情報通信審議会　情報通信技術分科会
衛星通信システム委員会報告書
（素案）

諮問第 2032 号
「2 GHz 帯等を用いた移動衛星通信システム等の在り方及び技術的条件」のうち
「2 GHz 帯等を用いた移動衛星通信システム等の在り方」

平成 25 年 11 月 18 日版
目次

はじめに

1 移動衛星通信システム等の概要 .. 4
 1.1 移動衛星通信システム等の概要 .. 4
 1.1.1 静止衛星を利用した移動衛星通信システム ... 4
 1.1.2 非静止衛星を利用した移動衛星通信システム .. 8
 1.1.3 我が国の移動衛星通信システム等の導入状況 ... 11
 1.2 衛星測位システム等の概要 ... 14
 1.2.1 衛星測位システム .. 14
 1.2.2 我が国の測位衛星システムの導入状況 ... 17
2 移動衛星通信システムに求められるサービス ... 21
 2.1 一般消费者的ニーズ .. 21
 2.2 企業等のニーズ .. 23
 2.3 今後の需要予測 .. 26
 2.4 東日本大震災を受けた新たな衛星通信ニーズ ... 27
3 国際周波数調整 .. 33
 3.1 周波数割当て（国際調整）の手続き .. 33
 3.2 L帯無線航海衛星業務に関する関連規定 .. 33
 3.3 L帯無線航海衛星業務の国際調整状況 .. 34
 3.4 2GHz帯移動衛星業務に関する関連規定 .. 35
 3.5 2GHz帯移動衛星業務の国際調整状況 ... 36
4 L帯を用いた衛星測位システムの実現可能性 ... 38
 4.1 L帯を用いた衛星測位システムの技術動向 ... 38
 4.2 L帯を用いた衛星測位システムの実現可能性 .. 41
 4.2.1 実用準天頂衛星システム .. 41
 4.2.2 共用システムの概要と共用検討状況 .. 42
 4.2.3 L帯を用いた衛星測位システムの共用検討（まとめ）（P） .. 47
5 S帯を用いた移動衛星通信システムの実現可能性 ... 48
 5.1 S帯における移動衛星通信システムの技術動向 .. 48
 5.2 S帯における移動衛星通信システムの標準化動向 ... 51
 5.3 S帯を用いた移動衛星通信システムの検討（P） .. 53
 5.3.1 システム提案の概要（P） ... 53
 5.3.2 システム提案の詳細（P） ... 53
 5.3.3 インバンド及びアウトバンド／ガードバンド検討（P） .. 66
 5.4 S帯を用いた移動衛星通信システムの要求条件（P） .. 66
はじめに

移動衛星通信システム等は、同報性、広域性、耐災害性等の衛星通信システム固有の特徴を有するほか、上空、海上、離島等での通信手段として、平時に加えて災害時において重要な役割を果たしている。

我が国においては、1.5/1.6GHz帯（L帯）、2.5/2.6GHz帯（S帯）、12/14GHz帯（Ku帯）を用いた移動衛星通信サービスが提供されており、海外では測位衛星サービスなども提供されつつある。

2011年3月11日に発生した東日本大震災では、地震・津波による通信設備の物理的な破壊、電源喪失による機能の停止、さらには通信集中による輻輳と電気通信事業者による通信規制など、様々な形で地上網の通信機能が途絶した。

衛星通信システムは、地上インフラに依存しないことから、災害時等には地上通信システムよりも安定した活用が期待できることから、災害等の非常時に地上インフラが復旧するまでの補完システムとして有効である。

本報告は、東日本大震災等を受けた新たな衛星通信ニーズ、研究開発動向、諸外国の動向等を踏まえ、移動衛星業務に周波数分配のある2GHz帯等を用いた移動衛星通信システム等の在り方についてとりまとめたものである。
1 移動衛星通信システム等の概要

1.1 移動衛星通信システム等の概要

衛星通信は、上空・海上・離島等での通信手段として、平時に加えて災害時において重要な役割を果たしている。世界的には、音声通信が主体のサービスとして、静止衛星を利用したインマルサットやスラヤ、非静止衛星を利用したイリジウム等のサービスが利用可能であり、低データレートによるメッセージ通信を行うシステムとして、オープンコムによる資産追跡や位置管理等、コスパス・サーサットによる救難用信号伝送等が利用可能である。我が国では、N-STAR、インマルサット、イリジウム、スラヤ等の移動衛星通信システムが利用可能である。

1.1.1 静止衛星を利用した移動衛星通信システム

1980年代にインマルサットシステムで始まった移動衛星通信システムは、当初、移動体向けにLバンドのグローバルビームを利用して大型船舶を対象にしたアナログ音声電話及びテレックスサービスを提供することが主な役目であった。その後、1990年代からデジタル技術が導入され、通信回線数の増加とともに、サービス対象を船舶から航空機、陸上可搬設備、陸上移動体、小型衛星携帯端末へと拡大した。

1995年頃からは、特定のエリアに対するサービス提供を目的とした移動衛星通信システム（MSAT（北米周辺）、N-SATR（日本周辺）、OPTUS（豪州周辺）等）が登場した。これらのシステムは、国内及びその周辺をサービスエリアとする複数のスポットビームを使用しており、小型アンテナを用いた車載局やポータル端末による音声通信や、低速データ通信の利用を可能にした。

2000年代に入ってからは、10m以上の直径を有する大型展開アンテナを搭載した静止衛星システムが登場し、Garuda-1衛星、Thuraya衛星等により、主に政府機関や民間企業向けに小型衛星携帯端末を用いた音声通信／低速データ通信サービスが提供されている。また、これらの一部のユーザ端末については、衛星回線と地上GSM回線を切り替えで通信が可能なデュアルユース端末となっている。

2000年代後半以降、小型衛星帯域端末向けの高速データ通信サービスが開始された。第4世代インマルサット衛星システム（Inmarsat-4）では、最大492kbpsの高速通信サービス（BGAN）を提供している。同様にThuraya衛星は、小型のデータ通信用モジュール向けに最大44kbpsのIPサービスを提供している。

欧米では、電波の届かない場所やイベントへの利用等、機動力のある衛星システムと使い易い地上帯域端末を組み合わせた複合システムの検討と実験が行われ、米国ではAncillary Terrestrial Component（ATC）、欧州ではComplementary Ground Component（CGC）と呼ばれ、衛星通信回線と地上通信回線に同一の周波数帯を使用し、地上の周波数の使用
を衛星システム側が制御することを特徴としている。米国では、S 帯を用いた ICO-G1、TerreStar-1、L 帯を用いた SkyTerra-1 の 3 つの衛星が打ち上げられているが、本格的なサービス提供には至っていない。欧州では 2009 年 5 月、欧州全域に 2GHz 帯を用いた衛星移動通信サービスを提供する事業者として Inmarsat Ventures Ltd、Solaris Mobile Ltd が選定された。Solaris Mobile 社は、2009 年 4 月に打ち上げられた EUTELSAT 10（旧 W2A）衛星を用いて、小型衛星携帯端末向けのモバイル放送サービス等の提供を検討している。同サービスは、衛星から端末に向けてテレビやラジオ等の情報を直接配信するだけでなく、衛星から地上の中継局を介して端末に配信することも行う。

衛星と地上通信回線網との接続には大型の地上局を経由したフィーダリンクが使用される。フィーダリンクは多数の移動端末との情報を疎通させるのに十分な帯域が必要であるため、一般的に C 帯、Ku 帯、あるいは Ka 帯の周波数が用いられている。

ユーザ端末についても小型軽量化が進んでおり、主な端末例として Thuraya 衛星の XT 端末、Inmarsat の IsatPhone Pro 端末等が挙げられる。また、スマートフォン型の端末として、AT&T 社が提供する TerreStar 衛星向けの GENUS 端末等が挙げられる。

表 1-1、表 1-2 に、移動体向けのサービスを提供している代表的な静止衛星システムの諸元を示す。
表 1-1 代表的な静止衛星システムの諸元

<table>
<thead>
<tr>
<th>衛星</th>
<th>Inmarsat I-4</th>
<th>GARUDA-1</th>
<th>Thuraya</th>
<th>ICO-G1 (Echostar-G1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>国</td>
<td>英国</td>
<td>インドネシア</td>
<td>UAE</td>
<td>米国</td>
</tr>
<tr>
<td>システム形態</td>
<td>移動衛星通信</td>
<td>衛星地上デュアルユース：衛星/GSM</td>
<td>衛星地上デュアルユース：衛星/GSM</td>
<td>MSS/ATC システム</td>
</tr>
<tr>
<td>サービスエリア</td>
<td>グローバル</td>
<td>アジア全域</td>
<td>ヨーロッパ、中央アジア、中東、北・中央アフリカ</td>
<td>米国、プエルトリコ</td>
</tr>
<tr>
<td>周波数帯</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>S</td>
</tr>
<tr>
<td>打上げ/サービス開始年</td>
<td>2009年2月からグローバルサービス開始</td>
<td>2000年9月から商用サービス開始</td>
<td>2001年6月商用サービス開始</td>
<td>2003年1月にアトラスVで打上げ</td>
</tr>
<tr>
<td>スポットビーム数</td>
<td>200(N)、19(W)、1(G)</td>
<td>140</td>
<td>200</td>
<td>最大250ビーム</td>
</tr>
<tr>
<td>アンテナ径</td>
<td>9m</td>
<td>12m</td>
<td>12.25m</td>
<td>12m</td>
</tr>
<tr>
<td>伝送速度</td>
<td>492kbps(max)</td>
<td>―</td>
<td>444kbps(max)</td>
<td>―</td>
</tr>
<tr>
<td>衛星バス重顕・電力</td>
<td>3300kg、13kW</td>
<td>2600kg、10.5W</td>
<td>3200kg、11kW</td>
<td>6.6 トン</td>
</tr>
<tr>
<td>通信方式</td>
<td>―</td>
<td>GSM900デュアル</td>
<td>GSM、GSMデュアル</td>
<td>DVB-SH、GMR-1</td>
</tr>
<tr>
<td>中継機方式</td>
<td>Digital Transparent processor 120× 27MHz</td>
<td>―</td>
<td>―</td>
<td>ベンチバイブ方式</td>
</tr>
<tr>
<td>アンテナ方式</td>
<td>展開型パラボラ反射鏡アンテナ</td>
<td>88素子ダイポーフィールドアレイ Folding-Rib型展開アンテナ</td>
<td>128素子ダイポーフィールドアレイ 展開型アンテナ</td>
<td>46素子給電アレイ・反射鏡・GBBF方式</td>
</tr>
</tbody>
</table>
表 1-2 代表的な静止衛星システムの諸元

<table>
<thead>
<tr>
<th>衛星</th>
<th>Eutelsat-W2A (EUTELSAT-10A)</th>
<th>TerreStar-1&2 (Echostar-T1&T2)</th>
<th>SkyTerra-1,2&SA</th>
<th>N-STAR c, d</th>
</tr>
</thead>
<tbody>
<tr>
<td>国</td>
<td>アイルランド</td>
<td>米国</td>
<td>米国</td>
<td>日本</td>
</tr>
<tr>
<td>システム/サービス</td>
<td>衛星系(SDMB)と地上系(3G/Beyond3G)携帯電話を複合した移動体通信</td>
<td>MSS/ATCシステム</td>
<td>MSS/ATCシステム</td>
<td>移動衛星通信</td>
</tr>
<tr>
<td>サービスエリア</td>
<td>ヨーロッパ</td>
<td>米国、カナダ、プエルトリコ</td>
<td>北米、中米および南米</td>
<td>日本本土および概ね200海里</td>
</tr>
<tr>
<td>周波数帯</td>
<td>S</td>
<td>S</td>
<td>L</td>
<td>S</td>
</tr>
<tr>
<td>打上げ/サービス開始年</td>
<td>2009年にSeaLaunchで打上げ</td>
<td>初号機は2009年7月に打上げ</td>
<td>初号機は2010年に打上げ</td>
<td>2002年7月、2006年4月</td>
</tr>
<tr>
<td>スポットビーム数</td>
<td>6ビーム</td>
<td>北米500ビーム</td>
<td>北米500ビーム</td>
<td>S:4ビーム</td>
</tr>
<tr>
<td>アンテナ径</td>
<td>12m</td>
<td>18m</td>
<td>22m</td>
<td>5.1m～</td>
</tr>
<tr>
<td>伝送速度</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>音声:8kbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>パケット:上り最大144kbps/下り最大384kbps</td>
</tr>
<tr>
<td>衛星バス重量・電力</td>
<td>5.7トン 11kW</td>
<td>6.8トン 11.5kW</td>
<td>5.4トン 14kW</td>
<td>約1トン、約2トン/約2,400W、約12,000W</td>
</tr>
<tr>
<td>通信方式</td>
<td>DVB-S, SH, E-SSA, ETSI S-MIM</td>
<td>—</td>
<td>—</td>
<td>回線交換方式:FDMA(SCPC)/パケット交換方式:リターンリンクFDMA(SCPC)/フォワードリンクTDM</td>
</tr>
<tr>
<td>中継器方式</td>
<td>—</td>
<td>—</td>
<td>Onboard Digital Channelizer</td>
<td>回線交換方式:パケット交換方式</td>
</tr>
<tr>
<td>アンテナ方式</td>
<td>12m (展開失敗) 78素子給電アレイ反射鏡・GBBF方式</td>
<td>82素子給電アレイ反射鏡・GBBF方式</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

注: 以上の情報は参考までに記載されています。実際の情報は衛星運営者や関連機関にご確認ください。
1.1.2 非静止衛星を利用した移動衛星通信システム
非静止衛星の軌道は大きく分けて長楕円軌道（HEO）、中高度軌道（MEO）、低高度軌道（LEO）がある。現在の非静止衛星を利用した商用の移動衛星通信サービスは、LEOの周回衛星システムを用いたサービスが主流であり、小型衛星携帯端末向けの音声通話やデータ通信に加え、機器の位置情報や制御情報等を低ビットレートで伝送するM2M（Machine to Machine）サービスなどが提供されている。

HEO は、高度約 40,000km（遠地点）の軌道を周回するもので、連続したサービスを提供するための衛星機数は最低 2〜3 機程度となる。1960年代にロシア（旧ソビエト社会主義共和国連邦）が打ち上げたモルニア衛星が HEO を採用しており、2006年以降、同じ軌道を用いた後継システムであるメリディアン衛星が打ち上げられている。

MEO は、高度数千から 2 万kmの軌道を周回するもので、連続したサービスを提供するための衛星機数は 8〜10 機程度となる。米国 ICO 社は、10 機の衛星による移動衛星通信サービスの提供を目指し、一部の衛星は打ち上げたものの、計画は中断している。

LEO は、高度 5 百から数千kmの軌道を周回するもので、連続したサービスを提供するための衛星機数は数十機程度となる。主な衛星システムとしては、イリジウム、グローバルスター、オーブコムが挙げられる。

イリジウムは、66 機の衛星により、小型衛星携帯端末向けの音声通話、データ通信サービスを提供するとともに、船舶や車両等への設置型の小型アンテナを利用した高速通信サービスを提供している。グローバルスターも同様に 48 機の衛星により、小型衛星携帯端末向けの音声通話、データ通信サービスを提供する他、M2M 型の資産追跡サービス等を展開している。

近年、音声通信の他にも通信衛星を利用したデータ通信の市場拡大が見込まれる。その一例としては、低ビットレートで機器の制御情報等を伝送する M2M サービスがあり、主な用途としては、運搬車両や建設重機、船舶等の資産管理（稼働状況、位置等）、個人の位置情報把握、環境計測データ伝送等の研究用途等における利用があげられる。2012年における世界全体の移動衛星端末のうちM2M用途の端末数は約184万台（静止衛星用端末を含む）、全ての移動衛星端末約291万台の約63%を占める。

低ビットレートの衛星通信システムの代表例であるオーブコムは、27 機の衛星による簡単にデータ通信のみを対象としたサービスであり、M2M 型の資産追跡、位置管理サービス、海洋等の環境計測データの伝送サービス等を提供している。

低ビットレートによるデータ通信サービスは、救難用信号の伝送にも用いられている。コスパス・サーサット・システムは、遭遇した船舶、航空機または陸上移動体に備え付けられた発信機（ビーコン）が発射する遭遇警報の位置を人工衛星により検知し、関係する

1「Mobile Satellite Communications Markets Survey Prospects To 2022」EUROCONSULT, 2013
2 406MHz の電波を利用し、ビーコン種類（船舶用、航空機用、陸上移動用等）国番号、ID 情報、位置情報
最寄りの国等の受信設備でこれを受信し、救助機関等に迅速に配信するための国際的なシステムである。1985年にサービスが開始され、当初は低軌道衛星システムで構成されたが、1996年より静止衛星、2005年より中軌道衛星によるシステム構築も進められている。現在、Galileo衛星により、衛星から地上への遭難警報の送信だけでなく、地上から衛星へのメッセージ送信機能の具備が検討されている。

また、測位衛星にメッセージ送信機能を具備する動きも出てきており、中国の測位衛星である北斗衛星では漢字120文字のショートメッセージサービスが計画されている。

表1-3に、移動体向けのサービスを提供している代表的な非静止衛星システムの諸元を示す。
<table>
<thead>
<tr>
<th>衛星</th>
<th>イリジウム</th>
<th>グローバルスター</th>
<th>オープコム</th>
<th>コスパス・サーサット</th>
</tr>
</thead>
<tbody>
<tr>
<td>国</td>
<td>米国</td>
<td>米国</td>
<td>米国</td>
<td>米国、ロシア、フランス、カナダ、日本等</td>
</tr>
<tr>
<td>軌道</td>
<td>低高度軌道</td>
<td>低高度軌道</td>
<td>低高度軌道</td>
<td>低高度軌道、中高度軌道、静止軌道</td>
</tr>
<tr>
<td>衛星数</td>
<td>66</td>
<td>48</td>
<td>27</td>
<td>低高度軌道：7中高度軌道：75（予定）静止軌道：5</td>
</tr>
<tr>
<td>サービスエリア</td>
<td>グローバル</td>
<td>グローバル</td>
<td>グローバル</td>
<td>グローバル</td>
</tr>
<tr>
<td>周波数帯</td>
<td>L</td>
<td>上り：L、下り：S</td>
<td>VHF</td>
<td>406MHz</td>
</tr>
<tr>
<td>ビーム数</td>
<td>48（16ビーム×3）</td>
<td>16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>伝送速度</td>
<td>音声：2.4kbpsデータ通信：最大128kbps</td>
<td>音声、低速データ通信：9,600bps、4,800bps、2,400bpsの可変高速データ通信：240kbps以下</td>
<td>データ：2.4/4.8kbps</td>
<td></td>
</tr>
<tr>
<td>衛星パラメータ</td>
<td>重量・電力：680kg、1400W</td>
<td>重量・電力：450～700kg、1500～1700W</td>
<td>重量・電力：42kg、100W</td>
<td></td>
</tr>
<tr>
<td>通信方式</td>
<td>TDMA/FDMA</td>
<td>CDMA</td>
<td>FDMA</td>
<td>ビーコン</td>
</tr>
<tr>
<td>中継機方式</td>
<td>Multiple layers of on-board subsystem</td>
<td>bentpipe</td>
<td>bentpipe</td>
<td></td>
</tr>
</tbody>
</table>
1.1.3 我が国の移動衛星通信システム等の導入状況

我が国における移動衛星通信システム等の国内導入経緯を図 1-1、移動衛星通信システムの無線局数の推移を図 1-2 に示す。1982 年に英国インマルサット社の全世界的なサービスの開始と同時に国内においても同サービスが導入された。その後、1996 年に NTT ドコモが N-STAR を用いた国内向けサービスを開始し、1999 年には全世界的なサービスであるイリジウムが導入された。2011 年 3 月に発生した東日本大震災や、台風・大雪等の災害を受けて、災害に強い衛星通信の重要性が改めて指摘されており、企業や公共機関等での新たな災害対策用のニーズを見込まれる中、インマルサット衛星を用いた小型軽量の衛星携帯電話（インマルサット GSPS 型）によるサービスが 2012 年 8 月に導入され、スラヤ衛星を用いた衛星携帯電話サービスが 2013 年 2 月より導入されている。このように、我が国の移動衛星通信の利用の選択肢は拡大し、利用者の利便性は向上していると言え、2011 年度（平成 23 年度）以降、移動衛星通信システムの無線局数の伸びも顕著となっている。

以下に、我が国で利用可能な主な移動衛星通信システムの概要を示す。

<table>
<thead>
<tr>
<th>移動衛星通信システム等</th>
<th>1980年代</th>
<th>1990年代</th>
<th>2000年代</th>
<th>2010年代</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5/1.6GHz 帯 (I帯)</td>
<td>△インマルサット (90s)</td>
<td>△インマルサット (90s)</td>
<td>△インマルサット (12s)</td>
<td></td>
</tr>
<tr>
<td>2.5/2.6GHz 帯 (5帯)</td>
<td>△N-STAR (90s)</td>
<td>△N-STAR (90s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主な災害</td>
<td>△北海道東部地震 (93)</td>
<td>△南海放電 (97)</td>
<td>△東日本大震災 (11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>△関東大震災 (95)</td>
<td>△南海放電 (94)</td>
<td>△南海地震 (95)</td>
<td></td>
</tr>
</tbody>
</table>

図 1-1 移動衛星通信システム等の国内導入経緯
平成 25 年 3 月末時点での統計。
オムニトラックス、N-STAR、インマルサットは、静止衛星を利用した衛星移動通信サービス。
イリジウム及びオーブコムは、周回衛星を利用した衛星移動通信サービス。
オムニトラックスは平成 23 年 3 月でサービス停止。
スラヤは平成 25 年 2 月にサービス開始のため、未計上。

図 1-2 我が国における移動衛星通信システムの無線局数の推移

(1) N-STAR
2.5/2.6GHz 帯を利用した移動衛星通信サービスとしては、平成 8 年 3 月末から NTT ドコモが静止衛星 N-STAR を利用して衛星電話サービスを提供している。同衛星は a 号機が平成 7 年（1995 年）8 月に、b 号機が平成 8 年（1996 年）2 月に打ち上げられた。その後、平成 14 年（2002 年）に b 号機の後継である c 号機、平成 18 年に a 号機の後継である d 号機が打ち上げられ、これら 2 機の静止衛星が照射する 4 つのビームにより、日本全国及び沿岸 200 海里をカバーしている。平成 22 年（2010 年）には、現行の第 2 世代である WIDESTAR2 サービスが開始されている。

(2) インマルサット
1.5/1.6GHz 帯を利用し、全世界的にサービスを提供している通信システムであるインマルサット衛星を利用したサービスでは、我が国では、昭和 57 年（1982 年）2 月の世界的サービス開始と同時に、KDDI（当時、国際電信電話株式会社）が我が国でのサービスを開始した。現在では、KDDI のほか、日本デジコム、JSAT モバイルコミュニケーションズなど全国 8 社が国内免許人となり、サービス提供を行っている。

(3) イリジウム
1.6GHz 帯を利用し、全世界的にサービスを提供しているイリジウム衛星を利用したサービスでは、日本イリジウム社がサービス提供を開始したが、1999 年 8 月、米国イリジウム社が破産申請し、サービスが一時中断された。その後、Iridium Satellite LLC 社が事業を継承し、2001 年 3 月にサービスが再開された。我が国では、2005 年 6 月に KDDI がサービス
スを再開し、現在に至っている。

(4) スラヤ
1.5/1.6GHz 帯を利用して、ヨーロッパ、アフリカ、中東、アジア、オセアニア地域を対象にサービスを提供しているスラヤ衛星を利用するサービスでは、2012年10月に技術基準が整備され、2013年2月よりソフトバンクモバイル及び日本デジコムによるサービスが開始された。

表1-4 国内移動衛星通信システムのサービス概要（平成25年10月末時点）

<table>
<thead>
<tr>
<th></th>
<th>N-STAR※1</th>
<th>インマルサット (BGAN)※2</th>
<th>インマルサット (GSPS型)※3</th>
<th>イリジウム※4</th>
<th>スラヤ※5</th>
</tr>
</thead>
<tbody>
<tr>
<td>月額基本使用料</td>
<td>4,900〜15,000円</td>
<td>5,000〜380,000円</td>
<td>4,900円</td>
<td>5,000〜6,000円</td>
<td>4,900〜9,800円</td>
</tr>
<tr>
<td>通話料</td>
<td>45〜90円/30秒</td>
<td>42.5円/15秒</td>
<td>40円/15秒</td>
<td>35〜572円/20秒</td>
<td>160円/分</td>
</tr>
<tr>
<td>データ通信料</td>
<td>375円/30秒</td>
<td>—</td>
<td>70円/通</td>
<td>50〜58円/通</td>
<td>70円/通</td>
</tr>
<tr>
<td>パケット通信料</td>
<td>0.1円/パケット/10kbyte</td>
<td>4.3〜8.5円</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>端末重量</td>
<td>約1.3kg</td>
<td>—</td>
<td>約279g</td>
<td>約247g</td>
<td>約193g</td>
</tr>
<tr>
<td>通信速度</td>
<td>上り最大144kbps/下り最大384kbps</td>
<td>上下最大492kbps</td>
<td>上下2.4kbps (音声通話)</td>
<td>2.4kbps（音声）</td>
<td>上り最大15kbps、下り最大60kbps</td>
</tr>
</tbody>
</table>

※1: NTT ドコモホームページ
http://www.docomo.biz/html/service/widestar/
http://www.docomo.biz/html/service/widestar/rate/

※2: KDDI パンフレット

http://www.docomo.biz/html/service/isatphonepro/pop_02.html）

※4: KDDI ホームページ（http://www.kddi.com/business/iridium/keitai/ryokin.html,
http://www.kddi.com/business/iridium/keitai/kino.html）

※5: ソフトバンクホームページ
http://www.softbank.jp/mobile/product/satellite_phone/201th/spec/spec_1/,
http://www.softbank.jp/mobile/price_plan/satellite_phone/
1.2 衛星測位システム等の概要

1.2.1 衛星測位システム

衛星測位システムは、複数の衛星からの信号をもとに、地上の受信端末の3次元的な位置と時刻を取得可能なシステムである。全世界に対してグローバルにサービスを提供するグローバルシステムと特定の地域に対してサービスを提供するリージョナルシステムがある。

米国のGPSは、6軌道面に各4機の計24機と、軌道上予備の衛星で構成されており、2013年4月現在、31機が運用されている。米空軍が運用し、軍及び民間が利用する衛星測位システムであり、民生用信号は世界に無料開放している。GPSは世代交代を行いながら新しい民生用信号の追加などの機能強化がなされている。現行は第3民生信号(L5)が導入されたBlock IIF衛星が打ち上げられつつあるとともに、その後継機となるBlock III衛星を開発中である。

ロシアのGRONASSは、3軌道面に各8機の計24機の衛星で構成されており、2013年4月現在、29機が運用され、うち利用可能な衛星は23機となっている。ロシア軍が運用し、軍及び民間が利用する衛星測位システムで、次世代機であるGLONASS-Kシリーズへの移行を検討しており、従来のFDMA信号に加え、GPS/Galileo等と互換のCDMA信号を導入することが予定されている。

欧州のGalileoは、3軌道面に各10機の計30機の衛星で構成されている。2005年12月に1機目、2008年4月の2機目の試験衛星を打ち上げ、さらに2011年10月に1/2号機を打ち上げた。全体システムの整備完了は2016〜2019年の予定である。Galileoは、欧州委員会（European Commission:EC）が所有する民生システムであり、一般向けの位置情報を提供する無料サービス、高精度の位置情報を提供する有料サービス、運輸事業用の有料サービス、政府機関向けの暗号化サービス、人命捜査・救助の国際サービスを提供予定である。

中国の北斗は、静止衛星5機、地球同期軌道衛星3機、中高度軌道衛星27機（3軌道面に各9機）の計35機で構成される。2012年11月現在で16機の衛星が運用され、中国及び太平洋地域へのサービスが開始されている。世界中をカバーする全体システムの完成は2020年の予定である。全世界向けには無料サービスと許可されたユーザ向けの高精度サービス、さらに地域限定サービスとして、軌道情報誤差や遅延等の補正情報を提供して測位精度を向上するサービスがある。特徴的なサービスとしては漢字120文字を上限とするショートメッセージサービスを提供する。

一方、リージョナルシステムとしては、我が国の実用準天頂衛星システムQZSS（Quasi-Zenith Satellite System）に加え、インドのIRNSS（Indian Regional Navigation Satellite System）の整備が計画されている。

インドのIRNSSは、静止衛星3機、地球同期軌道衛星4機の計7機で構成される。イン
ド周辺の地域をカバーし、2014年までに全体システムを整備予定である。GPSと同じL5帯と独自のS帯の測位信号の提供を予定している。さらに、GAGANと呼ばれる航空用衛星航法補強システムを整備中である。

表1-5に代表的な衛星測位システムの諸元を示す。
<table>
<thead>
<tr>
<th></th>
<th>衛星</th>
<th>GPS</th>
<th>GLONASS</th>
<th>Galileo</th>
<th>北斗</th>
<th>IRNSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>運用主体</td>
<td>米国国防総省</td>
<td>ロシア連邦宇宙局</td>
<td>歐州連合（EU）、欧州委員会（EC）企業・産業総局</td>
<td>中国国家航天局（CSN：中国衛星航法プロジェクトセンター）</td>
<td>インド宇宙研究機関</td>
<td></td>
</tr>
<tr>
<td>サービス 提供範囲</td>
<td>グローバル</td>
<td>グローバル</td>
<td>グローバル</td>
<td>グローバル (現時点では特定地域)</td>
<td>特定地域</td>
<td></td>
</tr>
<tr>
<td>軌道</td>
<td>高度約 20,200km 円軌道 軌道傾斜角 56°</td>
<td>高度約 19,100km 円軌道 軌道傾斜角 64.8°</td>
<td>高度约 23,222km 円軌道 軌道傾斜角 56°</td>
<td>MEO：高度約 21,500km 円軌道、軌道傾斜角 55°</td>
<td>IGSO：高度約 36,000km 円軌道、軌道傾斜角 29°</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IGSO：高度約 36,000km 円軌道、軌道傾斜角 55°</td>
<td>GSO：東経 32.5°、83°、131.5°</td>
<td></td>
</tr>
<tr>
<td>コンステレーション</td>
<td>6 軌道面×4 衛星の 24 機 + 軌道上予備機 2011年6月以降27機ノミナルに移行</td>
<td>3 軌道面×8 衛星の24機 + 軌道上予備機</td>
<td>3 軌道面×9 衛星の27機 + 軌道上予備機 3機 合計30機</td>
<td>MEO：3 軌道面×9 衛星の 27 機</td>
<td>GEO：3 衛星 IGSO：地上軌跡 2×2 衛星の 4 機 合計7機</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GEO：5 衛星 IGSO：3 衛星 合計35機</td>
<td></td>
<td></td>
</tr>
<tr>
<td>サービス目的（目標 設位精度）</td>
<td>軍事用 民生一般（精度 10m 以下）</td>
<td>軍事用 民生一般（現状の精度 5m 以下、衛星更新に伴い更に精度向上を目指す）</td>
<td>民生一般（精度 4m 以下）（特に交通ナビ、警察・消防、遭難救助等を意識）</td>
<td>軍事用 民生一般（精度 10m 以下、広域補強サービスとの併用により 1m を目標）</td>
<td>民生/公共：L5、S 帯</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(精度 20m 以下を目標)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>測位信号</td>
<td>民生：L1C/A、L2C、L5、L1C(Block III〜) 军事：L1P、L2P、L1-M、L2-M</td>
<td>民生：L10F、L20F、L30C(GLONASS-K〜) 军事：L1SF、L2SF</td>
<td>民生：OS：E1、E5a、E5b CS：E1、E5a/b、E6 公共：PRS：E1、E6</td>
<td>民生：B1-C、B2a、B2b 军事：B1、B3、B3-A</td>
<td>民生/公共：L5、S 帯</td>
<td></td>
</tr>
<tr>
<td>運用状況</td>
<td>2013年4月現在で31衛星が運用中</td>
<td>2013年4月現在で29衛星が運用中（内利用可能な衛星23機）</td>
<td>2013年4月現在で4衛星が運用中</td>
<td>2012年11月現在で16衛星が運用中</td>
<td>2013年4月現在、初号機打ち上げのアナウンスなし</td>
<td></td>
</tr>
</tbody>
</table>
1.2.2 我国の測位衛星システムの導入状況

(1) 実用準天頂衛星システム

準天頂衛星システムは、平成13年7月の日本経済団体連合会による準天頂衛星計画をもとに、平成15年度から総務省、文部科学省、経済産業省、国土交通省の各省による研究開発が開始され、平成22年9月に準天頂衛星の初号機である「みちびき」が打ち上げられた。同年12月より技術実証・利用実証が開始され、現在も、河川監視、バスの利便性向上、IT自動走行実証、鉄道車両位置管理といったアプリケーションに関する実証実験が行われている。

平成23年の宇宙開発戦略本部宇宙開発戦略専門調査会報告では、「測位衛星システムが宇宙政策全体の重点として位置づけられることを強く期待する」とされ、また、「我が国測位衛星システムが具備する機能」として「航法信号の提供機能（航法信号の秘匿・暗号化機能を含む）」「補強機能」「災害時の情報提供や安否確認等に係る機能（簡易メッセージ送信機能、双向通信機能）」が挙げられている。

平成23年9月にはこれらを受けて「实用準天頂衛星システム事業の推進の基本的な考え方」が閣議決定され、「我が国として实用準天頂衛星システムの整備に可及的速やかに取り組むこととする」具体的には、2010年代後半を目途にまずは4機体制を整備する。将来的には、持続測位が可能となる7機体制を目指すこととする」とされ、实用準天頂衛星システムの開発・整備・運用は内閣府が実施することとなった。

実用準天頂衛星システム事業の推進の基本的な考え方

平成23年9月30日　閣議決定

準天頂衛星システムは、産業の国際競争力強化、産業・生活・行政の高度化・効率化、アジア太平洋地域への貢献と我が国プレゼンスの向上、日米協力の強化及び災害対応能力の向上等広義の安全保障に資するものである。

諸外国が測位衛星システムの整備を進めていることを踏まえ、我が国として、実用準天頂衛星システムの整備に可及的速やかに取り組むこととする。

具体的には、2010年代後半を目途にまずは4機体制を整備する。将来的には、持続測位が可能となる7機体制を目指すこととする。

我が国として実用準天頂衛星システムの開発・整備・運用は、準天頂衛星初号機「みちびき」の成果を活用しつつ、内閣府が実施することとし、関連する予算要求を行うものとする。また、開発・整備・運用から利用及び海外展開を含む本事業の推進に当たっては、
関係省庁及び産業界との連携・協力を図ることとする。
内閣府がこうした役割を果たすために必要な法律改正を予算措置に合わせて行うこととする。
なお、内閣府に実施体制を整備するに当たっては、行政機関の肥大化につながらないよう配慮するものとする。

平成25年1月に宇宙開発戦略本部で決定された新たな宇宙基本計画においては、「5年間の開発利用計画」として「2010年代後半を目途に4機体制を構築するため、準天頂衛星システムの開発、整備を着実に推進する」等とされ、宇宙開発利用に関し政府が総合的かつ計画的に実施すべき施策として掲げられている。

現在これらの決定等に従い、内閣府は平成25年3月に準天頂衛星システムの運用等事業及び衛星開発等事業の民間事業者を選定し、総合システム設計を実施している。
実用準天頂衛星システムのサービス概要を以下に示す。

図1-3 準天頂衛星システムの概要
① 測位補完サービス

GPS 衛星等による測位では、山陰やビル影の影響で測位に必要な衛星 4 機の視野を確保できないことが想定される。この時、準天頂衛星が天頂にあれば、残り 3 機が可視であれば測位可能となり、測位可能場所・時間帯が大幅に向上する。同時に、測位に利用する衛星群の幾何学的配置が良くなり、測位精度向上に寄与する。特に垂直方向精度の向上には、高仰角と低仰角にそれぞれバランス良く配置された測位衛星が必要となる。天頂にある準天頂衛星と他の低仰角衛星との組合せ使用で、垂直方向精度が向上する。

② サブメータ級測位補強サービス

L1Sa 信号により、準天頂衛星及び GPS 衛星の補強情報を提供する。GPS の補強においては、GPS のみの場合には約 10m の測位精度であり、信頼性の保証はないが、GPS と補強情報を組み合わせることで、2m の測位精度と信頼性の確保が可能となる。

具体的な提供情報としては、まず、捕捉支援情報が挙げられ、利用可能な全ての衛星情報（軌道、健全性等）を配信することで、初期起動時の測位時間を数秒にまで短縮可能である。また、補正情報として、各衛星の時刻・軌道、各地域の電離層遅延等の誤差情報を配信することで、通常の測位値を補正し、サブメータ級にまで測位精度を向上できる。さらに、インテグリティ情報として利用衛星や補強システムの動作の健全性情報を配信することで、電離層異常やシステム不具合等による過大な測位誤りの利用を即座に防止できる。

③ センチメータ級測位補強サービス

電離層伝搬遅延補正、対流圏伝搬遅延や軌道時刻誤差に関する補正情報を提供する。補強の対象の信号は、L1-C/A・L5（準天頂衛星）、L1-C/A・L2P・L5（GPS）である。これにより、以下の測位精度を達成する。

- 静止水平精度: 6cm 以下 (95%)
- 静止垂直精度: 12cm 以下 (95%)
- 移動体水平精度: 12cm 以下 (95%)
- 移動体垂直精度: 24cm 以下 (95%)
※ 移動体の速度は、100km/h 以下

具体的な提供情報としては、まず補正情報があげられ、電子基準点でのモニタ情報、電離層遅延情報等を配信することにより、測定値を電子基準点でのモニタ値と比較することで、センチメータ級に至る相対位置精度がその場で得られる。また、インテグリティ情報として、利用衛星や補強システムの動作健全性情報を配信することで、電離層異常やシステムの不具合等による過大な測位誤りの利用を即座に防止できる。

19
④ 公共専用信号配信サービス
GPS信号を意図的に妨害するジャミングや偽のGPS信号を送信するスプーフィングを回避すること、政府あるいは政府が認めたユーザだけが使用できる公共用信号を配信することが目的である。具体的な情報としては、測位補完情報、測位補強情報、その他の状況を配信する。

⑤ 簡易メッセージ配信サービス
災害発生時等の緊急時に、津波情報、避難情報、交通情報等のメッセージ（簡易メッセージ）を個人携帯端末等のユーザ端末に配信する。
簡易メッセージの配信には、サブメータ級測位補強サービスの信号であるL1Saifのフォーマットの一部（メッセージタイプ62のフォーマット）を使用する。情報は212bitsで地域識別があり、15秒毎に1メッセージ以上を配信可能である。

⑥ 測位技術実証プラットフォームサービス
L1信号、L2C及びL5信号等の2ないし3周波数及びその測位補強信号を使った衛星測位技術は、電離層遅延誤差補正やマルチパス除去等により著しく測位精度を向上できることから、次世代の高精度衛星測位技術として世界的にも注目されているため、測位技術実証プラットフォームを構築することで実証機会を提供すると共に、日本及びアジア太平洋地域における準天頂衛星システムの利用拡大を目的とした実証を行う。
2 移動衛星通信システムに求められるサービス

移動衛星通信システムの利用者ニーズをアンケートにより調査した。現在既に衛星通信の利用が進んでいる企業等のユーザに対しては書面によるアンケートを、将来の利用者となり得る一般消費者に対してはインターネットによるアンケートを実施した。アンケート結果をもとに移動衛星通信システムの利用者ニーズを分析した。

2.1 一般消費者のニーズ

一般消費者のニーズを検討するため、20歳以上の男女を対象にインターネットによるWebアンケートを実施した。男女、地域（北海道・東北、関東、中部、近畿、中国・四国・九州・沖縄）、年代（20代、30代、40代、50代、60歳以上）の分布はほぼ同数であり、回答数は1050である。このアンケート結果から利用ニーズをまとめる。

まず、移動衛星通信システムの認知度および利用割合について質問した。その結果、移動衛星通信システムの認知度は50%であり、移動衛星通信システムの利用割合は1%程度であった。

また、移動衛星通信システムの利用希望について質問した。その結果、移動衛星通信システムの利用希望は「利用料金が安ければ使ってみたい」と50%が回答している。移動衛星通信システムの認知度と利用希望をクロス集計した結果、認知度に依存せず「利用料金が安ければ使ってみたい」と約半数が回答している。条件が合えば移動衛星通信システムを利用してみたいという人が約半数いると推定できる。

図 2-1 移動衛星通信システムの認知度
図 2-2 移動衛星通信システムの利用希望

また、一般消費者に対して、移動衛星通信システムの利用シーンについて質問したところ、図 2-3 のような回答が得られた（3 つまで選択し順位を付与）。1 位の回答としては「災害時、地上の通信網が利用できない場合に備えて保有」が 70%近くを占めており、災害時の利用ニーズが非常に高いことがうかがえる。

図 2-3 移動衛星通信システムの利用シーン
2.2 企業等のニーズ

企業等のニーズを調査するために、書面によるアンケートを実施したが、その際のアンケートの送付先の選定は以下のとおりとした。

- 衛星通信の利用が多い業種、事業継続計画導入率が高い業種など、8 業種を対象に抽出
- 民間企業に関しては、一定の従業員数以上の企業を対象に抽出
- 地域的にはランダムに抽出

<table>
<thead>
<tr>
<th>表 2-1 選定業種</th>
</tr>
</thead>
<tbody>
<tr>
<td>對象業種</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>金融・保険</td>
</tr>
<tr>
<td>電力・ガス・通信・放送</td>
</tr>
<tr>
<td>陸上・航空運輸</td>
</tr>
<tr>
<td>水運</td>
</tr>
<tr>
<td>建設</td>
</tr>
<tr>
<td>製造</td>
</tr>
<tr>
<td>小売・卸売</td>
</tr>
<tr>
<td>自治体</td>
</tr>
</tbody>
</table>

※ 民間企業のうち、衛星通信サービス提供事業者は対象外

アンケートは 637 通送付し、123 通の回答があった。これらのアンケート結果から企業等のニーズを分析すると、以下のとおりとなる。

移動衛星通信システムの利用の有無について質問したところ、回答者の 56%が、移動衛星通信システムを利用していると回答した。さらに、移動衛星通信システムの利用者に対して、利用している衛星通信システムを質問したところ、N-STAR、Iridium、Inmarsat を利用しているとの回答が多かった。
図 2-4 利用している移動衛星通信システム

移動衛星通信システムの利用者に対して、使用頻度を質問した。その結果、「災害発生時のみ利用する」との回答が過半数を占める一方、平時から利用するとの回答も約 42%を占め、ほとんど利用しないとの回答は 5%未満であった。

図 2-5 小型衛星携帯端末向けサービスの利用頻度

次にユーザ端末について質問した。ユーザ端末について望ましい形態として、衛星通信専用端末、日頃の携帯電話端末への衛星通信機器取り付け、地上通信と衛星通信の双方を利用可能な端末を提示し選択方式で解答を得た。その結果、これらの端末に関するニーズは分散しているが、日頃使用している携帯電話端末に機器を取り付ける形態へのニーズが最も多く、38%を占めた。
図 2-6 端末の形態に対するニーズ

今後の5年程度の間に移動衛星通信システムを導入する計画があるかについて質問した。その結果、新たな移動衛星通信サービスの導入、もしくは利用中のサービスの端末数の増加について前向きな企業・自治体は32％であり、導入予定台数は、10台以下が半分以上を占めた。なお、「導入予定はない」と答えた企業・自治体（41％）のうち、46％の企業・自治体は既に移動衛星通信システムを導入済みであった。

図 2-7 移動衛星通信サービスの導入予定（新規需要・追加需要）
2.3 今後の需要予測

前述のアンケート結果を受け、今後も企業等における衛星移動通信システムの導入が進むと考えられることから、その需要予測を行った。

算出手法としては、2007年から2012年までの5年間における年平均成長率が2020年まで継続するものと仮定した。その結果、2020年にはおよそ22万台の端末需要があると試算された。

※2007年～2012年の端末数は、イリジウム、N-STAR、インマルサットの端末数の合計

図 2-8 2020年までの移動衛星通信システムの需要予測

3 2007年～2012年の年平均成長率は、([2012年の端末台数]/[2007年の端末台数])の5乗根により算出した
2.4 東日本大震災を受けた新たな衛星通信ニーズ

2011年3月11日に発生した東日本大震災では、地震・津波による通信設備の物理的な破壊、電源喪失による機能の停止、さらには通信集中による輻輳と電気通信事業者による通信規制など、様々な形で通信機能が途絶えた。図2-9に、東日本大震災における通信の被災・輻輳状況の概要を示す。固定通信については、ピーク時で190万回線が被災すると共に、固定電話の通信要求に対し、最大で80〜90%の規制が行われた。移動通信については、ピーク時で合計15,000局の電気通信事業者（NTTドコモ、KDDI、ソフトバンクモバイル、イー・モバイルの4社合計）が停波すると共に、音声通信の要求に対し、最大で70〜95%の通信規制が行われた。固定通信に対する規制は3月22日、移動通信に対する規制は3月17日までに解除されている。

図2-9 東日本大震災における通信の被災・輻輳状況の概要

東日本大震災での被災状況をもとに、衛星通信システムの潜在的な回線数の需要を試算する。本検討での想定を以下に示す。

<table>
<thead>
<tr>
<th>[衛星通信に求められる災害時の最大通信需要]</th>
</tr>
</thead>
<tbody>
<tr>
<td>= [停波した基地局が担うと想定される通信量]</td>
</tr>
<tr>
<td>・停波した基地局が担うと想定される音声通話 → 音声通話の需要と仮定</td>
</tr>
<tr>
<td>・停波した基地局が担うと想定される発信パケット → メッセージ通信の需要と仮定</td>
</tr>
</tbody>
</table>
東日本大震災での規制後の最大通信倍率、最大通信規制率は各社より図2-10〜図2-12の通り報告されている。

図2-10 震災時の通信規制状況
（出典：大規模災害等緊急事態における通信確保のあり方に関する検討会資料より）

図2-11 輻轍状況（NTTドコモ）
（出典：大規模災害等緊急事態における通信確保のあり方に関する検討会資料より）
図 2-12 転轍状況（KDDI、ソフトバンク）
（出典：大規模災害等緊急事態における通信確保のあり方に関する検討会資料より）

震災時の音声通話回線の需要を試算する。
震災時に発生した通信規制実施前の最大の音声通話の発信数を次式で定義する。

図 2-11～図 2-12 及び携帯電話事業者の契約数割合をもとに、震災直後の音声通話の最大発信倍率は、平時と比べ、東北地域で 80 倍、首都圏で 86 倍と試算される。

平時の携帯電話による音声通話の発信数は、総務省の統計によると、東北地域で 38 億 8,300 万回/年、関東地域で 210 億 6,000 万回/年である。東日本大震災が発生した時間帯である14時～15時の発信回数率6.5%を用いると、当該時間帯の平時の音声通話の発信数は、東北地域で 69 万回/時間、関東地域で 375 万回/時間と試算される。

これらの値から、最大音声発信数は東北地域で 5,520 万回/時間、関東地域で 32,250 万回/時間となり、合計すると 37,770 万回/時間となる。
この発信数を満たすための回線数を、携帯電話の呼損率をパラメータとしてアーラン B式で試算する。平均の通話時間を138秒、通常の携帯電話の呼損率3%では、規制された通話をすべて収納するための回線数は東北・関東地域で1,404万回線と試算される。

東北・関東地域での基地局は137,500（5社合計）局であり、東日本大震災で被災したのは29,000局であった。その結果、衛星通信で対応すべき回線数は、東北・関東地域での被災した基地局の割合（21%）を上記回線数にかけることで、東北・関東地域では295万回線と試算される。

次にメッセージ通信の需要量を試算する。
震災発生時に発生した、通信規制前の最大メール送信数を以下の式で試算する。

\[
\text{[規制前の最大メール送信数]} = \text{[携帯電話台数]} \times \text{[平時のメール平均送信数]} \times \text{[通信量の最大増加率]}
\]

図2-10よりパケット通信で規制を行ったNTTドコモを対象に試算する。
一般社会法人電気通信事業者協会によると、NTTドコモの携帯契約数は、東北地域で383万、関東地域で2,436万であった。
東日本大震災によるパケット通信量の最大増加率は、図2-11より、東北地域で4倍、東北地域で3倍であった。

メールの平均送信数は、ネオマーケティング社のアンケートによると図2-13に示す結果が得られている。このアンケート結果をもとに一日の平均メール送信数を6.74通と想定した。
以上の結果、震災時に発生した最大メール送信数は東北地域で430万通/時間、関東地域で2,052万通/時間、合計すると2,482万通/時間と試算される。

衛星通信で対応すべきメール送信数は、音声通話と同様に、最大メール送信数に東北・関東地域での停波した基地局の割合（21%）をかけることで、東北・関東地域で521万通/時間と試算される。

以上の試算は、東日本大震災時の状況をもとに試算したものであるが、その後、各通信事業者は対策を講じている。大規模災害等緊急事態における通信確保のあり方に関する検討会での報告によると、基地局停波の要因として、85%が停電、15%が津波、基地局設備故障及び伝送路故障等であり、伝送路故障については東北地域のみにおいて発生している。これを受け、基地局の停電による停波の対策として無停電化、バッテリー24時間化が推進されており、人口の約65%をカバーすることが示されている（ドコモ発表資料）。

無停電化、バッテリー24時間化が推進されることにより、震災時に停波する基地局数は減少するものと考えられる。停波するであろう基地局の割合を、無停電化及びバッテリー24時間化の対策がカバーされない35%と仮定した場合、衛星通信で対応する音声通信回線数は、東北・関東地域では103万回線、メール送信数に関しては東北・関東地域で182万通/時間と試算される。
以上のように、東日本大震災後の携帯事業者等の災害対策を踏まえてもなお、移動衛星通信システムによる通信の疎通が求められると考えられる。この際、平時の利用を前提とした事業者による提供形態では、非常時のニーズをすべてまかなうことは難しい場合も考えられるため、国民生活の安心・安全を確保するためには、国の役割は重要となり、このような移動衛星通信システムの在り方について官民一体となって検討する必要がある。

今後、国内の新たな移動衛星通信システムが実現されれば、大規模災害時等の地上系システムを補完する手段として衛星通信を活用することが可能になると見込まれるため、早急な整備が期待される。
3 国際周波数調整
3.1 周波数当て（国際調整）の手続き
衛星網又は衛星システムのための周波数当て（新規又は既存割当ての変更）は、国際電気通信連合（ITU）の無線通信規則（Radio Regulations；RR）第9条「他主管庁との調整又は同意を得る手続き」及び第11条「周波数割当て及び登録」が適用される。すなわち、衛星網又は衛星システムの使用開始日の7年前から遅くともなるべく2年前までに、RR第9条第Ⅰ節における事前公表資料をITUへ送付する必要がある。さらに、使用を計画する周波数がRR第9条第Ⅱ節に規定される調整要件に該当する場合には、事前公表に引き続き必要となる調整手続きを行い、調整対象となる周波数割当てを有する主管庁との間で調整を実施し、合意を得る必要がある。

周波数割当て（国際調整）の流れは図3-1に示すとおりである。

図 3-1 周波数割当て（国際調整）の手続きの流れ

3.2 L帯無線航行衛星業務に関する関連規定
L帯の測位衛星システムに対する国際周波数分配は図3-2の無線航行衛星業務として分配がなされている。1164-1215MHzの周波数帯においては、世界無線通信会議（WRC）決議第609（WRC-07、改）の規定に従い、960-1215MHzの周波数帯における航空無線航行業務の無線局からの保護を要求してはならないことになっている（RR第5.328A条）。また、1215-1300MHzの周波数帯は、RR第5.331号で承認された無線航行業務に対して有害な混信を生じさせず、また、当該業務からの保護を要求しないことを条件として使用することができる（RR第5.329条）。さらに、1215-1300MHzの周波数帯を使用する無線航行衛星業務は、無線標定業務に対して有害な混信を生じさせてはならないことになっている（RR第5.329条）。
3.3 L帯無線航海衛星業務の国際調整状況

平成25年11月現在において、我が国のL帯を用いた衛星測位システムのため、以下の国際調整手続きが行われている。

ア QZSS-1

準天頂衛星初号機「みちびき」に使用されている非静止衛星網であり、平成24年7月に国際周波数登録原簿への登録が完了している。
イ QZSS-GS シリーズ及び QZSS
実用準天頂衛星システムを想定し、次に示す 6 衛星網の国際調整手続きが行われてい
る。

<table>
<thead>
<tr>
<th>衛星網名</th>
<th>軌道位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>QZSS-GS1</td>
<td>東経90.5度</td>
</tr>
<tr>
<td>QZSS-GS3</td>
<td>東経123度</td>
</tr>
<tr>
<td>QZSS-GS4</td>
<td>東経127度</td>
</tr>
<tr>
<td>QZSS-GS5</td>
<td>東経137度</td>
</tr>
<tr>
<td>QZSS-GS8</td>
<td>東経168度</td>
</tr>
<tr>
<td>QZSS</td>
<td>非静止</td>
</tr>
</tbody>
</table>

これらの衛星網は、事前公表資料が平成 24 年 4 月に ITU へ送付され、平成 24 年 6 月に
公表されている。調整資料は、平成 24 年 12 月に ITU へ送付され、平成 25 年 4 月に公表
されている。

調整資料公表後、調整対象である 16 主管庁等のうち、平成 25 年 25 月現在、1 主管庁か
ら同意が得られている。

また、L 帯については、二国間での国際調整に加えて、WRC 決議第 609 号に基づく無線航
行衛星システムに関するコンサルテーション会合などの多国間の場においても調整が行わ
れている。

3.4 2GHz 帯移動衛星業務に関する関連規定
2GHz 帯の移動衛星業務に対する国際周波数分配は図 3-3 のとおりとなっている。この周
波数帯は、RR 第 9.11A 条が適用され、非静止衛星網に対しても静止衛星網と同等に調整手
続きが課されることになっている（RR 第 5.389A 条）。また、IMT を行おうとする主管庁に
よる使用が見込まれているが WRC 決議第 212 号（WRC-07 改）、これにより、この周波数帯
に分配されている他業務の使用が排除されるわけではない（RR 第 5.388 条）。
図 3-3 2GHz 帯における国際周波数分配

3.5 2GHz 帯移動衛星業務の国際調整状況

ア 世界的な動向

1980-2010MHz、2170-2200MHz の周波数帯について、我が国との調整が必要と考えられる東経 80 度～東経 180 度における、平成 25 年 9 月 9 日現在の各国の ITU への調整資料（CR/C）の提出状況は表 3-1 の通りである。この表の静止衛星のうち、中国の 4 衛星網及びロシアの 3 衛星網は国際周波数登録原簿に登録済である。

表 3-1 静止衛星に関する各国の資料提出状況

<table>
<thead>
<tr>
<th>国名</th>
<th>衛星網数</th>
<th>国名</th>
<th>衛星網数</th>
</tr>
</thead>
<tbody>
<tr>
<td>中国</td>
<td>15</td>
<td>オーストラリア</td>
<td>2</td>
</tr>
<tr>
<td>キプロス</td>
<td>5</td>
<td>スペイン</td>
<td>1</td>
</tr>
<tr>
<td>フランス</td>
<td>14</td>
<td>ノルウェー</td>
<td>1</td>
</tr>
<tr>
<td>イギリス</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>オランダ</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>インドネシア</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>イスラエル</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>日本</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>韓国</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ルクセンブルク</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>マレーシア</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>カタール</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ロシア</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>タイ</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>アラブ首長国連邦</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>70</td>
<td>合計</td>
<td>4</td>
</tr>
</tbody>
</table>

（注）衛星網については、1980-2010MHz 又は 2170-2200MHz のどちらかのみを含む場合も 1 つとして計上。
我が国の国際調整手続き

平成25年11月現在において、メッセージ通信を行う移動衛星通信システムを想定した、次に示す5衛星網のRRに基づく国際調整手続きが行われている。

<table>
<thead>
<tr>
<th>衛星網名</th>
<th>軌道位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>QZSS-GS1</td>
<td>東経90.5度</td>
</tr>
<tr>
<td>QZSS-GS3</td>
<td>東経123度</td>
</tr>
<tr>
<td>QZSS-GS4</td>
<td>東経127度</td>
</tr>
<tr>
<td>QZSS-GS5</td>
<td>東経137度</td>
</tr>
<tr>
<td>QZSS-GS8</td>
<td>東経168度</td>
</tr>
</tbody>
</table>

これらの衛星網は、事前公表資料が平成24年12月にITUへ送付され、平成25年4月に公表されている。調整資料は、平成25年4月にITUへ送付されているが、RR第9.1条により、調整資料のITUによる受領日は、事前公表資料の受領日の6ヶ月以降とされているため、受領日は平成25年6月となる。調整資料は、平成25年11月現在、公表待ちである。

なお、表3-1に日本が含まれているが、これは、将来の権益確保を目的として、我が国が調整資料を提出したものであるが、RRに規定される調整期限7年を迎える平成26〜27年までに使用開始は見込まれていない。このため、新たな調整資料をITUへ送付しており、平成25年10月に事前公表資料が公表されている。
4 L帯を用いた衛星測位システムの実現可能性

4.1 L帯を用いた衛星測位システムの技術動向

衛星測位システムは、カーナビに代表されるように人工衛星からの測位信号を受信し、各利用者が位置情報と時刻を算出するものである。位置、時刻の算出にあたっては、同時に4衛星以上を受信することを必要とするが、衛星の幾何学的配置等により、位置誤差が10数mになる場合がある。

これまで、衛星測位システムは米国が整備したGPS衛星の利用が中心であったが、世界的に見ると、近年では米国(GPS)以外に、欧州(Galileo)、ロシア(GLONASS)、中国(COMPASS)、インド(IRNSS)等がそれぞれ衛星測位システムの構築に着手しており、今後、米国のGPSに代表されるL帯の衛星測位システムの重要性は更に高まることが推測される。

測位の原理について概説する。測位は、以下に示す既知の情報から未知の情報（利用者が知りたい位置と時刻）を計算する。

- 既知の情報：衛星の位置と時刻
- 未知の情報：利用者（受信機）の位置と時刻

衛星の位置（3次元）と時刻を \((X_{sat}, Y_{sat}, Z_{sat}, t_{sat}) \) とし、受信機の位置（3次元）と時刻を \((X, Y, Z, t) \) とすると、衛星と受信機の距離は次の式で表される。

\[
\sqrt{(X - X_{sat})^2 + (Y - Y_{sat})^2 + (Z - Z_{sat})^2} = c \cdot (t - t_{sat})
\]

ただし、\(c \)：光速

\((X_{sat}, Y_{sat}, Z_{sat}, t_{sat}) \) は衛星からの測位信号の中に存在する。従って、4つの未知数を解く、つまり衛星測位を可能とするためには、4つの測位衛星が同時に可視となることが必要である。結果として受信機が得られる情報は、「位置」と「時刻」となる。

図4-1に、各国の衛星測位システムの送信信号周波数分布を示す。縦方向に破線で繋がる信号は、相互運用性を有する信号群、つまり複数システムからの信号を同一受信機で受信可能な信号群である。
衛星測位システムの技術動向として、我が国の「みちびき」による実験結果の概要を示す。実験の結果としては、都市部や山間部等における測位可能な場所の大幅な改善等に加え、誤差情報の提供等の高精度化により、目標を上回る測位性能が確認されるなど、良好な結果が得られている。具体的には、「みちびき」の測位精度として 0.4m が得られており、現行の GPS の 0.9m を上回るとともに、最新型の GPS と比較しても同等の精度が得られるなど、世界トップレベルを達成している。また、電離層に関連する誤差情報等の提供について、日本周辺地域に適した誤差情報の作成手法を開発している。これにより、GPS のみによる測位に対して「みちびき」を加えた場合、測位誤差が水平方向で約 2/3、垂直方向で約 1/2 に低減され、大幅な測位精度の向上が確認されている。
衛星測位システムが使用する周波数帯には、他の無線システムが多く存在することから、我が国への衛星測位システムの導入にあたっては、他の無線システムとの共用条件の検討が必要である。以下に挙げる ITU-R の各決議及び勧告等を活用しつつ、衛星測位システムと他の無線システムとの共用条件の検討が必要となる。

① WRC 決議 609
本決議は、ARNS（aeronautical radionavigation service）を保護する目的で、RNSS（radionavigation-satellite service）システムの全ての宇宙局から発生する epfd のレベルが、1164-1215MHz 帯域のあらゆる 1MHz 帯域において一定のレベルを超えないことを保証するものである。

② ITU-R 勧告 M.1831
本勧告は、1164-1215MHz、1215-1300MHz、1559-1610MHz、5010-5030MHz 帯域において有効な勧告であり、RNSS のシステム間並びにネットワーク間の調整において使われる、干渉予測の手法について述べられている。

③ ITU-R 勧告 M.1902
本勧告は、1215-1300MHz 帯域の測位衛星によるサービスを受信する地上の受信局に対して、その特性と保護基準を示す勧告である。この勧告で提供される情報は、1215-1300MHz 帯域で稼働する RNSS 受信機に対して、RNSS 以外の電波源からの電波周波数干渉の影響分析にて使われることを意図している。

7 Protection of aeronautical radionavigation service system from the equivalent power flux-density produced by radionavigation-satellite service networks and systems in the 1164-1215 MHz frequency band (Resolution 609)
8 A coordination methodology for RNSS inter-system interference estimation (Recommendation ITU-R M.1831)
9 Characteristics and protection criteria for receiving earth stations in the radionavigation-satellite service (space-to-Earth) operating in the band 1215-1300 MHz (Recommendation ITU-R M.1902)
4. ITU-R勧告 M.1903

本勧告は、M.1902と同様に、1559–1610 MHz帯域の測位衛星によるサービスを受信する地上の受信局に対して、その特性と保護基準を示す勧告である。

5. ITU-R勧告 M.1905

本勧告は、M.1902と同様に、1164–1215 MHz帯域の測位衛星によるサービス（RNSS）を受信する地上の受信局に対して、その特性と保護基準を示す勧告である。

4.2 L帯を用いた衛星測位システムの実現可能性

4.2.1 実用準天頂衛星システム

実用準天頂衛星システムを利用した測位システムサービスについて概説する。図 4-3 にシステム構成を示す。衛星システムは、4機の測位衛星で構成され、3機は準天頂軌道衛星、1機は静止軌道衛星である。これに加え、地上システムと外部システムで構成される。

準天頂衛星システムから送信するL帯信号の概要を表 4-1 に示す。

図 4-3 システム構成

10 Characteristics and protection criteria for receiving earth stations in the radionavigation-satellite service (space-to-Earth) and receivers in the aeronautical radionavigation service operating in the band 1559–1610 MHz (Recommendation ITU-R M.1903)

11 Characteristics and protection criteria for receiving earth stations in the radionavigation-satellite service (space-to-Earth) operating in the band 1164–1215 MHz (Recommendation ITU-R M.1905)
表 4-1 準天頂衛星システムから送信する L 帯信号の概要

<table>
<thead>
<tr>
<th>サービス用途</th>
<th>信号名称</th>
<th>中心周波数</th>
<th>チャネル</th>
<th>コード周波数</th>
<th>特記事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>測位補完</td>
<td>L1C/A</td>
<td>1575.42MHz</td>
<td>—</td>
<td>1.023MHz</td>
<td>GPS L1C/A と同等</td>
</tr>
<tr>
<td></td>
<td>L1C</td>
<td>1575.42MHz</td>
<td>バイロット</td>
<td>1.023MHz</td>
<td>GPS L1C と同等</td>
</tr>
<tr>
<td></td>
<td>L2C</td>
<td>1227.60MHz</td>
<td>—</td>
<td>1.023MHz</td>
<td>GPS L2C と同等</td>
</tr>
<tr>
<td></td>
<td>L5</td>
<td>1176.45MHz</td>
<td>Iチャンネル</td>
<td>10.23MHz</td>
<td>GPS L5 と同等</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qチャンネル</td>
<td>10.23MHz</td>
<td></td>
</tr>
<tr>
<td>サブメータ級補強</td>
<td>L1Sa</td>
<td>1575.42MHz</td>
<td>—</td>
<td>1.023MHz</td>
<td>みちびき L1-SAIF と同等</td>
</tr>
<tr>
<td>センチメータ級補強</td>
<td>L6b</td>
<td>1278.75MHz</td>
<td>—</td>
<td>5.115MHz</td>
<td>みちびき LEX と同等</td>
</tr>
<tr>
<td>簡易メッセージ</td>
<td>L6a</td>
<td>1278.75MHz</td>
<td>—</td>
<td>5.115MHz</td>
<td>サブメータ級補強信号 L1Sa に重畳して配信</td>
</tr>
</tbody>
</table>

4.2.2 共用システムの概要と共用検討状況
実用準天頂衛星システムとの共用検討が必要な無線システムについて概説する。

(1) 放送用 FPU (Field Pickup Unit)
1）放送用 FPU のシステム概要

FPU は、テレビ局の番組制作において、事故/事故などの報道現場や、番組の中継現場か
ら、本社まで映像・音声の番組素材の伝送等を行う際に用いられる。800MHz 帯を用いた FPU
は、見通し外での映像伝送や移動しながらの中継を可能とする唯一の伝送手段であった。
報道中継用途では全国で設備が使用され、各地方の拠点局に設備する他、エリアの取材体
制を系列ごとに構築しており、受信系の運用は 24 時間連続、送信系の運用は不定期である。
一般番組中継は全国で使用されるが、ロードレースやゴルフ等のスポーツ中継はその大会の
開催場所に特徴される。

800MHz 帯 FPU は、周波数割当計画に従い、2019 年 3 月 31 日までに、1.2GHz 帯と 2.3GHz
帯に移行することが決まっており、特に従来 800MHz 帯で行っている移動体伝送、見通し外
伝送等は 1.2GHz 帯でないと対応できないことから、当該周波帯が用いられることは想定
される。表 4-2 に、1.2GHz 帯 FPU の諸元を示す。
Table 4-2 FPU の諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>言及</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用周波数</td>
<td>1240-1300MHz、チャネル間隔 1MHz</td>
</tr>
<tr>
<td>通信方式</td>
<td>單向通信方式</td>
</tr>
<tr>
<td>変調方式</td>
<td>OFDM（直交周波数分割多重変調）方式</td>
</tr>
<tr>
<td>各キャリアの変調方式は、64QAM、32QAM、16QAM、8PSK、QPSK、BPSK、DBPSK</td>
<td></td>
</tr>
<tr>
<td>電波の型式</td>
<td>X7W</td>
</tr>
<tr>
<td>占有周波数帯幅</td>
<td>フルモード 17.5MHz 以下、ハーフモード 8.5MHz 以下</td>
</tr>
<tr>
<td>送信周波数の許容偏差</td>
<td>7×10^{-6}以下</td>
</tr>
<tr>
<td>送信空中線電力</td>
<td>SISO フルモード 25W ハーフモード 12.5W MIMO 各送信機の高周波増幅部出力の総和</td>
</tr>
</tbody>
</table>

②　放送用 FPU との共用検討状況
TBD

(2) アマチュア無線

① アマチュア無線のシステム概要

アマチュア無線には様々な利用形態が挙げられ、レピータ、高速データ、データ、アマチュアテレビジョン、モールス符号を使用した電信、狭帯域通信、ビーコン、VoIP、広帯域通信、月面反射通信（EME）などの用途により、周波数の使用区分が決められている。

移動しない局の無線局数は、空中線電力 10W 以下が約 4 千局（レピータ局約 5 百局を含む）、空中線電力 500W 以下が約 30 局（EME の通信に限る）となっている。また、移動する局の無線局数は、空中線電力 1W 以下が約 12 万局（1W 以下のレピータ局を含む）、空中線電力 50W 以下が約 20 局（EME の通信に限る）となっている。

表 4-3 に、1.2GHz 帯の一般的なレピータ局の諸元を示す。

表 4-3 アマチュア無線（レピータ局）の諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>言及</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用周波数</td>
<td>1270-1273MHz, 1290MHz-1293MHz の内の任意の周波数</td>
</tr>
<tr>
<td>通信方式</td>
<td>2 波複信方式（FM、DV）</td>
</tr>
<tr>
<td>1 波単信方式（DD）</td>
<td></td>
</tr>
<tr>
<td>電波の型式</td>
<td>F3E（OBW 16kHz）、F7W（OBW 6kHz）、F1D（OBW 150kHz）</td>
</tr>
<tr>
<td>受信通過帯域幅</td>
<td>F3E 16kHz、F7W 12kHz、F1D 220kHz</td>
</tr>
<tr>
<td>送信電力</td>
<td>10W 以下</td>
</tr>
<tr>
<td>空中線利得</td>
<td>無指向性アンテナ 10dBi（平均的な使用アンテナ利得）</td>
</tr>
<tr>
<td>給電線損失</td>
<td>3dB（10DFB 10m:1.5dB、アンテナ共用器:1.5dB）</td>
</tr>
</tbody>
</table>

43
② アマチュア無線との共用検討状況
TBD

(3) 1.2GHz 帯特定ラジオマイク
① 1.2GHz 帯特定ラジオマイクのシステム概要
特定ラジオマイクは、全国の報道、TV 番組制作、野外コンサート等の現場で運用される。
TV ホワイトスペース帯では屋外使用等の諸条件があるため、1.2GHz 帯での屋外使用ニーズ
も見込まれている。
アナログ、デジタルともに ARIB STD-T112 において空中線電力は 50mW 以下と定められて
いるが、今後の運用においても従来からの 10mW 程度のサービスエリアと同等の運用が多い
ものと考えられる。
表 4-4 に、1.2GHz 帯特定ラジオマイクの諸元を示す。

<table>
<thead>
<tr>
<th>使用周波数</th>
<th>1240-1252MHz, 1253-1260MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>代表的受信感度</td>
<td>20dBu 以下</td>
</tr>
<tr>
<td>空中線電力</td>
<td>50mW 以下</td>
</tr>
</tbody>
</table>

② 1.2GHz 帯特定ラジオマイクとの共用検討状況
TBD

(4) VOR/DME 等
① VOR/DME 等のシステム概要
VOR/DME 等は、運航中の航空機に対して方位及び距離の情報を同時に提供するシステムで
ある。民間航空機が使用する航空路等には、ICAO 標準の VOR/DME を整備し、民間機及び軍
用機の双方が使用する航空路等には、双方が共用できるように VORTAC（VOR と TACAN）を整
備している。
VOR/DME 等の概要を表 4-5 に示す。

<table>
<thead>
<tr>
<th>施設名</th>
<th>提供機能</th>
<th>使用周波数帯</th>
<th>使用航空機</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOR</td>
<td>方位情報</td>
<td>VHF (108-118MHz)</td>
<td>民間機</td>
<td>ICAO 標準</td>
</tr>
<tr>
<td>DME</td>
<td>距離情報</td>
<td>UHF (960-1215MHz)</td>
<td>民間機</td>
<td>ICAO 標準</td>
</tr>
</tbody>
</table>

注）DME は、TACAN の距離情報提供部分を独立させたものである。
VOR：VHF Omnidirectional Radio Range
DME：Distance Measuring Equipment
② VOR/DME との共用検討状況
TBD

(5) 1.2GHz 帯画像伝送用携帯局
① 1.2GHz 帯画像伝送用携帯局のシステム概要
1.2GHz 帯画像伝送用携帯局は、無人ヘリコプター等のモニターとして搭載し、撮影した画像をリアルタイムに伝送することを目的とした無線システムである。平成 25 年現在の登録会員数は全国に 30 団体である。1 団体の使用頻度は、1 回 10～15 分で 1 日 2～3 回程度である。全国で複数の業者がフライトし、影響が生じる際には、相互の話し合いによる運用調整を行っている。

移動（画像伝送）ヘリテレの諸元を表 4-6 に示す。

| 1.2GHz 帯画像伝送用携帯局の諸元 |
使用周波数	1281.50MHz 1 波
出力	1W 以下
占有帯域幅	6MHz
アンテナゲイン	2.14dBi (ホイップアンテナ)
電波形式	F3F「FM 方式アナログ変調（映像のみ）」
映像方式	NTSC に準拠

② 1.2GHz 帯画像伝送用携帯局との共用検討状況
TBD

(6) MTSAT
① MTSAT のシステム概要
MTSAT は、気象ミッション、航空移動体衛星通信サービス及び衛星航海補強システム (MSAS) を提供する衛星システムであり、MSAS については L1 の周波数を使用している。

MSAS L1 信号は、GPS を航空機の航法に利用する場合に、GPS のみでは不足している要件（利用可能性、継続性、完全性、精度）を SBAS (Satellite Based Augmentation System) メッセージとして航空機に伝え、GPS 航法を補強するものである。

MSAS は、8局の地上局（モニター局）にて、MSAS 及び GPS の L1 信号をモニターし、その情報をリアルタイムに衛星センターに送り SBAS メッセージを生成する。それを Ku 帯のアップリンクを使用して送信し、衛星側で L1 (1575.42MHz) にダウンコンバートして、同報送信している。

MSAS (L1) の諸元を表 4-7 に示す。
<table>
<thead>
<tr>
<th>MSAS (L1) の諸元</th>
</tr>
</thead>
<tbody>
<tr>
<td>中心周波数</td>
</tr>
<tr>
<td>送信帯域</td>
</tr>
<tr>
<td>シンボルレート</td>
</tr>
<tr>
<td>チップレート</td>
</tr>
<tr>
<td>PRN コード番号</td>
</tr>
</tbody>
</table>

② MTSAT との共用検討状況
TBD

(7) 特定小電力無線局
① 特定小電力無線局のシステム概要
特定小電力無線とは、総務省で定める一定の条件を満たした無線設備であれば無線従事者資格も無線局免許も不要である無線システムである。利用形態としては、テレメータ、データ伝送、無線電話、ラジオマイク等が挙げられる。
1.2GHz帯のテレメータ用、テレコントロール用及びデータ伝送用無線設備の諸元を表4-8に示す。

<table>
<thead>
<tr>
<th>1.2GHz帯特定小電力無線局の諸元</th>
</tr>
</thead>
</table>
| 使用周波数 | ・1216.0125MHz以上1216.9875MHz以下の周波数であって、1216.0125MHz及び1216.0125MHzに25kHzの整数倍を加えたもの、並びにこれらの周波数に36MHzを加えたもの。
 ・1216MHz以上1217MHz以下の周波数であって、1216MHz及び1216MHzに50kHzの整数倍を加えたもの、並びにこれらの周波数に36MHzを加えたもの。 |
| 空中線電力 | 0.01W以下 |
| 空中線電力の許容範囲 | +50%、−50% |
| 周波数の許容偏差 | ±4×10⁻⁶、±3×10⁻⁶（チャネル間隔が25kHzのもと） |
| 占有周波数帯幅の許容値 | 32kHz（チャネル間隔が50kHzのもの） |
| | 16kHz（チャネル間隔が25kHzのもの） |
| スプリアス発射又は不要発射の強度の許容値 | 2.5μW以下 |

② 特定小電力無線局との共用検討状況
TBD
(8) 構内無線局

① 構内無線局のシステム概要

構内無線局とは、一つの構内で RFID (Radio Frequency Identification) などをはじめとする移動体識別用の無線設備を利用した無線局である。識別装置を荷物や商品に取り付けることによって、物流の効率化や、商品管理などを行うことが可能である。

1.2GHz 帯テレメータ用、テレコントロール用及びデータ伝送用無線設備の諸元を表 4-9 に示す。

<table>
<thead>
<tr>
<th>表 4-9 1.2GHz 帯構内無線局の諸元</th>
</tr>
</thead>
</table>
| 使用周波数 | ・1216.0125MHz以上1216.9875MHz以下の周波数であって、1216.0125MHz及び1216.0125MHzに25kHzの整数倍を加えたもの、並びにこれらの周波数に36MHzを加えたもの。
 ・1216MHz以上1217MHz以下の周波数であって、1216MHz及び1216MHzに50kHzの整数倍を加えたもの、並びにこれらの周波数に36MHzを加えたもの。 |
| 空中線電力 | 0.1W以下 |
| 空中線電力の許容範囲 | ±50%、-50% |
| 周波数の許容偏差 | ±4×10⁻⁶、±3×10⁻⁶（チャネル間隔が25kHzのもの） |
| 記号周波数帯幅の許容値 | 32kHz（チャネル間隔が50kHzのもの）
 16kHz（チャネル間隔が25kHzのもの） |
| スプリアス発射又は不要 | 2.5μW以下 |
| 発射の強度の許容値 |

② 構内無線局との共用検討状況

TBD

4.2.3 L 帯を用いた衛星測位システムの共用検討 (まとめ) (P)
5 S帯を用いた移動衛星通信システムの実現可能性

5.1 S帯における移動衛星通信システムの技術動向

(1) マルチスポットビーム技術

大規模災害時における通信需要の増大に対応するため、通信回線の収容数を増加するためには、周波数の利用効率を向上し、衛星トータルの通信容量を増大する必要がある。

マルチスポットビーム技術により多ビーム化し、周波数を繰り返し利用することで、周波数利用効率を向上することが可能である。

図 5-1 にスポットビーム数の動向を示す。世界のスポットビーム数の動向としては、2000 年台以降、Garuda-1 衛星や Thuraya-1 衛星など 100 を超えるスポーツビームを生成する衛星が出現し、さらに 2000 年台後半になると、TerreStar-1 衛星や SkyTerra-1 衛星など、500 を超えるスポーツビームを生成する衛星が出現している。

(2) デジタルチャネライザ技術

大規模災害時等においては、通信需要の急激な増大や平時とは異なる一部の地域へのトラヒックの集中等が想定される。デジタルチャネライザは、ビーム毎の周波数配分を変更する技術であり、これにより被災地等に対して衛星の周波数リソースを集中させることが可能である。図 5-2 にデジタルチャネライザによる周波数リソースの集中のイメージを示す。

デジタルチャネライザを搭載している衛星としては、Thuraya 衛星、Inmarsat-4 衛星、
SkyTerra-1衛星、Alphasat 1-XL衛星等があげられる。ユーザリンク帯域幅30MHz、フィーダリンク帯域幅200MHzを扱えるデジタルチャネライザ技術の研究開発が行われており、部分試作による地上での技術実証が行われた。12

図5-2 デジタルチャネライザによる周波数リソースの集中のイメージ

図5-3 にアンテナ素子数とビーム数、採用されているビームフォーミング技術の関係を示す。100素子100ビーム級のデジタルビームフォーミング技術の研究開発が行われており、16素子16ビームの部分試作による地上での技術実証が行われた。12

「電波資源拡大のための研究開発」の「地上／衛星共用携帯電話システム技術の研究開発」において実施
図 5-3 アンテナ素子数とビーム数の関係とビームフォーミング技術

（4）大型展開アンテナ

小型衛星携帯端末は、アンテナも小型で利得が小さくなり、送信出力や受信感度も小さくなる。これを補うため、衛星搭載アンテナの反射鏡を大型化して高利得を得ることが必要である。衛星搭載の大型反射鏡を実現する技術として、大型展開アンテナ技術が重要である。

アンテナ径とビーム幅は反比例することから、アンテナ径を大きくすると、スポットビーム径を小さくすることができ、カバーエリアを限定しやすくなる。このため、大型展開アンテナ技術は、他地域への干渉低減等の観点からも有効である。

大型展開アンテナの製造メーカは、米国 Harris 社と Northrop Grumman 社の２社の寡占状態である。我が国では、平成 18 年 12 月に技術実証衛星「きく 8 号」が打ち上げられ、13m 径の大型展開アンテナの実証を行った。図 5-4 に主な大型展開アンテナの種類を、図 5-5 に大型アンテナの動向を示す。現在のところ、2010 年に打ち上げられた SkyTerra-1 衛星が 22m 径のアンテナの実証に成功している。

なお、我が国では災害時の通信の確保というニーズに応えるための「次世代情報通信衛星の技術検証」の一環として、JAXAが中心となって 30m 級大型展開アンテナの研究が行われており、14.4m 径のスケールモデルによる地上での技術実証が行われた。
図 5-4 主な大型展開アンテナの種類

<table>
<thead>
<tr>
<th>アンテナタイプ</th>
<th>製造業者</th>
<th>適用開口径</th>
<th>適用周波数</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>モジュラーメッシュ</td>
<td>Thuraya-1 M8Sat</td>
<td>6.5m〜13m</td>
<td>S帯</td>
<td>9m〜12.25m</td>
</tr>
<tr>
<td>AstroMesh</td>
<td>ICO-G1 Terrestar-1</td>
<td>9m〜12.25m</td>
<td>L〜S帯</td>
<td></td>
</tr>
<tr>
<td>Folding Rib</td>
<td>SkyTerra-1 Eutelsat W2A</td>
<td>12m〜18m</td>
<td>12m〜22m</td>
<td></td>
</tr>
<tr>
<td>Perimeter Truss</td>
<td>Harris</td>
<td>（12m〜22m）</td>
<td>S帯</td>
<td></td>
</tr>
</tbody>
</table>

図 5-5 大型展開アンテナの動向

5.2 S 帯における移動衛星通信システムの標準化動向

現在、ITU において IMT-Advanced 卫星系インターフェースを規定する標準化の検討が行われている。2010 年 7 月には、韓国からの提案により、衛星通信に対応する IMT-Advanced のビジョン構築、無線インタフェース、サービス及び技術的要求条件等の検討を目的とした報告が取りまとめられた。以降、衛星通信に対応する IMT-Advanced 方式の無線インタ

13 International Mobile Telecommunications-Advanced : ITU が定める第 4 世代移動通信システムの規格
14 Report ITU-R M.2176 「Vision and requirements for the satellite radio interface(s) of IMT-Advanced」
フェース技術の勧告化に向けた承認手続きが進められている。図5-6にIMT-Advanced衛星コンポーネントのシステムアーキテクチャを示す。この勧告に記載する方式として、韓国からはGPPで開発されたLTE規格と高い共通性を有するSAT-OFDM方式が、中国からは3GPPで開発されたLTE-Advanced規格をもとに衛星通信の仕様を追加したBMSat方式が提案されている。

図5-6 衛星通信対応のIMT-Advancedに関するシステムアーキテクチャ
（出所：Report ITU-R M.2176「Vision and requirements for the satellite radio interface(s) of IMT-Advanced」）
5.3 S帯を用いた移動衛星通信システムの検討（P）
5.3.1 システム提案の概要（P）

S帯を用いた移動衛星通信システムとして、表5-1に示す4つのシステムが提案された。

表5-1 提案1〜4の概要

<table>
<thead>
<tr>
<th>システム例</th>
<th>提案1 移動衛星通信システム（メッセージ通信）</th>
<th>提案2 移動衛星通信システム（音声通信、データ通信）</th>
<th>提案3 衛星・移動共用通信システム</th>
<th>提案4 衛星・移動共用通信システム</th>
</tr>
</thead>
<tbody>
<tr>
<td>業務分類</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>特徴</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>打上げ計画年</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>開発段階</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アンテナ径</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>端末のサイズ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サービス内容</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サービスエリア</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>衛星の収容能力</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必要な周波数帯域</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>地上サービスとの連携対策</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.3.2 システム提案の詳細（P）

(1) 提案1 移動衛星通信システム（メッセージ通信）

① 提案システムの概要

本システムは、大規模災害時および平常時におけるメッセージ通信サービスの機能を有している。大規模災害時機能として、ユーザ端末から位置・安否を含む100bit相当の安否情報を、衛星経由で地上施設に送信し、予め登録した近親者に対し、地上既設通信ネットワークを経由して通知する。また、地上施設からユーザ端末へ衛星経由で送達確認メッセージを送信する。さらに、地上の広域サービスが災害時にダウンした際には、安否確認情報を移動衛星通信システム（メッセージ通信）により衛星を介して送信することができ、地上システムの補完機能を有する。

平常時の機能としては、ユーザ端末から衛星を経由して地上施設／平常時通信サービス事業者にメッセージを送信する。また、平常時事業者が行うサービス内容に従い、送付されたメッセージを平常時利用ユーザに衛星経由で送信可能である。

図5-に、提案1のシステム構成を示す。
図 5-7 提案 1 のシステム構成

② 提案技術
ユーザ端末からのアップリンクは、位置情報及び安否情報の伝送が基本となる。災害時には、1.5 秒で伝送することを想定し、送信情報はユーザ ID、位置情報、安否情報等の 100bit となっている。平常時には、8 秒で伝送することを想定し、送信情報には災害時伝送フォーマットの内容に加え、メッセージ等の 618bit を追加し、全体で 750bit の情報となっている。平常時伝送フォーマットのメッセージには、10bit のメッセージ種別（位置情報更新、救難信号、送達確認、その他）と 608bit の遭難捕捉情報（19 文字相当、同行者の有無、氏名、遭難の状況）で構成される。

主管制局からの情報をユーザ端末に送信するダウンリンクについては、災害通知、送達確認、平常時・救難の 3 つのモードが検討されている。各モードとも、1秒での伝送を想定し、計 33,000 ビットの情報となっている。

③ 提案諸元
表 5-2 に、提案例 1 の衛星諸元を示す。
サービスリンクのアンテナには、鏡面修正パラボラアンテナの利用を想定している。1 ビーム構成であり、マルチビームによる周波数再利用は実施しないが、限られた帯域の中で多重化を実施することで周波数の有効利用を図ることとしている。
表 5-2 提案 1 の衛星諸元

<table>
<thead>
<tr>
<th>打上げ計画年</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>開発段階</td>
<td></td>
</tr>
<tr>
<td>国際調整資料の提出状況</td>
<td></td>
</tr>
<tr>
<td>衛星機数（予備機を含まない）</td>
<td></td>
</tr>
<tr>
<td>アンテナ口径</td>
<td>サービスリンク</td>
</tr>
<tr>
<td></td>
<td>フィーダリンク</td>
</tr>
<tr>
<td>ビーム数</td>
<td></td>
</tr>
<tr>
<td>周波数再利用</td>
<td></td>
</tr>
<tr>
<td>伝送方式</td>
<td>多重化方式</td>
</tr>
<tr>
<td></td>
<td>変調方式</td>
</tr>
</tbody>
</table>

④ 提案のサービス諸元

表 5-3 に提案 1 のサービス諸元を示す。

サービス内容は災害時、平時とも利用可能なショートメッセージサービス (SMS) である。
大規模災害時は、被災者が近親者との間で安否確認を行うとともに、被災情報を災害対策のために関係の行政機関等に提供する。

衛星回線の能力として、メッセージの最大同時接続数は 1400 回線である。前提条件は以下の通りである。

【最大メッセージ同時接続数の前提条件】

- 5MHz で運用
- 衛星最大電力：60w
- 単位チャンネルの帯域幅：上り 300kHz、下り 5MHz
- 単位チャンネルのデータレート：上り 100bps、下り 28.544kbps
- 単位チャンネルあたりの最大同時接続数：上り 100、下り 1

また、平時におけるサービスエリア全体のメッセージ数は、アップリンク 63 万メッセージ／時間である。ダウンリンクは 1ch のみの信号を送信する。但し、電力密度低減のため、スペクトラム拡散を実施する。

【平時の衛星収容能力の前提条件（アップリンク）】

- 0.3kHz 幅の信号（CDMA で 100 多重）を 14 波送信する（計 4.2MHz）ことで同時回線数が 1400 回線
- 1 メッセージを 8 秒で送るため、1 時間あたり 450 メッセージ
- 1400×450=63 万／時間
災害時は315万メッセージ/時間である。この前提条件は以下の通りである。

【災害時の衛星収容能力の前提条件】

- 0.3kHz幅の信号（CDMAで100多重）を14波送信する（計4.2MHz）ことで同時回線数が1400回線
- 1メッセージを1.6秒で送るため、1時間では2250メッセージ
- 1400×2250=315万/時間

また、地上の伝言サービスが災害時にダウンした際には、安否確認情報を移動衛星通信システム（メッセージ通信）により衛星を介して送信することができる。

表5-3 提案例1のサービス諸元

<table>
<thead>
<tr>
<th>業務分類</th>
<th>端末のサイズ</th>
<th>サービス内容</th>
<th>サービスエリア</th>
<th>衛星の収容能力</th>
<th>必要な周波数帯域</th>
<th>必要なガードバンド幅</th>
</tr>
</thead>
<tbody>
<tr>
<td>災害時</td>
<td>災害時</td>
<td>平時</td>
<td>卫星回線の能力</td>
<td>平時（サービスエリア全体）</td>
<td>災害時</td>
<td></td>
</tr>
</tbody>
</table>

(2) 提案2 移動衛星通信システム（音声通信、データ通信）

① 提案システムの概要

本システムは、日常利用している携帯端末で衛星通信を利用することが可能な音声通信・データ通信システムであり、大規模災害時には、被災エリアに対して通信リソースを集中配分する。

提案2のシステム構成イメージを図5-8に示す。ユーザ端末は状況に応じて衛星通信または地上通信を利用し、双方向の通信を行う。災害発生時に基地局が断となった場合は、衛星通信を使用して通信回線を確保する。

なお、将来的には、衛星／地上共用通信システムに移行し、同一周波数帯を衛星／地上で同時運用することを想定している。
提案技術
提案2で利用する技術を表5-4に示す。本システムで利用される技術は、周波数有効利用技術（マルチスポットビームアンテナ）、端末小型化のための大型反射鏡技術（大型展開アンテナ）、軌道上機器の柔軟性技術（デジタルチャネライザ、デジタルビームフォーマ）に大別される。

端末については、小型化により、日常利用している携帯端末やモバイルルータへ衛星通信機能を搭載することも想定され、従来提供されている衛星通信専用端末に比べ、使い勝手の良い端末の提供を目指す。

無線インタフェースについては、ITU-RやETSI等で推奨される方式や、新たな技術の採用を含め、その時の通信トレンドおよび技術に応じた方式を採用する。

周波数有効利用については、電波資源拡大のための研究開発の一環として実証されてきた周波数共用技術の利用などが考えられている。本技術を運用するためには、地上網と衛星網の状況を同時に監視しつつ、両網に最適な周波数配分を行う必要がある。
表 5-4 提案 2 で利用する技術

<table>
<thead>
<tr>
<th>必要となる要件</th>
<th>周波数の利用効率向上</th>
<th>端末小型化の実現</th>
<th>軌道上柔軟性</th>
<th>必要となる要件</th>
<th>周波数の利用効率向上</th>
<th>端末小型化の実現</th>
<th>軌道上柔軟性</th>
</tr>
</thead>
<tbody>
<tr>
<td>(大項目)</td>
<td></td>
<td></td>
<td></td>
<td>(中項目)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 周波数の利用効率向上</td>
<td></td>
<td></td>
<td></td>
<td>2. 端末小型化の実現</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 軌道上柔軟性</td>
<td></td>
<td></td>
<td></td>
<td>4. 災害発生時の対応</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

実現のための技術
実現による効果
背景となる関連

<table>
<thead>
<tr>
<th>実現のための技術</th>
<th>実現による効果</th>
<th>背景となる関連</th>
</tr>
</thead>
<tbody>
<tr>
<td>マルチスポットビームアンテナ</td>
<td>同一周波数を繰返しによる、周波数利用効率が向上する</td>
<td>総務省・NICT による STICS 研究等</td>
</tr>
<tr>
<td>マルチスポットビームアンテナ</td>
<td>大型展開アンテナにより、端末アンテナの小型化、低送信電力化が可能となり、利便性のよい小型端末を提供できる</td>
<td>総務省・NICT による STICS 研究等</td>
</tr>
<tr>
<td>デジタルビームフォーマ及びデジタルチャネライザ</td>
<td>災害時に所望の該当ビームに周波数リソース及び電力リソースを集中することが可能で、さまざまな通信需要変化に対応できる</td>
<td>総務省・NICT による STICS 研究等</td>
</tr>
</tbody>
</table>

③ 提案諸元

表 5-5 に提案 2 の衛星諸元を示す。

移動衛星通信システム（地上システムとの同一周波数の共用は実施しない段階）として、2010 年代後半の打上げを目指している。

<table>
<thead>
<tr>
<th>打上げ計画年</th>
<th>開発段階</th>
<th>国際調整資料の提出状況</th>
<th>衛星機数（予備機を含まない）</th>
<th>アンテナ径</th>
<th>サービスリンク</th>
<th>フィーダリンク</th>
<th>ビーム数</th>
<th>周波数再利用</th>
<th>伝送方式</th>
<th>多重化方式</th>
<th>変調方式</th>
</tr>
</thead>
</table>

④ 提案のサービス諸元

表 5-6 に提案 2 のサービス諸元を示す。

サービス内容は、音声通信、SMS、データ通信であり、災害エリア等にリソースを配分して通信を提供する。提供するサービスエリアは、原則日本を中心としたエリアとし、事業
面あるいは研究開発面での連携可能性や国際間調整の状況によっては、他国を含むことも想定される。
衛星回線の能力として、1 ビームあたりの最大音声同時接続数は 1097 回線である。この前提条件は以下の通りである。

【1 ビームあたり最大音声同時接続数の前提条件】
- 最大の 30MHz で運用する場合を試算（ガードバンド検討結果により再検討が必要）
- 衛星最大電力：3kw
- 周波数繰り返し数：7
- 単位 ch 帯域幅：上り、下り 31.25kHz
- 単位 ch データレート：上り、下り 23.4 kbps
- 単位 ch の最大同時接続数：上り、下り 8
- 音声コーデックレート：2.4 kbps
- 交換方式：回線交換
- 回線数算出の際に制御 ch は考慮されている

サービスエリア全体の収容能力としては、衛星搭載デジタルチャネライザの機能により、全ビーム合計で約 28,000 回線（＝ [衛星出力 3kw] / [1ch あたりに必要な出力 0.21w] × [衛星台数 2 台]）を上限として、最大約 7,000 音声回線／ビームのリソースを集中させる。衛星回線の能力の範囲内で、トラフィックの時間的・地理的変化に応じて運用する。
なお、将来的には衛星／地上共用通信システムに移行し、同一周波帯域を衛星／地上で同時運用することも想定され、その方策としては、周波数分割、時間分割、空間分割等が考えられる。

表 5-6 提案 2 のサービス諸元

<table>
<thead>
<tr>
<th>業務分類</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>端末のサイズ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>サービス</td>
<td>災害時</td>
<td></td>
</tr>
<tr>
<td>内容</td>
<td>平時</td>
<td></td>
</tr>
<tr>
<td>サービスエリア</td>
<td></td>
<td></td>
</tr>
<tr>
<td>衛星の収容能力</td>
<td>衛星回線の能力</td>
<td></td>
</tr>
<tr>
<td>平時（サービスエリア全体）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>災害时</td>
<td></td>
<td></td>
</tr>
<tr>
<td>必要な周波数帯域</td>
<td></td>
<td></td>
</tr>
<tr>
<td>必要なガードバンド幅</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(3) 提案 3 衛星・移動共用通信システム

① 提案システムの概要

本システムは、直径 30m 程度の超大型展開アンテナを衛星に搭載し、日本及びその排他の経済水域を 100 個程度の高利得かつ小径スポットのマルチビームで覆うことで地上システムと周波数を共有し、地上携帯と同程度の大きさの地上／衛星共用端末により通信を行う。同一周波数帯で衛星回線と地上回線を同時運用して周波数有効利用を図る。また、災害時に被災エリアに通信リソースを重点的に配分し、重要通信を中心に被災エリアの通信を確保する。なお、本システムは研究開発段階のシステムであり、地上における基盤技術の開発が完了している。衛星を含めた具体的なシステム構成については事業者が決定することとされている。15

提案 3 のシステム構成イメージを図 5-9 に示す。

図 5-9 提案 3 のシステム構成

② 提案技術

本システムでは、主に衛星システムの技術である周波数共用技術、ダイナミックネットワーク制御技術、主に衛星搭載通信の技術である耐飽和増幅器技術、超マルチビーム形成技術、低音波ロープ化技術、リソース割当再構成技術を採用する。なお本システムは研究開発段階であり、提案技術については部分試作を含む現実性検証によって地上での基盤技術の開発を完了している。提案技術の採用については事業者が決定することとしている。

15「電波資源拡大のための研究開発」の「地上／衛星共用携帯電話システム技術の研究開発」において実施
周波数共用技術
地上回線と衛星回線が同一周波数帯を共用するための技術である。割当周波数帯全体をサブバンドに分割し、各衛星ビームの衛星回線とそのエリアで使用される地上回線に異なるサブバンドを割り当てることで割当周波数帯全体として共用を行う。地上／衛星回線間の同一周波数干渉を考慮した許容干渉レベルや干渉回避技術の最適設計によって実現する。

ダイナミックネットワーク制御技術
地上回線および衛星回線のトラフィック量に応じて柔軟にチャネルを割り当てるための技術である。ユーザトラフィック使用率、利用チャネルの変化率、異常検出等の指標をベースとしたダイナミック制御アルゴリズムによって実現する。

耐飽和増幅器技術
衛星搭載増幅器の技術である。GaN等の大電力デバイスを使用した送信用大電力固体増幅器、多数の信号の総和に対しても動作可能な受信用高線形性低雑音増幅器によって実現する。

超マルチビーム形成技術
100ビーム程度の非常に多数の衛星スポットビーム形成を行う技術である。デジタルビームフォーマ（DBF）および100素子級のアレーバンテナを有する給電部によって実現する。

低サイドローブ化技術
干渉波抑圧のために衛星アンテナビームの低サイドローブ化を行う技術である。デジタルビームフォーマ（DBF）および100素子級のアレーバンテナを有する給電部によって実現する。

リソース割当再構成技術
災害時に被災エリアで急激に増加するトラフィック要求を可能な限り衛星回線で収容するため、通信リソース配分を衛星上でダイナミックに変更する技術である。デジタル信号処理によって各衛星ビームに割り当てるチャネルを周波数軸上で柔軟に再構成することで衛星—地上局間の効率良い信号伝送を可能にする、デジタルチャネライザ技術によって実現する。

提案諸元
表5-7は提案3の衛星諸元を示す。本システムは研究開発段階であり、衛星諸元の設計は概念設計で実施している。具体的な衛星諸元については事業者が決定することとしている。
表 5-7 提案 3 の衛星諸元

<table>
<thead>
<tr>
<th>打上げ計画年</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>開発段階</td>
<td></td>
</tr>
<tr>
<td>国際調整資料の提出状況</td>
<td></td>
</tr>
<tr>
<td>衛星機数（予備機を含まない）</td>
<td></td>
</tr>
<tr>
<td>アンテナ口径</td>
<td>サービスリンク</td>
</tr>
<tr>
<td>ビーム数</td>
<td></td>
</tr>
<tr>
<td>周波数再利用</td>
<td></td>
</tr>
<tr>
<td>伝送方式</td>
<td>多重化方式</td>
</tr>
</tbody>
</table>

提案のサービス諸元

表 5-8 に、提案 3 のサービス諸元を示す。

サービス内容は、音声通信、SMS、データ通信である。平時には地上系移動通信のサービスエリアでは地上回線に接続し、山間部や海上等、地上系移動通信の不感地域では衛星回線に接続してサービスを提供する。災害等の緊急時に地上回線に障害が発生した場合には、災害エリア等にリソースを配分して少しでも多くの通信サービスを提供する。なお本システムは研究開発段階であり、サービス諸元の成立性は概念設計で確認している。具体的なサービス諸元については事業者が決定することとしている。

衛星回線の能力として、1 ビームあたりの最大音声同時接続数は 428 回線である。研究開発段階の設計値における前提条件は以下の通りである。

【1 ビームあたり最大音声同時接続数の前提条件（研究開発段階の設計値）】
- 最大の 30MHz で運用する場合の試算（ガードバンド検討結果により再検討が必要）
- 衛星最大電力：2kw
- 周波数繰り返し数：7
- 単位 ch 帯域幅：上り、下り 10kHz
- 単位 ch データレート：上り、下り 10 kbps
- 単位 ch の最大同時接続数：上り、下り 1
- 音声コーデックレート：9.6 kbps
- 交換方式：回線交換/パケット交換
- 制御 ch は回線数算出には考慮されていない

サービスエリア全体の収容能力としては、衛星搭載デジタルチャネライザの機能により、全ビーム合計で約 10,000 回線（＝ [衛星出力 2kw] ／ [1ch あたりに必要な出力 0.2w] × 2 kw）を使用した場合で、全体として約 10,000 回線が利用可能となる。
衛星台数1台]を上限として、最大約3,000音声回線／ビームのリソースを集中させることが可能である(より低レートの音声コーデックを採用して、最大回線数を増加させることは技術的に可能)。衛星回線の能力の範囲内で、平時にはトラフィックの時間的・地理的変化に応じて各衛星ビームの回線数を調整して運用とともに、災害時には災害地域をカバーする衛星ビームにリソースを集中させることが可能である。
また、同一周波数帯において、衛星系と地上系の同時運用を行う。具体的には、バンド全体をサブバンドに分割し、衛星ビーム毎に衛星系、地上系でサブバンドが重ならないように周波数の割当を行う。

表 5-8 提案3のサービス諸元

<table>
<thead>
<tr>
<th>業務分類</th>
<th>災害時</th>
<th>平時</th>
</tr>
</thead>
<tbody>
<tr>
<td>端末のサイズ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>サービス内容</td>
<td>卫星回線の能力</td>
<td>平時（サービスエリア全体）</td>
</tr>
<tr>
<td>サービスエリア</td>
<td></td>
<td></td>
</tr>
<tr>
<td>衛星の収容能力</td>
<td>災害時</td>
<td></td>
</tr>
<tr>
<td>必要な周波数帯域</td>
<td></td>
<td></td>
</tr>
<tr>
<td>必要なガードバンド幅</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4) 提案4 衛星・移動共用通信システム

① 提案システムの概要
本提案は、無線インタフェースのみの提案であり、通常利用している携帯端末で衛星通信を利用可能とする携帯電話システムへの適用を想定している。同一周波数における衛星回線と地上回線の同時運用を前提に設計されている。
本システムは、衛星系のシステムにEGAL（Enhanced Geostationary Air Link）を用いた地上系システム（3G/LTE）とのハイブリッドシステムである。

② 提案技術
EGAL は既に標準化されている無線インタフェースであり、北米においてハイブリッド運用の衛星系の技術として検討されている。また、欧州では継続的にMSS/ATC事業者との共同検討が行われており、既存端末を流用できるハイブリッドシステムのリファレンスソリューションとして認知されている。
静止衛星の大きな伝搬ロス及び遅延に対する通信環境に最適化したシステムとして、3G/LTE と同じ周波数帯での同時運用を前提に設計している。また、出来る限り既存の地上系携帯電話無線インタフェースを流用し、以下のような実現を目指す。
地上系携帯電話通信チップへのインテグレーションが容易

地上系携帯電話端末と同じ Form factor（アンテナ、フィルタ、アンプ等）で動作できるよう設計しており、専用端末を必要としないため、商用化されている 3G/LTE 端末と同等の実装でサポートが可能

音声通信（2kbps の Vocoder）及びデータ通信が可能

衛星への上りリンクは地上系携帯電話端末と同じ送信電力で静止衛星との通信を可能とするため Narrow band FDM の専用設計（6.4kHz または 12.8kHz）

衛星からの下りリンクは 1.25MHz の 3G（1xEV-DO）の使用を流用

本無線インターフェイスは、一部チップで実装済みであり、北米において同チップを使用した地上系携帯電話と同じ Form factor のプロトタイプ端末で衛星との通信を実証済みである。

③ 提案諸元

表 5-9 に提案 4 の衛星諸元を示す。本提案は、無線インタフェースのみの提案であり、具体的な衛星諸元については事業者が決定することとされている。

<table>
<thead>
<tr>
<th>打上げ計画年</th>
<th>開発段階</th>
<th>国際調整資料の提出状況</th>
<th>衛星機数（予備機を含まない）</th>
<th>アンテナ口径</th>
<th>サービスリンク</th>
<th>フィーダリンク</th>
<th>ビーム数</th>
<th>周波数再利用</th>
<th>伝送方式</th>
<th>多重化方式</th>
<th>変調方式</th>
</tr>
</thead>
</table>

④ 提案のサービス諸元

表 5-10 に、提案 4 のサービス諸元を示す。

サービス内容は、音声通信、SMS、データ通信であり、災害時には IP マルチキャストの利用も可能としている。

衛星回線の能力として、パケット交換方式における同時接続数をシミュレーションにより求めると、1 ビームあたりの最大音声同時接続数は約 592 回線である。前提条件は以下の通りである。
【1 ビームあたり最大音声同時接続数の前提条件】

- 最大の 30MHz で運用する場合の試算（ガードバンド検討結果により再検討が必要）
- 衛星最大電力：衛星の能力による
- 周波数繰り返し数：3
- 単位 ch 帯域幅：上り 6.4 kHz、下り 1.25 MHz
- 単位 ch データレート：上り 2.4 kbps、下り 307.2 kbps
- 単位 ch の最大同時接続数：上り 1、下り 74
- 音声コーデックレート：2 kbps
- 交換方式：パケット交換
- 制御 ch は回線数算出には考慮されている
- VoIP 最適化技術（ヘッダー圧縮、パケットバンドリング、スマートブランキング）を適用

平時及び災害時の衛星収容能力については、事業者の運用方針により決定されるが、下りのデータレートを変更して、単位チャネルあたりの容量を増加させることは技術的に可能であるとしている。

地上サービスとの連携方策について、3G/LTE のカバレッジ内では、3G/LTE を使用し、カバレッジ外では EGAL を使用する。同じ周波数帯における EGAL と 3G/LTE とのハイブリッドシステムでは、システム間で周波数共用に関する調整は原則不要である。3G/LTE のカバレッジエリア内では、3G/LTE の信号が支配的になり、衛星からの信号が検出できなくなるため、端末は 3G/LTE を使用する。一方、3G/LTE のカバレッジエリア外では、衛星からの信号が検出できるようになり、端末は EGAL の無線インタフェースを使用する。これにより、どちらかの無線インタフェースに接続するため、連続したカバレッジを構築することが可能となるとしている。なお、通信中のハンドオーバはサポートされていない。

<table>
<thead>
<tr>
<th>業務分類</th>
<th>災害時</th>
<th>平時</th>
</tr>
</thead>
<tbody>
<tr>
<td>端末のサイズ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>サービス内容</td>
<td></td>
<td></td>
</tr>
<tr>
<td>サービスエリア</td>
<td></td>
<td></td>
</tr>
<tr>
<td>衛星の収容能力</td>
<td>衛星回線の能力</td>
<td>平時（サービスエリア全体）</td>
</tr>
<tr>
<td>災害時</td>
<td></td>
<td></td>
</tr>
<tr>
<td>必要な周波数帯域</td>
<td></td>
<td></td>
</tr>
<tr>
<td>必要なガードバンド幅</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 5-10 提案 4 のサービス諸元
5.3.3 インバンド及びアウトバンド／ガードバンド検討（P）
5.4 S帯を用いた移動衛星通信システムの要求条件（P）