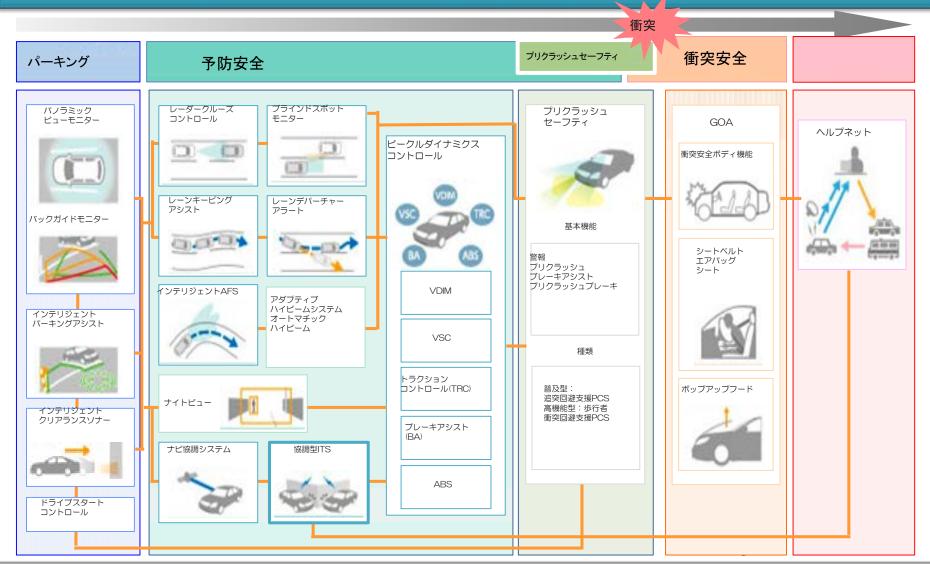
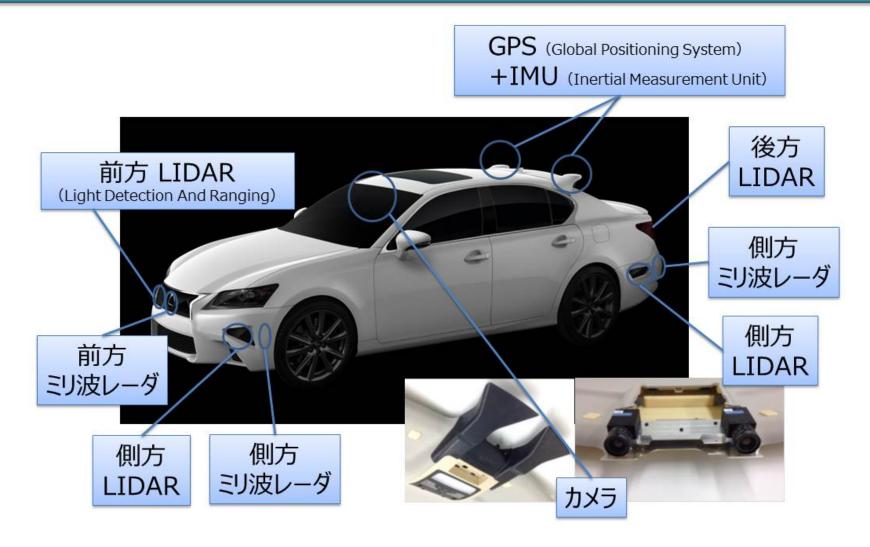

資料 WG5-3

自動車の無線システムについて

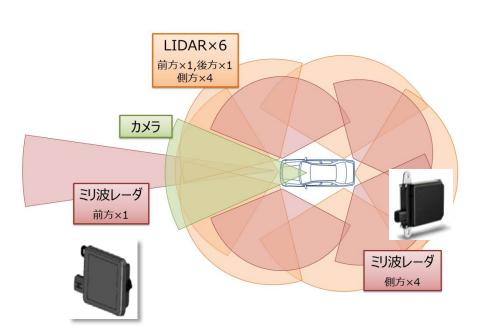
Toyota Motor Corporation 5,30, 2017



自動車の電波利用機器



トヨタの安全コンセプト:予防安全から自動運転へ



自動運転システムの実験車両の例

自動運転システムの実験車両の例

名称	機能/ 役割
前方,後 方,側方 LIDAR	車両を取り囲むように複数配置 周辺の障害物を検出(高分解能)
カメラ	白線を検出 周辺の障害物の 色・形状を認識・検出
前方·ミリ 波レーダ	遠方の障害物を検出 (環境ロバスト性)
側方・ミリ 波レーダ	車両を取り囲むように複数配置 周辺の障害物を検出 (環境ロバスト性)

		LIDAR	単眼カメラ	ステレオカメラ	ミリ波レーダ
形状認識		不得意	得意	得意	不得意
미드 효사 등지 등하	レンジ	短	中	中~長	長
距離認識	精度	高	低	中	高

5

自動車のミリ波センサーの 電波防護指針・FCCガイドラインへの適合について

	側方ミリ波レーダ	前方レーダ
周波数	24.05-24.25GHz	76-77GHz
空中線電力	10dBm以下	10dBm以下
等価等方輻射電力	20dBm(E.I.R.P)以下	規定なし
空中線利得	20dBi以下	40dBi以下
占有周波数带域	200MHz以下	1GHz以下
空中線電力の許容編差	±50%	上限+50% 下限-70%
周波数の許容編差	24.05-24.25GHz	指定周波数带
総務省 電波防護指針への適合 の考え方 61.4 V/m以下 補助指針(10cm以上の距離) 体表 10mW/cm2 眼球 2mW/cm2	10cmにおいて2mW/cm2以下であり問 題無し	電磁界強度指針、補助指針ともに 満足しており問題なし (1mW/cm ² 以下@10cm)
FCCへの適合 PD 電力密度限度値 10W/m2 等	FCC 47 1.1307b, 2.1091(b) 20cm 1.0 (mW/cm2)に適合	FCC 47 1.1307b, 2.1091 (b) 20cm 1.0 (mW/cm2)に適合
車両搭載位置 及び照射方向	リヤバンパ内に搭載 照射方向は車両の後側方に照射	フロント エンブレム裏、バンパ内など 照射方向は車両前方/前側方/後方

先進的な無線システムに対する電波防護指針の 検討に関するコメント

- ・自動車の安全性向上につながる各種予防安全システムや 自動運転の新技術、新システムでは、ミリ波センサーは 今後も主要なセンサーとして活用が期待されている。
- ・ミリ波デバイスが、製造者にとって、確実かつ合理的に 人体曝露のガイド指針への適合確認ができるよう、 各ユースケースに即した、アセスメント手法の提示を期待します。
- ・非接触充電に関する答申同様に、技術的な背景の説明がなされいくつかの手法の提示で、製造者が選択して適合確認できるよう配慮いただきたくお願いします。

TOYOTA