教育分野における効果的なICT利活用を推進するための調査研究
報告書

平成26年3月

UCHIDA
株式会社内田洋行
目次

1. 背景と目的 .. 1
2. ICT環境の効率的な構築・運用に関する課題の抽出・分析等 .. 4
 2.1. 実証校に導入されたICT機器 .. 4
 2.2. 中学校のICT環境の効率的な構築・運用に関する課題の抽出・分析等 7
 2.2.1. 中学校のICT環境の効率的な構築 ... 8
 2.2.2. 中学校の年度末年度始めのICT環境の設定 ... 18
 2.3. 中学校のICT環境の運用 ... 20
 2.4. 中学校の教員・生徒・保護者・ICT支援員への対応 .. 29
 2.5. 特別支援学校のICT環境の効率的な構築・運用に関する課題の抽出・分析等 32
 2.5.1. 特別支援学校のICT環境の効率的な構築 ... 32
 2.5.2. 特別支援学校の年度末年度始めのICT環境の設定 ... 34
 2.5.3. 特別支援学校のICT環境の運用 .. 35
 2.5.4. 特別支援学校の教員・生徒・保護者・ICT支援員への対応 37
3. ICT環境の利活用に関する課題の抽出・分析等 ... 38
 3.1. ヒアリング調査に基づく利用活用及び促進された教育手法の抽出・分析等 38
 3.2. 学校現場におけるICT環境の利活用に関する課題の抽出・分析等 40
 3.2.1. 普通教室における学習時の課題 ... 40
 3.2.2. 遠隔地との交流学習時における課題 ... 43
 3.2.3. 校外学習時における課題 ... 46
 3.2.4. 持ち帰り学習時における課題 ... 48
 3.3. 災害時における学校のICT環境の利活用方策に関する課題の抽出・分析等 51
4. ICT機器及びネットワーク環境の構築・運用の技術的条件に関する課題の抽出・分析 55
 4.1. 学校現場で活用するICT機器の標準要件の整理 ... 55
 4.1.1. タブレットPCに求められる機能・性能に関する標準要件の整理 56
 4.1.2. 電子黒板に求められる機能・性能に関する標準要件の整理 66
 4.1.3. その他の関連機器に求められる機能・性能に関する標準要件の整理 73
 4.2. 学校現場で活用するネットワーク環境の技術的要件の整理 75
 4.2.1. ネットワーク回線の技術的条件 (WAN接続) ... 76
 4.2.2. 校内LAN (有線LAN) の技術的条件 ... 78
 4.2.3. 校内LAN (無線LAN) の技術的条件 ... 80
 4.2.4. 学校現場で活用するネットワーク環境の技術的要件の整理 (まとめ) 85
 4.3. 学校が求める情報セキュリティ対策の技術的要件の整理 .. 86
 4.3.1. セキュリティポリシーへの配慮 .. 86
 4.3.2. ウェブフィルタリングへの配慮 .. 87
 4.3.3. 学校における情報セキュリティ対策 .. 89
 4.4. 学校でICT環境を低コストで運用するための要件 ... 92
 4.4.1. 効率的な運用方策 ... 92
 4.4.2. 自立的な運用をするための方策 ... 93
5. 将来における教育・学習環境のICT化による課題解決策の検討 .. 95
 5.1. クラウドの定義と利点 ... 95
 5.2. 教育・学習環境のICT化に関する課題の整理 ... 98
 5.3. 課題解決策の提案 ... 100
5.4. クラウドを活用する際の課題の整理... 103
5.5. その他の取り組み.. 104
5.5.1. 教育分野における最先端ICT利活用に関する調査研究.. 104
5.5.2. クラウド環境下におけるサーバ間データの集約及びデータ等配信・管理の実証... 104
6. 諸外国の教育情報化に関する調査.. 106
6.1. 教育情報化に関するニーズの調査... 106
6.1.1. 各国の状況 ... 106
6.1.2. タイの教育ICTの現状と課題 ... 108
6.1.3. フィリピンの教育ICTの現状と課題 ... 110
6.1.4. インドネシアの教育ICTの現状と課題 ... 111
6.1.5. マレーシアの教育ICTの現状と課題 ... 112
6.1.6. トルコの教育ICTの状況 .. 113
6.1.7. 諸外国のニーズについてのまとめ ... 114
6.2. 教育情報化に関する先進的な取り組みに関する調査... 115
6.2.1. 韓国の教育ICTの現状 .. 115
6.2.2. フィンランドにおける教育ICTの現状 ... 117
参考資料1（中学校の生徒用コンピュータ等の必要機能等に関する調査）.................... 119
参考資料2（中学校の生徒用コンピュータ等の必要機能等に関する調査項目と略称）.... 124
1. 背景と目的

近年、クラウド技術を中心とした情報通信技術の発達により、社会のあらゆる場面においてネットワークを介した情報の授受が可能となった。社会の情報化が急速に進展している中で、児童生徒が情報手段を主体的に活用する能力の育成が重要となっている。

こうした中、イギリス、韓国、シンガポールを始めとする諸外国に目を向けると、電子黒板の整備や、児童生徒1人1台PCの整備、デジタル教科書の整備等、ICTの教育利用が国の中長期的な計画のもとに推進されている。

我が国においても、2006年のIT新改革戦略、2009年のスクール・ニューディール構想を始め、学校におけるICT環境の整備が着実に進められてきた。とりわけ、2013年6月に閣議決定された高度情報通信ネットワーク社会推進戦略本部（IT総合戦略本部）の「世界最先端IT国家創造宣言」においては、「学校の高速ブロードバンド接続、1人1台の情報端末配備、電子黒板や無線LAN環境の整備、デジタル教科書・教材の活用等、初等教育段階から教育環境自体のIT化を進め、児童生徒の学力の向上とITリテラシーの向上を図る」とともに、「2010年代中には、全ての小学校、中学校、高等学校、特別支援学校で教育環境のIT化を実現するとともに、学校と家庭がシームレスでつながる教育・学習環境を構築すること」として具体的な目標が掲げられている。さらに、2015年度の調査研究ではこの点も踏まえた報告がなされた。

これらの目標に向け、平成22年度から小学校10校を対象に、さらに平成23年度からは中学校8校、特別支援学校2校を加えて、「フューチャースクール推進事業」を開始し、様々な協働教育の実践が行われた。その結果、児童生徒1人1台情報端末等の環境での構築・運用・活用にそれぞれの場面における情報通信技術面の課題が明らかになってきた。平成25年3月報告の「教育分野における効果的なICT利用推進のための情報通信技術面に関するガイドライン（手引書）2011」（以下、「ガイドライン2011」という。）、「教育分野におけるICT利用推進のための情報通信技術面に関するガイドライン（手引書）2012」（以下、「ガイドライン2012」という。）、「教育分野におけるICT利用推進のための情報通信技術面に関するガイドライン（手引書）2013（小学校版、中学校・特別支援学校版）」（以下、「ガイドライン2013」という。）を策定することで、初等中等教育のフューチャースクール化に向けた指針を検討するにあたり蓄積した成果を残してきた。

これらの背景・経緯をもとに、総務省では調査研究の結果を踏まえ、「教育分野におけるICT利用推進のための情報通信技術面に関するガイドライン（手引書）2011」（以下、「ガイドライン2011」という。）、「教育分野におけるICT利用推進のための情報通信技術面に関するガイドライン（手引書）2012」（以下、「ガイドライン2012」という。）、「教育分野におけるICT利用推進のための情報通信技術面に関するガイドライン（手引書）2013（小学校版、中学校・特別支援学校版）」（以下、「ガイドライン2013」という。）を策定することで、初等中等教育のフューチャースクール化に向けた指針を検討するにあたり蓄積した成果を残してきた。

本調査研究では、過去3年におきる検証実施されてきた「中小学校及び特別支援学校における調査研究」と、総務省がこれまでに策定した「ガイドライン2011」、「ガイドライン2012」、「ガイドライン2013」を踏まえ、小学校及び特別支援学校のICT環境の構築・運用における相違点や留意点を明らかにするとともに、ガイドライン2011、ガイドライン2012、ガイドライン2013を補充・改訂するガイドライン2014の作成にあたり必要な情報を抽出・分析し、児童生徒1人1台情報端末等の環境におけるICTの標準要件の整理を行うことを目的とする。なお、本調査研究では、今年度実施された「教育分野における最先端ICT利用に関する調査研究」及び「クラウド環境下におけるサーバー間データの集約及び配信・管理の実証」で行った調査研究の結果も参考としている。
図表 1-1 実証校の生徒数・教員数・クラス数1・特色等（中学校）

<table>
<thead>
<tr>
<th>学校名</th>
<th>生徒数 (名)</th>
<th>教員数 (名)</th>
<th>クラス数</th>
<th>校舎形状</th>
<th>地理的条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>新地町立尚英中学校 (福島県)</td>
<td>232</td>
<td>21</td>
<td>11<2></td>
<td>鉄筋3F</td>
<td>集落に隣接した学校</td>
</tr>
<tr>
<td>-8</td>
<td>+1</td>
<td>+1<+1></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-25</td>
<td>+3</td>
<td>+1<+1></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>横浜国立大学教育人間科学部附属横浜中学校 (神奈川県)</td>
<td>405</td>
<td>24</td>
<td>9</td>
<td>鉄筋3F</td>
<td>商店街に隣接する住宅地に立地した学校</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上越教育大学附属中学校 (新潟県)</td>
<td>364</td>
<td>28</td>
<td>9</td>
<td>鉄筋3F</td>
<td>積雪が多く、城跡の公園内に立地した学校</td>
</tr>
<tr>
<td>-3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>松阪市立三雲中学校 (三重県)</td>
<td>443</td>
<td>30</td>
<td>14<2></td>
<td>鉄筋3F</td>
<td>国道沿いの田畑と集落が混在する場所に立地した学校</td>
</tr>
<tr>
<td>-4</td>
<td>+1</td>
<td>0<0></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-14</td>
<td>0</td>
<td>0<0></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>和歌山市立城東中学校 (和歌山県)</td>
<td>270</td>
<td>21</td>
<td>12<3></td>
<td>鉄筋3,4F</td>
<td>商店街に隣接する住宅地に立地した学校</td>
</tr>
<tr>
<td>+3</td>
<td>-2</td>
<td>+1<+1></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-18</td>
<td>+1</td>
<td>+1<+1></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>新見市立哲西中学校 (岡山県)</td>
<td>60</td>
<td>11</td>
<td>4<1></td>
<td>鉄筋3F</td>
<td>山林・田畑に囲まれた場所に立地した学校</td>
</tr>
<tr>
<td>-2</td>
<td>0</td>
<td>+1<+1></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>-1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>佐賀県立武雄青陵中学校 (佐賀県)</td>
<td>437</td>
<td>27</td>
<td>11</td>
<td>鉄筋4F</td>
<td>新興住宅地に立地した学校</td>
</tr>
<tr>
<td>-39</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-37</td>
<td>0</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>宮古島市立下地中学校 (沖縄県)</td>
<td>106</td>
<td>19</td>
<td>4</td>
<td>鉄筋2F</td>
<td>海沿いの小高い土地に立地した学校</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-11</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中学校 合計</td>
<td>2,317</td>
<td>181</td>
<td>74<8></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1実証校の生徒数・教員数・クラス数については、昨年度は平成23年5月時点、昨年度は平成24年4月時点の数、今年度は平成25年2月時点の数。クラス数の（）は、クラス数のうち、特別支援学級の数

2株式会社内田洋行
実証校の児童生徒数・教員数・クラス数2・特色等（特別支援学校）

<table>
<thead>
<tr>
<th>学校名</th>
<th>児童生徒数（名）</th>
<th>教員数（名）</th>
<th>クラス数</th>
<th>校舎形状</th>
<th>病院との関係</th>
</tr>
</thead>
<tbody>
<tr>
<td>富山県立ふるさと支援学校（富山県）</td>
<td>26</td>
<td>26</td>
<td>10</td>
<td>鉄筋3F L字型</td>
<td>隣接する病院への訪問教育や病院からの通学</td>
</tr>
<tr>
<td></td>
<td>+6</td>
<td>+1</td>
<td>+6</td>
<td>F字型</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>-2</td>
<td>+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>京都市立桃陽総合支援学校（京都府）</td>
<td>65</td>
<td>38</td>
<td>12</td>
<td>鉄筋1F L字型</td>
<td>4つの病院に分教室</td>
</tr>
<tr>
<td></td>
<td>+16</td>
<td>-3</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>特別支援学校 合計</td>
<td>91</td>
<td>64</td>
<td>22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2実証校の児童生徒数・教員数・クラス数については、一昨年度は平成23年5月時点、昨年度は平成24年4月時点の数、今年度は平成25年4月時点の数。また、児童生徒数は、小学部・中学部（高等学校等を除く）の数。
2. ICT環境の効率的な構築・運用に係る課題の抽出・分析等

中学校と特別支援学校におけるICT環境の効率的な構築・運用に関して各実証校にヒアリングを行い、課題の抽出・分析を行った。3年間の実証研究の経験を踏まえた効率的な構築・運用に係る課題について整理する。

2.1 実証校に導入されたICT機器

実証校に導入されたタブレットPC選定の考え方及び種類を以下に示す。

<table>
<thead>
<tr>
<th>実証校</th>
<th>選定の考え方</th>
<th>形状</th>
<th>画面サイズ（インチ）</th>
<th>重量（キログラム）</th>
<th>定価（万円）</th>
</tr>
</thead>
<tbody>
<tr>
<td>尚英中学校</td>
<td>小学校との一貫した利用に向け、小学校で導入されている端末との連続性に配慮した端末を選定</td>
<td>スレート型（富士通製STYLISTIC Q550/C）</td>
<td>10.1</td>
<td>0.78</td>
<td>10</td>
</tr>
<tr>
<td>横浜国立大学教育人間科学部附属横浜中学校</td>
<td>レポート作成やプレゼンテーション等にはキーボードが有効と考え、コンパーチブル型を選定</td>
<td>コンパーチブル型（日本HP製EliteBook 2760p）</td>
<td>12.1</td>
<td>1.80</td>
<td>18</td>
</tr>
<tr>
<td>上越教育大学附属中学校</td>
<td>大容量の教育コンテンツ利用を見込み、CPUやメモリの性能が既存のデジタル教材と親和性の高いOSを搭載した端末を選定</td>
<td>コンパーチブル型（日本HP製EliteBook 2760p）</td>
<td>12.1</td>
<td>1.80</td>
<td>18</td>
</tr>
<tr>
<td>三雲中学校</td>
<td>生徒数が多いこと、バッテリー切れによる学習意欲の低下への懸念から、価格とバッテリーの駆動時間を重視して選定</td>
<td>スレート型（Apple製iPad2）</td>
<td>9.7</td>
<td>0.60</td>
<td>5</td>
</tr>
<tr>
<td>城東中学校</td>
<td>家庭への持ち帰りや学校内外での日常的な利用を促すため、軽量で防水機能のある機種を選定</td>
<td>スレート型（富士通製STYLISTIC Q550/C）</td>
<td>10.1</td>
<td>0.78</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>スレート型（Apple製iPad2）</td>
<td>9.7</td>
<td>0.60</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>スレート型（富士通製Android Arrows Wi-Fi TAB）</td>
<td>10.1</td>
<td>0.60</td>
<td>7</td>
</tr>
<tr>
<td>哲西中学校</td>
<td>低価格、起動の速さ、パッテリーの持ち倉性、アプリケーションの豊富さ及び汎用性</td>
<td>スレート型（Apple製iPad2）</td>
<td>9.7</td>
<td>0.60</td>
<td>5</td>
</tr>
<tr>
<td>武雄青陵中学校</td>
<td>デジタル教材の多くが使えるOSと持ち運びやすさを重視して選定</td>
<td>スレート型（富士通製STYLISTIC Q550/C）</td>
<td>10.1</td>
<td>0.78</td>
<td>10</td>
</tr>
<tr>
<td>下地中学校</td>
<td>大容量の教育コンテンツ利用を見込み、CPUやメモリの性能の高い端末を選定</td>
<td>コンパーチブル型（日本HP製EliteBook 2760p）</td>
<td>12.1</td>
<td>1.80</td>
<td>18</td>
</tr>
<tr>
<td>ふるさと支援学校</td>
<td>ID/パスワードの入力操作が難しい児童生徒用に指紋認証装置により起動できる端末を15台配置</td>
<td>スレート型（ASUS製EEE SLATE B121）</td>
<td>12.1</td>
<td>1.1</td>
<td>14</td>
</tr>
</tbody>
</table>

3. 城東中学校のタブレットPCの一部は、和歌山市で独自に配備した。

尚英中学校のタブレットPCの一部は、和歌山市で独自に配備した。
実証校に導入された電子黒板選定の考え方と種類を以下に示す。

<table>
<thead>
<tr>
<th>実証校</th>
<th>選定の考え方</th>
<th>形状</th>
<th>画面サイズ（インチ）</th>
<th>重量（キログラム）</th>
<th>定価（万円）</th>
</tr>
</thead>
<tbody>
<tr>
<td>桃陽総合支援学校</td>
<td>師室に持ち込むタブレットPCは、衛生面への配慮からファンがないスレート型で軽量なものを選定。</td>
<td>コンパクトなT型（東芝製CMI）</td>
<td>10.1</td>
<td>1.8</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>本校や分教室で利用するタブレットPCは、堅牢であること、バッテリーが長持ちすること、ペンが使いやすいこと、机から落ちにくいようにある程度の重量がある等を重視して選定。</td>
<td>スレート型（Acer製ICONIA TAB-W500P）</td>
<td>10.1</td>
<td>0.97</td>
<td>6</td>
</tr>
</tbody>
</table>

実証校に導入された電子黒板選定の考え方と種類を以下に示す。

表2-2 電子黒板選定の考え方と種類

<table>
<thead>
<tr>
<th>実証校</th>
<th>選定の考え方</th>
<th>方式</th>
<th>画面サイズ（インチ）</th>
<th>定価（万円）</th>
</tr>
</thead>
<tbody>
<tr>
<td>尚英中学校</td>
<td>普通教室では、黒板の利用できる場所を変更できる黒板取付式ボード型を採用。特別支援学級及び特別教室では、教室間で電子黒板を移動させることを想定し移動可能な一体型を採用。</td>
<td>黒板取付式ボード型（EPSON製EB-455WT）</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>教室の空きスペースの制約を踏まえ選定。</td>
<td>一体型（パイオニア製CBS-S60E）</td>
<td>60</td>
<td>98</td>
</tr>
<tr>
<td>横浜国立大学教育人間科学部附属横浜中学校</td>
<td>教室の空きスペースと画面サイズの双方を踏まえ選定。</td>
<td>黒板取付式ボード型（日立ソリューションズ製SB-FXT77PL）</td>
<td>77</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>頭後方からも見えるよう、大きな画面サイズの機種を選定。</td>
<td>ボード型（日立ソリューションズ製SB-FXT77PJ2）</td>
<td>77</td>
<td>90</td>
</tr>
<tr>
<td>上越教育大学附属中学校</td>
<td>教室の空きスペースと画面サイズの双方を踏まえ選定。</td>
<td>一体型（パイオニア製EPD-C50E3）</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>見やすく、圧迫感を感じにくいプラズマディスプレイを採用。</td>
<td>一体型（パイオニア製EPD-C50F0）</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>三雲中学校</td>
<td>操作の統一性を重視し、市で先行導入していたものと同様の機種を選定。</td>
<td>一体型（パイオニア製EPD-C50E3）</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>教室の空きスペースと画面サイズの制約を踏まえ選定。</td>
<td>一体型（パイオニア製EPD-C50F0）</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>城東中学校</td>
<td>小学校の一部に配置するものと特別教室や体育館等に配置するもので、画面サイズの異なる機種を選定。</td>
<td>一体型（パイオニア製CBS-S60E）</td>
<td>60</td>
<td>98</td>
</tr>
<tr>
<td>哲西中学校</td>
<td>小学校との一貫した利用に向け、小学校で導入されている端末と同様のもので、教室後方から見えるよう、一回り大きな画面サイズの機種を選定。</td>
<td>一体型（パイオニア製CBS-E50E3）</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>武雄青陵中学校</td>
<td>40人学級で使うことから、大きな画面サイズの機種を選定。</td>
<td>黒板取付式ボード型（サカワ製EBAPJ-EP-77）</td>
<td>77</td>
<td>98.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ボード型（サカワ製EBAPJ-EP-77K）</td>
<td>77</td>
<td>98.4</td>
</tr>
<tr>
<td>下地中学校</td>
<td>画面にそのがぶつかる可能性を踏まえ、一定の強度のあるプラズマディスプレイ方式を選定。</td>
<td>一体型（パイオニア製EPD-C50E3）</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>実証校</td>
<td>選定の考え方</td>
<td>方式</td>
<td>画面サイズ（インチ）</td>
<td>定価（万円）</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| ふるさと支援学校 | •教室で利用するものは児童生徒が、直接、手指でパネル操作ができるものを選定
•体育館で利用するものは身体運動を活発にできるように、ボール等がぶつかる事態を想定して耐久性に優れたものを | 一体型（バイオニア製CBS-S60E）
| | | ボード型（プロメシアン製ActivBoard587 ProMobile） | 60 | 98 |
| 桃陽総合支援学校 | •既にデジタルテレビが一部導入されていたことから、コストを抑えるために外付けユニットを選定 | フレーム型（日立ソリューションズ製PX-DUO-50V(F)） | 50 | 25 |
2.2. 中学校のICT環境の効率的な構築・運用に関する課題の抽出・分析等

中学校の実証校では、独自の実証テーマを設定し、それぞれの特徴や実証テーマの内容に合わせて、異なった環境を構築している。ICT機器に関しては、以下に示す共通の評価指標に基づき、実証校へのヒアリング等で抽出した課題を各実証校に導入された機器の違いに着目して整理し、分析した。

図表 2-3 ICT環境の構築・運用等に関わる評価指標

<table>
<thead>
<tr>
<th>評価項目</th>
<th>評価指標</th>
</tr>
</thead>
<tbody>
<tr>
<td>タブレットPC</td>
<td>起動や反応の速さ</td>
</tr>
<tr>
<td></td>
<td>重量</td>
</tr>
<tr>
<td></td>
<td>堅牢性</td>
</tr>
<tr>
<td></td>
<td>画面サイズ・反射</td>
</tr>
<tr>
<td></td>
<td>バッテリー</td>
</tr>
<tr>
<td></td>
<td>入力方式</td>
</tr>
<tr>
<td></td>
<td>内蔵カメラ</td>
</tr>
<tr>
<td></td>
<td>導入・メンテナンス</td>
</tr>
<tr>
<td>電子黒板</td>
<td>画面サイズ</td>
</tr>
<tr>
<td></td>
<td>映り込み</td>
</tr>
<tr>
<td></td>
<td>操作性</td>
</tr>
<tr>
<td></td>
<td>設置方式</td>
</tr>
<tr>
<td></td>
<td>機能</td>
</tr>
<tr>
<td></td>
<td>機器やアプリケーションとの親和性</td>
</tr>
</tbody>
</table>

なお、タブレットPCに関しては、中学校の実証校ごとに採用されている機器の方式が大きく異なるため、改めて以下に分類する。

図表 2-4 タブレットPCの分類

<table>
<thead>
<tr>
<th>端末</th>
<th>分類</th>
<th>機器</th>
<th>OS</th>
<th>重量、寸法（幅×奥行き×高さ）</th>
<th>使用している実証校</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>スレート型</td>
<td>富士通製STYLISTIC Q550/C</td>
<td>Windows</td>
<td>0.78kg (\times) 275×192×16mm</td>
<td>尚英中学校</td>
</tr>
<tr>
<td>B</td>
<td>コンバーチブル型</td>
<td>日本HP製EliteBook2760p</td>
<td>Windows</td>
<td>1.80kg (\times) 290×212×32mm</td>
<td>横浜国立大学教育人間科学部附属横浜中学校</td>
</tr>
<tr>
<td>C</td>
<td>iPad型</td>
<td>Apple製iPad2</td>
<td>iOS</td>
<td>0.60kg (\times) 241×186×9mm</td>
<td>三雲中学校</td>
</tr>
</tbody>
</table>

中学校の実証校に導入されている電子黒板については、図表2-2を参照のこと。また、タブレットPCの方式の違いについては4.1.1②を、電子黒板の方式の違いについては4.1.2②を参照すること。
2.2.1. 中学校のICT環境の効率的な構築

① ICT環境の構築におけるタブレットPCの課題の整理

（ア）起動・反応の速さ

タブレットPCの起動や反応の速さは、CPUやメモリの性能が大きく影響する。CPUやメモリは、使用されるアプリケーションの推奨要件を満たしていても、複数のアプリケーションを同時に使用したり、大容量コンテンツを利用して使用すると、性能が著しく低下する。一方、性能を向上させるためには、CPUやメモリの性能が必要で、価格が高くなるほか、バッテリーの駆動時間や重量、大きさに悪影響を与える可能性があるため、バランスを考慮した機器選定が求められる。起動や反応の速さに関して、各実証校からのヒアリング結果を以下に示す。

![タブレットPCの起動や反応の速さに関するヒアリング結果](image)

端末Aでは複数の実証校から課題が報告された。一方、同じOSが採用されているが、端末Aに比べてCPUの性能が数倍高い端末Bでは、一部の実証校で起動の遅さが多少気になるという報告があったが、ほとんど課題は報告されなかった。

また、反応の速さについては、利用しているアプリケーションやCPUやメモリ等の性能も大きく影響する傾向にあるため、各アプリケーションが要求する推奨スペックを考慮する必要がある。端末Bでは、一部の実証校で起動の遅さが多少気になるという報告があったが、ほとんどの課題は報告されなかった。

端末Cを使用している実証校では、課題は報告されなかった。端末Aや端末BとOSが異なるため、CPUやメモリの性能等での単純比較はできないが、性能に問題はないと考えられる。

（イ）重量

タブレットPCが重いと、特別教室等の普通教室以外の場所での利用や、家庭への持ち帰り学習を行う際に生徒への負担となりうる。重量に関するヒアリング結果を以下に示す。

![重量に関するヒアリング結果](image)

端末Aでは、一部の実証校を除き、重量に問題はなかった。タブレットPCにカバーをつけて運用している実証校もあるが、端末の重量が1kg以下の端末Aでも、重量のあるカバーを取り付けることによって、重くなってしまうこともある。カバーには、端末を保護する役割もあるため、堅牢性と重さとのバランスを考慮して選定することが望まれる。
「教育分野における効果的なICT利活用を推進するための調査研究」報告書

また、端末Bは、他のタブレットPCに比べて1kg以上重いため、多くの実証校から課題が報告されている。端末Aと端末Bでは、使用形態が大きく異なるため、一概には言えないが、教室外へ持ち出して様々な活動に利用するためには、概ね1kg以下の重量を目安に選定することが望まれる。

(ウ) 堅牢性

タブレットPCは日々の運用で、予想外の事故をはねつかせてしまったり、落下させてしまったりすることがある。また、複数台同時に故障してしまうと、予備機が不足し、タブレットPCを使った授業ができなくなる可能性がある。堅牢性に関するヒアリング結果を以下に示す。

<table>
<thead>
<tr>
<th>端末分類</th>
<th>ヒアリング結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>A スレート型</td>
<td>カバーで覆われていることにつぶれて、多少ゆがんだりする。</td>
</tr>
</tbody>
</table>
| B コンバーチブル型 | キーボードのキートップが外れやすい。
| | タブレットPCの画面とキーボードの接合部分が破損しやすい。 |
| C iPad型 | 画面部分をぶつけて破損してしまう。
| | キーボードと画面の接合部分が破損しやすい。

端末AとCでは、カバーで覆われていない部分の破損報告が多くあった。端末Bでは、キーボードや画面とキーボードの接合部分等、端末AやCに比べて構造的に複雑な箇所が破損しやすい、という報告があった。

堅牢性に関しては、どのタイプの端末に対しても、カバーをつけることが有効であるが、カバーをつけることが難しいため、カバーをつけることができない部分は、堅牢性が低くなる。堅牢性の高い端末の選定やカバーを取り付けるとしても、端末の利用に関しては注意して運用することが大切である。

(エ) 画面サイズ・反射

タブレットPCの画面サイズと反射は、視認性に大きく影響する。タブレットPCの画面サイズが小さすぎると、画面内に表示した画像が見えにくくなり、字が読みにくくなる。一方、画面サイズが大きすぎると、机の上に置いて使う際に教科書やノート等が置けなくなる可能性がある。そのため、画面サイズは適切な大きさを選択する必要がある。画面サイズ・反射に関するヒアリング結果を以下に示す。

<table>
<thead>
<tr>
<th>端末分類</th>
<th>画面サイズ(インチ)</th>
<th>ヒアリング結果</th>
</tr>
</thead>
</table>
| A スレート型 | 10.1 | 問題ない。
| | | 映り込みがある。
| | | カバーで角度を変えるため、反射は気にしていない。 |
| B コンバーチブル型 | 12.1 | 問題ない。
| | | 問題ない。
| | | 問題ないが、用途によっては画面サイズが小さく感じることもある。 |
| C iPad型 | 9.7 | 問題ない。 |

実証校では、どのタイプの端末も、画面サイズに関しては概ね問題を感じていないため、10〜12インチを目安に選定することが望まれる。

また、端末Aについて、教室内の照明がタブレットPCの画面に反射して見えづらいという報告がなされた。特に端末Aや端末Cの場合、机に寝かせた状態で使用することができ、その際に天井の照明が反射されることがある。実証校では、タブレットPCにカバー等を利用して画面の角度を調整していた。
（オ）バッテリー

バッテリーの持続時間はタブレットPCを日常的に活用するためには最も重要な要素である。特に、中学校では教科担任制のため、1日のうちに何時間タブレットPCを使用するのかを簡単に把握することができない。バッテリーの駆動時間が授業時間より少ない場合は、タブレットPCを使用する際に充電残量がなくならないよう、他の教科担任と調整しなければならないことになり、日常的な使用に大きな支障が生じることになる。

バッテリーの駆動時間に関するヒアリング結果を以下に示す。

<table>
<thead>
<tr>
<th>端末</th>
<th>分類</th>
<th>稼働時間</th>
<th>ヒアリング結果</th>
</tr>
</thead>
</table>
| A | スレート型 | ・4.5時間（標準バッテリー）
 | | ・9.1時間（大容量バッテリー）
 | | ・2時間程度しか持たず、不満である。
 | | ・3時間程度だが、慣れれば問題ない。
 | | ・毎日充電をすれば問題ない。 |
| B | コンバーチブル型 | ・4.3時間
 | | ・3時間程度だが問題ない。
 | | ・3時間程度しか持たないが、5時間は持って欲しい。
 | | ・2時間程度しか持たない。 |
| C | iPad型 | ・10時間
 | | ・問題ない。 |

実証校によって、端末の活用頻度が異なるため、同程度のバッテリー時間でも、問題がない学校もあれば、不満という報告のある学校もあった。また、バッテリーの時間が短くても、昼休み等の時間を利用して頻繁に充電を行って対応するため問題ない、という学校もあった。

端末A、端末Bとも、標準バッテリーはカタログスぺック上、4時間強の稼働時間があるが、実際には2〜3時間の使用でバッテリーが切れてしまい、日常的にタブレットPCを利用するのが困難であると推測される。

一方、大容量バッテリーを搭載したり、稼働時間が10時間程度確保されている端末では、日常の利用に際して問題はなかった。

なお、端末Aの場合、大容量バッテリーを選択すると110g重量が増加する。重量増による悪影響について考慮する必要があるが、日常的にタブレットPCを利用するためには、1日の授業時間分バッテリーで駆動できることを目安に、できるだけバッテリーの容量を確保する方が望ましい。

（カ）入力方法

タブレットPCのペン入力での書きやすさについては、紙に書く感覚に近い方が望ましい。また、ペン入力を行っている際、指や手のひらが意図せず画面に触れても誤反応することのないことも求められる。なお、端末B以外の端末にはキーボードが内蔵されていないため、外付けキーボードやソフトウェアキーボードを使用している。

入力方式に関するヒアリング結果を以下に示す。
「教育分野における効果的なICT利活用を推進するための調査研究」報告書

図表 2-10 入力方法に関するヒアリング結果

<table>
<thead>
<tr>
<th>端末</th>
<th>分類</th>
<th>入力方式</th>
<th>ヒアリング結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>スレート型</td>
<td>・静電容量方式 (指入力)</td>
<td>ペンの反応が悪い。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・電磁誘導方式 (ペン入力)</td>
<td>ペンとの接点不良が頻繁に起きる。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・キーボード (ソフトウェア・外付け)</td>
<td>ペンを置くと反応する場合や他のマシンでは反応するケースもある。抜本的な解決ではないが、予備のペンを用いて使用している。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ペンで記入する際、生徒がタブレットPCを横倒で記入することで、手の位置が画面に触れてしまい、記入仕方が悪い。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ペンに使用されている電池が特殊で高価である。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ペン入力、ペン入力のデュアルモードで運用すると、マウスカーソルが動く現象が生じる。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ソフトウェアキーボードでの文字入力作業が操作しづらい。</td>
</tr>
<tr>
<td>B</td>
<td>コンバーチブル型</td>
<td>・静電容量方式 (指入力)</td>
<td>ペンの反応が悪い。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・電磁誘導方式 (ペン入力)</td>
<td>筆圧感知が弱く書きにくい。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・キーボード (内蔵)</td>
<td>ペン機能が使えなくなる場合がある。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>タッチパネルが滑りすぎて、タッチペンや指での使用が難しい。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ペン機能を利用すると、ソフトウェアによって書き心地や反応速度に違いがある。</td>
</tr>
<tr>
<td>C</td>
<td>iPad型</td>
<td>・静電容量方式 (指入力・ペン入力)</td>
<td>細かい字は書きにくい。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・キーボード (ソフトウェア)</td>
<td>ソフトウェアキーボードで十分入力が可能である。</td>
</tr>
</tbody>
</table>

電磁誘導方式の端末で書き心地に関して課題が多く挙げられた。一般的に、ペン入力は電磁誘導方式の方が紙に書く感覚に近いとされているが、入力方式以外にも、OSやソフトウェアの違い、タッチする面の素材が書き心地に影響している可能性もある。

端末Aでは電池で駆動する専用のスタイラスペンを利用しているが、接触不良が数多く発生していた。スタイラスペンの機械的な構造に起因していると考えられるため、ペンについても慎重な取り扱いが求められる。

ペン入力と指入力を併用した際の誤反応については、一般的に、ペン入力時には指入力が無効になるように設定を行うことで対処できる。誤動作については、ソフトウェアの設定漏れや不具合等が考えられる。

ソフトウェアキーボードでの操作性については評価が分かれたものの、ソフトウェアキーボードを使用すると、画面の大半をキーボードが占有してしまうため、文字入力を行う際は、できるだけ外付けキーボードを準備するのが望ましい。また、外付けキーボードを採用するということは、使用しない際にキーボード分の重量が削減できるため、校外への持ち出し等にも有効である。

（キ）内蔵カメラ

中学校の実証校で使用しているタブレットPCには、全てカメラが内蔵されており、授業やクラブ活動等で様々な活用が見られた。

カメラには、タブレットPCの画面上部に自分を撮るために内蔵されているカメラ（インカメラ）と、生徒が被写体を画面で確認しながら撮影できるよう、画面の外側に備えられたカメラ（アウトカメラ）があり、端末Bはインカメラのみ、端末B以外はインカメラ・アウトカメラとも備えていた。カメラに関するヒアリング結果を以下に示す。
表2-11 カメラに関するヒアリング結果

<table>
<thead>
<tr>
<th>端末分類</th>
<th>内蔵カメラ</th>
<th>ヒアリング結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>A スレート型</td>
<td>インカメラ（約30万画素）</td>
<td>屋外で撮影する際、日差しが強いと画面が見えづらく、日よけを利用する等の工夫が必要である。</td>
</tr>
<tr>
<td></td>
<td>アウトカメラ（約130万画素）</td>
<td></td>
</tr>
<tr>
<td>B コンバーチブル型</td>
<td>インカメラ（約90万画素）</td>
<td>カメラが内向きに取り付けているため、画面を確認しながら撮影することができない。</td>
</tr>
<tr>
<td></td>
<td>アウトカメラ</td>
<td>屋外で撮影する際、日差しが強いと画面が見えづらく、日よけを利用する等の工夫が必要である。</td>
</tr>
<tr>
<td>C iPad型</td>
<td>インカメラ（約30万画素）</td>
<td>実物投影機の代わりとしても使うため、もう少し解像度が高い方が良い。</td>
</tr>
<tr>
<td></td>
<td>アウトカメラ（約90万画素）</td>
<td></td>
</tr>
</tbody>
</table>

本来、端末Bに搭載されているインカメラはテレビ会議用であると思われるが、学校現場では、テレビ会議以外の用途で使用することが多く、むしろアウトカメラの利用の方が多い。カメラを活用した学習の選択肢を広げるためには、インカメラ・アウトカメラとも搭載している方が望ましい。

また、あくまでタブレットPCに付属しているカメラは簡易的なものが多く、実物投影機の代わりとしては解像度が低いことや、屋外で撮影する際に撮影した画像が白飛びしたり、画面を確認することが難しいという問題が生じるのは、ある程度仕方がないうと思われる。しかし、撮影した画像や動画をすぐに加工し簡単に利用できるのは、タブレットPC内蔵型ならではの利点であるため、積極的な活用が望まれる。

(ウ) 導入・メンテナンス

実証校にタブレットPCを導入する際は、その環境に合わせた設定や実証に必要なアプリケーションのインストール等の作業が必要になる。また、導入後もアプリケーションのバージョンアップや障害対応等、定期的な作業が必要となる。ただし、この作業においては、数10から数100台のタブレットPCを一度に対応しなければならず、効率化を図る観点から導入やメンテナンスのしやすさが重要な要素となる。

導入やメンテナンスに関するヒアリング結果を以下に示す。

表2-12 導入・メンテナンスに関するヒアリング結果

<table>
<thead>
<tr>
<th>端末分類</th>
<th>ヒアリング結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>A スレート型</td>
<td>タブレットPCに有線LANポートが無いため、有線LANで実施するイメージファイルの展開作業ができなかった。そのため、インストールを個別に手動で実施せざるを得ず、タブレットPCの設定作業に多くの時間を要した。</td>
</tr>
<tr>
<td></td>
<td>ハードディスクの容量が不足し、デジタル教科書の入らない。</td>
</tr>
<tr>
<td></td>
<td>データが不足し、デジタル教科書の入らない。</td>
</tr>
<tr>
<td></td>
<td>定期的にアプリケーションのインストールを行わない。</td>
</tr>
<tr>
<td>B コンバーチブル型</td>
<td>OSのアップデート作業を集中管理できず、1台ずつ行っている。</td>
</tr>
<tr>
<td></td>
<td>管理者権限でアプリケーションのインストール作業ができていないため、管理者権限でインストールしてから生徒権限で動作確認を行っており、2重の作業になっている。</td>
</tr>
<tr>
<td>C iPad型</td>
<td>OSのアップデートを行う場合、アプリケーションが動かない場合がある。</td>
</tr>
<tr>
<td></td>
<td>タブレットPCの初期設定作業やアプリケーションのインストール作業の時間が必要であるため、管理者権限でインストールしてから生徒権限で動作確認を行っており、2重の作業になっている。</td>
</tr>
</tbody>
</table>

導入やメンテナンスの際には、ネットワーク経由で一度に複数の端末の設定作業を行うと効率的であるが、特にスレート型に多く見られる有線LANポートを持たない端末については、有線LAN経由で展開できないことがあるため、事前に確認が必要である。無線LANでも安定して展開作業ができるような仕組みが望まれる。

また、導入するアプリケーションにもよるが、多くのデータを端末に保存すると、容量が不足してしまうため、あらかじめ導入するアプリケーションやそれを使った活動をある程度想定して、ハードディスクの容量を検討すること
が必要である。なお、今後クラウドの運用が進んだ場合、端末内にアプリケーションを導入せず、必要に応じてクラウドからダウンロードする形式も考えられる。

端末Cも端末Aと同様に、初期設定作業やアプリケーションのインストール作業を一度に行う手段が限られており、実証校では学期中に行われたアプリケーションの追加や設定変更作業等は、ICT支援員が1台ずつ作業を行っていた。なお、端末Cについても、現状では複数台の端末に対して一括で設定できる仕組みが用意されたとのことである。

端末Cの場合、アプリケーションの購入は専用のアプリケーション購入サービスを使用しなければならず、独自のアプリケーションの導入についても困難であるという課題がある。

② ICT環境の構築における電子黒板の課題の整理

（ア）画面サイズ

十分なサイズでないと、教室後方からの視認性に影響がある。特に授業内容の高度化に伴い、表示文字数が増加する可能性がある場合には注意が必要である。

画面サイズに関する各実証校からのヒアリング結果を以下に示す。

<table>
<thead>
<tr>
<th>分類</th>
<th>画面サイズ</th>
<th>ヒアリング結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>黒板取付式ボード型</td>
<td>70～77インチ</td>
<td>・画面サイズが小さく、遠い位置の生徒は画面が見づらい。（50インチ）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・生徒の頭部が邪魔をして後ろの生徒が画面を見づらい。（50インチ）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・大きい方が良いが、教室が狭いため大きすぎると置き場所に困る。（50インチ）</td>
</tr>
<tr>
<td></td>
<td>50～60インチ</td>
<td>・問題ない。</td>
</tr>
</tbody>
</table>

一体型の50インチサイズを採用している実証校のみ、画面サイズに関する課題が挙げられた。黒板取付式ボード型の方が画面サイズを大きくしやすく、また投影面をできるだけ上の方に配置できるため、視認性の面からは有利である。一体型でも、60インチ以上の画面サイズを有する実証校からは画面サイズに関する課題は報告されておらず、今後電子黒板の導入を検討する際は、60インチ以上の画面サイズを目安に選定することが望ましい。ただし、60インチ以上の画面サイズとなると、教室内の場所を取って授業に支障が出る可能性があるため、教室に置いても邪魔にならない程度の大きさが望まれる。

なお、既に小中学校には50インチの電子黒板が多く導入されている。そのため、既存の環境でも視認性が担保されるよう、表示の大きさに配慮したアプリケーションの開発が望まれる。

（イ）映り込み

外光や照明が電子黒板に映り込み、生徒の座席位置によっては画面が見えなくなってしまう生徒が出る可能性がある。映り込みに関するヒアリング結果を以下に示す。

<table>
<thead>
<tr>
<th>分類</th>
<th>ヒアリング結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>黒板取付式ボード型</td>
<td>・問題ない。</td>
</tr>
<tr>
<td></td>
<td>・外光によって見えにくいため、カーテンを開めた黒板を消して対応している。</td>
</tr>
<tr>
<td></td>
<td>・プロジェクターで投影するため、ディスプレイで表示するより見えにくい。</td>
</tr>
<tr>
<td>一体型</td>
<td>・問題ない。</td>
</tr>
<tr>
<td></td>
<td>・映り込みが気になるため、設置場所を工夫する。</td>
</tr>
</tbody>
</table>

なお、既に小中学校には50インチの電子黒板が多く導入されている。そのため、既存の環境でも視認性が担保されるよう、表示の大きさに配慮したアプリケーションの開発が望まれる。
電子黒板は表示方式によって、映り込みに関する対応が異なる。プロジェクターで投影する黒板取付式ボード型の場合、外光等の強い光が原因で、投影された画面が白くて見えにくくなってしまうため、遮光カーテン等の光源を遮断するものが望まれる。一方、ディスプレイに表示する一体型の場合は、光源がディスプレイに反射してしまい画面が見えにくくなるため、遮光カーテン等の光源を遮断するものや、ディスプレイに貼る画面フィルタ等が望まれる。
なお、一体型の場合、電子黒板を移動させることができるため、電子黒板自体の角度を変えて対応することもできる場合がある。

（ウ）設置方式

黒板取付式ボード型の場合、教室付近のスペースを占有することがなく、教室の空きスペースを有効活用できる。一方、一体型は教室内ででも移動させて使えるほか、液晶やプラズマパネルを使用しているため、輝度が高く、画像も鮮明に映るため画面が見やすい。
設置方式に関するヒアリング結果を以下に示す。

<table>
<thead>
<tr>
<th>類型</th>
<th>ヒアリング結果</th>
</tr>
</thead>
</table>
| 黒板取付式ボード型 | ・自立型に比べて邪魔にならないので良い。
・スライドできるので、使い勝手が良い。
・電子黒板を使用すると、黒板の半分を占有しない、板書できるエリアが狭くなる。
・使用するにつけで投影画面がずれるため、プロジェクターの固定器具を補強した。
・電子黒板を動かすことが多いため、タッチ位置が頻繁にずれる。使用するたびに補正を行っている。
・湾曲している黒板に投影しているので、画面が歪みます。
・収納時のスクリーンシートを設置して、使用時はスクリーンシートを広げ、そこに投影しているが、シートが歪む。 |
| 一体型 | ・教室での別の場所に持って行ける。
・教科によって教室内でも使う場合があるが、移動できるため使いやすい。
・邪魔になる。 |

各実証校では、電子黒板と黒板を併用して活用する場面が多く見られている。電子黒板の導入を検討する際は、できるだけ板書できるスペースを確保することが必要である。特に、黒板取付式ボード型の場合、黒板の一部を占有してしまうため、それぞれが適切なスペースを確保できているかを十分確認する必要がある。また、湾曲した黒板に取り付ける場合は、電子黒板の画面も歪む可能性があるので注意が必要である。
また、電子黒板を使用するについでセンサーの位置がずれるなどの問題も懸念される。各実証校の使用状況によると、黒板取付式ボード型の方がより頻繁にずれることができた。

③ ICT環境の構築における充電保管庫の課題の整理

充電保管庫に関する報告の多くは、充電保管庫の大きさに関する課題と、収納スペースの大きさに関する課題の2種類であった。充電保管庫に関するヒアリング結果を以下に示す。

<table>
<thead>
<tr>
<th>項目</th>
<th>ヒアリング結果</th>
</tr>
</thead>
</table>
| 充電保管庫の大きさに関する課題 | ・教室には30名以上の机があるので、充電保管庫を設置することが不可能だった。
・サイズが大きく、場所を取るので、設置場所を検討する必要がある。
・設置場所が黒板の下しかなかったため、黒板の取り付け位置より低いサイズの充電保管庫を特注させざるを得なかった。 |
充電保管庫の収納スペースの大きさに関する課題

<table>
<thead>
<tr>
<th>項目</th>
<th>ヒアリング結果</th>
</tr>
</thead>
</table>
| 収納スペースの大きさに関する課題 | ・タブレットPCと外付けキーボードを重ねて収納する際、収納棚の間隔が狭いため、キーボードトップを棚の上部に打ち付け、破損する傾向がある。（端末A）
・タブレットPCの出し入れの際、タブレットPCが破損する傾向がある。
・ACアダプターがタブレットPCと接続しづらく、充電に失敗する傾向がある。（端末A）
・タブレットPCがタブレットPCに接続するのに時間がかかるため、カバーに穴を開け、接続が円滑にできないと改札した。（端末A）
・充電保管庫からタブレットPCを出し入れする際、生徒が充電保管庫の前で混雑したり、スムーズに出し入れられないため、時間がかかる。（端末A）
・タブレットPCを持ち帰る際に、ACアダプターを取り出しにくい。（端末A）
・タブレットPCを取り出す際に、タブレットPCの破損が多い。（端末B）
・外付けのキーボードやマウスも一緒に保管したい。（端末A）
・予備のタブレットPCも一緒に保管したい。 |
| その他の課題 | ・充電タイマーの設定変更場所が、充電保管庫の下部にあるため容易に変更できない。
・ACアダプターの配線が絡まってしまう。
・角がとがっていて危険である。
・充電保管庫を床に置くと、一番下の段にほこりが入りやすいし、低い位置に保管しているタブレットPCを取り出しにくい。
・充電保管庫内のACアダプターに関しても、絡まりやすいという課題が報告された。ACアダプターが絡まってしまうと、収納に時間がかかるため、充電に失敗することも多発する可能性がある。タブレットPCに外付けのキーボードを接続して利用している実証校では、充電保管庫にキーボードをセットで保管するため、出し入れる部分のサイズが小さい。充電保管庫からタブレットPCを出し入れする際のタブレットPCの破損が多いという報告もあり、これらの問題は収納スペースに関係しているものと思われる。これら充電保管庫自体のサイズと収納スペースのサイズについての課題はトレードオフの関係にもなっており、どちらも満足する解を見つけることが難しい状況である。
・充電保管庫内のACアダプターに関しては、充電保管庫の収納スペースが小さいと、タブレットPCに電源を接続しづらく、収納に時間がかかるため、充電に失敗することも多発する可能性がある。充電保管庫に外付けのキーボードを接続して利用している実証校では、充電保管庫にキーボードをセットで保管するため、出し入れる部分のサイズが小さい。充電保管庫からタブレットPCを出し入れる際にタブレットPCの破損が多いという報告もあり、これらの問題は収納スペースに関係しているものと思われる。これら充電保管庫自体のサイズと収納スペースのサイズについての課題はトレードオフの関係にもなっており、どちらも満足する解を見つけることが難しい状況である。
・角がとがっていて危険である。
・充電保管庫を床に置くと、一番下の段にほこりが入りやすいし、低い位置に保管しているタブレットPCを取り出しにくい。
・充電保管庫の角がとがっていて危険である。
・充電保管庫のコンセント部分と本体の間にスペースがあり、本体をずらした際にコンセントがつぶれてしまったという問題があった。教室内に充電保管庫を設置する際には、生徒が怪我をしたり、充電保管庫やその他の備品が破損しないよう、適切な位置に設置することが必要である。
・その他、タブレットPCのソフトウェア更新処理を行うため、電源を入れたまま充電保管庫に収納した際、タブレットPCの排熱で充電保管庫内が高温になり、タブレットPCが熱暴走したり、画面焼けが生じたことがある。充電保管庫は電源を切って保管することを前提としており、充電保管庫内の排熱機能が十分でないことが原因である。ファンを設置したり、排熱のためにスペースを空ける等のメーカー側での対策が必要である。また、学校は多くの生徒や教員が活動するため、どうしてもほこりが多い。充電保管庫を床に置いた場合、庫内にはほこりが入りやすく、機器の故障につながってしまう。充電保管庫の一番下の取り出し棚を床から上げる等の対応で、ほこりが入らない、タブレットPCも取り出しやすくする考えられる。

4 ICT環境の構築における無線LAN、ネットワークの課題の整理

(ア) 接続安定性

多くの実証校で、一斉にネットワークにアクセスすると、ネットワークに接続できなかったり、不安定になるという課題が挙げられたが、帯域不足や無線LANアクセスポイントの処理能力が原因の一つであると思われる。
授業でタブレットPCを利用する際は、授業開始前後の短い間に一斉にタブレットPCのログイン処理が行われ、コンテンツの閲覧等もクラス内で一斉に行われることが多いため、ネットワークや無線LANアクセスポイントに対して突然大きな負荷がかかりやすい。つまり、授業でのICTの活用形態そのものが、反応の遅延や接続に失敗するといった問題が起こりやすい状況を作り出しているといえる。

たとえ一部の端末が不具合が発生したとしても、障害対応のために授業を中断しなければいけないこともあるため、安定して接続できる、負荷に強いネットワークを構築することが強く望まれる。

また、階下の教室に設置されている別の無線LANに接続されていなくても、インターネット接続ができなかった例もあった。これについては、関係のないネットワークに接続できないよう、無線LANやタブレットPCを適切に設定することで回避できる。

帯域・速度

帯域・速度に関しては、接続安定性とも関係している。

一部の実証校では、データ容量の大きい動画等を一斉にダウンロードすると、通信速度が遅くなったり、ダウンロードに失敗するという報告があった。大容量のデータを一度にダウンロードすることで、通信帯域を圧迫してしまい、このような問題が発生してしまったと思われる。

また、海外等の遠隔地と交流する際に通信が不安定になる場合があるという報告もあったが、この場合は校内の通信帯域だけではなく、交流相手側の問題である可能性もある。

近年では、2.4GHz帯だけではなく、5GHz帯も多く使用されるようになっている。実証校では、これら2種類の帯域を使い分けることで、利用できる帯域を広げて無線LANを活用した。特に5GHz帯は、一部を除き屋外では使用を禁止されているが、電波が壁等に遮断されやすく、電波干渉に強く、教室内で活用できる。

フィルタリング

フィルタリングは、あらかじめ分類されたカテゴリに対して閲覧可否を設定する方法が一般的であるが、授業に必要なウェブサイトまでフィルタリングされてしまうという課題が多く実証校で報告されていた。各実証校で行われる活動内容は様々で、閲覧したいウェブサイトも異なるが、フィルタリングは一般的な利用を基準に設定されており、その精度を一定以上高めることは困難であると考えられる。

閲覧したいウェブサイトがフィルタリングされた場合、授業を中断せずにその場で設定を変更することは非常に困難である。学年や時間で制限してフィルタリングの範囲を変更する設定もあるが、頻繁な設定変更には手間がかかり、根本的な解決にはなりえない。

従って、フィルタリングの範囲を狭める対策が最も現実的であるが、生徒が有害なウェブサイトを閲覧する可能性も当然高まるため、ICT環境を活用する授業学習では、信頼のおけるデジタル新聞等のデータベースを活用することも有効である。

校内サーバーの設置場所について、夏季休業中はクーラーが使用できないため、ラック内が相当な高温になるという問題があった。常温措置として、教室内の施錠を受けた上で、ラックの扉や横壁を取り外し、ラック内に熱が滞留する状況を回避したが、校内サーバーの設置場所としては、セキュリティが確保できること、安定的な電源と空調が確保できることが必須条件である。

また、中学校では3G回線やWiMAXを利用して、校外からもネットワークに接続しているが、場所によって電波状況が変異し、接続できない場合があるという課題が挙げられた。WiMAX環境等を導入する際は、事前にサービスエリアを調査しておく必要がある。
アプリケーションの機能過多や操作の複雑さについての意見が多かった。アプリケーションに機能を追加すればほど、操作方法が難解になることや、アプリケーションによって作成したデータの保存場所が異なる場合があるため、ICTに不慣れな教員にとっては、かえって活用しづらいという悪循環に陥ってしまう。必要な機能を見定めた上で、誰でも簡単に利用できるユーザーインターフェース面での改善が望まれる。

また、教員用タブレットPCでは有償版のオフィスソフトを、生徒用タブレットPCでは無償版のオフィスソフトを導入したため、生徒が作成した文書ファイルを教員用タブレットPCで開くと、文書のレイアウトがずれるという課題があった。その他、無償アプリケーションを授業で活用する際、アプリケーションの不具合によりデータが消失した等の問題が発生したが、無償アプリケーションなので補償が受けられなかったという課題がある等、無償アプリケーションの使用に関して課題が多く挙げられた。

無償アプリケーションはその種類も多く、授業での用途に合わせて有効活用すべきであるという声もあるが、一方で、上記のような問題や、生徒用タブレットPCへのインストール作業に多大な労力がかかり、中にはウイルスが混入している信頼のおけないアプリケーションもある等、全面的な使用のためには解決しなければならない課題が多く残る。無償アプリケーションを使用するにしても、出所がきちんと判明しているものを活用することが望ましい。

あらかじめ導入されたアプリケーション以外にも無償アプリケーションを活用している理由としては、各校でICTの利活用に関する実践が進み、導入されたアプリケーションだけでは不十分となったことが考えられる。このように、ICT環境の導入計画時点では必要なアプリケーションを全て確定することが困難であることが多いため、コンテンツ配信の仕組みを導入する等、現場で使用するアプリケーションを選択できるよう幅を持たせた形でアプリケーションの整備を検討することが有効である。
2.2.2. 中学校の年度末年度始めのICT環境の設定
年度末及び年度始めのICT環境の設定等の更新作業と、それに関する課題について以下に整理する。

① タブレットPCの設定
年度末及び年度始めにおけるタブレットPCの移行方法については、無線LANの設定方式とタブレットPCの移行方式で4つに分類できる。
無線LANの設定方式で、ローミング方式とは、タブレットを他の教室に移動しても設定変更なしに自動的に無線LANを利用できる方式のことである。また、固定方式はタブレットPCがアクセスできる無線LANアクセスポイントを限定して接続する方式のことである。なお、中学校では、特別教室での利用が多いことなどから、すべての実証校がローミング方式を採用している。
また、移行方式は、生徒が進級前まで使っていたタブレットPCを進級後もそのまま使う方法（継続利用する方法）と、教室に置かれているタブレットPCを使う方法（継続利用しない方法）の2通りがある。
無線LANの設定方式と実証校ごとの移行方法の組み合わせは以下の通りである。

<table>
<thead>
<tr>
<th>無線LANの設定方式</th>
<th>移行方法</th>
<th>主な作業内容</th>
<th>実証校</th>
</tr>
</thead>
<tbody>
<tr>
<td>ローミング方式</td>
<td>継続利用する方法</td>
<td>生徒用タブレットPCを進級後の教室に移動させる。</td>
<td>尚英中学校</td>
</tr>
<tr>
<td></td>
<td>継続利用しない方法</td>
<td>生徒用タブレットPCに保存された生徒のデータや個人設定を削除する。</td>
<td>上越教育大学附属中学校</td>
</tr>
<tr>
<td></td>
<td></td>
<td>学年間で生徒数が異なる場合は、各教室間で台数の調整をする。</td>
<td>三雲中学校</td>
</tr>
<tr>
<td>固定方式</td>
<td>継続利用する方法</td>
<td>生徒用タブレットPCを進級後の教室に移動させる。タブレットPCが接続する無線LANアクセスポイントの設定を変更する。</td>
<td>哲西中学校</td>
</tr>
<tr>
<td></td>
<td>継続利用しない方法</td>
<td>生徒用タブレットPCに保存された生徒のデータや個人設定を削除する。</td>
<td>武雄青陵中学校</td>
</tr>
<tr>
<td></td>
<td></td>
<td>学年間で生徒数が異なる場合は、各教室間で台数の調整をする。</td>
<td>下地中学校</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>横浜国立大学教育人間科学部附属横浜中学校</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>城東中学校</td>
</tr>
</tbody>
</table>

タブレットPCを継続利用する場合は、生徒が使用している全ての端末を物理的に移動する必要がある。一部の実証校では、タブレットPCの移動を効率的に行うため、1、2年の生徒が進級前まで使っていたタブレットPCを、進級前の充電保管庫から進級後の充電保管庫に各生徒が各自移動させるようにした。3年生のタブレットPCは休み中に登校していた生徒に移動してもらった。1、2年生の生徒が移動する前に、事前に支援員が1年生の充電保管庫の後ろに移動させており、1、2年生の移動が終わり次第、3年生のタブレットPCを1年生の充電保管庫に収納した。
また、タブレットPCを継続利用せず、タブレットPCを備品として考え、生徒ではなく座席に対してタブレットPCを割り当てている実証校もあった。この場合は、タブレットPCを移動する必要はないが、タブレットPC内のデータを初期化する必要がある。一部の実証校では、データの初期化を効率的に行うため、年度終わりに生徒に対し、タブレットPC内のデータをサーバー上のフォルダに移動するよう教員が指示した。
以下に、無線LANをローミング方式で接続している際の、タブレットPCの移行作業の流れを表す。
図表 2-18 タブレットPCの移行作業の流れ

<table>
<thead>
<tr>
<th>移行方法</th>
<th>対象のタブレットPC</th>
<th>作業作業の流れ</th>
</tr>
</thead>
<tbody>
<tr>
<td>継続利用する場合</td>
<td>1・2年生のタブレットPC</td>
<td>進級後の教室へ移動</td>
</tr>
<tr>
<td></td>
<td>3年生のタブレットPC</td>
<td>データ初期化→アカウント作成→1年生の教室へ移動</td>
</tr>
<tr>
<td>継続利用しない場合</td>
<td>全タブレットPC</td>
<td>必要なデータをファイルサーバーに移動→データ初期化→アカウント作成</td>
</tr>
</tbody>
</table>

なお、アカウント管理サーバーから認証情報を取得してタブレットPCのログインを行う場合は、アカウント管理サーバー上に作成した新年度使用する生徒のアカウントでタブレットPCにログインすることで、特に初期化処理を行うことなく、前使用者のデータや設定等が反映されていない初期状態にすることが可能となる。

② サーバーやアプリケーションの設定

実証校では、教員及び生徒の転出・転入に伴うアカウントの発行等の作業を行った。実証校におけるサーバーやアプリケーションの設定に関する作業を以下に示す。

図表 2-19 サーバーやアプリケーションの設定作業

<table>
<thead>
<tr>
<th>対象</th>
<th>作業</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>認証サーバー</td>
<td>アカウント更新</td>
<td>卒業生、転出教員のアカウントの削除</td>
</tr>
<tr>
<td></td>
<td></td>
<td>入学生、転入教員のアカウントの登録</td>
</tr>
<tr>
<td>ファイルサーバー</td>
<td>データ整理</td>
<td>個人フォルダの削除、移行作業</td>
</tr>
<tr>
<td></td>
<td></td>
<td>新規アカウントに対するフォルダへのアクセス権の付与</td>
</tr>
<tr>
<td>サーバーやネットワーク機器</td>
<td>システムメンテナンス</td>
<td>BIOS更新、セキュリティパッチの適用、デバイスドライバの更新、ファームウェアの更新</td>
</tr>
<tr>
<td></td>
<td></td>
<td>年度更新設定（システムが使用する学期開始日や終了日の設定等）</td>
</tr>
<tr>
<td>アプリケーション</td>
<td>アカウント更新</td>
<td>卒業生のアカウントの削除</td>
</tr>
<tr>
<td></td>
<td></td>
<td>入学生のアカウントの登録</td>
</tr>
<tr>
<td></td>
<td></td>
<td>在校生のアカウントの進級処理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>クラス編成情報の更新</td>
</tr>
<tr>
<td></td>
<td>システムメンテナンス</td>
<td>バージョンアップ等の処理</td>
</tr>
</tbody>
</table>

このうち、授業支援システムのように、電子黒板や教室内の生徒用タブレットPCと連携する機能を有しているアプリケーションの場合、タブレットPCを継続利用していても、アプリケーション内に進級後のクラスに在籍する生徒用タブレットPCのアカウントを登録する作業が必要となる。タブレットPCを継続利用しない方法で運用している実証校では、生徒は自分の座っている座席位置に応じてタブレットPCを設置することで、クラス編成情報の更新の手間を省いている。

また、卒業生のデータは単に削除するのではなく、データのいくつかは在校生への見本データとして残す、外付けハードディスクに移行してサーバー外で保存しておく、外部記録媒体にコピーして希望する卒業生に渡す等の活用方法も行われた。

なお、サーバーの空きデータ容量を確保するため、年度が替わるタイミングでファイルサーバーを増強して、次年度に備えた実証校もあった。
2.2.3 中学校のICT環境の運用
通常期におけるICT環境の運用に関し、実証校ではタブレットPC、電子黒板、充電保管庫、ネットワーク、アプリケーション等について様々な工夫を行っていた。ヒアリング等を通じて把握した主な運用面の課題等を以下に整理する。

① ICT環境の運用におけるタブレットPCの課題の整理

（A）機器の破損

タブレットPCは様々な要因で破損することがあるが、利用者の過失によって生じた破損は保証期間であっても無償修理の対象外とされる。通常補償の範囲外の破損がどれだけ発生するかを想定し、あらかじめ有償修理の際の対応を整備しておく必要がある。その他、対応の詳細については後述する。

今年度におけるタブレットPCの破損台数を以下に示す。

<table>
<thead>
<tr>
<th>項目</th>
<th>尚英</th>
<th>横国附属</th>
<th>上教附属</th>
<th>三雲</th>
<th>城東</th>
<th>哲西</th>
<th>武雄</th>
<th>青陵</th>
<th>下地</th>
<th>ふるさと</th>
<th>桃陽</th>
</tr>
</thead>
<tbody>
<tr>
<td>生徒数</td>
<td>232</td>
<td>405</td>
<td>364</td>
<td>443</td>
<td>270</td>
<td>60</td>
<td>437</td>
<td>106</td>
<td>26</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>破損台数</td>
<td>6</td>
<td>3</td>
<td>19</td>
<td>18</td>
<td>11</td>
<td>0</td>
<td>23</td>
<td>18</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

1年間の運用状況では、配備した2,408台のタブレットPCのうち、105台が破損しており、破損発生率は4％強であった。
また、タブレットPCが破損した原因の例は以下の通りである。

<table>
<thead>
<tr>
<th>破損機器</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>タブレットPC</td>
<td>コンパクトなタブレットPCのディスプレイを途中半端に回転したまま閉じたため、タブレットPCの本体部分とディスプレイを止める留め金がディスプレイに強く当たり、画面が割れた。</td>
</tr>
<tr>
<td></td>
<td>充電保管庫の下の段からタブレットPCを取り出す際に、電池の上部にタブレットPCが強く当たり、画面が割れた。</td>
</tr>
<tr>
<td></td>
<td>充電保管庫からタブレットPCを取り出す際に、タブレットPCと弾力のあるひもでつながれている電子ペンが充電保管庫に引っかかり、電子ペンが外れた拍子に勢いよくタブレットPCの画面にぶつかり、画面が割れた。</td>
</tr>
<tr>
<td></td>
<td>タブレットPCを体育館等に移動する際に、落下して破損した。</td>
</tr>
<tr>
<td></td>
<td>タブレットPCが衣類に引っかかり、机の上から落下して破損した。</td>
</tr>
<tr>
<td></td>
<td>多くのタブレットPCを積み重ねることで、下に置いたタブレットPCの画面が重みで破損した。</td>
</tr>
<tr>
<td></td>
<td>タブレットPCにACアダプターを頻繁に抜き差しすることで、タブレットPCの充電差込口が破損し、充電ができないようになった。</td>
</tr>
<tr>
<td>外付けキーボード</td>
<td>スラット型タブレットPCと外付けキーボードを重ねて充電保管庫に収納する際に、電池の上部にキーボードを強く打ち付け、キーボードが破損した。</td>
</tr>
<tr>
<td></td>
<td>タブレットPCが強度が低いベンの上に置かれた結果、電池が外れた。</td>
</tr>
<tr>
<td>電子ペン</td>
<td>落下したり、強い衝撃が加わって、電子ペン先のセンサー部分が破損した。</td>
</tr>
<tr>
<td></td>
<td>電子ペンの内部に入っている電池が液漏れし、使用できなくなった。</td>
</tr>
</tbody>
</table>

このように生徒の不注意に起因した破損も多くあるため、生徒に対する注意喚起を継続的に行うことで破損発生率を抑制することが求められる。また、ICTの利用頻度の増加や、特別教室やグラウンド、校外等普通教室以

破損台数は、2013年4月から2014年3月までの間に、過失等によって破損し使用不要になったタブレットPCのみをカウントしている。なお、破損台数は、タブレットPCを使用している状況や使用頻度によっても大きく左右される。
外での利用機会の増加、持ち帰り学習の増加に伴い、タブレットPCを持って移動する機会が増えるため、破損事例も増加する可能性が高い。引き続き破損率を把握し、破損原因を分析することが望まれる。
また、一部の実証校では、タブレットPCの故障時、リースする際に併せて加入した保守サービスや動電保険を利用して、タブレットPCを修理した。なお、生徒用タブレットPCの故障修理を行う際、有償修理となった際のリース保証の適用可否の確認や、申請手続きに想定以上の時間を要した報告もあったため、あらかじめ修理体制を確立しておくことが望まれる。体制確立のために考慮すべき項目を以下に示す。

図表 2-22 修理体制を確立するために考慮すべき項目

<table>
<thead>
<tr>
<th>項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 故障や不具合が発生した時の関連各所への連絡体制の整備</td>
</tr>
<tr>
<td>• 保証体制の構築</td>
</tr>
<tr>
<td>• 保守サービス・メニューの加入の検討</td>
</tr>
<tr>
<td>• 修理費用負担の可否についての整理</td>
</tr>
</tbody>
</table>

なお、実証校では、タブレットPCの修理を行う際の代替機や年度替わりで生徒数が変動することに対応するために、予備機を確保している。今年度におけるタブレットPCの代替機数を以下に示す。

図表 2-23 今年度におけるタブレットPCの代替機数

<table>
<thead>
<tr>
<th>項目</th>
<th>尚英</th>
<th>橫国附属</th>
<th>上教附属</th>
<th>三雲</th>
<th>城東</th>
<th>哲西</th>
<th>武雄</th>
<th>育陵</th>
<th>下地</th>
</tr>
</thead>
<tbody>
<tr>
<td>生徒数</td>
<td>232</td>
<td>405</td>
<td>364</td>
<td>443</td>
<td>270</td>
<td>60</td>
<td>437</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>予備機数</td>
<td>18</td>
<td>22</td>
<td>22</td>
<td>11</td>
<td>16</td>
<td>3</td>
<td>43</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

各実証校の生徒数やクラス数を考慮すると、およそ1クラスに2台（実証校平均で生徒15人に1台の割合）程度の予備機が用意されていることになる。
また、一部の実証校では、予備機能を修理の際の代替機として利用するだけでなく、授業中突発的なトラブルの際に即座にタブレットPCを交換して授業を継続できるよう、各教室の充電保管庫で管理していた。生徒の設定情報をアカウント管理サーバーで管理している場合、タブレットPCを予備機に交換しても学習中のデータを引き継いで学習ができる。

（イ）バッテリー

バッテリーについては、2.2.1①でも示した通り、大きな課題となる。そのため、実証校では、様々な運用を講じてバッテリー切れに対応していた。実証校で実施されたバッテリー切れに対する方策を以下に示す。

図表 2-24 実証校で実施されたバッテリー切れに対する運用上の対応対策

<table>
<thead>
<tr>
<th>作業内容</th>
<th>概要</th>
</tr>
</thead>
</table>
| 充電保管庫による対応 | 一部の充電保管庫のみタイマー設定を行わず、いつでも充電できるようにする。
| バッテリーを監視 | 協働教育アプリケーションを使用し、生徒用タブレットPCのバッテリーを監視し、バッテリーが切れそうな端末は充電する。 |
| ACアダプターを準備 | 予備のACアダプターと延長ケーブルを用意しておき、授業中にも電源を供給できるようにする。 |
| 予備バッテリーによる対応 | 予備のバッテリーを準備し、バッテリーが切れた際に交換する。 |
| 予備機による対応 | 予備機と交換する。 |

授業中対応しようとするとき、ICT支援員の手助けが必要になったり、授業が一時中断してしまう。可能な限り、大容量のバッテリーを活用したり、生徒自らタブレットPCの充電残量を確認し、必要に応じて空き時間に充電する。
ような運用が求められる。

(ウ) メンテナンス

タブレットPCを日常的に使用するためには、不具合への対処や修理、ソフトウェアのアップデート等、メンテナンス作業が必要となる。メンテナンス作業時に発生した課題を以下に示す。

図表 2-25 メンテナンス作業時に発生した課題

<table>
<thead>
<tr>
<th>作業内容</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>システムメンテナンス</td>
<td>タブレットPCを修理中に、校内のタブレットPCに導入されているアプリケーションの一斉アップデートを行ったため、異なるバージョンのアプリケーションが混在することになった。一部のアプリケーションが対応していないため、最新のOSへのアップデートを控えていたが、タブレットPC(iPad)を修理したところ新品に交換されて戻ってきたため、最新のOSがインストールされたものになってしまった。</td>
</tr>
<tr>
<td>修理対応</td>
<td>タブレットPC(iPad)には保護フィルムを貼り付けていますが、タブレットPCを修理すると新品に交換されるので、保護フィルムも新たに準備する必要がある。</td>
</tr>
</tbody>
</table>

1人1台という大量のタブレットPCを管理する際、個々の端末に導入されたアプリケーションの種類やバージョンを管理するのは非常に煩雑である。そのため、いわゆる資産管理ツールを導入して一元管理を行う等、より効率的な管理も今後検討するべき課題と考えられる。

② ICT環境の運用における電子黒板の課題の整理

(ア) キャリブレーション

黒板取付式ボード型を採用している一部の実証校では、タッチ位置が頻繁にずれ、毎回のようにキャリブレーションを実施していた。電子黒板を黒板上でスライドさせた際に、自重によりプロジェクターの取付位置がずれた可能性が考えられるが、同じ黒板取付式ボード型を採用している実証校の中でもそのような問題が出ていない実証校もあり、またソフトウェア上の問題である可能性もある。

なお、一体型を採用している実証校でも、日々の使用でタッチ位置がずれることがあり、その場合はキャリブレーションを実施する必要がある。

(イ) 映り込み対策

黒板取付式ボード型を採用している実証校では3校中2校で、一体型を採用している実証校では5校中3校で、日差しの影響で電子黒板が見づらいという課題が挙げられた。

遮光カーテンを利用して対応している実証校もあったが、窓を閉めて使用しなければならず、夏場は教室内が暑くなるという課題がある。一体型を使用している実証校では、映り込み防止のために画面フィルタを貼り付けたり、窓に背を向け設置すること等で外光の反射を防止する対策を行っていた。

(ウ) 防塵対策に関して

多くの実証校で、画面の一部が反応しない、操作ボタンが反応しないという問題が発生した。電子黒板のセンサーにチョークの粉やほこり等がついて、センサーが反応しないことがあると思われる。実証校では、生徒やICT支援員、教員が定期的にセンサー部分を掃除したり、一体型の場合、電子黒板を使用しない時はカバーをかけておく等の方法で対策を行っている。

また一部の実証校では黒板をホワイトボードに交換し、チョークの粉が出ないような運用を行った。

なお、黒板取付型電子黒板を使用している実証校では、プロジェクターの排熱口も定期的に清掃し、熱による
プロジェクトの故障対策を行った。

(イ) 操作性

電子黒板は様々なものを提示でき、ICT機器を活用した授業の中心的存在となることが多いため、電子黒板が適切に操作できないと、授業が止まってしまう可能性がある。そのため、電子黒板の操作性は非常に重要な要素となっている。電子黒板の操作性に関するヒアリング結果を以下に示す。

<table>
<thead>
<tr>
<th>分類</th>
<th>ヒアリング結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>黒板取付式ボード型</td>
<td>・ペンを画面から離しても書けてしまう場合がある等、誤動作がある。</td>
</tr>
<tr>
<td></td>
<td>・適切な位置に書けないため、キャリブレーションが必要である。</td>
</tr>
<tr>
<td>一体型</td>
<td>・キャリブレーションがずれることが多い。</td>
</tr>
<tr>
<td></td>
<td>・機能が多く、複雑で分かりにくい。</td>
</tr>
<tr>
<td></td>
<td>・ペンを垂直にしなければ、うまく書けない。</td>
</tr>
</tbody>
</table>

電子黒板にうまく書けないという課題が多く報告された。電子黒板を日常的に活用するためには、安定して滑らかな操作が必要である。自然な書き味を実現するために、ペンの持ち方や角度に左右されず、安定して記述できるセンシング技術が望まれる。また、適切な位置に正しく書けるよう、キャリブレーションがずれない設計、もしくはキャリブレーションを簡単にできる仕組みが望まれる。その他、一部の実証校では、電子黒板と提示用PCの画面解像度が合わず、円が楕円に見えてしまう、という報告もあった。

また、一部の実証校では、背の低い教員や生徒にとって画面上部まで手が届きづらく、差し棒を利用して操作を行っていた。差し棒は、ドラッグ等画面上で滑らかに操作が行いやすいよう、スポイトのゴムを取り付け、絶縁テープを巻いた。感圧式のセンサーを使用している電子黒板の場合、専用ペンだけでなく、差し棒等を利用しても操作が可能である。

(オ) 機能

電子黒板には、様々な機能が内蔵されており、機能を適切に活用することで、授業の選択肢が広がるほか、ICT機器をより効果的に活用することができる。電子黒板の機能に関するヒアリング結果を以下に示す。

<table>
<thead>
<tr>
<th>ヒアリング結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>・描画、拡大縮小、画面保存等はよく使う。</td>
</tr>
<tr>
<td>・機能を減らしても良いので、低価格を望む。</td>
</tr>
<tr>
<td>・自動キャリブレーション機能が欲しい。</td>
</tr>
<tr>
<td>・生徒が電子黒板に資料を送信できる機能が欲しい。</td>
</tr>
<tr>
<td>・電子黒板の機能はほとんど使っていない。</td>
</tr>
<tr>
<td>・画面保存はpdf形式でしか保存できないため、あまり使わない。</td>
</tr>
<tr>
<td>・電子黒板内蔵機能以外のアプリケーションにも類似機能が多いため、混乱する。</td>
</tr>
</tbody>
</table>

操作性の項目でも述べたように、電子黒板には機能が多く、操作時に混乱してしまうという報告があった。一部の実証校では、電子黒板に内蔵されている機能以外に、様々な機能を持ったアプリケーションを使うため、電子黒板は提示用としてしか使わない、という報告も見られたように、電子黒板に搭載されている機能の中にはあまり利用されていないものもある。電子黒板以外のアプリケーションにも同様の機能があるので、操作が混乱する可能性もあるため、機能の收納やも検討すべきだと思われる。

また、電子黒板の良好な機能（文字や線の描画、消去等）は、アイコンを分かりやすくし、1か所にまとめることで、必要最低限の機能を簡単に使えるよう、配慮したい。
（カ） 機器やアプリケーションとの親和性

実物投影機等、電子黒板と連携できる機器やアプリケーションを活用することで、ICT機器を活用した授業の選択肢が広がる場合がある。機器やアプリケーションとの親和性に関するヒアリング結果を以下に示す。

図表 2-28 機器やアプリケーションとの親和性に関するヒアリング結果

<table>
<thead>
<tr>
<th>ヒアリング結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>・問題ない。</td>
</tr>
<tr>
<td>・実物投影機や生徒用タブレット PC の画面の提示に電子黒板を使う。</td>
</tr>
<tr>
<td>・接続した実物投影機の画面に文字を書き込むことがある。</td>
</tr>
</tbody>
</table>

電子黒板や1人1台のタブレットPCが整備された環境においても、実物投影機の画面を電子黒板に表示させるシーンは多く見られた。電子黒板は、タブレットPCの画面や紙媒体の教科書や資料等を提示する、授業の中でも起点となるICT機器と位置付けられるため、機器やアプリケーションとスムーズに連携できることが求められる。

（キ） その他

一部の実証校で、電子黒板用PCにログインする際、画面上に表示されるソフトウェアキーボードでIDやパスワードの入力を行ったため、教員のIDとパスワードが生徒に漏れてしまった。電子黒板用PCにログインする場合は、PCに接続されているキーボードから入力する等、生徒から入力内容が見えないように操作を行う必要がある。

また、一体型を使用している実証校で、冬場に暖房の熱風が電子黒板に直接当たってしまい、エラーメッセージが表示されたという報告があった。ICT機器は熱に弱いため、電子黒板も熱に配慮した設置が望まれる。

③ ICT環境の運用における充電保管庫の課題の整理

（ア） 安全性、運用上の配慮

安全性への配慮から、各実証校では、緩衝材を充電保管庫の角面に貼付する等の安全対策を講じていた。また、充電保管庫を教室に設置している一部の実証校では、充電保管庫の設置位置がずれてコンセントが押しつぶされたという課題が挙げられた。そのため、充電保管庫がコンセントに接触しないよう、充電保管庫と壁の隙間にストッパーを置くことで対策を行っていた。

また、タブレットPCの出し入れの際に時間がかかるという課題が多くの実証校で挙げられていたが、各実証校では充電ケーブルを絡め、効率的に収納できるよう、使い勝手に配慮した運用を行っていた。

なお、充電保管庫でタブレットPCを充電する際、充電コネクタの接続不良や充電保管庫の扉の閉め忘れ等で充電が正常にできないことがよくあたったり、充電保管庫が正常に機能し、確実に充電が行われているかどうかをICT支援員や生徒がチェックしている実証校もある。

（イ） 充電保管庫の運用

各実証校では、充電保管庫を様々な方法で運用を行っていた。日常的にタブレットPCを活用するためには、充電保管庫の運用方法が非常に重要な要因となっている。

各実証校での充電保管庫の運用方法を以下に示す。
充電保管庫の運用方法

<table>
<thead>
<tr>
<th>実証校</th>
<th>充電保管庫の設置場所</th>
<th>出し入れのタイミング</th>
<th>使用しない時のPCの状態</th>
<th>充電保管庫のタイマー設定</th>
</tr>
</thead>
<tbody>
<tr>
<td>尚英中学校</td>
<td>別室</td>
<td>授業前後</td>
<td>シャットダウン</td>
<td>常時充電</td>
</tr>
<tr>
<td>横浜国立大学教育人間科学部附属横浜中学校</td>
<td>教室</td>
<td>授業前後</td>
<td>シャットダウン</td>
<td>夜間休日に充電</td>
</tr>
<tr>
<td>上越教育大学附属中学校</td>
<td>教室</td>
<td>自由</td>
<td>スリープ</td>
<td>夜間のみ充電</td>
</tr>
<tr>
<td>三雲中学校</td>
<td>教室</td>
<td>授業前後</td>
<td>スリープ</td>
<td>常時充電</td>
</tr>
<tr>
<td>城東中学校</td>
<td>教室</td>
<td>朝夕</td>
<td>スリープ</td>
<td>常時充電</td>
</tr>
<tr>
<td>氖西中学校</td>
<td>教室</td>
<td>自由</td>
<td>スリープ</td>
<td>常時充電</td>
</tr>
<tr>
<td>武雄青陵中学校</td>
<td>別室</td>
<td>朝夕</td>
<td>スリープ</td>
<td>常時充電</td>
</tr>
<tr>
<td>下地中学校</td>
<td>教室</td>
<td>授業前後</td>
<td>スリープ</td>
<td>夜間のみ充電</td>
</tr>
</tbody>
</table>

タブレットPCの出し入れには、最低5分程度の時間を必要とするため、授業前後の時間にタブレットPCを出し入れすることは授業時間が短縮してしまうことに結びつく。そのため、授業前にタブレットPCを取り出しておくことが望ましい。一方で、日中も常時タブレットPCを取り出しておくことは、自然放電によるバッテリーの消耗を防ぐため、授業中にバッテリー残量が原因で使用できない可能性が高まる。また、施錠管理されていない場所で保管することになるため、管理上のリスクも高まる。

授業が終わったら、PCの状態については、シャットダウンする方法とスリープモードにする方法の2種類の方法があり、どちらの運用にも長所・短所があるので、伝える運用を重視して、シャットダウンで運用している実証校もある。

タブレットPCを一旦シャットダウンすると、起動するまでに時間がかかるが、スリープモードにすることで、起動までの時間を短縮することができる。ただし、スリープモードにすることで、若干バッテリーが消耗したり、スリープモードから復帰する際にネットワークや周辺機器への接続が失敗する等のトラブルが起こることがあるため、トラブルのない運用を重視して、シャットダウンで運用している実証校もある。

タブレットPCをシャットダウンモードで運用し、授業前後に出し入れを行う場合は、トラブルの可能性は軽減するが、タブレットPCの準備にかなりの時間を要することになるため、日常的なタブレットPCの利用が阻害されることになる。

なお、中学校では、定められたルールに基づき、生徒が自主的に判断し対応することの問題に対応している例もある。一部の実証校では、本日の時間割に印がつけられるで、あらかじめタブレットPCを使用する授業を把握して、事前にタブレットPCを準備しておくこと、タブレットPCのバッテリー残量が減った時に、各自の判断で充電保管庫を使って充電する等、生徒に自主的管理をさせていている例があった。また、協働教育アプリケーション等で、教員が生徒用タブレットPCのバッテリー残量の監視を行う対策も有効である。

また、収納されているタブレットPCが一斉に充電すると制限容量を超える恐れがあるため、タイマーを使って夜間のみ充電するようにしたり、充電保管庫内のタブレットPCを半分にわけ、交互に充電する等の機能を持った充電保管庫を使用している実証校もある。タブレットPCが日常的に活用される場合、日中でも充電せざるを得ない機会が増えるため、可能な限り常時充電されるよう、設定しておくことが望ましい。充電保管庫の端末数に近い場合は、通常の端末を充電し、制限容量を超えるようにする場合にたとえば半数の端末に充電されることもあり、日中での充電切れに対応する場合にはこのような機能が有効である。

※別室の場合、授業前にICT支援員が充電保管庫を教室に移動する
※制限容量を超えない場合は、充電保管庫内の半数の端末のみ電源が供給される
※充電保管庫への充電は、実証校の教室内の棚で重ねて置いておく

株式会社内田洋行
なお、人数分のタブレットPCを収納するためには、比較的大きなサイズの充電保管庫が必要となる。教室内に設置すると、すぐに出し入れしたり、残量が少ない時にすぐに充電することができるが、教室内に設置スペースが必要となる。一部の実証校では、スペースの都合で、充電保管庫を特別教室等の別室に設置している。

ただし、別室に設置している充電保管庫を授業のたびに教室に運搬する運用では、充電保管庫を運ぶ人員の確保が必要となり、タブレットPCの準備にかかる時間をさらに必要となるため、日常的なタブレットPCの活用が困難となる。そのため、別室に設置した場合は、授業の前もって生徒自身がタブレットPCを取りに行く等、運用上の工夫が必要になると考えられる。

一方、教室に充電保管庫を設置する際は、限られた教室の中での設置スペースの確保が問題となる。一部の実証校では、教室に充電保管庫を設置する際に生徒が誤って充電保管庫を動かしてしまい、コンセント部を破損するといった問題が発生した。設定場所は生徒の活動の妨げにならないよう、安全面に配慮して選定する必要がある。

④ ICT環境の運用における無線LAN・ネットワークの課題の整理

一部の実証校では、様々な理由により、ネットワークに接続できなくなった、接続が不安定になることがあった。実証校におけるネットワークに関する課題と対応を次のように示す。

<table>
<thead>
<tr>
<th>問題</th>
<th>対応</th>
</tr>
</thead>
<tbody>
<tr>
<td>無線LANが突然切断される。</td>
<td>PCの無線LANドライバと無線LANアクセスポイントコントローラーのソフトウェアに不具合があり、最新のソフトウェアにパッケージアップした。</td>
</tr>
<tr>
<td>頻繁に無線LANが切断される。</td>
<td>掃除の際に無線LANアクセスポイントの電源コンセントを抜いてしまうことが原因であった。生徒の手の届かない場所に電源を設置したり、PoE給電のできる端末の導入が望まれる。</td>
</tr>
<tr>
<td>特定の教室でインターネット接続ができない。</td>
<td>他教室の無線と電波干渉していたため、利用チャネルを変更したり、校舎の形状に合わせて無線LANアクセスポイントの電波強度の調整を行った。</td>
</tr>
<tr>
<td>故障を修理した端末のみ、ネットワークに接続できなくなった。</td>
<td>修理の際にネットワークカードが搭載されたマザーボードを交換したため、MACアドレスが変更された。教育用ネットワークは、あらかじめ登録されたMACアドレスの端末のみ接続を許可しているため、ネットワークに接続できなかった。MACアドレスを登録しなおすことで、接続できるようになった。</td>
</tr>
<tr>
<td>ネットワークに接続できない。</td>
<td>実証校では持ち帰り学習を行っており、ネットワークの設定を校外用と校内用に切り替え使用するようになっていたが、校内でも校外用ネットワークの設定になっていたため、接続できなかった。校内用設定に切り替えすることで、接続できるようになった。</td>
</tr>
<tr>
<td>電子黒板用PCが起動時にログインできない場合がある。</td>
<td>認証サーバーに対して行うログイン処理が、無線LANとPC間で行われるセッション確立よりも先行してしまうため、ログインできなかった。ログインする前にしばらく待ち、無線LAN接続が確立してからログイン処理を行い、ログイン後は終業後までシャットダウンしない運用とした。</td>
</tr>
<tr>
<td>協働教育用アプリケーションが利用できない。</td>
<td>生使用タブレットPCで、無線LAN接続が確立される前にログインした場合、認証サーバーとの認証がされないまま立ち上がることがある。その後、無線LAN接続が確立した場合、ネットワーク自体はアクセス可能だが、認証サーバーとの認証情報を利用している協働教育用アプリケーションは利用できない。そのため、無線LAN接続確立後にログインするようにした。</td>
</tr>
<tr>
<td>空き教室にまとめて保管されている充電保管庫にスリープ状態のタブレットPCを収納すると、ネットワークに接続できない。</td>
<td>スリープ状態でも無線通信が行われており、空き教室内にある無線LANアクセスポイントに接続台数上での端末が接続されたことが原因で、接続障害が発生した。タブレットPCを再起動させる。</td>
</tr>
<tr>
<td>無線LANに接続されにくい場合がある。</td>
<td>待って接続される場合があるが、遅い場合は、タブレットPCの無線スイッチをOFFにして再度ONにさせる。対応しても接続されない場合はログインをさせさせてみる。それでも接続できない場合、タブレットPCを再起動させる。</td>
</tr>
<tr>
<td>一部の無線LANアクセスポイントに接続されない。</td>
<td>校内の監視カメラの映像を配信しているPCからのマルチキャストパケットが帯域を圧迫していたことが原因であった。該当の端末を教育用ネットワークから分離する等の対策を求められた。</td>
</tr>
</tbody>
</table>
実証校では、調べ学習等で生徒がインターネット上のウェブサイトを閲覧する機会が多いが、学習とは関係ないウェブサイトを閲覧することを禁止するために、ウェブサイトのフィルタリングを行っている。実証校からは、フィルタリングの規制が厳しくて、必要なウェブサイトまで閲覧が制限されるという課題が数多く挙げられた一方、有害なウェブサイトがフィルタリングされずに視聴できてしまうという指摘もあった。各実証校における、フィルタリングの方式と、必要なウェブサイトが閲覧制限された場合の対策を以下に示す。

図表 2-31 フィルタリングの方式と閲覧制限された場合の対策

<table>
<thead>
<tr>
<th>実証校</th>
<th>フィルタリングの方式</th>
<th>閲覧制限された場合の対策</th>
</tr>
</thead>
<tbody>
<tr>
<td>尚英中学校</td>
<td>クラウド上のフィルタリング機能</td>
<td>できるだけ多くのウェブサイトが閲覧できるよう、必要最低限のものしかフィルタリングしない。</td>
</tr>
<tr>
<td>横浜国立大学教育人間科学部附属横浜中学校</td>
<td>校内サーバー上のフィルタリング機能</td>
<td>特に制限を緩める対策はせず、別のサイトを探すよう指導した。</td>
</tr>
<tr>
<td>上越教育大学附属中学校</td>
<td>データセンター上のフィルタリング機能</td>
<td></td>
</tr>
<tr>
<td>上越教育大学附属中学校</td>
<td>データセンター上のフィルタリング機能</td>
<td></td>
</tr>
<tr>
<td>尚英中学校</td>
<td>クラウド上のフィルタリング機能</td>
<td>できるだけ多くのウェブサイトが閲覧できるよう、必要最低限のものしかフィルタリングしない。</td>
</tr>
<tr>
<td>横浜国立大学教育人間科学部附属横浜中学校</td>
<td>校内サーバー上のフィルタリング機能</td>
<td>特に制限を緩める対策はせず、別のサイトを探すよう指導した。</td>
</tr>
<tr>
<td>上越教育大学附属中学校</td>
<td>データセンター上のフィルタリング機能</td>
<td></td>
</tr>
</tbody>
</table>

なお、Flash教材を利用する際、Flash教材が内部的に通信しているウェブサイトがフィルタされたため、正常に
動作しなかった事例があった。この場合、Flash教材が内部的に通信しているウェブサイトを調査して、フィルタリングされないよう例外登録する必要がある。
また、iPadでは通常、Flashコンテンツを再生できないため、Flashコンテンツを再生できるブラウザの使用を検討した。しかし、そのブラウザでは、Flashコンテンツを別のウェブサーバーで再生可能な形に変換する方式を採用しているため、画面表示されているURLとは異なるウェブサイトと通信しており、意図した通りのフィルタリングができなかった。結果的に、実証校ではFlashコンテンツの再生を断念した。

（イ）著作権上の問題
一部の実証校では、インターネット上の素材を利用して教材を作成する際に、著作権上の問題が生じた。インターネット動画共有サービスに投稿された動画を利用して教材を作成しようとしたが、動画の作成者が明確でなく著作権侵害になる可能性があったため、作成者が明確であるコンテンツを利用した。
また、一部の実証校では、生徒がインターネット上でデジタル作品をアップロードする授業を行ったが、デジタル作品を作成する際には、教員から著作権に関しての指導が行われ、生徒たちは著作権に配慮した作品を作成した。
インターネット上には様々なコンテンツがあるが、学校活動で使用する際は、作成者が明確なコンテンツを利用する必要がある。

⑥ ICT環境の運用におけるその他の工夫
一部の実証校では、ICT環境が整備された初期の段階では、有料のアプリケーションを利用していたが、3年目になって無償のアプリケーションも利用するようになった。無償で質の高いアプリケーションを利用することで、ICT機器の活用の選択肢がより広がり、ICT環境をより効果的に活用できると思われる。また、有料のアプリケーションと類似した機能を持つ無償アプリケーションを利用することで、コストを削減した実証校もあった。
インターネット上で公開されている無償アプリケーションには様々なものがあり、効果的に利用する事ができれば非常に便利である。しかし、無償アプリケーションには、不具合に対する確かな保証はなく、中にはウィルスが混入されている場合があるため、利用する際には注意が必要である。
また、タブレットPCを利用する際に適切な運用を行うため、ルールを決めて生徒に周知させた。なお、運用ルールを生徒自身が決め、周知させた実証校もあった。タブレットPCの運用ルールを生徒自身が決めることで、ICT機器を一層大切に扱うようになった。
その他にも、一部の実証校では、外部の人間が校内に侵入し、タブレットPCが盗難されることを防ぐため、警備会社に委託している警備の範囲を拡大した。ICT環境を運用する上で、万が一の可能性を考慮し、あらかじめ懸念される課題に対応しておくことが重要である。
2.2.4. 中学校の教員・生徒・保護者・ICT支援員への対応

中学校においても、教員、生徒、保護者等の関係者やICT支援員の取り組みが必要になる。実証校において実施された取り組みや、課題を整理する。

① 教員への対応

実証校へのヒアリングでは、当初はICT機器を授業で使うことに尻込みしていた教員が、一度でも活用すると生徒の反応が変わるのを感じ、継続して利用するようになった、という報告があった。教員がタブレットPCをはじめとするICT機器を活用するためには、事前の研修が有効となる。

教員のICT環境活用支援のため、各実証校では校内研修を実施した。新任及び転動してきた教員向けには、新任研修やミニアトーニュをを通じて、ICT環境の説明や使用方法の説明を行った。全教員向け研修として、教科別分科会または教科別の横断的な全体会を定期的に行い、ICT活用の知見、スキル、授業事例を共有した。また、講師を招いて「協働教育とICT機器の活用について」等の題目で講演をしてもらった。その他、実証校では、まとまって研修を受ける時間を確保するのが難しいため、長期休業中等に研修を行う等、様々な機会を利用して研修機会を確保した。

なお、一部の実証校では、地域内の新任教員に対して、ICT機器を用いた初任者研修を実施した。ICT機器を活用した授業を見学した後に、ICT機器に実際に触れることができる研修を行うことで、ICT機器を活用した授業のイメージができる。ICT機器に実際に触れた経験のある新任教員が地域内の学校へ赴任することで、地域全体の情報化推進につながることが期待できる。

また、ICT機器の操作が苦手な教員でもICT機器に触れる機会を必然的に作るため、朝の職員会議にタブレットPCを利用して教員用ポータルサイトを閲覧し、連絡事項の共有を行ったり、教員室に大型ディスプレイを設置し、簡易的な個別研修を大型ディスプレイに映しながら説明することで、職員室にいる周りの教員も内容を確認することができ、操作方法を学ぶ機会が増えた。

多くの実証校では、教員用ポータルサイトを構築し、情報共有や資料の配布のために利用していたが、教員間の積極的なコミュニケーション手段としては、特に投稿するための操作手順が複雑であり、十分に活用されているとは言えない状況であった。また、校内LANからの利用に限られるため、投稿する時間が確保できないという課題もあった。クラウドの活用も検討すべきである。

一部の実証校では、ICT機器の運営方針の共通理解を深めるため、校務分掌の中にICTに関する企画や運営、渉外、遠隔交流、データ集計等を主な役割とするICT委員会という組織を立ち上げ、教員がICTを使った教育の企画運営に専念できるようにした。ICT委員会では、校長等を交えた定例の会議を行い、公開授業や他校との遠隔交流等についての検討や情報共有を行った。

② 生徒への対応

生徒に対しては、主に教科担任が利用の際に操作方法を説明することで指導をすることが多いが、新人生向けにタブレットPCの使い方やログイン方法等についての研修を行った。その他、情報モラルや情報リテラシーに関する研修や、タブレットPCの家庭への持ち帰り学習に使用する生徒に対して、持ち帰りの際の使い方についての講習会を行う等、必要に応じて生徒研修を実施している。

その他、インターネットのアクセスログを監視していることの周知させる、不適切な使用に対して注意喚起を行い、タブレットPCを利用する目的や守るべきことについて定期的に指導する等、日々の活動の中で取り組けていた。

また、一部の実証校では、生徒会が中心となりICT機器を利用する際の運用ルールを定めたり、授業前に生徒がICT機器の利用状況について教科担任に確認し、充電保管庫の管理を担当者が行う等、生徒が主体となってICTの運用に関与していた。

その他、終礼や休み時間等の授業時間外にもタブレットPCを利用する等、積極的にICTの活用を行っている。終礼で電子黒板に時間割や明日の行事を提示したり、休み時間や放課後には、授業でやり残した作業やドリル
教材で学習を行う等、一部の実証校では、生徒の自主性に任せてタブレットPCを自由に利用させているところもあった。
また、部活動では動画撮影機能を利用したフォームの確認や、戦略ボードを活用したフォーメーションの検討、美術部ではCG作品を作成した例があるほか、委員会活動で資料の作成や生徒用ポータルサイトを活用したアンケートによる意見収集、生徒会活動にもICT機器を使用することがあった。
その他、体育祭、文化祭、合唱コンクール等の行事でも生徒が率先してICT機器を活用し、行事の成功に役立てていた。
生徒が主体的にICT機器を管理し、授業以外でもICT機器を積極的に利用することによって、ICT機器の取り扱いやマナーについて学んだり、生徒のICTリテラシーが向上するきっかけになることが見込まれる。

③ 保護者への対応

保護者は、学校でのICT環境の活用や、ICT環境を活用した学校と家庭間の連携を図る際に、重要な関係者となる。保護者はタブレットPCを利用した授業を行うことで、字を書く機会が減ることや目が悪くなること、インターネット等から有害な情報を得てしまうこと等、様々な不安を感じている。実証校では、アンケート等を利用して保護者が感じている疑問や不安点を把握するとともに、説明会やICT機器の展示・体験会等様々な機会を通じて、保護者の不安払しょくに努め、取り組みに対して協力を求めた。
また、保護者に対してもICTの利便性を提供するため、ホームページやブログ、学校配信メールを利用して、生徒の日々の取り組み、学校内の学習状況、校外学習、陸上競技・球技大会等の地区大会や県大会の結果等を逐次情報提供したほか、生徒の修学旅行中に撮影した映像を学校に送信しておき、保護者が学校で生徒の帰りを待っている間、電子黒板を使って見てもらう等にも活用された。
学校現場でICT機器を導入することに対して、不安や疑問を抱く保護者は少なくないため、丁寧な説明を行うとともに、実際に触れもらうことが重要である。

④ ICT支援員への対応

学校におけるICT環境の利活用が進むにつれて、ICT支援員に求められる役割は、機器操作やトラブル対応から授業支援や教材作成支援へと徐々に変化していく。実証研究においても、1年目の導入・運用初期から2年目の運用安定期にかけて役割が変化した。また、3年目は事業最終年度として、ICT支援員が駐在しない場合も想定して、マニュアル等が整備された。

（ア）導入・運用初期

ICT支援員の業務は多岐にわたるため、採用や研修の際に、ICTの利活用スキルやコミュニケーションスキルを勘案することが必要となる。また、ICT支援員養成時には、機器操作方法や授業でのICT活用方法、教員との役割分担や活動内容についての研修が必要となるほか、ICT支援員には、機器の操作支援やICTを利活用した授業の支援のため、事前に教員と役割について話し合うことが求められる。
また、運用初期段階に入ると、授業を行う際、ICT支援員は事前に教員と十分コミュニケーションを取った上で、授業での教員の支援や教育コンテンツの作成、教員用ポータルサイトの作成等を行う必要があるため、教員等との十分なコミュニケーションが必要になる。ICT支援員が教員とのコミュニケーションを十分に取れるよう、ポータルサイトやタブレットPCのメッセージ機能を利用した実証校もあった。
なお、導入・運用初期段階では、教員や生徒もICT環境に不慣れのため、授業中の機器操作やトラブル対応に関する業務が多くなる。できるだけ早い段階で、ICT機器の操作方法や主なトラブルとその対策についてマニュアルにまとめた情報共有の場を作る等、教員や生徒がスムーズにICT機器を利用できるよう支援することが望まれる。
図表 2-32 ICT支援員の業務例

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>授業前支援</td>
<td>授業で使用する機器の準備や動作確認を行う。</td>
</tr>
<tr>
<td></td>
<td>授業でのICT機器の使用場面の打ち合わせを教員と行う。</td>
</tr>
<tr>
<td>授業中支援</td>
<td>ICT機器の操作の補助や、授業の流れに応じた機器の操作を行う。</td>
</tr>
<tr>
<td></td>
<td>機器の操作に戸惑っている生徒が高い確率で確認し、操作を支援する。</td>
</tr>
<tr>
<td></td>
<td>機器の不具合が生じた場合に復旧対応を行う。</td>
</tr>
<tr>
<td>授業後支援</td>
<td>発生した不具合の要因や、より効果的な機器の操作方法等について教員に説明し、改善につなげる。</td>
</tr>
<tr>
<td>環境の整備</td>
<td>校内のICT機器を点検し、機器の設定変更や不具合対応を行う。</td>
</tr>
<tr>
<td></td>
<td>業者への不具合報告や問い合わせを行う。</td>
</tr>
<tr>
<td>システム管理</td>
<td>ICT機器の資産管理やID及びパスワードの管理を行う。</td>
</tr>
<tr>
<td>教材作成支援</td>
<td>教員の要望に対して、機器やアプリケーションを紹介し、活用場面の提案を行う。</td>
</tr>
<tr>
<td>マニュアル作成</td>
<td>機器やアプリケーションを教員や生徒が使用できるように、操作方法を分かりやすく記したマニュアルを作成する。</td>
</tr>
<tr>
<td>教員研修の実施</td>
<td>教員に対して、機器やアプリケーションの利用方法や使用上の留意事項を説明するための研修会を実施する。</td>
</tr>
<tr>
<td>日報の作成</td>
<td>発生した不具合や活用事例について日報等に取りまとめること。</td>
</tr>
</tbody>
</table>

（イ）運用安定期

運用が安定し、学校におけるICT環境の活用が進むにつれて、ICT支援員に求められる役割も変化する。実証校では、教員や生徒のICT環境への習熟に伴って、ICT支援員の業務も、機器操作やトラブル対応から、授業支援、教材作成支援やICT環境の改善等、創意工夫や提案を求められる業務へと高度化する様子が見られた。ICT支援員は職員室に席があることが多く、運用安定期に入り、教員と日常的に接する中で効果的なICT活用のための様々な要望や意見、相談を受けたり、授業サポートのために教室に入ると、生徒が気軽にICT支援員に質問する等の場面が多くなった。

また、各実証校のICT支援員の人数は限られているが、2年目に入り、効率化を図ることで、限られた人数でも多様化、高度化する業務に対応した例も見られるようになった。具体的には、教員や生徒向け機器操作マニュアルを整備したり、支援対象とする授業の時間割を作成して1日の業務をあらかじめ整理する等の効率化を図っている。

（ウ）自立移行期

実証校に導入されたICT機器については、今後も継続して活用されるため、通常は3年目も引き続き運用安定期として、ICT支援員の業務の高度化、効率化が図られる。ただし、本実証研究は3年間であるため、実証研究期間経過後にICT支援員がいなくなっても、継続してICT環境が活用できるよう、通常のマニュアルとは別に、トラブル対応のマニュアルを作成する等の取り組みが行われた。教員がこのマニュアルを利用してICT環境を運用することで、従来はICT支援員による対応を必要としていたトラブルでも教員だけで対応できるようになる等、自立化が徐々に進んだ。

時限的に実施された本実証研究と通常のICT環境を同一で論じることは難しいものの、学校の自立的運用を促進するこれらの取り組みは他の学校にとって大いに参考になりうるものである。
2.3. 特別支援学校のICT環境の効率的な構築・運用に関する課題の抽出・分析等

特別支援学校の各実証校から挙げられた課題に、中学校でも報告されたものと同様のものが多くあった。ことから、特別支援学校でも、ICT環境の利用方法が同じであれば、同様の課題が起こりうるということわる。2.2（中学校のICT環境の効率的な構築・運用に関する課題の抽出・分析等）で記載された課題も併せて参照する必要がある。

以下、特に特別支援学校で特徴的な課題や、中学校では発生していない課題について重点的に述べる。

2.3.1. 特別支援学校のICT環境の効率的な構築

特別支援学校におけるICT環境の構築に関する課題について、ふるさと支援学校、桃陽総合支援学校に対するヒアリング調査結果に基づき、抽出・分析を行った。

① ICT環境の構築におけるタブレットPCの課題の整理

特に特別支援学校では、児童生徒の転出入が頻繁なため、タブレットPCの予備機の台数に余裕を持たせておく必要がある。実証校では、あらかじめ、児童生徒用PCの台数を推定していたが、児童生徒数が想定よりも大幅に増加したため、タブレットPCに不足が生じるという問題が発生した。予備機を十分に確保しておくほか、小学部と中学部で共通の機種を選定したり、利用するタブレットPCを共用にする等の対策も有効である。

また、特別支援学校では、感情のコントロールができなくなった児童生徒が、タブレットPCを投げてしまったという報告があった。そのため、特別支援学校では、タブレットPCを選定する際の要件として、堅牢性も重要になってくると思われる。実証校では、外部にラバーのついたタブレットPCを選定したため、比較的堅牢性が確保されている。

② ICT環境の構築における無線LAN・ネットワークの課題の整理

（A）校内ネットワーク

一般に、特別支援学校では1クラスの児童生徒数が小中学校に比べて少ないため、ネットワークにかかる負荷は低いことが想定される一方で、分教室との遠隔学習等で活用されることが多いテレビ会議システムについては、十分な回線速度が要求されるため、有線LANでの接続が望まれる。

また、当初は無線LANアクセスポイントコントローラーによる自動チャンネル変更機能と自動電波強度調整機能を採用したが、すでに校内で運用されていた無線LANアクセスポイントでも同様に自動チャンネル変更機能が動作していたため、お互いにチャンネル移動が発生し、電波干渉とチャンネル移動が不定期に起こる現象が確認された。これを回避するため、全ての無線LANアクセスポイントのチャンネル固定設定及び電波出力の手動調整を行った。通常、同じ空間に複数の無線LAN環境が共存することは一般的ではないが、4.2.2①で後述するように、教育用ネットワークと校務用ネットワークを分離させる手段として、それぞれ独立した無線LAN環境を構築することもありうる。状況に応じて、それぞれの設定を見直すことが必要である。

（イ）病院内の教育用ネットワーク

桃陽総合支援学校では、病院内の各教育室や病室にも無線LAN環境を構築した。桃陽総合支援学校に隣接している病院や、分教室を設置している個別の病院との調整を行い、以下に示した4通りの方法でネットワークの構築を行った。
各病院における無線LAN接続方式

<table>
<thead>
<tr>
<th>病院</th>
<th>環境</th>
<th>ネットワークの構成</th>
</tr>
</thead>
<tbody>
<tr>
<td>桃陽病院</td>
<td>桃陽総合支援学校に隣接</td>
<td>桃陽総合支援学校から架空ケーブル配線でネットワークを延長し、無線LANアクセスポイントを新設した。</td>
</tr>
<tr>
<td>京都大学医学部附属病院</td>
<td>分教室を設置</td>
<td>病院既設の電子カルテ用ネットワークを利用して、校内ネットワークに接続した。分教室案内は無線LANアクセスポイントを新設し、病院では大がかりな新設工事をせずに済むよう、病院既設の無線LANを利用し、学習に使用するネットワークをVLANにより論理的に区分した。</td>
</tr>
<tr>
<td>京都府立医科大学附属病院</td>
<td>分教室を設置</td>
<td>学習用ネットワーク用のLAN配線工事を行い、分教室と病室に無線LANアクセスポイントを設置した。病院では電子カルテ用無線LANアクセスポイントが設置されており、これに干渉しない周波数帯を使用した。</td>
</tr>
<tr>
<td>京都第二赤十字病院、国立病院機構京都医療センター</td>
<td>分教室を設置</td>
<td>学習用ネットワーク用のLAN配線工事を行い、分教室に無線LANアクセスポイントを設置した。病院指定の無線設定を行い、電波強度は極力抑えた上で、周波数帯及びチャネルも病院指定の設定を用いた。</td>
</tr>
</tbody>
</table>

病院へのICT環境を導入するにあたっては、病院側の既設ネットワーク環境がそれぞれ大きく異なり、教育用ネットワーク環境構築に際して要求される条件や制約も異なる。また、病院側の環境を損なったり医療業務に支障が出ないことが求められるため、構成するネットワークもその状況に応じて大きく異なる。ネットワークの構築にあたっては、ICT環境導入の意義や、導入により既存設備に影響を与えないこと等を説明し、病院関係者の理解を得る必要がある。

なお、京都大学医学部附属病院では、病院既設の無線LANを利用できたため、構築コストを抑えることができ、医療機器に対する電波干渉等による影響に関しても懸念が低減された。しかし、このような環境には、病院側の全面的な協力が必要なため、まれなケースであると考えられる。

③ その他

タブレットPCの出し入れのために別の教室に入ることに心理的な負担を感じる児童生徒に配慮し、充電保管庫を共用スペースに配置した例があった。特殊支援学校では、環境の変化に敏感な児童生徒が多いため、既存の備品の位置を動かさないようにする等、できる限り従来の環境を変化させない配慮が必要となる。

また、学校と病院が連携して動作するアプリケーションを利用しようとした際に、病院内に設置されたネットワーク機器の設定が影響し、アプリケーションが利用できなかった例があった。結果的に、病院に許可を得て、ネットワーク機器の設定を変更することでアプリケーションを利用することができたが、学校以外の拠点で発生した問題については、病院等他の関係者の協力を要する必要があるため、注意が必要である。

ICT環境構築の際には、あらかじめネットワーク環境や導入するアプリケーションについて十分検討しておくことが必要である。
2.3.2. 特別支援学校の年度末年度始めのICT環境の設定
特别支援学校では年度途中における児童生徒の転入出が頻繁に生ずることがあり、作業コストの増加が大きな課題となっている。実証校では頻繁な転出・転入に対応し、タブレットPCの児童生徒への配備方法や設定を簡略化し、転出時の作業の省力化を図っている。実証校での対応を以下に示す。

図表 2-34 頻繁な転出・転入に対応した例

<table>
<thead>
<tr>
<th>項目</th>
<th>対応</th>
</tr>
</thead>
<tbody>
<tr>
<td>タブレット PC の配備</td>
<td>児童生徒数が増減し、利用するタブレットPCが不足する事態に備えて、小学部・中学部で同一の機種を配備し、全ての学年で共通で利用できるようにした。（桃陽総合支援学校）</td>
</tr>
<tr>
<td>設定作業の担当者</td>
<td>児童生徒の学部・学年・障害の状況により、必要となるアプリケーションや、指紋認証装置等、本人認証を行う方式が異なるため、これらの事情を理解した教員がアプリケーションの更新作業や装置の設定等を実施した。（ふるさと支援学校）</td>
</tr>
<tr>
<td>作業の手順化</td>
<td>タブレットPCの設定変更作業（シールの貼り替え、データの削除や壁紙等の初期設定への復帰等）、新しい児童生徒のユーザー登録等について手順化した。（桃陽総合支援学校）</td>
</tr>
<tr>
<td>サーバー管理</td>
<td>タブレットPCを児童生徒に固定せずに管理することとした。これにより、転出・転入時における作業量を軽減するとともに、タブレットPCの不具合発生時にはどのPCでも代替できるので、効率的に運用できるようになった。（桃陽総合支援学校）</td>
</tr>
<tr>
<td>アカウントの登録</td>
<td>実証校では、一旦転出した児童生徒が再転入することがあるため、転出した児童生徒のアカウントや利用データを削除せず、サーバー上に保管しておいた。（桃陽総合支援学校）</td>
</tr>
</tbody>
</table>

図表 2-35 年度末及び年度始めにおける設定変更の要因と設定変更の対象（桃陽総合支援学校）

<table>
<thead>
<tr>
<th>設定変更の要因</th>
<th>設定変更の対象</th>
<th>タブレット</th>
<th>教員用</th>
<th>児童生徒</th>
<th>電子黒板</th>
<th>充電保管庫</th>
<th>電源</th>
<th>電子黒板</th>
<th>電サーバー</th>
<th>電子黒板</th>
<th>インターネット</th>
<th>スマートフォーム</th>
<th>協勤教育</th>
<th>プリントシステム</th>
<th>インテリジェント</th>
<th>カウンターパート</th>
<th>タブレットフォーム</th>
</tr>
</thead>
<tbody>
<tr>
<td>教員の転勤等</td>
<td>退職・転勤（転出）</td>
<td>〇</td>
<td>□</td>
<td>〇</td>
<td></td>
</tr>
<tr>
<td>新任・転勤（転入）</td>
<td>〇</td>
<td>□</td>
<td>〇</td>
<td></td>
</tr>
<tr>
<td>児童生徒の入学・卒業・転校</td>
<td>卒業・転校（転出）</td>
<td>〇</td>
<td>□</td>
<td>〇</td>
<td></td>
</tr>
<tr>
<td>進級</td>
<td>〇</td>
<td>□</td>
<td>〇</td>
<td></td>
</tr>
<tr>
<td>入学・転校（転入）</td>
<td>〇</td>
<td>□</td>
<td>〇</td>
<td></td>
</tr>
<tr>
<td>教室の変更・廃止・追加等</td>
<td>変更・廃止</td>
<td>〇</td>
<td>□</td>
<td>〇</td>
</tr>
<tr>
<td>追加</td>
<td>〇</td>
<td>□</td>
<td>〇</td>
</tr>
<tr>
<td>クラス・担任等の変更</td>
<td>クラス変更</td>
<td>〇</td>
<td>□</td>
<td>〇</td>
</tr>
<tr>
<td>担任・教科変更</td>
<td>〇</td>
<td>□</td>
<td>〇</td>
</tr>
</tbody>
</table>

上記のような対応による、年度初めにおける設定変更作業の省力化について、以下のように整理する。

実証校では、他の小中学校に比べて、年度末及び年度始めにおける設定作業が大幅に簡素化された。桃陽総合支援学校の場合、延べ6時間程度の作業で全ての年度更新作業が完了した。
2.3.3. 特別支援学校のICT環境の運用

① ICT環境の運用におけるタブレットPCの課題の整理

（ア）タブレットPC固定装置

ふるさと支援学校では、障害が重く、座った姿勢を保つことが困難な児童生徒に対し、どのような体勢でも画面が見えて、操作ができるよう、大きく分けて2種類のタブレットPC固定装置を新たに開発した。1つは手軽にタブレットPCの位置を調整できる、移動可能なキャスター付きのタブレットPC固定装置、もう1つは机やベッドに取り付け可能なタブレットPC固定装置である。これらの開発により、タブレットPCを簡単に固定でき、柔軟に角度調整ができるようになったため、教員がタブレットPCを持ち続けることもなく使うことができ、教員の負担が大幅に削減された。なお、固定装置は、重量のあるタブレットPCを支え、タッチ操作でぐらつかないようにする必要があるため、強度と安定性が求められる。一方で、児童生徒の頭の位置に合わせてタブレットPCを適切な位置に固定する必要があり、柔軟に位置を変えられる自由度も求められる。

図表 2-36 タブレットPC固定装置の例

キャスター付きタブレットPC固定装置例
ベッド取り付け型タブレットPC固定装置例

（イ）タブレットPCの破損

通常運用での予期しないタブレットPCの破損に加え、特別支援学校では、感情のコントロールができなくなった児童生徒がタブレットPCを激しく机に置いてしまったり、タブレットPCを投げてしまった等の報告があった。タブレットPCの取り扱いについては、児童生徒に対して十分な注意喚起をする必要があるとともに、不測の事態に対応するため、できるだけ頑丈な筐体を持つ端末を選定することも重要である。

② ICT環境の運用におけるネットワーク・無線LANの課題の整理

（ア）分教室・病院内のネットワーク

分教室や病院等で授業を行う際、一時的に通信が切れる等、無線LANの通信状況が不安定になることがある。その際、既設の病院ネットワークを利用している場合や衛生管理上業者等の立ち入りが制限される病室では、原因究明のための調査が難しいという課題がある。設置時に電波状況を確認しておく等、事前に対策しておく
くとともに、遠隔から病院内の通信機器の状況を確認・設定できるような仕組みを構築しておくことが望まれる。

（イ）前籍校との通信

桃陽総合支援学校では、転入してきた児童生徒が前籍校へスムーズに復帰するため、前籍校との間でテレビ会議システムを利用した交流活動を行っている。

交流に使用するテレビ会議システムは、事前に前籍校のPCにアプリケーション等をインストールする必要のない、ウェブブラウザからサーバーにログインするだけで使用できるシステムを導入している。桃陽総合支援学校では京都市教育委員会のネットワークを利用しているが、前籍校は必ずしもこのネットワークを利用しているとは限らない。そこで、前籍校からも利用できるよう、テレビ会議システムサーバーを教育委員会のネットワーク内に設置し、外部のネットワークからも接続できるようファイアウォールに設定を行った。

なお、実際の運用に際しては、前籍校との通信の際は、音声がクリアに届き、聞き取りやすくするための調整等にはある程度のノウハウが必要であり、前籍校側のPC環境を整備するために実証校の支援が必要となっている。
2.3.4. 特別支援学校の教員・生徒・保護者・ICT支援員への対応

① 教員への対応

教員のICT環境の活用支援のため、各実証校では、校内研修を実施した。特に桃陽総合支援学校では教員が本校と分教室に分かれて配置されているため、全ての分教室にまたがって情報共有や研修を行った。

小学校や中学校と同様のICT機器の取り扱い等に関する研修のほか、特別支援学校におけるICT機器活用の意義や、本校と分教室を結んで行われる授業の際の機器やソフトの操作等についての研修を行った。

② 児童生徒への対応

ふるさと支援学校では、以前より児童生徒が自ら日々の活動における目標を立て、その目標が達成できたかを毎日自己評価する取り組みを行っている。日々の自己評価を表計算アプリケーションに記入することで、定期的な集計作業にかかる時間を大幅に削減することができた。また、集計結果は自動的にレーダーチャート等に変換された。

また、実証校では病室にタブレットPCを持ち帰り、デジタルドリル等の課題の学習を行った。タブレットPCは児童生徒の興味関心を引き付ける道具としても有効であり、学習意欲が継続し集中力が増すという効果が見られた。その一方で、児童生徒の病状によっては、タブレットPCを過度に使用することは体調の悪化にもつながるため、病室におけるタブレットPCの使用は、適切な利用ルールを整備した上で病状に影響が出ないよう、無理なく使う必要がある。

③ 保護者への対応

実証校では、児童生徒が接するICT環境について正しい情報を伝え、保護者の不安を払しょくするために、ホームページ、保護者会、PTA便り、学校便りでの周知や、病室や分教室での様子の見学・体験、個別の説明等、様々な説明の機会を確保した。

小学校や中学校でも同様であるが、特に特別支援学校では、健康面や衛生面に関する配慮について十分説明することが求められる。

④ ICT支援員の業務

ふるさと支援学校では、特別支援教育や、学校に在籍する児童生徒についての個別の状況、病院への訪問学級や病院からの通学等の状況等に関するあらかじめ研修を行った。

ふるさと支援学校では、環境変化に敏感な児童生徒に配慮して、直接の対応は教員が行い、ICT支援員が直接対応することを控える等、慎重な対応を行った。また、教員の要望に応じて、ICT支援員が、個々の児童生徒の障害の程度や病状に応じたアプリケーションの開発の支援を行う等、特別支援学校や在籍している児童生徒の実態に即した活動を行っている。

桃陽総合支援学校では、分教室や教室でもICT機器を使用しているため、ICT支援員が各施設を巡回し、本校の教員は週3回、4つの分教室の教員は2週間に1回、定期的に支援を受けられるようにした。複数の拠点に分かれてサポートを行う必要があるので、できる限り効率的な支援活動が求められる。
3. ICT環境の利活用に関する課題の抽出・分析等
3.1. ヒアリング調査に基づく利活用及び促進された教育手法の抽出・分析等

紙媒体を中心とする既存の環境では実現が困難であり、1人1台のタブレットPC等のICT環境を用いたからこそ実現できた利活用方法や、ICT環境によって促進された教育手法等について取りまとめた。1人1台のタブレットPC等ICT環境において実現した利活用方法について、以下に示す。

<table>
<thead>
<tr>
<th>效果</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>協働学習の活性化</td>
<td>生徒のタブレットPCの画面をそのまま電子黒板に表示して、すぐに発表できるため、時間が短縮でき、発表の機会も増える。一方通行なやり取りではなく、学び合いが深まる。タブレットPCの画面を提示しながら発表することで、発表する生徒は、伝えることを意識したノートづくりができるようになる。また、発表を聞く児童生徒は、視覚的に内容がわかるので、理解が深まる。電子黒板で複数の生徒が1つのワークシートを共有して、文字や絵を同時に書き込むことで、学び合いが深まる。発表を聞く児童生徒は、視覚的に内容がわかるので、理解が深まる。</td>
</tr>
<tr>
<td>時間の短縮・効率的な指導</td>
<td>デジタルデータとして作成した内容は保管と共有が簡単で、後で見返すことができるため、生徒の活動状況を容易に把握できる。教員が紙ベースの教材を準備するのは手間がかかるが、デジタルデータとして作成することで、あらかじめ準備されているコンテンツ等も利用でき、容易にきれいな教材を作成できる。作成した資料は劣化せず、再利用が可能。また、過去のデータを復習することができる。 「何ページを見なさい」という口頭での指示だけではなく、視覚的に注目すべき箇所を指し示せるので、全ての生徒が授業に参加できるようになった。</td>
</tr>
<tr>
<td>ICTならではの授業</td>
<td>写真や動画、音声等の多様な種類のデータを授業で使用できるため、より理解を深めることができる。画面転送機能で複数のタブレットPCの画面を一度に表示することができるため、様々な生徒の考えの比較が容易になる。カメラで写真や動画を撮影することで、その場の状況を記録に残して、後で見返したり、情報を探る者に共有することが容易になる。また、映像を使うことで、表現の幅が広がる。調べ学習、録音、撮影等が容易にできるため、それを使って学習につなげることができる。</td>
</tr>
<tr>
<td>個別の生徒への対応</td>
<td>まったたく線やきれいな字を入力したり、間違えを元に戻すことが簡単にできるため、表現が苦手な生徒でもきれいな資料を作成できる。ドリル教材を使うと、自分の進度に合わせて学習ができる。また、学習履歴が残るので、進捗状況が把握でき、適切な指導や効率的な学習ができる。</td>
</tr>
<tr>
<td>効果</td>
<td>内容</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>デジタル教科書の内容を音声で読み上げる機能を利用することで、読みが苦手な生徒でも授業についている。</td>
</tr>
<tr>
<td></td>
<td>ICT機器を活用して自分の習熟に合わせて学習することができるので、無駄な時間が減り、考える時間が増えた。</td>
</tr>
<tr>
<td></td>
<td>タブレットPCで作成したデジタル資料は、簡単に修正ができるため、生徒の意見を引き出すことができる。</td>
</tr>
<tr>
<td></td>
<td>生徒それぞれの考えを共有・視覚化できるため、あまり意見を出せなかった生徒も意見を出せるようになった。</td>
</tr>
<tr>
<td></td>
<td>英語のリスニングの際に、聞き取れなかった生徒が何度も聞き返すことができ、個人のベースで学習できる。</td>
</tr>
<tr>
<td>学習意欲の向上</td>
<td>紙の教材に比べて、双方向性が高く、楽しみながら学習ができる。</td>
</tr>
<tr>
<td></td>
<td>視覚的な刺激があるので、学習意欲につながる。</td>
</tr>
<tr>
<td>スキルの向上</td>
<td>日常的にICT機器を利用することで、ICTスキルの向上に寄与できる。</td>
</tr>
<tr>
<td></td>
<td>電子黒板に投影して発表することで、表現力・プレゼンテーション力の向上に寄与できる。</td>
</tr>
</tbody>
</table>
3.2 学校現場におけるICT環境の利活用に関する課題の抽出・分析等

実証校におけるICT環境の利活用に関する課題の抽出・分析等において、「個別学習」と「一斉学習・グループ学習」の場面に整理して取まとめた。共通した課題もあるが、各場面の利活用において特に課題となるものについて重点的に記載している。

3.2.1 普通教室における学習時の課題

ICT環境を活用した普通教室における学習時の課題の抽出・分析等において、「個別学習」と「一斉学習・グループ学習」の場面に整理して取まとめた。共通した課題もあるが、各場面の利活用において特に課題となるものについて重点的に記載している。

① 個別学習時における課題

実証校における個別学習時では、ファイル配信機能を使ったワークシートの一斉配布、ペン入力機能・カメラ機能を用いたワークシートの作成や、インターネットを通じた調べ学習等、生徒がタブレットPCを用いて個人で作業をする場面が見られた。それぞれの場面における課題について、以下に示す。

![図表 3-2 個別学習時における主な課題]

<table>
<thead>
<tr>
<th>活動内容</th>
<th>分類</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タブレットPC上で行われる活動</td>
<td>タブレットPC</td>
<td>タブレットPCをクローンすると、教科書・ノート・プリント等を置くスペースが確保できない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>手書きが書きにくい。</td>
</tr>
<tr>
<td>タブレットPCで行われる活動</td>
<td>タブレットPC</td>
<td>ベン先とタッチ面の微妙なずれが操作を難しくしている。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ベンで記入する際、生徒がタブレットPCを寝かせて記入するので、手の側面が画面に触れてしまい、記入しにくい。</td>
</tr>
<tr>
<td>キーボード</td>
<td>キーボード</td>
<td>キーボードは、キーボードが外れにくく、内部にゴミが侵入しない型が欲しい。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>キーボードはいつも利用するわけではないので、必要な時に使える外付けのものを用意したい。</td>
</tr>
<tr>
<td>ネットワーク上での活動</td>
<td>ネットワーク</td>
<td>NHKの動画がフィルタリングではじかれるのに、動画共有サイトは見られる等、フィルタリングの精度がまちまちである。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>動画サイトの中にも見せたい動画と見せたくない動画があるので、動画サイトの中にもフィルタ機能があると良い。</td>
</tr>
<tr>
<td>アプリケーション</td>
<td>アプリケーション</td>
<td>無償アプリケーションを授業で活用する際、アプリケーションの不具合によりデータが消失した等の問題が発生した。無償アプリケーションの場合、補償が受けられなかった。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>画面を縦向きにして操作する場合、メニューパーが画面の4分の1を占領してしまう。</td>
</tr>
</tbody>
</table>
| | | アプリケーションが強制終了することがある。

ペン入力に関する書き味や、機に乗せた際のタブレットPCのサイズ等、タブレットPCのハードウェア面に関する課題が多く挙げられた。また、アプリケーション面に関する課題もいくつか挙げられた。
れた基準に従い精度よくフィルタリングできる機能が求められるが、同じサイトの中でも、有害な動画と有用な動画が混在する等、フィルタリングソフトの性能向上のみで課題を解決することは難しいと思われる。適切なフィルタリングの設定を見極め、設定するとともに、信頼のあるデータベース（デジタル新聞等）の活用や運用ルールの策定等、フィルタリング機能だけに頼らない対策も必要である。

アプリケーションの安定性に関する課題として挙げられたアプリケーションの強制終了やデータの消失は、授業の中断につながり、かつ、使用している生徒の意欲が著しく削がれる可能性があるため、アプリケーションには高い信頼性が求められる。また、アプリケーションの挙動が重いと、こちらに注意が逸れるので、授業に集中できない、という意見もあった。常時起動しているアプリケーションを調査し、不要なものについては常時起動の設定を解除することで、使用可能な空きメモリを増やす等の対策がアプリケーションの重さ解消に有効であると考えられる。

② 一斉学習・グループ学習時における課題

実証校における一斉学習・グループ学習時では、協働教育アプリケーションを利用して、タブレットPCから電子黒板へ画面を転送してクラス全体へ発表したり、グループ内の生徒が電子模造紙を利用したり、タブレットPCの画面を共有することで、グループ内の情報共有を図るといった場面が見られた。それぞれの場面における課題について以下に示す。

<table>
<thead>
<tr>
<th>活動内容</th>
<th>分類</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>クラス全体への発表等</td>
<td>電子黒板</td>
<td>50インチだと小さいが、大きすぎると教室の場所を取ってしまいため、適当な大きさのものが欲しい。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50インチよりも大きいサイズが必要。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>外光等の映り込みがあり、カーテンを開めて対応している。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>萤光灯の映り込みがあるので、学年に応じて高さを変えたり、画面の角度を調整している。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>電子黒板の高さが低いため、教室の後ろの席の生徒が電子黒板の画面の一部が見えない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>タッチが効かなかったり、線が描けないことがある。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>チョークの粉やほこり等が溜まり、センサーの反応が悪くなる。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>機能がたくさんあるため、各機能を理解したり、使い方を学ぶのが大変で、スマーズな運用が難しい。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>投影用PCや実物投影機と縦と横の画面比率が合わないと画面が伸びて正しい表示にならない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>操作パネルが右側にあるが、教師や生徒が左側にいる時には操作できないため、操作を行う度に右側に移動しなければならない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>起動に時間がかかる。</td>
</tr>
<tr>
<td>グループ内で情報共有等</td>
<td>タブレットPC</td>
<td>ディスプレイサイズが小さいので画面転送機能を使用せずに1台をグループ全員で確認するのは見づらい。画面サイズは10.1インチより少し大きい方が良い。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>電子模造紙を使用して複数人で1つの資料に書き込む際、資料の全体が見えないので、画面が小さく感じることがある。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>無線LANに接続できない場合がある。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>無線LANとの接続が切れててしまう場合がある。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>時間が経つと、別の無線に切り替わってしまう場合がある。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>一斉インターネット接続すると、接続先のASP教材サーバーの性能等が原因で接続できなかった。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>動画コンテンツの視聴中に途切れる場合がある。</td>
</tr>
</tbody>
</table>

図表 3-3 一斉学習・グループ学習時における主な課題
活動内容

<table>
<thead>
<tr>
<th>分類</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>授業支援システム</td>
<td>ネットワークが遅いと、イライラする。</td>
</tr>
<tr>
<td></td>
<td>授業支援システムに参加できない場合がある。</td>
</tr>
<tr>
<td></td>
<td>生徒画面を電子黒板に提示するのに時間がかかる。</td>
</tr>
<tr>
<td></td>
<td>全生徒にファイルを送信する際、漏れてしまう場合がある。</td>
</tr>
<tr>
<td></td>
<td>機能面で様々なことができる一方、操作性が悪い、もっとシンプルなもののが望まれる。</td>
</tr>
</tbody>
</table>

全体で発表する際には、電子黒板が利用されるが、50インチでは画面が小さく、大きすぎても教室内の場所をとるという課題が挙げられた。また、電子黒板の高さが低く、後ろの席の生徒にとって画面が見えにくい課題や、設置環境によっては画面に映り込みが生じているため、教室の形状や生徒にとっての見やすさ等を考慮した上で最適なサイズ・設置位置を選定することが重要であると考えられる。

操作性について、操作パネルの位置に関する課題や電子黒板に付属している機能が多く、各機能を理解することが大変で、多機能であることが逆に教員の活用を妨げているという意見があった。また、画面へのタッチが効かない、線が書けない等の不具合に対しては、キャリブレーションの手続きや、センサーをほこりが覆っていることが考えられるので、定期的なメンテナンス・清掃が必要である。

無線LAN環境では、接続の安定性や回線速度について課題が挙げられた。特にクラス全体への発表やグループ内での情報共有時に良好利用される画面転送機能は、タブレットPCや電子黒板の間で頻繁に通信が発生するため、ネットワークが不安定になると、すぐに授業がストップすることになる。そのため、ネットワークと授業支援システムの安定性は極めて高いレベルでの実現が求められる。

ネットワークが不安定になる原因は、無線LANアクセスポイントや無線LANアクセスポイントコントローラー等のネットワーク機器の不具合、電波干渉等様々な要因が考えられるため、ICT支援員・事業者とも連携し、速やかに原因究明と対策を行うことが求められる。

その他、一斉学習においては大容量の動画コンテンツ等をタブレットPCで視聴することもあり、快適に視聴するには全員が必要なネットワーク帯域を確保できるよう、回線速度を確保する必要がある。ネットワークの通信速度が遅いと生徒のモチベーションが下がるというような意見もあるため、回線速度も考慮する必要がある。
3.2.2 遠隔地との交流学習時における課題

実証校では、テレビ会議システムを利用して、遠隔地との交流を行った。学校にいながら、遠隔地とコミュニケーションを取り、合同授業を行うことができるため、活動の幅を大きく広げることができる。

実証校で実施した、遠隔地との交流例を以下に示す。

図表 3-4 遠隔地との交流例

<table>
<thead>
<tr>
<th>分類</th>
<th>項目</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>実証校同士の交流</td>
<td>実証校との交流授業</td>
<td>実証校周辺にある桜の名所をテレビ会議システムで撮影し、遠隔交流授業として花見を行った。 (上越教育大学附属中学校、下地中学校)</td>
</tr>
<tr>
<td></td>
<td>実証校との合同授業</td>
<td>テレビ会議システムと電子模造紙を使い、数学・理科・社会等の合同授業を行った。テレビ会議システムで音声と映像をつなぎ、電子模造紙で1つのデジタル資料を離れた学校同士で作成した。 (尚英中学校、三雲中学校、城東中学校、下地中学校)</td>
</tr>
<tr>
<td></td>
<td>理科の合同実験</td>
<td>尚英中学校と下地中学校の間で、テレビ会議システムを利用して、理科の授業を合同で実施した。理科実験の様子を遠隔視聴したり、調査した内容を発表した。離れた地域での気象の違いを、身を持って体験することができた。 (尚英中学校、下地中学校)</td>
</tr>
<tr>
<td></td>
<td>校内の他教室とのコミュニケーション</td>
<td>タブレットPCで授業で行われた議論の内容を校内で共有できるようにし、同じ時間に同じ授業を行っている他教室の議論の内容を参考にした。 (横浜国立大学教育人間科学部附属横浜中学校)</td>
</tr>
<tr>
<td></td>
<td>遠隔地との日食同時観測</td>
<td>京都の中学校との間で、テレビ会議システムを利用して、金環日食観察会を同時に行い、日食についての講義を遠隔から視聴した。金環日食は観測する地点によって見え方が違うため、遠隔地との同時観測によって、日食の仕組みがより深く理解できると考えられる。 (尚英中学校)</td>
</tr>
<tr>
<td></td>
<td>他校との交流授業</td>
<td>他地域の中学校との間で、テレビ会議システムを利用した交流学習を行った。互いの地域の特色を紹介したり、ビデオメッセージや発表資料を投影しながら、学校の様子を説明したり、相互に画像を見せ合い回答するクイズ大会を実施した。 (三雲中学校、下地中学校)</td>
</tr>
<tr>
<td></td>
<td>別校地にある併設型高校との交流</td>
<td>離れたところに立地している併設型高校との間で、テレビ会議システムを利用して、高校英語科教員による授業の実施や高校生のチューターの質問・相談等を実施し、高校を身近に感じられるような交流を行った。 (武雄青陵中学校)</td>
</tr>
<tr>
<td></td>
<td>遠隔地の専門家とのネットミーティング</td>
<td>テレビ会議システムを利用して、大学の専門家等と交流し、専門的な内容について講義を受ける。 (上越教育大学附属中学校、哲西中学校)</td>
</tr>
<tr>
<td>海外との交流</td>
<td>ホームスティ先との事前交流</td>
<td>海外の中学校との国際交流を実施しており、テレビ会議システムを利用して、ホームステイを行う生徒とホストファミリーとの事前交流を行った。事前に交流を行ったおかげで、現地で初めて会ったホストファミリーとも、すぐに打ち解けることができた。 (下地中学校)</td>
</tr>
<tr>
<td></td>
<td>英語でのコミュニケーション</td>
<td>海外テレビ会議システムで接続し、現地の人と英語で自己紹介を中心としたコミュニケーションを行った。リアルタイムに海外とつながり、会話をすることで、海外を身近に感じることができ、興味関心も高まった。 (尚英中学校、城東中学校、哲西中学校、武雄青陵中学校、下地中学校)</td>
</tr>
<tr>
<td>その他の交流</td>
<td>一般企業との交流</td>
<td>職業体験学習の際、生徒の希望する職業の方と遠隔交流で職業の内容等の話をしてもらい、質疑応答を行った。 (武雄青陵中学校)</td>
</tr>
<tr>
<td></td>
<td>動物園との交流</td>
<td>テレビ会議システムを利用して、動物園の動物診療室の職員と交流を行った。交流の際に、本校や分教室を含め5拠点をつないだ。資料共有としては、象の採血の様子の動画等を共有した。 (桃陽総合支援学校)</td>
</tr>
<tr>
<td></td>
<td>校内の他教室とのコミュニケーション</td>
<td>タブレットPCで授業で行われた講義の内容を電子模造紙に記載し、校内で共有できるようにして、同じ時間に同じ授業を行っている他教室の議論の内容を参考にした。 (横浜国立大学教育人間科学部附属横浜中学校)</td>
</tr>
<tr>
<td></td>
<td>災害時の遠隔授業</td>
<td>学校や施設の避難所等をテレビ会議システムで接続し、遠隔授業を行うことができる。実証では、避難訓練時に仮設の避難所を作成し、遠隔授業が行われた。 (武雄青陵中学校)</td>
</tr>
</tbody>
</table>
テレビ会議システムを利用することで、上記のような活用例のほか、不登校傾向の生徒が離れた場所から授業に参加できる等、様々な活用方法が考えられる。

海外との英語での交流では、交流先の国によっては発音に特徴があって、なかなか聞き取りづらい場合もあるが、かえって発音に自信がなくても英会話ができる、という気づきのあった実証校もあった。
なお、海外との交流先は、ALTの家族や友人等をあたるほか、事業者等から紹介してもらうことで交流した実証校もあった。

多くの実証校では、タブレットPCの画面を電子黒板に表示して、会話をしたり人がウェブカメラの前に移動するようにすることで、クラス全員がテレビ会議に参加できるようにした。また、クラス内でグループごとに1台のテレビ会議システムをタブレットPCとして用意して実証校同士でグループ交流した学校もあった。グループ交流の際には、1台をテレビ会議システム用タブレットPCとして使用し、他のタブレットPCは資料閲覧用タブレットPCや、電子模造紙用タブレットPCとして使用した。
なお、3年目には遠隔交流の方法も高度化し、海外の拠点と同時にグループ交流を行うという海外交流も行われた。あらかじめ6拠点の交流先と連絡調整しなければいけないため、交流までの準備が困難であった。また、同時に交流する数が多いと、通信網の帯域が枯渇し、通信が途切れた途切れたになる等の不具合が発生する懸念があったが、実際の交流時には問題は起こらなかった。

テレビ会議システムを利用した遠隔地との交流に関して各実証校から報告された課題を以下に示す。

<table>
<thead>
<tr>
<th>分類</th>
<th>課題</th>
</tr>
</thead>
<tbody>
<tr>
<td>準備</td>
<td>• テレビ会議を行う環境や、交流先との接続テスト等、テレビ会議を行うまでの準備が大変であった。</td>
</tr>
<tr>
<td></td>
<td>• 機材の準備にはそれほど時間がかからなかったが、交流先との調整作業に時間がかかった。交流先との調整にもテレビ会議システムを使用して打ち合わせを行うことで、スムーズに進む場合もある。</td>
</tr>
<tr>
<td></td>
<td>• 遠隔会議にも、対多対数や、対数対多数、少人数同士等、様々なケースがあり、それぞれ最適な環境設定がある。マニュアルの整備が必要である。</td>
</tr>
<tr>
<td></td>
<td>• 他校と遠隔で合同授業をする場合、教室の学校の学習進度が異なる可能性があるため、年度当初から連絡を取り合う必要がある。</td>
</tr>
<tr>
<td></td>
<td>• 立ち位置の確認やリハーサルを事前に行っておく必要がある。</td>
</tr>
<tr>
<td></td>
<td>• テレビ会議システムによっては、特殊なポートを使用し、ファイアウォールで使用を許可するよう設定する必要があります。</td>
</tr>
<tr>
<td></td>
<td>• ネットワーク環境の影響で、通信が一時中断した。</td>
</tr>
<tr>
<td></td>
<td>• 交流先の学校が、テレビ会議に必要な機材を持たなかったので、機材一式で送って利用した。</td>
</tr>
<tr>
<td></td>
<td>• 手でカメラを持ちながら色々な場所を撮影すると、手振れの影響で画質が大幅に劣化する。</td>
</tr>
<tr>
<td></td>
<td>• 音声通話の際にハウリングが発生した。集音マイクやヘッドセットのマイクを使うことで、解消した。</td>
</tr>
<tr>
<td></td>
<td>• 外部スピーカーを使用して相手からの音声を大きくしたり、ヘッドセットを使用して周囲の雑音が聞こえないようにした。</td>
</tr>
<tr>
<td>ネットワーク</td>
<td>• こちらの様子が、遠隔地からどのように見えたり聞こえているのかが分からないため、不安になる。</td>
</tr>
<tr>
<td></td>
<td>• 使用するテレビ会議システムの種類によっては画質が悪く、遠隔地との交流に支障が生じる。</td>
</tr>
<tr>
<td></td>
<td>• 画面共有機能を使用したが、うまく表示されなかった。</td>
</tr>
</tbody>
</table>

テレビ会議を行う際は、事前に交流先と連絡を取り合い、実施内容の調整や機器の準備、テストを行うことが必要である。特に、初めて交流先と遠隔交流を行う際には本番では円滑にテレビ会議を行うことができるように、事前に接続の可否、機材の配置、ハウリングやカメラ映像の画質等を確認しておく必要がある。武雄青陵中学校では、遠隔地との交流を行った際には交流記録簿を作成し、交流内容や利用機材、実施した設定を残すようにしていた。交流先や遠隔会議の形態ごとに最適な環境設定を整えておくことで、2回目以降に、準備にかかる手間の削減が可能である。
なお、他校と遠隔で合同授業を行う際には、合同授業時にお互いの学習単元が一致するよう、年度当初から交流先と連絡を取り合い、合同授業の計画を立てておくことが必要である。
テレビ会議の品質はネットワーク環境の影響が大きい。ネットワーク環境の悪化により、通信が一時中断したり、
画質や音声が劣化する可能性があることもあらかじめ想定した上で計画しておく必要がある。また、一部のテレビ会議システムでは特殊なポートを使用しているため、ファイアウォールの設定を変更する必要があった。

ハウリングやカメラ映像の画質は、手でカメラを持ちながら色々な場所を撮影すると、手振れの影響で画質が大幅に劣化するので、三脚等に固定して撮影することが望まされる。また、音声通話の際に、ハウリングが発生した事象について集音マイクやヘッドセットのマイクを使うことで解消することができた。

また、グループで交流する際は、使用したカメラの画角が狭く、グループ全員の顔が相手に見えなかったという報告があった。

交流先との資料の共有には、交流前にあらかじめ、交流先と資料データを共有しておく、交流中に同じ資料データを閲覧する方法や、テレビ会議システムの画面共有機能を利用する方法等がある。また、電子模造紙を使用し、遠隔地の他校の生徒と同じ電子模造紙に書き込み、交流しながら一緒に資料を作成するという方法を行った実証校もあった。
3.2.3. 校外学習時における課題
修学旅行等の校外活動では、生徒が主体的に見学したり、体験学習を行う等、様々な活動が行われる。校外活動にタブレットPCを持参することにより、現地地の確認や活動の記録等に活用することができる。

各実証校における校外での通信手段の確保状況は以下の通りである。

<table>
<thead>
<tr>
<th>実証校</th>
<th>通信手段</th>
</tr>
</thead>
<tbody>
<tr>
<td>城東中学校</td>
<td>海外でも通信が可能な、小型のUSB型Wi-Fiルーターも併せて持参し、利用した。</td>
</tr>
<tr>
<td>哲西中学校</td>
<td>タブレットPCに内蔵されている3G回線を利用した。</td>
</tr>
<tr>
<td>下地中学校</td>
<td>モバイルWi-Fiルーターを持参し、ネットワークを利用した。</td>
</tr>
</tbody>
</table>

タブレットPCの校外でのICTの利活用事例を以下に示す。

<table>
<thead>
<tr>
<th>事例</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>工場見学</td>
<td>・写真や動画を撮影し、現場での体験や説明をその場でタブレットPCにまとめた。</td>
</tr>
<tr>
<td>国際交流</td>
<td>・ホームステイや学校訪問を行う際にタブレットPCを持参した。</td>
</tr>
<tr>
<td>修学旅行</td>
<td>- 一般家庭での宿泊体験の場合、そこでの体験をタブレットPCで撮影し、学校で待機している教員に活動状況を報告した。</td>
</tr>
<tr>
<td>職場体験</td>
<td>- 職場体験先にタブレットPCを持参した。</td>
</tr>
</tbody>
</table>

これらの実証から、校外でタブレットPCを持参し、カメラやGPS等の周辺機器を利用した活動や、コミュニケーションツール、教職員に対する状況確認等、幅広い活動に活用できることができた。タブレットPCを校外に持参して様々な活動に利用する際には、持ち出す際に生じる課題に対して、事前に対策を検討する必要がある。

タブレットPCを持ち出す際に各実証校から報告された課題と対策を以下に示す。
校外での利用に際しては、普通教室のように教員やICT支援員等の支援が受けられない可能性が高いため、活用に際しては利用者に一定のスキルが求められるが、教員用タブレットPCにテレビ会議システムをインストールし、校外でもICT支援員から操作説明等を受けられるようにした。なお、教員用タブレットPCにテレビ会議システムをインストールし、校外でもICT支援員から操作説明等を受けられるようにしたことは、有効な取り組みと考えられる。

ネットワーク回線について、3G回線やモバイルWi-Fiルーターを利用して確保しているが、回線を利用するには、継続的に通信費が必要となるため、コストに見合わせた活用策が必要となる。事前に必要となるデータを準備したり、カメラ等の利用等、ネットワークに接続しなくても利用できるような利活用策を検討することも、現実的な方策であると考えられる。

また、今後、タブレットPCを校外で活用する機会が増えると、持ち運び時の破損や盗難に対する対応が重要になると考えられる。実際に取り組む際には、手持ち袋やかばんを用意したり、盗難の際にデータを消去できるような対策も考慮する必要がある。一部の実証校では、破損防止や持ち運びの利便性のための収納袋を、家庭科の授業で生徒自身が作成した学校もあった。

図表 3-8 タブレットPCを校外学習に持ち出す際の課題と対策

<table>
<thead>
<tr>
<th>課題</th>
<th>対策</th>
</tr>
</thead>
<tbody>
<tr>
<td>持ち出し用の周辺機器を持ち出し忘れる恐れがあった。</td>
<td>モバイルWi-FiルーターとACアダプターを専用のかばんにしまって管理することで、必要な機器を持ち出し忘れないようにした。</td>
</tr>
<tr>
<td>校内用ネットワークの設定のままでは校外でネットワークが使用できなかった。</td>
<td>通常校内でネットワーク接続する際はプロキシを使用するが、校外でWiMAXを使ってネットワーク接続する際はプロキシの設定を外す必要があった。生徒でも簡単に設定変更ができるよう、デスクトップに設定変更用のショートカットを置いた。</td>
</tr>
<tr>
<td>タブレットPCが、使用目的と異なる使い方をされる可能性があった。</td>
<td>アプリケーションのインストールができない権限のアカウントを別に作成し、持ち出し時はそのアカウントでログインすることで、本来の使用目的以外の使い方を制限した。</td>
</tr>
<tr>
<td>ネットワーク回線の確保が困難であった。</td>
<td>修学旅行先には、自由に使用できるWi-Fi環境がなかったことから、3G回線を利用した。活動場所が3G回線エリア外の場合は、ネットワークを利用せずに作業内容をローカルに保存するようにした。</td>
</tr>
<tr>
<td>タブレットPCの置き忘れや盗難にあった場合の対応を検討する必要があった。</td>
<td>番組の位置情報を把握できるアプリケーションをインストールし、タブレットPCの現在地が把握できるようになった。締切管理サービスを利用して、遠隔からロックをかけたり、データを消去するような手順を定めた。</td>
</tr>
<tr>
<td>持ち運びの時間短縮化、効率化を図る必要があった。</td>
<td>タブレットPCを収納する手提げ袋やかばんを準備した。</td>
</tr>
<tr>
<td>事前にネットワークの接続テストを行った。</td>
<td>修学旅行先を下見した際に、タブレットPCとWiMAXの接続テストを実施した。</td>
</tr>
<tr>
<td>現地での操作トラブル時の対応を検討する必要があった。</td>
<td>教員用タブレットPCにテレビ会議システムをインストールしており、操作方法が分からなくなった場合はシステムを介してICT支援員から操作説明等を受けられるようにした。</td>
</tr>
</tbody>
</table>
3.2.4. 持ち帰り学習時における課題
学校と家庭との連携（タブレットPCの持ち帰り学習）では、様々な取り組みが行われた。以下に、学習内容例について整理する。

図表 3-9 タブレットPCの持ち帰り時の学習内容例

<table>
<thead>
<tr>
<th>学習内容例</th>
<th>概要</th>
<th>ネットワークの接続</th>
</tr>
</thead>
<tbody>
<tr>
<td>ドリル学習</td>
<td>オンラインで利用するドリルを使い、数学の計算問題や国語の漢字学習等を行った。</td>
<td>必要</td>
</tr>
<tr>
<td></td>
<td>タブレットPC内にインストールされたドリル教材を使い、社会や英語の学習等を行った。</td>
<td>不要</td>
</tr>
<tr>
<td></td>
<td>自身に課題のインストールされたタブレットPCを持ち帰り学習した。</td>
<td>不要</td>
</tr>
<tr>
<td>レポート作成</td>
<td>電子模造紙を活用し、グループで1つのレポートを作成した。</td>
<td>必要</td>
</tr>
<tr>
<td></td>
<td>インターネットを利用し、与えられた課題について調べてレポートにまとめた。</td>
<td>必要</td>
</tr>
<tr>
<td></td>
<td>撮影した写真をデジタルノートに貼り付けて、英語で日記を書いた。</td>
<td>不要</td>
</tr>
<tr>
<td>授業の準備・振り返り学習</td>
<td>授業で活用したデジタル教科書を閲覧し、予習復習に利用した。</td>
<td>不要</td>
</tr>
<tr>
<td></td>
<td>授業の動画を撮影し、自宅で動画を視聴することで、復習に利用した。</td>
<td>不要</td>
</tr>
<tr>
<td></td>
<td>実験の動画をタブレットPCに配布し、自宅で実験の手順やポイントをまとめることで、次の実験授業をスムーズに行った。</td>
<td>不要</td>
</tr>
<tr>
<td></td>
<td>授業で出題された課題に対して、自宅でタブレットPCのカメラ等を利用して関連する写真を撮影し、レポートにまとめた。</td>
<td>不要</td>
</tr>
</tbody>
</table>

各実証校では、持ち帰り学習に際して、様々な準備が行われた。準備の内容としては、持ち帰りのルール作り、マニュアル作成、持ち帰り用タブレットPCのかばん、インターネットの使用可否の検討、持ち帰り学習の学習内容等である。特にマニュアルに関しては、各家庭でのトラブルが発生しても、教員やICT支援員が即座に対応できないため、生徒に分かりやすい資料として作成しておくことが望まれる。生徒が操作面において苦手意識を持ってしまうと、学校でのタブレットPCを活用した学習にも影響が出てしまうため、丁寧な説明のマニュアルが重要である。

タブレットPCを持ち帰って行う学習として、教員から与えられた課題に対してレポートを作成したり、自主学習のためのドリル学習、授業の予習復習等が行われた。授業の予習復習では、教員の授業を用いた授業の動画や実験の動画を配布し、家庭で閲覧するという活動も行われた。

なお、持ち帰り時の家庭での利用及び持ち帰り後の学校での利用に支障がないよう、タブレットPCの駆動時間を確保する必要がある。実証校では、「タブレットPCの内蔵バッテリーで駆動させた」持ち帰り前及び持ち帰り後には、生徒が各自でバッテリーの残量を確認し、必要なら充電保管庫で充電すると共に、持ち帰り学習を行う日を2日連続にならないように調整し、「充電保管庫にACアダプターが固定されていて持ち出せないため、持ち帰り用のACアダプターを別に用意し、タブレットPCと併せて持ち帰った」等の方法で、持ち帰り時の電源確保を確保している。

また、タブレットPCの持ち帰りに際しては、保護者への対応も必要である。実証校では事前説明を行い、「アンケートを実施して疑問点・不安な点・期待等について把握する」、「タブレットPCの操作体験をしてもらい理解を深めてもらう」等の対応を行った。持ち帰りに関しては様々な課題もあるが、家庭での学習を推進するという意味で、
保護者の理解を得ることは極めて重要である。

タブレットPCの持ち帰りに関して各実証校から報告された課題と対応策を次に示す。

<table>
<thead>
<tr>
<th>項目</th>
<th>課題区分</th>
<th>実施内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>生徒への対応</td>
<td>タブレットPCの取り扱い</td>
<td>タブレットPCの利用に関して、リテラシーやマナー等の指導を行い、意識改革を促すことで、生徒に自己管理を徹底させた。</td>
</tr>
<tr>
<td></td>
<td>タブレットPCの使い方</td>
<td>適宜、課題や使用状況報告書を提出させる等、取り扱いに関しての意識を持たせた。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>モバイルWi-Fiルーターに接続するためのマニュアルを作成し、使い方を忘れてもネットワークに接続できるように配慮した。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>持ち帰りのルールを決め、ルールを守った利用を行った。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>持ち帰りの目的外の利用ができないよう、持ち帰り用のアカウントを作成した。</td>
</tr>
<tr>
<td>保護者への対応</td>
<td>持ち帰りに対する保護者の不安</td>
<td>アンケートを実施して、保護者の疑問点や不安な点、期待等について把握した。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>タブレットPCの持ち帰りに関して、活動のねらいや疑問点等について文書で情報提供を行った。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>保護者に対してタブレットPCの操作体験をしてもらい、理解を深めてもらった。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>あらかじめ家庭のネットワーク環境や利用同意の有無を事前に調査し、各家庭によって環境差ができない方法を検討した。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>保護者に対して、タブレットPC持ち帰りに関する承諾書を書いてもらった。</td>
</tr>
<tr>
<td>環境準備</td>
<td>ネットワークの活用の可否</td>
<td>ネットワークを使用するかどうかの検討を行い、使用する場合はネットワークの確保を行った。モバイルWi-Fiルーターの利用や3G回線の利用等が実際に行われた。モバイルWi-Fiルーターに簡単に接続できるよう、タブレットPCのデスクトップ上に設定変更できるアイコンを用意しておき、クリックするだけで設定変更できるようにした。</td>
</tr>
<tr>
<td></td>
<td>校外での校内で用いているコンテンツの共有</td>
<td>セキュリティに配慮した上で、校内ポータルサイトを外部公開することで、校外でも校内で用いているコンテンツの共有や連絡の受発信を可能にした。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>学校・家庭間のファイル共有ができるオンラインストレージを利用した。</td>
</tr>
<tr>
<td></td>
<td>家庭での他の生徒との協働学習</td>
<td>校外からでも利用できる電子黒板をタブレットPCにインストールした。</td>
</tr>
<tr>
<td></td>
<td>学校外での不適切であると考えられるウェブページの閲覧を規制</td>
<td>通常利用しているフィルタリングソフトは、校内サーバーを利用していたため、校外では利用できなかった。そこで、クラウドサービス型のフィルタリングソフトを利用した。</td>
</tr>
<tr>
<td></td>
<td>デジタル課題の配布方法</td>
<td>生徒にデジタル資料を配布する方法のほか、教員があらかじめオンライン上で課題をアップデートし、生徒は帰宅前に課題をダウンロードして家庭学習することで、オンラインでも課題学習ができた。</td>
</tr>
<tr>
<td>管理</td>
<td>周辺機器の持ち帰り忘れ</td>
<td>持ち帰り忘れ防止のため、持ち帰り用のかばん、ACアダプター、モバイルWi-Fiルーターをセットで保管した。</td>
</tr>
<tr>
<td></td>
<td>タブレットPCの目的外利用確認</td>
<td>持ち帰り後、学校に登校した際に履歴を確認した。</td>
</tr>
</tbody>
</table>
学校で日常的にデジタル教科書等を使った授業を行う場合、学んだ内容を家庭で復習するためには、家庭でもデジタル教科書等を閲覧できることが必要である。家庭にタブレットPCを持ち帰って学習する際に、トラブルが発生すると、教員やICT支援員に問い合わせることができないため、生徒や保護者が自己解決できるよう、環境準備を整えておく必要がある。

生徒に対しては、家庭でのタブレットPCの取り扱いやアプリケーションの利用方法について事前に習得させ、家庭で操作方法が分からなくても対応できるよう、各種マニュアルを準備することが必要である。また、持ち帰り学習の目的を生徒とも共有し、目的外の使用について注意を促すとともに、必要に応じてフィルタリング等で有害サイト等をブロックしたり、不要なアプリケーションのインストールを禁止することが望まれる。

保護者に対しては、あらかじめタブレットPCの持ち帰りについて活動の狙いや疑問点等について情報共有を行うとともに、持ち帰り時に家庭のネットワークを利用する場合は、その環境について調査する必要がある。一部の実証校では、事前に保護者に対するアンケートを実施し、疑問点や不安な点、期待について把握した。また、保護者参観等の機会を利用して、タブレットPCを保護者に実際に触ってもらい、タブレットPCに対する不安を軽減させておくことも有効であると考えられる。

また、持ち帰り学習でインターネットを活用する場合、ネットワークの確保が重要になってくる。ネットワークを利用してある場合、持ち帰りの際には、モバイルWi-Fiルーターと一緒に持ち帰る等、タブレットPC以外の周辺機器の持ち帰りも必要になる。なお、モバイルWi-Fiルーターを持ち帰っても、各家庭の立地環境によっては電波が受信できない場合があり、ネットワークに接続できない場合があるため、注意が必要である。

なお、地域の環境によっては、天候や交通手段の関係でタブレットPCを持ち帰ることが困難な場合もある。その場合、家庭にあるICT環境の活用も検討する可能性がある。ただし、家庭にICT環境がない場合や、セキュリティ面での不安のため、利用の承諾がとれない場合があるため、あらかじめ、保護者としっかり話し合っておく必要がある。

また、家庭のICT環境を利用しながら、学校と同じ環境で学習を行った実証校もあった。一部の実証校では、家庭のPCに接続することで、校内のタブレットPCと同じ環境で再現できる特殊なUSBメモリを利用したり、クラウド上のポータルサイトから、学校で作成した課題をダウンロードする方法で家庭学習を行った。
3.3. 災害時における学校のICT環境の活用方策に関する課題の抽出・分析等

災害発生時には、ICT環境は様々な役割を果たすことができる。中学校、特別支援学校の実証校では、災害時におけるICT環境の効率的な活用を実証するため、様々な取り組みを行った。

以下に、中学校、特別支援学校で行われた取り組みを、災害発生時からの時系列で示す。

図表 3-11 災害時における学校のICT環境の活用事例

<table>
<thead>
<tr>
<th>時間軸</th>
<th>取り組み</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>災害発生直前</td>
<td>災害発生情報の発報</td>
<td>電子黒板を利用した、緊急地震速報等の発報</td>
</tr>
<tr>
<td></td>
<td>被災状況の共有</td>
<td>SNSを利用した、生徒の安否情報の発信</td>
</tr>
<tr>
<td>災害発生直後</td>
<td>被災者等への情報提供</td>
<td>電子黒板を利用した災害情報提供用デジタルサイネージによる情報提供</td>
</tr>
<tr>
<td></td>
<td>実証校の環境の利用</td>
<td>災害時用ホームページを利用した情報提供</td>
</tr>
<tr>
<td></td>
<td>持ち帰り端末を利用した</td>
<td>テレビ会議システムを利用した通信手段の確保</td>
</tr>
<tr>
<td>避難所開設時</td>
<td>被災者等への通信環境の提供</td>
<td>生徒用タブレットPCを利用したインターネット環境の提供</td>
</tr>
<tr>
<td></td>
<td>書籍等の持ち込み端末</td>
<td>モバイルWi-Fiルーターを利用したインターネット環境の提供</td>
</tr>
<tr>
<td></td>
<td>被災した児童生徒への学習環境の提供</td>
<td>テレビ会議システムを利用した遠隔授業</td>
</tr>
<tr>
<td></td>
<td>その他</td>
<td>自治体職員による業務実施のための学校ICT環境の利用</td>
</tr>
</tbody>
</table>

児童生徒が利用するタブレットPCを提供したり、校内無線LANを開放することによって、被災者等がインターネット環境を提供する際には、被災者等が児童生徒の個人情報にアクセスできないよう、対応しておく必要がある。

以下に、被災者等が校内のICT環境を利用するために必要な対策を次に示す。

図表 3-12 被災者等が校内のICT環境を利用するために必要な対策

<table>
<thead>
<tr>
<th>対策</th>
<th>手段</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タブレットPCの貸し出し</td>
<td>マルチブートOSの利用</td>
<td>事前に、起動時に「通常時」と「災害時」から立ち上げ方法を選択できるよう\nマルチブートOSの設定を行った。被災者等は災害時の設定でタブレット\nPCを起動することにより、校内ネットワークやタブレットPC内に保存した児童\n生徒のデータにアクセスできないようにした。</td>
</tr>
<tr>
<td></td>
<td>災害用ユーザーの作成</td>
<td>実証校の環境では、校内LAN上のデータはユーザー認証を行った端末しか\nアクセスできないよう設定されているため、ユーザー認証が不要な災害\n用ユーザーを新たに作成した。</td>
</tr>
<tr>
<td></td>
<td>データの保管場所</td>
<td>日常的な運用として、授業で制作した作品等の個人が特定できるものにつ\nいて、サーバー上のフォルダに保存するように指導していたため、タブレット\nPC内には個人情報が存在しない。</td>
</tr>
<tr>
<td></td>
<td>タブレットPCの操作マニュアルの作成</td>
<td>PCが苦手な被災者でも簡単に操作できるよう、タブレットPCの操作マニュアルを作成した。</td>
</tr>
<tr>
<td>無線LANの開放</td>
<td>校内LAN環境とは切り離された無線LAN環境の構築</td>
<td>被災者等向けインターネット環境から、通常使用している校内LANへは接続できないように、物理的にネットワークを切り離した。</td>
</tr>
<tr>
<td></td>
<td>被災者等が利用しやすい認証方法への変更</td>
<td>被災者等が持ち込んだ端末でも接続できるよう、被災者向け無線LANの認証は、ウェブ上からパスワードを入力する方法に変更した。</td>
</tr>
</tbody>
</table>
対策 | 手段 | 内容
---|---|---
SSIDの公開 | 利用者が容易に接続できるよう、被災者向け無線LANのSSIDが公開されるように設定を行った。
被災者向けインターネット環境へ切り替える仕組みの構築 | 教員用PCのデスクトップ上に切り替えアイコンを作成し、システムを起動すれば自動的にネットワーク機器の構成を変更し、被災者等向けインターネット環境が開放できるようにした。

児童生徒等の個人情報等への配慮のため、タブレットPCに入った生徒の情報を閲覧できないようにしたり、校内ネットワークに接続できないようにする対策が必要である。実証校の中には、マルチブートOS搭載されたタブレットPCを用意している学校もあり、災害時には災害時用OSから立ち上げることで、タブレットPC内に保存されているデータが閲覧できないようにしたり、被災者向けネットワークと校内ネットワークを切り離した等の対策を行った。

各実証校での実証から、災害発生直前から避難所開設時までの幅広い分野で学校ICT環境が活用できることが明らかとなった。これらの実証結果から、災害時におけるICT環境の効率的な利活用に関する課題と対応を以下に示す。

図表3-13 災害時におけるICT環境の効率的な利活用に関する課題と対応

<table>
<thead>
<tr>
<th>事例</th>
<th>課題</th>
<th>対応</th>
</tr>
</thead>
<tbody>
<tr>
<td>電子黒板を利用した、緊急地震速報等の発報</td>
<td>電子黒板の電源が入っていないと、動作しない。</td>
<td>通常、電子黒板は終日電源をつけて、常時活用しているため、特に問題はないと考えられている。ただし、教室外で授業をしている場合に備えて、校内一斉放送ができる環境の整備も必要である。</td>
</tr>
<tr>
<td>緊急時にシステムがスムーズに使える必要がある。</td>
<td>緊急情報発信システムを日常的にも使用し、操作に慣れておく必要がある。日常的に使用する用途としては、地域で目撃された不審者情報の発信、電車の遅延等の交通状況の連絡、行事に関わる日程の連絡等である。</td>
<td></td>
</tr>
<tr>
<td>持ち帰り端末を利用した、安否情報、被災状況の報告</td>
<td>安否情報を報告するホームページ用サーバーのスペックが低く、一斉にアクセスすると負荷が耐えられない。</td>
<td>別途、災害時用のサーバーを準備した。多数の児童生徒が安否確認を行うと、通常の使用より負荷が高まることが予想されるので、事前にサーバーの増強等の対策を行っておくことが求められる。</td>
</tr>
<tr>
<td>通信方法の冗長化</td>
<td>大規模な災害で通信が遮断される可能性がある。</td>
<td>持ち帰り用モバイルWi-Fiルーターの活用や、衛星通信ネットワークを活用し、通信方法の冗長化が求められる。</td>
</tr>
<tr>
<td>電子黒板を利用した災害情報提供用デジタルサイネージによる情報提供</td>
<td>電子黒板を、避難者を収容する体育館まで移動させる必要があるが、重量・大きさから労力がかかり仕様である。</td>
<td>常時、体育館に電子黒板が設置されている状態が望ましい。</td>
</tr>
<tr>
<td>電子黒板に触れたことがない人や機能を理解していない人にとっては、文字の大きさや色を変更することが難しく、手書き入力に慣れていないため、手書きで入力することが困難であった。</td>
<td>電子黒板に触れたことがない人や機能を理解していない人にとっては、文字の大きさや色を変更することが難しく、手書き入力に慣れていないため、手書きで入力することが困難であった。</td>
<td></td>
</tr>
<tr>
<td>被災者等の持ち込み端末によるインターネット環境の提供</td>
<td>教員のみで災害時にネットワークの切り替えを行うことは難しい。</td>
<td>災害時に即座にネットワーク環境を被災者向けのものに切り替えられるよう、教員用PCのデスクトップ上に切り替えアイコンを作成し、システムを実行すれば自動的にネットワーク機器の構成を変更できるようにした。</td>
</tr>
<tr>
<td>切り替えが必要となるポートや回線にラベルを貼り付け、どこにどの線を接続すれば良いかが誰でもわかるようにした。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

株式会社内田洋行
大地震が発生した場合は、強い揺れが来る前にいち早く安全な場所に避難することが重要である。緊急地震速報の受信端末を整備している学校も増えつつあるが、校内放送を使った音声でのアナウンスではタイムラグが発生し、避難が遅れる可能性があるため、校内の児童生徒までどのように迅速に伝達するかが課題となっていている。日常的に利用している電子黒板を利用することで、視覚的にも緊急避難情報を提示することができ、迅速な避難を行う上で有効な手段であると考えられる。

一方で、大規模な災害時にネットワークが途絶し、通信が行えなくなる可能性も考えられる。実証校では、持ち帰り用に準備したモバイルWi-Fiルーター、または、学校の付近にある市役所支局に構築された衛星通信ネットワークを利用することを想定する等して、非常時の通信手段の確保について検討している。

一部の実証校では、避難訓練でスマートフォン等の端末を無線LANに接続しようとした際、一部のスマートフォンは、端末のセキュリティに関する設定が影響して、無線LANに接続できなかった。また、校舎外では2.4GHz帯と、異なる無線の帯域を使い分けていた実証校もあるが、現在発売されているスマートフォンの多くは5GHz帯がサポートされておらず、校内では無線LANに接続できなかった。

なお、一部の実証校では、災害発生時に生徒が避難所に避難したり自宅に待機するなどして、学校に登校できない場合の通報や情報の提供について検討している。
きない際にも継続して授業が受けられるよう、各避難所として見立てた場所とテレビ会議システムをつなぎ、遠隔授業を行った。また、災害発生時に学校の機能が停止した等の理由で授業ができないことも想定して、クラウド上で学習教材をダウンロードして自主的に学習できる環境の構築も行った。なお、自主的な学習中に疑問点等があった場合は、クラウド上のポータルサイトが提供するメッセージ機能を利用して教員に質問するという運用を想定した。
4. ICT機器及びネットワーク環境の構築・運用の技術的条件に係る課題の抽出・分析

前章までに記載したICT環境の効率的な構築・運用に関する課題の抽出・分析等を踏まえ、本章では中学校のICT機器及びネットワーク環境の構築・運用の技術的条件に係る課題の抽出・分析を行う。

なお、昨年度に取りまとめた「ガイドライン2013(小学校版)」、「教育分野における効果的なICT活用を推進するための調査研究報告書」では、小学校におけるタブレットPCや電子黒板、ネットワーク環境に求められる標準要件について整理を行ったため、本章と併せて参照されたい。

なお、一般的に中学校は小学校と比べて、以下のような特性がある。

- 教科担任制である
- クラスあたりの生徒数が多くなる傾向がある
- 授業の内容が高度化する
- 子供たちの体格が大きくなる

このような中学校の特性によって、ICT機器やネットワーク環境に求められる要件や対応が異なることもある。

実証校で見られた中学校の特性を踏まえた対応について、以下に整理する。

図表 4-1 中学校の特性を踏まえた対応

<table>
<thead>
<tr>
<th>中学校の特性</th>
<th>対応</th>
</tr>
</thead>
<tbody>
<tr>
<td>教科担任制である</td>
<td>特別教室で授業を行うことがあるため、特別教室にも無線LANにアクセスできる環境を構築した。</td>
</tr>
<tr>
<td></td>
<td>教員は教科準備室で授業準備等を行うことがあるため、教科準備室から無線LANにアクセスできる環境を構築した。</td>
</tr>
<tr>
<td></td>
<td>校内サーバー等におかれた1人の生徒の情報に複数の教員がアクセスするため、フォルダの構成やデータの管理方法をわかりやすく定めた。</td>
</tr>
<tr>
<td>クラスあたりの生徒数が多くなる傾向がある</td>
<td>充電保管庫を空き教室に設置したり電子黒板を黒板取付式ボード型にして、教室内の空きスペースを確保した。</td>
</tr>
<tr>
<td>授業の内容が高度化する</td>
<td>インターネットの閲覧機会が増えるため、有害情報を閲覧できないよう、ウェブフィルタリングシステムを導入した。</td>
</tr>
<tr>
<td>子供たちの体格が大きくなる</td>
<td>電子黒板の画面が見えにくい後方の席の生徒のため、台の上に電子黒板を置く等、高さを調整して画面の見えやすさに配慮した。</td>
</tr>
</tbody>
</table>

4.1. 学校現場で活用するICT機器の標準要件の整理

学校現場で活用するタブレットPC、電子黒板に関する標準要件を整理した。技術的要件をまとめるにあたり、1人1台環境における生徒用コンピュータや電子黒板に関して、「フューチャースクール推進事業」の中学校の実証校8校と、大阪市「学校教育ICT活用事業」のモデル校3校でICT機器を活用した授業を行っている教職員約240名に対し、1人1台環境における生徒用コンピュータや電子黒板に求められる機能を明らかにするためのアンケート調査を実施した。加えて、前述の2章では、中学校のICT環境に関して実証校にヒアリングを通じて整理しており、これらの意見を総合的に勘案し、中学校現場で活用するICT機器の標準要件を整理する。

図表 4-2 標準要件の整理を行うにあたり実施した手法と概要

<table>
<thead>
<tr>
<th>手法</th>
<th>対象</th>
<th>時期</th>
<th>概要</th>
<th>報告書該当箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>アンケート調査</td>
<td>「フューチャースクール推進事業」実証校(中学校)8校</td>
<td>平成25年10月7日～平成25年10月31日</td>
<td>見解資料の調査票を郵送もしくは持参して回答をもらう(合計約240人の教職員から回収)</td>
<td>4.1.11, 4.1.21</td>
</tr>
<tr>
<td></td>
<td>大阪市「学校教育ICT活用事業」実証校(中学校)3校</td>
<td>平成25年11月12日～平成25年12月13日</td>
<td>訪問の上、担当者等にヒアリングを実施</td>
<td>2.2.1〜2.2.3</td>
</tr>
<tr>
<td>ヒアリング調査</td>
<td>「フューチャースクール推進事業」実証校(中学校)8校</td>
<td>平成25年10月7日～平成25年10月31日</td>
<td>参考資料の調査票を郵送もしくは持参して回答をもらう(合計約240人の教職員から回収)</td>
<td>4.1.11, 4.1.21</td>
</tr>
</tbody>
</table>

株式会社内田洋行
4.1.1．タブレットPCに求められる機能・性能に関する標準要件の整理

① タブレットPCに求められる機能・性能に関する現場からの評価

タブレットPCに求められる機能・性能に関する現場の意見を収集、分析するために、「中学校の生徒用コンピュータ等の必要機能等に関する調査」を実施した。

本調査は、生徒1人1台の情報端末環境がある中学校「フューチャースクール推進事業」実証校（中学校）8校及び大阪市「学校教育ICT活用事業」実証校（中学校）2校の教職員に対し生徒用コンピュータに求められる機能を30項目提示（巻末参考資料1及び2を参照）し、その必要度を教職員が5段階で評価することで必要度の相対的に高い機能を明確にするものである。この調査に関しては、参考資料1の調査票をもとにして実施し、計257人の教職員から有効な回答を得た。

また、調査結果に関しては、「フューチャースクール推進研究会」の清水康敬座長（東京工業大学監事・名誉教授）が評価・分析を行っており、以下は清水座長の分析結果を一部引用して整理している。分析の詳細は、本推進研究会の第7回資料として総務省HPに掲載されている。また、日本教育工学会研究会10でも報告された。

生徒用コンピュータに求められる機能に関する分析においては、各機能の必要度の評価に関し、以下の3つの観点から整理されている。

アンケート結果から求められた生徒用コンピュータに必要な機能のまとめを以下に示す。

アンケート結果から求められた生徒用コンピュータに必要な機能のまとめ：各機能の略称については参考資料2を参照

<table>
<thead>
<tr>
<th>位</th>
<th>必要度の平均</th>
<th>「確実に必要」の回答率(%)</th>
<th>最も必要と支援する割合(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>安定動作</td>
<td>4.84</td>
<td>安定動作</td>
</tr>
<tr>
<td>2</td>
<td>教室内ネット</td>
<td>4.79</td>
<td>フィルタリング</td>
</tr>
<tr>
<td>3</td>
<td>フィルタリング</td>
<td>4.79</td>
<td>堅牢</td>
</tr>
<tr>
<td>4</td>
<td>堅牢</td>
<td>4.79</td>
<td>教室内ネット</td>
</tr>
<tr>
<td>5</td>
<td>バッテリー</td>
<td>4.77</td>
<td>バッテリー</td>
</tr>
<tr>
<td>6</td>
<td>安定無線LAN</td>
<td>4.73</td>
<td>安定無線LAN</td>
</tr>
<tr>
<td>7</td>
<td>起動</td>
<td>4.70</td>
<td>起動</td>
</tr>
<tr>
<td>8</td>
<td>充電保管庫</td>
<td>4.66</td>
<td>教員モニタリング</td>
</tr>
<tr>
<td>9</td>
<td>教員モニタリング</td>
<td>4.65</td>
<td>充電保管庫</td>
</tr>
<tr>
<td>10</td>
<td>軽量</td>
<td>4.60</td>
<td>軽量</td>
</tr>
</tbody>
</table>

9 http://www.soumu.go.jp/main_content/000283875.pdf
10清水康敬（東京工業大学）、小泉力一（専門学園大学）「児童・生徒1人1台のタブレットPCと教室に1台の電子黒板に必要な機能要件」日本教育工学会研究会、愛知工業大学、2014年3月1日
「教育分野における効果的なICT利活用を推進するための調査研究」報告書

11. PC画面転送
12. 高速動画転送
13. 画面サイズ
14. ネット共有
15. 年度更新
16. カメラ
17. アイコン
18. 共有書込
19. 映込抑制
20. ペン指示
21. 学校外ネット
22. ソフトキーボード
23. USB
24. キーボード
25. フィルタリング調整
26. メモリ・スロット
27. ヘッドセット
28. マイク

順位	必要度の平均	「確実に必要」の回答率(%)	最も必要と支えられる割合(%)
11 | 4.60 | 高速動画転送 66.02 | PC画面転送 14.40 |
12 | 4.58 | PC画面転送 64.34 | 充電保管庫 14.01 |
13 | 4.57 | 画面サイズ 62.79 | 高速動画転送 12.06 |
14 | 4.51 | ネット共有 59.14 | ネット共有 11.28 |
15 | 4.45 | 年度更新 57.65 | 画面サイズ 10.12 |
16 | 4.30 | カメラ 51.55 | 年度更新 7.78 |
17 | 4.30 | アイコン 46.69 | 学校外ネット 7.39 |
18 | 4.28 | 共有書込 46.30 | ペン指示 7.00 |
19 | 4.18 | 映込抑制 41.09 | フィルタリング調整 7.00 |
20 | 4.17 | ペン指示 39.15 | アイコン 5.84 |
21 | 4.03 | 学校外ネット 35.66 | キーボード 5.06 |
22 | 3.91 | ソフトキーボード 32.68 | 共有書込 4.67 |
23 | 3.87 | USB 32.68 | 映込抑制 3.89 |
24 | 3.82 | キーボード 29.96 | USB 3.50 |
25 | 3.78 | イヤホン 27.13 | キーボード 3.11 |
26 | 3.77 | フィルタリング調整 25.78 | イヤホン 2.72 |
27 | 3.68 | メモリ・スロット 24.90 | イヤホン 3.23 |
28 | 3.58 | ヘッドセット 23.64 | メモリ・スロット 1.95 |
29 | 3.49 | マイク 21.34 | ペン指示 3.00 |
30 | 3.49 | マイク 21.34 | ペン指示 3.00 |

本調査では、「必要度」に示された一般的な「必要性」という観点においては、全体の3分の2にあたる20個の項目に高い必要性を認められていることがわかる。また、「確実に必要な機能」に列挙されるのは16個の項目で、「最も必要な機能」に列挙されるのは「年度更新」を除く15個の項目である。特に、「安定動作」、「安定無線LAN」、「堅牢」、「軽量」、「起動」等が上位に位置しており、動作の安定性や使用上の安全性等、日常的に使用する際に基本となる機能に対する必要性が高い。

また、学習に利用する機能として、以下のように活動が重要と考えられていることがわかる。

- 教室内でインターネットを使った調べ学習や情報収集ができること
- インターネット上の有害情報をフィルタリングできること
- 生徒用タブレットPCの画面を教員用タブレットPCでモニターできること
- 複数の生徒の画面を電子黒板に並べて提示し、生徒の考え方等を共有できること
- 無線LAN経由でもストレースなく動画が再生できること
- カメラ機能を有すること

また、特に中学校では教員が指導する教科が決まっているため、教科ごとにタブレットPCの使い方も異なっていることが推察される。アンケート結果からは、以下のような分析結果となった。

- 理科では、SDカード等の外部メモリカードが直接使えること、無線LAN経由でもストレースなく動画が再生できること、自分のタブレットPCからネットワーク経由で共通の資料に書き込むことができる機能が特に求められている。
- 音楽や外国語では、外部マイクロフォンやイヤホン、ヘッドホン等を使って、音声の入出力ができる機能が特に求められている。
② タブレットPCに求められる機能・性能に関するメーカーの見解

学校現場で活用するタブレットPCに求められる機能・性能について、「起動・反応の速さ」「重量」「堅牢性」「画面サイズ・反射」「入力方法・操作性」「カメラ等の機能」「サポート・保守」に分けて、タブレットPCのメーカーに対してヒアリングを実施した。ヒアリングを行ったタブレットPCメーカーを以下に示す。

<table>
<thead>
<tr>
<th>メーカー名</th>
<th>備考</th>
</tr>
</thead>
</table>
| アップルジャパン株式会社 | フューチャースクール推進事業の中学校実証校、絆プロジェクト導入校の一部に導入。
| エイスース・ジャパン株式会社 | フューチャースクール推進事業の特別支援学校実証校の一部に導入している。
| グーグル株式会社 | フューチャースクール推進事業への導入実績はないが、タブレットPCを開発している。
| シャープビジネスソリューション株式会社 | 絆プロジェクト導入校の一部に導入している。
| ソニーマーケティング株式会社 | フューチャースクール推進事業への導入実績はないが、タブレットPCを開発している。
| 日本エイサー株式会社 | フューチャースクール推進事業への導入実績はないが、タブレットPCを開発している。
| 日本マイクロソフト株式会社 | Windows端末のOSを開発している。
| 日本ヒューレット・パッカード株式会社 | フューチャースクール推進事業の中学校実証校の一部に導入している。
| 日本電気株式会社 | フューチャースクール推進事業への導入実績はないが、タブレットPCを開発している。
| 日本マイクロソフト株式会社 | フューチャースクール推進事業への導入実績はないが、タブレットPCを開発している。
| パナソニック株式会社 | フューチャースクール推進事業への導入実績はないが、タブレットPCを開発している。
| 富士通株式会社 | フューチャースクール推進事業の中学校実証校の一部、絆プロジェクト導入校の一部に導入している。
| 株式会社ワコム | タブレットPCメーカーではないが、同社の作成するパネルを、多くのタブレットPCメーカーに供給している。

現場からの課題はメーカー側も認識はしているものの、その多くがトレードオフの関係にあるため、各社対応に苦慮していることが分かった。

例えば、タブレットPCの起動時間や稼働速度については、CPUやメモリ、OSの性能が大きく影響するが、性能の高いCPUは消費電力が大きく、バッテリーで運用する際の駆動時間が短くなる可能性がある。また、軽量であることから、堅牢性の犠牲になる可能性もある。そのため、「タブレットPCをどのように授業で活用するのか」を想定して、必要な機能を見極めることが重要である。

また、小学校と中学校の違いによる、タブレットPCの使われ方や必要とする性能の違いについてもヒアリングしたところ、特別教室の利用が多く持ち運びが多くなる、より高機能な使い方が求められる、等の意見があったが、各社とも小学校と中学校で特に明確な区別はしていなかった。なお、メーカーからの意見については、4.1.1②(コ)で詳述する。

以下に実証校で導入された生徒用タブレットPCとその基本スペックを示す。
図表 4-6 各実証校が採用したタブレットPCと基本スペック

<table>
<thead>
<tr>
<th>実証校</th>
<th>タブレットPC</th>
<th>CPU</th>
<th>OS</th>
<th>メモリ</th>
<th>ストレージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>尚英中学校</td>
<td>STYLISTIC Q550/C (富士通)</td>
<td>Atom Z670 (1.50GHz)</td>
<td>Windows7 Professional</td>
<td>2GB</td>
<td>62GB (フラッシュメモリ)</td>
</tr>
<tr>
<td>横浜国立大学教育人間科学部附属横浜中学校</td>
<td>EliteBook 2760p (日本HP)</td>
<td>Core i5-2410M (2.3GHz－2.9GHz)</td>
<td>Windows7 Professional</td>
<td>2GB</td>
<td>250GB</td>
</tr>
<tr>
<td>上越教育大学附属中学校</td>
<td>EliteBook 2760p (日本HP)</td>
<td>Core i5-2410M (2.3GHz－2.9GHz)</td>
<td>Windows7 Professional</td>
<td>2GB</td>
<td>250GB</td>
</tr>
<tr>
<td>三雲中学校</td>
<td>iPad2 (Apple)</td>
<td>A5 (1GHz)</td>
<td>iOS</td>
<td>512MB</td>
<td>16GB (フラッシュメモリ)</td>
</tr>
<tr>
<td>城東中学校</td>
<td>STYLISTIC Q550/C (富士通)</td>
<td>Atom Z670 (1.50GHz)</td>
<td>Windows7 Professional</td>
<td>2GB</td>
<td>62GB (フラッシュメモリ)</td>
</tr>
<tr>
<td>哲西中学校</td>
<td>iPad2 (Apple)</td>
<td>A5 (1GHz)</td>
<td>iOS</td>
<td>512MB</td>
<td>16GB (フラッシュメモリ)</td>
</tr>
<tr>
<td>武雄青陵中学校</td>
<td>EliteBook 2760p (日本HP)</td>
<td>Core i5-2410M (2.3GHz－2.9GHz)</td>
<td>Windows7 Professional</td>
<td>2GB</td>
<td>250GB</td>
</tr>
<tr>
<td>下地中学校</td>
<td>EliteBook 2760p (日本HP)</td>
<td>Core i5-2410M (2.3GHz－2.9GHz)</td>
<td>Windows7 Professional</td>
<td>2GB</td>
<td>250GB</td>
</tr>
<tr>
<td>ふるさと支援学校</td>
<td>Eee Slate B121 (ASUS)</td>
<td>Core i5-470UM (1.33GHz)</td>
<td>Windows7 Professional</td>
<td>4GB</td>
<td>64GB (SSD)</td>
</tr>
<tr>
<td>桃陽総合支援学校</td>
<td>ICONIA TAB W500P (Acer)</td>
<td>C-50 (1GHz)</td>
<td>Windows7 Professional</td>
<td>2GB</td>
<td>32GB (SSD)</td>
</tr>
</tbody>
</table>

（ア）起動・反応の速さ

タブレットPCの起動や反応の速さに関しては、CPUやメモリ等の性能やOSの性能が大きく影響するが、テクノロジーは日進月歩で進化しており、数年前に開発されたタブレットPCのスペックを評価し、現在の要件として定義することは極めて困難である。加えて、特にタブレットPCは製品のサイクルが早く、新しい機種が次々と販売されている。

メーカーヒアリングでは、現時点で最新のCPUを使った機種であれば、性能が大きく向上し、学校での利用にも十分耐えられるようになってきたという声が多く聞かれた。また今後も、年々CPUの性能は向上していくため、今後は性能に関して問題は解消されつつあると思われる。

また、OSについても、実証研究が開始された3年前から、大きく性能が向上している。主にタブレットPC専用のOSであるiOSやAndroidOSでは、起動するまでのタイムラグがほぼなく、WindowsOSでも、最新のWindows8.1は実証校で利用されていたWindows7から比べて起動時間が1/2と高速化されている。

メーカーからの意見を踏まえると、起動や反応の速さについては、現時点ででも技術の進歩により改善し得る課題ということが分かった。

ただ、学校に導入されるアプリケーションは単独で活用されるだけではなく、例えば授業支援システムを用いてプレゼンテーションソフトの発表画面を転送する等、複合的に活用されることも多い。そのため、個々のアプリケーションが要求する動作環境を満たしていなくても、いくつかのアプリケーションが密接に動作環境を満たしている場合でも、実質的にその環境は十分である。機器の選定にあたっては、単純なスペックで判断するべきではなく、使用するアプリケーションや常駐ソフト等を勘案した上で判断すべきである。

（イ）重量

タブレットPCの重量については、授業中に教員が携帯して指導したり、生徒が日常的に利用するためには、概ね1kg前後が妥当との回答が多かった。中には、小学生に比べて体格も大きくなり、小学校で利用するより少々重
とても良いのではないか、という意見もあったが、一方で中学校では特別教室での授業も増えるため、タブレットPCを持ち運ぶ機会が多く、できるだけ重量は軽い方が良い、という意見もあった。
現状の技術動向を踏まえると、堅牢性とのバランスを考慮した上で、1kgを目安としたタブレットPCを導入することを望ましい。

(ウ) 堅牢性

タブレットPCを中学校で利用する際には、取り扱いが粗雑になることもあり、堅牢性の確保が必要となる。一般的に、画面が回転したりスライドする等の機械的な機構を備えているものは、それが原因となって破損することがある。堅牢性の観点からは、スレート型のようにできるだけシンプルな形状が望ましいが、一方でキーボードを内蔵できない等、使い方に制限が出るため、適切に考慮する必要がある。

データ入力・操作性

入力方式として、実証校では静電容量方式や電磁誘導方式を採用している。学芸会場展示では特殊な箇所で複数の指で操作するマルチタッチが可能である。一方、電磁誘導方式は専用の電子ペンを利用し、筆圧を検知できる等、より紙に近い書き味を実現できる。画面入力の方法としては、指でタッチして入力する方法と電子ペンで入力する方法があるが、メーカーからは、タブレットPCをノートとして使うのを検討すべきである。
教育分野における効果的なICT利活用を推進するための調査研究報告書

であれば紙に文字を書く際と同じく、ペン入力が必要なのではないか、という意見が多くあった。

画面に文字を書く際に、できるだけストレスなく紙に書くような書き味を実現するためには、入力を検知するセンサーの性能と、それを使うデジタルノートやお絵書きソフト等のアプリケーション内の処理の2つが関係している。現状のタブレットPCでは、どのハードウェアでも、一定の品質基準を満たすセンサーが搭載されている。その一方で、アプリケーション側の処理は今だ不十分で、追従性が悪かったり、書いた通りの文字が書けないことがある。きれいに字や絵を書ける仕組みを実現するためには手書き処理を作りこむ必要があり、アプリケーション側での対応はまだ進歩の余地がある。

また、電磁誘導方式でペン入力する際に使うスタイラスペンは、内部に機械的な構造があり、ペン先から地面に落下させる等の衝撃を与えると壊れる場合がある。

タブレットPCの入力方式の違いを以下に示す。

<table>
<thead>
<tr>
<th>感知方法</th>
<th>静電容量方式</th>
<th>電磁誘導方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>・圧着部分を検出</td>
<td>・画面に触れると発生する微弱電流（静電気）を検出</td>
<td>・ペン先から磁力を発生させてセンサーホイールで検出</td>
</tr>
<tr>
<td>入力手段</td>
<td>• スタイラスペン11</td>
<td>• スタイラスペン(内部に電子回路が組み込まれた専用のもの)</td>
</tr>
<tr>
<td></td>
<td>• 指</td>
<td></td>
</tr>
<tr>
<td>マルチタッチ12</td>
<td>• 不可</td>
<td>• 可</td>
</tr>
</tbody>
</table>

使用状況

<table>
<thead>
<tr>
<th>特徴</th>
<th>書き味</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 特別支援学校が採用しているタブレットPCで使用。</td>
<td>• できるようイメージ</td>
</tr>
<tr>
<td>• 中学校や特別支援学校の実証校が採用しているタブレットPCで使用。</td>
<td>• に近い書き味のものも開発されている。</td>
</tr>
<tr>
<td>• 中学校や特別支援学校が採用しているタブレットPCで使用。</td>
<td>• しっかり紙に書く感覚に最も近いと言われている。</td>
</tr>
</tbody>
</table>

また、キーボードに関しては、中学校ではインターネットを使った調べ学習や自ら発表資料を作成するような活動が増えることが推測されるので、小学校よりもさらに必要性が高いという意見が多かった。

キーボードのついていないスレート型のタブレットPCの場合は外付けのハードウェアキーボードを利用する方が望ましい。なお、外付けのキーボードにはUSBケーブルで接続する場合とBluetoothを使う方法があるが、Bluetooth規格は2.4GHz帯の無線と混信する恐れがあり、また通信距離が10m程度しかないため、有線で接続できるキーボードを利用する方が望ましい。

（力）バッテリー

授業中に1台でもタブレットPCのバッテリーが切れる、授業全体がストップしかねないため、各社ともこの観点を大きな課題として認識しており、概ね6～8時間程度の持続時間が必要であるという意見で一致した。バッテリー

11タブレットPC等に用いるペン型の入力装置。ディスプレイを傷つけないよう、ペン先が丸くなったり、柔らかい素材でできている。
12ディスプレイの複数の箇所に同時に触れ操作を行う入力方式のこと。
の長時間稼働を担保しようとすると、タブレットPCの重量を増やさざるを得ないため、小型・軽量・長時間稼働を実現するバッテリーの開発に各社が取り組んでいる。

現在はリチウムイオンバッテリーが主流だが、リチウムポリマーバッテリーを搭載するメーカーも徐々に増えており、その有効性を指摘する声もある。前者が液体有機電解質を使用するのに対し、後者は液体の性質上漏れが生じる恐れが高く、液体を金属缶に密閉するために小型化・軽量化には様々な制約があるのに対して、後者はゲル状で液漏れの心配がないため、より小型化しやすい。加えて、エネルギー密度も高く同体積のリチウムイオンバッテリーの1.5倍程度という利点がある。

そのため、リチウムポリマーバッテリーの方が小型化・軽量化・駆動の長時間化が可能であると言われているが、まだコストが高く、今後の一層の汎用化が望まれる。

いくつかのメーカーからは、バッテリー自体の性能向上に加え、CPU自体にも様々な省電力技術が導入され、年々バッテリーの持ち向上しているため、近い将来には解決可能な問題であるという意見が寄せられた。

なお、タブレットPCのバッテリーの駆動時間の表記は電子情報技術産業協会（JEITA）の規格で定められた状態で計測されたものである。実際に授業で利用する際は、授業支援システム等、常時無線LANに接続することが多く、バッテリーの駆動時間が、それよりも短くなることに注意が必要である。また、バッテリーは経年劣化していく消耗品である。通常、学校向け受け渡し機器は5年間リースで使用する場合が多いが、バッテリーは大抵3年が交換の目安と言われており、リース期間内に適切にバッテリー交換ができるよう、バッテリーの消耗度合いを計測できるソフト等の導入が望まれる。特に、充電保管庫から頻繁に出入れされるような学校での利用状況では、充電を繰り返すと劣化が早まる可能性もある。

なお、そもそも教室外やコンセントのない環境で利用するのであればバッテリー駆動でも良いが、タブレットPCが常設された環境では、教室室の電源コンセントを利用すべきではないのか、という意見も見られた。前述の機のJIS規格（JISS1021）では、電源コンセントの組み込み等も可能となっている。そのため、電源コンセント付きの専用卓や、普通教室内の電源コンセントの配置の考慮等、個々のICT機器だけでなく、導入環境全体の最適化も必要な視点と考えられる。

カメラ

校外学習等で生徒が撮影した画像を持ち帰り（もしくはクラウドにアップロードし）、発表資料として活用する等の利用方法を想定し、学校現場同様メーカーからもカメラは必要との声が多かった。

その際、インカメラのみでは対象物を確認しながら撮影するデジタルカメラのような使い方が困難となるため、生徒の活用も考慮してアウトカメラも配備すべきとの意見も多かった。ただし、ビジネス用途ではアウトカメラはそれほど利用されず、またカメラを搭載することはコスト増にも繋がるので、便利だからといって高スペックのカメラを付けるのは妥当でないとする意見もあった。

それ以外の機能としては、筐体が小さくなってきていることもあり、盗難防止機能を付けるべきとの意見もあった。一部のメーカーではGPS機能を内蔵しているため、ソフトウェアと組み合わせて対応することは可能である。例えば哲西中学校では、修学旅行時に「友だちを探す」というGPSを活用した位置情報確認アプリケーションをインストールして、置き忘れや盗難に対する対策を行った。

OS

実証校で利用しているタブレットPCには、PC用のOSを搭載しているもののタブレット端末用のOSを搭載しているものがある。PC用のOSを利用するメリットとしては、学校や家庭等で利用しているPCと同じアプロシジョンや機能が利用できること。特に、教員が校務や教材作成等に使うPCとの間でのデータのやり取りが容易なため、授業で使うデジタル教材を作成し、生徒のタブレットPCに送付して利用するという運用がしやすい。

一方、タブレット端末用のOSは、直感的に操作を習得しやすく、操作性も良い。特にタブレットPCを学校で利用する際、教員が使い方を習得する時間を使わずに、簡単に操作できる大きなメリットである。また、起動に時間がかからないため、タブレットPCの準備にかかる時間を少なくて済む。
また、学校でタブレットPCを利用する際には、大量の端末を管理する必要がある。そのため、効率的な管理のため、OSにはソフトウェアのインストール作業やシステム設定、ソフトウェアのバージョンアップ等を一括で行う等の端末管理をサポートしていることが望ましい。また、タブレットPCにアプリケーションを導入する際、タブレットPCを利用しているユーザーが購入する形でなく、教育機関が一度に購入できる仕組みが備わっていることも、学校現場で利用する際には必須である。

(ケ)サポート・保守
タブレットPCを日常的に利用していると、どうしても予期しない破損が起こる可能性があるため、メーカー保証や動産保険等の利用が強く推奨される。また、破損状況等によっては有償になってしまうことがあるが、通常の保証の範囲ではカバーされない事故の場合でも、保証範囲を拡張できるサービスもある。範囲が拡張された分だけサポート費も増額するが、状況に応じてこのようなサービスを利用することも検討できる。

また、通常、学校向けICT機器は5年間利用することが一般的だが、タブレットPCの場合、最長でも3年しかサポートされない端末が多い。これは、タブレットPCをより薄く作り上げるため、タブレットPCとバッテリーが一体に成形されており、バッテリーが交換できないことが理由である。バッテリーは3年を経過すると劣化してしまい、通常利用が難しくなる。バッテリーを交換できないタブレットPCについては3年を目途に、新しい機種に更新することが望ましい。

(コ)タブレットPCメーカーからの主な意見
タブレットPCメーカーからの主な意見を以下に示す。

<p>| 図表 4-8 タブレットPCメーカーからの主な意見 |</p>
<table>
<thead>
<tr>
<th>章目</th>
<th>観点</th>
<th>主な意見</th>
</tr>
</thead>
</table>
| 起動・反応の速さ | 起動や反応の速さは、OSとCPUに依存する面が高い。 | • Windows8になって、起動時間はWindows7の半分になった。また、スリープモードを使うことで起動までの速さが格段に向上した。
• CPUの性能に関しては、年々向上するので、スペック不足の心配は必要ないのではいか。
• 新しいモバイル向けCPUが発表されたが、性能に関しては十分だ。パフォーマンス面では問題は既に解消された。

重量 | 1kg程度が妥当な重量だろう。 | • 中学生なら、小学生よりも少し重たくても良いのではないか。
• 中学校になると特別教室等に移動する機会が増えるので、できるだけ軽い方が望ましい。

堅牢性 | シンプルな作りの方が堅牢性が高い。画面を回転したり、スライドしたりする機械的な可動部分が弱点だ。 | • 学校では乱暴な扱いもあるため、学校に導入するタブレットPCを選定する際は、堅牢性が重要である。
• タブレットPCを特別扱いする必要はない。理科の実験器具も高価だが、すっかり扱っている。
• 必要な堅牢性の確保はどのメーカーでも行っている。それ以上は運用で対処すべきだ。
• タブレットPCのカバーを利用してても、ある程度の堅牢性を確保できる。
• 家でスマートフォンをしながらタブレットPCを乱暴に扱うと破損しやすい。

画面サイズ・映り込み | 画面が12インチ以上のサイズだと、機の上に置けない。 | • 10～12インチ程度が妥当なサイズではないか。
• 8インチサイズのタブレットPCでは、文章が書けない。デジタル教科書もレイアウトが崩れるので、使えないだろう。
• 画面が12インチ以上のサイズだと、手の上に置けない。
• 映り込みは画面角度を調整することによって軽減できるのでは。
• 最近のタブレットPCは屋外でも使いたいと想定しており輝度が高い。映り込みがどうしても気になるようであればシートを貼って対応できる。
• 映り込みは鮮明、高解像度とのトレードオフの関係であることを留意してもらいたい。
<table>
<thead>
<tr>
<th>観点</th>
<th>主な意見</th>
</tr>
</thead>
<tbody>
<tr>
<td>入力方式、操作性</td>
<td>•タッチセンサーの性能は、各社とも一定の水準を満たしている。
•スタイラスペンは内部にメカニカルな構造があるので、ペン先から落とすと発生しやすいので、キーボード入力が多くなる。よりPCに近いものが良いのではないか。
•キーボードも必要だが、ペン入力も必要だろう。
•キーボード入力でも良いが、Bluetoothのものは混雑時の恐れがあり、お勧めできない。</td>
</tr>
<tr>
<td>バッテリー（駆動時間）</td>
<td>•バッテリーの駆動時間は重さに比例する。またCPUの性能は改善され、トレードオフの関係があるため、どちらを優先するのかが問題である。
•リチウムイオン電池の性能は従来のリチウムイオン電池と同じ容積で長時間の駆動が可能だが、コストが高い。バッテリー電池の改良も重要だと思うが、必要な時間だけ駆動できるようなソフトウェアの開発も必要である。
•6～8時間という駆動時間は妥当だろう。
•タブレットPCにおける公称の駆動時間はJEITA規格で定められた環境で計測している。体感では、半分くらい。したがって、公称10時間程度は必要かもしれない。
•バッテリーは運用によって長時間駆動が可能。明るさを調整し、無線LANは接続しない時はスイッチを切ることでパフォーマンスは向上する。
•ケーブル電源で長時間駆動は解決できる。1kg強のノートPCで30時間駆動を実現している端末もある。
•新しいCPUが登場して、専用消費電流も削減された。
•バッテリーの持ちについては、年々向上しているの、それほど心配していないか。
•バッテリーの特性上、充電回数によって劣化が早まる。現在のPC充電保管庫の運用では、劣化を早めることになるのではないか。
•社会環境の多くの施設で電源コンセントが用意されている現在、学校でも電源くらいは机についていた方が効率的ではないか。</td>
</tr>
<tr>
<td>カメラ等の機能</td>
<td>•持ち運びを考えるのであれば、カメラはインカメラとアウトカメラの両方が必要。
•カメラは技術トレンドの影響を受けやすく、コストに跳ね返るので、良いからといって高スペックのものをすべてには搭載できない。
•ビジネス用途では、アウトカメラが必要。
•端末が軽く、小さいので盗まれないようにすることは難しい。GPS機能等を利用した監視対策ソフトウェアで対応可能ではないか。監視対策という観点より、盗難にあってもデータを持ち出されないことが重要。ログインの際に、個人しか特定できないような方策をとる必要がある。
•学校環境の多くの施設で電源コンセントが用意されている現在、学校でも電源くらいは机についていた方が効率的ではないか。</td>
</tr>
<tr>
<td>OS</td>
<td>•一般的なPCと同じOSを利用すると、データのやり取りが簡単になる。
•タブレット端末用のOSは、直感的に操作を習得でき、操作性も良い。
•学校でタブレットPCを利用する際は、導入やメンテナンスの部分が非常に大事だ。
•ソフトウェアの購入については、ユーザーが購入する仕組みだけでなく、教育機関が一度に購入して配信できる仕組みが必要だ。</td>
</tr>
<tr>
<td>サポート・保守</td>
<td>•保証サービスや動産保険は必要。
•アシスタントサポートというサービスもあり、落下事故等の保証以上のサポートを受けられる。
•タブレットの場合、部材は3年程度しか保証されない。
•タブレットPCの場合、バッテリー交換ができないものもあり、その場合バッテリーの寿命が製品寿命となる。そのため、最長の保証期間は3年が標準になりつつある。</td>
</tr>
</tbody>
</table>

③ タブレットPCに求められる標準要件の整理

2.2及び4.1.1①②より、学校現場で求められる標準要件を考察する。

ただ、これらはあくまで目安であり、実際の選定にあたっては、「授業で何をするか」、「どのように使うか」を考慮の上、検討する必要がある。加えて、ICT機器の性能は、技術の進歩に伴い、日進月歩で向上しており、それに伴い機器のライフサイクルも変化している。そのため、以下に掲載する要件に関しても、常に最適な環境を導入できるよう、導入の際には業者等から最新情報を収集する等、技術的な動向も注視する必要がある。
タブレットPCに求められる機能要件（案）

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
</table>
| 安定動作・起動時間 | ・使用中にフリーズすることなく安定して動作すること
 ・安定した高速接続が可能な無線LANが利用できること
 ・授業運営に支障がないよう、起動時間が60秒以内であること |
| 重量 | ・タブレットPCの重さは約1kgを目安とし、軽量で生徒にも持ち運びやすいこと |
| 画面サイズ | ・コンテンツの見やすさ、文字の判別のしやすさ等を踏まえ、10〜12インチ前後のものとすること |
| 文字入力 | ・ペンで文字や図形を滑らかに記入することができること
 ・キーボード機能を有していること |
| バッテリー | ・1日の授業時間分（約6〜8時間程度）バッテリーが持続すること
 ・授業中のバッテリー不足に備えて、休み時間に充電したり、授業中に出すためのACアダプターを準備する等の措置を講ずること |
| 堅牢性 | ・教室間移動の際や落下による破損を想定し、筐体は耐久性や堅牢性に配慮した設計であること。また、破損した場合には、予備機による対応ができるようにすること |
| その他 | ・カメラ機能を有すること（インカメラやアウトカメラ等） |
4.1.2 電子黒板に求められる機能・性能に関する標準要件の整理

① 電子黒板に求められる機能・性能に関する現場からの評価

電子黒板に求められる機能・性能に関する現場の意見を収集、分析するために、「中学校の生徒用コンピュータ等の必要機能等に関する調査」を実施した。

本調査は、生徒1人1台の情報端末環境がある中学校（「フューチャースクール推進事業」実証校（中学校）8校及び大阪市「学校教育ICT活用事業」実証校（中学校）3校）の教職員に対し電子黒板に求められる機能を30項目提示（巻末参考資料1及び2を参照）し、その必要度を教職員が5段階で評価することで必要度の相対的に高い機能を明確にするものである。この調査に関しては、参考資料1の調査票をもとに実施し、計257人の教職員から有用な回答を得た。

また、調査結果に関しては、「フューチャースクール推進研究会」の清水康敬座長が評価・分析を行っており、以下は清水座長の分析結果を一部引用して整理している。

図表 4-10 電子黒板に求められる機能に関する必要度の評価

<table>
<thead>
<tr>
<th>必要度の判断</th>
<th>概要</th>
</tr>
</thead>
</table>
| 5段階評価の平均値による評価 | 少なくとも、5段階評価で、4(4)以上に必要である以上の機能を検討することが適当と考えられるため、必要度の平均値が4以上の機能に注目した。
| 「確実に必要である」と回答した者の割合(%) | 回答者の半数(50%)以上が「確実に必要である」と回答した機能に注目した。

アンケート結果から求められた電子黒板に必要な機能のまとめを以下に示す。

図表 4-11 電子黒板に必要な機能のまとめ（各機能の略称については参考資料2を参照）

<table>
<thead>
<tr>
<th>順位</th>
<th>必要度の平均</th>
<th>「確実に必要」の回答率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>映込防止</td>
<td>4.59</td>
</tr>
<tr>
<td>2</td>
<td>画面堅牢</td>
<td>4.58</td>
</tr>
<tr>
<td>3</td>
<td>スムーズ描画</td>
<td>4.48</td>
</tr>
<tr>
<td>4</td>
<td>不要描画防止</td>
<td>4.47</td>
</tr>
<tr>
<td>5</td>
<td>内蔵スピーカー</td>
<td>4.47</td>
</tr>
<tr>
<td>6</td>
<td>生徒画面転送</td>
<td>4.45</td>
</tr>
<tr>
<td>7</td>
<td>領域拡大縮小</td>
<td>4.42</td>
</tr>
<tr>
<td>8</td>
<td>PC画面並示</td>
<td>4.42</td>
</tr>
<tr>
<td>9</td>
<td>実物投影機能</td>
<td>4.36</td>
</tr>
<tr>
<td>10</td>
<td>黒板併置</td>
<td>4.31</td>
</tr>
<tr>
<td>11</td>
<td>キャリブレーション・レス</td>
<td>4.30</td>
</tr>
<tr>
<td>12</td>
<td>画面清掃</td>
<td>4.29</td>
</tr>
<tr>
<td>13</td>
<td>柔軟な消去機能</td>
<td>4.28</td>
</tr>
<tr>
<td>14</td>
<td>アップデート</td>
<td>4.22</td>
</tr>
<tr>
<td>15</td>
<td>移動簡便</td>
<td>4.21</td>
</tr>
<tr>
<td>16</td>
<td>領域自由移動</td>
<td>4.21</td>
</tr>
<tr>
<td>17</td>
<td>画面防汚</td>
<td>4.20</td>
</tr>
<tr>
<td>18</td>
<td>電子黒板消し</td>
<td>4.19</td>
</tr>
<tr>
<td>19</td>
<td>教材作成ソフト</td>
<td>4.18</td>
</tr>
<tr>
<td>20</td>
<td>画面分割</td>
<td>4.16</td>
</tr>
</tbody>
</table>
図表 4-11にある通り、順位こそ異なるが、4.0以上の高い必要度を持つ機能と、50%以上の回答者が「確実に必要」と回答している機能の、それぞれ上位に位置するものはほとんど重複していることがわかる。特徴的なのが「実物投影機能」で、電子黒板本来の機能ではないが、特に中学校におけるICT活用には欠かせない使い方と推察され、いずれの観点でも上位に位置している。その他、「映込防止」、「不要描画防止」、「画面堅牢」等も同じ傾向のある機能で、こちらも電子黒板本来の機能というより“道具”としての使いやすさに関係する機能といえる。

また、学習に利用する機能として、以下のような活動が重要と考えられていることがわかる。

- 実物投影機と連携できること
- 生徒の画面を転送して表示できること
- 複数の生徒の画面を並べて表示できること
- 内蔵スピーカーで音声等が再生できること

また、特に中学校では教員が指導する教科が決まっているため、教科ごとに電子黒板の使い方を異なっていることが推察される。アンケート結果からは、以下のような分析結果となった。

- 理科では、画面をいくつかに分割して異なる内容を表示したり、手書きで書いた直線や円が自動的に正確な図形に補正できる機能等、画面に関する機能が特に求められている。
- 美術では、基本図形、イラスト、音声・音楽を呼び出して画面に貼り付ける機能が特に求められている。
- 外国語では、映像を表示する機能や、画面の一部をマスクしたり、逆に特定の部分を強調する機能が求められている。

② 電子黒板に求められる機能・性能に関するメーカーの見解

学校現場で活用する電子黒板に求められる機能・性能については大きく、「画面サイズ・視認性」、「操作性（入力方式）」、「その他」に分けられる。

そこで、主にフューチャースクール推進事業及び絆プロジェクトで導入された電子黒板のメーカーに対し、これらの観点でヒアリングを実施し、それぞれについてメーカーの見解を集約することとした。ヒアリングを行った電子黒板メーカーを以下に示す。
図表 4-12 ヒアリングを行った電子黒板メーカー（50音順）

<table>
<thead>
<tr>
<th>メーカー名</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>エプソン販売株式会社</td>
<td>フューチャースクール推進事業の中学校実証校の一部に導入している。</td>
</tr>
<tr>
<td>シャープシステムプロダクト株式会社</td>
<td>絆プロジェクト導入校の一部に導入している。</td>
</tr>
<tr>
<td>パイオニアソリューションズ株式会社</td>
<td>フューチャースクール推進事業の東西地域実証校（小学校）及び中学校、特別支援学校実証校の一部、絆プロジェクト導入校の一部に導入している。</td>
</tr>
<tr>
<td>株式会社日立ソリューションズ</td>
<td>フューチャースクール推進事業の東西地域実証校（小学校）の一部及び中学校、特別支援学校実証校の一部に導入している。</td>
</tr>
</tbody>
</table>

なお、電子黒板の種類に関しては現行様々な機種が販売されているため、実証校で導入した機器について、以下に特徴、留意点を整理する。

図表 4-13 電子黒板の種類と特徴

<table>
<thead>
<tr>
<th>投影方式</th>
<th>自立式</th>
<th>黒板取付式</th>
</tr>
</thead>
<tbody>
<tr>
<td>プロジェクター</td>
<td>比較的大幅面での表示が可能である。</td>
<td>ボード型</td>
</tr>
<tr>
<td>大型ディスプレイ</td>
<td>プラズマディスプレイや保護パネルを貼られた液晶ディスプレイで表示する。</td>
<td>一体型</td>
</tr>
<tr>
<td></td>
<td>高精細の画像を鮮やかに鮮明に表示する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>黒板と併用する際、黒板のスペースが制限されない。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>デジタルディスプレイやプロジェクターを、自立するスタンドに据え付けて利用するタイプ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>キャスターで動かすことができるため、見やすいようにずらしたり、他の教室への移動が可能である。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>プロジェクターで表示する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ブラックとハイブリッドの一部も利用する</td>
<td></td>
</tr>
</tbody>
</table>

後付け型

<table>
<thead>
<tr>
<th>形状</th>
<th>特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>フレーム型</td>
<td>デジタルテレビにフレームを取り付けて利用する。</td>
</tr>
<tr>
<td></td>
<td>一体型やボード型より安価である。</td>
</tr>
<tr>
<td></td>
<td>デジタルテレビの型に合ったフレームを取り付ける必要がある。</td>
</tr>
<tr>
<td>ユニット型（参考）</td>
<td>ブラックやホワイトボードにセンサーユニットを取り付けて、プロジェクターで投影する。</td>
</tr>
<tr>
<td></td>
<td>一体型やボード型より安価である。</td>
</tr>
<tr>
<td></td>
<td>簡単に持ち運びができる。</td>
</tr>
</tbody>
</table>

表中には掲載していないが、近年電子黒板機能を搭載した液晶プロジェクターも販売され始めている。専用ペーンでしか操作できず、その都度配線をする必要はあるものの、キャリブレーションが不要でタブレットPCと一緒に移動すれば各教室でも気軽に使用できる。

また、ユニット型も近年多く導入されている。これは、黒板やホワイトボードにマグネットで取り付け、液晶プロジェクターを組み合わせて利用するものでコストが非常に低廉なことが特徴である。
（ア）画面サイズ・視認性
画面サイズについては、どのメーカーも最低60インチ以上は必要であるという意見が多かった。教室の大きさや運用方法、どのような授業を行うのかによっても異なるが、50インチでは現場の教員からは小さいと言われていたとのことであった。
また、80〜90インチ程度にすることで、黒板の高さと同じになるため、より有効活用できるのではないか、という意見があった一方で、80インチ以上になると、教員が画面に近寄った時に、大きすぎてかえって使いづらいのではないかという意見があった。
画面サイズが大型になるほど、転倒防止等の安全対策がより重要となる。電子黒板そのものが非常に重いため、移動時や地震発生時の転倒対策には、設置台に敢えて重りを入れて重心を低く保つ工夫をする等、各社が力を入れていた。導入時は台を含めた電子黒板の転倒防止にも配慮したり、コーションシール（警告ラベル）の貼付を義務付ける等、専用台についても対策することが望ましい。
また、中学校では小学校に比べて生徒の背が高く、後ろの席から電子黒板の画面が見えず、できるだけ電子黒板の位置を高くすることが求められる。ところが、電子黒板を高くすればするほど、転倒の危険性が高まり、より転倒防止対策を厳重に行う必要がある。そのため、さらに広い設置スペースを確保する必要がある。

（イ）映り込み
実証校でも課題となっていた外光の映り込みについては意見が分かれた。一体型の場合、画面フィルタを利用することが一般的になったので、既に問題は解決されたのではないか、という意見があった。
また、プロジェクターを投影して使うボード型を採用しているメーカーは、基本的には液晶プロジェクターでの投影となるため外光反射が起きにくく、近年のプロジェクターの性能も向上しており、「見え難いために暗幕を引く」といった対応をとらなくても済むため、大きな課題として認識していなかった。
プロジェクターの輝度は、現在約3000lm程度が主流となっている。輝度は既に十分確保されており、明るすぎるとかえって目が疲れてしまうので、これ以上輝度を上げる方向には進化しないのではないか、という意見が寄せられた。

（ウ）操作性（入力方式）
入力方式として、大きく赤外線で座標を感知する方法と超音波で感知する方法、感圧式で感知する方法に大別される。それぞれの特徴を以下に示す。
図表 4-14 電子黒板の入力方式

<table>
<thead>
<tr>
<th>赤外線方式（赤外線遮断方式）</th>
<th>超音波方式</th>
<th>感圧方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>・上下左右に赤外線発光要素を設け、縦横斜めに電子黒板を走らせ、遮断された位置を検出することにより、座標を取得する方式</td>
<td>・専用の電子ペンが超音波を発し、音の到達時間の差を位置を計算する。専用ペンに電源が必要なものもあり、その場合、それ以外のペンでは位置を検出できない。</td>
<td>・2枚の電気伝導性のシートの間に間隔を設け、ボードに圧を加えると表面のシートが接触し、その部分で通電する方式。シートの電気抵抗値によって接触した座標を読み取る。この方式では指でもペンでも使うことができる。</td>
</tr>
<tr>
<td>特徴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>・ペンだけでなく指での操作が可能。</td>
<td>・黒板等平面上であれば、どこでも電子黒板化できる。</td>
<td>・ペンだけでなく指での操作が可能になる。</td>
</tr>
<tr>
<td>・テレビ等のモニター型に適しており、ワン体で利用できる。</td>
<td>・デジタルテレビ等のモニター型にも後から追加で利用できる。</td>
<td>・赤外線と違い遮断物で誤動作しない。</td>
</tr>
<tr>
<td>・マルチタッチにも対応できる。</td>
<td>・画面の大きさを自由に設定できる。</td>
<td>・環境への影響（直射日光等）の影響が少なく安定している。</td>
</tr>
<tr>
<td>留意点</td>
<td></td>
<td></td>
</tr>
<tr>
<td>・袖や他の遮断物にも反応してしまう。</td>
<td>・センサーの操作やマルチジェスチャーができない。</td>
<td>・環境への影響（直射日光等）の影響が少なく安定している。</td>
</tr>
<tr>
<td>・基本的にはモニター型（機能が含まれて）に限定されており（後付けもあるが個別対応）。</td>
<td>・センサーを専用ペンの組み合わせで、比較的費用が安い。</td>
<td>・表面がフィルムのため、傷や破れの心配がある。</td>
</tr>
<tr>
<td>入力範囲を囲むセンサーが必要なため、比較的費用が高い。</td>
<td></td>
<td>・文字等を書く場合にしっかり押すことができる。</td>
</tr>
</tbody>
</table>

メーカーでは、入力の際の検知精度を重要な要素だと認識していた。電子黒板が教室で日常的に利用されるためには、普段使っている黒板にチョークで文字を書くような書き心地が要求される。ただし、現状のセンターではまだ検知精度は足りず、更なる技術促進が期待される。

また、入力センサーはそれでも直射日光に弱く、外光が入ると誤作動する時がある。上記で述べた外光の影響を除くため、できるだけ直射日光が差し込まないよう場所を工夫したり、遮光カーテンを利用することが望まれる。

また、日本で使われる黒板には湾曲しているものが多い。黒板取付式の電子黒板の場合、湾曲面に画像を投射することになるため、画像がゆがんでしまう。電子黒板の中には、湾曲面に投影する際に補正できる機能を備えているものもあり、それらの利用を検討することもある。

メーカーには、授業で電子黒板を利用してもらうためには、いかに準備が簡単に行えるかが重要だという意見があった。特に、利用する前に頻繁にキャリブレーションする必要があり、電子黒板制御用PCとの解像度のずれの解消に時間をとられることがあり、そういった作業が重要である。活用度数を上げることが可能である。電子黒板の中には、オートキャリブレーション機能や自動解像度認識機能を備えているものもある。

また、利用中の操作においても、教員が快適に利用するためには、基本的な機能は外部スイッチ等にまとめて、すぐに使えるようにになっていると便利だ、という意見があった。

(3) その他（アプリケーション等）

各社が提供する電子黒板の制御用アプリケーションは、教員が授業で利用する際に便利な様々な機能が搭載されており、結果的に非常に多機能なものであった。ただし、現実問題として、電子黒板を利用する教員がそれぞれの機能を全て使いこなしているわけではないという現状もあり示唆された。

よく使われる機能としては、「画像に書き込む」、「書き込んだ文字を消す」、「拡大する」が強く認識されており、

13 入力方式の区分はあくまで一例であり、厳密にはメーカーによって呼び名が異なる。また、上記以外に電磁誘導方式等の方式もある。
「教育分野における効果的なICT利活用を推進するための調査研究」報告書

フューチャスクール実証校でよく使われる機能とメーカー側の認識が共通していることが分かった。今後は更なる書き味の向上や反応速度の向上等が強く求められる。

逆に使われない機能として、マスク機能や画面キャプチャ機能を挙げるメーカーもあったが、画面キャプチャ機能等は現場ではむしろ有効活用している場合もあったため、これらの機能については今後の事例を積み重ねてその有用性を改めて検証する必要がある。

また、オーサリングツールについては概ねどのメーカーも備えているものの、有効に活用されているという認識はあまりなかった。これは、教員が新たな操作方法を覚えなければならず手間がかかることや、独自のオーサリングツールで作成した教材に汎用性がないこと等に起因すると思われる。

また、電子黒板そのものの機能ではないが、実物投影機と高い親和性を有することを各社は強く認識していた。そのため、電子黒板に棚を設置し、専用PCと実物投影機をコンパクトに収納できるようにする等、電子黒板の設置台についても今後改善の余地がある。

また、電子黒板が1教室1台に常設される環境では、灾害時等での2次活用も考えられるという意見があった。実証校では既に検証を行っているが、緊急地震速報等が発報された際に、即座に各教室の電子黒板に通知を出す等の利用が考えられる。もし、そのような仕組みを考えると、電子黒板側にデジタルサイネージ機能を有していると非常に便利である。また、導入されている電子黒板の種類が違っていても同じように通知できるようにするためには、各社共通の仕様になっていると有効である。

(オ) 電子黒板メーカーからの主な意見

電子黒板メーカーからの主な意見を以下に示す。

<table>
<thead>
<tr>
<th>観点</th>
<th>主な意見</th>
</tr>
</thead>
</table>
| 画面サイズ | • 現在は50インチが主流で導入されているが、現場の先生方からは小さいと言われる。
 | • 最低60インチは必要だと思う。70インチのサイズが適当ではないだろうか。
 | • 80から90インチ程度のサイズにすると、高さが黒板と同じサイズとなり、使いやすいと思う。
 | • 80インチ以上のサイズになると、大きすぎて使いづらい。
 | • 教室の広さ、運用方法(教室間移動等)、コンテンツの提示、タッチパネル操作のどちらに主眼を置くか等によりサイズが選択される。以前に比べ画面サイズのバリエーションが増えており、60インチ以上の大きさの電子黒板で導入するケースも増加している。
 | • 画面サイズが大型になればなるほど、安全性が重要になる。中学校では、生徒の背が高くなるので、見づらい。また、高さした時の転倒防止の対応が必要。足回りを固めるので、その分スペースがとられる。
| 視認性・映り込み | • 一体型は、画面フィルタの利用が一般的になっており、問題は解消されたのではないか。どのメーカーも採用し始めている。
 | • プロジェクターの輝度は現状の製品が適当な明るさではない。これ以上明るいと、目が疲れる。
| 操作性(入力方式) | • 検知精度が最も重要だ。チョークで文字を書くような書き心地でないと、板書はできない。まだまだ発展途上だ。
 | • センサーは直射日の光に弱い。
 | • 日本の黒板は湾曲しているものが多い。黒板投影式の場合、湾曲面に投影した時補正できる機能がついているものが望ましい。
 | • 授業で使ってもらうためには、準備性が最も大事である。オートキャリブレーションや自動解像度認識機能等が有効である。
 | • 使い勝手が重要だ。基本的な機能は外部スイッチがあると非常に便利だ。
| アプリケーション、その他 | • アプリケーションについては、非常に多機能になっている。ただ、現実問題として先生方がそこまで使っているわけではないのが現状だ。
 | • 電子黒板と同様の機能が他のアプリケーションにも搭載されており、混乱する。状況は認識しているが、ソフトウェアメーカーと連携して対策しないと、手立てはない。
観点 | 主な意見
---|---
| | ・今や電子黒板は単体では存在し得ないものになった。タブレットPCとの連携が必須である。
| | ・実物投影機との親和性が重要だ。現場では、実物投影機と併用する使われ方が一番多かった。
| | ・電子黒板が1教室に1台常設される環境では、災害時等での活用も考えられる。デジタルサイネージ機能等を備えていると、非常に有効だ。民需向けと中身としてはほとんど変わらない。むしろ学校で受けたものは民間でも受ける。

3 電子黒板に求められる標準要件の整理

2.2及び4.1.2①②より、学校現場で求められる標準要件を考察する。

ただ、これらはあくまで目安であり、実際の選定にあたっては、「授業で何をするか」、「どのように使うか」を考慮の上、検討する必要がある。加えて、前述の通り電子黒板は、一体型やボード型等の種類に分かれ、一体型は色が鮮明に見える反面映り込みが生じやすく、ボード型は映り込みが少ないものの、一般的に一体型に比べて発色性に劣る等、一長一短がある。

また、技術の進歩に伴い、標準機能として画面転送機能等を備えた電子黒板も新たに出て来ている。タブレットPCと同様電子黒板の性能も、技術の進歩に伴い、日進月歩で向上しており、それに伴い機器のライフサイクルも変化している。そのため、以下の要件に関しても、常に最適な環境が導入できるよう、導入の際には業者等から最新情報を収集する等、技術的な動向も注視する必要がある。

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
</table>
| 視認性 | ・教室後方の生徒からの見やすさを考慮し、画面サイズは60インチ以上であること。60インチより小さい場合には、拡大表示機能等を用いて、見やすさを確保できること。
| | 遮光カーテンの敷設や画面フィルタを貼付する等、映り込み防止策を講じていること。
| 操作性（入力方式） | ・電子ペンや指で記入する際、速度により描画が途中で途切れることなく、滑らかに記入することができること。
| | 画面の一部を範囲指定して自由に拡大・縮小できること。
| | よく使う機能（文字や線の描画、消去等）は、アイコンを一か所にまとめ、あらかじめパネル化しておく等、操作しやすいよう設定できること。
| その他 | ・実物投影機と連携することで、教科書等を簡単に投影できること。
4.1.3 その他の関連機器に求められる機能・性能に関する標準要件の整理

タブレットPCや電子黒板を加えて、学校へのデジタル化の際に充電保管庫の機能等が論点となる場面が多くなった。そのため、ICT機器そのものではないが、充電保管庫に関する現行の主要課題と対応策を整理する。

以下に示す対応策に関しては、現行で流通している充電保管庫が既に機能として備えているものも多いが、シャッター方式やファンの取り付け等、直接コストに大きく反映されるものもあり、今後の改良が期待される。

充電保管庫には、タブレットPCを横に置くタイプと縦に置くタイプの２種類があるが、どちらのタイプにおいても、問題とする意見があった。横置きの場合、下の段からタブレットPCを出し入れするためには、しゃがむ必要があり、結果的に充電保管庫の前が混雑してしまった。また、急いで収納する際にタブレットPCを上棚にぶつけにて画面等を破損する可能性がある。一方、縦置きの場合、横置きよりも迅速にタブレットPCを出し入れすることができるが、横置きのようにタブレットPCの収納スペースの中に外付けキーボードやマウスを重ねて収納することが難しく、収納量不足を指摘する声が多かった。

実証校では、充電保管庫の前に係列ができてしまい、授業の開始に支障をきたすとの意見が多かった。

実証校では、「充電保管庫の台数を増やして列を分散」したり、「朝の会で全て取り出し、使用しない場合は机の中に保管し、終わりの会の時に保管庫に返す」等、運用で対応していたが、間口を広くしたり、邪魔にならないよう扉をシャッター型にする等の対応が望まれる。

さらに、廊下やオープンスペースに充電保管庫を設置している場合、わざわざそこに取りに行ってまた戻ってくるのが煩雑との意見があった。1人1台のタブレットPCが「常に身近にあるのでより活用するようになった」との意見が多くあったことに照らして、充電保管庫を棚やロッカー等の備品の一つと位置付け、校舎改築時等に教室内の備え付け備品（常備品）として設置する等の対策も視野に入れる必要がある。

また、タブレットPCが破損する状況をヒアリングしたところ、充電保管庫から出し入れする際にタブレットPCを棚板にぶつけたり、タブレットPCを落下させて破損することが多かった。タブレットPCと接触しやすい個所に緩衝材を貼る等の対策が望まれる。

充電保管庫にタブレットPCを収納する際、電源ケーブルが絡まってしまい収納に時間がかかる、という意見があった。充電保管庫からは、タブレットPCの台数分だけ電源ケーブルが設置されているが、収納のたびにケーブル同士が絡まる恐れがある。一部の実証校では、電源ケーブルをケーブルが絡まないようにケーブル止めで固定した。このような対策があらかじめとされていれば望ましい。ただ、学校で導入されているタブレットPCは、メーカーや大きさもまちまちであり、ケーブルを差す位置や規格も様々であり、タブレットPCごとに保管庫の規格を検討しなければならず現実的ではない。現在、ワイヤレス給電技術に関する業界団体「World Power Consortium (WPC)」が5W以下のワイヤレス充電規格（Qi）を制定し、携帯電話等を対象にワイヤレス充電が実用化されている。今後120W程度までの給電を目指しており、例えばこのような技術が実現すると、学校現場にとって簡便な給電方式が可能となる。

また、充電状態を可視化できるようにしたり、LAN接続機能を備えて、充電に加えてWindowsのアップデート等も可能とすべきとの意見もあった。今後の開発が望まれる。
図表 4-17 充電保管庫に関する現行の主な課題と対応案

<table>
<thead>
<tr>
<th>観点</th>
<th>現行の主な課題</th>
<th>対応案</th>
</tr>
</thead>
<tbody>
<tr>
<td>タブレット PC の収納</td>
<td>・収納時にケーブル等が絡まり出し入れする際に邪魔になってしまおう。</td>
<td>ケーブルを1台ごとにきちんと配線した上で収納する。</td>
</tr>
<tr>
<td></td>
<td>・ACアダプターが邪魔になって収納しにくい。</td>
<td>ACアダプターと機器を分けて収納できるようにする。</td>
</tr>
<tr>
<td></td>
<td>・収納時にいろいろケーブルを接続するのが煩雑</td>
<td>収納庫に差し込めば自動的に充電されるのが理想だが、収納するタブレットPCの電源規格がまちまちのため、現実的には難しい。</td>
</tr>
<tr>
<td>屍</td>
<td>・タブレット PC の出し入れの際に列ができてしまい、列の最後尾の生徒は自分のタブレット PC を取って座るまでに時間がかかる。</td>
<td>シャッター式にする等、扉が表に出ない工夫が必要。ただし、配線があるために、扉収納スペースとの2重構造にせざるを得ず、コストに反映されることも。</td>
</tr>
<tr>
<td></td>
<td>・扉が 180 度開かない場合があるため、生徒がタブレット PC を持って取りに来た途に塞がってしまった。</td>
<td>収納庫に入れる等、扉が表に出ない工夫が必要。ただし、配線があるために、扉収納スペースとの2重構造にせざるを得ず、コストに反映されることも。</td>
</tr>
<tr>
<td>その他</td>
<td>・角が鋭いと生徒の怪我が心配</td>
<td>角は緩衝材を付けるか丸みを持たせたデザインとするほか、内部に若干のゆとりを持たせる。</td>
</tr>
<tr>
<td></td>
<td>・構造上ほこりがたまるが、奥の方まで手を入れることが難しく掃除が難しい。</td>
<td>ファンを付けたり通風を工夫する等対応する。また、タブレットPC同士が密着しないように内部に若干のゆとりを持たせる。</td>
</tr>
<tr>
<td></td>
<td>・充電時に充電保管庫内が極めて高温になってしまう恐れがある。</td>
<td>ネームプレートを付けられるようにする。</td>
</tr>
<tr>
<td></td>
<td>・運用上生徒が収納する場所が固定されている場合が多いので、どこにしまうかの目印があった方が良い。</td>
<td>ネームプレートを付けられるようにする。</td>
</tr>
</tbody>
</table>
4.2. 学校現場で活用するネットワーク環境の技術的要件の整理

学校現場でクラウド・コンピューティング技術を活用した授業を実施する等、学校現場で活用するネットワーク環境についての技術的要件を整理する。なお、手法としては、フューチャースクール推進事業請負事業者にヒアリングを行ったほか、下記のネットワークメーカー及び「クラウド環境下におけるサーバー間データの集約及び配信・管理の実証」「教育分野における最先端ICT利活用に関する調査研究」の請負事業者に対するヒアリングを実施した。

<table>
<thead>
<tr>
<th>メーカー名</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>アイコム株式会社</td>
<td>フューチャースクール推進事業の一部の中学校、特別支援学校に無線LAN機器を導入</td>
</tr>
<tr>
<td>株式会社内田洋行</td>
<td>学校のネットワーク環境の構築を行っており、ネットワーク環境構築についての知見を有する。</td>
</tr>
<tr>
<td>エヌティディコミュニケーションズ株式会社</td>
<td>フューチャースクール推進事業の小学校（東日本地域）の請負事業者で、学校のネットワーク環境の構築を行っている。</td>
</tr>
<tr>
<td>シスコシステムズ合同会社</td>
<td>フューチャースクール推進事業の小学校、一部の中学校、特別支援学校に無線LAN機器を導入</td>
</tr>
<tr>
<td>シトリックス・システムズ・ジャパン株式会社</td>
<td>教育向けクラウドサービスの導入実績があり、クラウド・コンピューティング技術に関しての知見を有する。</td>
</tr>
<tr>
<td>凸版印刷株式会社</td>
<td>教育向けクラウドサービスの導入実績があり、クラウド・コンピューティング技術に関しての知見を有する。</td>
</tr>
<tr>
<td>日本アイ・ピー・エム株式会社</td>
<td>教育向けクラウドサービスの導入実績があり、クラウド・コンピューティング技術に関しての知見を有する。</td>
</tr>
<tr>
<td>社団法人日本教育工学振興会</td>
<td>総務省「教育分野における最先端ICT利活用に関する調査研究」の請負事業者</td>
</tr>
<tr>
<td>日本電気株式会社</td>
<td>教育向けクラウドサービスの導入実績があり、クラウド・コンピューティング技術に関しての知見を有する。</td>
</tr>
<tr>
<td>パッファロー株式会社</td>
<td>フューチャースクール推進事業の一部の中学校に無線LAN機器を導入</td>
</tr>
<tr>
<td>株式会社日立ソリューションズ</td>
<td>総務省「クラウド環境下におけるサーバー間データの集約及びデータ等配信・管理の実証」の請負事業者</td>
</tr>
</tbody>
</table>

また、一口に「ネットワーク環境」といっても、学校から外部へ接続する場合の留意点と、無線LAN等で学校内部のネットワークに接続する場合の留意点は異なるため、本章では、「ネットワーク回線（WAN回線）」、「校内LAN（有線LAN/無線LAN）」の段階に分けて、ヒアリングで収集した情報等をもとに学校現場で活用するネットワーク環境の技術的要件を整理することとする。
4.2.1．ネットワーク回線の技術的条件（WAN接続）

① WAN接続の際の標準要件の整理

全ての実証校では、校内からインターネットへアクセスできるよう回線を敷設している。各学校の回線種別及び帯域を以下に示す。

<table>
<thead>
<tr>
<th>実証校</th>
<th>アクセス方法、帯域等</th>
</tr>
</thead>
<tbody>
<tr>
<td>尚英中学校</td>
<td>光ファイバー接続（最大100Mbps）</td>
</tr>
<tr>
<td>横浜国立大学教育人間科学部附属横浜中学校</td>
<td>光ファイバー最大100Mbps（既存回線）及</td>
</tr>
<tr>
<td>同敷地内の特別支援学校、国際交流会館と共使用</td>
<td></td>
</tr>
<tr>
<td>上越教育大学附属中学校</td>
<td>光ファイバー接続（最大100Mbps）</td>
</tr>
<tr>
<td>三雲中学校</td>
<td>CATV回線（最大160Mbps）</td>
</tr>
<tr>
<td>城東中学校</td>
<td>地域イントラネットワーク（WAN専用回線）</td>
</tr>
<tr>
<td>師西中学校</td>
<td>市全域に敷設した光ファイバー網に接続（最大100Mbps）</td>
</tr>
<tr>
<td>武雄青陵中学校</td>
<td>地域イントラネットワーク（最大40Mbps）</td>
</tr>
<tr>
<td>下地中学校</td>
<td>光ファイバー接続（最大100Mbps）</td>
</tr>
<tr>
<td>ふるさと支援学校</td>
<td>地域イントラネットワーク（最大100Mbps）</td>
</tr>
<tr>
<td>桃陽総合支援学校</td>
<td>光ファイバー接続（最大100Mbps）</td>
</tr>
</tbody>
</table>

ほとんどの学校が100Mbpsの光ファイバーで外部に接続していた。共有40MbpsのCATV回線を利用していた三雲中学校は共有160Mbpsへの回線増強を実施し、2MbpsのADSL接続だった下地中学校も光回線へ切り替えた。切り替え後、ウェブ表示やウェブアプリケーション等のパフォーマンスが向上し、ストレスが減少し、との報告があった。学習活動によっては、WAN接続がボトルネックになりやすく、特に、クラウド上のサービスを利用する際は、校内に比べて帯域が少ないインターネット回線を通る必要があるため、留意が必要である。

ネットワークは、同時に接続している端末が帯域を共有するため、例えば、100Mbpsの回線を100台で接続すれば1台あたりの帯域は1Mbpsとなる。また、100Mbpsといっても、それはあくまで理論上の最大値であり、実際の速度はそれよりも低くなる場合が多い。

使用するアプリケーションのインターネット接続の必要性や、インターネット上の動画をストリーミングで閲覧する等、利用方法、利用形態によって必要とされる帯域は様々であるが、上記の例でもある通り、少なくとも100Mbpsの帯域は確保することをしたい。

また、接続方式についても様々な形態が存在する。学校から直接ISP（インターネットサービスプロバイダー）に接続する形態や、CATV網を利用して提供されるインターネット回線する形態等がある。また、県立機関や学校を結ぶインフラ回線が既に整備されており、その回線を利用してインターネット利用する形態もある。また、新見市は、市内全域がラストワンマイル網と呼ばれる光ファイバー網で結ばれているが、師西中学校もそのラストワンマイル網に接続され、インターネットにアクセスされる。

代表的な接続方式の種類とそれぞれの特徴を以下に示す。なお、以下の表以外に代表的なものとして専用線接続が挙げられるが、コストが極めて高く、また、後述のIP-VPNを用いる場合と同旨のため割愛する。

14既存のネットワークを使用する際、画像データのように大容量の情報が一度に流れると県庁LANに影響を与える恐れがあることから、100Mbpsの帯域制限を設定した
図表 4-20 接続方式の種類とその特徴

<table>
<thead>
<tr>
<th>接続方式</th>
<th>特徴</th>
</tr>
</thead>
</table>
| ISP 接続方式 (IP-VPN ネットワーク接続/インターネット接続) | ・数多くの地域でサービスを利用することができ、コストも低く抑えることができる。
 ・各学校からISP（インターネットサービスプロバイダー）経由して直接インターネットへ接続するため、ネットワークのポーチャネルが生じにくい。
 ・回線速度により接続できるため、通信の安全性と信頼性を確保することができる。
 ・自宅からVPN接続する際には、VPNに対応したサービスプロバイダーが必要となる。
| イントラネット接続方式 | ・各学校から大学や地域内で構成されているインスタントネットを経由してインターネットへ接続するため情報セキュリティ確保しやすい。
 ・WAN回線の帯域は、イントラネットで集約されるため、比較的低コストである。
 ・各学校からインターネットを経由してインターネットへ接続するため、ネットワークのポーチャネルが生じやすい。
 ・利用するプロトコルは、インターネットで限られたため、WAN回線利用の自由度は低い。
| CATV | ・既存の地域インタフェースとして利用できるため、低コストで教育インターネットを構成できる。
 ・回線帯域が狭い場合が多く、学校間及び接続拠点が増加するとネットワークのポーチャネルが生じやすい。
| インターネット接続方式 | ・3GやWiMAX、LTEを用いた回線に、端末ごとに接続するため、校内に無線LAN環境を構築しなくても、インターネット環境が利用できる。
 ・校内LANを経由せずにインターネットに接続するため、校内サーバーへのアクセスはできない。
 ・サービスが提供されている地域が限定されているため、どの地域でも利用できるわけではない。
 ・回線品質や接続エリアはインターネット接続者の管理であるため、回線の環境に応じてネットワークの品質が変わる可能性がある。
| モバイル通信方式 | ・3GやWiMAX、LTEを用いた回線に、端末ごとに接続するため、校内に無線LAN環境を構築しなくても、インターネット環境が利用できる。
 ・校内LANを経由せずにインターネットに接続するため、校内サーバーへのアクセスはできない。
 ・サービスが提供されている地域が限定されているため、どの地域でも利用できるわけではない。
 ・回線品質や接続エリアはインターネット接続者の管理であるため、回線の環境に応じてネットワークの品質が変わる可能性がある。

このような形態で接続するにしても、外部への接続回線がボトルネックとならないよう、実証校で運用している100Mbpsを1つの目安として十分な帯域を確保することが必要である。その際、ルーターやファイアウォールはボトルネックになりやすいので、機器の選定に関しては十分に配慮することが必要である。加えて、ファイアウォールやネットワーク認証システム等を導入し、外部からの攻撃に対する情報セキュリティを担保することも必要である。

なお、前述の通り複数台で同時にアクセスする際はその帯域を共有することが必要である。その際、ルーターやファイアウォールはボトルネックになりやすい、機器の選定に関しては十分に配慮することが必要である。加えて、ファイアウォールやネットワーク認証システム等を導入し、外部からの攻撃に対する情報セキュリティを担保することも必要である。

なお、一部の実証校では、教員用の校務PCとして全てWiMAX内蔵のものを配備し、校内ネットワークに依存しない通信環境を経験している。また、校内ネットワーク環境で実証校のネットワーク環境を構築するため、校内サーバーへのアクセスはできない。

検証では、実証校にあるタブレットPCがクラウド上のサーバーから一斉にダウンロード作業を開始する状況を想定しているが、これと同時に校内の無線LAN環境を併用していた。

② クラウド環境の運用

総務省では、フーチャーステーク推進事業の中学校の実証校（8校）を対象に、「クラウド環境下におけるデバイスの組み合わせ・配信・管理の実証（図表 4-18参照）」を行っており、生徒用タブレットPCからクラウド・コンピューティングを活用する際のネットワーク面を中心とした課題の抽出・分析等が検証された。

クラウド環境下での学習ティームの配信サービスを構築し、各実証校から教育コンテンツをダウンロードする検証を行ったところ、同時にアクセス数やダウンロードコンテンツのファイールサイズが増大するため、教育コンテンツ配信サービスに高負荷がかかり、安定した性能を発揮することができなかったことが分かった。

検証では、実証校にタブレットPCがクラウド上のサーバーから一斉にダウンロード作業を開始する状況を想定していたが、クラウド上や自治体内、校内等にキャッシュサーバーを設け、全端末が同じサーバーにアクセスするキャッシュサーバー”間データの集約及びデータ等配信・管理の実証（図表 4-18参照）を実証校において実施した。
ことを避け、ダウンロード先を分散するCDN (Contents Delivery Network) のような配信技術の活用が有効だと思われる。

4.2.2. 校内LAN (有線LAN) の技術的条件

実証校では教室内 (もしくは廊下やオープンスペース等) に無線LANアクセスポイントを設置しているが、それらを結ぶネットワークは全て有線LANで敷設している。

本調査研究は、無線LAN環境等のネットワーク環境の技術的要件の整理を主眼としているため詳細は割愛するが、校外へのアクセスと、校内無線LANを結ぶ基幹ネットワークとして有線LANが持つ意義は大きく、以下の3つの観点から考察する。

① 生徒用ネットワークと教員用ネットワークの分離

PC教室という比較的限定された空間で使用されていた以前に比べて、1人1台環境では生徒が学校内の人々からいつでも自由にネットワークに接続できる。そのため、「校内LAN導入の手引き15」（平成19年3月総務省）でも記載されているように、教員が利用する校務用ネットワークと生徒が利用する教育用ネットワークを分離し、教員が扱う成績資料等のデータが生徒が閲覧できないようなネットワークを構築することが必要である。

教育用ネットワークと校務用ネットワークの分離方法としては、大きく「物理的に分離する方法」と、「論理的に分離する方法」に分けることができる。

「物理的に分離する方法」は、職員室で教員が利用する校務用ネットワークと、普通教室等で主に生徒が利用する教育用ネットワークを別に敷設する方法である。完全に分離したネットワークを構築するため、それぞれのネットワークから他方へアクセスすることはできず、セキュリティの高いネットワークが構築できる。ただし、校内に複数のネットワークを敷設することになるため、構築コストは高く、利便性の面でも課題が残る。

一方、「論理的に分離する方法」は、教育用ネットワークと校務用ネットワークが相互に通信できないように、スイッチやルーター等を使ってセグメントを分割する方法である。新たにネットワークを設置する必要なく、廉価にネットワークを分割することが可能だが、一定の知識を有する技術者がネットワーク設計や機器等の設定を行う必要がある。また、この方式を採用した場合、校務用ネットワークからは教育用ネットワークにアクセスできるよう設定することもできるため、教員が職員室で作成した教材を教育用ネットワーク内のファイルサーバーに保存する等の作業が可能である。

② 基幹であることを重視し、大容量ネットワークを敷設

教室内の校内ネットワークとタブレットPC間の通信は無線LANアクセスポイントを経由して、有線LANにデータが流れると、有線LANは、各箇所に配備された無線LANアクセスポイントやWAN回線から来たデータが集約されることになり、複数の教室で一斉にタブレットPCを利用すると、有線LANに多大な負荷がかかる。

特に、有線LANの敷設は無線LANの敷設に比べて、天井配線や配管等大規模になる場合が多く、再度の工事に多大なコストがかかる場合が多い。また、無線LANの規格も年々、通信速度が向上しており、それに対応するために基幹部分の有線ネットワーク帯域はできる限り広い方が望ましい。そのため、多くの実証校では、校内の有線LAN環境を1Gbpsの帯域で敷設している。

なお、1Gbpsのネットワークを敷設するためにはそれに適したスイッチングハブ等のネットワーク機器を用意する必要があるが、メーカーにより価格帯がちまちまである。ポート自体が1Gbpsに対応しているものの、ポートとポートを結ぶ機器内部のパスの性能により価格が変わる場合が多いため、機器の選定には注意が必要である。

近年、技術革新が進み、10Gbps対応の製品が標準的になりつつあり、最新機種の動向に注意しつつ、できるだけ広帯域の製品を選定することが望ましい。

③ 校内サーバーの設置の検討

多くの実証校では、様々な用途のために校内サーバーを導入している。実証校で導入されている校内サーバーの種類を以下に示す。

![図表 4-21 実証校で導入した校内サーバーの種類](attachment:table1.png)

<table>
<thead>
<tr>
<th>校内サーバー</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>認証(Active Directory)</td>
<td>ユーザーやシステムの利用管理を行う</td>
</tr>
<tr>
<td>プロファイル管理サーバー</td>
<td>タブレットPCのユーザーごとの個別設定を管理するサーバー</td>
</tr>
<tr>
<td>インターネット接続用サーバー</td>
<td>インターネットに接続するための機能を提供するサーバー</td>
</tr>
<tr>
<td>ファイアウォールサーバー</td>
<td>不正なアクセスを遮断するための機能を提供するサーバー</td>
</tr>
<tr>
<td>アンチウイルスサーバー</td>
<td>アンチウイルスソフトの管理を行うサーバー</td>
</tr>
<tr>
<td>教育コンテンツサーバー</td>
<td>校内で利用する教材の管理提供を行うサーバー</td>
</tr>
<tr>
<td>ファイルサーバー</td>
<td>作成したファイル等のファイルの保存管理を行うサーバー</td>
</tr>
<tr>
<td>授業支援システム用サーバー</td>
<td>授業支援システムを利用するために必要なサーバー</td>
</tr>
<tr>
<td>災害通報システム用サーバー</td>
<td>災害情報を電子黒板に表示する災害通報システムを利用するために必要なサーバー</td>
</tr>
<tr>
<td>バックアップストレージ</td>
<td>サーバーのシステムやデータのバックアップを行う</td>
</tr>
</tbody>
</table>

学校内にICTを利用した教育環境を構築するためには、インターネットへの接続を行ったり、教育用アプリケーションやコンテンツを利用したり、作成した成果物を保存したりする必要があり、それぞれに対してサーバーが必要になることが多い。特に頻繁にサーバーとアクセスしたり、ネットワークに負荷をかける恐れのあるものについては、学校内にサーバーを設けることでレスポンス速度を向上させることができる。

校内サーバーは、生徒等が勝手に触れることが多いように、施錠された安全な場所に管理する必要がある。また、発熱や騒音等もあるため、空調設備が備わった、通常はあまり人が立ち入らないような場所に設置することが望ましい。実証校では、PC教室や相談室、印刷室等に設置していた。また、突然の停電等で電源供給が絶たれた時に備えて、無停電電源装置(UPS)を導入することも重要である。

なお、城東中学校では教育インフラネットを活用し、教育センターにあるサーバーを利用している。同地域の他の学校とサーバーを共通して利用することができるため、学校ごとにサーバーを配備するコストを削減し、教員の管理負担を軽減できる。

また、哲西中学校では、Dropbox（クラウド上のストレージサービス）を利用して教員や生徒が作成したファイルの共有を行っている。校内での利用に加えて、学校外でもファイルを共有することができるため、校外学習や家庭への持ち帰りに有効である。今後注目すべき運用形態であろうと思われる。
4.2.3 校内LAN（無線LAN）の技術的条件

無線LANの設計・構築においては、それぞれの規格を理解した上で、適切な規格を選択し、サイトサーベイ（電波調査の現地検証）を実施した上で無線LANアクセスポイント等を決定することが必要である。

① 無線LANの規格の検討

まず、以下に無線LANの規格の一覧を示す。

<table>
<thead>
<tr>
<th>IEEE規格名</th>
<th>802.11a</th>
<th>802.11b</th>
<th>802.11g</th>
<th>802.11n</th>
<th>802.11ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>利用する周波数帯</td>
<td>5GHz</td>
<td>2.4GHz</td>
<td>2.4GHz</td>
<td>2.4/5GHz</td>
<td>5GHz</td>
</tr>
<tr>
<td>最大スループット（理論値）</td>
<td>54Mbps</td>
<td>11Mbps</td>
<td>54Mbps</td>
<td>600Mbps</td>
<td>6.9Gb/s</td>
</tr>
<tr>
<td>利用チャネル数</td>
<td>19</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>19</td>
</tr>
</tbody>
</table>

多くの実証校では、IEEE802.11nの規格を採用していた。802.11a及び802.11bよりも新しい規格であること、2.4GHz帯と5GHz帯の両方に対応していることが理由である。なお、802.11nの最大スループットは600Mbpsであるが、あくまで理論値である。本実証における調査報告（西日本地域におけるICTを利活用した協働教育の推進に関する調査研究報告書（2011））でも、実効性能は50Mbps程度とされている。

なお、2014年1月7日に米国電気電子学会（IEEE）が最新規格として、802.11acが正式に承認された。この規格は5GHz帯を利用し、スループットは最大6.9GHzである。実測値でも300Mbps程度になると考えられ、スループットは格段に向上することとなった。今後は、802.11acが主流になると思われる。

なお、802.11nを利用している実証校の中でも、周波数については2.4GHz帯と5GHz帯を採用している学校に分かれた。周波数帯の違いと特徴について以下に示す。

<table>
<thead>
<tr>
<th>主な規格</th>
<th>2.4GHz帯</th>
<th>5GHz帯</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE802.11b/g/n</td>
<td>IEEE802.11a/n/ac</td>
<td></td>
</tr>
<tr>
<td>通信距離</td>
<td>約100m</td>
<td>約70m～100m</td>
</tr>
<tr>
<td>電波干渉</td>
<td>×（電子レンジ、コードレス電話等の電波干渉源が多く、影響を受けやすい。）</td>
<td>○（電波干渉源が比較的少なく、影響を受けにくい。）</td>
</tr>
<tr>
<td>透過性</td>
<td>比較的電波が障害物を通り抜けやすい。</td>
<td>比較的電波が障害物に遮られやすい。</td>
</tr>
<tr>
<td>特徴</td>
<td>・利用できるチャネルが少なく、他の無線LANとの電波干渉に弱い。 ・対応している端末が多い。</td>
<td>・利用できるチャネルが多く、他の無線LANとの電波干渉に強い。 ・一部を除き、屋外での使用が禁止されている。 ・2.4GHz帯に比べて、わずかに普及度が劣る。</td>
</tr>
</tbody>
</table>

2.4GHz帯の無線LANはいわゆるISM（Industry-Science-Medical）バンドに割り当てられている。ISMバンドとは、主に工業、科学、医療用に割り当てられた周波数帯で、家電製品（電子レンジやコードレス電話等電波を使用する機器）もこの周波数帯に割り当てられている。無線LANにおいては、同じ周波数の電波が相互に干渉し合うことで、無線LANの通信速度が低下したり、接続が不安定になってしまいます。これを電波干渉というが、これらの家電製品を利用していると、電波干渉が発生しやすくなる。これらの電子機器は利用している途中だけしか、電波干渉しないため、障害時の原因特定が難しい。
なお、無線LANの場合は、2.4GHz帯を5MHzごとに分け、同じ帯域でも電波干渉しないよう調整している。帯域の中ではさらに細かく帯域を分けて干渉し合わないよう調整したものを一般的にチャネルと呼んでおり、2.4GHz帯の場合は1ch～13chまで使用可能である（802.11bは14ch使用可能）。ただ、電波干渉が起きないためには周波数間は最大22MHz以上離れていることが望ましいとされており、1ch～13chまであるものの、実質的には、1ch/6ch/11ch等の組み合わせに制限される。従って、3種類のチャネルを利用しても、同じチャネルが重なり合わないように設置場所や電波強度を調整する必要がある。

つまり、2.4GHz帯の場合は、家電等干渉源が多い上、使用できるチャネルが少ないということが言える。

これに対して、5GHz帯の無線LANは家電等で使用されておらず、使用可能なチャネルも多く、電波干渉防止ということでは望ましいが、使用されるチップが2.4GHz帯に比べて高額であるため、製品も高価な場合が多い。

また、5GHz帯の電波は強度が強く、直進性に優れているものの、遮蔽物の影響を受けやすいと言われている。特にコンクリートや金属等には遮蔽されてしまう。ただし、透過性が悪いことはむしろ学校における無線LANの構築においては利点として働く。無線LANアクセスポイントから発せられた電波は、教室内の壁面に遮られて隣や上下の教室内に漏れ出さないように、個々の教室内に無線LANアクセスポイントを設置することで、教室内では電波強度を保ちつつ、他の教室では電波干渉源にならない。

無線LANの各規格にはそれぞれメリット、デメリットが存在し、それらを把握した上で、各校の状況に応じた適切な規格や機器を選定する必要がある。

本実証では、2.4GHzのみを利用している実証校はなかった。2.4GHzの利用は電波干渉の対象となる恐れが多かったため5GHzのみを利用した実証校や、1台の無線LANアクセスポイントで2.4GHzと5GHzのどちらでも接続できるようになった学校もあった。2種類のネットワークを併用することで、利用する帯域帯や無線LANアクセスポイント1台あたりの接続台数が2倍になるというメリットがある。

また、屋内では5GHzを使い、利用が制限されている屋外では2.4GHzを利用するよう、使い分けている実証校もあった。

接続台数の検討

多くの実証校では各教室に2台の無線LANアクセスポイントを設置していた。また、1クラスあたりの生徒数が少ない一部の実証校では教室あたり1台の無線LANアクセスポイントしか設定していないが、どの実証校であれ、1生徒2人あたりに1台の無線LANアクセスポイントが設置されていたことになる。

仮に802.11nの規格を採用した場合、実効スループットは50Mbps程度であるが、1クラスあたりに無線LANアクセスポイントを1台整備することを想定すると、40人学級では1人あたり1Mbps前後の帯域となる。無線LAN環境等のインフラは一度学校に導入されると、継続的に機器が更新されることがないが、タブレットPCの活用が活発化すると、より一層コンテンツが充実し、大容量のデジタル教材が利用される可能性も高い。そのことを考えると、1人あたりの帯域幅としては不安があるため、可能な限り1クラスあたり2台の無線LANアクセスポイントを確保したい。

1クラスに2台の無線LANアクセスポイントを設置することには、様々なメリットがある。学校における無線LAN環境では、トラブルでストップしてしまうと、途中で授業がとどまることになってしまい、ビジネス用途に比べても、より高度な耐障害性が求められる。無線LANアクセスポイントの故障やトラブルが発生した場合、代替として2台目を利用できる。電波干渉が発生した際にも、2台目を電波ノイズからの遮蔽兼ボリューム増大として利用できるため、安定度が高められる。

また、処理性能が低い無線LANアクセスポイントを利用した場合、一斉に無線LANアクセスポイントへ40台の端末が接続された際に、通信が不安定になる可能性もある。

無線LANが学校内におけるICT活用のインフラであることを踏まえ、できる限り余裕を持った構成にすることが求められる。
「教育分野における効果的なICT利活用を推進するための調査研究」報告書

なお、無線LANアクセスポイントを設置する際には、LANケーブルから給電できるPoE給電を利用することで、電源の配線コストの削減や機器の設置場所を柔軟に選択できるようになる。

③ ローミングの有無の検討

実証校では全ローミングを採用していた。無線LANを設置する際は、無線LANと各教室の無線LANアクセスポイントをSSIDで共通にすることで、教室間を移動しても同じSSIDで無線LAN接続ができる仕組みである。

それに対し、ローミングを実施しない場合は、無線LANを設定する際は端末にSSIDを登録する必要があるが、ローミングとは各教室の無線LANアクセスポイントのSSIDを全て共通にすることで、教室間を移動しても同じSSIDで無線LANに接続できる仕組みである。

ローミングを実施しない場合、各教室に一意のSSIDが存在するため、仮に部外者が1つの教室に不正に接続することができたとしても、他の教室には接続できないため、より情報セキュリティが担保される。しかし、1つの教室から他の教室に移動しても無線LANに接続できるためには、無線LANと各教室の無線LANアクセスポイントのSSIDを全て共通にすることで、教室間を移動しても同じSSIDで無線LANに接続できる仕組みである。

特に中学校では特別授業の際、タブレットPCを移動させて使用することが多くなるため、ローミングの利用が好ましいと思われる。

④ チャネル、電波出力設定の検討

前述の通りチャネルとは周波数帯をさらに細分化した周波数帯であり、同じ周波数帯（チャネル）の電波が干渉すると、通信速度の低下や最悪の場合通信できなくなる等の障害が発生するため、ぶつかりあわないよう、チャネルを調整する必要がある。また、電波は遠くに行くほど減衰する。適切な通信帯域を確保するためには、電波が届く範囲を調整することで（電波出力を調整することで）、一定の距離を離れた近隣の他の無線LANアクセスポイントに接続できるようにして、1つの無線LANアクセスポイントがフォローする範囲を明確にする必要がある。

チャネルを調整するためには、できる限り電波出力を上げるとより遠くまで通信でき、またその回線品質も良くなる。しかし、学校内のように、広い領域を複数の無線LANアクセスポイントでカバーする場合、複数の無線LANアクセスポイントから発させられた同じチャネルの電波があると、電波干渉してしまうため、個々の電波出力を調整する必要がある。特に2.4GHz帯は3種類のチャネルを使って、上下左右の無線LANアクセスポイントからの電波が重ならないように工夫しなければならない。

電波を効率的に環境を構築するためには、できるだけ電波出力を下げて、狭い範囲をカバーする方が望ましい。電波出力を下げることによって、他の無線LANアクセスポイントと干渉する影響範囲も狭くなる。1教室分だけをカバーする狭い範囲の無線LANアクセスポイントを1教室あたり2台程度配備する構成が有効である。

なお、これらのチャネル設定及び出力調整を最適化するため、無線LANアクセスポイントコントローラーを導入し、自動調整している実証校もあった。無線LANアクセスポイントコントローラーが機能するためには、電波干渉に対して学校内の無線LANアクセスポイントの設定を自動変更し、常に最適な無線LAN環境を維持することができる。電波環境は周囲の環境等の影響を受けて常に変動するため、構築時にだけではなく、導入後も継続的に環境を監視し、電波干渉源を回避する仕組みが有効である。また、活用監視や動作ログの一元的な収集も可能である。

⑤ 無線LANに関する情報セキュリティ

無線LANの構築にあたっては、「企業等が安心して無線LANを導入・運用するために」（平成24年12月総務省）や、「一般利用者が安心して無線LANを利用するために」（平成24年11月総務省）にも記載されている通り、十分情報セキュリティに配慮する必要がある。

以下に無線LANの情報セキュリティに関する実証校の主な取り組みを示す。

株式会社内田洋行
図表 4-24 各学校が実施した無線LANに関する情報セキュリティ対策

<table>
<thead>
<tr>
<th>区分</th>
<th>無線LANに関する情報セキュリティ対策</th>
</tr>
</thead>
<tbody>
<tr>
<td>無線LANデータの暗号化</td>
<td>・WPA2-Personalによる暗号化</td>
</tr>
<tr>
<td>接続できる機器の制限</td>
<td>・MACアドレスによる制限</td>
</tr>
<tr>
<td></td>
<td>・RADIUSサーバーによる認証</td>
</tr>
<tr>
<td></td>
<td>・SSIDの隠蔽化</td>
</tr>
<tr>
<td>無線LANアクセスポイントコントローラーによる制御</td>
<td>・無線LANアクセスポイントコントローラーによる無線LAN環境の一元管理、追跡調査が可能なアクセスログの採取</td>
</tr>
<tr>
<td></td>
<td>・無線LANアクセスポイントコントローラーのログにより第三者のアクセスを確認した場合に、無線LANアクセスポイントの電波出力を停止することにより情報の漏洩が起こらないように工夫</td>
</tr>
</tbody>
</table>

特に学校では生徒の個人情報が多く取り扱われており、不正アクセスの防止や持ち出しの禁止等配慮する必要があり、実証校でも様々な情報セキュリティ対策を実施している。

ネットワーク環境におけるセキュリティ対策については、主に暗号化と認証の2点がある。暗号化とは、ネットワーク上の通信内容を第三者が傍受しても解読できないようにすることである。認証は、ネットワークに接続できる機器を制限し、管理することである。

暗号化については、実証校ではWPA2-Personal（もしくはEnterprise）が採用されており、以前主流だったWEP方式を採用している実証校はなかった。WEP方式は、以前は「安心して無線LANを利用するために」（平成19年12月総務省）でセキュリティレベル1の際に例示される等、初期暗号化技術として有用であったが、その後容易に解読が可能であることが判明している。現在はWPA2-Personal（Enterprise）方式が主流であり、WEP方式の採用は避ける方が望ましい。

一方、横浜国立大学教育人間科学部附属横浜中学校では、RADIUSサーバーを利用したWPA2-Enterprise方式が採用された。これにより、RADIUSサーバーによって当該ネットワークへのアクセスに関し認証を一元的に行うことで、端末が無線LANアクセスポイントの増加にも柔軟に対応できるため、無線LANアクセスポイントごとの情報セキュリティ設定に比べ大規模なネットワークに適しており、より高度な情報セキュリティが要求される大企業や大学等で採用されている方式である。

しかし、RADIUSサーバー認証を行うためには、サーバー機器が必要で、比較的コストがかかる。また、管理作業を行う管理者の負担が大変なため、校内無線LANにおける認証技術としては、RADIUSサーバーの導入を必要とすべきではないと考えられる。

端末認証については、多くの実証校ではMACアドレス認証も採用していた。MACアドレス認証とは、あらかじめ無線LAN機器に接続する端末のMACアドレスを登録しておく、接続要求された端末のMACアドレスをもとに、接続しても良いかを判断する機能である。しかし、MACアドレスを偽装することは可能であり、セキュリティ対策としてはの有効性は乏しい。

また、無線LANアクセスポイントが発信するビーム信号を止めることによりSSIDを隠蔽させる機能（ステルス機能、Any接続拒否を表現される）を実施している実証校も多いが、タブレットPCが無線LANアクセスポイントと接続する際にはSSIDが通信されたり、ステルス化されたSSIDを検知するツールが公開されているため、セキュリティ対策の有効性は乏しい。

なお、無線LANアクセスポイントコントローラーを利用し、無線LAN環境の一元的な管理、動作ログを収集することによって、不正なアクセス等を早期に検知することが可能である。

実証校に採用されていないセキュリティ対策の1つとして、スケジュール機能が設定できる無線LANアクセスポイントの場合、休日や夜間に電波発射を停止することで、セキュリティ上のリスクを減らす対策が考えられる。

さらに、学校は公共施設であり、また運動会や授業参観等の行事の際に、不特定多数の人間が学校に入る可能性がある。その際に、勝手にLANケーブルをつながれたり、設定を勝手に変更されたりすることを防ぐため、セキュリティケースで無線LANアクセスポイントの筐体を覆ってしまう等の対策も考えられる。

タブレットPCの要件等とも重複するが、テクノロジーの進歩は日進月歩であり、現行の技術に脆弱性が発見される可能性がある。
れたり、新たな技術に移行することもある。技術動向や様々な情報を把握した上で、学校の無線LAN環境セキュリティを検討する必要がある。

⑥ その他

学校の無線LANは家庭の無線LANとは使い方や要件が大きく異なる。学校では、家庭に比べて接続台数が多く、同時接続台数と同時の通信量も多い。さらに授業中に通信が途切れたと授業の妨げになってしまうため、通信の問題が共通の影響が著しいものがある。これらのことから、家庭の無線LANより、さらに注意をもって導入・運用する必要がある。

また、設置を認めていなかったり、管理の対象としていない無線LANアクセスポイントによって、校内の無線LANに干渉が起きたり、セキュリティ上の問題となる可能性もある。校内に無線LANアクセスポイントが持ち込まれた場合、学校内のネットワークにアクセスされ、情報の窃盗等を行われる可能性もあるため、定期的に無線環境の調査を行うことが望ましい。

実証校ではないが、普通教室に無線LAN環境が整備されているある学校で、タブレットPCが無線LANに接続できないトラブルが発生した。教室内に複数の生徒が、無線LAN機能を搭載している携帯ゲーム機を持ち込んだため、ゲーム機から無線LANアクセスポイントへの接続要求が殺到し、正常な通信が阻害されたことが原因である。最近は、無線LAN機能を持っているゲーム機や携帯電話が多く出回っており、また明示的に無線LAN機能を停止しないとスリープ状態でも無線LAN機能が動作し続ける機器も存在する。教室内にこれらの機器を持ち込まれることで、無線通信が阻害されるとなることがある。これらの無線LAN機器は電波干渉源にもなりうるため、教室内への持ち込まないことが望ましい。

電波は目に見えず、いったん無線LAN環境にトラブルが起きたと解決が難しい。また、立地条件によっては、近隣住宅からの電波が影響する等、常に電波環境は変化する。構築時点で正常に動作していたとしても、運用段階で突然電波干渉源が増えることも考えられる。周囲の状況は刻々と変動しているため、注意が必要である。

無線LAN環境はICTを利用した学習環境のインフラであり、トラブルが発生した際に、全ての端末に影響を及ぼしかねないため、高い信頼性が求められる。そのため、無線LAN環境を構築する際は、構築時点で通信できる仕組みを目指すのではなく、想定される障害に対して対処可能な仕組みを目指すことは必要である。そのため、無線LANアクセスポイントの台数、電波干渉対策が、余裕を持って実施できることが求められる。さらに、詳細な動作ログを継続的に取得することで、トラブルの際に原因を特定できる手段を確保しておくことが必要である。

また、定期的に電波状況を調査することで、実際に無線LAN環境の不具合が確認される前に障害を把握することができ、事前に対応することも可能となる。
4.2.4. 学校現場で活用するネットワーク環境の技術的要件の整理（まとめ）

4.2.1〜4.2.3の考察を通じ、今後学校現場で活用するネットワーク環境の技術的要件として以下を提案する。ただし、繰り返すが技術の進歩は日進月歩であり、また各自治体や学校の環境も異なるため、あくまで1つの目安として、自治体や学校がそれぞれに応じたネットワーク環境を構築する必要がある。なお、以下の情報セキュリティは無線LAN環境構築の際の情報セキュリティに限定しており、学校が求める情報セキュリティに関する課題の抽出・分析は4.3で詳述する。

図表 4-25 学校現場で活用するネットワーク環境の技術的要件（案）

<table>
<thead>
<tr>
<th>区分</th>
<th>無線 LAN に関する情報セキュリティ対策</th>
</tr>
</thead>
</table>
| WAN 接続 | ・外部へのネットワーク回線がポルトネックにならないよう、事前に検証すること（最低でも100Mbps以上の帯域を有することが望ましい）
 ・ルーターやファイアウォールはポルトネックになりやすいので、機器の選定に関しては十分に配慮すること
 ・外部接続の際は、ファイアウォールやネットワーク認証システム等を導入し、情報セキュリティを担保すること
 ・地域間ネットワークが敷設されているか等の事情を勘案し、最適な外部接続形態を選択すること |
| 校内有線 LAN 接続 | 【校内サーバーの検討】
 ・動画のダウンロード等、ネットワークに負荷をかける可能性が高い場合は、別途校内サーバーを用意する等、外部接続回線がポルトネックにならないよう配慮すること
 ・校内サーバーを導入する場合は、サーバー上にプロキシサーバーを導入し、タブレットPCからのインターネット閲覧要求に対して代理応答させる等、外部接続回線がポルトネックにならないよう配慮すること
 ・校内サーバー上に生徒のデータを格納する場合もあるため、DATを利用する等、バックアップ体制に配慮すること
 ・無停電電源装置（UPS）を備える等、電源供給が断たれた際の自動シャットダウン対応を行うこと
 【校内有線 LAN の検討】
 ・基幹の有線ネットワークは1Gbps対応することが望ましい。その際、スイッチングハブの品質等に留意し、敷設したネットワークが最大限効果的に活用できるよう配慮すること
 ・校務系、教育系という形でVLANを分離する等、生徒が教員のデータにアクセスできないよう配慮すること
 ・学内のネットワーク機器については、設定情報を全てバックアップすること |
| 校内無線 LAN | • 通信方式はIEEE802.11nであること
 • 無線 LANアクセスポイントの設置にあたってはサイトスペイを実施し、適切な電波調整を図る等、効果的な配置を検討すること
 • 無線 LANアクセスポイントは、普通教室及び特別教室ごとに設置することが望ましい。
 • 目安として1つの無線LANアクセスポイントに接続する台数は20台前後すること
 • 予備の無線LANアクセスポイントを用意してコールドスタンバイしておく等、不慮のトラブルを未然に防止する体制を完備していること

85 株式会社内田洋行
4.3. 学校が求める情報セキュリティ対策の技術的要件の整理

4.3.1. セキュリティポリシーへの配慮

学校のICT環境を構築する際には、あらかじめ自治体で整備されているセキュリティポリシーに則って情報セキュリティに配慮する必要がある。

セキュリティポリシーは大まかに「人的」、「物理的」、「技術的」な項目に分けられる。実証校では、人の対策として、ウェブフィルタリングによるアクセス制限を実施しているほか、「PC及び各システムログイン時は、IDとパスワードによるユーザー認証により不正使用を防止」（上越教育大学附属中学校）したり、カラービット認証（尚英中学校）等のユーザー認証を実施することで、不正利用を防止している。

また、物理的な対策として、「校内サーバー、フロアスイッチ等のICT機器については、施錠が可能なラック・HUBボックスに収容を行うほか、タブレットPCについては施錠が可能な充電保管庫に収納して管理を行う。」（下地中学校）のこととしている。

なお、特にLAN構築等で必要となる技術的な、情報セキュリティ対策については、4.3.3で詳述する。

文部科学省の「学校における教育の情報化に関する調査結果（平成24年度）」によると、学校セキュリティポリシーを策定している学校の割合は、小学校88.3%、中学校87.7%となっており、多くの学校で策定されている。学校における情報セキュリティを確立するにあたっては、まず、それぞれの学校セキュリティポリシーの有無を確認した上で、策定されている場合はそれに配慮して検討することが望まれる。

参考として、実証校における主なセキュリティポリシーへの配慮事項とその対応を以下に示す。

図表 4-26 主なセキュリティポリシーへの配慮事項とその対応

<table>
<thead>
<tr>
<th>項目</th>
<th>配慮事項</th>
<th>対応</th>
</tr>
</thead>
<tbody>
<tr>
<td>人的な対策</td>
<td>学校の教育目的以外で生徒に電子メール及びウェブ閲覧等をさせてはならない。</td>
<td>URLフィルタリングによるウェブアクセス制限の実施</td>
</tr>
<tr>
<td>人的な対策</td>
<td>ネットワークに使用する回線は十分な情報セキュリティ対策が実施されたものである必要があります。</td>
<td>各校を閉域網へ接続し、セキュアなクラウド基盤及びインターネット接続の実現</td>
</tr>
<tr>
<td>物理的な対策</td>
<td>校内LANを敷設する際、雷対策のため光回線を敷設しなければならない。</td>
<td>校内LANを敷設せずには無線LANアクセスポイントで対応した。</td>
</tr>
<tr>
<td>物理的な対策</td>
<td>校内LANの設計は、校務用LANと教育用LANとしてセグメント分割を行い、相互に通信できないようにする。</td>
<td>既設LANとグローバルなネットワークセグメントを分割している。</td>
</tr>
<tr>
<td>技術的な対策</td>
<td>URLフィルタリングによるダウンロードサイトへのアクセス禁止</td>
<td>次のフィルタリングに基づくダウンロードサイトへのアクセス禁止</td>
</tr>
<tr>
<td>技術的な対策</td>
<td>ウイルス定義ファイルの最新化等、コンピュータウイルス対策を講じる。</td>
<td>ウイルス定義ファイルの最新化は、更新ファイルの一揃付や実施方法を検討</td>
</tr>
<tr>
<td>技術的な対策</td>
<td>クラウド基盤上のファイアウォールにて、発信元IPアドレス及びポート番号によるアクセス制限を実施</td>
<td>クラウド基盤上のファイアウォールにて、発信元IPアドレス及びポート番号によるアクセス制限を実施</td>
</tr>
</tbody>
</table>

16赤、青、緑の3色を使ってデータを表す自動認識技術。認証用のカードを用意し、それを端末の受信部分にかざすことで認証できる。
4.3.2. ウェブフィルタリングへの配慮

全ての実証校では、生徒が有害サイト等を閲覧できないよう、何らかの形でウェブフィルタリングを設定している。ほとんどの実証校では、校内サーバーや地域インフラネット上のサーバー、もしくはクラウド上にフィルタリングシステムを導入して、利用していた。

参考として、実証校校におけるウェブフィルタリングの対応状況を以下に示す。

<table>
<thead>
<tr>
<th>実証校</th>
<th>ウェブフィルタリングの方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>尚英中学校</td>
<td>クラウド上でウェブフィルタリングを実施</td>
</tr>
<tr>
<td>横浜国立大学教育人間科学部附属横浜中学校</td>
<td>校内サーバーにフィルタリングソフトを入れて対応</td>
</tr>
<tr>
<td>上越教育大学附属中学校</td>
<td>クラウド上でウェブフィルタリングを実施</td>
</tr>
<tr>
<td>三雲中学校</td>
<td>クラウド上でウェブフィルタリングを実施</td>
</tr>
<tr>
<td>城東中学校</td>
<td>教育インフラネット上のサーバーでフィルタリングを実施</td>
</tr>
<tr>
<td>哲西中学校</td>
<td>フィルタリング設定可能なブラウザを利用</td>
</tr>
<tr>
<td>武雄青陵中学校</td>
<td>地域インフラネット上のサーバーでフィルタリングを実施</td>
</tr>
<tr>
<td>下地中学校</td>
<td>クラウド上でウェブフィルタリングを実施</td>
</tr>
<tr>
<td>ふるさと支援学校</td>
<td>地域インフラネット上のサーバーでフィルタを実施</td>
</tr>
<tr>
<td>桃陽総合支援学校</td>
<td>地域インフラネット上のサーバーでフィルタを実施</td>
</tr>
</tbody>
</table>

いずれの実証校でも、タブレットPCの効果的な利用のためには、フィルタリングが必要であるという意見が聞かれた。一方で、調べ学習等の際に、閲覧したいサイトがフィルタリングされ、閲覧できない場合も良く見られた。一般的なフィルタリングシステムは「ダダム」、「オカルト」等のカテゴリごとにフィルタの有無を設定する仕組みになっているが、閲覧したいサイトのカテゴリの精度が悪かったり、時にはフィルタを設定しているカテゴリのサイトを閲覧したい場合がある。フィルタリングシステム自体の性能向上が求められるが、インターネット上のサイトは多数あり、その内容も千差万別であることから、閲覧したいサイトがフィルタされる場合があることを前提に利用すべきであると思われる。

システムによっては、カテゴリの細分化や学年ごとの設定ができたり、また指定された時間帯だけはフィルタを外す機能を備えているものもある。このような機能を利用することで問題が軽減することもあるが、通常フィルタリングの運用にはルールが定められており、教員の教えること、校内におけるインターネットの利用が制限されることも多い。従って設定に至るまでには、ある程度のチューニングを行うことが必要である。これが可能となるような適切な運用ルールの検討も重要である。

実証校では、閲覧したいサイトがフィルタされる場合もあることを前提として、あらかじめ閲覧可能なサイトを確認してから、調べ学習の際の参照にそのURLのリストを配布したり、デジタル新聞閲覧サービス等のようなデータベースサービス内で検索する等の対策を行っていた。また、教材選択や教員用PCを全体に提示することがあるため、教員用のタブレットPCのみフィルタリングの設定を変更した実証校もあった。

ある実証校で導入当初に設定したフィルタリングルールと、年度途中に見直した項目について、以下に示す。

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>規制設定</th>
<th>カテゴリ</th>
<th>規制設定</th>
</tr>
</thead>
<tbody>
<tr>
<td>不法</td>
<td>規制</td>
<td>グロテスク</td>
<td>規制</td>
</tr>
<tr>
<td>主張</td>
<td>規制</td>
<td>話題</td>
<td>規制→許可</td>
</tr>
<tr>
<td>アダルト</td>
<td>規制</td>
<td>成人嗜好</td>
<td>規制</td>
</tr>
</tbody>
</table>

なお、ある実証校では、Flash等で構築されたアプリケーションを利用した際、Flashが内部的に読み込んでいるサイトがフィルタリングされて利用できないことがあった。
また、サーバーにフィルタリングソフトを導入せず、簡易フィルタリング機能があるブラウザで対応している学校もあった。しかし、制限をかけたいサイトを個別に閲覧の制限をかけることができない等、実証校ごとに異なる柔軟なポリシーに基づいて閲覧制限をかけることができなかった。ライセンス等の予算的措置やネットワーク設定の変更が必要になるものの、適切なフィルタリングシステムの導入を視野に入れる必要がある。
4.3.3. 学校における情報セキュリティ対策

既述の通り、学校が求める情報セキュリティの範囲は多岐にわたりますが、具体的な対応に関しては、WANや生徒の端末では異なるように、各種段階に応じて検討する必要がある。

① ユイルス感染対策

既述の通り、サーバー及び各端末にウイルス対策ソフトをインストールすることは最低限必須のウイルス対策である。実証校では、校内やクラウド上にウイルス対策サーバーを構築し、ウイルス対策のパターンファイルを常に最新の状態に保っていた。

また、タブレットPCにUSBメモリ等を接続する際にウイルスに感染する恐れもあるため、許可されたUSBメモリ以外の使用を禁止することや、無料アプリケーション内にウイルスが混入している恐れがあり、感染する恐れがあるため、無料アプリケーションの利用の制限を行うことも望まれる。

② 不正接続・不正侵入

（ア）WAN

ルーター等、インターネットへの出入口となる機器に関しては、悪意のある第三者から攻撃の対象となりやすい。ファイアウォールシステムの導入により必要な通信のみを許可するほか、ネットワーク認証システムの導入を図ることで、不正接続や不正侵入を防止する必要がある。

（イ）校内LAN

無線LANの情報セキュリティについては、4.2.3⑤で述べた通りだが、有線LANについても、不正接続を防止する観点から、校務系と教育系のLANを分離する、HUBのポートを塞ぐ、既存のLANと接続しない等の対応が必要となる。特に、新たな端末をネットワークに接続する際は、管理者の許可の下、適切に対応することが望まれる。

また、一部の実証校では、アカウント管理サーバーを導入し、ネットワークに接続する端末を管理することで、不正接続や不正侵入を防止している。なお、一部の実証校では、ファイルサーバー等の共有フォルダのアクセス権限の設定をしておくことで、他人からデータを削除されたり、改ざんされることを防止した。

（ウ）各端末

実証校では、アカウント管理サーバーで認証することにより情報セキュリティを担保しているが、各端末のログインID・パスワードを設定することで、部外者による生徒のタブレットPCの不正利用を防止している。一部の実証校ではカラービット認証や顔認証を採用していた。ふるさと支援学校では、自力で起動操作が難しい児童生徒用に指紋認証装置を用意していた。アプリケーションの利用の際に認証を要求される場合、生徒にとっては何回もID・パスワードを入力しなければならず、手間がかかり、間違えが生じやすい。効率化を図るために、シングルサインオンシステムを導入することも検討すべきである。

（エ）物理的な対策

タブレットPCやサーバー機器等の盗難を防ぐためには、保管場所の施錠が求められる。タブレットPCについては充電保管庫の施錠、サーバー機器についてはサーバーラックの施錠に加えて、サーバー機器を設置している場所の施錠も必要である。実証校の中には、警備会社等による警備の強化を行った学校もあった。
③ ネットワークの断絶

ネットワークの断絶や不具合を回避、検証するために死活監視、トラフィック監視、ログ監視を行うことが重要である。特に、死活監視については、授業の進行に大きな影響を与えるため、無線LAN機器を含め、障害時に速やかに管理者が把握できる仕組みを講ずることが必要である。

また、トラフィック監視に関しては、「トラフィック監視端末を実証校内に設置し、校内の無線通信及びデータセンター接続用のルーター間のトラフィック監視環境を構築」（ふるさと支援学校）している事例もある。ログの監視と併せて、障害発生時の原因究明に資する方策として検討するべきである。

④ 情報漏洩

一部不正接続とも重複するため②で述べた部分は割愛するが、情報漏洩に関しては外部からの不正接続を含めて、持ち出しや置き忘れ、盗難等の対策が必要である。

USBメモリ等の媒体を通じてデータの持ち出しが図られる場合も多いため、USBポートを制御することは情報漏洩防止の有効な手段である。

和歌山市ではUSBキーを教員に用意し、データの持ち出し対策を行っている。これは、USBデバイスを鍵に見立て、ネットワーク上の業務データにアクセス可能とするもので、メモリ領域を有していないためデータを保持することなく、校外での利用等に有益である。実証校でもこの仕組みを活用しており、データの持ち出し対策を講じている。

また、設定の工数は増えるものの、ハードディスク全体を暗号化することや、3.2.3で述べた通り、タブレットPCにGPSを活用した位置情報確認アプリケーションを搭載したり、端末管理サービスを利用した遠隔ロックやデータ削除を行うことで盗難防止策とすること等も有効である。

⑤ 機器脆弱性

ハード機器及びそれを動かす制御ソフト（ファームウェア）はシステム上の欠陥や仕様上の問題点が明らかになると、それが悪意の第三者からの攻撃対象となり、システムの乗っ取りや機密情報の漏洩に繋がる可能性もある。そのため、メーカー各社が出すパッチプログラムの実行や適切なバージョンアップ等を行うことで、適宜システムの安全性を確保することが必要である。

⑥ 情報セキュリティに関する方策の一覧

参考として、技術的セキュリティに関する方策を以下に示す。セキュリティには「完全」はないため、これらの方策を適宜組み合わせて、最適なセキュリティ対策を施すことが必要となる。
<table>
<thead>
<tr>
<th>検討レベル</th>
</tr>
</thead>
<tbody>
<tr>
<td>観点</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ウイルス感染</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>不正接続・不正侵入</th>
</tr>
</thead>
<tbody>
<tr>
<td>ファイアウォールシステムの導入</td>
</tr>
<tr>
<td>ネットワーク認証システムの導入</td>
</tr>
<tr>
<td>インターネット上からのリモート接続の禁止</td>
</tr>
<tr>
<td>専用器具にてネットワークスイッチの空きポートの埋めを実施</td>
</tr>
<tr>
<td>通信の暗号化</td>
</tr>
<tr>
<td>保管場所の施錠</td>
</tr>
<tr>
<td>ネットワーク認証システムの導入</td>
</tr>
<tr>
<td>アクセス権限の設定</td>
</tr>
<tr>
<td>ログイン認証</td>
</tr>
<tr>
<td>ネットワーク認証システムの導入</td>
</tr>
<tr>
<td>その他認証システム</td>
</tr>
<tr>
<td>警備会社等による警備の強化</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ネットワークの断絶</th>
</tr>
</thead>
<tbody>
<tr>
<td>死活監視</td>
</tr>
<tr>
<td>トラフィック監視</td>
</tr>
<tr>
<td>ログ監視</td>
</tr>
<tr>
<td>死活監視</td>
</tr>
<tr>
<td>トラフィック監視</td>
</tr>
<tr>
<td>ログ監視</td>
</tr>
<tr>
<td>死活監視</td>
</tr>
<tr>
<td>トラフィック監視</td>
</tr>
<tr>
<td>ログ監視</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>情報漏洩</th>
</tr>
</thead>
<tbody>
<tr>
<td>既存校内ネットワークへの接続の禁止</td>
</tr>
<tr>
<td>既存教育インタラネット経由でのインターネット接続の禁止</td>
</tr>
<tr>
<td>クラウド利用には、WAN回線を新設に整備</td>
</tr>
<tr>
<td>校内サーバーへの個人情報登録及び配置の禁止</td>
</tr>
<tr>
<td>クラウドへの個人情報登録及び配置の禁止</td>
</tr>
<tr>
<td>既存校内ネットワークと分離した専用ネットワークの整備</td>
</tr>
<tr>
<td>校務系と教育系のLANの理論的な分断</td>
</tr>
<tr>
<td>通信の暗号化</td>
</tr>
<tr>
<td>保管場所の施錠</td>
</tr>
<tr>
<td>認証システム及びアクセスコントロール</td>
</tr>
<tr>
<td>HDD暗号化</td>
</tr>
<tr>
<td>USBデバイス制御</td>
</tr>
<tr>
<td>ログ取得</td>
</tr>
<tr>
<td>遠隔管理サービスを利用した遠隔ロックやデータ削除</td>
</tr>
<tr>
<td>警備会社等による警備の強化</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>機器脆弱性</th>
</tr>
</thead>
<tbody>
<tr>
<td>脆弱性対策ファームウェアによる対応</td>
</tr>
<tr>
<td>脆弱性対策ファームウェアによる対応</td>
</tr>
<tr>
<td>セキュリティパッチ対策</td>
</tr>
<tr>
<td>セキュリティパッチ対策</td>
</tr>
<tr>
<td>警備会社等による警備の強化</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>各端末</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

```
図表 4-29 主な情報セキュリティ対策（技術的セキュリティ）

<table>
<thead>
<tr>
<th>検討レベル</th>
</tr>
</thead>
<tbody>
<tr>
<td>観点</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ウイルス感染</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>不正接続・不正侵入</th>
</tr>
</thead>
<tbody>
<tr>
<td>ファイアウォールシステムの導入</td>
</tr>
<tr>
<td>ネットワーク認証システムの導入</td>
</tr>
<tr>
<td>インターネット上からのリモート接続の禁止</td>
</tr>
<tr>
<td>専用器具にてネットワークスイッチの空きポートの埋めを実施</td>
</tr>
<tr>
<td>通信の暗号化</td>
</tr>
<tr>
<td>保管場所の施錠</td>
</tr>
<tr>
<td>ネットワーク認証システムの導入</td>
</tr>
<tr>
<td>アクセス権限の設定</td>
</tr>
<tr>
<td>ログイン認証</td>
</tr>
<tr>
<td>ネットワーク認証システムの導入</td>
</tr>
<tr>
<td>その他認証システム</td>
</tr>
<tr>
<td>警備会社等による警備の強化</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ネットワークの断絶</th>
</tr>
</thead>
<tbody>
<tr>
<td>死活監視</td>
</tr>
<tr>
<td>トラフィック監视</td>
</tr>
<tr>
<td>ログ監視</td>
</tr>
<tr>
<td>死活監視</td>
</tr>
<tr>
<td>トラフィック監視</td>
</tr>
<tr>
<td>ログ監視</td>
</tr>
<tr>
<td>死活監视</td>
</tr>
<tr>
<td>トラフィック監視</td>
</tr>
<tr>
<td>ログ監視</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>情報漏洩</th>
</tr>
</thead>
<tbody>
<tr>
<td>既存校内ネットワークへの接続の禁止</td>
</tr>
<tr>
<td>既存教育インタラネット経由でのインターネット接続の禁止</td>
</tr>
<tr>
<td>クラウド利用には、WAN回線を新設に整備</td>
</tr>
<tr>
<td>校内サーバーへの個人情報登録及び配置の禁止</td>
</tr>
<tr>
<td>クラウドへの個人情報登録及び配置の禁止</td>
</tr>
<tr>
<td>既存校内ネットワークと分離した専用ネットワークの整備</td>
</tr>
<tr>
<td>校務系と教育系のLANの理論的な分断</td>
</tr>
<tr>
<td>通信の暗号化</td>
</tr>
<tr>
<td>保管場所の施錠</td>
</tr>
<tr>
<td>認証システム及びアクセスコントロール</td>
</tr>
<tr>
<td>HDD暗号化</td>
</tr>
<tr>
<td>USBデバイス制御</td>
</tr>
<tr>
<td>ログ取得</td>
</tr>
<tr>
<td>遠隔管理サービスを利用した遠隔ロックやデータ削除</td>
</tr>
<tr>
<td>警備会社等による警備の強化</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>機器脆弱性</th>
</tr>
</thead>
<tbody>
<tr>
<td>脆弱性対策ファームウェアによる対応</td>
</tr>
<tr>
<td>脆弱性対策ファームウェアによる対応</td>
</tr>
<tr>
<td>セキュリティパッチ対策</td>
</tr>
<tr>
<td>セキュリティパッチ対策</td>
</tr>
<tr>
<td>警備会社等による警備の強化</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>各端末</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
</tbody>
</table>
```

4.4. 学校でICT環境を低コストで運用するための要件

4.4.1. 効率的な運用方法

学校のICT環境を低コストで運用するための要件について整理する。1人1台のICT環境においては、タブレットPCや電子黒板、各種ネットワーク環境が整備された以降についても、ICT環境を維持管理するための経費が必要となる。実証校でICT環境を運用する際の代表的な経費の內訳を以下に示す。

表 4-30 年間に必要な運用コストの内訳

<table>
<thead>
<tr>
<th>項目</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>定期的に支払いが必要なもの</td>
<td>ICT機器のリース料（タブレットPCや電子黒板のリース料（レンタルの場合はレンタル料、購入の場合は不要））</td>
</tr>
<tr>
<td>サーバー利用料</td>
<td>校外にサーバーを設置する場合にサーバー運営業者に支払う利用料</td>
</tr>
<tr>
<td>保守サービス料</td>
<td>タブレットPC、電子黒板、サーバー等の保守サービス料</td>
</tr>
<tr>
<td>ネットワーク回線使用料</td>
<td>インターネットにアクセスするための回線使用料金</td>
</tr>
<tr>
<td>アプリケーション・教育コンテンツ利用料</td>
<td>年間契約のアプリケーションや教育コンテンツの利用料</td>
</tr>
<tr>
<td>人件費</td>
<td>ICT支援員の人件費</td>
</tr>
<tr>
<td>年度更新費</td>
<td>年度更新時に行う環境設定等の作業を実施するための費用</td>
</tr>
<tr>
<td>有償修理の修理代金</td>
<td>タブレットPC等のICT機器の修理代金</td>
</tr>
<tr>
<td>消耗品</td>
<td>プロジェクターのランプ、電子ペンの電池、キーボードの電池等の消耗品</td>
</tr>
<tr>
<td>追加購入機材</td>
<td>必要に応じて購入した、電子ペン、ウェブカメラ、マイク、無線LANアクセスポイント、予備のACアダプター等の機材</td>
</tr>
</tbody>
</table>

ICT環境を低コストで運用するためには、上記の経費をできるだけ削減することが求められる。運用コストの中で大半を占めるのは、ICT機器のリース料である。1人1台環境を整備するためには、教員と生徒の人数分のタブレットPCとクラス1台分の電子黒板が必要となる。実証校の中には、コスト削減を目的として民間のデータセンターで運用していたサーバーを、地域の情報センター内に移行しているところもあるよう、サーバー利用料については、教育委員会や地域が既に整備しているインフラを利用することで削減が可能となる。

ICT機器の保守サービス料や故障した際の修理費用は比較的コストが大きい。ある実証校では、ICT機器の保守点検等にかかる費用の総額はICT機器のレンタル料の約4分の1程度にもなる。特に落下等の過失によるタブレットPCの破損については通常の保守対象外となり、有償修理させるを得ないため、運用コストをできるだけ削減するためには、ICT機器の破損をできるだけ防ぐことが重要である。

生徒に対してICT機器を大切に扱うよう、注意喚起を行ったり、タブレットPCに耐久性のあるカバーをする等の対策を行い、誤って破損しないような対策をとることが求められる。

また、有料のアプリケーションと類似した機能を持つフリーソフトを利用することで、アプリケーション購入費を削減しようと工夫している実証校も見られた。
4.4.2. 自立的な運用をするための方策

中学校と特別支援学校の実証は今年度で終了することとなる。実証事業終了後もICT環境を継続的に運用するための課題と対策について整理するため、昨年度に実証研究を終了した小学校の実証校2校に対してヒアリングを実施した。ヒアリングを行った実証校を以下に示す。

図表 4-31 ヒアリングを行った小学校の実証校

<table>
<thead>
<tr>
<th>実証校</th>
<th>担当した請負事業者</th>
<th>児童数</th>
<th>教員数</th>
<th>クラス数</th>
</tr>
</thead>
<tbody>
<tr>
<td>葛飾区立本田小学校</td>
<td>東日本地域</td>
<td>379名</td>
<td>26名</td>
<td>14クラス</td>
</tr>
<tr>
<td>佐賀市立西与賀小学校</td>
<td>西日本地域</td>
<td>276名</td>
<td>18名</td>
<td>13クラス</td>
</tr>
</tbody>
</table>

① 現在の運用状況

フューチャースクール推進事業の実証校は、実証事業が終了した小学校も含めて、今年度まで文部科学省の学びのイノベーション事業を実施しており、タブレットPCを使った授業実践は引き続き行われている。本実証で整備されたタブレットPCや電子黒板、ネットワークは実証事業終了後も変わらず、継続して運用されている。

本田小学校では、ICTを活用した授業の頻度は実証終了後も変わらず、むしろ昨年度より増えているとのことである。今年度の校内研究でもICT活用がテーマとなっており、多くの教員がICT活用を実践していた。また、今年度転入してきた教員については、ICTの利用についての研修は実施せず、同学年の教員からOJT形式で情報を共有していた。

西与賀小学校でも、ICTは実証事業中と変わらず活用されていた。転入してきた教員については、春休み中に実施される赴任者研修の中で、校内のICT環境についての説明や、電子黒板等の使い方のレクチャー、体験会等を実施していた。また、授業研究会を行い、授業の中での活用の仕方について理解を深めていた。

このように、両校とも実証事業終了後もICT活用が止まることなく、精力的に実践されていた。

② ICT機器の運用

タブレットPC等の機器については、既に整備してから4年が経ち、バッテリーの経年劣化によるタブレットPCの稼働時間の減少や故障が増加している。

本田小学校では、バッテリーの消耗が進み、タブレットPCの稼働時間が当初6時間程度だったものが約3時間まで半減した。また、タブレットPCが故障し利用できなくなった場合は、予備機を充当することで対応しているが、予備機の残数が少なくなったため、次年度は新1年生へのタブレットPCの配布を中止し、1学年分のタブレットPCを予備機として確保している。

西与賀小学校では、タブレットPCの故障が発生した時に備えて、機器修繕費の予算を計上していた。当初はタブレットPC修理費用として30台分を確保していたが、今年度は電子黒板が故障してしまい、計画していた予算額をオーバーしてしまった。また、故障時の代替機として、あらかじめ予備のタブレットPCを確保していたが、今年度の転入生が多かったために予備機が底をつき、一時的に教員機を児童用に設定変更して対応した。

このように、タブレットPC等を運用する際は、どうしても機材が故障することは避けられず、修繕費の確保や一定数の予備機は必要となる。学年によってタブレットPCの配布を中止することは、1人1台環境を維持する上で効果があると考えられるが、学年によってタブレットPCを利用できなくなることは、教員の間でも、活用できる教員と活用できない教員に二分されることになり、校内研究等を通じた学校全体の取り組みにしづらくなる可能性もあるという意見もあった。

なお、日ごろからタブレットPCを1人1台で利用したり、グループに1台利用して授業実践を行うことがあったが、タブレットPCの台数が少なくなったにもかかわらずタブレットPCの利用形態が変わらなかった。どちらの形態を選択するか

\(^{17}\)児童数、教員数、クラス数は平成25年5月時点の数
「教育分野における効果的なICT利活用を推進するための調査研究」報告書

るかは、あくまで学習目標を達成するために、ICTをどのように使うかという視点で決まり、1人1台環境が維持できないならと言って、代替手段としてグループ1台環境を選択することもなかった。

③ ICT支援員

ICT支援員については、実証事業終了後も引き続きサポートが受けられるよう、両校とも自治体での予算措置を行っていた。本田小学校では、ICT支援員が毎日1人常駐している。ICT支援員の主な業務はメンテナンスや突発的な機器の故障への対応、担任の要望に応じた教材準備等である。

西与賀小学校では、1人のICT支援員が3校をサポートしているため、1校あたり1週間に1.5日訪問対応していった。作業内容については、機器のメンテナンスやトラブル対応等を実施している。

両校とも、ICT支援員のサポートが減少したことにより、ICT支援員が行っていた設定変更や不具合対応、システム更新等の作業の一部を教員が行っていた。教員は子供の指導にあたることが本来業務であり、導入されている多数の機器の管理を行うことは、教員の作業負荷の観点から見ても困難である。

タブレットPCの管理や年度末年度始めに行われる年次更新作業の作業負荷が高いのは、個々の端末に対して個別に実施する作業のためだと考えられる。例えば、タブレットPCの管理やアプリケーションとしてクラウドサービスを活用する等、一括で管理できる仕組みを整え、管理コストをできるだけ削減することが強く望まれる。

ICT支援員が常駐するメリットとして、授業中にトラブルが発生した場合に、即座に対応できることが挙げられる。

授業中にもトラブルが発生すると、たとえそれが1台だけだったとしても、授業を行っている教員はトラブルに対処する必要があり、授業がストップしてしまう恐れがある。もし、その場にICT支援員が立ち会っていれば、教員が授業を進行している間に、トラブル対応ができる。このような観点から見て、ICT機器を安心して利用するためにICT支援員が果たした役割は小さくない。もし、ICT支援員の常駐が理想ではあるが、コスト面の厳しさも考慮すると、あらかじめ予備機を教室内に準備したり、その他代替手段を用意しておくことが求められる。
5. 将来における教育・学習環境のICT化による課題解決策の検討

平成22年度より実施されてきたフューチャースクール推進事業では、学校現場におけるICT環境を推進するため、児童生徒1人1台のタブレットPC等のICT環境を構築し、情報通信技術面に関し実証研究を行ってきた。

ただ、これまでの実証研究で明示した課題については、運用の工夫では解決できないものもあり、将来に向けた技術的な課題の解決と、誰にでも使いやすい最適なシステムが求められている。

ここでは、特にクラウドに着目し、1人1台の情報端末による教育の本格的な普及・展開を図るために障壁となりうる課題を抽出し、クラウドを活用した解決策や新たな活用案について検討することとしたい。

なお、このででの課題の抽出や解決策の検討にあたっては、4.2の図表4-18で示したネットワークメーカー及び請負事業者に対するヒアリング等を参考にした。

5.1. クラウドの定義と利点

クラウドの活用案の検討を行う前に、クラウドについて改めて定義を行い、一般的にどのようなメリットが見込まれるのかを以下に整理する。

クラウド・コンピューティング(クラウド)とはネットワークに繋がっている複数のデータセンター等のサーバーから、コンテンツやデータ、それを動かすアプリケーションを、必要な時に必要でなければPC等に取得して作業ができる仕組みのことを指し、利用者がその所在地を意識せず利用できるサーバー群を「雲(クラウド)」に例えたことから、「クラウド・コンピューティング」と呼ばれている。また、クラウド・コンピューティングの形態で提供されるサービスのことをクラウドサービスと呼んでいる。

クラウドにおけるサーバーの設置場所としては、地方公共団体や教育委員会等が自らの施設内に設置する場合や、民間事業者等が運営するデータセンターの機器を利用する場合がある。

教育委員会等の施設内に設置する場合、教育委員会自身がサーバーの運営主体となるのが一般的である。また、データセンター内のサーバーを利用する場合は、運営は教育委員会等が行う(データセンター寄託型)か、運営自体も民間事業者に委託する(民間事業者委託型)かに分類される。

民間事業者委託型の場合、不特定多数のユーザーに提供されるパブリッククラウドや、共通した目的を持つ特定の複数のユーザーに対して提供されるコミュニティクラウド、特定のユーザーにのみサービスが提供されるプライベートクラウド等の形態がある。下記に、クラウドの分類を示す。

<table>
<thead>
<tr>
<th>運営主体</th>
<th>学校</th>
<th>教育委員会・自治体等の公的機関</th>
<th>民間事業者等</th>
</tr>
</thead>
<tbody>
<tr>
<td>学校</td>
<td>自前設備(校内サーバー)</td>
<td>① 自前設備運用型 (教育委員会や自治体内にサーバーを設置)</td>
<td>③民間事業者委託型 A: パブリッククラウド(不特定多数のユーザーに共有される) B: コミュニティクラウド(特定の複数ユーザーに対して提供される) C: プライベートクラウド(特定ユーザー向けに提供される)</td>
</tr>
<tr>
<td>サーバー設置場所</td>
<td>教育委員会・自治体等の公的機関</td>
<td>②データセンター寄託型 (ホスティング)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>民間事業者等</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
このうち①②③を広義のクラウドと呼び、その中でも特に③のデータセンター等に設置されているサーバーを使用して民間事業者等が運営する形態を、一般的にクラウドと呼んでいる。また、クラウドの利用方法としては、クラウド上のサーバー環境を利用して、その上で利用者がシステムを構築する形態や、民間事業者等がクラウド上のサーバーを使ってシステムを構築し、利用者がネットワーク経由でサービスを利用する形態がある。

以下に、クラウド環境を利用するメリットについて述べる。

① サーバーの管理・メンテナンス性

クラウドは一般的に、サーバーをデータセンター内に設置するため、利用者が高くセキュリティな場所を確保したり、安定した電源の供給や空調設備等を提供する必要がない。また、管理やメンテナンスに関する人員の確保も不要である。さらに、データセンターでは、サーバーの管理を専門とする人員が管理やメンテナンスにあたるため、一般的には自前で運用するよりも、効率よく運用することが可能である。

なお、クラウドにおけるサービスの内容や品質はSLA（サービスレベルに関する品質保証）に明記されることが多く、契約書という形で品質が保証されている。クラウド利用者は、機能とコストのバランスを考慮して、利用者が求める品質のサービスを選択することができる。

② セキュリティ、データ保存

データセンターは通常、地震や津波等の災害に強い場所に建設されており、十分な災害対策が行われている場合が多い。また、クラウドサービスによっては、データセンター自体が離れた複数の拠点に分散されており、一方の拠点が何らかの理由でダウンしたとしても、もう一方のサーバーで継続して運用できるものもある。

③ 拡張性、柔軟性

クラウドでは、サーバー仮想化技術を利用して、サーバー機能を効率的に利用者に提供することが多い。

サーバー仮想化技術とは、サーバーを構成しているCPUやメモリ、ディスク等を物理的な構成に依存することなく、サーバー機能を論理的に分割して利用する技術とのこと、1台の物理サーバーをもとに複数台の仮想サーバーを作り、利用者に提供することができる。

例えば、学習環境を整備するために複数のサーバーが必要になったとしても、サーバー仮想化技術を利用することにより、物理的なサーバーの台数を削減して、効率よく資源を利用することができる。

また、仮想化されたサーバーでは、CPUやメモリ、ディスク等を物理的に追加・交換することなく、容易に変更することもできる。そのため、サーバー稼働後に予想外の負荷が判明したとしても、即座にサーバーの性能を増強することが可能となる。

さらに、例えば校務支援システムが成績処理を行う学期末や年度末に多く利用されるように、利用する機能によっては、時期によって大きく負荷が上下するものがある。物理的なサーバーを使用する場合、そのピーク時の負荷に対応した性能のサーバーが必要となるため、通常時の使用にとっては過剰とも言える性能のサーバーを準備しなければならない。仮想化技術を使うことで、ピーク時ののみ一時的に性能を増強することもできるため、コストを抑えて、必要な時にだけ柔軟にサーバーの性能を増強することも可能となる。

④ マルチデバイス

クラウド上で提供されるサービスの多くは、利用者の環境に依存することなく簡単に利用してもらうため、標準的なHTML技術を利用して、利用者はブラウザ等を介して利用することが多い。このような技術を利用すると、個々の利用者が持っている端末のOSや環境の違いを考慮することなく、どのような端末でも等しくサービスを利用することができる。

⑤ 情報漏洩のリスク軽減

ブラウザ等を介したサービス利用の場合、データはクラウド上のサーバーで管理されており、利用者の端末内にはデータが残らない。そのため、端末が盗難されたり紛失したとしても、端末内からデータが抜き出される恐れが少ない。したがって、パスワードが端末上に残っている場合等の問題を除き、情報漏洩のリスクは比較的少ない。
場合が多い。

6 サービスの管理
通常、アプリケーションのバージョンアップや設定を変更する場合、個々の端末に対して設定を行う必要があるが、クラウド上でサービスを利用する場合、バージョンアップやシステム変更は全てサーバーに対して行われるため、利用者は常に最新の状態のシステムを利用できる。

7 アクセスが容易
クラウドサービスはネットワーク上で提供されるサービスのため、利用者がネットワークに接続できる環境があれば、どこからでもサービスを利用することができる。

8 共有が可能
どこからでもサービスを利用することが可能なため、テレビ会議やデータ共有等、離れた場所にある利用者同士が同じサービスを共有して利用することができる。同じサービスを利用することで、場所の制約がない活動が容易となる。

9 コスト
パブリッククラウドやコミュニティクラウドの場合、1つのサーバー資源を独占するのではなく、他の利用者と共同で利用することになるため、1つのサービスに関するコストを複数の利用者で負担することになる。また、システム管理や設備維持にかかる人員・設備コストも削減されるため、自前設備を運用するよりもコスト削減効果が生まれやすい。
5.2. 教育・学習環境のICT化に関する課題の整理
これまでの実証研究を通じて判明した様々な課題について整理し、クラウドを活用した1人1台の情報端末による教育の本格的な普及・展開のための検討材料とする。

(ア)サーバーの運用管理、コスト
1人1台のタブレットPCを利用した学習を実現するため、多くの実証校では校内にサーバー機器が設置されており、その中で、認証サーバー・ファイルサーバー・ウイルス管理サーバー・ウェブフィルタリングサーバー・授業支援システム用サーバー・コンテツ配信用サーバー等の機能が稼働している。実証校では、管理面や設備面から校内サーバーをPC教室や相談室、印刷室等に設置したが、それらの部屋はサーバーを保管する目的で作られただけではなく、本来の部屋の利用に支障が出る可能性もある。
また、限られた学校のみで実証研究を行う本事業では、管理上、学校内にサーバーを設置することも有効だが、学校ごとに個別に管理作業を行う必要があり、今後、1人1台タブレットPC環境が広く普及される場合には、煩雑で作業効率が悪い。学校現場に1人1台タブレットPC環境が広く普及した際、煩雑な管理作業を誰が担当するのか、また、それに係るコストをどう負担するのかは大きな課題となる。

(イ)サービス管理
年度末年度始めの年次更新作業では、生徒や教員のアカウントの更新作業が作業時間の多くを占めているが、アカウント更新作業はOSレベルでの作業に加え、タブレットPCにインストールされている複数のアプリケーションに対しても行う必要があり、非常に手間と時間がかかる。
また、アプリケーションは不具合の修正やバージョンアップのため、導入後も定期的にプログラムの修正作業を行うことが多い。プログラムの修正作業は、導入されているタブレットPC全台に対して行うものであるので、作業負荷が高い。
そのため、これらのサービス管理を一括で処理できる仕組みの導入が求められる。

(ウ)アプリケーションの連携
本事業では、デジタル教科書等の教育コンテンツ、デジタルノート・ドリル教材・協働教育アプリケーション等のアプリケーションが授業で利用された。しかし、個々の教育コンテンツやアプリケーションは別々に導入されたものであり、デジタル教科書やデジタルノートに書き込んだ内容やドリル教材で学習した内容等は、個々のアプリケーションごとに分散されて保存、管理されるため、生徒が学習の振り返りを行う際に不便である。
また、実証研究では、アプリケーションごとに同様の機能が実装されており、ユーザーア・インターフェースの違いから、利用者が混乱する場合があった。例えば、アプリケーションごとにデータの保存場所が異なっていたり、デジタル教科書や電子黒板に、同じような拡大・縮小機能や板書書き込み機能があり、利用する際に混乱した例があった。
また、アプリケーションごとにログインが必要な場合、各アプリケーションを利用する度に、ユーザーIDとパスワードを入力する必要があり、それが手間となってしまうことで、アプリケーションの利用率が低下する可能性もある。

(エ)教員支援
ICT機器を導入した当初は、教員自身が操作に不慣れなため、教員研修を通じて機器の操作方法を理解し、授業での利用方法について学ぶ必要があった。また、実証研究の期間中も、教員間やICT支援員とコミュニケーションをとり、総合的にICT機器の利用方法について学ぶ必要があった。ICT機器の活用により効率的で効果的な学習を行うことができるが、その活用方法を研修を通じて具体的にイメージしておく必要がある。
また、教員がICTを利用して授業を行う場合、自作教材等の活用も有効な手段であるが、現状では作成教材を
他の教員と共有して、再利用を促すような仕組みが不足している。
このように教員のICT活用を支援するような体制や仕組みの構築が必要だと考える。

(オ) 学校と家庭との連携
タブレットPCを利用して学校と家庭とが連携して学習される際、自宅での予習や復習に備え、家庭でも授業で利用したデジタル教科書やデジタルコンテンツ、授業中に書き込みを行ったデジタルノートやワークシートの内容を閲覧できる必要がある。
一部の実証校では、タブレットPCを家庭へ持ち帰って学習したが、毎日タブレットPCを持ち帰って、日々の予習復習等に活用するまでには至ってはいない。これは、タブレットPCの電源容量不足や生徒の持ち帰り時の負担等という端末の問題が大きい。そのため、学校と家庭間のデータの連携等、クラウド環境等を利用した学校と家庭がシームレスタイムに繋がった学習環境の整備が求められる。

(カ) 多様化したデバイスへの対応
タブレットPCは、現在まさに市場が拡大しつつある段階には、様々なOSを搭載した、様々な形状のデバイスが次々と登場しており、これらの上で動作するサービスも多様化している。
1人1台タブレットPC環境が広く普及する段階においては、タブレットPCの調達方法も、自治体が整備するものから家庭で準備するものまで多様化することが考えられる。特に、児童生徒が家庭で使用しているタブレットPCを学校に持ち込んで学習に利用するBYOD（Bring your own device）といった形態が一般的になる可能性もあり、そのような状況下では、学校現場で利用されるタブレットPCが児童生徒によって異なることになる。
また、デジタル教科書やドリル教材等の教育コンテンツや、協働教育アプリケーション等のアプリケーションは通常、OSが異なると利用できず、画面サイズ等のタブレットPCの仕様の違いによっては、表示内容や挙動が大きく変わる場合もある。
このように端末が異なる状況下では授業での利用に支障が生ずることとなり、多様化したデバイスへの対応は急務であるといえる。
5.3. 課題解決策の提案

上記に整理したクラウドサービスの利点、教育・学習環境のICT化に関する課題を踏まえ、児童生徒が1人1台のタブレットPCを授業等で活用するために、クラウド上でアプリケーションや教育コンテンツ等を配信するためのサービス（以下、教育プラットフォームと呼ぶ。）を構築することを提案する。本事業で明らかになった課題の多くは、クラウドを活用することで解決することができ、1人1台の情報端末による教育の本格的な普及・展開を促進できると考えられる。

その理由や、教育プラットフォームが備えるべき要件について、以下に述べる。

【サーバーの運営管理について】

1人1台のタブレットPCを利用した学習環境を構築するために、多くの実証校で校内にサーバーが設置されているが、学校単位でサーバー運用管理する現状の形態は、学校側の負担が大きいため、サーバーはクラウド上で運営することが望ましい。管理やメンテナンスが容易なため、学校側の負担を軽減でき、加えて、障害や災害に強いことも、クラウドを選択する理由の一つである。

近年は、大学で運用されているサーバーをクラウド上に移行するという事例が増えている。中には十数万人の教員、学生が利用するサーバー全てクラウドに移行するという大規模な事例も見られるが、クラウドに移行する要因の一つとして、校内で管理されているサーバーに障害が発生し、重要なデータが失われるリスクの回避がある。クラウドに移行することで、システム面のコスト削減に加え、運用管理を行う人員を削減することによる人件コストの削減も期待できる。

なお、児童生徒1人1台がタブレットPCを利用して学習するためには、教育コンテンツやアプリケーション等を利用することになるが、最大限にコストメリットを創出するため、プライバシー等の懸念があるシステム等の一部を除いて、他の学校や自治体等とシステムを共有するコミュニティクラウドを利用すべきである。コミュニティクラウドを利用し、アプリケーションや教育コンテンツ等を配信するための教育プラットフォームを構築することによって、多数の利用者でコストを「割り勘」することができる。システム面のコスト削減に加え、運用管理を行う人員を削減することによる人件コストの削減も期待できるので、現状のタブレットPCに直接インストールする形態に比べて低コストな環境を提供することができる。

また、災害対策の面からもクラウドの導入が望まれる。東日本大震災の際には、携帯電話や固定電話が利用できない状況においても、クラウド上にある災害用伝言板サービスやSNS等は稼働し続け、コミュニケーションの道具として大いに活躍した。大規模災害時には学校は避難所としての機能を求められることが多いため、学校にあるICT機器やネットワーク環境に加え、クラウド上のシステムを利用して、被災者等の情報受発信の手段を提供することも期待される。

なお、有償のアプリケーションや教育コンテンツを利用の場合、通常は自治体や学校単位でライセンスを購入して利用する。クラウド上の教育プラットフォームを利用して、インターネットを通じて不特定多数の利用者からアクセスされる可能性があるため、利用者はあらかじめ資格認証を行い、サービスを利用できる資格があるかどうかを特定する必要がある。

教育プラットフォーム上で提供されるサービスが多数ある場合、個々のサービスごとに利用認証を行うのは、利用者にとって煩雑な作業であり、サービス利用の妨げになる。そのため、教育プラットフォームにアクセスする際に、一度認証するとサービスの認証も自動的に行われる仕組み（シングルサインオン）を構築することが必要だと考えられる。また、教育プラットフォーム上で提供されるサービスは複数の開発メーカーが開発し、提供される可
能性もあるため、シングルサインオンの仕組みについては標準規格に則ったものを採用すべきである。
なお、アプリケーションの年次更新作業として、アカウントの更新作業が多くの比重を占めている。アカウント自体はそれぞれのサービスに依存するものではないため、アカウント管理を効率的に行うためには、教育プラットフォームが一元的にアカウントを更新し、サービス間で共通のアカウント情報を取り扱う仕組みを備えていると望ましい。

【アプリケーションの連携について】
タブレットPC等で利用するアプリケーションが、それぞれユーザーエンタフェースが異なり、また同等の機能が複数のアプリケーションで実装されている現状は既に問題となっており、利用者が操作に迷うことなく学習に集中できる環境を整備することが求められている。ユーザーインターフェースを統一するためには、アプリケーションや教育コンテンツの開発メーカーの協力が必要となるが、基本的な操作等については、メーカーを問わず共通のユーザーエンタフェースを提供すべきである。
また、ICTを活用した授業を行う際、1時間の授業の中で複数のアプリケーションや教育コンテンツを利用することで、より利用効果を上げることができる。例えば、デジタル教科書で、ある単元を閲覧している場合、それに連携するデジタル資料やドリル教材へのリンクを提供することで、利用者が様々なアプリケーションや教育コンテンツをシームレスに活用できる。クラウドでアプリケーションや教育コンテンツを提供することで、サービス間連携が容易に実現できると考えられる。

【教員支援について】
学習環境をデジタル化するメリットの一つに、デジタル教材は再利用しやすいことがある。一度作成したコンテンツは劣化せず、教材の配布が容易なため、教員同士での教材の共有が活発化できる。教育プラットフォーム上で教育コンテンツを配信することで、教員自らが作成した教材や指導案、授業動画等のコンテンツを他の教員と共有できる。また、クラウド上で構築することで、自らが所属する学校だけでなく、他の学校との共有も可能となる。他の教員が作成した指導案や教材等を再利用することで、教材の準備にかかる時間が短縮できるため、ICTの利用自体が促進され、また他の教員とのコミュニケーションの活性化も期待できる。

【学校と家庭との連携について】
授業で利用するアプリケーションや教育コンテンツがクラウド上から提供されると、ネットワークが接続されている場所なら、どこでも利用できることになる。校外学習や家庭でタブレットPCを持ち帰って学習することで、学習の幅を広げることができる。
家庭へタブレットPCを持ち帰った際は、授業で使ったデジタル教科書や書き込んだノートの内容を見て、予習復習に生かす等と考えられる。家庭での予習復習においても、豊富な情報にふれたり、実際に体験できないことをシミュレーションできる等、ICT機器を利用するメリットを享受でき、効果的な学習が期待できる。また、いわゆる反転学習のように、ICT機器を利用して学校と家庭をシームレスに結んだ学習にも利用できる。
家庭での利用を想定すると、教育プラットフォームには、生徒の学習成果を保護者が確認したり、学校からの情報発信や保護者との交流を促進するための機能が備わっていることが望ましい。学校で学習している単元に対応した教育コンテンツや自学自習用アプリケーションの提供、宿題や自主学習の成果をアップロードする仕組み等、学校と家庭がシームレスに連携して学習を促進できる仕組みを求められる。さらに、児童生徒が授業中に書き込んだノートの内容等、学習履歴を教育プラットフォームが管理し、学校外からも閲覧できる仕組みも必要となる。
なお、クラウド上で学習履歴を、いわゆるビッグデータとして統計的に蓄積、分析することによって、新たな価値が生み出せる。例えば、ドリル学習の結果について他の児童生徒のデータを含めて統計的に分析することで、学年の生徒の進捗状況や正答率等の比較ができ、個別の指導に活かすことができる。統計的な情報をもとに教育政策の立案等にも活用できる。
アメリカでは、実際に児童生徒のデータをビッグデータとして利用している事例がある。児童生徒の出欠データを個人が特定されないように加工した上で、各学校のデータを統計分析した結果、学校を一定の日数欠席した児...
童生徒は不登校になりやすいことが分かり、学校を複数回欠席した児童生徒の保護者には自動的にメールを送信する等の、適切な対応がとられるようになった。その他、例えば、インフルエンザで休んだ児童生徒のデータを統計的に分析することにより、流行を未然に防ぐ等、ビッグデータの活用が期待される。

【多様化したデバイスへの対応について】
タブレットPCには様々な機種やOSがあり、1人1台環境を構築する際、教育委員会や地方自治体、学校等で採用するOSや機種が異なることが予想される。しかし、同じようなアプリケーションや教育コンテンツを配信するために、OSや機種ごとにシステムを作り直すのではなく、自校で開発したソフトウェアをクラウドに配置する方法が考えられる。これにより、異なるOSや機種を搭載した多様な端末からも、同じような見え方、同じような挙動にすることが容易となる。

HTML5等のような標準的な技術が利用されるようになると、サービス開発ベンダーは同じものを複数の環境ごとに作る必要がなくなるため、サービスのコスト削減が図られる。また、利用者は、自分の使う端末を自由に選べるため、学校等で統一して導入された端末だけでなく、児童生徒が自ら購入したタブレットPCを学校に持ち込んで同じように利用するBYODも容易に実現できる。

【他校との交流について】
特に、生徒数が少ない離島やへき地の学校にとって、同学年の児童生徒との交流の機会が少ないことは重要な課題であるが、テレビ会議システムを活用することで、他校との合同授業や交流等の学校間連携が容易になる。また、テレビ会議システムに加え、クラウド版電子教科書やオンラインストレージを利用することで、遠隔交流時に使用する資料を共有する等、より交流の密度を高めることができる。これらのサービスについてはクラウド上のものを利用することで、どこからでも同じサービスにアクセスできるため、データの共有が容易になる。

また、一部の実証校でも運用されていた生徒用ポータルサイトについて、その範囲を拡張し、他校の生徒とのコミュニケーションを図る等の活動も考えられる。授業・学習の場面に加え、委員会活動や部活動等でのコミュニケーションも期待できる。このような取り組みは、単に他校とのコミュニケーションの手段にとどまらず、学校の管理の下で健全な情報受発信のマナーを学ぶことができるため、情報リテラシー教育の一環としても考えられる。

【災害時の利用について】
学校は地域の中核的な施設であり、災害発生時には教室や体育館棟が避難所として利用されることも想定され、学校のICT環境を被災者等に提供することが求められている。

前述のとおり、クラウドサービスが災害に強いという特徴は、東日本大震災でも実証されており、電話やメールがダウンしてつながなかった中、クラウドでサービスを展開しているSNS等を利用して連絡を取り合いという事例が多数あった。安否情報や避難拠点における必要物資等の情報共有ができる仕組みをクラウド上に構築することで、災害時にもダウンしない強固なサービスが利用できる。

【その他】
ブラウザ等を利用してクラウド上のサービスを利用すると、端末内にデータを保持する必要がなくなる。特に校務支援システム等を端末内に保管するのではなく、クラウドを経由して利用することで、端末の盗難やウイルスの感染等の理由による情報漏洩リスクを軽減することができる。校務支援システムもクラウド上から利用される環境であれば、授業と校務とのシームレスな連携も可能となる。
5.4. クラウドを活用する際の課題の整理

クラウド上に教育プラットフォームを構築する際に、課題となりうる点について、以下の通り、整理する。

【ネットワーク】
アプリケーションや教育コンテンツが直接タブレットPCにインストールされていれば、ネットワークが一時的に停止していても、サービスを利用することができる。ところが、授業等で児童生徒が日常的に利用するアプリケーションや教育コンテンツをクラウド上から配信すると、何らかの障害等でネットワークが停止した際、タブレットPCを利用した学習自体もストップしてしまうことになるため、ネットワークの信頼性がより重要になってくる。
また、アプリケーションや教育コンテンツのデータは授業中に一斉にダウンロードすることになるため、ネットワークに要求される帯域がより高くなる。本事業の多くの実証校では、校内に1Gbpsの高速ネットワーク網を構築していたが、クラウド上のサーバーにアクセスするためには、実測で数10Mbpsしかない外部接続用回線を通る必要がある。また、同時に複数の教室からクラウドにアクセスする際は、さらに条件が厳しくなる。現時点で学校に構築されたネットワークから、クラウドを日常的に利用するのは、かなり困難であると言える。

現状での学校内のネットワーク環境を踏まえると、各学校や自治体内にエッジサーバーを設け、アクセスされるサーバーを分散させるのが現実的な解ではないかと考えられる。エッジサーバーは定期的にクラウド上のコンテンツ等と同期され、クラウド上のサーバーとアクセスするのと同じデータを配信することができるため、ボトルネックとなりやすい外部接続用回線を通らずに、アプリケーションや教育コンテンツを利用できる。

【情報セキュリティ】
クラウド上の教育プラットフォームを利用する際には、児童生徒の氏名等のアカウント情報や学習履歴等のデータがクラウド上のサーバー内に保管されることになる。通常、自治体や学校は、それぞれで定められた情報セキュリティに則って環境を構築し、運用する必要がある。

多くの自治体の場合、個人情報の取り扱いについては、校内のサーバーで管理したり、クラウドを利用する際には、プライバートクラウドのみ利用が許可されることが多い。教育プラットフォームの仕組みや備えるべき機能、その上で配信されるアプリケーションや教育コンテンツについては、どの学校、どの自治体からも利用できることを望ましいが、プライバシーの懸念があるシステムについては、他の利用者と共存するコミュニティクラウドが利用できないことが予想される。この際、児童生徒の個人情報等機密データを扱うサービスはプライベートクラウドで運用し、必要な情報を教育プラットフォームから送受信させるようなクラウド間連携の仕組みを取り入れる必要がある。
また、タブレットPCを家庭等に持ち帰って利用することを前提とすると、悪意を持った第三者が教育プラットフォームにアクセスする可能性が拡大するとともに、例えばIDとパスワードのみの認証では不十分である可能性がある。

【著作権】
教育プラットフォームは、教員が自作したデジタル教材等のコンテンツの共有プラットフォームとしても活用できる。しかし、教員がコンテツを作成する際に、インターネット等から写真等を利用し、それを他の教員と共有することは、著作権上許されない可能性が高い。

著作権法第35条で、学校等の教育機関において、その公務性から例外的に著作権者の了解を得ることなく自由に利用することができる。ただし、現行の著作権法では、教室内で行う教科の範囲に限り、教科書等をコピーして学習することは許可されている。クラウド環境でのコンテンツデータの公開や共有については、著作権法の例外規定の解釈を明確にし、また見直しを検討されるべきであると思われる。
5.5. その他の取り組み
総務省では、本調査研究のほかに「教育分野における最先端ICT活用に関する調査研究」「クラウド環境下におけるサーバ間データの集約及び配信・管理の実証」を実施しており、教育分野におけるICTの活用を推進する上での課題に対して、技術的な検証を行っている。
それぞれの事業の中で、上記で提案したようなクラウド上の教育プラットフォームの構築にあたって、参考となる取り組みについて整理する。

5.5.1. 教育分野における最先端ICT活用に関する調査研究
本事業では、クラウド・コンピューティング技術を最大限に活用した教育ICTシステムの構築に向けて、新たな技術を取り込むための知見の収集を目的としている。

① クラウドサービス利用時のボトルネック
クラウド上の教育プラットフォームから児童生徒の持ちタブレットPCへの教材配信が、全国の学校に対して行われることを想定し、タブレットPCとクラウド上のサーバーとの通信速度について、どの要素がボトルネックになり得るのか検証を行った。
その結果、校内LANやインターネット回線の帯域幅はもちろんのこと、タブレットPCやクラウド上のサーバーの性能やコンテンツのデータ量やプログラムの構成が影響する可能性が判明した。一旦、機器を調達してしまうと、ネットワーク回線やハードウェアの性能を増強することは難しいが、コンテンツのデータ量やプログラムの設計等を見直すことで、問題解決や性能の向上が図れるということを意味している。今後、教育プラットフォームや、その上で配信される教育コンテンツを構築する際は、開発当初から性能向上を目指した設計を行うことが求められる。

② 標準化技術（HTML5）の利用
教育プラットフォームや教育コンテンツを、OSや端末に依存しない標準化技術を用いて開発するための方策についても検証した。ここでは標準化技術としてHTML5を利用した。
従来は、教育コンテンツをHTMLで配信するためには、サーバー側でデータを準備し、タブレットPCに送信する方法が一般的で、タブレットPC内の表示を変更する場合は、再度サーバーから画面全体のデータを送る必要がある。一方、HTML5では、JavaScriptにより、ある程度の処理や表示をタブレットPC側で行うことができるため、サーバーへの送受信を最小限に控えることができる。
検証の結果、HTML5を利用することで異なるOSでも同じように操作でき、端末の画面解像度が異なる場合でも、画面サイズに応じて、プログラムを書き換える必要なく、レイアウトが調整されることが分かった。
このように、クラウド上の教育プラットフォームの開発にあたって、HTML5の有効性が検証されたが、一方でタブレットPCの種類の違いによって、HTML5への対応状況がそろわず、同じレイアウト、同じ動作ができるようにプログラム側で対応した箇所も見受けられる等、HTML5の全面的な利用には、まだ課題が残ることも分かった。

5.5.2. クラウド環境下におけるサーバ間データの集約及びデータ等配信・管理の実証
本事業では、将来にクラウド上に教員が利用できる、教育コンテンツ共有システムを構築する際に必要な要件をまとめることを目的としている。そこで、ファーチャースクール推進事業の中学校の実証校8校等の中で、自作教材や授業記録、授業風景の動画等のデジタルコンテンツデータを共有できる仕組みをクラウド上に構築し、その利用実績の分析や各実証校へのヒアリングを行った。

① デジタルコンテンツの共有についてのニーズ
実証校へのヒアリングでは、コンテンツを共有できる環境を自分の授業に役立つコンテンツの取得に使いたいという回答が80%以上を占め、公開されているコンテンツを利用したいというニーズが大きいことが分かった。
② デジタルコンテンツを共有する際の課題

コンテンツをクラウド上にアップロードする際、その公開可否を判断したり、生徒のプライバシー保護のためにモザイク処理をかける等の編集作業に大変時間がかかっていたことが分かった。また、教員からは、コンテンツデータに関する権利関係やセキュリティに対して不安を感じており、コンテンツデータの利用や登録に積極的になれないという意見も見られた。

今後、クラウドを活用して、学校を超えたコンテンツの共有を図るためには、共有する仕組みの整備だけでなく、権利や個人情報等に対する研修の強化等の総合的な対策が必要となる。
6. 諸外国の教育情報化に関する調査

6.1. 教育情報化に関するニーズの調査

「将来における教育・学習環境のICT化による課題解決策の検討」でも記した通り、児童生徒1人1台のタブレットPC等のICT環境の実証研究により、将来向けた技術的な解決方案が明らかとなってきた。

天然資源に乏しい我が国では、自国の発展を図る上でこのようなノウハウを他国に輸出することは極めて有効であり、これまでの検討を踏まえ、教育ICTシステムの海外展開の方策を検討するため、諸外国の教育情報化に関するニーズ調査を行うこととした。

以下に、調査対象国の現状と課題を整理し、そこから把握しうる潜在的ニーズについて検討する。ただし、本調査研究はあくまで、「将来における教育・学習環境のICT化による課題解決策の検討」であり、諸外国のニーズ調査は普及推進のための副次的なものである。

そのため、ニーズ調査は、諸外国のうち教育情報化に関するニーズが高いと思われる国を対象に、文献調査を中心として実施したものであり、詳細のニーズを把握するに際しては、本格的な現地視察や各国の教育関係者等へのアンケートの調査等を通じて実行されることが望まれる。

6.1.1. 各国の状況

教育ICTシステムの輸出を検討する上で、我が国との関係を考慮し、調査対象国を以下の条件に従って抽出することとした。

<table>
<thead>
<tr>
<th>条件</th>
<th>理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>一定期間の義務教育制度が確立していること</td>
<td>輸出を図る上ではある一定の市場の存在が必要であり、ある程度の期間の義務教育制度（学校制度）が確立されている必要があるため</td>
</tr>
<tr>
<td>人口が5千万人以上いること</td>
<td>ICT教育先進国と考えられている韓国の人口を参考</td>
</tr>
<tr>
<td>1人あたりの名目GDPが5,000ドル以上であること</td>
<td>対象国自体に海外からの輸入を受け入れる体力が必要なため</td>
</tr>
<tr>
<td>アジア圏内であること</td>
<td>文化や生活習慣に類似点が多いため</td>
</tr>
<tr>
<td>ICTに関する何らかの政策が打ち出されていること</td>
<td>ICTが政策として根付いていなければ、外部からの輸入も期待できないため</td>
</tr>
</tbody>
</table>

上記条件を前提として、「タイ」「フィリピン」「インドネシア」「マレーシア」「トルコ」を調査対象とすることとした。

なお、韓国やシンガポールといったわゆる教育ICTの先進国は、既に多くの国内企業や政府機関が教育ICTシステムの開発を進めており、上記5か国に比べ参入障壁が高いため、輸出を想定した調査対象国からは除外することとした。

また、フィリピンやインドネシアは、1人あたりのGDPが5,000ドルを大きく下回っているものの、人口が多く、一定の市場が期待できる上、アジア圏内と比較的近い国であることから調査対象に含めることとした。
<table>
<thead>
<tr>
<th>国名</th>
<th>人口19</th>
<th>1人あたりGDP20</th>
<th>教育制度21</th>
<th>就学率21</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイ</td>
<td>66.8百万人</td>
<td>5,478ドル</td>
<td>・6・3・4制（義務教育9年間）</td>
<td>・小学校:103.88%</td>
<td>・OTPC政策を推進し、1人1台のタブレットPCを配中</td>
</tr>
<tr>
<td>フィリピン</td>
<td>96.7百万人</td>
<td>2,358ドル</td>
<td>・初等、中等4年（義務教育6年間）→2012年から2年延長されて12年（初等教育6年、中等教育6年）</td>
<td>・初等教育:89.89%</td>
<td>・IT21を掲げ、児童生徒のICT環境の整備を推進・SchoolNetプロジェクトによるデジタルデバイドの解消</td>
</tr>
<tr>
<td>インドネシア</td>
<td>246.9百万人</td>
<td>3,471ドル</td>
<td>・6・3・4制（義務教育9年間）</td>
<td>・中等教育:60.88%</td>
<td>・知識基盤政策の下、教育インフラの「JARDIKNAS」や、教育用TVプログラム「TVE」を整備</td>
</tr>
<tr>
<td>マレーシア</td>
<td>29.2百万人</td>
<td>10,050ドル</td>
<td>・6・3・2・2・3制（義務教育6年間）</td>
<td>・小学校:97.96%</td>
<td>・MSCの一環として、スマートスクール構想が進行・「1BestariNetプロジェクト」により2013年3月までに、1万校にブロード環境を提供予定</td>
</tr>
<tr>
<td>トルコ</td>
<td>74.0百万人</td>
<td>10,605ドル</td>
<td>・4・4・4・4制（義務教育12年間）</td>
<td>・中学校:86.11%</td>
<td>・FATIHプロジェクトが進行中</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>図表 6-2 調査対象国の基本情報</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>人口</td>
</tr>
<tr>
<td>1人あたりGDP</td>
</tr>
</tbody>
</table>

6.1.2. タイの教育ICTの現状と課題

① 現状22

タイでは、2010年に「ICT2020」を内閣承認し、次の10年の国家IT政策のフレームワークを決定した。これに沿って急速にブロードバンド環境が整備されている。また、2012年より、情報通信技術省と教育省がOTPC（One Tablet per Child: 子供一人にタブレットPC一台）プロジェクトを実施した。

デジタル教科書デバイスを無償配布し、子供たちの学力を向上させることによって国力を増強していくことを目的したもので、インラック首相が選挙の際に掲げた公約の一つである。2012年10月に約90万台のタブレットPCが全小学1年生に無償配布された。このデバイスは、この1年生が2年生に進級してそのまま使用することとなっている。また、2013年度の新小学校1年生約58万人、及び新中学校1年生約65万台を配布することを予定している。コンテンツは、将来的にオンラインで配布、インストールするが、無線環境が整備されるまでは、コンテンツをマイクロSDカードに入れて、教員に配りインストールする。

デジタル教科書デバイスの起動画面には、「ヌン・コンピューター・タブレット・トー・ヌン・ナックリヤン」(One Tablet per Child; OTPC···子供一人にタブレットPC一台)が表示される。学校では補助教材として利用され、デジタル(PDF)化した教科書と、ラーニング・オブジェクトと呼ばれるAndroid上で動作する教材が搭載されている。

ラーニング・オブジェクトは、国語、算数、科学、社会・宗教・文化等が用意され、その作成は情報通信技術省傘下にある国立ソフトウェア産業促進機構(SIPA)が担当している。公式教科書のカリキュラムに一致していることが前提で、同機関から大学にて依頼し制作している。カリキュラムは10年に一度改正されるので、このラーニング・オブジェクトは、頻繁に開発する必要がない。

デバイスの保管場所を学校・家庭のいずれにするかは校長の判断によって異なる。持ち帰りが許される場合、端末の番号と児童の名前を学校が控えた上で、保護者が誓約書に署名する必要があり、端末を紛失した場合は、両親が賠償しなければならない。

通信環境に関しては、タイ全土のWi-Fiの普及が前提となる。この上で、すでにWi-Fiが整備された地区から、学校につき1クラス、50人を想定してシステムを提供している。3年以内には、無料Wi-Fiシステムを構築する予定である。

② 課題22

発展途上国であるタイでは、都市部と地方でインフラ整備等に関し大きな格差が生じている。OTPCは、上述の通り全土のWi-Fiの普及が前提となっており、機器の普及と並行したインフラの整備は大きな課題と言える。

また、デジタル教科書デバイスを配布することとしている一方、紙の教科書の内容の再検討を進める具体的な計画はないとされ、紙の教科書をPDF化するだけで、学習内容の蓄積やそれに応じたコンテンツの整備が求められる。

③ 現状及び課題から推測されるニーズ

上述の通り、タイでは1人1台のタブレットPCの政策が公表され、急速に教育の情報化政策が進展している。ただし、それらのデバイスには、教科書に準拠した補助教材用のアプリケーション（ラーニング・オブジェクト）がインストールされているものの、基本的にはPDF化された教科書が入っているのみである。

タイのように、首相の公約として急速に政策が進んだ国では、「まずは1人1台整備する」ことが最優先で整備が進められていると考えられるが、実際には「どのような目的でICTを活用するか」や、「授業でどのようなコンテンツを活用するか」が重要であり、「まずは端末の整備」の印象も否めない。

前章までで示した通り、今回の実証研究に限らず、我が国のコンテンツはデザイン、内容もさることながら、ネットワーク対応や学習履歴の保存、（将来的には）マルチデバイスの対応等、単に紙の教科書をPDF化したも
のと大きく異なり、非常に質の高いものと考えられる。
そのため、我が国で開発されている質の高いコンテンツを同国に輸出することは、同国の教育のICT化の現状に照らし、大きなニーズがあると推測される。今後は現地調査や学校関係者へのアンケート等により、そのニーズを検証していくことが必要である。
6.1.3．フィリピンの教育ICTの現状と課題

① 現状23

フィリピンは、人件費も安く、100%の外国資本企業の設立が可能で、セブシティ等のICT特区を整備してきたことから、90年代の前半より多くの企業がオフショア開発拠点を整備してきた。また、公用語も英語で、かつその発音の正確性についても高い信頼があることから、近年では英会話学校が多く設立されている。

フィリピン政府は1998年からの10ヶ年のIT国家戦略である「National Information Technology Plan for the 21ST Century (IT21)」を策定し、21世紀にフィリピンを“Knowledge Center in Asia”とすることを大目標に掲げ、2010年までに徐々にIT化を進めていくとしていた。

具体的には、①フェーズ1（～2000年：21世紀までに、フィリピン国内の全産業、政府機関、学校、家庭からITにアクセスするためのインフラを整備する）、②フェーズ2（～2005年：2005年までに、IT利用を日常生活に普及させ、フィリピン企業が競争力のあるIT製品を世界市場に提供できるようにする）、③フェーズ3（～2010年：2010年までに「アジアの知識センター」となる）、の3つのフェーズに分かれている。

学校教育については、全国全ての公立高校へのPC導入や全公立学校へのインターネット接続、電子図書システム等の整備を2010年までに達成することを目標としていた。ハードウェア導入やインフラの整備のほか、公立学校の教員がICTを使いこなすための研修等が課題となっている。

② 課題24

上述の通り、IT21政策で児童生徒のICT環境整備を掲げたが、アロヨ政権からアキノ政権の政策転換の影響もあり、実情は1人1台には至っていない。

また、フィリピンは近年急速に人口が増加しており、それに伴い生徒増、財政難に伴う「教科書（text book）不足」、「教員（teacher）不足」、「教室（teaching room）不足」が問題となっており、教員の数に至っては約4万人強不足していると言われている。

さらに、教員不足とともに教員の資質が低下していることも大きな問題といえる。教員の給料が低いために、他の業種や海外に流出してしまうため、優秀な教員不足であるとともに、優秀な教員が教育界から離れることによって、教員の全体の質が低下している実情がある。

また、ハードウェア導入やインフラの整備のほか、公立学校の教員がICTを使いこなすための研修等が課題となっている。

③ 現状及び課題から推測されるニーズ

同国は7,000以上の島で構成される群島国家であるため、IT21政策に基づいたインフラの整備を前提として、コンテンツ配信や遠隔授業といった均等的な教育を実現するICTシステムは、潜在的なニーズが高いと考えられる。

ただし、IT21政策が公表されたのはもう10数年も前のことであるが、急速な人口の増加や優秀な人材の他業種への流出等も重なり、教育の情報化に関するインフラが整備されているとは言い難い。加えて、同国では教員や教室といった授業で必要な基本的なインフラすらも十分に整備されていないため、潜在的なニーズは十分に考えられるものの、それが顕在化するのはしばらく先のことと思われる。

（参考文献）社団法人 日本機械工業連合会・財団法人 國際情報化協力センター 「平成16年度アジアにおける情報技術産業の状況及びIT人材の育成状況調査報告書」

23 「参考文献」社団法人 日本機械工業連合会・財団法人 國際情報化協力センター 「平成16年度アジアにおける情報技術産業の状況及びIT人材の育成状況調査報告書」
6.1.4. インドネシアの教育ICTの現状と課題

① 現状

インドネシアにおけるICT政策は、スハルト政権崩壊以降の頻繁な政権交代を受け、教育ICTの分野も含め交代の都度修正されてきた。現在は、2005年に策定された「Indonesia’s Knowledge Based Society 2025」であり、2015年までに情報化社会を、2025年までに知識基盤社会を実現することを目標としている。

また、2015年までに目指す情報化社会戦略を具体化したものが、「Indonesia ICT Blueprint」である。これは、ICTインフラ、電子政府、電子教育、ICT産業推進の4つの分野から構成され、電子教育の分野については、教育の全国ネットワーク「JARDIKNAS」や教育用TVプログラム「TVE」等の取り組みを通じて学校のICT化が推進されている。

「JARDIKNAS」とは、衛星を使った教育用のインフラネットで、文部省、地方教育委員会、小中高等学校及び大学等の約25,000を超える機関がVPNで接続されている。オフィス、高等教育、学校、研究機関、個人向けのメニューがあり、光の屈折やグラフィック、日食・月食等を学ぶことのできるシミュレーション、テスト問題データベース等の教育コンテンツを利用できる。「TVE」とは、インドネシア教育文化省が管轄する教育チャンネルで、インターネットでも視聴可能である。

インドネシアは13,000を超える島嶼部から構成されるため、これらのネットワークを活用し、地理的な制約を越えて、均質的な教育を国が保証することが強く望まれている。そのため、先日ICT拡張プログラムを実装するための教育予算の増額が国から発表されている。2013年を目途に40,000〜100,000の学校でインターネット接続を目指している。

② 課題

インドネシアは人口が多く、世界最大の群島国家であるため、小学校から高等学校まで、約200,000の学校が存在している。ICTはその地域的格差を埋める手段として大いに期待されているものの、インフラの整備も併せてICT環境が充実しているとは言い難い。

また、他のアジア地域と同様、教員の質、ICT環境の整備や教員の質に関する地域間格差が極めて高く、ままずはそのギャップを埋めることが強く求められている。

③ 現状及び課題から推測されるニーズ

インドネシアは世界第4位の人口約2.4億人を擁し、その約4割が20歳以下と若年人口の比率が非常に高い国である。そのため、昨今の経済成長により、急拡大する中間所得層は東南アジア最大と言われ、消費活動が急速に活発になると予測されているため、市場として大きな魅力を持つ。

離島が多く、ネットワーク整備の関係から対象が全国の小中高等学校とは言い難いものの、「JARDIKNAS」が整備されており、学校向けのコンテンツ発信という点に関しては、一定の教育インフラも有している。そのため、我が国で開発されている質の高いコンテンツを同国に輸出することは、将来的には大きなニーズが生じることと推測される。今後は現地調査や学校関係者へのアンケート等により、そのニーズを検証していくことが必要である。

（参考文献）一般財団法人国際情報化協力センター アジア情報化レポート インドネシア
6.1.5. マレーシアの教育ICTの現状と課題

① 現状

マレーシアでは、早くから国家戦略としてのICTの導入が進められている。マハティール元首相のスピーチ「vision2020」を発端として、1996年からMSC（Multimedia Super Corridor）Malaysia政策が推進され、国を挙げてICT化を推進することで産業基盤を確立することとしている。

当時世界に大きな衝撃を与えたMSCの一環としてスマートスクール構想が進められており、産業経済から情報化社会経済への移行を目指して、学校における教育と管理にICTを活用することとしている。

スマートスクールは、教材及び管理システムの整備、PC等のICT機器の整備、学校評価、ヘルプデスク等を内容とするもので、1999年の中学校88校のモデル校からスタートし、2010年までにおよそ10,000校を整備することを目指として進められた。

2010年現在、全国8,454校がスマートスクールとして認定されている。この認定を受けるためには、SSQS（SMART SCHOOL QUALIFICATION STANDARDS）に沿って、ICT利用率やICT活用指導力を有する教員の配備、ソフト稼働率等の基準をクリアしなければならない。更に、その利用率等で5段階の評価をうることとなっており（5が最差）、5が96校、4が2,412校、3が5,067校、2が6,62校、1が217校となっている。

また、「1BestariNet」という教育のICT化プロジェクトも並行して進められている。これは、安定した通信環境のほかに、教育コンテンツを提供するラーニングプラットフォームや学習端末を包含する取り組みで、2011年より始まっており、これまで以上に太い帯域で学校と家庭、教育クラウドとをつなぎ、クラウドを介して教育コンテンツや様々なデータの流通を行うこととしている。この1BestariNetを全ての小・中学校に対して2013年3月までに導入するのが当面の目標となっている。

② 課題

マレーシアは、その歴史的な背景から典型的な多民族国家であり、それに伴う経済格差も大きい。また、都市部と農村部の格差も大きいと言われている。そのため、国としての一体感を醸成するという側面からもMSCに代表される国家目標が打ち出されている。

スマートスクール構想が進められているが、そのような要因もあり、我が国同様全ての学校で均質な教育を受けられたり、均等のICT環境が整備されたりしているとは言い難く、デジタルデバイドが大きな課題となっている。

③ 現状及び課題から推測されるニーズ

課題となっている情報格差は、今後スマートスクール等の政策で徐々に縮小されることが期待されている。また、同国が打ち出しているMSCは世界で最も有名なICT政策の1つと言われており、急速にICT化が進んでいる国の1つである。

また、多民族性とは避けられないことから、市場としては様々なニーズが混在するニッチな市場の集合体であるといえる。インフラの整備を前提とするものの、このような状況下で我が国が誇るよりきめ細かいコンテンツを提供することは大きなニーズがあると推測され、今後は現地調査や学校関係者へのアンケート等により、そのニーズを検証していくことが必要である。

（参考文献）一般財団法人国際情報化協力センター アジア情報化レポート マレーシア
文教大学教育研究所紀要 諸外国における教育機器活用の現状と課題に関する比較研究 手嶋将博
6.1.6. トルコの教育ICTの状況

① 現状

トルコでは、ビジョン2023を掲げ、共和国建国100周年を向けて様々な投資が進んでおり、近年、教育ICT機器の整備という意味で大きな注目を集めている。具体的には教育の機会均等と、情報インフラの整備を目指し、教育省と交通・通信省が主導する国家プロジェクト「FATIH Project」が進行している。

このプロジェクトの一環として、「Smart Class」が提唱され、トルコ全土へのICT機器の投資が進んでいる。具体的には、2012年から2014年の3年間で約4万校の公立幼稚園、小学校、中学校、高校にある約62万の全教室へ電子黒板、タブレット端末を導入する予定である。

プロジェクトのパイロットフェーズは国内17州52校にタブレットPCや電子黒板が配備され、8,500台のタブレットPCが配布されている。2012年には中学校の全教室に電子黒板を8万5千台導入し、導入率は20%となった。今後さらなる整備が予想される。

② 課題

FATIHプロジェクトは、今後4年間で30〜40億ドルの投資が行われる予定の超大型プロジェクトであるが、その進捗は芳しくない。報道によると、教育省の活動報告書上では2012年に掲げられた5つの達成目標のうち、110の遠隔教育センターの設置を完成させたことのみであった。インターネット接続やPCの導入、電子黒板の導入等に関しては具体的な数値目標を大きく下回る結果であった。

また、教員及び児童生徒を対象に行われたアンケートでは、タブレットPCを活用した授業が、問題解決や創造性、批判的思考といった能力の向上において十分でないという結果が指摘されている。これは、我が国で認識されている1人1台の効果とは真逆のものであり、活用方法や活用事例が十分に検討されないまま導入が先行したと推測される。

③ 現状及び課題から推測されるニーズ

プロジェクトの現状やアンケート結果等から推測される通り、FATIHプロジェクトにおけるICT機器の導入は、「どのような目的でICTを活用するか」や、「授業でどのようなコンテンツを活用するか」について十分に検討されていないままに行われた印象が強い。

そのため、例えばeラーニングにより教員のICT活用指導場面を例示したり、指導案と連携したコンテンツの開発等に関しては大きなニーズがあると考えられる。進捗は十分ではないものの、本プロジェクトは国の威信をかけたプロジェクトであり、タブレットPCや電子黒板がこれから全く整備されないという状況を考えていく。ただ、具体的な活用方法を想定していない可能性が高く、「単に導入しただけ」となってしまう危険性は極めて高いと考えられる。

これらの状況から推測すると、我が国が誇る、よりきめ細かいコンテンツやサービスを同国に提供することは十分現実性があると考えられる。
6.1.7. 諸外国のニーズについてのまとめ

本調査では、いわゆる教育ICT先進国ではないが、これからICTがますます積極的に整備されるであろう国に注目し、日本の技術力の輸出に関連する潜在的なニーズを推測したものである。

今回の調査対象の5か国はいずれも国家プロジェクトとしてICTの整備を志向しているものの、教員の質の均質化や有効なコンテンツの欠如等の課題を有している。また、東南アジア諸国は予算に乏しく群島国家である場合も多く、インフラの整備も大きな課題となっている。

そのため、我が国で既に実用段階にある教育用コンテンツや遠隔授業等の取り組みは、十分に彼らのニーズに合致すると考えられる。また、日本のコンテンツメーカーは技術力が高いことに加え、元々教科書や教材開発を行ってきた企業がコンテンツを開発している場合が多く、教育内容や教員の指導方法等に熟知している。そのため、よりきめ細かなサービスを実現することができている。

なお今回は、東南アジアを中心に数か国の文献調査にとどまった。実際の輸出にあたってはさらに細かい情報が必要となるため、今後は実施調査等で現場の声を集めるとともに、北南米や欧州、アフリカ諸国等のニーズを把握することが望まれる。
6.2. 教育情報化に関する先進的な取り組みに関する調査

教育分野における効果的なICT利活用を推進するための調査研究
報告書

株式会社内田洋行

教育情報化に関する先進的な取り組みに関する調査

6.2. 韓国の教育ICTの現状

① 基本情報

韓国の教育についての概要を以下に示す。

図表 6-3 韓国の基本情報

<table>
<thead>
<tr>
<th></th>
<th>大韓民国</th>
</tr>
</thead>
<tbody>
<tr>
<td>人口</td>
<td>49.0百万人</td>
</tr>
<tr>
<td>1人あたりGDP</td>
<td>23,052ドル</td>
</tr>
<tr>
<td>教育制度</td>
<td>6・3・3・4制</td>
</tr>
<tr>
<td></td>
<td>(義務教育9年間)</td>
</tr>
<tr>
<td>就学率</td>
<td>初等学校: 98.2%</td>
</tr>
<tr>
<td></td>
<td>中学校: 99.9%</td>
</tr>
<tr>
<td>その他</td>
<td>カリキュラムは我が国の学習指導要領と同様の教育課程を政府が定めている。教科書は科目によって国定教科書と検定教科書が併用されている。</td>
</tr>
</tbody>
</table>

② 現状

韓国は伝統的に学問を重視する社会風土があり、大学進学率も約8割に達している。一方で、過度の受験競争等が社会現象にまでなっている。経済協力開発機構（OECD）による国際的な生徒の学習到達度調査（PISA）では、数学的リテラシーが5位、読解力が5位、科学的リテラシーが7位（20012年調査）と良い成績を収めている。また早くから教育の情報化が進められており、2009年にはPISAのデジタル読解力調査では1位となった（2012年3位）。

教育の情報化は、1996年より段階を追って実施され、第1段階が終了する2000年には、全国の小中高校のインターネット接続率が100％となり、教員1人1台等のインフラも完備された。また、2001年からは児童生徒用のPCの台数がさらに増えるとともに、その活用を促す政策が進められ、2011年度には、PC1台あたりの学生数は4.3人ととなっている（日本は2013年度に6.5人/台23）。

また、1996年からは、教育用デジタルコンテンツサービスである中央教授学習センター（EDUNET）が稼働された。EDUNETのサービスは大きく教員向けのサービスと学習者（児童生徒）向けのサービスに分けられている。教員向けサービスでは、授業資料に加え、教員研修に対する情報を簡単に得ることができる教員研修情報サービスや、他の教員等とコミュニケーションするためのコミュニティサービス等も含まれている。

また、教育科学技術部（日本の文部科学省にあたる。）は、教科書先進化政策の一環として「e教科書」事業を

31 http://www.mext.go.jp/a_menu/shoto/zyouhou/1339524.htm
発表し、2011年より「e教科書」の配布が開始された。この「e教科書」は、紙媒体の教科書をデジタル化して、PDFファイルにしたものである。著作権上の問題から、当初はCDとして制作され、無償で全国の小中高校生に配布されたが、2012年からはダウンロードにて配布できるようになった。ただしご、e教科書は単なる紙媒体の教科書をPDF化したものに過ぎず、従来の教科書との差別化があまり見いだせていないという指摘もなされている。

③ スマート教育推進戦略とデジタル教科書

2011年6月に、韓国国家情報化戦略委員会と教育科学技術部から「スマート教育推進戦略」が発表された。

スマート(SMART)とは、Self-directed（自己主導的）、Motivated（動機付け）、Adapted（個々の学習者に適した）、Resource enriched（豊富な学習資源）、Technology-embedded（最新の情報技術）の5つの大きなテーマを意味しており、この戦略により、ICT国家教育競争力を2015年までもに世界トップ10位、2025年には3位に上げるという目標が立てられている。2015年までに総額2兆2,280億ウォン（約2183億円）を投じる計画である。

スマート教育推進戦略の具体的な戦略としては、以下の5つが掲げられている。
①教育内容－デジタル教科書の開発と適用
②教育方法と評価－オンライン授業評価を活性化
③教育環境－教育コンテンツの自由利用と安全な利用環境づくり
④教員研修－教員スマート教育実践力の強化
⑤情報環境－クラウド教育サービスの基盤造成

スマート教育推進戦略の中で開発、適用されるデジタル教科書32は、前述の「e教科書」とは異なり、単なる紙媒体の教科書をデジタル化したものではなく、児童生徒が学習に必要な道具や環境を全て備えたオンライン学習システムといえる高機能なものである。すなわち、メモ、ノートやしおり機能に加えて、教科書内のコンテンツと連携した写真や映像、音声等の様々なマルチメディアコンテンツを視聴することもできる。さらに、参考書・問題集、学習辞典や用語辞典、様々なデータベースや学習コンテンツも連携したり、オンライン上で学習進度の確認や学習レベルの診断や評価を行い、学習目標達成度に応じて補充学習を行うための資料を提供する機能も備えている。このデジタル教科書は、クラウド上のEDUNETを通じて、2015年までに全ての小中高でデジタル教科書が導入される計画となっている。このような多機能な学習システムが開発された背景には、質の高い教育コンテンツを提供することで、児童生徒に対して塾等に頼らない均等で十分な教育機会を提供するという意図がある。クラウドを利用して、インターネット上にデジタル教科書にアクセスする方式を採用したことで、インターネットに接続できる環境があれば、いつでもどこでも学習ができ、教科書が更新される際も、データを入れ替える必要なく、常に最新の教育コンテンツを利用できる。また、デジタル教科書の導入に伴い、デジタル教科書を利用するための教員研修も強化される。

スマート教育推進戦略以前のデジタル教科書の計画では、紙媒体の教科書を完全廃止し、全てデジタル教科書を利用した授業を行う予定であったが、方針転換を行い、紙の教科書についても完全には廃止しないこととして、デジタル教科書を閲覧する端末についての支援も行われることになった。デジタル教科書のビューウォーについても、Windows、iOS、Androidそれぞれに対応したもののが提供されており、利用者が購入した様々なデバイスでも利用が可能となっている。

一方で、デジタル教科書については、教育コンテンツに関して著作権に関する制度基盤づくりが不十分なこと、デジタル教科書の開発に莫大な財源が必要とされること、ユーザーインターフェース設計が不十分な面があること、マルチメディアコンテンツが不足していること、デジタル教科書を使った学習方法が確立されていないこと、学力の向上に起用することが明確でないこと、機器の性能が不十分であることといった問題が指摘されている。
6.2.2. フィンランドにおける教育ICTの現状

① 基本情報
フィンランドに関する概要を以下に示す。

<table>
<thead>
<tr>
<th>図表6-4</th>
<th>調査対象国の条件とその理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>人口33</td>
<td>フィンランド共和国</td>
</tr>
<tr>
<td>1人あたりGDP34</td>
<td>5.43百万人</td>
</tr>
</tbody>
</table>

教育制度35 ・義務教育(基礎学校)9年(又は10年)
・後期中等教育(高等学校教育)3年
・大学3～5年

就学率35 ・基礎学校:99.7%
・高等学校:54.5%

フィンランドは、義務教期間中に試験がなく、授業料や教科書及び給食費等が無料である等、特徴的な教育制度であるほか、近年、PISAで上位の結果を残し、その教育システムが世界から注目を集めており、国として教育システムの輸出に力を入れている。本項では、特に教育ICTシステムの輸出に関する状況を把握することとした。

② 現状36
EUでは、2020年に向けたEU戦略を掲げており、フィンランドの教育及び科学技術における政策も、この「Europe 2020」に沿ったものである。

また、フィンランドでは「生涯学習は全ての教育制度に共通する横断的な概念である」とのEUの考えに基づき、教育関連の複数の法規やコアカリキュラムの中に、低年齢の学校教育の段階から生涯教育の重要性を視野に入れた教育を行っていくことが盛り込まれている。フィンランドの運輸通信省では、2011～2020年のデジタルアジェンダ「生産的で再生可能なフィンランド」に、生涯学習とICTの関連性に関する記述がされており、ICTの活用は、全ての者にとって平等の権利でなければならない37、とされている。2010年には、インターネットのブロードバンド接続を国民の基本的な権利とする法律が制定され38、フィンランドの通信業者は、全世帯と全事業所に対して1Mbps以上の回線を適切な価格で提供することが義務づけられている。

フィンランドの教育文化省では、1994年頃よりICT活用による学習に力を入れ始めた。現在、教育文化省では、「Education and Research 2011-201639」の中で、教育におけるICTの利用を発展させ、教員と学生のICTスキルを発達させるための対策を取ると言及されている。中学校に導入されたPCにおける1台あたりの学生数は5人で、EU諸国の中でも平均を上回っている（2011年現在）。また、全ての小学校にはブロードバンド回線が提供されており、中学校でも、ほぼ全ての学校でブロードバンド回線が提供されているため、授業でのICTの活用が進められている。なお、2015年の春からは、高等学校の入学試験でもICTが活用される予定である。

③ 教育ICTシステム等の輸出

フィンランドの教育制度は、2003年のPISAにおいて、各分野で国際比較順位の上位に入ったことをきっかけとして、世界における評価を押し上げている。フィンランドでは、この成果を他の国でも役立ててもらいたいという考えが団体を立ち上げ、Future Learning Finland（FLF）という団体を立ち上げ、教育ノウハウを外国へ輸出する活動を行っている。

FLFは、フィンランドの民間企業、職業機関、大学等により構成され、フィンランドの3つの省庁（教育文化省、雇用経済省、外務省）によって支援を受け、フィンランドの教育ノウハウや教育ソリューションを他国に輸出している。

FLFは、フィンランドの教育輸出戦略が立てられた2010年に生まれたもので、大きく5つの専門分野（学習環境、教員養成、職業訓練、大学クラスター、教育技術プロセス）のソリューションを提供している。教育ICTに関しても、フィンランドの複数の企業の商品がウェブサイトで紹介されており、ニーズに合わせた商品が提供できるようになっている。FLFが現在最も重要な市場としてとらえている国はサウジアラビアであり、校舎や学校向けの家具等を含め、総合的な教育ノウハウの提供を考えているようである。

その他、フィンランドでは、Dream School Projectというプロジェクトが2011年からスタートしており、フィンランドの30の学校が参加している。

Dream School Projectでは、1人1台のパソコンが使える環境が整備されており、教育ICTプラットフォームとしてクラウドで運用しているシステムが利用されている。このプラットフォーム上では、教材やノート、学習ツール、電子メールやチャットルーム等のコミュニケーションのためのツールが提供されている。また、授業の中で取り組んだ課題の作成や提出、それに対する教員の評価等の作業もこのプラットフォームから行うことができる。プラットフォームへのアクセスはシングルサインオンで、一度プラットフォームにログインすれば、様々なツールを認証することなく利用できる。また、クラウドサービスであるため、学校だけでなく、家庭からも利用が可能である。

このプラットフォームの大きな特徴は、オープンソースの技術を利用して構築されており、プラットフォームにアクセスするAPI（ソフトウェアがプラットフォームの機能を利用するための通信仕様）が公開されていることである。これにより、様々な企業が参加して、教育用アプリケーション、コミュニケーションツール、管理ツール等をそれぞれ開発し、学校に提供することができます。また、導入する地域のニーズに合わせてツールを簡単に調整することが可能で、コスト削減にもつながっている。プラットフォームで提供されている機能の中には、学校の教員からの要望を受けて開発されたものもある。

また、2013年6月には、Dream School Projectがシンガポールでも展開されるとの発表がなされた42。シンガポールはフィンランドと並び、国際的に学力が高く、また教育の情報化が進んでいる国として知られている。シンガポールにおいても、Dream School Projectのシステムを利用したサービスの開発が進められることになる。

Dream School Projectはシンガポールへの展開をきっかけとして、中国、日本、インドネシア等、アジア市場への展開も検討しているようである。

40 http://www.futurelearningfinland.fi/
41 http://dreamschool.eu/
参考資料1（中学校の生徒用コンピュータ等の必要機能等に関する調査）

中学校の生徒用コンピュータ等の必要機能等に関する調査

この調査は、生徒1人1台のコンピュータを活用して指導した経験のある教員を対象にした調査で、生徒用コンピュータやIWB（電子黒板）等に必要な機能を精査しまとめることが目的としています。

回答された結果は機械的に処理され、個々の回答内容が特定され明らかにされることはありません。

Ⅰ．回答者ご自身についてお尋ねします。

問1. 回答者の立場をお答えください。（択一式）
 (1) 校長 (2) 副校長・教頭 (3) 教諭 (4) 非常勤教員 (5) 支援員
 (6) その他（）

問2. 勤務している学年についてお答えください。（択一式）
 (1) 1年 (2) 2年 (3) 3年 (4) 特別支援学級
 (5) 複式学級 (6) 学級担任はしていない（）

問3. 通算の教職年数は何年になりますか。（択一式）
 (1) 1年未満 (2) 1年以上2年未満 (3) 2年以上3年未満 (4) 3年以上

問4. 生徒1人1台のコンピュータ環境での指導を始めて何年になりますか。（択一式）
 (1) 1年未満 (2) 1年以上2年未満 (3) 2年以上3年未満 (4) 3年以上

問5. 年間で考えた場合、あなたは授業で生徒にコンピュータをどの程度活用させていますか。（択一式）
 (1) ほぼ毎時間 (2) 1日1回程度 (3) 1日に1回程度
 (4) 2日に1回程度 (10年〜15年に1回程度) (5) 3日に1回程度 (15〜18年間に1回程度)
 (6) 週に1回程度 (7) 自分自身としてはほとんど活用させていない

問6. あなたが授業で活用させることがあるコンピュータの形態は以下のうちどれですか。
 (該当するものをすべてご回答ください）※参考資料参照
 (1) コンパーサーチブル型Windows端末（キーボードを備えている端末）
 (2) スラート型Windows端末 (3) iPad端末 (4) Android端末

問7. 年間で考えた場合、あなたは授業でIWB（電子黒板）をどの程度活用していますか。
 (択一式）
 (1) ほぼ毎時間 (2) 1日1回程度 (3) 1日に1回程度 (5) 3日に1回程度 (15〜18年間に1回程度)
 (4) 2日に1回程度 (10年〜15年に1回程度) (7) 自分自身としてはほとんど活用していない

問8. 通算の教職年数は何年になりますか。（択一式）
 (1) 1年〜10年 (2) 11年〜20年 (3) 21年〜30年 (4) 31年以上 (5) 教職経験なし

問9. 個的にはコンピュータ等を使い始めて何年になりますか。（択一式）
 (1) 1年未満 (2) 1年〜5年 (3) 6年〜10年 (4) 11年〜15年 (5) 16年〜20年
 (6) 21年以上 (7) ほとんど使ったことがない

問10. 年齢についてお答えください。（択一式）
問11. 性別についてお答えください。（択一式）
(1)男性 (2)女性

II. 生徒用コンピュータに必要な機能について
問12. 生徒用コンピュータ（PC）の機能・特性を以下の表に示します。授業で活用した機能の頻度やその効果等の感触から、これらの機能・特性の必要性を以下の5段階でご回答ください。
（1）: 確実に必要である (2): わりに必要である (3): 少し必要である
（4): あまり必要ない (5): ほとんど必要ない

<table>
<thead>
<tr>
<th>番号</th>
<th>機能等の項目</th>
<th>確実に必要である</th>
<th>わりに必要である</th>
<th>少し必要である</th>
<th>あまり必要である</th>
<th>ほとんど必要ない</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>軽量で生徒にも持ち運びやすいこと</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>2</td>
<td>堅牢である程度の衝撃に耐えること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>3</td>
<td>必要な情報が表示できる直接画面を操作するのに十分な画面の大きさであること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>4</td>
<td>蛍光灯等の画面への写りこみや外光の反射等が抑えられていること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>5</td>
<td>本体の文字やボタンのアイコンが十分な大きさで生徒にも分かりやすいこと</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>6</td>
<td>コンピュータが短い時間でユーザーとしての生徒を認識でき、すぐに使用開始状態になること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>7</td>
<td>使用中にフリーズ（PCが反応しなくなること）がなく安定して動作すること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>8</td>
<td>授業中に充電することなく連続して稼働できるバッテリー容量があること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>9</td>
<td>ソフトウェアキーボード（画面に表示された仮想キーボード）による入力ができること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>10</td>
<td>ハードウェアキーボード（通常のキーボード）による入力ができること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>11</td>
<td>マウスの代わりにペンで文字や図形等をかかること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>12</td>
<td>マウスの代わりにペンを用いてPCにおけるクリックやドラッグの操作ができること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>13</td>
<td>外部マイクロフォンが付属していて音声入力ができること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>14</td>
<td>イヤホン（ヘッドホン）が付属していて音声出力ができること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>15</td>
<td>ヘッドセットが付属していて音声の入出力ができること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>16</td>
<td>カメラが内蔵されていて静止画や動画の記録、ウェブカメラ</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>としての利用ができること</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>17</td>
<td>複数のUSB端子が装備されていて外部機器が接続できること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>18</td>
<td>ダイレクト・メモリ・スロットが装備されていてSDカード等の外部メモリが直接使えること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>19</td>
<td>教室でインターネットに接続して、調べ学習や情報収集ができること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>20</td>
<td>学校の外でインターネットに接続して、学習や情報収集ができること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>21</td>
<td>インターネット上の有害情報をフィルタリングできること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>22</td>
<td>フィルタリングのルールやレベルを学年・クラスに応じて変えること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>23</td>
<td>安定して高速接続が持続可能な無線LANが利用できること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>24</td>
<td>生徒が別々の動画を無線LAN経由でストレスのない速度で再生できること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>25</td>
<td>生徒の製作物や生徒が利用する映像等の教材をネットワーク上（のサーバー等）で共有できること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>26</td>
<td>複数の生徒が自分のPCからネットワーク経由で共通の資料に書き込むことができること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>27</td>
<td>すべての生徒のPC画面を教員用PCでモニターできること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>28</td>
<td>複数の生徒のPC画面を電子黒板に並べて提示して生徒の考え方等を共有できること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>29</td>
<td>生徒用PCの出し入れが容易な充電用保管庫（ロッカー）があること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>30</td>
<td>年度末のユーザーアカウント更新が容易に行える管理機能があること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
</tbody>
</table>

問13. 項12に示した30項目のなかで最も必要と考える項目の番号を、必要性の高いものから順に項目番号で5つ回答してください。

1番目（ ）
2番目（ ）
3番目（ ）
4番目（ ）
5番目（ ）

問14. 項12の項目の中で、例えば、「10 ハードウェアキーボード（通常のキーボード）による入力ができること」等、学年によって必要性が異なるとお考えの場合は、以下にその旨を記述してください。

[自由記述]

問15. 項12で示した機能以外で、生徒用コンピュータに必要と思う機能があれば自由に記述してください。

[自由記述]

問16. 授業以外で、タブレットPCを活用できると考えるシーンがあれば選択してください。（該当するものをすべてご回答ください）

（1）部活動 （2）生徒会活動 （3）校外学習 （4）修学旅行 （5）家庭学習 （6）生徒指導
III. IWB(電子黒板)に必要な機能について

問18. IWB(電子黒板)の機能について、授業で活用した機能の頻度やその効果等の感触から、必要性を以下の5段階でご回答ください。

<table>
<thead>
<tr>
<th>番号</th>
<th>機能等の項目</th>
<th>確実に必要である</th>
<th>わりに必要である</th>
<th>少し必要である</th>
<th>あまり必要ない</th>
<th>ほとんど必要ない</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>蛍光灯等が画面に写りこんだり外光が画面で反射したりしないこと</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>2</td>
<td>画面が汚れにくいこと</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>3</td>
<td>画面が汚れた場合に清掃が楽であること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>4</td>
<td>画面の堅牢性が確保されていること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>5</td>
<td>教室間で移動ができて楽に移動できること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>6</td>
<td>壁に固定されていて常時使えるようになっていること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>7</td>
<td>通常の黒板やホワイトボードがIWB(電子黒板)と並んでいて両者の間をスムーズに行き来して書けること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>8</td>
<td>毎回のキャリブレーション(位置あわせ作業)が不要であること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>9</td>
<td>電子ペンで書く速度により描画が途切れないことがないこと</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>10</td>
<td>電子ペンを使う際に意図しない線が描画されてしまうことがないことが</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>11</td>
<td>ペン先の描画が操作者の手の影や身体の影で隠れないこと</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>12</td>
<td>電子ペン入力に加えて指のタッチによる入力ができないこと</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>13</td>
<td>画面の一部を範囲指定して自由に拡大・縮小できること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>14</td>
<td>画面の一部(文字や図等)を範囲指定して移動させられること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>15</td>
<td>画面をいくつか分割して異なる内容を表示できること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>16</td>
<td>画面をあらかじめ分割していつでも表示できること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>17</td>
<td>1人の生徒のコンピュータ画面を転送して表示できること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>18</td>
<td>描画したものを、部分消去、範囲消去、全体消去等目的に応じて即座に消せること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>19</td>
<td>実際の黒板消しのような手軽さで描画を消せる電子黒板消しが付いていること</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>20</td>
<td>画面の一部をマスク(部分的に暗くしてその文字や図を表す)</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>問</td>
<td>19. IWB（電子黒板）の大きさがどの程度が適切ですか。※参考資料参照</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>50 英寸前後</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>60 英寸前後</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>70 英寸前後</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>80 英寸前後</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>90 英寸以上</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

問20. この大きさのIWB（電子黒板）は、次のどのタイプを想定しているかお答えください。
※参考資料参照
(1) 一体型（薄型テレビのような様態でプロジェクターが不要なもの）
(2) ボード型（専用のホワイトボードとプロジェクターがセットになったもの）
(3) 黒板取付式ボード型（黒板にプロジェクターを取り付け、スライドして使えるようにしたもの）
(4) ユニット型（ユニットを貼り付けたホワイトボードにプロジェクターで投影するもの）

問21. 校内に一体型とボード型や黒板取付式ボード型が複数設置されている場合、それぞれの使いやすさについて、自由にご意見を記述してください。
[自由記述]

問22. IWB（電子黒板）の機能について、自由にご意見を記述してください。
[自由記述]

以上で質問は終わりです。ありがとうございました。
参考資料2（中学校の生徒用コンピュータ等の必要機能等に関する調査項目と略称）

中学校の生徒用コンピュータ及び電子黒板の必要機能として挙げた30機能は以下の通りだが、清水座長の分析に倣い、本調査報告書では説明を簡潔にするために、表の右欄に示した略称を用いることとする。

図表 参考-1 生徒用コンピュータの必要機能に関する調査項目と略称

<table>
<thead>
<tr>
<th>No.</th>
<th>機能等の項目</th>
<th>略称</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>軽量で生徒にも持ち運びやすいこと</td>
<td>軽量</td>
</tr>
<tr>
<td>2</td>
<td>堅牢である程度の衝撃に耐えること</td>
<td>堅牢</td>
</tr>
<tr>
<td>3</td>
<td>必要な情報が表示できる直接画面を操作することに十分な画面の大きさがあること</td>
<td>画面サイズ</td>
</tr>
<tr>
<td>4</td>
<td>蛍光灯等の画面への映り込みや外光の反射等が抑えられていること</td>
<td>映込抑制</td>
</tr>
<tr>
<td>5</td>
<td>本体の文字やボタンのアイコンが十分な大きさで分かりやすいこと</td>
<td>アイコン</td>
</tr>
<tr>
<td>6</td>
<td>コンピュータが短い時間でユーザーとしての生徒を認識でき、すぐに使用開始状態になること</td>
<td>起動</td>
</tr>
<tr>
<td>7</td>
<td>使用中にフリーズ(PCが反応しないこと)することができなく安定して動作すること</td>
<td>安定動作</td>
</tr>
<tr>
<td>8</td>
<td>授業中に充電することなく連続して稼働できるバッテリー容量があること</td>
<td>バッテリー</td>
</tr>
<tr>
<td>9</td>
<td>ソフトウェアキーボード(画面に表示された仮想キーボード)による入力ができること</td>
<td>キーボード</td>
</tr>
<tr>
<td>10</td>
<td>ハードウェアキーボード(通常のキーボード)による入力ができること</td>
<td>ペン接続</td>
</tr>
<tr>
<td>11</td>
<td>マウスの代わりにペンで文字や図形等を書くこと</td>
<td>ペン描画</td>
</tr>
<tr>
<td>12</td>
<td>マウスの代わりにペンを用いてPCにおけるクリックやドラッグの操作ができること</td>
<td>ペン指示</td>
</tr>
<tr>
<td>13</td>
<td>外部マイクロフォンを付属していて音声入力ができること</td>
<td>マイク</td>
</tr>
<tr>
<td>14</td>
<td>イヤホン(ヘッドホン)が付属していて音声出力ができること</td>
<td>イヤホン</td>
</tr>
<tr>
<td>15</td>
<td>ヘッドセットが付属していて音声の出力ができること</td>
<td>ヘッドセット</td>
</tr>
<tr>
<td>16</td>
<td>カメラが内蔵されていて静止画や動画の記録、ウェブカメラとしての利用ができること</td>
<td>カメラ</td>
</tr>
<tr>
<td>17</td>
<td>複数のUSB端子が装備されていて外部機器が接続できること</td>
<td>USB</td>
</tr>
<tr>
<td>18</td>
<td>ダイレクト・メモリ・スロットが装備されていてSDカード等の外部メモリが直接使えること</td>
<td>メモリ・スロット</td>
</tr>
<tr>
<td>19</td>
<td>教室でインターネットに接続して、調べ学習や情報収集ができること</td>
<td>教室内ネット</td>
</tr>
<tr>
<td>20</td>
<td>学校の外でインターネットに接続して、学習や情報収集ができること</td>
<td>学校外ネット</td>
</tr>
<tr>
<td>21</td>
<td>インターネット上の有害情報をフィルタリングできること</td>
<td>フィルタリング</td>
</tr>
<tr>
<td>22</td>
<td>サーバに対するルールやレベルを学年・クラスに応じて変えることができること</td>
<td>フィルタリング調整</td>
</tr>
<tr>
<td>23</td>
<td>安定して高速接続が可能な無線LANが利用できること</td>
<td>安定無線LAN</td>
</tr>
<tr>
<td>24</td>
<td>生徒が別々の動画を無線LAN経由でストレスのない速度で再生できること</td>
<td>高速動画転送</td>
</tr>
<tr>
<td>25</td>
<td>生徒の制作物や生徒が利用する映像等の教材をネットワーク上(のサーバー等)で共有できること</td>
<td>ネット共有</td>
</tr>
<tr>
<td>26</td>
<td>複数の生徒が自分のPCからネットワーク経由で共通の資料に書き込みができること</td>
<td>共有書込</td>
</tr>
<tr>
<td>27</td>
<td>全ての生徒のPC画面を教員用PCでモニターできること</td>
<td>教員モニタリング</td>
</tr>
<tr>
<td>28</td>
<td>複数の生徒のPC画面を電子黒板に並べて提示して生徒の考え方等を共有できること</td>
<td>PC画面転送</td>
</tr>
<tr>
<td>29</td>
<td>生徒用PCの出し入れが容易な充電用保管庫(ロッカー)があること</td>
<td>充電保管庫</td>
</tr>
<tr>
<td>30</td>
<td>年度末のユーザーアカウント更新が容易に行える管理機能があること</td>
<td>年度更新</td>
</tr>
<tr>
<td>No.</td>
<td>効果的なICT利活用を推進するための調査研究</td>
<td>略称</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>蛍光灯等が画面に映り込んだ外光が画面で反射したりしないこと</td>
<td>映込防止</td>
</tr>
<tr>
<td>2</td>
<td>画面が汚れにくいこと</td>
<td>画面防汚</td>
</tr>
<tr>
<td>3</td>
<td>画面が汚れた場合に清掃が楽であること</td>
<td>画面清掃</td>
</tr>
<tr>
<td>4</td>
<td>画面の堅牢性が確保されていること</td>
<td>画面堅牢</td>
</tr>
<tr>
<td>5</td>
<td>教室間で移動ができて楽に移動できること</td>
<td>移動簡便</td>
</tr>
<tr>
<td>6</td>
<td>壁に固定されていて常時使えるようになっていること</td>
<td>壁固定</td>
</tr>
<tr>
<td>7</td>
<td>通常の黒板やホワイトボードが電子黒板と並んでいて両者の間をスムーズに行き来して書けること</td>
<td>黒板併置</td>
</tr>
<tr>
<td>8</td>
<td>毎回のキャリブレーション（位置あわせ作業）が不要であること</td>
<td>キャリブレーション・レス</td>
</tr>
<tr>
<td>9</td>
<td>電子ペンで書く速度により描画が途切れないこと</td>
<td>スムーズ描画</td>
</tr>
<tr>
<td>10</td>
<td>電子ペンを使う際に意図しない線が描画されてしまわない工夫がされていること</td>
<td>不要描画防止</td>
</tr>
<tr>
<td>11</td>
<td>画面が汚れにくいこと</td>
<td>画面防汚</td>
</tr>
<tr>
<td>12</td>
<td>画面が汚れた場合に清掃が楽であることが</td>
<td>画面清掃</td>
</tr>
<tr>
<td>13</td>
<td>画面の堅牢性が確保されていること</td>
<td>画面堅牢</td>
</tr>
<tr>
<td>14</td>
<td>教室間で移動ができて楽に移動できること</td>
<td>移動簡便</td>
</tr>
<tr>
<td>15</td>
<td>壁に固定されていて常時使えるようになっていること</td>
<td>壁固定</td>
</tr>
<tr>
<td>16</td>
<td>通常の黒板やホワイトボードが電子黒板と並んでいて両者の間をスムーズに行き来して書けること</td>
<td>黒板併置</td>
</tr>
<tr>
<td>17</td>
<td>毎回のキャリブレーション（位置あわせ作業）が不要であること</td>
<td>キャリブレーション・レス</td>
</tr>
<tr>
<td>18</td>
<td>電子ペンで書く速度により描画が途切れないこと</td>
<td>スムーズ描画</td>
</tr>
<tr>
<td>19</td>
<td>電子ペンを使う際に意図しない線が描画されてしまわない工夫がされていること</td>
<td>不要描画防止</td>
</tr>
<tr>
<td>20</td>
<td>画面をいくつかに分割して異なる内容を表示できること</td>
<td>画面分割</td>
</tr>
<tr>
<td>21</td>
<td>画面の一部を範囲指定して自在に拡大・縮小できること</td>
<td>領域拡大縮小</td>
</tr>
<tr>
<td>22</td>
<td>画面の一部を範囲指定して移動させられること</td>
<td>領域自由移動</td>
</tr>
<tr>
<td>23</td>
<td>画面をいくつかに分割して異なる内容を表示できること</td>
<td>画面分割</td>
</tr>
<tr>
<td>24</td>
<td>画面の一部をマスク（部分的に暗くしてそこの文字や図を表示しないこと）したり、逆に特定の部分を強調する機能が使えること</td>
<td>マスク・強調</td>
</tr>
<tr>
<td>25</td>
<td>画面をいくつかに分割して異なる内容を表示できること</td>
<td>画面分割</td>
</tr>
<tr>
<td>26</td>
<td>画面の一部を範囲指定して自在に拡大・縮小できること</td>
<td>領域拡大縮小</td>
</tr>
<tr>
<td>27</td>
<td>画面の一部を範囲指定して移動させられること</td>
<td>領域自由移動</td>
</tr>
<tr>
<td>28</td>
<td>画面をいくつかに分割して異なる内容を表示できること</td>
<td>画面分割</td>
</tr>
<tr>
<td>29</td>
<td>画面の一部をマスク（部分的に暗くしてそこの文字や図を表示しないこと）したり、逆に特定の部分を強調する機能が使えること</td>
<td>マスク・強調</td>
</tr>
<tr>
<td>30</td>
<td>画面をいくつかに分割して異なる内容を表示できること</td>
<td>画面分割</td>
</tr>
</tbody>
</table>