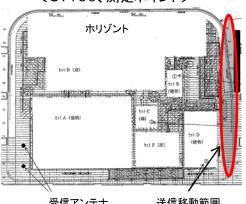

1.2GHz帯及びTVホワイトスペース帯における電波伝搬調査結果(1)

■電波伝搬調査結果


- 現行の800MHz帯、TVホワイトスペース帯および1.2GHz帯の電波伝搬調査結果より、1.2GHz帯で、急峻な落ち込みが認められ ー受信効果により800MHz帯とほぼ同等の伝搬特性が得られた。特定ラジオマイクでは、通常ダ 二ではダイバシティーの効果が得にくいこともあり。 1.2GHz帯イヤモニでは、 800MHz帯と比較して伝搬特性が劣ることが予想される。
- における800MHz帯と1.2GHz帯の比較でも、送信点の移動に伴って受信電力が大きく変化するにもか はぼ同等の伝搬特性が得られた。また、1.2GHz帯の受信電界が800MHz帯と比較して、若 受信電界の低下を補うために、1.2GHz帯の空中線電力を50mWにする必 要がある。
- 1.2GHz帯の電波伝搬調査結果から得られた人体装着時の損失も考慮し、空中線電力を50mWとすることで、800MHz帯と同等の伝 搬特性が得られることを回線設計により確認した。
- TVホイトスペース帯は、800MHz帯とほぼ同等な電波伝搬特性であることを確認した。

<測定条件> 送信出力10mW 受信アンテナ:ダイポール 高さ:1.5m ダイバーシティー(アンテナ間距離:3m)

アンテナA アンテナB

<CT106、測定ポイント>

1.2GHz帯及びTVホワイトスペース帯における電波伝搬調査結果(2)

1) 見通し屋外電波伝搬調査

- 各周波数帯における到達距離およびダイバシティ効果、送受信間の距離や移動による影響を表1に示す場所で確認した。
- 調査した結果、図2で示すように、800MHz帯、ホワイトスペース帯、 1.2GHz帯で伝搬特性に大きな差は見られなかった。
- 1.2GHz帯は、800MHz帯と比較して、平均受信電力が3~4dB低い事が確認された。*1

	表 1 <u>電波伝搬</u>	測定箇所(屋外)
1	NHKホール前	⑤ 広島港
2	日比谷公園	⑥ 福岡ドーム周辺
3	横須賀ヴェルニー公園	⑦ 沖縄コンベンションセンター
4	ナゴヤドーム周辺	

a) 特定ラジオマイク 屋外測定例(日比谷公園)

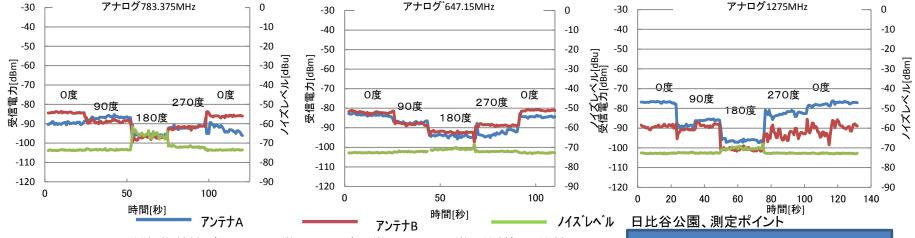


図2 屋外伝搬特性(800MHz帯、朳イトスペース帯、1.2GHz帯の比較)の比較 (測定場所:日比谷公園)

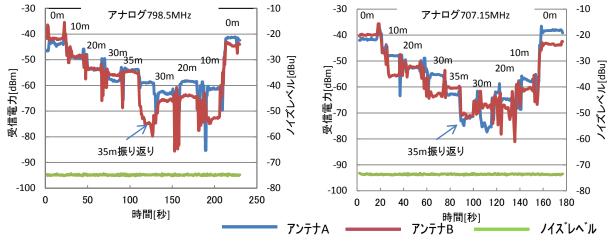
b) 測定条件

800MHz帯=783.375MHz、ホワイトスペース帯=647.15MHz、1.2GHz帯=1275MHz 送信出力10mW、受信アンテナ:ダイポール・ダイバーシティー(アンテナ間距離3m)、アンテナ高1.5m 送信機を腰に装着して、受信機から160mの地点で回転(0、90、180、270度)

※1 1.2GHz帯送信機は800MHz帯送信機と比較して人体へ装着時に、アンテナの形状からアンテナが人体から若干離れるため、人体による減衰が少ないと考えられる。このため、1.2GHz帯の方が人体装着時のERPが大きくなる。人体装着時のERPを同一と仮定した場合、1.2GHzの平均受信電力は低下していると想定される。この低下量を4dBとした。

図2の1.2GHz帯グラフの中で、受信電力の値は、人体装着時のERPを同一とするために、実際の測定値から、4dB減算して表示した。(図1および図3~図6も同様に-4dB補正した。)

(著作権の関係上 非公開)


1.2GHz帯及びTVホワイトスペース帯における電波伝搬調査結果(3)

2)屋内電波伝搬調査(遮蔽がない環境下)

- 各周波数帯における到達距離およびダイバシティ効果、送受信間の距離や移動による影響を表2に示す場所で確認した。
- 調査した結果、図3で示すように、<u>800MHz帯、ホワイトス</u>ペース帯、1.2GHz帯で伝搬特性に大きな差は見られなかった。

	表2 電波伝搬 測定箇所(屋内)									
特定ラ ジオマ イク	1	NHKスタジオ	CT101		ノわエー	1	NHKスタジオ	CT104		
	2	NHKスタジオ	CT104		イヤモニ	2	帝国劇場			
	3	NHKスタジオ	CT106							
	4	帝国劇場								
	5	幕張メッセ								

a) 2ピース型特定ラジオマイク 屋内測定例(CT101)

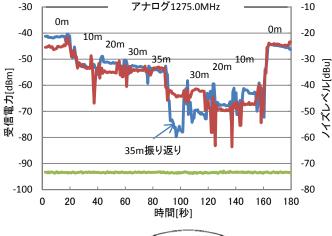
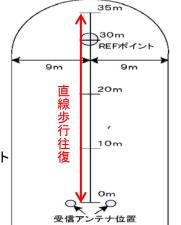
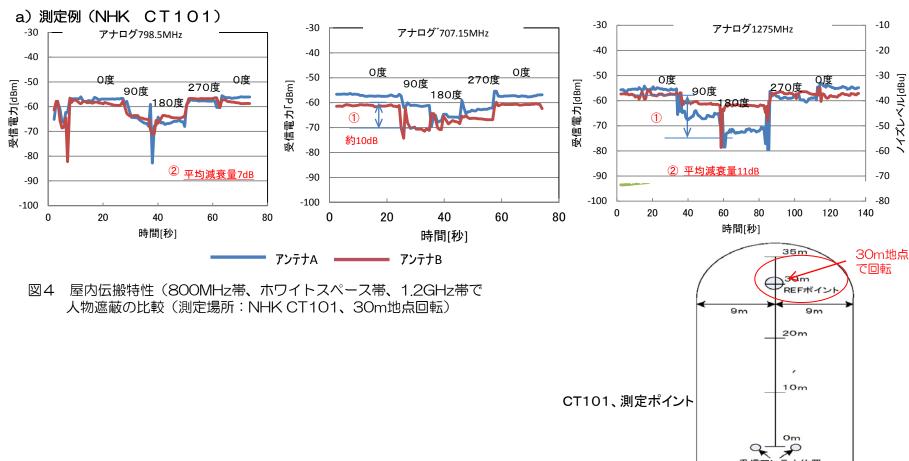



図3 屋内伝搬特性(800MHz帯、朳イトスペース帯、1.2GHz帯)の比較 (測定場所: NHK CT101、直線歩行往復)

b) 測定条件:

800MHz帯=798.5MHz、初イトスパース帯=707.15MHz、1.2GHz帯=1275MHz 送信出力10mW、受信アンテナ:ダイポール 受信アンテナ高:1.5m ダイバーシティー アンテナ間距離3m、 送受信間距離:最大35m スタジオフロア内(直線距離0m~35m)を送信機を腰に装着して往復移動

CT101、測定ポイント

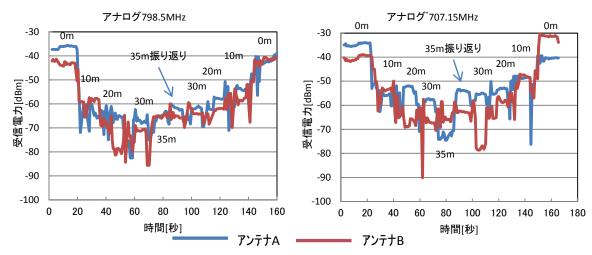


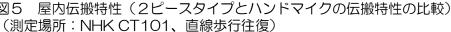
1.2GHz帯及びTVホワイトスペース帯における電波伝搬調査結果(4)

3)屋内電波伝搬調査(人物による遮蔽環境下)

屋内において人物が回転した時の遮蔽を2ピースタイプの特定ラジオマイクで調査した。スタジオ内の30m地点で人物が回転し特定ラジオマイク受信アンテナから0度(人体遮蔽なし)と180度(人体遮蔽あり)の場合を比較した。 調査した結果、

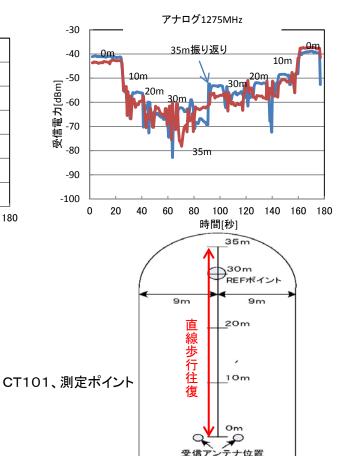
- 2ピースタイプでの人物遮蔽による減衰は、同一周波数内でも変動が大きいが、減衰量としては、図4内①で示すように、 約10dB~20dBである。
- 人体遮蔽による減衰は、図4内②で示すように、3dB~4dB程度、1.2GHz帯の減衰が大きいが、ダイバシティ効果により総合的な伝搬特性は同等であった。


1.2GHz帯及びTVホワイトスペース帯における電波伝搬調査結果(5)


4)屋内電波伝搬調査(遮蔽のない環境での2ピースタイプとハンドマイクの特定ラジオマイク電波伝搬特性比較)

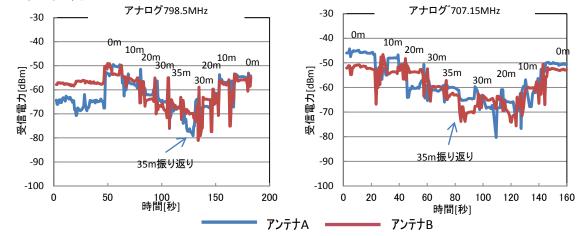
調査結果では、

- ハンドマイクでは、2ピースタイプより、約5dB受信電力が高い(屋内電波伝搬調査(遮蔽がない環境下)図3の平均値と図5の平均値を参照)
- ハンド マイクでは、35m地点での振り向きで受信電力の差が少なく、また、アンテナAとアンテナBの両方が同時に落ちることが少ないなど、全般的に伝搬特性は2ピースタイプよりアンテナ高、人体遮蔽等の影響から良好であった。
- 2ピースタイプとハンドマイクで、移動時の落ち込み量の差は認められない。
- •図5より、2ピースタイプよりハンドマイクの方が、1.2G帯での減衰量が少ない。(屋内電波伝搬調査(遮蔽がない環境下)図3の1.2G帯の減衰量と図5の1.2G帯の減衰量を参照)


a) ハンドマイク型特定ラジオマイク測定例(NHK CT101)

測定条件

- 2ピ-スタイプでは、送信機を腰に装着(送信アンテナ高O.9m)
- ハンドマイクでは、送信機を手持ちで口元より20cm離す(送信アンテナ高1.5m)
- 受信アンテナ高1.5m(ダイバーシティー、アンテナ間距離3m)


1.2GHz帯及びTVホワイトスペース帯における電波伝搬調査結果(6)

5) 屋内電波伝搬調査(スタジオ内中央歩行と壁際(側面)歩行での2ピースタイプ特定ラジオマイク電波伝搬特性比較)

マルチパスフェージングの影響を確認するため、スタジオ内中央歩行と壁際(側面)歩行で電波伝搬特性を比較した。 図6にアナログ方式特定ラジオマイクの側面歩行時の伝搬特性を示す。調査した結果では、

- (屋内電波伝搬調査(遮蔽がない環境下)図3)と側面歩行(図6)を比較すると、側面歩行の方が急峻な 落ち込みが大きく、1.2GHz帯の方が、マルチパスフェージングの影響が出ていると考えられる。しかし、ダイバーシティー効果により 総合的な伝搬特性に差異は認められなかった。
- 側面歩行(図6)では、中央歩行(屋内電波伝搬調査(遮蔽がない環境下)図3)と比較して、35m地点での振り向きでの落ち 込み量が少ないことや、全体の落ち込み量も少ないことから、受信電力が平準化されている。(800MHz帯、朷インスペース帯、 1.2GHz帯で差はなく、比較的安定な受信が可能)

a) 測定例 (NHK CT101)

受信電力[dBm] -60 -70 -80 -90 35m振り返り -100 0 20 40 60 80 100 120 140 160 180 時間[秒]

20m 30m

10m

アナログ1275MHz

35m

9m

0m

10m

30m 20m

35m

30m

REFポイン

9m 20m 侧 血 歩 行 _10m往

6

屋内伝搬特性(スタジオ内中央歩行と側面歩行の伝搬特件の比較) (測定場所:NHK CT101、側面歩行往復)

CT101、測定ポイント

-30

-40

-50

1.2GHz帯及びTVホワイトスペース帯における電波伝搬調査結果(7)

6)屋内電波伝搬調査(イヤモニ、セット有り)

- 800MHz帯、ホワイトスペース帯、1.2GHz帯で、伝搬特性に大きな差は見られず、特定ラジオマイクとほぼ同等の伝搬 特性になる。
- イヤモニは受信アンテナでダイバーシティを組むことが困難であり、受信機の移動に伴って受信電力が変化した場合に、 図7に示すようにノイズレベルが影響を受けやすい。

a) イヤモニ 屋内測定例(帝国劇場)

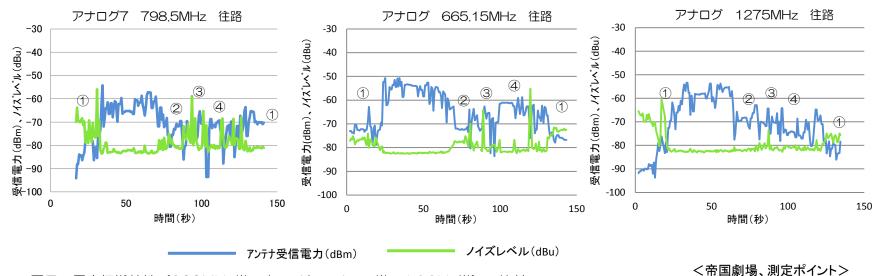
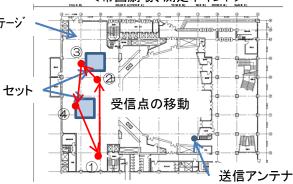



図7 屋内伝搬特性(800MHz帯、ホワイトスペース帯、1.2GHz帯)の比較 (測定場所:帝国劇場、ステージ上ランダム歩行)

b)測定条件

800MHz帯=798.5MHz、朳イトスパース帯=665.15MHz、1.2GHz帯=1275MHz 送信出力10mW、送信アンテナ:ダイポール・シングル 送信アンテナ高さ1.5m、送受信間距離 約30m 受信アンテナを腰に装着して、ステージ上をランダムに歩行

ステーシ

1.2GHz帯及びTVホワイトスペース帯における電波伝搬調査結果(8)

7)回線設計例(デジタル方式)

- 1.2GHz帯の電波伝搬調査結果から得られた人体装着時の損失を考慮し、空中線電力を50mWとすることで、800MHz帯と同等の 伝搬特性が得られることを回線設計により確認した。
- 1.2GHz帯では800MHz帯と比較して、受信機入力電力が低い結果となった。これは、空間ロスや人体などによる減衰のためと考えられるが、人体装着時の減衰の調査結果から、送信アンテナ高1.5m、伝搬距離60mの条件下で、受信の可否を計算した結果を以下に示す。800MHz帯では受信できているが、1.2GHz帯では受信できなくなる。このケースでは、1.2GHz帯の空中線電力を50mWとすることで受信が可能となる。

項目	項目 備考		1.2GHz帯			800MHz帯		
① 送信周波数 f (MHz)		1250	1250	1250	800	800	800	
②送信空中線の高さht(m)		1.5	1.5	1.5	1.5	1.5	1.5	
③ 受信空中線の高さhr (m)		1.5	1.5	4.0	1.5	1.5	1.5	
④ 送信電力Po(mW)		10	50	50	10	10	50	
⑤ 送信電力Po(dBm)	=10*log ₁₀ (4)	10.00	16.99	16.99	10.00	10.00	16.99	
⑥ 送信空中線利得Gt(dBi)		0.85	0.85	0.85	0.85	0.85	0.85	
⑦ 受信空中線利得G r (dBi)		2.14	2.14	2.14	2.14	2.14	2.14	
◎ 伝送距離d(m)		60	60	100	60	60	100	
9 自由空間伝搬損失L(dB)	=- (32.4+20*log10 (1) +20*log10 (8/1000))	-69.90	-69.90	-74.34	-66.02	-66.02	-70.46	
⑩受信機入力電力(dBm)	=(5)+(6)-(9)+(7)	-56.91	-49.92	-54.36	-53.03	-53.03	-50.48	
⑪ 受信機入力電圧(dB # VEMF)	=10+107+6	56.09	63.08	58.64	59.97	59.97	62.52	
① 人体による遮蔽損失Lm(dB)	18dB(小電力無線システム委員会 報告)+3.0dB(1.2GHz帯での減衰 を考慮)	21.00	21.00	21.00	18.00	18.00	18.00	
(3) 人体装着時でのフェージング環境利用した際のマージンLs(dB)	23.5dB/受信アンテナ高1.5m 18.5dB/受信アンテナ高4.0m (小電力無線システム委員会報告)	23.50	23.50	18.50	23.50	23.50	23.50	
4 人体ロスを考慮したときの受信機入力電圧(dB µ V)	=(1)-(12)-(13)	11.59	18.58	19.14	18.47	18.47	21.02	
15 π/4シフトDQPSK時の受信状況								
16 所要受信機入力(dB μ V)		17.50	17.50	17.50	17.5	17.5	17.5	
① 回線評価	(4)>(6): O , (4)<(6): ×	×	0	0	0	0	0	

小電力委員会報告:情報通信審議会 情報通信技術分科会(平成20年)