空間情報と通信技術を融合させ、暮らしに新たな革新をもたらす

G空間×ICT推進会議 平 成 2 5 年 6 月

第1章 検討の背景					2
1 G空間に関する動向	•	•		•	3
(1) 地理空間情報活用推進基本法等の策定	•	•	•	•	3
(2) 準天頂衛星システム等衛星測位システムの動向	•	•	•	•	4
(3) G I S の動向	•	•	•	•	7
① 国土地理院における基盤地図情報等の整備の取組	•	•	•	•	7
② 地方公共団体における統合型GISの整備状況	•	•	•	•	8
2 ICTに関する動向	•	•	•	•	10
① センサーの普及等によるG空間情報の大量生成	•	•	•	•	10
② 測位デバイスの普及等によるG空間情報利活用環境の向上	•	•	•	•	12
③ 民間における電子地図の普及 (クラウド・サービスの普及)	•	•	•	•	13
④ G空間情報の高度な利活用による付加価値の創出	•	•	•	•	14
3 G空間情報に対するニーズと利用に係る課題	•	•	•	•	15
第2章 「G空間×ICT」に関する将来像					16
1 「G空間×ICT」の社会像・姿					16
(1) 共創型元気経済社会:G空間とICTで、「元気な経済、便利な暮らし」を実現					
(2) 共助型安心安全社会:G空間とICTで、「安心安全な社会」を実現					
(3) 共生型地域活力社会: G空間とICTで、「活力ある地域」を実現					
2 「G空間×ICT」の利活用イメージ	•	•	•	•	18
第3章 「G空間×ICT」社会の実現に向けた課題		_			21
1 新産業・新サービスの創出に関する課題		•			21
2 防災・地域活性化に関する課題					22
3 「G空間×ICT」に関する課題					23
6 「G上的八千〇千」(C因) 与脉圈					20
第4章 「G空間×ICT」に関する具体的な取組					25
一空間情報と通信技術を融合させ、暮らしに新たな革新をもたらすっ	-				
プロジェクト1: G空間オープンデータ・プラットフォームの構築等	•	•	•	•	29
(1) 基本的な考え方					29
(2) 具体的な取組					29
① G空間オープンデータ・プラットフォームの構築					
② G空間情報活用の全国普及に向けた官民連携等の強化	•	•	•	•	31

プロジェクト2:世界最先端のG空間防災システムの構築	•	•	•	•	34
(1) 基本的な考え方	•	•	•	•	34
(2) 具体的な取組	•	•	•	•	34
① 多様な手段による的確な情報提供の実現	•	•	•	•	34
② 災害対応ロボット等の高度な防災システムの導入	•	•	•	•	36
プロジェクト3:「G空間シティ(仮称)」による成功モデルの実現					37
(1) 基本的な考え方	•	•	•	•	37
(2) 具体的な取組	•	•	•	•	37
① 先進的・先導的な利活用モデルの実施	•	•	•	•	37
② 海外での実証プロジェクトの実施	•	•	•	•	39
笠 5 き 6 空間間 声 士担 の 担 世	_				41
第5章 G空間関連市場の規模	•	•	•	•	41
第6章 「G空間×ICT」社会の実現に向けた推進方策				•	43
おわりに	•	•	•	•	46
* * * * * * * * * * * * * * * * * * * *	*	*	*	*	*
別添:					
1 「新産業・新サービスに関するアドホック会合」検討報告	:				
2 「防災・地域活性化に関するアドホック会合」検討報告					
3 G空間×ICT推進会議開催要綱					

<表紙のマークについて>

このマークは、本推進会議の検討テーマであったG空間×ICTに関連し、①G空間とICTの融合②準天頂衛星の8の字軌道③地球と準天頂衛星④無限大(∞)の可能性を表現しています。

<G空間とは>

「G空間(情報)」とは、ナノテクノロジー、バイオテクノロジーと並び将来が期待される三大重要科学技術分野の一つとされている「地理空間情報技術」(=Geotechnology)の頭文字のGを用いた、「地理空間(情報)」の愛称です。

はじめに

経済活動、市民生活、自然現象等の多くは、どこで起きたか、又はどこで起 きているか、という位置や場所に関連づけられている。位置に関連づけられた 情報は、地理空間情報、すなわち、「G空間情報」「である。我々の身の周りには、 多くのG空間情報が存在している。例えば、ある場所の雨量計の情報も、ある 交差点の自動車のワイパーの回転速度の情報も、ある軒先で雨宿りしている人 のつぶやきの情報も、いずれもG空間情報である。

G空間情報は、これまでも大量に生成されていたが、その多くは利用される ことなく消失又は死蔵され、十分に利用されてこなかった2。しかしながら、昨 今のICTの急速な進展により、G空間情報の入手、処理、分析による高度な 利活用が可能になってきている。これまで取り扱うことが不可能であった、又 は利用されていなかった大量のG空間情報が、ICTの力によって、高度に利 活用され、価値を生むものになっている。

また、国際学術雑誌Natureによれば、米国労働省は、イノベーションを興し 多くの雇用機会を増やす重大3分野として、ナノテクノロジー、バイオテクノ ロジー、地理空間情報技術(Geotechnology)の3つをあげており、G空間情報 を利活用する技術の重要性を裏付けている。ICTも、あらゆる領域に活用さ れるツールとして、イノベーションを誘発する力を有しており、成長力の基盤 となる生産性の向上に資することはもちろん、労働投入の量的拡大も期待でき、 経済再生にも大きく貢献するものである。

G空間とICTは、単独でも、経済再生やイノベーション創出、雇用創出等 に寄与できるが、G空間とICTが緊密に連携すること、すなわち、「G空間× ICT」によって、新たな価値を生み出すとともに、一層、我が国の経済再興 を加速すること等が期待される。

G空間×ICT推進会議は、このような「G空間×ICT」の重要性の認識 の下に設置され、計5回開催された。また、「新産業・新サービスに関するアド ホック会合」及び「防災・地域活性化に関するアドホック会合」を設置し、そ れぞれ3回を開催し議論した。さらに、3月には、「G空間×ICT」に係る活 用方策等について広く意見募集を実施した。

本報告書は、これらの検討を踏まえ、「G空間×ICT」によって、我が国が 目指すべき社会の姿を明らかにするとともに、その実現に向けて取り組むべき 「G空間×ICT」に関するプロジェクトを提言するものである。

「G空間情報」と同義で用いられることの多い「地理空間情報」については、「地理空間情報活用推進基本法」(平成19年法律第63号)第2条第1項において、「この法律において「地理空間情報」とは、第一号の情報又は同号及び第二号の情報からなる情報をいう。

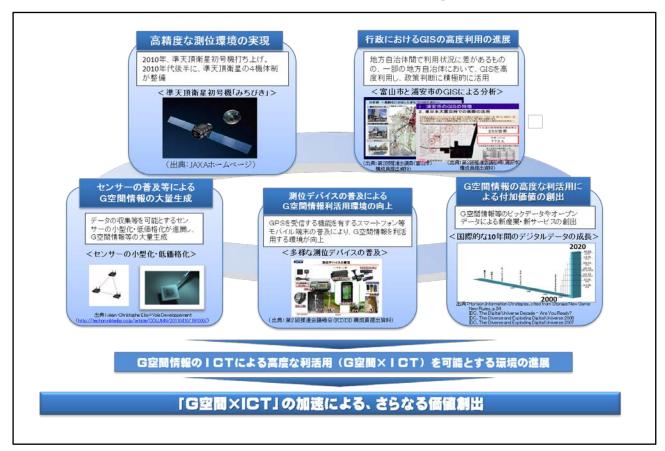
空間上の特定の地点又は区域の位置を示す情報(当該情報に係る時点に関する情報を含む。以下「位

置情報」という。) 前号の情報に関連付けられた情報」

と定義されている。 ・ 一例として、「最新ICTトレンドの導入状況・意向と課題に関するアンケート」(2013年5月、株 ・ 一例として、「最新ICTトレンドの導入状況・意向と課題に関するアンケート」(2013年5月、株 2 一例として、「最新 I C T トレンドの導入状況・意向と課題に関するアンケート」(2013年5月、株式会社野村総合研究所)によると、企業における衛星測位システム(G P S)の利用について、77.3%の企業がどの部門でも利用していないと回答。

「「世界最先端 I T国家創造」宣言~第二次安倍内閣の新たな I T戦略~」「 I . 基本理念」「 1 . 閉塞

を打破し、再生する日本へ」(P1)



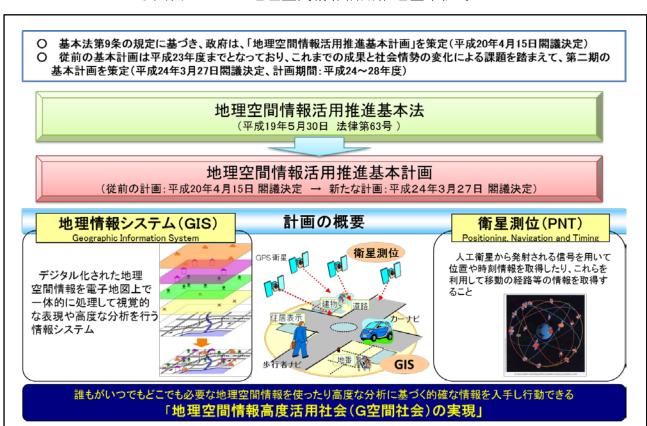
第1章 検討の背景

G空間については、平成19年(2007年)に施行された地理空間情報活用推進基本法(平成19年法律第63号。以下「基本法」という。)に象徴されるように準天頂衛星システムによる高精度な測位環境の実現に向けた取組や地理情報システム(GIS)の高度利用の進展等、大きな前進が見られる。また、ICT分野においても、センサーや測位デバイスの普及等、G空間情報の生成や利活用等に係る環境が向上している。このようなG空間とICTの進展の下、G空間情報をICTにより高度に利活用すること(G空間×ICT)によって、新たな付加価値を創造し、我が国の諸課題を解決することが期待されている。

第1章においては、本推進会議における検討に資するため、付加価値を創造することが期待されているG空間とICTの動向を概観する。

○図表1-1 なぜ「G空間×ICT」か

1 G空間に関する動向


(1) 地理空間情報活用推進基本法等の策定

平成19年(2007年)5月、地理空間情報活用推進基本法が成立し、同年8月に施行された。

基本法の目的は、第1条において「この法律は、現在及び将来の国民が安心して豊かな生活を営むことができる経済社会を実現する上で地理空間情報を高度に活用することを推進することが極めて重要であることにかんがみ、地理空間情報の活用の推進に関する施策に関し、基本理念を定め、並びに国及び地方公共団体の責務等を明らかにするとともに、地理空間情報の活用の推進に関する施策の基本となる事項を定めることにより、地理空間情報の活用の推進に関する施策を総合的かつ計画的に推進すること」とされており、地理空間情報、すなわちG空間情報の高度な活用の推進を目的とすることが法律において規定されている。

また、基本法は、地理空間情報の活用の推進に関する施策の総合的かつ計画的な推進を図るため、地理空間情報活用推進基本計画(以下「基本計画」という。)を策定しなければならないこととしている(第9条)。これを受け、平成20年(2008年)4月には第一期の基本計画が、平成24年(2012年)3月には第二期の基本計画が閣議決定された。

○図表 1 - 2 地理空間情報活用推進基本法等

第一期の基本計画においては、「情報化の進展と社会のニーズを踏まえ、誰もがいつでもどこでも必要な地理空間情報を使ったり、高度な分析に基づく的確な情報を入手し行動できる地理空間情報高度活用社会の実現を目指す」⁴こととしている、また、第二期の基本計画においては、「前基本計画の成果の上に、その後の地理空間情報を巡る技術の進歩や新しいアイデアを踏まえ、経済社会の様々な変化にも対応して、更に進んだG空間社会の実現を図る」⁵としている。

基本計画に掲げられる、誰もがいつでもどこでも必要なG空間情報を使ったり、G空間情報の高度な分析を行い、それに基づく情報を入手し、行動するためには、ICTが不可欠であり、G空間情報とICTの連携が求められている。

(2) 準天頂衛星システム等衛星測位システムの動向

衛星測位システムについては、米国のGPS以外にも、ロシアの「GLONASS」、EUの「Galileo」、中国の「北斗(BDS)」インドの「IRNSS」等があり、各国が独自の衛星測位システムの計画を進めている。

我が国も、産業の国際競争力強化、産業・生活・行政の高度化・効率 化、アジア太平洋地域への貢献と我が国プレゼンスの向上、日米協力の 強化及び災害対応能力の向上等広義の安全保障に資するため、準天頂衛 星システムの整備を進めている⁶。

^{*} 第一期の地理空間情報活用推進基本計画「第 I 部 地理空間情報の活用の推進に関する施策についての 基本的な方針」「2. 目指すべき姿ー「地理空間情報高度活用社会」の実現ー」

⁵ 第二期の地理空間情報活用推進基本計画「第I部 地理空間情報の活用の推進に関する施策についての基本的な方針」「1. G空間社会の実現により目指すべき姿」

[「]実用準天頂衛星システム事業の推進の基本的な考え方」(平成23年9月30日 閣議決定)

○図表1-3 諸外国の衛星測位に関する取組

- 公 米国以外でも独自の衛星測位システムの計画が進展。
- O 我が国も、産業の国際競争力強化、産業・生活・行政の高度化・効率化、アジア太平洋地域への貢献と我が国のプレゼンスの向上、日米協力の強化及び災害対応能力の向上等広義の安全保障に資するため、実用準天頂衛星システムを整備。

	測位	現状・今後の計画	世界全体をカバー	一定地域を カバー
米国	GPS	31機で運用中	0	
EU	Galileo (ガリレオ)	2005年より軌道上試験機(4機順次打上げ) 2014年より18機による初期運用体制確立、一部 サービス開始予定 2016年30機体制確立、フルサービス開始予定	0	
ロシア	GLONASS (グロナス)	24機体制にて運用中	0	
中国 *:	北斗 (BDS)	2012年12月に16機体制でアジア太平洋地域運用 開始 2020年35機体制確立、全世界運用開始予定	0	
インド	IRNSS	2014年7機体制にて運用開始予定		0
●	準天頂衛星シス テム	2010年初号機(みちびき)打上げ 2010年台後半を目途に4機体制整備 将来的には7機体制を目指す		0

準天頂衛星システムについては、平成22年(2010年)9月から、 準天頂衛星初号機「みちびき」が打ち上げられた。2号機以降の整備に ついては、「実用準天頂衛星システム事業の推進の基本的な考え方」(平 成23年9月30日閣議決定)において、「2010年代後半を目途に、 まずは4機体制を整備することとする。将来的には、持続測位が可能と なる7機体制を目指すこととする」「とされ、「宇宙基本計画」(平成25年1 月25日宇宙開発戦略本部決定)においても、「宇宙利用拡大と自律性確保 を実現する4つの社会インフラ」の1つに位置付けられている。

平成25年(2013年)3月、内閣府は、準天頂衛星システムの新規の衛星3機の開発・整備を行う「準天頂衛星システムの衛星開発等事業」の受託者及びその運用等を行う「準天頂衛星システムの運用等事業」の民間事業者を決定8した。平成30年(2018年)の4機体制によるサービス開始に向けた準備が進められている。

また、我が国独自の準天頂衛星システムは、GPSの補完機能のほか、 精度を向上させる補強機能等を有している。また警報などのショートメ ッセージを送信することも可能である。

⁷ 「持続測位」とは、他国の測位衛星が使用できない場合でも、我が国のシステムのみで最低限の測位サービスの提供を持続できる状態をいう。

⁸ 「「準天頂衛星システムの衛星開発等事業」の受託者の決定について」(平成25年3月29日 内閣府)http://www.cao.go.jp/chotatsu/eisei/sentei/0329_kaihatsu01.pdf

^{「「}準天頂衛星システムの運用等事業」の民間事業者の選定について」(平成25年3月29日 内閣府) http://www.cao.go.jp/chotatsu/eisei/sentei/0329_unyou01.pdf

○図表1-4 高精度な測位環境の実現(準天頂衛星システムの整備)

- 〇 準天頂衛星システムの整備こついては、「準天頂衛星システム事業の推進の基本的な考え方」(2011年(平成23年)9 月30日)において、以下のとおり規定(宇宙基本計画(2013年(平成25年)1月25日、宇宙開発戦略本部決定)においても、準天頂衛星システムの開発・整備を着実に推進する旨記載)。
 - 我が国として、実用準天頂衛星システムの整備に可及的速やかに取り組む
 - 具体的には、2010年代後半を目途にまず4機体制を整備

(3) GISの動向

① 国土地理院における基盤地図情報等の整備の取組

G I S (地理情報システム: Geographic Information System) は、 基本法第2条第2項において、「地理空間情報の地理的な把握又は分析 を可能とするため、電磁的方式により記録された地理空間情報を電子 計算機を使用して電子地図(電磁的方式により記録された地図をいう。 以下同じ。)上で一体的に処理する情報システム」と定義されている。

GISは、国及び地方公共団体において、それぞれの目的に応じて 整備されているが、国土地理院は、基本法第16条に基づき、GIS を構成する電子地図の位置の基準となる基盤地図情報(測量の基準点、 海岸線、公共施設の境界線、行政区画等)を整備している。

○図表1-5 GISと基盤地図情報

- 地理情報システム:GIS(Geographic Information System)とは、地図データと、地図上に位置づけられる様々な情報を用 いて、視覚的な表現、高度な分析、迅速な判断を可能にするシステム。
- 国土地理院は、我が国のGISの基準となる基盤地図情報を整備。

【特徴】

- ・文字情報や音声情報と異なり、多くの情 報を一目で把握できる表現手段(外国人や 子供(こも理解が可能) ・図面上で情報の収集、集約、整理が行え

【GISの可能性】

GISを支障なく利活用できる環境を 構築し、同時期に大量に発生する 様々な情報を処理し、視覚的に表 現することができ、例えば災害時に は、

- より正確な
- より迅速な
- より効果的な

意思決定を行う際に有効となりうる

基盤地図情報は、国土地理院のホームページから自由にダウンロー ドでき、地方公共団体の様々なGIS等において活用されている。基 盤地図情報は、電子地図上における位置の基準として、行政機関、民 間企業におけるGISの整備のために一層利活用することが求められ ている。

現在、国土地理院では、基盤地図情報を骨格として、日本全国をカ バーする国土の基本図である電子国土基本図を整備している。地理空

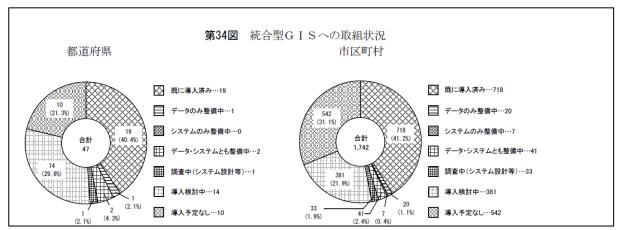
間情報の高度な活用の推進や災害対応の確実化などのためには、公共施設などに関する情報を適時に更新し、提供することが不可欠である。そのため、国土地理院は、国の関係部局や地方公共団体などの協力を得ながら、基盤地図情報を含めた電子国土基本図の迅速な更新の取組を進めている。

② 地方公共団体における統合型GISの整備状況

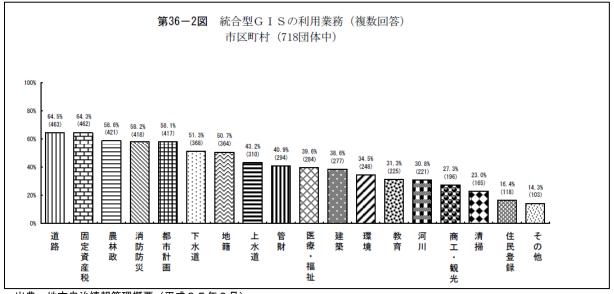
地方公共団体が整備する統合型GISについては、地方公共団体が 税務部局、都市計画部局、防災部局など庁内の複数部局でGISを共 用するものである。

その導入に当たっては、業務執行の効率化を図るため基盤地図情報に係る項目を含む「共用空間データ」(庁内で共用できる電子地図データ)の整備を促進することとし、国は、技術的支援や補完的な財政措置を行うこととなっている。総務省においては、平成21年(2009年)、統合型GISの普及を促進する観点から統合型GISの複数地方公共団体での共同整備のためのガイドライン®を策定した。

しかしながら、現状、統合型GISの導入率は、平成24年(2012年)4月現在において都道府県で40.4%、市町村で41.2%に止まっており 10 、整備及び利活用の加速のための方策が求められている。


10 「地方自治情報管理概要~電子自治体の推進状況~(平成24年4月1日現在)」(平成25年2月27日 総務省地域力創造グループ地域情報政策室)

⁹ 「「地理空間情報に関する地域共同整備推進ガイドライン」の公表」(平成21年5月8日) http://www.soumu.go.jp/menu_news/s-news/02gyosei07_000011.html



○図表1-6 行政におけるGISの高度利用の進展

- 〇 地方自治体においては、統合型GISの導入は41.2%(平成24年4月現在)にとどまり、活用されている分野も道路等、 従来からGISが利用されてきた分野に限られている等、課題が存在。
- 〇 その一方、富山市や浦安市においては、住民基本台帳情報等をGISと連携させることで、まちづくりの施策の立案や災害対策に活用。

出典:地方自治情報管理概要(平成25年2月)

出典:地方自治情報管理概要(平成25年2月)

出典:第2回推進会議森構成員提出資料

出典:第2回推進会議松崎構成員提出資料

<u>2 IC</u>Tに関する動向

G空間情報を「誰もがいつでもどこでも使」¹¹い、G空間情報の「高度な分析に基づく的確な情報を入手」¹²するためには、ICTが不可欠である。

例えば、今後、オープンデータの推進やセンサーの普及等により、G空間情報を含めた多種多様な官民のデータが一層公開・流通されるため、ICTが果たす役割は、ますます重要になると考えられる。

以下では、ICTのうち、G空間情報の取得や伝達等に関係の深いセンサー及びスマートフォン、G空間情報の管理や分析に関係の深いクラウド・サービス及びビッグデータ技術の動向について概観する。

① センサーの普及等によるG空間情報の大量生成

実空間に大量にあふれている様々なモノの情報は、それ単体では地理空間情報ではない。しかしながら、センサーなどの技術の進展や普及により、位置情報や時間情報と関連付けられたものは、G空間情報として新たな利用につなげることが可能である。

昨今のセンサーの小型化・低価格化の進展により、モノの移動等のデータの収集等を可能とするセンサーの普及が進んでいる。中でも、我が国においては、家電・カーナビ・ゲーム機・携帯等、日常生活のさまざまな場面でのセンサーの活用が進んでいる。また、センサーから収集したデータを送受信する携帯電話の通信モジュールの低価格化も進展し、契約数も増加¹³している。

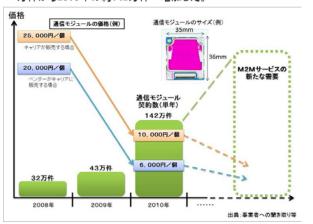
¹¹ 第一期の地理空間情報活用推進基本計画「第 I 部 地理空間情報の活用の推進に関する施策についての基本的な方針」「2. 目指すべき姿ー「地理空間情報高度活用社会」の実現ー」

¹² 第二期の地理空間情報活用推進基本計画「第 I 部 地理空間情報の活用の推進に関する施策についての基本的な方針」「1. G空間社会の実現により目指すべき姿」

¹³ 総務省「携帯電話の電話番号数の拡大に向けた電気通信番号に係る制度等の在り方」(平成24 年3 月1日情報通信審議会答申)によると、カーナビや気象観測システム等に搭載される携帯電話の通信モジュールについて、2008 年から2010 年の間に、価格は約2.0~2.5 万円から約0.6~1.0 万円に低下し、契約数(単年)は約32 万件から約142 万件へ増加したとされている。

○図表1-7 センサーの普及等によるG空間情報の大量生成

- センサーの小型化・低価格化の進展により、データの収集等を可能とするセンサーの普及が進展。
- センサーの一層の普及により、今後もより多くのG空間情報が生成され、流通する見込み。
- ⇒ 3軸加速度センサー*について、チップの大きさは2000年 の10mm²から2010年の2~3mm²以下へ小型化、平均販売 価格は2000年の約240円以上から2010年の約56円程度 へ低価格化が進展した。
- (* XYZ軸の3方向の加速度を1デバイスで測定できるセンサー)


	2000年	2010年	将来 (2020年頃)
チップの大きさ (ダイ表面積)	10mm²	約2~3mm²	1~2mm²
消費電力	0.1mW	0.05mW	0.05mW未満
平均販売価格	\$3以上 (約240円以上)	\$0.70 (約56円)	\$0.50未満 (約40円未満)
単位生産量	35	771	2500より大

※ 1ドル=80円で換算

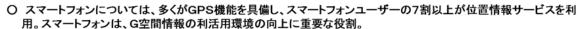
出典: Jean-Christophe Eloy=Yole Developpement (http://techon.nikkeibp.co.jp/article/COLUMN/20110410/191000/)

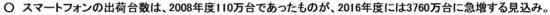
⇒ カーナビや気象観測システム等に搭載される携帯電話の 通信モジュールについて、2008年の約2~2.5万円から2010 年の約0.6~1万円へ低価格化し、契約数は2008年の約32 万件から2010年の約142万件へ増加した。

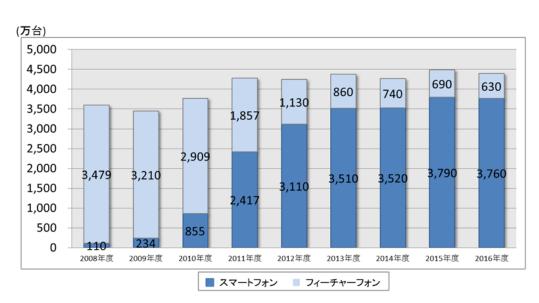
出典:情報通信審議会答申「携帯電話の電話番号数の拡大に向けた 電気通信番号に係る制度等の在り方」(平成24年3月1日)

今後、低消費電力化とエネルギーハーベスティング技術¹⁴の実用化によって、センサーの長期メンテナンスフリー化が可能となり、より多くの位置情報等のG空間情報の生成や流通が期待されている。

¹⁴ エネルギーハーベスティング技術は、光や温度差等の環境中のエネルギーを収穫し、小さな電力に変換する技術であり、電源の問題がボトルネックと言われている無線センサーネットワークの自立電源等への活用が注目されている。


② 測位デバイスの普及等によるG空間情報利活用環境の向上


スマートフォン等の高機能かつ多機能なモバイル端末は、パソコン並みの処理能力と、固定ブロードバンド並みの通信速度に対応できるものであり、いつでもどこでもインターネットに接続できる環境を提供している。また、スマートフォンの多くがGPS機能を有しているとともに、そのユーザーの7割以上が位置情報サービスを利用しているため¹⁵、G空間情報を活用したサービスの普及において重要な役割を担っている。


スマートフォンの国内出荷台数について、平成20年(2008年) 度には110万台であったものが、平成23年(2011年) 度には 2417万台に急増し、平成28年(2016年) 度には、3760 万台に達すると予想している。

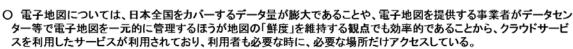
今後とも、スマートフォンだけでなく、タブレット端末等、衛星測位機能を有するモバイル端末の普及が見込まれており、G空間情報を利活用した、さらなる高度なサービスの提供・普及が期待されている。

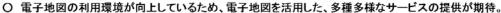
○図表1-8 測位デバイスの普及によるG空間情報利活用環境の向上(スマートフォンの国内出荷台数の推移)

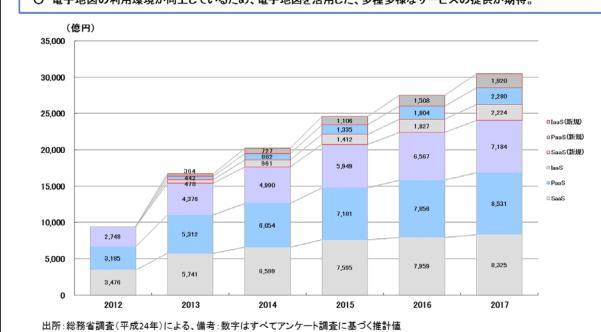
出典: MM総研調(2012年度以降は予測台数)

12

¹⁵ MM総研「スマートフォンユーザーの利用実態調査」 http://www.m2ri.jp/newsreleases/main.php?id=010120110519500


③ 民間における電子地図の普及 (クラウド・サービスの普及)


電子地図の利用環境については、日本全国をカバーする地図のデータ量が膨大であることや、地図データを一元的に管理するほうが地図の「鮮度」維持の観点からも効率的であること等から、使用するコンピューター資源の規模を柔軟に変更可能で、ネットワーク経由でデータにアクセス可能といった特徴を持つクラウド・サービスが用いられることも多い。利用者はネットワークを介して、必要な時に、必要な電子地図をダウンロードするという利用形態をとっている。

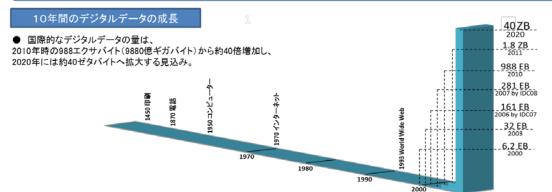

また、クラウド・サービスは、今後も順調に市場規模を拡大する(図表1-9)ことが見込まれており、電子地図を利用したクラウド・サービスも拡大すると考えられる。

なお、民間における電子地図を利用したサービスについては、電子地図を提供する事業者(プラットフォーム事業者)自らが付加的なサービスを提供している場合があるが、当該事業者が電子地図のAPIを公開している場合もある。この場合、他者が他の情報と組み合わせて電子地図を活用したサービスを提供することが可能である。無料で自由に利用や編集が可能な電子地図を公開している団体16もあり、電子地図を活用する多種多様なサービスの充実が期待されている。

○図表1-9 クラウド市場規模予測(日本)

-

OpenStreetMap Japan http://osm.jp/



④ G空間情報の高度な利活用による付加価値の創出

センサーやM2M等のICTの進展に伴い、デジタルデータの生成・収集・蓄積等が容易になったことにより、位置情報等のデジタルデータの量が爆発的に増加する見込み(図表1-10)である。こうした多種多量のデータ(ビッグデータ)を分析、利活用することにより、人やモノの動きの見える化や新たな関係性の発見、将来の予見・予測等を実現し、様々な分野に応用することが期待されている。

○図表 1-10 ビッグデータによるデジタルデータ量の増加

- モバイル端末のGPS情報のほか、急速に拡大するセンサーやM2Mの拡大等に伴い、多種多様な位置情報が爆発的に増加する見込み。
- G空間情報等のビッグデータ分析に対するニーズはますます増加する見込み。

出展: Horison Information Strategies, cited from Storage New Game New Rules,

p.34(http://www.horison.com/topics/2004/08/newrules_pg34.pdf),

IDC, The Digital Universe Decade in 2020(http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf)

 $IDC, The\ Digital\ Universe\ Decade-Are\ You\ Ready? (http://france.emc.com/collateral/analyst-reports/idc-digital-universe-are-you-ready.pdf)$

IDC, The Diverse and Exploding Digital Universe 2008(http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf)

IDC, The Diverse and Exploding Digital Universe 2007(http://www.emc.com/collateral/analyst-reports/expanding-digital-idc-white-paper.pdf)

「ビッグデータ」の定量的価値(例)

● ビッグデータの利活用により、米国ヘルスケアで年間3千億ドル、EU公共セクターで年間2.5千億ユーロ、位置情報データの活用により年間6千億ドルの消費者価値創出が期待。

50億台の携帯電話が使用(2010年)

300億のコンテンツが毎月Facebook上で共有

小売の営業利益に60%改善の見込み

米国のヘルスケアでは年間3000億ドルの価値創出が期待(スペインの年間ヘルスケアコストの2倍)

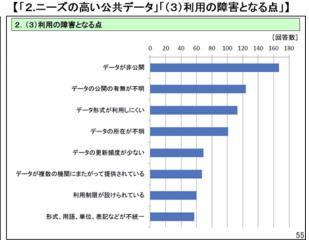
EUの公共セクターでは年間2500億ユーロの価値創出が期待(ギリシアのGDPを超える)

【出典: McKinsey Global Institute「Big data: The next frontier for innovation, competition, and productivity」(平成23年5月)】

例えば、G空間情報と他分野の情報との組み合わせによる新産業・新サービスの創出のほか、人の動きの見える化、津波・豪雨等の被害シミュレーションによる災害対策への活用なども期待されており、これらを実現するためのビッグデータ処理技術の高度化に対する需要はますます増加していくものと考えられる。

G空間情報に対するニーズと利用に係る課題 3

「公共データの産業利用に関する調査結果」(平成25年(2013年) 3月19日 日本経済団体連合会) 17によれば、行政機関が保有する公共デ ータの産業利用ニーズについて、種類別では、地下・地質データや地図デー タ、衛星画像データ等のG空間情報が最もニーズが高いとされている。


一方、G空間情報に限らず公共データ全般の利用の障害となる点として は、「データが非公開」、「データの公開の有無が不明」、「データ形式が利用 しにくい」、「データの所在が不明」等が主要な意見として掲げられている。 G空間情報を利活用する新産業・新サービスの創出にあたっても、データの 公開の推進等、これらの課題を解決することが必要である。

 \bigcirc 図表 1-11 G空間情報に対するニーズ及び課題(公共データの産業利用に関する調査結果)

- 公共データの産業利用について、種類別で見ると、地図情報や、地質調査(ボーリング)結果等のG空間情報のニーズが
- 一方、G空間情報のみではなく公共データ全般の利用に係る障害としては、「データが非公開」、「データの公開の有無が 不明」、「データ形式が利用しにくい」、「データの所在が不明」が多。

【「2.ニーズの高い公共データ」「(1)種類別」】

2. (1) 種類別 地図・地下(59件)、交通(43件)、防災・保安・安全(38件)に関する データが上位を占めた。 ニーズの高い公共データの種類 [回答数] 地図·地下 交通 防災·保安·安全 38 都市計画·建築 35 医療·介護 統計·調査 30 **30** 個人·住民情報 気象 **1**6 入札・知達・補助金等 特許 法人情報 電波 法令

【出典:「公共データの産業利用に関する調査結果」(平成25年3月19日 日本経済団体連合会)】 http://www.soumu.go.jp/main_content/000214785.pdf

¹⁷ https://www.keidanren.or.jp/policy/2013/020.html

第2章 「G空間×ICT」に関する将来像

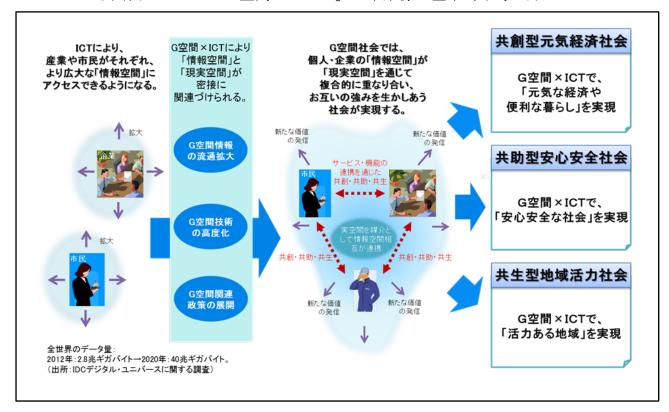
我が国は、経済再生、防災の強化、地域活性化等、多くの課題に直面している。「G空間×ICT」は、これらの課題を解決し、新たな付加価値を創造するに当たって、大きな役割を果たすことが期待されている。

「G空間×ICT」に関する取組が、その効果を最大限発揮するためには、 国民や企業等の理解、参画が不可欠である。このため、自分たちの暮らしや産 業がどのように便利で、革新的なものとなるか、目に見える形で示すことが重 要である。

第2章においては、「G空間×ICT」によって、国民の間で向かうべき方向性を共有するため、平成32年(2020年)に実現すべき具体的な利活用イメージ及び社会像・姿を提示する。

1 「G空間×ICT」の社会像・姿

平成32年(2020年)における「G空間×ICT」の社会像・姿のキーワードは、G空間情報を介した「連携」と「つながり」である。平成32年(2020年)のG空間社会においては、これまで散在的、単発的であったG空間情報が、ICTの利活用によって相互に「つながる」ことが可能となる。


ICTの利活用によりG空間情報が「つながる」ことによって、G空間情報の流通拡大やG空間技術の高度化が進展し、「情報空間」と「現実空間」が一層広範かつ密接に関連づけられる。「情報空間」と「現実空間」が複合的に重なり合い、それを媒介にして個人・企業、家庭・地域・社会、モノ・コト、機械・人間等が連携・協力することが可能となり、互いの強みをいかし合う社会が実現する。

「G空間×ICT」によって、お互いの強みをいかし合う社会においては、(1) 共創(「つながり」により共に創造する)による「元気な経済や便利な暮らし」、(2) 共助(「つながり」により共に助け合う)による「安心安全な社会」が実現し、(3) 共生(「つながり」により共に生活する)による「活力ある地域」が実現する。

それぞれ「共創型元気経済社会」、「共助型安心安全社会」、「共生型地域活力社会」と定める。

○図表 2-1 「G空間×ICT」の未来像の基本的な考え方

(1) 共創型元気経済社会:G空間とICTで、「元気な経済、便利な暮らし」を実現

官民が保有するG空間情報は、新たな革新的なサービスの創出や便利な暮らしを実現するための価値の源泉である。

ICTを通じてG空間情報の利活用の範囲が拡大することによって、企業、地方公共団体や市民などが革新的かつ共創型サービスを開発、提供する好機が拡大する。例えば、O2O (Online to Offline) 等の小売分野、円滑な在庫把握等の物流分野、次世代ITS等の交通分野等、様々な分野での応用が期待できる。

G空間とICTを活用した新たなサービスの開発等を通じて、我が国の本来の経済力を取り戻し、我が国の経済の再興等の実現に貢献する。

(2) 共助型安心安全社会: G空間と I C T で、「安心安全な社会」を実現

災害情報、気象情報、地図情報等、官民が保有するG空間情報を利活用することによって、我が国が世界一安心安全で災害に強い社会の実現に貢献することができる。

例えば、災害時における個人個人の位置に応じた避難誘導等のほか、 G空間とICTを活用した社会インフラの自動監視等システムも期待で きる。また、地方公共団体等行政機関がGIS上に、地質情報、気象情

報等をプロットし、庁内及び市民との間での災害等の現状把握等の可視化・共有化することによって、より具体的な防災対策等を講じることが可能となる。

G空間とICTを活用した高度な利用方法を通じて、企業、行政、市 民等、お互いに助け合いながら、安心安全を確保する社会の実現に貢献 する。

(3) 共生型地域活力社会: G空間とICTで、「活力ある地域」を実現

本人同意を得た市民の位置情報や、ボランティアが集めたG空間情報等を適切に利活用することよって、地域住民の社会参画を促進し、誰もが社会活動に積極的に参加できる地域の創造に寄与することができる。

例えば、「自律移動支援システムに関する技術仕様(案)」¹⁸及び「歩行空間ネットワークデータ整備仕様案」¹⁹に基づいてボランティア等が収集したバリアフリー情報による歩行者移動支援システムで、車椅子使用者等に向けた精緻なナビゲーションが可能となる。また、市民のソーシャルメディアを介した情報等を活用した防犯地図等により、高齢者や子供たちのより正確な見守りシステムを構築することが可能となる。

また、農林水産業等をはじめとする地場産業に、G空間情報を積極的に活用することによって、これまで不可能又は実現困難であった農作業や漁業等が可能となる。

G空間とICTを活用することによって、地域の人、経済、資源等が有機的に結びつき、障碍者等の社会参画や地場産業の活性化が進み、活力ある地域社会の実現に貢献する。

2 「G空間×ICT」の利活用イメージ

「G空間×ICT」によって、「共創型元気経済社会」、「共助型安心安全社会」、「共生型地域活力社会」を目指すためには、社会のイメージを可視化・共有化し、その実現に向けて連携することが重要である。図表 2-2 から図表 2-5 においては、構成員の提案等を踏まえ、将来の利活用イメージをビジュアル化した。

なお、「G空間×ICT」による利活用イメージは、以下に掲げるものに とどまるものではなく、今後、様々な革新的なものが実現することが期待さ れる。

.

http://www.nilim.go.jp/lab/bcg/jiritsu/gijutsusiryo.pdf

http://www.mlit.go.jp/common/000124059.pdf

○図表2-2 「共創型元気経済社会」(G空間×ICTで、「元気な経済、便利な暮らし」を実現) (イメージ)

○図表2-3 「共助型安心安全社会」(G空間×ICTで、「安心安全な社会」を実現)(イメージ)

○図表2-4 「共生型地域活力社会」(G空間×ICTで、「活力ある地域社会」を実現)(イメージ①)

○図表2-5 「共生型地域活力社会」(G空間×ICTで、「活力ある地域社会」を実現)(イメージ②)

第3章 「G空間×ICT」社会の実現に向けた課題

「G空間×ICT」は、我が国の課題解決等に大きな潜在力を秘めている。 第2章で検討したあるべき社会・姿や利活用イメージを実現するためには、「G空間×ICT」を徹底的に利活用することが重要である。

第3章では、「G空間×ICT」によって、第2章に掲げた社会・姿を実現するため、どのような課題があり、どのような取組の方向性を取るべきか掲げる 20 。

1 新産業・新サービスの創出に関する課題

「G空間×ICT」によって新産業・新サービスを創出するためには、様々な機能やサービスが互いに連携しなければならない。サービス等の連携のためにはデータの連係が不可欠であり、人々や車両等の位置情報、農地や森林、海洋・港湾情報、土地・建物、公共施設等の様々なG空間情報について、可能な限り利活用できる仕組みを構築することが必要である。

しかしながら、政府や地方公共団体が保有するG空間情報を中心として、 データの保存形式が個々であること、データの保存場所が不明確であること 等から、データの統合化や二次利用が円滑に進まない。

このため、G空間情報のオープンデータ化を推進し、新産業・新サービスを創出するため、G空間情報の公開の推進及び流通環境の整備が重要である。

また、数年内に準天頂衛星システムの4機体制が整うことによって、24時間のセンチメートル級の高精度な測位等が可能となる。高精度な測位情報等を活用することによって、これまで実現不可能又は困難であった、革新的な新産業・新サービスや世界最先端の防災システムの創出が期待される。また、我が国の国際競争力の強化及び国際展開の促進の観点からも、革新的な新産業・新サービスや世界最先端の防災システムを、準天頂衛星システムの信号が受信可能なアジア・オセアニア地域に展開することも期待できる。

このような市場拡大や国際展開の好機を活かすため、早急に、高精度な測位や3次元の屋内外の地図等の高精度な地図と、ICTを活用する先進的・ 先導的なサービスやシステムの具現化を行うことが重要である。

○図表3-1 新産業・新サービスの創出に関する課題

G空間情報のオープンデータ化による 新産業・新サービスの創出

○ G空間情報は、他の情報と組み合わせて多種多様なサービスを提供するための基盤の一つであり、その公開の推進及び流通環境の整備が重要。

- 政府や自治体が保有するG空間情報については、個々の データ形式により保存されているが、相互の連携を図るため の対策が必要。
- 民間が保有するG空間情報を利活用することにより、新たなサービスの開発が期待されることから、それらのデータの提供や連携を図るための検討が必要。
- 散在するG空間情報について、官民で円滑に利活用できるようにするため、一元的に閲覧、検索等できる仕組みを構築することが必要。

ビスに関する課題

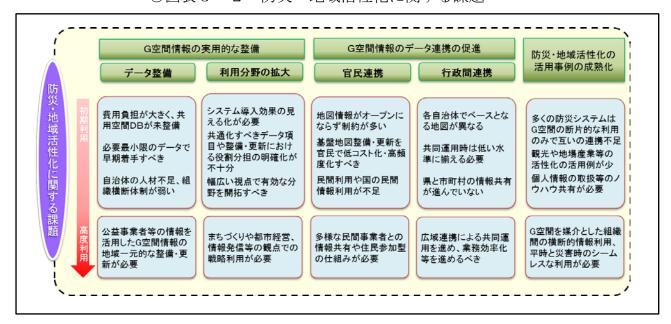
○ 個人情報の利活用と保護の両立の観点から、個人の位置 情報の取扱に関する整理が必要。

準天頂衛星等による高精度測位等とICTを活用した 新産業・新サービスの創出

- 準天頂衛星の4機体制が整うことによって、24時間の高精度な測位が可能。本格的な「準天頂時代」に向け、ICTを活用した先進的・先導的なモデルを構築することが重要。
- 次世代ITSや農業の自動化等、市場の拡大や社会的課題の解決が 期待される分野について、サービスの具現化を図ることが必要。
- ・ ビジネスや生活において重要な空間である地下空間等の屋内空間 において、G空間情報を利活用したサービスの提供や災害時の避難誘 導等を可能とするシステムの実現が必要。
- 3D地図については、高度なナビゲーション・サービスの提供等産業 分野だけでなく、高精度な津波シミュレーション等防災分野での利活用 が期待されることから、これらのシステムを実現するため、ICTを組み合 わせた先進的・先導的な利活用モデルを構築することが必要。
- 準天頂衛星については、アジア・オセアニア地域においても測位信号の受信が可能であり、我が国の国際競争力の強化及び国際展開の促進を図るため、準天頂衛星の測位を利用したサービスをアジア・オセアニア地域に展開することが重要。

2 防災・地域活性化に関する課題

地方公共団体においては、G空間情報の利点を活かした防災システムや観光・地場産業等での活用ノウハウの開発や蓄積が未成熟であるため、準天頂衛星システムの4機体制が整備され、G空間情報の利活用環境が進展したとしても、そのメリットを十分には享受できないおそれがある。


G空間情報の利活用は、地方公共団体が抱える課題の解決に大きく貢献することが期待されるため、G空間情報の高度利用(防災強化、都市経営への活用、広域連携等)の利用事例を構築し、その利活用を促すことが重要である。

また、G空間情報の地方公共団体における高度利用については、一部の地方公共団体においては積極的に取り組もうとしている一方、多くの地方公共団体においては、データ整備にコストがかかる等の理由により、地図データの整備が進まない、又は地図データの鮮度が十分ではない。

このように、地方公共団体のG空間情報の利活用能力に格差が生じてしまっているが、G空間情報の利活用による防災・地域活性化等への貢献の可能性にかんがみれば、G空間情報の利活用に取り組む地域が全国に広がるよう、官民の関係者間で連携促進することが必要である。

○図表3-2 防災・地域活性化に関する課題

3 「G空間×ICT」に関する課題

「G空間×ICT」に関する課題については、「1」及び「2」の新産業・新サービスの創出や防災・地域活性化の推進の観点からの検討を踏まえ、以下の通り、4つのポイントに整理することが適当である。

○図表3-3 「G空間×ICT」に関する課題(まとめ)

新産業・新サービスに関する課題

- ① G空間情報は、他の情報と組み合わせて多種多様なサービスを提供するための基盤であり、G空間情報の利活用のための公開の推進及び流通環境の整備が必要。
- ② 本格的な「準天頂時代」に向けて、高精度な測位や3D地図等とICTを活用したサービスの具現化の推進が必要。

防災・地域活性化に関する課題

- ③ G空間情報の高度利用(防災強化、都市経営への活用、広域連携等)を促す 観点から、先進地域における実証プロジェクトの推進が必要。
- ④ 各自治体のG空間情報の活用状況には差があるため、G空間情報の活用に取り組む地域が全国に広がるよう、普及促進に向けた官民の関係者間での連携促進が必要。

これらの課題のうち、①及び④は、様々な利活用の基盤であるG空間情報 について、いかに整備・更新し、公開し、流通させるかという課題であり、 ②及び③は、流通するG空間情報をICTと融合させて、防災システムや高 度なサービス等にいかに利活用するかという課題である。

これらの課題への取組としては、様々なものが考えられるが、具体的かつ 効果的な解決を図るためには、関係府省との円滑な連携を確保することが重 要である。このため、これまでの閣議決定(「地理空間情報活用推進基本計 画 | ²¹や「「世界最先端 I T国家創造 | 宣言 | ²²(平成 2 5 年 6 月 1 4 日閣議 決定)を十分に踏まえて取組を推進することが必要である。具体的には、こ れらの政府全体の戦略・計画に掲げられているとおり、G空間情報の共有・ 提供等を行うオープンなプラットフォームの構築やG空間情報を利活用す るプロジェクトを実施し、成功モデルを提示することが重要である。

また、G空間情報の利活用に関する国民の理解を醸成し、社会実装を促進 するためには、取組の成果が、単なる技術開発だけでなく、日常生活を営む 都市空間等における防災システムの構築や革新的なサービスの実現等、具体 的かつ実践的で、成果を実感できるものとすることが重要である。

²¹ 第二期の地理空間情報活用推進基本計画「第Ⅱ部 今後の地理空間情報の活用の推進に関する施策の具 体的展開」「4. 地理空間情報の整備と活用を促進するための総合的な施策」「(1) 地理空間情報の共有と 相互利用の推進」(P18)

[「]地理空間情報の活用を推進するためには、各主体によって整備される様々な地理空間情報を、利用者が 容易に検索し、入手・利用できる環境の整備が必要である。・・・・また、このようにして特性・分野別に 集約された地理空間情報について、利用者が統合的にワンストップで検索・閲覧し、情報を入手・利用す るために必要となる環境の整備・改良等を実施する。・・・・こうした取組と、研究機関やNPO、民間事業 者等による情報の利用や研究開発等が相互に連携し、国、地方公共団体、民間事業者等が一体となって施 策を推進することで我が国における地理空間情報の共有・提供を行う情報センターの構築を目指す。|

²² (1)「「世界最先端 I T国家創造」宣言~第二次安倍内閣の新たな I T戦略~」「Ⅱ. 目指すべき社会・ 姿」「1. 革新的な新産業・新サービスの創出及び全産業の成長を促進する社会」(P4)

[「]日本国内外どこからでもアクセス可能となるオープンなプラットフォームを通じて、信頼性の高い公共 データ(例:地理空間情報、防災・減災情報、調達情報、統計情報等)が提供され、民間や個人が保有する データ(例:地理空間情報、防災・減災情報、輸送 情報、民間・個人で観測する気象環境データ等)と自由 に組み合わせて利活用でき、新産業・新サービスが創出される社会を実現する。」

^{(2)「}V. 戦略の推進体制・推進方策」「4. 成功モデルの実証・展開」(P25)

[「]本戦略の着実な推進を図り、本戦略の目指す、革新的な新産業・新サービスの創出や安全・安心で便利 な生活が可能となる社会を実現するため、関係各府省が連携し、地域の活性化、行政の効率化、地理空間 情報、農業、医療・健康、資源・エネルギー、防災・減災、道路交通、教育等の重点課題について、IT を活用して総合的に解決するプロジェクトを分野複合的に行う。(改段落) このため、 I T総合戦略本部に おいて、課題や地域を特定し、各省の政策資源を集中的に投入し、国家プロジェクトとして推進し、成功 モデルの実証・提示を行う。」等参照

第4章 「G空間×ICT」に関する具体的な取組

一空間情報と通信技術を融合させ、暮らしに新たな革新をもたらすー

第4章においては、第3章までの検討を踏まえ、「G空間 \times ICT」に関する具体的なプロジェクトを提言する。

まずは、第2章で検討した、あるべき社会・姿等を踏まえ、本推進会議が取り組むべきミッション(使命)及びビジョン(目標)を整理し、以下のとおり定める。

【ミッション】

空間情報と通信技術を融合させ暮らしに新たな革新をもたらす

【ビジョン】

- 新たな産業・サービスを創出し、経済を再生する
- 世界最先端の防災システムをつくる
- 先進的・先導的な手法により、地域を活性化する

そして、これらのミッション及びビジョンに基づき、「G空間×ICT」による革新的な新産業・新サービスの創出の促進、世界最先端の防災対策の実現等を図るためには、具体的かつ実践的なプロジェクトに集中的に取り組むことが必要である。このため、第3章の検討を踏まえ、以下の3つのプロジェクトに絞り込んで取り組むことが重要である。

- ・ G空間情報の整備・更新、公開、流通の促進の観点から、官民が保有する G空間関連データの共有・提供等、G空間関連データを円滑に組み合わせて 利活用できる**G空間オープンデータ・プラットフォームの構築(プロジェク** <u>ト1)</u>(地方公共団体における地図データの整備の推進等、G空間情報活用の 全国普及に向けた官民連携等の強化を含む)
- ・ G空間情報とICTの融合による利活用に関する課題の観点から、①緊急性が高く国民のニーズも強い防災分野では、世界最先端のG空間防災システムの構築(プロジェクト2)、②経済再生や地域活性化等につながる革新的なサービスの開発等の観点からは、「G空間シティ(仮称)」による「G空間×ICT」成功モデルの実現(プロジェクト3)

○図表4-1 「G空間×ICT」に関する課題に対するプロジェクト

新産業・新サービスに関する課題

- 〇 G空間情報は、他の情報と組み合わせて多種多様なサービスを提供するための基盤であり、G空間情報の利活用のための公開の推進及び流通環境の整備が必要。
- 本格的な「準天頂時代」に向けて、高精度な測位や3D地図 等とICTを活用したサービスの具現化の推進が必要。

防災・地域活性化に関する課題

- O G空間情報の高度利用(防災強化、都市経営への活用、広域連携等)を促す観点から、先進地域における実証プロジェクトの推進が必要。
- 各自治体のG空間情報の活用状況には差があるため、G 空間情報の活用に取り組む地域が全国に広がるよう、普及 促進に向けた官民の関係者間での連携促進が必要。

【プロジェクト1】 G空間オープンデータ ・プラットフォームの構築

(G空間情報の円滑な利 活用環境の構築)

【プロジェクト2】 世界最先端のG空間 防災システムの構築

「G空間×ICT」による、

新りな新産業・ 新サービスの創出の促進、 世界最先端の防災対策 の実現等

(G空間情報の防災分野で の利活用の促進)

【プロジェクト3】 「G空間シティ(仮称)」に よる成功モデルの実現

(G空間情報の利活用の促進)

これら絞り込んだ3つのプロジェクトは、ミッション及びビジョンを効率的に実現するため、相互の連携を図ることが必要である。

例えば、プロジェクト1のG空間オープンデータ・プラットフォームは、G空間情報の円滑な利活用のための基盤的な役割を果たすものであり、プロジェクト2の世界最先端のG空間防災システムの構築や、プロジェクト3の「G空間シティ(仮称)」による成功モデルの実現に当たって、十分に利活用されるようなものとしなければならない。また、プロジェクト2やプロジェクト3の実施を通じて得られるノウハウ・課題等は、プロジェクト1のG空間オープンデータ・プラットフォームにフィードバックすることにより、このプラットフォームがより実践的かつ効果的なものとなることが期待される。

これらの3つのプロジェクトの成果を国内外に展開し、革新的なサービスや防災システム等の普及を促進することによって、G空間関連市場の拡大等が期待される。これら3つのプロジェクトの全体像及び関係性を示せば、図表4-2及び図表4-3のとおりである。

「G空間×ICT」プロジェクト全体像 \bigcirc 図表 4-2

プロジェクト1:

G空間オープンデータ・プラットフォームの構築

共通基盤プロジェクト

(1)プラットフォームの構築

- ・2015年度を目途に、官民が保有するG空間関連データを自由に組み合わせて利活用できるプラットフォームを構築。「G空間 情報センター」の実現に寄与。
- ・プラットフォームを民間企業等に開放して、様々な新サービス創出の開発実証に活用。

(2) G空間情報活用の全国普及に向けた官民連携等の強化

- ・2014年度を目途に、自治体が保有するG空間情報の多目的利用を推進するため、自治体におけるG空間情報利活用のベス ト・プラクティス集を作成。
- ・2015年度を目途に、自治体と公益事業者が連携し、地図制作や更新の効率化を図るため、自治体と公益事業者等の連携モ デルを構築、順次展開。

プロジェクトの成果を国内外へ展開し、 G空間関連市場を拡大、新たな市場を創出

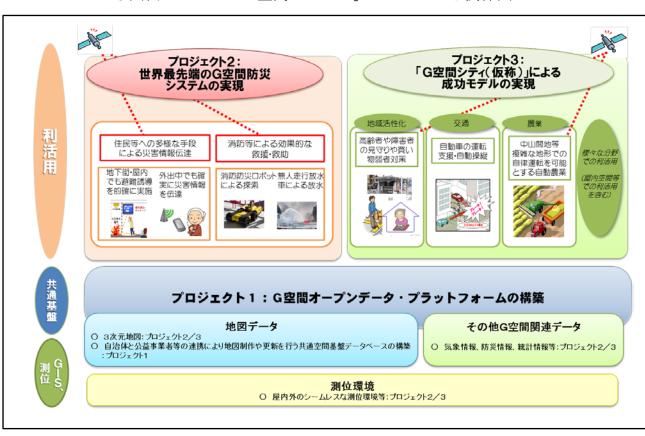
活用プロジェクト

プロジェクト2:

世界最先端のG空間防災システムの実現

(1) 多様な手段による的確な情報提供の実現

- 2015年度を目途に、G空間情報をリアルタイムにビッグデータ分 析し、準天頂衛星のメッセージ機能も含めた多様な伝達手段を 用し、一人一人に的確な情報提供を行うモデルシステムを実現。
- (2) 災害対応ロボット等の高度な防災システムの導入
- ・2020年度を目途に、災害現場に近づけない大規模災害・特殊災害等においてG空間情報を活用し、無人やリモートで操作できる災 害対応ロボット等の高度な防災システムを開発、順次導入。


プロジェクト3:

「G空間シティ(仮称)」による成功モデルの実現

(1) 先進的・先導的な利活用モデルの実施

- 7元建町-元号町後代内田 5.7220天成 2014年度から、G空間情報利活用の促進を図るため、関係 府省と連携し、交通・農業の高度化等のための先進的・先導的 なG空間×ICTの利活用モデルを構築。
- (2)海外での実証プロジェクトの実施
- ・2014年度から、国際競争力の強化及び国際展開の促進を図 るため、ASEAN地域等を中心に海外でG空間×ICTの実証ブ ロジェクトを実施。

○図表 4-3 「G空間×ICT」プロジェクト関係図

なお、これらのプロジェクトを適切かつ効果的に実施し、その成果をより広い範囲活用していくためには、関係府省及び産学官が一体となって取り組む必要がある。

おって、施策の実施スケジュールについては、改めて第6章で触れるが、準 天頂衛星システムの4機体制のサービス開始予定が平成30年(2018年) 頃であることを十分に考慮し、原則として、平成30年(2018年)当初ま でには、施策の成果が可能な限り社会に実装されていなければならない。この ため、現在から平成27年(2015年度)度末までを集中開発期間、平成2 8年(2016年度)度及び平成29年(2017年)度を社会実装期間と位 置づけて取り組むことが適当である。

プロジェクト1 G空間オープンデータ・プラットフォームの構築等

(1) 基本的な考え方

G空間情報は、革新的な新産業・サービスの創出や防災対策の強化等を図るために欠かせないデータであり、①G空間情報の流通促進及び②G空間情報の整備・更新、公開を推進することが必要である。

このため、G空間情報について、①G空間情報の円滑な流通・利活用を可能とするプラットフォームの構築、②地方公共団体における地図データの効率的な整備等G空間情報活用の全国普及に向けた官民連携等の強化の2つに取り組むことが必要である。

(2) 具体的な取組

① G空間オープンデータ・プラットフォームの構築

G空間情報は、新産業・サービスの基盤となるとともに、他の情報と組み合わせることにより、高度なサービスやシステムを構築することが期待されている。第二期の基本計画においても、「社会全体で様々な地理空間情報の流通を促進し、その活用を推進するためには、情報を容易にかつ安心して入手し利用できる環境の整備・・・が必要」²³とされている。

しかしながら、様々な主体が保有するG空間情報は、インターネット上に公開されていなかったり、公開されていたとしても、その所在情報が散在しており、円滑な閲覧、検索が困難である場合も多い。また、公開されているG空間情報が、個々のデータ形式で保存されていること、地番・地名等の位置表現の方法が不統一であること、緯度経度が異なる測地系で記述されていること等から、複数のG空間情報を地図上に正確に重ね合わせようとしても支障が生じる。

このような課題を解決し、新産業・新サービスの創出等を促進するため、官民が保有する様々なG空間情報について、誰もがいつでもどこでも円滑に利活用できるプラットフォーム、すなわち、G空間オープンデータ・プラットフォームを構築することが必要である。

このため、G空間オープンデータ・プラットフォームの構築に当たっては、以下のイ)及びロ)の観点を踏まえたものとすることが必要である。また、取り扱う情報の機密性にかんがみ、利用者に応じた情報の開示範囲を設定するなどのセキュリティの確保及びプライバシーの保護に十分配慮したものとしなければならない。

²³ 同基本計画「4. 地理空間情報の整備と活用を促進するための総合的な施策」「(1) 地理空間情報の共 有と相互利用の推進」

なお、構築されたG空間オープンデータ・プラットフォームについては、我が国におけるG空間情報の共有・提供に寄与するものであり、第二期の基本計画に規定されている「我が国における地理空間情報の共有・提供を行う情報センター」²⁴の実現に貢献することが重要である。

イ) G空間情報の円滑な利活用の実現

G空間情報について、高度かつ安定的な利活用を促進するため、一元的な閲覧、検索を円滑に行うことを可能とする環境を整備することが重要である。このため、散在するG空間情報を適切に収集する仕組みの構築及び円滑な検索に資するG空間情報の保存・公開の方法に関する運用実証等を行うことが必要である。国土交通省、国土地理院等の関係府省と連携し、平成27年(2015年)度末までを目途に必要な技術の開発等を行うことが必要である。

また、G空間情報及びG空間情報との組み合わせにより高度なサービスやシステムを創出する情報(例 防災情報、調達情報、統計情報等)について、円滑な二次利用を可能とすることが重要である。このため、機械判読に適した標準的なデータ形式の開発や、データ形式や位置表現の変換等の仕組みの構築を平成27年(2015年)度末までを目途に実現することが必要である。

ロ) 革新的なサービス創出のためのプラットフォームの開放等

G空間情報を円滑に利活用することによって、革新的なサービスの創出が期待される。特に、中小企業やベンチャー企業、ボランティア等、アイデアを保有し新たなサービス開発等に意欲を有するが、独力で様々なG空間情報を収集することが難しい者に対して、構築されたG空間オープンデータ・プラットフォームを開放することが重要である。これにより、G空間情報を利活用した新サービスの創出を促進するとともに、G空間情報を高度に利活用することができる人材の育成に資することが重要である。

また、官が保有するG空間情報だけでなく、民間企業等が保有するG空間情報(施設内部の設計図を含む)を利活用することにより、様々なサービスの開発が期待される。このため、G空間オープンデータ・プラットフォームの構築に当たっては、民間企業等が保有するG空間情報を自発的に公開するインセンティブを与えることや、提供した情報の社会貢献度を可視化すること、完全にオープンなものとするのではなく限定的な公開・提供を可能とすること、完備した情報でなくとも一定程度整備して公開することによって市民生活の利便性の向上に資する情報(例. 災害時に利用可能なトイレの情報等)の収集にボランティアを活用すること等、民間企業等が保有するG空間情報の公開や流通を促進する観点から検証すること

²⁴ 注 22 に同じ。

が重要である。

② G空間情報活用の全国普及に向けた官民連携等の強化

G空間情報の活用は、要援護者の位置を正確に把握し災害時に救助活動を円滑に行ったり、平常時でもハザードマップを整備して、あらかじめ災害発生時の避難ルートや避難場所をシミュレーションしたりすることによる減災効果なども期待できる。こういったきめ細かな住民サービスを提供するためには、住民ひとりひとりの位置情報を地図上に座標として表示することができる地図を整備する必要がある。

このような地図データは、地方公共団体が行う複数の業務で共用することにより、行政サービスの飛躍的な効率化や高度化を実現することが可能であるが、これを最新の状態で継続的に維持管理するためには、地方公共団体のみならず、ライフラインとなるサービスを提供する公益事業者や、測量や地図作成に関わる事業者、さらには住民等の協力により、効果的な官民連携を構築することが必要となる。

また、広域防災等の観点から地方公共団体の広域連携を進めていくためには、隣接する複数の地方公共団体や県域でデータを共同整備し、G空間情報を活用した付加価値の高い行政サービスをセキュアなネットワーク上でのクラウド・サービス等を活用し、広域で提供することが期待される。さらに、行政機関が保有する統計データをGIS上にきめ細かく重ね合わせることにより、実態把握等の視覚化が進展し、行政機関による施策の計画・立案等の向上に寄与することが期待される。

しかしながら、第1章(3)①のとおり、統合型GISの導入が41.2%(平成24年(2012年)4月時点)にとどまっているなど、具体的な取組の進んでいない地方公共団体が多く残されている。これらの地方公共団体にとっての主な課題として、データ整備に要するコスト負担、GIS導入のための人材不足、業務見直しのノウハウ不足、システム導入効果の明確化、地図情報利用の制約による官民連携の不足、パーソナルデータの取扱方法の未確立等が挙げられる。

また、地方公共団体の広域連携を行う上では、データの共同運用時にG空間情報の活用水準を揃える必要があるなど効果的な連携が進みにくい面もあり、統合型GISの導入を早期に全国普及させ、取組の遅れた地方公共団体の底上げを図る必要がある。

このため、まずはG空間情報の地方公共団体の庁内共有を促進するために、統合型GISの全国普及に向けたこれまでの取組を一層強化することが必要である。また、国土地理院と地方公共団体とが

連携した地理空間情報の活用促進のための取組の普及のほか、地方公共団体と公益事業者等の官民連携を促進し、G空間オープンデータ・プラットフォームの構築の取組と相互に連携しつつ、G空間情報の基礎となる共用地図データを継続的・効率的に維持管理するモデルを構築するための実証実験を行うことが必要である。さらに、統計GIS²⁵については、データの可視化を通じた政策立案者等の認識の共有化等を図るため、利便性向上に取り組むことも必要である。

イ) これまでの支援策の集約と周知徹底

これまで統合型GISの導入を支援するために、各府省において、財政支援、各種指針、人材育成プログラム、広報・普及啓発等の様々な取組がなされてきているため、これらの支援策を集約し、周知徹底することが必要である。また、平成26年(2014年)度を目途に導入済み地方公共団体のベストプラクティス²⁶の紹介、アドバイザー派遣等を実施するとともに、国土地理院と地方公共団体とが連携した地理空間情報の活用促進のための取組の普及等、これからG空間情報の整備を進める地方公共団体に対する積極的な後押しを行い、全国的な横展開を推進すべきである。

ロ) ライフライン企業等との連携促進

共用地図データを地方公共団体のみで整備するには費用負担が大きく、対応の難しい地方公共団体が少なくない。また、住民の位置情報を保有するライフライン企業や測量・地図業者は、個別に地図作成に係る重複投資を行っている状況にある。そこで、地方公共団体と民間企業、住民等が連携することにより、G空間オープンデータ・プラットフォームの構築の取組と相互に連携しつつ、G空間情報の基礎となる共用地図データを継続的・効率的に維持管理するモデルを、実証プロジェクトを通じて平成27年(2015年)度末までを目途に構築していくことが必要である。

この実証実験に当たっては、民間事業者等が保有する地図情報を集約し、低コストで鮮度の高い地図を作成した上でオープン化していくための技術的・経済的な課題等について検証を行う。また、位置情報を含むパーソナルデータの取扱方法等についても、併せて検討する。

http://e-stat.go.jp/SG2/eStatFlex/help/help.html

-

²⁵ 利用者の個々のニーズに合わせて各種統計調査の統計データを背景地図と共に視覚化 して提供するGIS

⁶ 富山市における街づくり施策の立案への検討や、浦安市における災害時の被災者支援など。

ハ)統計GISの充実

G空間社会においては、防災対策、都市計画等を適確かつ迅速に講じるため、人口や事業所・企業等の正確な統計情報をGIS上に重ね合わせ、データの可視化を図り、政策立案者等の認識の共有化等を図ることが重要であるため、統計GISの利便性向上に取り組むことが必要である。しかしながら、現在の統計GISの場合、結果の提供が国勢調査の町丁・字等別集計結果及び地域メッシュ統計結果によることから、システム上の適切な按分処理等の措置を講じない限り、利用者が任意に設定する地域での分析等に対する柔軟対応を行うことができていない。

このため、統計GISの小地域推計の機能拡充に関する研究開発を行うことが適当である。研究開発の成果については、公的統計として、作成方法も含め、社会の情報基盤として広く一般が利用できる形で提供することが適当である。

○図表4-4 G空間オープンデータ・プラットフォームの構築

プロジェクト2 世界最先端のG空間防災システムの構築

(1) 基本的な考え方

G空間情報の高度利用(防災強化、都市経営への活用、広域連携等)を促す観点から、先進地域において実証プロジェクトを推進し、成功モデルの創出を図ることが求められる。特に、東日本大震災の教訓を踏まえ、国民のニーズが高く、波及効果の大きい防災分野において、G空間情報の利点を最大限に活かした防災情報システムの開発を促進し、世界最先端のG空間防災システムを実現していくことが必要である。

しかしながら、災害時に利用可能な個別のG空間情報は数多く散在 しているにもかかわらず、それらをリアルタイムにビッグデータとし て統合・分析し、防災の観点から適切な情報を迅速に住民等へ多重的 に伝達したり、救難・救助活動に効果的に活用できる高度なシステム は、現時点では開発されていない状況にある。

このため、G空間オープンデータ・プラットフォーム等を活用した、 レジリエントな防災情報システムの実証プロジェクトを特定の地域で 集中的に実施し、その成果を実用システムとして全国に展開させると ともに、防災以外の分野への応用・波及を促進すること等が必要であ る。

特に、①国民自身による災害対応の強化の観点から、多様な手段による的確な情報提供の実現、②消防等の高度化の観点から、災害対応ロボット等の高度な防災システムの導入の2つについて取り組むことが必要である。

また、災害時においては、個人の安否確認等を迅速に行い、助かる 命を確実に助けるため、個人の位置情報の取扱の在り方を整理する必 要がある。

(2) 具体的な取組

① 多様な手段による的確な情報提供の実現

G空間情報は、センサーの普及等ICTの進展により、大量かつ 多種多様なものが生成されているが、今後とも、増大することが見 込まれる。災害発生時においては、被災の状況に応じて刻々と変化 する多様なG空間情報をリアルタイムで瞬時に分析し、防災に資す る情報を効果的に抽出することが必要である。また、災害時におい て、大量に生成される気象情報や災害関連情報等のG空間情報を迅 速かつ適切に処理し、正確なシミュレーションが実現できれば、適 切な避難命令等の判断に大きく貢献することができる。

しかしながら、現在では、多種多様な大量のデータをリアルタイムで処理、解析する技術が十分には確立していないため、多様なG空間情報を入手できたとしても防災システムに利活用することが困難である。また、高度な分析結果等について、住民等に確実に伝達するシステムを構築することが不可欠である。

イ) 災害に関するG空間情報のリアルタイム・ビッグデータ活用技術の開発

災害時対応に必要となる当該地域の気象情報、災害の状況、要 援護者情報等の各種災害情報の統合分析に加え、住民のソーシャ ルメディアを介した情報、車両の運行情報等の現場の情報等も含 めた様々なG空間情報をビッグデータ分析し、必要かつ信頼性の 高い情報をリアルタイムで提供していくための技術を、実証プロ ジェクトを通じて平成27年(2015年)度末までを目途に確 立していくことが必要である。また、大量のデータを迅速かつ適 切に処理し、正確なシミュレーションを行う技術を平成27年 (2015年)度末までを目途に確立することが必要である。

ロ) 住民等への適時適所の迅速な情報伝達を行うシステムの実現

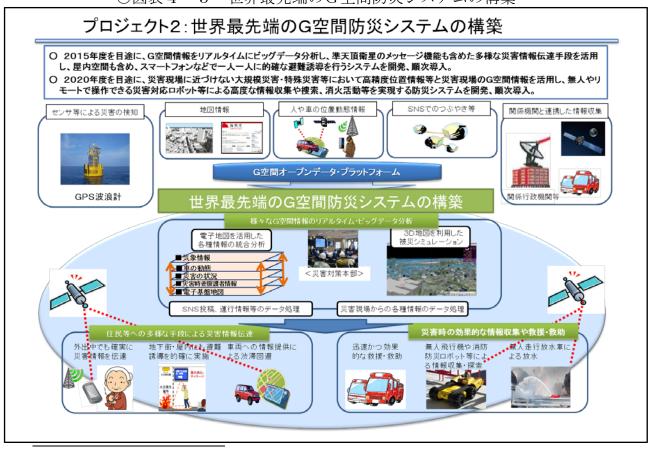
防災を実現するには、適切な情報を如何に住民に迅速かつ正確に伝達できるかが大きな鍵となる。したがって、上記イ)により得られる有用な情報を、準天頂衛星システムのメッセージ機能等も含めた多重的な情報伝達手段を通じて、移動中の住民や屋内・地下街にいる住民、走行中の車両等も含め、一人一人に的確な避難誘導等を行うことができるシステムを、実証プロジェクトを通じて平成27年(2015年)度末までを目途に実現していくことが必要である。また、このようなシステムは、平時の防災訓練にも活用できること、災害は広域的に起こりうるものであること、効率的な共同運用が求められること等から、複数の地方公共団体による広域連携を前提として実証を行うことが必要である。

ハ)緊急時等における位置情報の利活用に関する検討

G空間社会においては、位置情報等のデータを適切に利活用することにより、個人の行動履歴や他のデータと組み合わせた新産業・サービスの創出や、災害時等における個人の避難誘導や迅速な安否確認等の実現が期待される。電気通信事業者が保有する位置情報を含む運用データ等については、総務省情報通信審議会答申²⁷を受け、既に検討が開始されている²⁸ところであるが、その検討結果も踏まえ、認知の向上や効用の実証等を通じた適切な利活

²⁷ 情報通信審議会答申「知識情報社会の実現に向けた情報通信政策の在り方」(平成23年2月10日付け諮問第17号)http://www.soumu.go.jp/main_content/000169616.pdf

²⁸ 電気通信事業者協会「携帯電話事業者の運用データ等の適正な有効利用に関する検討会」 http://www.tca.or.jp/topics/2013/0208_552.html



用が進められることが望ましい。また、携帯電話やスマートフォンに係る位置情報については、大規模災害時における安否確認や海難・山岳事故等における遭難者の捜索等、緊急時における活用に対する需要が高まっている。総務省においては、「緊急時等における位置情報の取扱いに関する検討会」を開催29し、電気通信事業者によるGPS位置情報の緊急時における取扱いのための方策等について検討しておりその検討を踏まえ、「電気通信事業における個人情報保護に関するガイドライン」(平成16年総務省告示第695号)の見直し等、所要の措置を講ずることが適当である。

② 災害対応ロボット等の高度な防災システムの導入

災害が発生した場合においては、人命救出が最も急がれるのは当然のことであるが、このような活動を最大限に支援するため、消防等の部隊の動態を把握し運用を高度化するシステムも必要である。また、災害現場に近づけない大規模災害・特殊災害等において、リモートで操作できる災害対応ロボット等の高精度位置情報等と災害現場のG空間情報を活用した高度な情報収集や捜索、消火活動等を実現する応急対応システムを、実証プロジェクトを通じて平成32年(2020年)度末までを目途に開発し、順次導入していくことが必要である。

○図表4-5 世界最先端のG空間防災システムの構築

²⁹ http://www.soumu.go.jp/menu_news/s-news/01kiban08_02000110.html

36

プロジェクト3 「G空間シティ(仮称)」による成功モデルの実現

(1) 基本的な考え方

我が国においては、平成30年(2018年)頃の準天頂衛星システム4機体制によるサービス開始のほか、屋内における高精度な測位システムや高精度な地図の整備の進展等、測位環境やGISの利用環境の向上が見込まれている。また、ICT分野についても、センサーの普及やスマートフォン等の測位デバイスの普及、ビッグデータの解析技術の進展等、G空間情報の生成や利活用に係る環境が向上している。

これらの測位環境の向上とICTを組み合わせることによって、「G空間×ICT」の革新的なサービスやシステムを創出することが期待できる。革新的なサービスやシステムの開発・普及は、我が国の新市場の創出や既存市場の拡大等につながるため、我が国の経済再興等に貢献できる。また、準天頂衛星システムの測位信号等は、日本だけでなく、アジア・オセアニアでも受信可能であるため、準天頂衛星システムを利用したサービスやシステムは、我が国だけでなく、アジア・オセアニア地域で利用することも可能である。

このような市場拡大や国際展開の好機を十分に活かすためには、早期に、「G空間×ICT」の先進的・先導的なモデルを構築し、国内外に展開することが重要である。特に、先進的・先導的なモデルの構築に当たっては、G空間オープンデータ・プラットフォームの構築の取組とも連携しつつ、G空間情報の利活用に関する世界最先端を目指す「G空間シティ(仮称)」において集中的に行い、成功モデルを実現することが重要である。

なお、「G空間シティ(仮称)」におけるモデルの構築に当たっては、 単独の市町村だけでなく、地域間のG空間活用能力の「底上げ」を図 るため、複数の市町村が連携して広域に取り組むことも有効である。

(2) 具体的な取組

① 先進的・先導的な利活用モデルの実施

「G空間シティ(仮称)」において構築する「G空間×ICT」の 先進的・先導的なモデルは、今後の国内外での市場の拡大が見込ま れるものとすることが適当である。具体的には、イ)準天頂衛星シ ステム4機体制による高精度測位環境、ロ)屋内の測位環境や、ハ) 3次元地図等高精度な地図の利活用を前提としたモデルを中心とす ることが適当である。

イ) 準天頂衛星システムの利活用を想定するモデル構築

平成30年(2018年)頃の準天頂衛星システムの4機体制による24時間の高精度な測位とメッセージ機能という、我が国においてこれまでにないインフラの構築に向けた検討が進められている。このような新たなインフラを利活用することによって、革新的なサービスの創出や、これまで不可能であったことを現実化することが期待される。

例えば、人や自動車等の高精度な測位情報と、多種多様な交通情報等をリアルタイムに分析、処理することによって、渋滞対策や安全対策につながる高度な移動支援システムの実現が期待される。

このため、高精度な測位等とビッグデータの処理技術等のIC Tを活用した、革新的なサービスの創出が見込まれるモデル等について、平成27年(2015年)度末までを目途に、「G空間シティ(仮称)」において構築することが重要である。

ロ)屋内の測位環境を利活用するモデル構築

測位衛星の測位信号が受信できない地下空間等の屋内空間においては、現在、IMES (Indoor MEssaging System) 測位や、WiFi測位、ICタグを利用した測位、それらの媒体を共通に識別する場所情報コード等、様々な方式による整備が行われており、屋内空間における位置情報サービスの利用環境が向上しつつある。

地下空間等の屋内空間は、ビジネス上重要な空間であり、測位 環境が整うことによって、これまで不可能であった位置情報を利 用したサービスやシステムの創出が期待される。また、屋内空間 は、市場の拡大等の経済的な観点だけでなく、災害時のパニック 等による二次災害の防止の観点からも重要であり、例えば、個々 人の位置に応じたきめの細かい避難誘導システム等の実現も期 待される。

このため、屋内空間における測位環境と、個々人の位置情報に基づき自動的に適切な情報を配信する技術等のICTを活用した、革新的なサービスの創出が見込まれるモデルや、防災対策の飛躍的な強化につながるモデルについて、平成27年(2015年)度末までを目途に、「G空間シティ(仮称)」において構築することが重要である。

ハ) 3次元地図等高精度な地図を利活用するモデル構築

3次元地図等高精度な地図については、一部の事業者において整備が進められているが、3次元測位技術の進歩等により、今後、一層の整備が期待されている。

例えば、3次元地図については、中山間地域における複雑な地 形での自律運転を可能とする高度な農林業システムや、道路段差 や坂道等の詳細把握による高齢者や障碍者の自律的移動システ ム等のほか、高精度な豪雨・津波シミュレーションや災害時にお ける消防隊員の誘導等の防災分野での利活用が期待されている。

このため、3次元地図等高精度な地図と、多種多様なデータを 迅速に分析する技術等のICTを活用した、革新的なサービスの 創出が見込まれるモデルや、飛躍的な防災システムのモデルにつ いて、平成27年(2015年)度末までを目途に「G空間シティ(仮称)」において構築することが重要である。

なお、屋内の3次元地図については、当該建物の所有者・管理者の協力がない限り整備が進まないため、「G空間シティ(仮称)」の地方公共団体においては、自らが所有・管理する公共施設の屋内通路の図面の提供等、3次元地図の整備に関して積極的に協力することが必要である。

② 海外での実証プロジェクトの実施

準天頂衛星システムについては、日本だけでなく、アジア・オセアニアでも測位信号の受信が可能であるため、我が国で開発した、 準天頂衛星システムの測位を用いたサービスやシステムを当該地域に展開することが可能である。特に、太平洋上のアジア諸国は、我が国と同様、津波や地震等の自然災害に対するニーズを共有している。防災システムを海外に展開することは、当該地域への国際貢献の観点だけでなく、日系企業のサプライチェーンの維持という観点からも重要である。

国際展開については、国内で実施した実証プロジェクトの成果を 得てから、その成果を展開することも重要であるが、海外で直接、 現地の事情に合わせたシステムを開発し、その後事業として継続す るとともに、我が国にフィードバックすることも有効である。

このため、海外のニーズ等を踏まえ、海外において、「G空間×ICT」利活用モデルの構築を直接行うことも必要である。

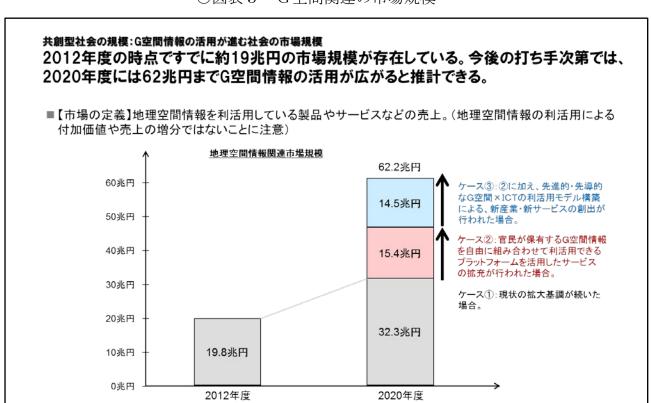
○図表4-6 「G空間シティ(仮称)」による成功モデルの実現

プロジェクト3:「G空間シティ(仮称)」による成功モデルの実現

- 〇 G空間情報利活用の促進を図るため、関係府省と連携し、次世代ITS等先進的・先導的なG空間×ICTの利活用モデル を実施。
- 国際競争力の強化及び国際展開の促進を図るため、ASEAN地域等を中心に海外でG空間×ICTの実証プロジェクトを 実施。

G空間情報オープンデータ・プラットフォーム

「G空間シティ(仮称)」による成功モデルの実現


第5章 G空間関連市場の規模

第5章においては、第4章で検討した具体的な取組を講じた場合に実現する 平成32年(2020年)度のG空間関連市場の規模について試算する。

平成20年(2008年)7月に公表された経済産業省主宰の地理空間情報活用推進研究会の「地理空間情報サービス産業の将来ビジョンに関する報告書」において、平成25年(2013年)までの「5年間で市場規模は4兆円から10兆円への増大が見込まれる」とされている。

本推進会議においては、平成20年(2008年)以降のスマートフォンの 爆発的な普及や電子地図の普及といった環境変化を踏まえ、現在及び今後のG 空間情報の利活用に関連する市場規模の試算を得た³⁰。本試算においては、G空 間社会の広がりを踏まえ、平成20年(2008年)の試算の対象であったサ ービス産業に限らず、幅広い産業を対象として試算を行っている。

○図表 5 G空間関連の市場規模

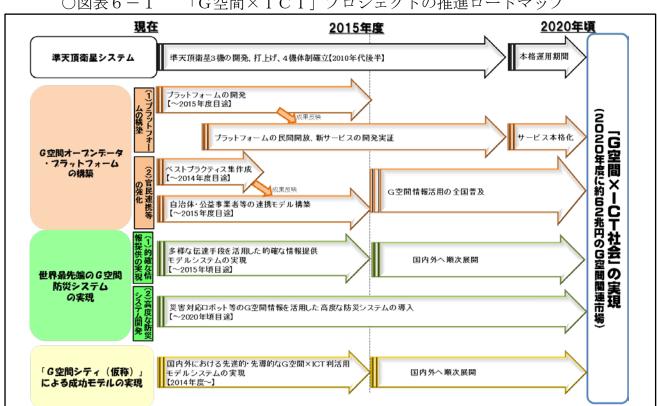
本試算によると、G空間関連市場が、平成24年(2012年) 度においては、19.8兆円であるが、平成32年(2020年) 度には、32.3兆円に達すると試算される。

また、G空間オープンデータ・プラットフォームの構築によるサービスの拡充や、高精度な測位や地図等を利活用する先進的・先導的な「G空間×ICT」の成功モデルを平成27年(2015年)度までに構築することにより創出さ

³⁰ 第 4 回稲月構成員発表資料

れる、新産業、新サービスの国内外の普及により、市場規模は、最大62.2 兆円に達するとされている。

本市場規模の試算は、売上高をベースとしており、純粋な付加価値の増加を意味するものではないものの、市場規模が現在の19.8兆円から62.2兆円に拡大することは、G空間社会が日本経済に急速に浸透することを示すものであり、「G空間×ICT」が我が国の基盤となり、「G空間×ICT」が経済活動や市民生活で不可欠な存在になっていることを示唆している。



「G空間×ICT」社会の実現に向けた推進方策 第6章

第6章においては、「G空間×ICT」社会の実現を図るため、第4章で検討 した具体的な取組に係る推進方策を提言する。

本報告書の提言の実施に当たっては、準天頂衛星システムの4機体制の構築 を念頭に置く必要がある。4機体制によるサービス開始が平成30年(201 8年)頃と予定されているため、平成30年度当初までには、技術開発・実証 やモデル構築が完了するとともに、その成果が一定程度社会実装されているよ うにしなければならない。

このため、現在から平成27年度(2015年度)末までを集中開発期間、 平成28年度(2016年度)及び平成29年度(2017年度)を社会実装 期間と位置づけて、取り組むことが適当である。

○図表 6 - 1 「G空間×ICT」プロジェクトの推進ロードマップ

具体的なスケジュールについては、プラットフォームやシステムが具備すべ き機能や実証すべきモデル等を今後精査し、その上で、ロードマップを明示す ることが必要である。現時点でのロードマップは上図のとおりであるが、より 精緻化されたロードマップにおいては、実証プロジェクトの実施スケジュール だけでなく、実装に向けたスケジュールや役割分担についても可能な限り具体 化することが重要である。

また、策定されたロードマップについては、その進捗状況を適確に把握し、 定期的に評価を行い、社会情勢や技術動向、G空間社会の浸透度等を踏まえ、 適時適切に見直していくことが必要である。

本報告書の提言は、技術的側面からの社会への実装を視点の中心に置いているものが多いが、社会実装を進めるためには、法令等の規制・制度の見直しを一体として進めていくことが必要である。このため、「G空間シティ(仮称)」においては、規制・制度の見直しと連携した成功モデルを構築することが重要である。また、関係府省と連携し、政策資源の投入を集中的に行い、全国への普及が円滑に可能となる成功モデルを構築することが望ましい。

また、本報告書のプロジェクトの社会実装を進めるためには、G空間情報とICTを利活用できる人材を育成することが必要である。人材の育成については、特効薬がなく、不断の取組を行うことが重要であり、産学官が連携して、継続的に人材を育成するよう努めなければならない。また、G空間情報については、その内容・属性、秘匿性・重要性、ニーズ等が千差万別であるため、G空間情報を取り扱う人材についても多様性を確保することが重要である。

G空間情報とICTは、いわば「横串」の役割を果たすものであり、適用される分野は非常に広大である。このため、総務省においては、本報告書の提言を強力に推進するため、関係府省や産業界、学界、地方公共団体、市民等と緊密に連携し進めることが重要である。また、本報告書において提言した様々な取組を強力かつ着実に推進するためには、地理空間情報活用推進会議の場を活用して関係府省と連携するとともに、IT総合戦略本部等の政府の司令塔機能とも十分に連携することが重要である。

最後に、本推進会議の検討結果として、ミッション(使命)、ビジョン(目標)、 アプローチ(取組)について、以下の通り、とりまとめる。今後の施策の遂行 に当たっては、以下のまとめを十分に認識して取り組むことが極めて重要であ る。

○図表 6-2 「G空間×ICT」の基本的視点

Mission ミッション

空間情報と通信技術を融合させ、暮らしに新たな革新をもたらす

Vision ビジョン

- 新たな産業・サービスを創出し、経済を再生させる
- 世界最先端の防災システムをつくる
- 先進的・先導的な手法により、地域を活性化させる

Approach アプローチ

- ① プロジェクト1:G空間オープンデータ・プラットフォームの構築
 - ・官民が保有するデータを自由に組み合わせて利活用可能とするプラットフォームを構築、「G空間情報センター」の実現に寄与
 - G空間情報活用の全国普及に向けた官民連携等の強化
- ② プロジェクト2:世界最先端のG空間防災システムの構築
 - 準天頂衛星を含む多様な災害情報伝達手段を活用し、一人一人に的確な避難誘導を行うシステムを実現災害対応ロボット等の高度な防災システムの開発
- ③ プロジェクト3:「G空間シティ(仮称)」による成功モデルの実現
 - ・先進的・先導的なG空間×ICTの利活用モデルを実施
 - 海外でG空間×ICTの実証プロジェクトを実施

おわりに

東日本大震災では、15883人の死者、2671人の行方不明者、2688人の被災関連死者の被害をもたらした 31 。「助かる命を確実に助ける」災害に強い社会を実現することは、我が国が総力をあげて取り組むべき課題である。また、我が国の名目GDPについても、平成9年(1997年)度の521兆円をピークとして、平成23年(2011年)度が470兆円となっている 32 など、経済の再生も、喫緊の課題である。

本推進会議においては、我が国が直面する課題解決を念頭に、あるべき社会を実現するため、その重要な鍵を握る「G空間情報」と「ICT」の利活用について、G空間に係わる産学官の英知を結集し検討した。

短期間の検討ということもあり、本推進会議に掲げられた提言では網羅されていない内容があるが、まずは、本推進会議において取り組むべきとされた事項に真摯に取り組むことが重要である。総務省においては、関係府省と連携し、本推進会議に掲げられた提言の実現に向けて全力を尽くすべきである。

「G空間×ICT」は、我が国の課題を解決し、あるべき社会を実現する潜在力を秘めている。一方、「G空間×ICT」の潜在力をいかに引き出すかが、我々、G空間に係わる産学官に与えられた課題である。

我が国の産学官民が、本推進会議の提言に真摯に取り組めば、我が国が直面する課題の解決に大きく貢献するとともに、我々の暮らしに新たな革新をもたらすと確信する。

今後、本推進会議等も活用しつつ、「G空間×ICT」の取組の効果的な実施に向けた推進体制を整備し、着実な推進を図っていくことが必要である。

⁻

³¹ 死者及び行方不明者は、平成25年5月10日現在。(「平成23年(2011年) 東北地方太平洋沖地 震の被害状況と警察措置」(平成25年6月10日 警察庁)

http://www.npa.go.jp/archive/keibi/biki/higaijokyo.pdf

被災関連死者数は、平成 2 5 年 3 月 3 1 日現在。(「東日本大震災における震災関連死の死者数(平成 2 5 年 3 月 3 1 日現在調査結果)」(平成 2 5 年 5 月 1 0 日 復興庁、内閣府(防災)、消防庁、厚生労働省)

http://www.reconstruction.go.jp/topics/20130510_kanrenshi.pdf

^{32 「}国民経済計算」(内閣府)http://www5.cao.go.jp/j-j/wp/wp-je12/h10_data01.html