/((d1+d2)+d3))}$
M2回折パラメータ	U2	40.67	=CS2/Rm2
M2ポイントでの回折損失	Z2(dB)	48.19	=16+20*LOG(U2)
2段回折での総合損失	Zt(dB)	96.23	=Z1+Z2
自由空間伝搬損失	Γ0(dB)	150.0553575	=32.44+20*LOG(f)+20*LOG(d1+d2+d3)
伝搬損失	Γ(dB)	246.28	$= \Gamma 0 + Zt$

干渉回避マップ

23GHz 帯無線伝送システムの送信場所を特定しない条件で電波天文との干渉エリアマップを検討 するため、電波天文台のパラボラアンテナ最高点(地上高)から23GHz 帯の電波を輻射した時の電界 強度エリア計算を行い、電界強度が干渉しきい値以下となるエリアを示すと共に、23GHz 帯無線伝送 システムで使用する送信アンテナの指向特性によって干渉を緩和できるエリアについて検討した。

本検討では、電界強度計算シミュレーションソフトとして「エリアかくべえ」を使用した。その他のシミ ュレーションソフトとして「ミスター電波」があるが、マップ計算距離半径が短いためにエリアマップ作成 用としては使用できなかった。しかし、特定した2地点間の回折損失を含む伝搬損失や電界強度計算 は長距離においても可能なため、23GHz帯無線伝送システム無線局の設置場所を特定しての干渉検 討には利用できる事を確認している。

設定項目	設定
計算方式	最新
使用係数 : 反射	規定値
使用係数 : B	なし
使用係数 : C	なし
空気減衰(dB/km)	0.02
送信周波数(MHz)	23,200
送信電力(W)	1.0
送信アンテナ利得(dBi)	0
指向性	無指向性
偏波面	水平
受信アンテナ高さ(m)	20

「エリアかくべえ」シミュレーション設定

「エリアかくべえ」の設定を以下として電界強度シミュレーションを行った。

干渉エリアマップ作成の計算例とエリア設定

23GHz 帯無線伝送システム無線局空中線を \$ 60cm パラボラとした時、電波天文台において、23GHz 帯無線伝送システム無線局が輻射するスプリアスの受信電力が干渉しきい値となる所要伝播損失 Lp は以下となる。

 $Lp = Pts + GAt \theta + GAr \theta - Lft - Lfr - Til$

Pts:23GHz 帯無線伝送システム無線局のスプリアスの空中線電力 -33 (dBm/MHz)

[本報告書のスプリアススペクトルマスクより]

GAt 8:23GHz 帯無線伝送システム無線局空中線最大利得 40 (dBi)

「 \$\$ 60cm パラボラアンテナ利得」

GAr θ:電波天文業務の受信設備の空中線利得 0 (dBi)

「電波天文側との合意の元に、空中線の水平方向利得として設定」

Lft:送信給電線損失 0(dB)「干渉が最大となる値」

Lfr:受信給電線損失 0 (dB)「干渉が最大となる値」

Til: 干渉しきい値 -191 (dBm/MHz) [本報告書の干渉しきい値より]

Lp=-33(dBm/MHz)+40(dBi)+0(dBi)-0(dB)-0(dB)+191 =198(dB) となり、伝播損失が、198(dB)以上であれば妨害を与えない。

電界強度計算ソフトは、ある地点から送信した場合の電界強度を表示するものであるが、計算結果 は伝播損失を計算したものであり、以下の考え方で干渉エリアを求めた。

電波天文台地点から空中線電力 1W、無指向性アンテナ利得 0(dBi)で輻射したとき、周知の伝播 距離による自由空間損失と電界強度の計算式で、自由空間損失が所要伝播損失の 198(dB)となる 電界強度を求めると、約-3.3(dB μ V/m)となる。

電界強度計算ソフトでは、山岳遮蔽や回折による伝播損失が考慮されており、23GHz 帯無線伝送 システム無線局空中線の地上高を 20m とし、電界強度計算しきい値を $-3(dB \mu V/m)$ として干渉エリ アマップとした。また、23GHz 帯無線伝送システム無線局空中線の指向特性により干渉回避できるエ リアを検討するため、空中線最大利得からの減衰量が 30dB(利得:10dBi)以上となる主方向から 10 度以上とした場合の 27(dB μ V/m)となるエリア、および減衰量 50dB(利得:-10dBi)以上となる主方 向から 80 度以上とした場合の 47(dB μ V/m)となるエリアを求めると共に、指向特性を考慮しても干渉 回避できないエリアも求めた。

更に、23GHz 帯無線伝送システム無線局空中線の主方向最大利得においても干渉しきい値以下となるエリアとして、マージンが 10dB 以下(注意エリア)およびマージン 10dB 以上(干渉なし)のエリアについても求めた。

23GHz 帯無線伝送システム無線局で使用されることが予測される空中線として 5 機種を選択し、上述と同様に求めた各空中線の指向特性を考慮した電界強度シミュレーションしきい値を以下の表に示す。

エリア色		送信空中	電界強度シミュレーションしきい値(dB µ V/m)							
		線指向特 性による 干渉回避	60cm パラボラ (利得 : 40dBi)	30cm パラボラ (利得:34.5dBi)	16cm レンズ (利得:30.5dBi)	高利得 90 度セクター (利得 : 23dBi)	90 度セクター (利得 : 20dBi)			
	赤	回避不可 47 以上		43 以上	47 以上	44 以上	37 以上			
	緑	回避可	27~47	23~43	27~47	24~44	27~37			
	灰	回避可	-3~27	3~23	7~27	14~24	17~27			
	黄	注意	-13~-3	-7~3	-3~7	4~14	7~17			
	透明	干渉なし	-13 以下	-7 以下	-3 以下	4 以下	7 以下			

[干渉エリアマップ]

空中線指向特性を考慮した干渉回避条件によりエリア分けを行い、干渉エリアマップとした。

		送信空中	23GHz 送信空中線									
_			60cm /	ペラボラ	30cm /	ペラボラ	16cm L	ルンズ	高利得 90	度セクター	90 度セ	クター
エリア包		性による	(利得:40dBi)		(利得:34.5dBi)		(利得:30.5dBi)		(利得:23dBi)		(利得:20dBi)	
		干涉回避	所要	指向	所要	指向	所要	指向	所要	指向	所要	指向
			減衰量	角度	減衰量	角度	減衰量	角度	減衰量	角度	減衰量	角度
	赤	回避不可	-		-				_		-	
	经	回避可	50	±80	40	±35	40	±60	30	±100	20	±130
	邧水		以上	以上	以上	以上	以上	以上	以上	以上	以上	以上
	티	回避可	30	±10	20	±10	20	±10	10	±70	10	±80
	р.		以上	以上	以上	以上	以上	以上	以上	以上	以上	以上
	#	注意	0	人名	0	<u>۸</u>	0	人名	0	入舟		<u>л</u> д
	央		以上	王用	以上	王用	以上	主用	以上	以上	이씨도	王円
	透明	干渉なし		全角		全角		全角		全角		全角

送信アンテナ指向性による干渉回避

[回避不可]

23GHz 帯無線伝送システム無線局送信アンテナ指向特性で得られる最大減衰方向でも干渉するため、障害物等による遮蔽損失を考慮して干渉回避を検討する必要があるエリア。

[回避可]

23GHz 帯無線伝送システム無線局送信アンテナ指向特性で得られる方向減衰量により、回避可能なエリア。

[注意]

23GHz 帯無線伝送システム無線局送信アンテナ主方向(最大利得)においても回避可能でるが、 干渉マージンが 10dB 以下のエリア。

[干渉なし]

23GHz 帯無線伝送システム無線局送信アンテナ主方向(最大利得)においても干渉マージンが 10dB 以上あるエリア。

なお、このマップのエリアごとの干渉計算の間隔は 1km メッシュ毎、計算の基準とする標 高データのサンプリングは、国土地理院の地図データから用い、1km メッシュ中心の標高を 取得し、電波天文局から半径 200 kmまでの干渉計算を行った。計算と実測との比較は 23GHz帯ではまだ行われておらず、回折回数が多数回にわたる場合は 5~10dB 程度の誤 差もありうるが、広い地域にわたって干渉レベルの分布が一目でわかるので、送信局の設 置位置の検討の参考にされたい。ただし、この簡易マップ上で、干渉レベルの色分けが複 雑になっている地形が複雑なエリアについては、計算間隔が地形の変化に比べて広いこと、 及び標高が高いことから、望遠鏡まで見通しになる可能性のあるエリアについては、計算 範囲が 200 kmに限っているため、干渉許容レベルを超える地点が存在する可能性があるた め、留意が必要である。

	日夕	局の作	立置	アンテナ	アンテナの
	同石	東経(度)	北緯(度)	口径 (m)	高さ(m)
1	VERA 水沢	141.132544	39.133493	20	22
2	VERA 入来	130.439993	31.747976	20	22
3	VERA 小笠原	142.216773	27.09168	20	22
4	VERA 石垣島	124.171085	24.412453	20	22
5	水沢 10m	141.132372	39.133323	10	11
6	北大苫小牧	141.596898	42.673814	11	14
7	高萩	140.694866	36.698593	32	38
8	日立	140.692002	36.697552	32	39
9	NICT 鹿島	140.660051	35.955872	34	34
10	国土地理院つくば	140.088902	36.103148	32	35
11	野辺山(NRO)	138.472517	35.944503	45	47
12	JAXA 臼田	138.36201	36.132953	64	65
13	岐阜大岐阜	136.737092	35.467595	11	15
14	山口	131.556725	34.218203	32	39
15	鹿児島 6m	鹿児島 6m 130.507107		6	7
	内之浦 注1	131.07816	31.254432	34	42

干渉検討した電波天文観測局

注 1:開局準備局

1-① VERA 水沢 電界強度マップ・・・ φ 60cm パラボラアンテナ送信機

1-② VERA 水沢 電界強度マップ・・・ \$ 30cm パラボラアンテナ送信機

1-④ VERA 水沢 電界強度マップ・・・高利得 90 度セクターアンテナ送信機

1-⑤ VERA 水沢 電界強度マップ・・・90 度セクターアンテナ送信機

2-① VERA 入来 電界強度マップ・・・ \$ 60cm パラボラアンテナ送信機

2-② VERA 入来 電界強度マップ・・・ \$ 30cm パラボラアンテナ送信機

2-③ VERA 入来 電界強度マップ・・・ φ16cm レンズアンテナ送信機

2-④ VERA 入来 電界強度マップ・・・高利得 90 度セクターアンテナ送信機

2-⑤ VERA 入来 電界強度マップ・・・90 度セクターアンテナ送信機

3-① VERA 小笠原 電界強度マップ・・・ φ 60cm パラボラアンテナ送信機 (日本領域外についてはマップデータが無いためシミュレーションできていません。)

3-② VERA 小笠原 電界強度マップ・・・ \$ 30cm パラボラアンテナ送信機

(日本領域外についてはマップデータが無いためシミュレーションできていません。)

3-③ VERA 小笠原 電界強度マップ・・・ φ16cm レンズアンテナ送信機

(日本領域外についてはマップデータが無いためシミュレーションできていません。)

3-④ VERA 小笠原 電界強度マップ・・・高利得 90 度セクターアンテナ送信機 (日本領域外についてはマップデータが無いためシミュレーションできていません。)

3-⑤ VERA 小笠原 電界強度マップ・・・90 度セクターアンテナ送信機

(日本領域外についてはマップデータが無いためシミュレーションできていません。)

4-① VERA 石垣島 電界強度マップ・・・・ φ 60cm パラボラアンテナ送信機 (日本領域外についてはマップデータが無いためシミュレーションできていません。)

4-② VERA 石垣島 電界強度マップ・・・・ φ 30cm パラボラアンテナ送信機 (日本領域外についてはマップデータが無いためシミュレーションできていません。)

4-③ VERA 石垣島 電界強度マップ・・・ φ16cm レンズアンテナ送信機 (日本領域外についてはマップデータが無いためシミュレーションできていません。)

4-④ VERA 石垣島 電界強度マップ・・・高利得 90 度セクターアンテナ送信機 (日本領域外についてはマップデータが無いためシミュレーションできていません。)

4-⑤ VERA 石垣島 電界強度マップ・・・90 度セクターアンテナ送信機 (日本領域外についてはマップデータが無いためシミュレーションできていません。)

5-① 水沢 10m 電界強度マップ・・・ φ 60cm パラボラアンテナ送信機

5-② 水沢 10m 電界強度マップ・・・ \$ 30cm パラボラアンテナ送信機

5-③ 水沢 10m 電界強度マップ・・・・ φ16cm レンズアンテナ送信機

5-④ 水沢 10m 電界強度マップ・・・高利得 90 度セクターアンテナ送信機

5-⑤ 水沢 10m 電界強度マップ・・・90 度セクターアンテナ送信機

6-① 北大苫小牧 電界強度マップ・・・ φ 60cm パラボラアンテナ送信機

6-② 北大苫小牧 電界強度マップ・・・ \$ 30cm パラボラアンテナ送信機

6-③ 北大苫小牧 電界強度マップ・・・・ φ16cm レンズアンテナ送信機

6-④ 北大苫小牧 電界強度マップ・・・高利得 90 度セクターアンテナ送信機

6-⑤ 北大苫小牧 電界強度マップ・・・90 度セクターアンテナ送信機

7-① 高萩 電界強度マップ・・・・ φ60cm パラボラアンテナ送信機

7-② 高萩 電界強度マップ・・・・ \$ 30cm パラボラアンテナ送信機

7-③ 高萩 電界強度マップ・・・・ φ16cm レンズアンテナ送信機

7-④ 高萩 電界強度マップ・・・高利得 90 度セクターアンテナ送信機

7-⑤ 高萩 電界強度マップ・・・90 度セクターアンテナ送信機

8-② 日立 電界強度マップ・・・・ \$ 30cm パラボラアンテナ送信機

8-③ 日立 電界強度マップ・・・・ φ16cm レンズアンテナ送信機

8-④ 日立 電界強度マップ・・・高利得 90 度セクターアンテナ送信機

8-⑤ 日立 電界強度マップ・・・90 度セクターアンテナ送信機

9-① NICT 鹿島電界強度マップ・・・ φ 60cm パラボラアンテナ送信機

9-② NICT 鹿島電界強度マップ・・・ \$ 30cm パラボラアンテナ送信機

9-③ NICT 鹿島電界強度マップ・・・ φ16cm レンズアンテナ送信機

9-④ NICT 鹿島電界強度マップ・・・高利得 90 度セクターアンテナ送信機

9-⑤ NICT 鹿島電界強度マップ・・・90 度セクターアンテナ送信機

10-① 国土地理院つくば 電界強度マップ・・・ φ60cm パラボラアンテナ送信機

10-② 国土地理院つくば 電界強度マップ・・・・ \$ 30cm パラボラアンテナ送信機

10-③ 国土地理院つくば 電界強度マップ・・・・ φ16cm レンズアンテナ送信機

10-④ 国土地理院つくば 電界強度マップ・・・高利得 90 度セクターアンテナ送信機

10-⑤ 国土地理院つくば 電界強度マップ・・・90 度セクターアンテナ送信機

11-① 野辺山(NRO) 電界強度マップ・・・ φ 60cm パラボラアンテナ送信機

11-⑤ 野辺山(NRO) 電界強度マップ・・・90 度セクターアンテナ送信機

12-① JAXA 臼田電界強度マップ・・・ φ60cm パラボラアンテナ送信機

12-④ JAXA 臼田電界強度マップ・・・高利得 90 度セクターアンテナ送信機

12-⑤ JAXA 臼田電界強度マップ・・・90 度セクターアンテナ送信機

13-① 岐阜大岐阜 電界強度マップ・・・・ φ 60cm パラボラアンテナ送信機

13-② 岐阜大岐阜 電界強度マップ・・・ \$ 30cm パラボラアンテナ送信機

13-④ 岐阜大岐阜 電界強度マップ・・・高利得 90 度セクターアンテナ送信機

13-⑤ 岐阜大岐阜 電界強度マップ・・・90 度セクターアンテナ送信機

14-① 山口 電界強度マップ・・・ φ 60cm パラボラアンテナ送信機

14-② 山口 電界強度マップ・・・ \$ 30cm パラボラアンテナ送信機

14-④ 山口 電界強度マップ・・・高利得 90 度セクターアンテナ送信機

14-⑤ 山口 電界強度マップ・・・90 度セクターアンテナ送信機

15-① 鹿児島 6m 電界強度マップ・・・ φ 60cm パラボラアンテナ送信機

15-② 鹿児島 6m 電界強度マップ・・・ \$ 30cm パラボラアンテナ送信機

15-③ 鹿児島 6m 電界強度マップ・・・・ φ16cm レンズアンテナ送信機

15-④ 鹿児島 6m 電界強度マップ・・・高利得 90 度セクターアンテナ送信機

15-⑤ 鹿児島 6m 電界強度マップ・・・90 度セクターアンテナ送信機

16-① 内之浦 電界強度マップ・・・ φ60cm パラボラアンテナ送信機

16-② 内之浦 電界強度マップ・・・・ \$ 30cm パラボラアンテナ送信機

16-④ 内之浦 電界強度マップ・・・高利得 90 度セクターアンテナ送信機

16-⑤ 内之浦 電界強度マップ・・・90 度セクターアンテナ送信機

混信保護比について

今般答申を行う 23GHz 無線伝送システムにおける被混信局の希望波対妨害波比(D/U)は、 29dB 以上とする。

ただし、降雨による減衰時においてもこの値を満足することとするが、降雨時のD/Uが 29dB以下となる時間率は、5×10⁻⁴/年以下とする。

【理由】

社団法人電波産業会及び社団法人日本 CATV 技術協会ではデジタル受信装置の性能を規格 化している。社団法人電波産業会では標準デジタルテレビジョン放送方式(OFDM)、社団法人日 本 CATV 技術協会ではデジタル有線テレビジョン放送方式(64QAM)の対妨害波比率についてそ れぞれの規格で定められており、被干渉信号帯域内における所要 D/U は、OFDM で 24dB、 64QAM で 26dB となっている。

本システムにおいても同様の D/U を満足することが適当であるが、無線系の混信保護におい ては、複数の干渉妨害信号を考慮して 3dB を加え、D/U を OFDM では 27dB、64QAM では 29dB とすることが適当である。しかし、実際の運用では、OFDM と 64QAM が混在して伝送されることを 想定し、混信保護比を 29dB とした。ただし、降雨による減衰時においてもこの値を満足すること。

【参考文献】

○ 社団法人電波産業会標準規格「ARIB STD-B21」より抜粋

		ARIB STD-B21		
 5.2.5 受信チューナー部の特性 13 セグメントを受信するチューナー部及び中央部の1 セグメントを部分受信するチューナー部は、下記の性能を満足すること。 ・ 最小入力レベル : -75 dBm 以下 (目標値) (付属-10参照) ・ 最大入力レベル : -20 dBm 以上 但し、1 セグメント受信機における入力レベルを1 セグメントあたりの電力で測定する場合には、帯域幅相当分(13 分の1、-11 dB) 減じるものとする。 				
to the state	を5-2 13セクメント受信機(の奶香波抑圧レヘル		
奶苦改	項目	奶書抑圧比		
アナログテレビジョン	 同一チャンネル 下隣接(妨害波が下側) 上隣接(妨害波が上側) 	18 dB 以下 -33 dB 以下 -35 dB 以下		
デジタルテレビジョン	同一チャンネル下隣接(妨害波が下側)上隣接(妨害波が上側)	24 dB 以下 -26 dB 以下 -29 dB 以下		
(注) 測定に使用す	ろ伝送パラメータけ Mode	3 ガード比 1/8 時間インターリーブかし		
変調 64QAM、内符号 7/8 とする(付属参照)。				
1 セグメント受信機の場合にも、上記値を満足することとするが、アナログテレビジョンから				
の同一チャンネル混信では、中央部のセグメントは映像・音声キャリアとは周波数位置が異なる				
ことから、性能の向上が期待される。				
また、隣接チャンネルからの妨害についても、周波数位置が離れることから、性能の向上が期				
待される。				

〇 日本 CATV 技術協会標準規格「JCTEA STD-007」より抜粋

受信装置各部の	の設計目標性能 (第14章)				
14.1 目標性能 受信装置各部の設計目標性能は、表14-1のとおりとする。					
	表 14-1 受信装置各部の望ましい性能				
項目	性能				
入力端子における漏洩ス	10~70MHz 30dBµV以下 (設計目標値とする。) *1				
プリアスレベル	70~770MHz 30dB				
リターンロス	受信帯域内で6dB以上				
映像出力 *2					
SN比	45dB(pp/rms)以上				
周波数特性	50Hz~4.2MHzにおいて +1dB/-3dB以内				
DG	±5%以内				
DP	±5°以内				
音声出力 *3					
周波数特性					
標本化周波数 32kHz時	50Hz~15kHzにおいて +1dB/-3dB以内				
標本化周波数 48kHz時	50HZ~20KHZにおいて +1dB/-3dB以内				
クロストーク	125Hz~10kHzにおいて -60dB以下				
受信レベルとCN比 *4	64QAMでは、入力レベル56dBμVrms, CN比 (Crms/Nrms): 28dBにおいて受信劣化が検知さ				
	れない。256QAMでは、入力レベル64dB µ Vrms, CN比(Crms/Nrms): 36dBにおいて受信劣化				
	が検知されない。 ※				
妨害排除能力 *5					
同一チャンネル	受信信号に対する妨害信号のレベルが、64QAMでは-26dB (UD比-26dB),				
	256QAMでは-34dB (UD比-34dB) で受信劣化が検知されない。				
隣接チャンネル	受信信号に対する妨害信号のレベルが、64QAMでは+24dB (UD比+24dB),				
	256QAMでは+18dB(UD比+18dB)で受信劣化が検知されない。				
*1 : ケーブルテレビの上り帯域におけるスプリアスは、双方向利用における流会経管となるため極力小さな値が望ましいが、今後、デジタル用受信装置の実現レベル た期間、1時間におけてストレナス、可以帯域にもいった、家店のの久穏受信期の長い入りし、パレージリーためけオスニトレナス(総約14 スを参照)					
これはは、時期につれたすがにとことがし、「アガガルにおいてい、みなどのが日本文は1800のないハウング・クロックとしたなかがっていたいでは、ほどを知っていた。					
*3 : ビットレート 256kbps	*3 : ビットレート 256kbps(フルスケールの-18dBにおいて)				
*4:交信51亿か後知されない状態は、誤り訂正後のビット誤り年(DETK)の設計目標値で約10-11以下と考えられ、誤り訂正前のビット)説り年では1×10-4以下とする。 影法送島大能と4MHと非確のNTSC-4M 独質でからCNH(Cneak/Nneak)では、640AM 比約3348 2560AM 比約3948(E相当古る					
※: 256QAMの入力レベルは、第5章で【TBD】であるため、今後変更される場合もある。					
*5 : 受信装置人力端子における信号レベル比を示す。 15					

23GHz帯無線伝送システム間の共用条件について

同ーシステム間の共用条件は I/N 基準では無く、混信保護比を満足することで干渉しないと 言える。

被干渉無線局の配信エリア最遠端での受信レベルが最も低いとし、被干渉無線局の EIRP および予干渉無線局の送信空中線角度 EIRP と、それぞれの位置から配信エリア最遠端までの 距離に相当する自由空間伝搬損失の合計の差が混信保護比を満足する所要離隔距離を求めた。

所要離隔距離を得られない場合は、山岳等の遮蔽損失や被干渉受信空中線方向利得等を 干渉緩和要素として検討する。

23GHz 無線伝送システムの混信保護比:29dB

被干涉無線局

配信距離:r(km) 送信電力:Ptc(dBm) 送信アンテナ利得:Gc(dBi) 等価等方輻射電力 EIRPc:Ptc+Gc(dBm) 距離r(km)での自由空間伝播損失:Lpc

与干涉無線局

送信電力:Pti(dBm) 送信アンテナ角度利得:Gθi(dBi) 等価等方輻射角度電力 EIRPθi:Pti+Gθi(dBm) 距離 R(m)での自由空間伝播損失:Lpi とした時、被干渉信号フリンジレベルは以下となる。

被干涉信号:EIRPc-Lpc

与干涉信号:EIRPθi-Lpi

混信保護比は、

混信保護比=被干渉信号-与干渉信号

=EIRPc-Lpc-(EIRP θ i-Lpi)

となり、

与干渉無線局の所要自由空間損失 Lpi(dB)は、

Lpi=混信保護比-(EIRPc-EIRP *θ* i)+Lpc

となる。

例

被干渉無線局

配信距離:2(km)

距離 2(km)での自由空間伝播損失:Lpc=125.8(dB)

 $EIRPc-EIRP\theta i=0(dB)$

距離 R(m)での自由空間伝播損失:Lpi

とし、混信保護比を 29(dB)とした時、

Lpi = 29 - (0) + 125.8

従って、混信しない条件は

Lpi>154.8 となる。

周波数 23.2GHz で自由空間伝播損失が 154.8(dB)となる距離 R は 56.6km である。

被干渉無線局の配信距離	ごとの与干渉無線局の所	要自由空間損失 Lpi	は以下となる。

被干渉無線局		与干渉無線局の所要自由空間損失 Lpi	
配信距離 r 自由空間伝播損失 Lpc (dB)		(dB)	
0.2km	105.8	134.8 – (EIRPc – EIRP θ i)	
0.5km	113.8	142.8 – (EIRPc – EIRP θ i)	
1km	119.8	148.8 – (EIRPc – EIRP θ i)	
2km	125.8	154.8 – (EIRPc – EIRP θ i)	
3km	129.4	$158.4 - (EIRPc - EIRP \theta i)$	
4km	131.9	$160.9 - (EIRPc - EIRP \theta i)$	
5km	133.8	$162.8 - (EIRPc - EIRP \theta i)$	

被干渉無線局の配信距離ごとに、予被干渉無線局 EIRP の差と所要離隔距離を以下の図に示す。

被干涉無線局配信距離

電波防護指針に関する検討

電波施行規則第21条の3において、電波の強度に対する安全施設の規定があり、無線設備か ら発射される電波の強度が基準値を超える場所に、一般の人々が容易に立ち入ることができない ように施設をしなければならない。

このため、無線局から発射される電波の強度を求め、基準値への適合を確認する必要があるこ とから、「無線設備から発射される電波の強度の算出方法及び測定方法」が告示されている。

23GHz 帯無線伝送システムにおいても当該告示に則った方法で電波防護指針に関する検討を 行った。なお、当該告示に規定されている電波強度の基本算出式は下式のとおりであり、23GHz 無線伝送システムにおける基準値は表1のとおりである。

$$S = \frac{PG}{40\pi R^2}K$$

- S:電力束密度[mW/cm²]
- P:空中線入力電力[W]
- G:送信空中線の最大輻射方向における絶対利得[dBi]
- R:算出に係る送信空中線と算出を行う地点との距離
- K:反射係数
 - 全ての反射を考慮しない場合 : 1
 - 大地面の反射を考慮する場合(送信周波数が76MHz以上の場合)
 - : 2.56
 - ・ 水面等大地面以外の反射を考慮する場合 : 4

☆ 电水炉设拍到の空午値\12	表1	電波防護指針の基準値(抄)
-----------------	----	-------------	---	---

周波数	電界強度の実効値	磁界強度の実効値	電力束密度	
	(V/m)	(A/m)	(mW/cm²)	
1.5GH z ~ 300GHz	61.4	0.163	1	

1. 指向性を考慮しない検討

以下のような設置条件(地上高10mに無線局を設置)、表2のようなシステム諸元を想定し、 基本算出式を用いて算出地点(人の身長高を参考)における電波強度を算出したところ、約 4.262743289 mW/cm²となり、指向性を考慮しない基本算出式による検討結果では基準値を満 たしていない。

図1 無線局設置イメージ

表2 システム諸元

項目		值	備考
定格出力 [W]	Pt	1.0	
送信アンテナ利得 [dBi]	Gt	40	60cm 径パラボラアンテナ
給電線損失等 [dB]	Lf+Ld	1.0	
空中線高 [m]	н	10.0	
算出地点までの距離 [m]	R	7.7	
空中線入力電力 [W]	Р	0.794	Pt-(Lf+Ld)
主輻射方向の利得[倍]	G	10000	
反射係数	к	4	水面等大地面以外の反 射を考慮

2. 指向性を考慮した検討

前節の通り、指向性を考慮しない検討では電波強度の基準値を満たすことができなかった。したがって、送信アンテナの指向性を考慮した利得Gtθを用いて下式で電波強度を算出し、 23GHz帯域での電力東密度Sが基準値[1mW/cm²]以下となる離隔距離を求めた。

表3のとおり、主輻射方向(送信空中線方向角度0度)では、15.9mの離隔距離が必要になるが、本システムに用いるアンテナは指向性が強いため、正対しなければ電波強度の基準値を満たすことができる。

$$S = \frac{PGt\theta}{40\pi R^2} K$$

図2 指向性を考慮した検討

図3 離隔距離対所要離隔グラフ

離隔距離	送信空中線	送信空中線方向利得	所要離隔
d(m)	方向角度 θ (度)	Gt θ (倍)	h(m)
0	90	0.031623	0.028
0.15	20	1	0.055
0.283	10	3.1623	0.049
0.5	6	10	0.053
0.89	2.36	31.623	0.037
1.59	2.23	100	0.062
2.83	2.01	316.23	0.1
3.17	2	398.11	0.11
4	1.85	630.95	0.13
5.03	1.7	1000	0.15
6.33	1.57	1584.89	0.17
7.97	1.38	2511.88	0.19
10.01	1.15	3981.07	0.2
12.63	0.813	6309.57	0.18
15	0.45	8912.51	0.12
15.9	0	10000	0

表 3 算出結果