無線システムの普及拡大と生体電磁環境について

生体電磁環境に関する研究戦略検討会 第2回資料

2018年2月19日

IoTによって拡大する無線システム

- ①快適なモバイル ブロードバンド
- ✓ モバイルコマー ス
- ✓ モバイルコミュ ニケーション
- ②高品質放送
- ✓ 大画面ディスプ レイによる視聴
- ✓ タブレットによる移動中の視聴

快適な社会

③防災

- ✓ スマホ向け災害 情報配信
- / 実用準天頂衛星 システムの活用

4)医療

- ✓ 計測機器とクラ ウドを活用した 健康管理
- ✓ 病院・診療所と 家庭を接続した 在宅介護

安心安全な社会

⑤スマートメータ・ HFMS

✓ 家庭の電力使用 量の最適化

⑥社会インフラ監 視

- ▼ 老朽化した道路・橋の集中監視
- ✓ 災害発生後の異常検知

持続可能な社会

⑦M2M • loT

- ✓ 工場の群管理、 環境情報の収 集・提供
- ✓ 様々なものの状 況把握や対応を リアルタイムに

産業の 国際競争力強化

8自動走行

- ✓ 隊列走行
- ✓ 高速道路での自 動走行

⑨事故や渋滞のない い道路環境

- ✓ 車車間通信や歩 行者ITSで事故 回避
- ✓ 道路からの渋滞回避情報

快適で安全な 車社会

⑩電気自動車のワイ ヤレス給電

- ✓ 充電ステーショ ン等で給電
- ①家庭内のワイヤレ ス給電
- ✓ スマホやデジカメ等の給電

ワイヤレス給電で 広がる電波利用

衛星 ネットワーク

衛星インフラ活用の拡大

モバイル ネットワーク

4G普及、5G開始

ITS

隊列走行、自動走行の実現

放送

WLAIN/WI

WLAN/WPAN

モバイルNWとの連携拡大、 M2M/センサーNW利用拡大 M₂M

スマートメータの導入 産業センサーNW利用拡大 ワイヤレス給電

EV/PHEVや家電製品に ワイヤレス給電機能搭載

4K/8K放送の本格化

IT利用産業の利活用基盤の例

> IT産業/利用産業の各業種・業態における具体的な利活用例を下表のとおり整理。

	主な分野	業種・業態(例)	端末(例)	インフラ(例)	アプリ・サービス(例)
	- 小売 - インフラ(電力・ ガス・熱供給・水道) - 運輸 - 医療 - 教育 等	教育業	●教育用タブレット	●教室LAN	●通信教育
		医療・福祉業	●医療機器、医療用テレメータ、 ウェアラブルデバイス	●病院LAN	●生体モニタ、遠隔医療
		電気・ガス・熱供給・水道業	●スマートメーター	●スマートグリッド ●スマートシティ	●xEMS(HEMS/BEMS) ●充電サービス
		輸送機械業	●ITS車載器、ナビ機器 ●EV用WPT [※]	●(充電インフラ)	●自動運転アプリケーション ●(充電サービス)
IT 利用		運輸業	●RFIDタグ	●ITS設備●(スマートシティ)	●テレマティクス●物流自動化アプリケーション
産業		建設·不動産業	●センサ、GPS端末	● (スマートシティ)	●インフラ監視●重機稼働監視
		製造業	●スマート家電 ●家電WPT [※]	_	_
		小売業、情報サービス業	_	_	●モバイルEC、モバイルペイメント ●モバイル広告、モバイルゲーム
		インターネット附随サービス業	_	_	●モバイルクラウド
	-移動体通信 -放送 -デバイス(無線通信・ 放送機器) 等	移動電気通信業	●(携帯・スマホ、タブレット)	●移動体通信サービス ●公衆無線LANサービス	●音声・データ通信サービス
IT		放送業	●(テレビ受信機・録画機器)	●地上波、衛星放送●モバイル放送	●ハイブリットキャスト●見逃し放送
コア 産業		映像•音声•文字情報制作業	_	_	●テレビ・ラジオ番組 ●モバイルコンテンツ
		製造業(電波関連)	●携帯・スマホ、タブレット ●テレビ受信機・AV機器	_	_

ITコア/IT利用産業の将来発展シナリオ

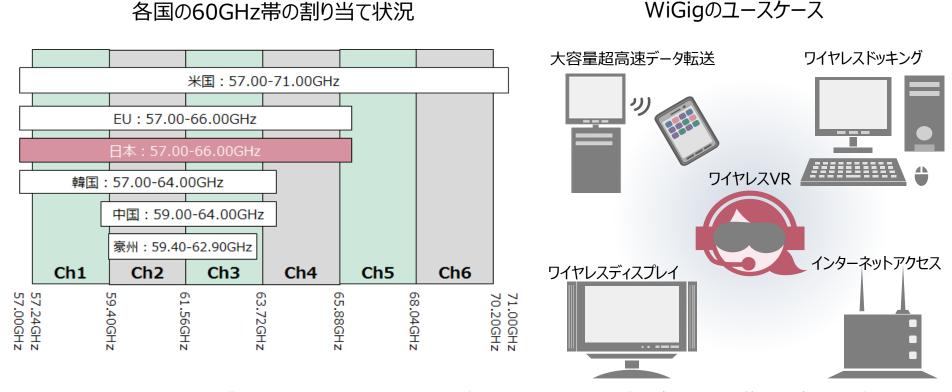
▶ IT産業/利用産業の短期, 中(~2020),長期(~2030)の成長シナリオ(外部要因・内部要因含む)

短期		短期	中期(~2020)	長期(~2030)	
産業全体		ワイヤレス環境、デバイス技術の進展に伴う、モバイル利用の拡大。	M2M/IoTの本格普及。 ビッグデータ・G空間等上位レイヤー市場の進展。	● ヒト・モノ・データ・プロセスが接続するIoE環 境が実現。	
IT利用産業	小売	スマートフォンの普及、物流の最適化に伴うモバイルEC利用者の拡大(高齢者等)。	• 消費・サービス等あらゆる経済活動がモバイル上において実現(大画面スマホを利用したネットショッピング等の拡大等)。	消費者ニーズを分析した発注自動化。3Dプリンタの一般への普及により、「モノ」から「データ」購入へ移行。	
	インフラ	XEMSによる建物内のエネルギー最適化の進展。	スマートメータがほぼ全戸に導入、スマートグリッドの実現。	エネルギー、交通、その他インフラが最適化 されたスマートシティの実現。	
	運輸	ITS専用系システム、高性能レーダ等主要技術が出揃い、車載器、インフラ双方の導入が本格化。	• ITS専用系システムによる隊列走行が実現。	• ITS専用系システムによる自動走行が高 速道路で実現。	
	医療	ウェアラブル端末、植込み型医療機器に おける電波利用や医療機関におけるモバイル機器利用が拡大。	ウェアラブル端末、植込み型医療機器による医療情報、 生体情報の管理が実用化。	•場所・時間を問わない遠隔/24時間医療の実現。(医療コストの大幅削減)	
	教育	教育現場における情報端末、デジタル教 科書、電子黒板等の普及。	• 高校以下の全ての学校で、無線LAN環境が完備。	• 家庭〜学校〜塾をつなぐ、教育環境の一 体化。	
IT コア 産業	移動体 通信	4Gシステム・サービスの開始。近距離通信(NFC等)の利用拡大。モバイルNW・WLAN・WPANのシームレスかつ効率的な運用。	5Gシステム整備に向けた投資の進展及びサービスの開始。IoT普及に伴う無線インフラニーズの拡大。東京五輪に向けた無線インフラ整備の推進	ちGマイグレーションの進展。 海外展開の推進、現新興国の経済成長の取り込み(我が国経済を牽引する産業へ)	
	放送	◆4K/8Kの試験的運用。	4K/8K放送の本格化(東京五輪等)。通信放送連携の本格化	8K以降の技術基盤の登場。放送サービスの更なる高度化	
	デバイス	メガネ型、時計型などのウェアラブル端末の普及。電波法改正、標準化整備により、中~大電力向けWPT機器の製品化。	• EV/PHEVの20%にWPT搭載。家電製品にWPTが標準搭載。	EV/PHEVの50%にWPT搭載。空調等 大電力家電にも標準搭載。→フルワイヤレスの実現	

WPT (Wireless power transfer) の動向

- ➤ 無線技術を活用して充電を行うWPTは、モバイル・ICT機器から家電、電気自動車(EV)に至るまで、様々な分野での活用が期待されている。
- ▶ 伝送方式は、①電磁誘導方式、②磁界結合方式、③電界結合方式、④電波受信方式の4方式が主流となっている。
- ➤ 国内では2016年に一部のWPT システムが制度化されたほか、ITU-R等の国際標準化団体においても各種WPTシステムの利用周波数帯や技術規格の検討が進められている。

国内の制度化実施済みのWPTシステム


	電気自動車用非接触電力伝送装置	一般用非接触電力伝送装置		
対象		6.7MHz帯磁界結合型 非接触電力伝送装置	400kHz帯電界結合型 非接触電力伝送装置	
給電対象・ システム イメージ	電気自動車	スマートフォン、タブ レットPC 等	ノートPC 等	
電力伝送 方式	磁界結合方式		電界結合方式	
伝送電力	~7.7kW	~100W	~100W	
使用周波数	79kHz∼90kHz	6.765MHz~6.795MHz	425~524 kHz (アマチュア無線、海上無線、 中波ラジオ放送に割り当てら れた周波数帯は除く)	
送受電 距離	0~30cm程度	0~30cm程度	0~1cm程度	

WPTに関する国際標準化の動向

EV	米国SAE Internationalが一般自動車用WPTの製品規格J2954の標準化(2018年発行見込み)を進めているほか、IECでも非接触給電システムに関するIEC 61980の標準化を進めている。
モバイル IT機器	2017年9月のITU-R勧告でモバイル 用WPTの周波数範囲については 6.78MHz帯と示された。また、 Wireless Power Consortium (WPC) の「Qi」(110- 205kHz)やAirFuel Allianceの 「Rezence」(6.78MHz帯)など業 界団体の主導によりワイヤレス充電規 格が策定され、すでに多くの製品が市 場に流通している。

60GHz帯無線システム(WiGig等)の動向

- ▶ 60GHz帯は近距離大容量通信用の周波数帯としての利用が期待され、IEEE 802.11ad (WiGig)等の無線通信方式は既に実用化されている。
- ➤ 60GHz帯は、近距離・高速データ通信用として、国際的に免許不要帯域として周波数が割り当てられており、様々なユースケースでの利用が期待されている。
- ▶ 今後はスマートフォンでの利用やVR技術への活用等、新たな利用形態も広がっていくことが予想される。

出所)60GHz帯の周波数の電波を利用する無線設備の高度化に係る技術的条件(平成27年6月情報通信審議会答申)等を基に作成

車載レーダの動向

- ➤ ミリ波帯を使った車載レーダは自動運転や運転支援システムの実現において主要な技術の1つであり、特に79GHz帯を使ったレーダは検知距離が長く、かつ検知精度も高いため、周辺環境が複雑な一般道での適用も期待されている。
- ▶ 2015年のWRC-15の結果、79GHz帯においてミリ波レーダに使用できる周波数が拡大されることとなった。レーダの高分解能化が可能となり、自動走行システム実現を加速するものと期待されている。
- ▶ カメラ、ミリ波レーダー、LiDAR(赤外線レーザー)の組み合わせで普及する方向

各種ミリ波車載レーダの特徴

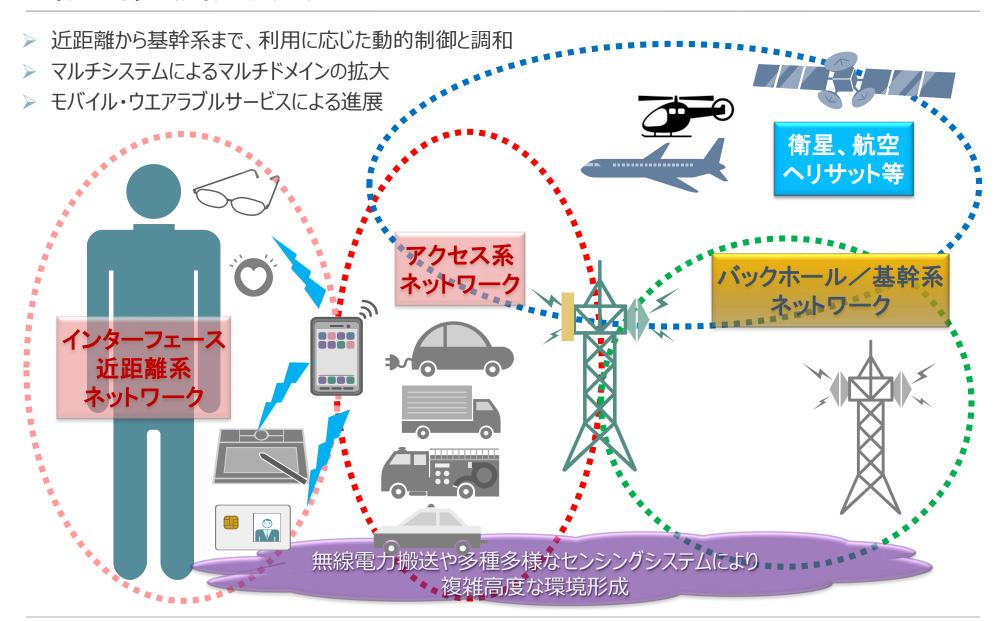
レーダ	周波数 (GHz)	分解能	距離	主な利用用途
24/26GHz UWB	24.25 -29	20cm	30m	後側方障害物警報 システム
76GHz	76-77	1-2m	200m	車間距離制御装 衝突回避ブレーキ
79GHz	77-81	7.5cm	100m	一般道の 歩行者検知

79GHz帯高分解能レーダ

79GHz帯(77~81GHz) 高分解能 レーダー

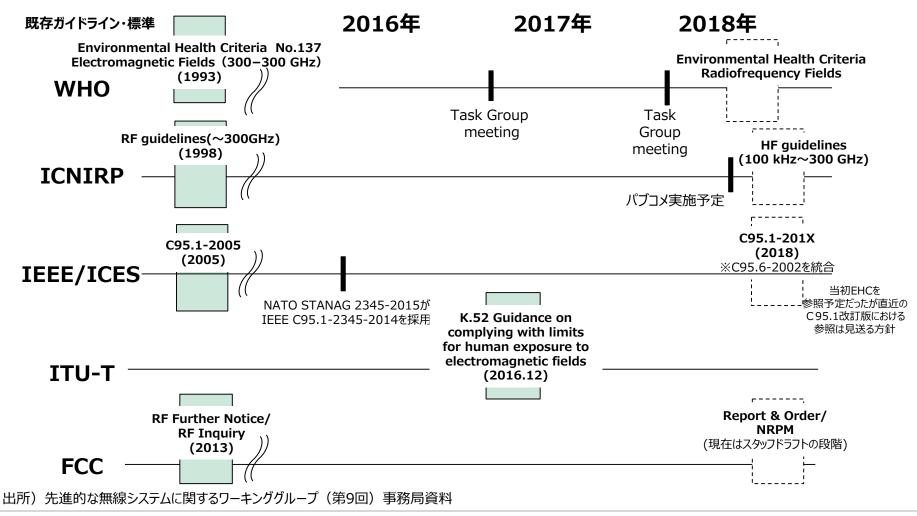
特徴

- ・100m先の範囲まで、7.5cm程度のものを把握できるよう高性能化し、歩行者等の把握が容易になることが期待
- ・広帯域を活かした高信頼性検知の向上

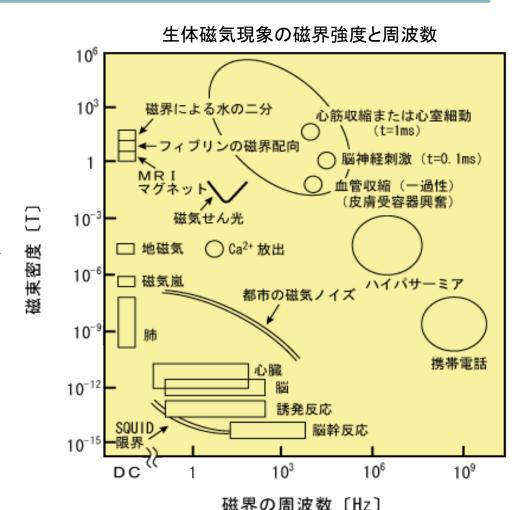

出所)総務省「ITU 2015年世界無線通信会議(WRC-15)結果概要」

IoTセンサー内蔵通信機器等の例

区分	名称	性能·用途	通信方式等	利用上の留意点例
デバイス		Wi-FiやBluetooth等の従来の近距離無線通信規格に比べ、通信速度は落ちるものの、低消費電力で長距離通信が可能であり、IoT及びM2M等に特化した活用が期待される。	LoRaWAN Sigfox	• 幅広い用途に性能を最大限発揮して用いられること
	ユビキタスウェア コアモジュール	各種センサとBluetooth通信機能を一つのモジュールに搭載しており、既存の機器へ内蔵することで様々なシステム・サービスに活用可能。	Bluetooth	・ 超小型モジュール機器のため、組み込まれた最終製品のユーザが無線通信機能の適正性を確認できること
多彩な用える		アクセサリー X IoT NUスケア Amazon San Survey Surve	アート × loT	スポーツ × loT
プロダクト	加速センサーにより、歩数、距離、消費カロリー、睡眠 スマートアクセサリー 時間の測定のほか、スマートフォンからメール等の着信道 が可能。			• 斬新かつ画期的な無線通信機能の活用がなされること
	スマートコンタクトレンズ	涙に含まれる糖の値を測定し、分析機器等に送信。 (糖尿病患者の血糖値監視などに向けた利用を想定)	未定	・ 製品の開発・製造者が無線通信機器 について、正しく理解していること
	センサー内蔵硬式球	野球の投手が投げたボールの回転数や回転軸、速度等を計測し、専用アプリ等で球質や軌道を数値化・グラフ化する。 (プロ野球球団が練習用に利用)	Bluetooth	・ 製品に使用される無線通信機能が適正に運用されること
	スマートフットウェア	内蔵したセンサー及びAIが、スニーカ(ステップ)の動きを 分析し、ステップに合わせて最適な色・音をリズムに沿って光 表示。	Bluetooth	製品に無線通信機能が組み込まれていることをユーザが適切に認識できること 様々な分野に無線IoTが活用され、社
	スマート補聴器	補聴器として専用アプリにより音量・音質の調整や所在確認機能等が可能なほか、スマートフォン経由で直接、調整のプロから遠隔で微調整を受けられる。	Bluetooth	会や人々に大きな利便性をもたらす 能性が広く認知されること

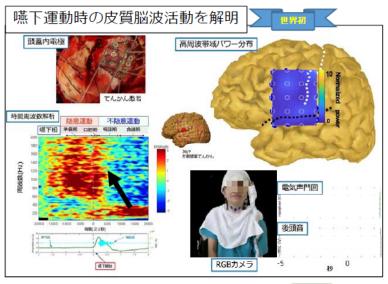

さらに、以上のようなデバイス、プロダクト等を組み合わせたソリューション的なIoTサービスも実現

人体の周りの無線システム


電磁波曝露に関する国際機関等のガイドライン動向

➤ WHO、ICNIRP等の主要な国際機関・団体から、2018年に改訂されたガイドラインが公表されていく予定。ITU-Tのものが2016年12月と新しいが、他機関のものは古いバージョンが多い。

精緻な人体のネットワーク構造や通信方法の詳細解析に基づいた影響分析の必要性


- ▶ Bluetooth、WiFi、ミリ波レーダー、WPT等電波システムの普及により人体周りの電磁波は多様に高密化、増幅する。
- ✓ 細胞分裂が盛んな成長中細胞が、その遺伝子の鎖構造の分裂、再結合(DNA転写)のたびに遺伝子障害のリスクを負う
- ✓ ガン細胞の成長を促進してしまうなど、人体 各所の制御・連携機構に異常をきたす
- ✓ 特定の組織に影響を及ぼし、発達異常を誘 引する
- ✓ ホルモン分泌バランスの崩れによって、免疫 機構に異常をきたす
- ✓ 埋め込み医療機器の制御に影響を及ぼし 誤作動等を引き起こす

出所) 図は、電気学会:電磁界の生体影響に関する現状評価と今後の課題 第 II 期報告書(電磁界生体影響問題調査特別委員会、2003年3月)より

脳科学・脳型人工知能開発研究の現場より

- 脳の各部位のネットワーク構造や通信方法、全身各部の制御方法等は、実際に計測デバイスを埋め込んでいる希少な ケースによって研究が進められている段階。
- 脳や各部とのどんな通信やどういうケースの際に、どんな影響を及ぼすのかは、今後の研究による。

Qualityの高い頭蓋内脳信号と非拘束自然生活下の 運動・感覚情報とを長期間にわたり大量に同期記録

感覚野・運動野や前頭前野から記録される大量の脳信号を解析して、 ボトムアップ処理とトップダウン処理に関わるメカニズムを解明

> ※別プロジェクトで遂行中の重症ALS患者およびサルの頭蓋内 のワイヤレス体内埋込装置を用いたBMI研究の成果等を利用。

出所) 大阪大学国際医工情報センター 脳神経外科学 平田雅之教授資料より

