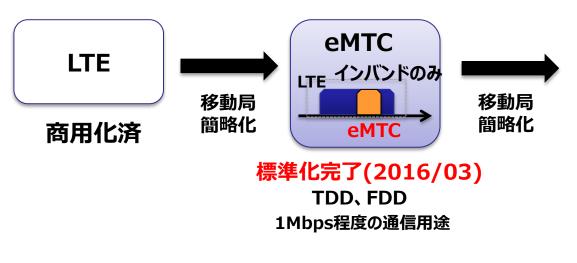
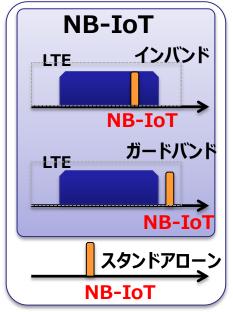
IoT向け通信の高度化について


2016年11月29日 ソフトバンク株式会社



IoT向け通信の高度化

3GPPにて標準化が完了した eMTC及びNB-IoTの導入を行いたい

標準化完了(2016/06) FDDのみ 数10kbps程度の通信用途

<今回導入したいIoTシステム> eMTC、インバンドNB-IoT、ガードバンドNB-IoT

eMTC、NB-IoTのサービスイメージ

eMTC

低〜中速の移動に対応 比較的大きいデータに対応 1Mbps程度の通信用途

ウェアラブル機器 ヘルスケア、見守りなど

NB-IoT

通信中の移動は想定外 少量のデータ通信に最適化 数10kbps程度の通信用途

スマートメーター 機器管理、故障検知など

当社IoT向けネットワークの展開目標

NB-IoT、eMTCを活用 多様なIoTソリューション提供を目指す

FY16 FY17 FY18~

実験試験局による トライアル開始

NB-IoT屋外実験の概要

実験期間	2016年11月24日、25日
実験エリア	千葉県幕張エリア(千葉県千葉市美浜区)
	スマートパーキングに取り付けたNB-IoT方式のモ
実験内容	ジュールを用いて車の入庫・出庫による
	NB-IoTの挙動などの検証
実験用	900MHz帯NB-IoT基地局、
無線局	陸上移動局(実験試験局)

FY17サービス開始目標

NB-IoT eMTC

既存基地局と同等の信頼性 低消費電力 全国に面展開

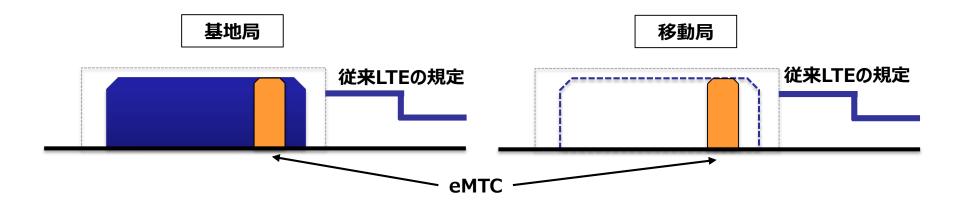
共用検討の考え方

eMTC、NB-IoTの3GPP仕様

◆基地局(新たな規定はなし)

送信系	従来LTE	еМТС	NB-IoT
周波数帯域幅	1.4MHz~20MHz	従来LTE内の6RB	従来LTE内の1RB (ガードバンド含む)
変調方式	QPSK、16QAM、64QAM、 256QAM	QPSK、16QAM (LTEC包含)	QPSK (LTEに包含)
不要発射 (隣接チャネル、スペクトラ ムマスク、スプリアス)	システム帯域幅ごとに規定	従来システム帯域幅ごと の規定を適用	従来システム帯域幅ごと の規定を適用

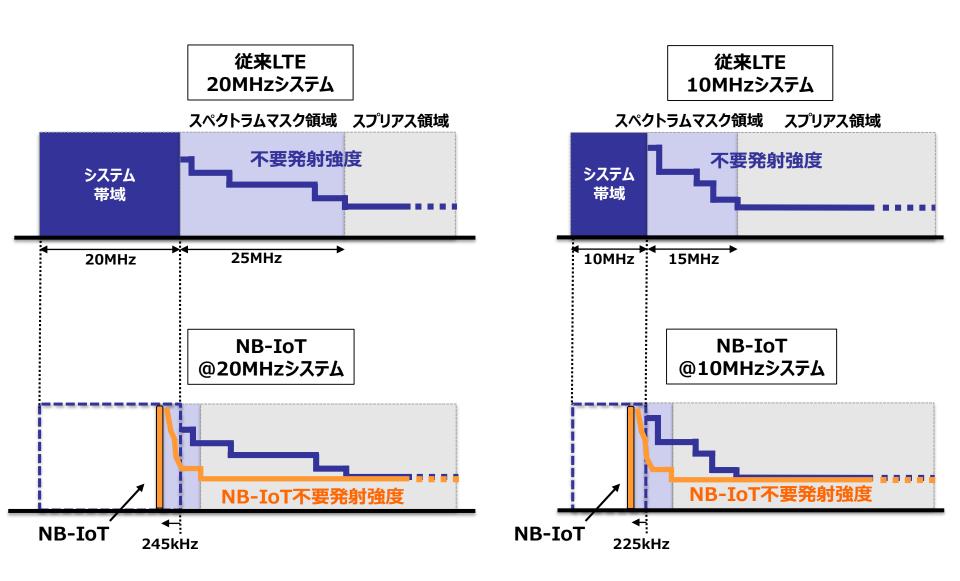
◆移動局(主にNB-IoT向けに新たな規定の追加有り)


送信系	従来LTE	еМТС	NB-IoT			
周波数帯域幅	1.4MHz~20MHz	1.4MHz	200kHz*			
空中線電力	23dBm	23dBm or 20dBm	23dBm or 20dBm			
通信方式	FDD, TDD	FDD, HD-FDD, TDD	HD-FDD			
変調方式	BPSK、QPSK、16QAM、 64QAM	QPSK、16QAM (LTEC包含)	π/2-BPSK、 π/4-QPSK、QPSK			
周波数偏差	±0.1ppm	1GHz以下 <mark>±0.2ppm</mark> 1GHz超 ±0.1ppm	1GHz以下 <mark>±0.2ppm</mark> 1GHz超 ±0.1ppm			
不要発射 (隣接チャネル、スペクトラ ムマスク、スプリアス)	システム帯域幅ごとに規定	従来システム帯域幅ごと の規定を適用	別頁にて説明			
※3.75kHz、15kHz(シングルトーン)送信にも対応 Copyright © 2016 SoftBank Corp. all rights reserved.						

3GPPにおける不要発射強度の規定

eMTC

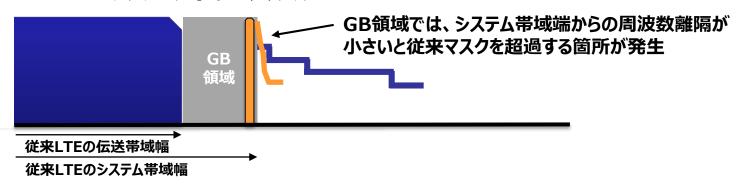
・ 基地局、移動局ともに不要発射は従来LTEの規定を適用



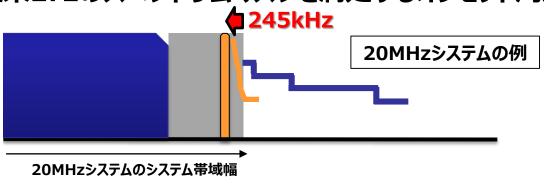
NB-IoT

- ・基地局の不要発射は従来LTEの規定を適用(eMTC基地局と同様)
- 移動局の不要発射については、次頁以降にて説明

NB-IoT移動局の不要発射強度(イメーシ)



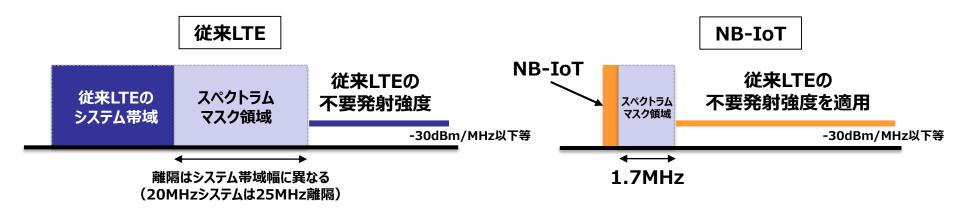
NB-IoT移動局の不要発射強度規定①



スペクトラムマスク

1. NB-IoTのスペクトラムマスク

2. 従来LTEのスペクトラムマスクを満足するオフセット周波数

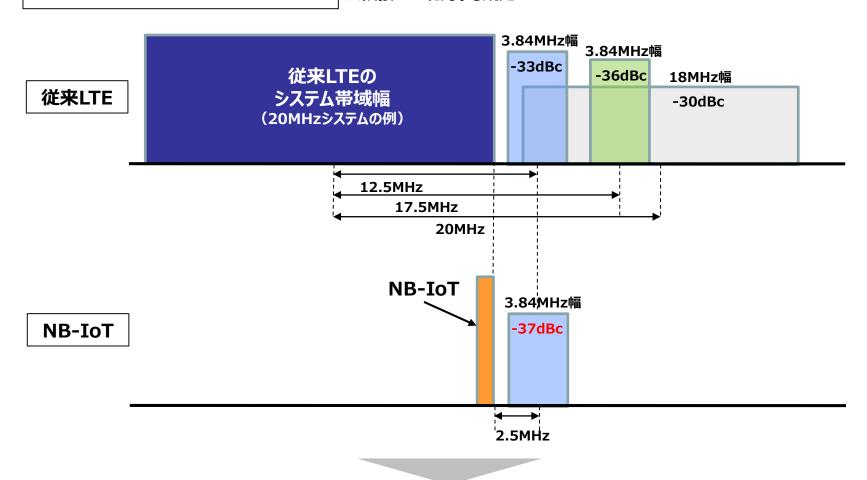

オフセット周波数を規定することにより 従来LTEのスペクトラムマスクの規定を満たす

NB-IoT移動局の不要発射強度規定②

スプリアス領域における不要発射強度

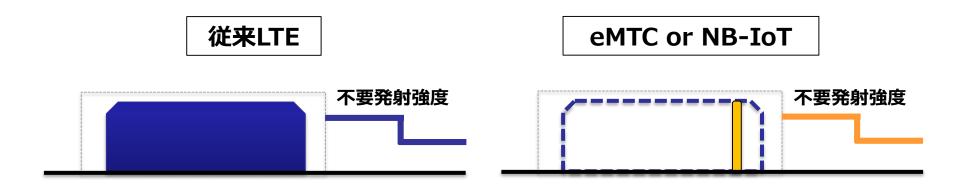
・送信帯域の端から1.7MHz以上周波数離隔が取れている領域は、従来 LTEの不要発射強度を適用

· その他システムの保護帯域についても従来LTEの不要発射強度を適用


従来LTEのスプリアス領域における 不要発射強度の規定と同一

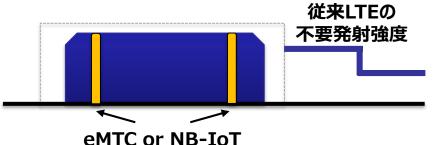
NB-IoT移動局の不要発射強度規定③

隣接チャネル漏洩電力


※隣接IMTに対する規定

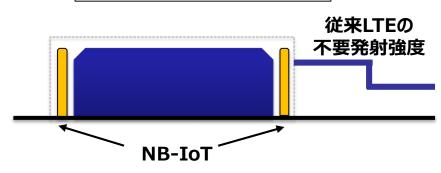
従来LTEの隣接チャネル漏洩電力の範囲内

eMTC、NB-IoTの共用条件について:移動局


- ・最大空中線電力:従来LTEと同じ(23dBm)
- ·不要発射強度:従来LTEの不要発射と変更なし(範囲内)
 - ※NB-IoTはオフセット周波数を規定

従来LTEと共用条件の変更なし

eMTC、NB-IoTの共用条件について:基地局



従来LTEと変更ないため 共用条件の変更なし

ガードバンドNB-IoT

従来LTEとNB-IoTの同時送信時 においても従来LTEの不要発射を満足す る必要があるため共用条件に変更なし

※同時送信時において従来規定を満足することを 担保する必要あり

従来LTEと共用条件の変更なし

共用検討の考え方(まとめ)

	移動	動局	基地局		
運用 形態	インバンド (eMTC、NB-IoT)	ガードバンド (NB-IoTのみ)	インバンド (eMTC、NB-IoT)	ガードバンド (NB-IoTのみ)	
共用検討の考え方	従来LTEと 不要発射に変更なし	従来LTEの 不要発射の範囲内	従来LTEと 不要発射に変更なし	従来LTEの 不要発射の範囲内	
	従来LTEと共用条件 の変更なし	従来LTEと共用条件 の変更なし	従来LTEと共用条件 の変更なし	従来LTEと共用条件 の変更なし	
		※オフセット周波数の 規定が必要		※同時送信時において従来 規定を満足することを担保す る必要あり	

