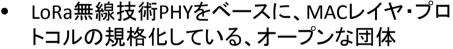
資料920作1-2-2

LPWAを牽引する「LoRa」の概要と利用動向 セムテック・ジャパン合同会社

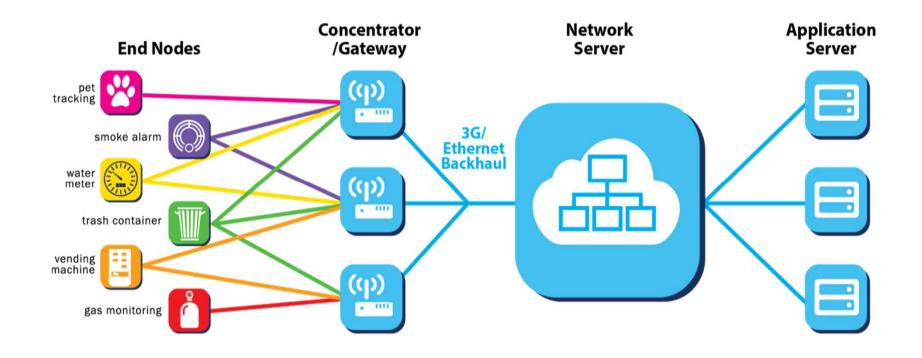
LPWAを実現するオープンアライアンス



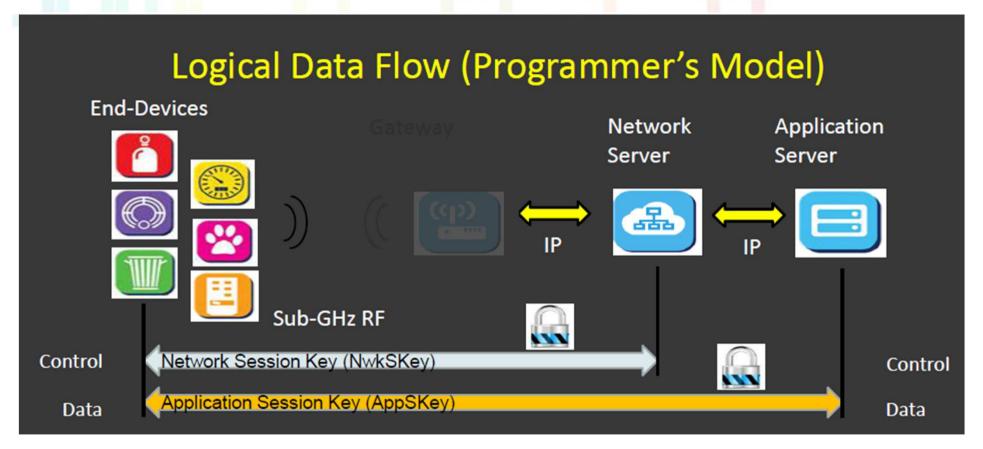
- 16地域でネットワーク運用、56通信事業者が実 証実験進行中
- 500+ ロッテルダムでのアライアンス会議参加者
- 300+ アライアンス参加者

2016年6月現在

LoRaWAN 海外での主要採用状況

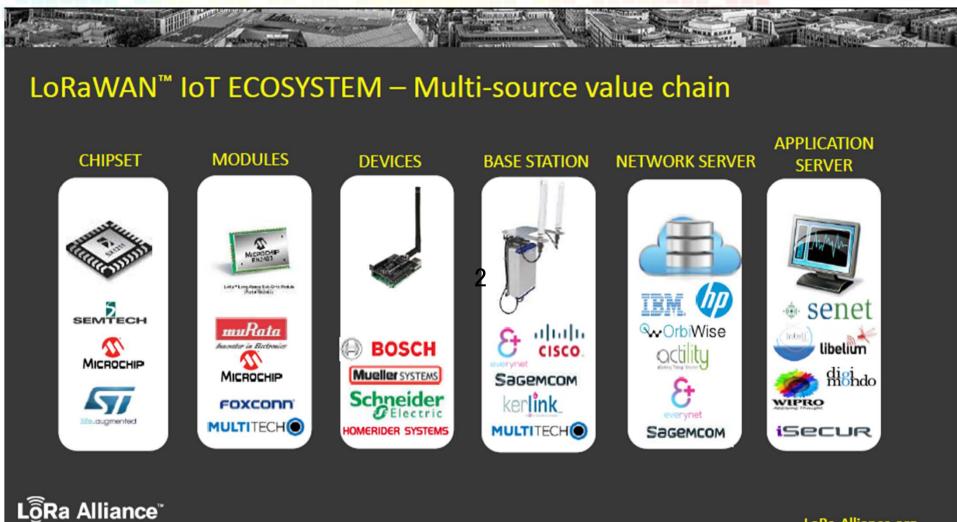


水平分業によるLoRaWAN™ ネットワーク



8/1/2016

LoRaWAN 論理データフロー


LoRa End-Deviceは、データを、アプリケーションとネットワークレイヤの2重に暗号 (AES-128)化し、LoRa無線でGateway装置に送信します。Gatewayは、LoRaパケットをIPパケットに返還してサーバに中継するだけです。論理的には、エンドデバイスとネットワークサーバの通信となります。アプリケーションデータは、ネットワークサーバでは復号されず、アプリケーションサーバで復号され、利用されます。

w

オープンなビジネスモデル

LoRa-Alliance.org

LoRaWAN認定製品

Wide Area Networks for IoT

https://www.lora-alliance.org/Products/Certified-Products

LoRaWAN概要

- □ LoRaWANは、LoRa Alliance ™が技術仕様を作成し公開している MACレイヤのオープンな規格です。
 - 仕様はLoRa Allianceホームページから、非会員でもダウンロードできます。
 - https://www.lora-alliance.org/For-Developers/LoRaWANDevelopers
 - 2016年11月1日現在の最新は、V1.0.2です。

□ LoRaWAN特長

- 双方向、アクノリッジ・ベースの通信
- 単純なスター型トポロジ、長距離飛ぶのでリピータ、メッシュ・ルーチングは不要です。
- 残念ながら低速です
- 低コストです(エンドデバイスの部品コストは、従来のFSKからあまりコストアップしません)
- 長距離です
- 低消費電力が、電池駆動型ノードに最適です
- 物理層は、LoRaもしくはFSKを利用し、各国の電波法に準拠します。
- 各国対応で仕様が分かれています。今回、日本を含むアジアクラスタが策定されました。

□ 3つの通信クラスがあります

- Class A LoRaの基本通信です。センサーからデータを送信します。
- Class B ビーコンモードです。日本が率先して動作検証を来年行います。
- Class C レイテンシなし。

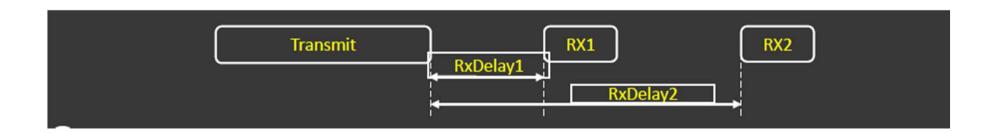
LoRaWAN 1.0.2 最新版

□ アジア地域の規格として、ASIA ClusterとSouth Koreaを策定

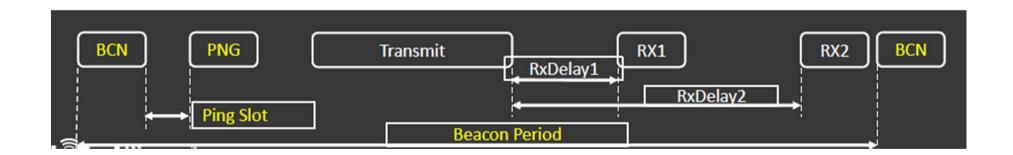
- 2つのMACコマンドを追加
- UL/DL分離可能
- 各国EIRP要求に準拠
- 送信時間設定
- 仕様書は、LoRaWAN 1.0.2 (プロトコル仕様)と、Regional Parameters 1.0に分離

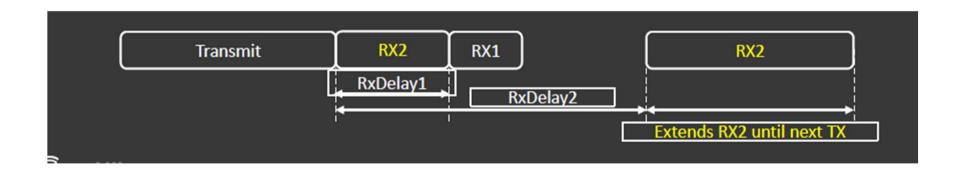
□ ASIA Cluster

- デバイスはネットワーク参加時にJoin-requestをブロードキャスト@923.2MHzと923.4MHz /SF10 /<400ms
- ネットワークサーバが、join-acceptを送信し、次にTXParamSetupReq MACコマンドを送って、デバイスを各国(地域)設定にする
- ネットワークサーバが、jNewChannelReq MACコマンドを送って、周波数チャネルを設定する


□ 今後の仕様化

- V 1.1 ローミング仕様、Class B(日本での実験を踏まえて)、Class A/C一時的切り替え
- Backend Interface 1.0


- □ 双方向通信
- □ ユニキャスト・メッセージ
- □ センサーデータなどの、小さなサイズのペイロードに向きます
- □ 長い休止時間
- □ エンド・デバイスから通信を始めます(アップリンク)
- □ エンドデバイスは送信した後、一定時間後に、サーバーからの受信を行う(ダウンリンク)スロット(受信モード)を設けて、ACK信号を受けることが出来ます。受信スロットは2回設定されています。


- □ エンドノードが、定期的に受信スロットを設ける双方向通信です。
- □ ユニキャストとマルチキャスト・メッセージ
- □ センサーデータなどの、小さなサイズのペイロードに向きます
- □ 長い休止時間
- □ ゲートウェイから定期的にビーコンが送信されます。
- □ 特別な受信ウィンドウ(Ping Slot)で、ビーコンを受信したら送信します。
- □ サーバーから、通信を開始します。休止時間が設定されています。

- □ 双方向通信
- □ ユニキャスト・メッセージ
- □ センサーデータなどの、小さなサイズのペイロードに向きます
- □ サーバーは、いつでも通信を開始します。
- □ エンドデバイスは継続して受信モードです。
- □ エンドデバイスに電源が担保されている場合に向きます。

ASIA Cluster

Regions

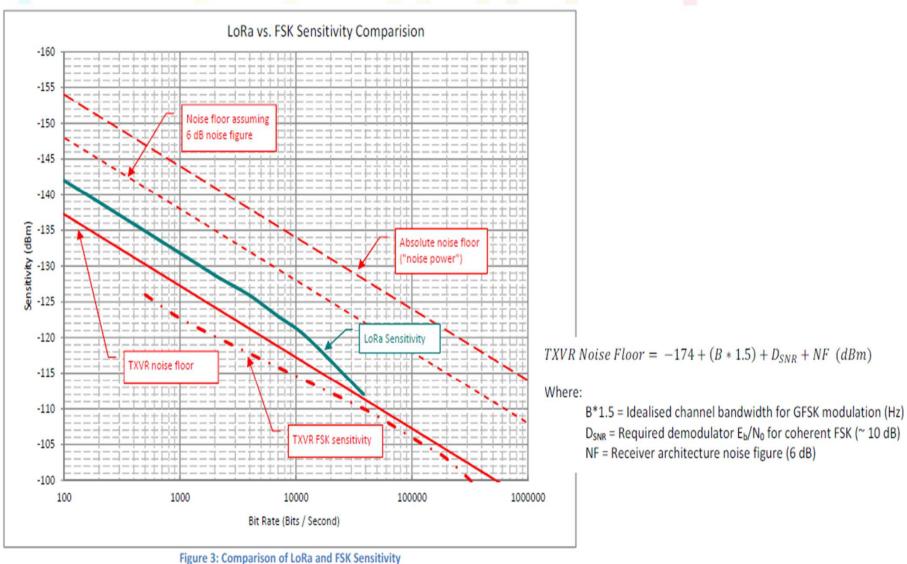
- EU [863-870MHz]
- EU [433MHz]
- Russia [863-870MHz]
- New-Zealand [915-928MHz]
- Australia [915-928MHz]
- U.S.A [902-928MHz]
- Canada [902-928MHz]
- South Korea [920.9-923.3MHz]
- China [779-787MHz]

- Brunei [923-925 MHz]
- Cambodia [923-925 MHz]
- Indonesia [923-925 MHz]
- Japan [920-928 MHz]
- Laos [923-925 MHz]
- New Zealand [915-928 MHz]
- Singapore [920-925 MHz]
- Taiwan [922-928 MHz]
- Thailand [920-925 MHz]
- Vietnam [920-925 MHz]


LoRa-Alliance.org

LoRa® と LoRaWAN™概要

□ LoRa / LoRaWANのチャレンジ


■ センサーを、低消費(年単位の電池駆動)、低コスト(\$10以下の部品コスト)で、広域ネットワーク (10kmオーダー)をISM帯で実現する

各国の免許不要無線帯域を利用(日本920MHz, 400MHz, 146MHzなど)

LoRaとFSK受信感度の比較

リンク・バジェット

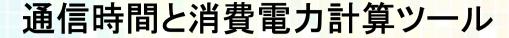
Mode	Equivalent bit rate (kb/s)	Sensitivity (dBm)	Δ (dB)	
FSK	1.2	-122	-	
LoRa SF = 12	0.293	-137	+15	
LoRa SF = 11	0.537	-134.5	+12.5	
LoRa SF = 10	0.976	-132	+10	
LoRa SF = 9	1757	-129	+7	
LoRa SF = 8	3125	-126	+4	
LoRa SF = 7	5468	-123	+1	
LoRa SF = 6	9375	-118	-3	

Table 1: Link Budget Comparison for Narrowband FSK

$$P_{RX}(dBm) = P_{TX}(dBm) + G_{SYSTEM}(dB) - L_{SYSTEM}(dB) - l_{CHANNEL}(dB) - M(dB)$$

Where:

P_{RX} = the expected power incident at the receiver


P_{TX} = the transmitted power

G_{SYSTEM} = system gains such as those associated with directional antennas, etc.

L_{SYSTEM} = losses associated with the system such as feed-lines, antennas (in the case of electrical short antennas associated with many remote devices), etc.

L_{CHANNEL} = losses due to the propagation channel, either calculated via a wide range of channel models or from empirical data

M = fading margin, again either calculated or from empirical data

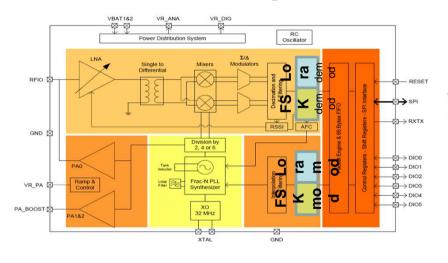
lculator	Energy Profile								
Calcul	ator Inputs			Selected Configuration	on				
L	oRa Modem Setting	js			VR_PA				
9	opreading Factor	9	-				}		
Е	Bandwidth	125	▼ kHz		RFO	-m-{	— Тх		
C	Coding Rate	1	▼ 4/CR+4		RFIC		- 		
L	ow Datarate	Optimiser On				1 5	፤ "		
F	Packet Configuration	i I		Pream	ble I	Header	Payload	CRC	1
P	ayload Length	33	Bytes				,	-	
Programmed Preamble Total Preamble Length Header Mode	Programmed Preamble	6	Symbols	Calculator Outputs					
	10.25 Symbols Timing Performance								
	Header Mode	Explicit Header End	abled	Equivalent Bitrate	1757.81	bps	Time on Air	279.55	ms
C	CRC Enabled	Enabled		Preamble Duration	41.98	ms	Symbol Time	4.10	ms
F	RF Settings								
С	Centre Frequency 920000000		⊕ Hz	Hz RF Performance			Consumption		
Т	ransmit Power	13	dBm dBm	Link Budget	142	dB	Transmit	35	mA
н	lardware Implementation	RFIO is Shared		Receiver Sensitivity	-129	dBm	CAD/Rx	10.8	mA
C	Compatible SX Produ	icts 1272, 1273, 1276	. 1277	Max Crystal Offset	34	ppm	Sleep	100	nA

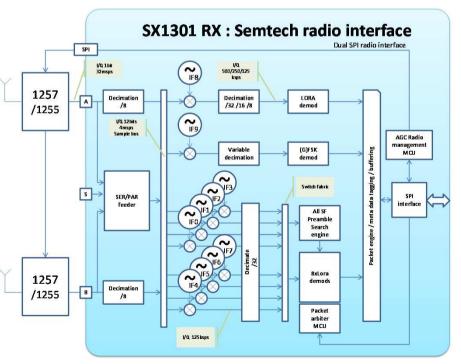
20Byte data Tx = 279.55msec in SF9 LoRaWAN protocol 125kHz BW, 4/5 CRC coding, 6 preamble (ユーザ設定分), SF 7 から12 LoRaWAN protocolでは、data uplink = 13Byteオーバヘッド

LoRa Calculator ダウンロード http://www.semtech.com/apps/filedown/down.php?file=SX1272LoRaCalculatorSetup1%271.zip

LoRa™対応RF IC

□ 製品ファミリー


■ SX1272/73 : エンドノードIC 860-1000MHz 周波数範囲


■ SX1276/77/78:エンドノードIC 138-960MHz周波数範囲

■ SX1301 : ゲートウェイLSI

■ SX1255/57 : ゲートウェイ、アナログフロントエンド

□ 全製品が802.15.4 d/g と LoRa™変調の両方式に対応

