参考資料23G作1-1

周波数ひっ迫対策のための技術試験事務

「23GHz 帯無線伝送システムの双方向化等に関する 技術的条件の調査検討」

平成29年度 成果報告書

平成30年3月

京セラコミュニケーションシステム株式会社

口八

1. 調査	室検討の目的1
2. 調査	を検討の概要
2.1.	調查検討項目
2.2.	実施体制
2.3.	調査検討スケジュール7
3. 調査	至検討実施内容
3.1.	偏波多重技術の検討
3.1	.1. XPD 及び偏波分離度の所要性能9
3.1	.2.交差偏波識別度(XPD)に関するフィールド試験13
3.2.	双方向化技術の検討14
3.2	.1. 双方向化の実現14
3.2	.2. フィールドにおける双方向試験16
3.2	.3. 双方向化技術における課題と対策16
3.3.	変調方式高度化技術の検討18
3.3	.1. [C/N]0、及び C/I の検討18
3.3	.2. [C/N]0、及び C/I
3.3	.3. デジタルケーブルテレビ信号の品質測定に関するフィールド試験 33
3.4.	小型・軽量化の検討
3.4	. 1. 目的
3.4	.2. 測定用筐体
3.4	.3. 小型化
3.4	.4. 軽量化
4. フィ	ィールド試験
4.1.	フィールド試験の概要45
4.1	.1. 目的
4.1	.2. 試験期間
4.1	.3.試験回線の概要
4.1	.4.試験装置の主要概要

4.2. 技術	試験の条件	52
4.2.1.	23GHz 無線装置の設定	
4.3. 技術	試験評価	53
4.3.1.	目的	53
4.3.2.	測定項目	53
4.3.3.	測定方法	55
4.3.4.	信号周波数配列	
4.3.5.	測定系統図	58
4.3.6.	回線設計	58
4.3.7.	干涉検討	
4.3.8.	測定結果	65
4.4. 偏波	多重伝送試験	77
4.4.1.	目的	77
4.4.2.	測定系統図	77
4.4.3.	試験方法	78
4.4.4.	伝送信号条件	79
4.4.5.	測定結果	80
4.5. アン	テナ間回り込みによる影響	
4.5.1.	目的	
4.5.2.	測定系統図	
4.5.3.	試験方法	85
4.5.4.	伝送信号条件	86
4.5.5.	測定結果	88
4.6. スル	ープット試験	91
4.6.1.	目的	
4.6.2.	測定系統図	
4.6.3.	試験方法	
4.6.4.	双方向化技術、及び偏波多重技術の検討の測定結果	
4.7. 映像	(地デジ) 伝送試験	
4.7.1.	目的	99
4.7.2.	測定系統図	99
4.7.3.	伝送信号条件	
4.7.4.	映像(地デジ)伝送試験測定結果	101
4.8. アン	テナ・偏波分離器調整	102

4.	. 8. 1.	目的	
4.	. 8. 2.	アンテナ方向調整	
4.	. 8. 3.	OMT 調整	
4.	. 8. 4.	まとめ	
4.9.	レベ	ルインジケータの製作	
4.	. 9. 1.	目的	
4.	. 9. 2.	レベルインジケータの製作	
4.	. 9. 3.	調整結果	
4.10	D. フ	イルタ製作	
4.	. 10. 1.	上り/下り分波フィルタ	
4.	. 10.2.	UHF/VHF 分波フィルタ	
5. 課	間査検討の	の成果と課題	
5.1.	調査	検討の成果	
5.2.	今後(の課題	133
6. 資	译料編		
6.1.	用語	•略語	
6.2.	測定相	幾材	
6.3.	参考	文献	
7. 参	考資料.		
7.1.	230	GHz帯無線伝送システムの双方向化等に関する技術的条件	この調査検討に係
わる	る調査検討	討委員会	
7.	. 1. 1.	開催要綱	
7.	. 1. 2.	委員一覧	
7.	. 1. 3.	審議経過	
7.	. 1. 4.	配布資料	
7.2.	映像	試験	

1. 調査検討の目的

現在、23GHz帯無線伝送システムは、ケーブルテレビ伝送路(同軸、又は光ケーブル) の二重化や不具合時の臨時回線等として、ケーブルテレビ独自方式であるケーブルテレビ 信号の周波数配列をそのまま 23GHz 帯の電波に変換する FDM-SSB 方式により、上り又 は下り片方向の放送用途(素材伝送を含む)に利用されている。

ー方で、ケーブルテレビ事業者が提供するサービスとしては、多チャンネル放送に加えイ ンターネット接続サービスあり、約700MHz(下り:90~770MHz、上り:15MHz~65MHz) 以上の周波数帯域幅が必要であるが、23GHz帯で使用できる周波数帯域幅は400MHzしか なく、またインターネットネット接続サービスを提供できる双方向機能もないため、全サー ビスを提供することができない現状がある。

加えて、現在 23GHz 帯で伝送可能な放送信号の変調方式としては、地上デジタルテレビ 放送の標準デジタルテレビジョン放送方式(OFDM) とデジタル有線テレビジョン放送方 式のうち 64QAM 信号のみとなっており、現行のハイビジョン(2K) を超える超高精細な 画質を可能にする 4K・8K 放送の伝送を可能にするには、デジタル有線テレビジョン放送 方式の 256QAM や周波数利用効率を向上できる高度な変調方式(ITU-T 勧告 J.382 に準拠 した方式)に対応することが不可欠であり、ケーブルテレビサービスとして期待されている 全てのサービスを伝送可能な無線伝送システムの実現が望まれている。

以上のように、現在の 23GHz 帯無線伝送システムに対する大容量化、双方向化等のニーズを踏まえ、平成 28 年度の「23GHz 帯無線伝送システムの双方向化等に関する技術的条件の調査検討」(以下「平成 28 年度調査検討」)では、FDM-SSB 方式による 23GHz 帯無線伝送システムにおいて、現状の帯域内でケーブルテレビ事業者が提供するサービス全体を伝送可能とするために、垂直偏波と水平偏波を偏波多重によって同時に用いることで周波数利用効率を 2 倍にし、システムの双方化を図り、現行の変調方式と比較して伝送速度換算で周波数利用効率を約 70%向上させる高度な変調方式を導入するための技術的条件を取得することを目的として、23GHz 帯無線伝送システムにおける偏波多重技術、双方向化技術、変調方式高度化技術、及び小型・軽量化について下記技術的課題の検討を行い、システムの試作を実施した。

- (ア) 垂直偏波と水平偏波を多重することによって周波数利用効率を2倍にして約 800MHz相当の帯域を確保可能とする偏波多重技術
- (イ) 周波数帯の一部を上り回線に用いることによって双方化を実現する双方向化技術

- (ウ) 256QAM や ITU-T 勧告 J.382 に準拠した高度な変調方式等に対応可能な変調方 式高度化技術
- (エ) 臨時回線として設営する場合や無線装置の設置のしやすさを実現するための小型・軽量化の検討

本調査検討では、平成28年度調査検討における課題を整理し、必要に応じて試作した23GHz帯無線伝送システムの対策・改善を行い、実フィールドを用いた屋外環境(雨、雪等悪条件の場合も含む。)を実施して、23GHz帯無線伝送システムの技術的条件の明確化を行う。

図 1-1 23GHz帯無線伝送システムの双方向化等の実現イメージ

2. 調査検討の概要

2.1. 調査検討項目

現在、ケーブルテレビの有線伝送路(同軸又は光ファイバー)の二重化や臨時回線等で使用されているケーブルテレビの独自方式である FDM-SSB 方式を利用した 23GHz 帯無線伝送システムでは、使用できる周波数帯域幅が 400MHz しかなく、また双方向利用ができず、伝送可能なデジタルテレビ信号の変調方式も OFDM と 64QAM に限定されていることもあり、ケーブルテレビ事業者が提供する全てのサービスを伝送することができない。

昨今、23GHz帯無線伝送システムにおいては、ケーブルテレビ事業者からインターネット事業に対応するための双方向化の要望が高まっており、また、平成27年3月にケーブルテレビで4K・8K放送を可能とする省令改正を実施し、ITU-T勧告J.382に準拠した周波数利用効率を向上できる高度な変調方式等を導入したため、既存の256QAMとあわせてこれらへの対応が要望され、ケーブルテレビ事業者の全サービスを伝送可能なシステムの実現が望まれている。

このようなシステムの実現に加え、無線装置の固定設置や臨時回線としての設営を考慮 し、導入を容易にするための手法(小型・軽量化)の検討も必要である。

これらを勘案し、平成 28 年度の「23GHz 帯無線伝送システムの双方向化等に関する技術的条件の調査検討」(以下「平成 28 年度調査検討」)では、以下の項目について検討を行い、試験装置の試作、並びに技術試験(室内)を行った。

(1) 偏波多重技術の検討

23GHz帯で一般的に利用されている FDM-SSB 方式において、垂直偏波と水平偏波 を偏波多重によって同時に用いることで周波数利用効率 2倍(800MHz幅相当)を実 現するための垂直・水平偏波分離度等に関する技術的条件を検討する。

(2) 双方向化技術の検討

23GHz帯で一般的に利用されている FDM-SSB 方式において、23GHz帯無線伝送 システムを利用する際に、周波数帯の一部を上り回線(約50MHz帯幅)に用いること によって双方化を実現するためのガードバンドの帯幅等に関する技術的条件を検討す る。 (3)変調方式高度化技術の検討

23GHz 帯で一般的に利用されている FDM-SSB 方式において、ITU-T 勧告 J.382 に準拠した高度な変調方式や、既存の 256QAM 方式、通信用変調方式(DOCSIS 方 式)等を導入するための所要 C/N 比等に関する技術的条件を検討する。

(4)小型・軽量化の検討

災害等による同軸・光ファイバ回線の断線時の早期復旧や、電線類地中化工事区間に おける臨時回線の設営の対応が可能となるよう、小型・軽量化を検討する。

本調査検討では、平成28年度調査検討における課題を整理し、試作した23GHz帯無線 伝送システムを用いた屋外環境(雨、雪等悪条件の場合も含む。)を通じて、以下の課題に 取り組み、23GHz帯無線伝送システムの技術的条件の明確化を行う。

(1) 偏波多重技術の検討

平成28年度調査検討における室内試験結果を踏まえ、FDM-SSB方式において偏波 多重伝送を行う際に必要となる偏波分離器(OMT)の偏波間結合量及び降雨による劣 化を考慮した交差偏波識別度(XPD)に関する基準値(所要値)を策定し、フィールド 試験を通じて基準値の妥当性を確認する。

また、偏波多重方式を導入するにあたってのその他の条件(隣接帯域等を使用する他の無線システムへの干渉等)についても検討を行う。

(2) 双方向化技術の検討

平成 28 年度調査検討で実現した FDM-SSB 方式における双方向化技術に関する有 用性について、フィールド試験を通じて確認を行う。また、アンテナの設置及び適切な 離隔についての検討を行い、試験過程で抽出された課題については対策・改善を図る。

(3)変調方式高度化技術の検討

平成 28年度調査検討における室内試験結果を踏まえ、FDM-SSB 方式において既存 の 256QAM 方式、ITU-T 勧告 J.382 に準拠した高度な変調方式等を伝送する際に必 要となる所要 C/N 比及び CI 値を(1)で検討する XPD を考慮して基準値を策定し、 フィールド試験等を通じて基準値の妥当性を確認する。23GHz 帯は降雨の影響を受け やすい周波数帯であることを考慮し、各変調方式と降雨減衰との関係についても調査 を行う。

また、本変調方式を導入するにあたってのその他の条件(隣接帯域等を使用する他の

無線システムへの干渉等)についても検討を行う。

(4)小型・軽量化の検討

平成 28 年度調査検討において実現した小型・軽量化の結果を踏まえ、実フィールド における 23GHz帯無線伝送システムの簡便な導入・設置を実現させる手法(小型化等) について検討する。

2.2. 実施体制

本研究開発の実施体制を図2-1に示す。

図 2-1 実施体制

また、関連する要素技術間の調整、並びに成果の取りまとめ方等、調査検討全体の方針に ついて幅広い観点から助言を頂くとともに、実際の調査検討の進め方について適宜指導を 頂くことを目的として、「23GHz 帯無線伝送システムの双方向化等に関する技術的条件の 調査検討に係わる検討委員会」(以下、調査検討委員会)を設置し、計3回委員会を開催し た。第1回調査検討委員会(平成29年9月15日)では本調査検討の概要説明と意見交換、 第2回調査検討委員会(平成29年12月22日)ではフィールド試験に関する中間報告及び 課題整理、第3回調査検討委員会(平成30年3月26日)では本調査検討の結果報告及び 課題整理と、今後に向けた意見交換等を行った(詳細については参考資料を参照のこと)。

調査検討委員会とは別に、23GHz帯実験局の現地見学会を実施(平成 30年3月2日) し、フィールド試験における測定系や受信映像などを確認して頂き、課題整理を実施した。

2.3. 調査検討スケジュール

			2017年				2018年	
	8月	9月	10月	11月	12月	1月	2月	3月
調査検討								
偏波多重技術の検討				机上	検討		結果まとめ	・データ整理
双方化技術の検討				-	机上検討		結果まとめ	・デ <i></i> 2整理
変調方式高度化技術の検討				机上	検討		結果まとめ	データ整理
小型・軽量化の検討		机上検討					結果調	とめ・データ整理
技術試験・フィールド試験								
機材・部材調達、及び試作		•		設計・部材調達 ・詞	式作			
技術試験						一 調	整機構など	
フィールド試験		うて アイールド選定	験局免許申請	★予備免許 (11/1) 設置	★ 免許(12/ 工事 •調整	11) フィールド	試験(~3/20)	撤去工事
調査検討委員会								
検討委員会開催		★第1回 (9月1	5日)		★第 (1	2回 2月22日)	現地見学会 (3月21	★ 第3回★ 目)(3月26日)
報告書等								
資料作成		資料作成			資料作成		資料	報告書作成

 ∞

3. 調查検討実施内容

3.1. 偏波多重技術の検討

「偏波多重技術の検討」の目的は、平成28年度の「23GHz帯無線伝送システムの双方向 化等に関する技術的条件の調査検討」(以下「平成28年度調査検討」)における室内試験結 果を踏まえ、23GHz帯無線伝送システムで一般的に利用されているケーブルテレビの独自 方式であるFDM-SSB方式において偏波多重伝送を行う際に必要となる偏波分離器(OMT) の偏波間結合量及び降雨による劣化を考慮した交差偏波識別度(XPD)に関する基準値(所 要値)を策定し、フィールド試験を通じて基準値の妥当性を確認することにある。

また、偏波多重方式を導入するにあたってのその他の条件(隣接帯域等を使用する他の無 線システムへの干渉等)についても検討を行う。

本調査検討では、デジタルケーブルテレビ信号(OFDM、64QAM と 256QAM、J.382、 及び DOCSIS) に影響を与えない交差偏波識別度(XPD: Cross Polarization Discrimination)、及び直交二偏波を分離する導波管回路である偏波分離器(OMT: OrthoMode Transducer)のアイソレーション(偏波分離度)について、机上検討により技 術基準を策定し、フィールド試験を通じてその整合性について確認する。

3.1.1. XPD 及び偏波分離度の所要性能

平成 28 年度調査検討では、偏波多重により、標準デジタルテレビジョン放送方式 (OFDM)、既存のデジタル有線テレビジョン放送方式 (64QAM と 256QAM)、新規デジ タル有線テレビジョン放送方式 (J.382)、及びケーブルインターネット (DOCSIS)の信号 を伝送する場合、異なる偏波間の変調信号はそれぞれ雑音(妨害波)信号になると考え、有 線一般放送の品質に関する技術基準を定める省令」で規定されている「搬送波のレベルと雑 音のレベルとの比」を参照し(表 3-1 参照)、OMT の偏波間結合量の目標値を 40dB 以上 (新規デジタル有線テレビジョン放送方式 (J.382)のうち、4096QAM(符号化率:5/6) の変調方式で規定されている 40dB 以上が必要)、パラボラアンテナの XPD 性能の目標値 を 33dB 以上(一般的な 23GHz 帯パラボラアンテナの XPD 性能が 30dB 程度であり、現 行のパラボラアンテナでもほぼ同等であることから実現的な値とした)に設定し、それぞれ 試作を行った。

項目 変調方式		デジタ	<新規> <既存> ジタル有線テレビジョン放送方式 デジタル有線テレ (J.382) ビジョン放送方式						
		256QAM (OFDM)	1024QAM (OFDM)	4096QAM 符号化率 4/5 (OFDM)	4096QAM 符号化率 5/6 (OFDM)	64QAM	256QAM	OFDM	
雑音レ· の差(C/N」	ベルと (所要 比)	26dB 以上	33dB 以上	37dB 以上	40dB 以上	26dB 以上	34dB 以上	24dB 以上	
妨害波 とのレ ベル差	単一 周波 数	-33dB 以下	-39dB 以下	-39dB 以下	-40dB 以下	-26dB 以下	-34dB 以下	-35dB 以下	
	多 CH 妨害	-26dB 以下	-33dB 以下	-37dB 以下	-40dB 以下	CTB- 39dB 以下	CTB- 45dB 以下	CTB- 45dB 以下	

表 3-1 有線一般放送の品質に関する技術基準を定める省令(C/N 比、及び妨害波)

なお、規定のうち「搬送波のレベルと妨害波のレベルとの差」については、偏波多重する 信号自体が、23GHz帯無線伝送システムへの入力時点で「有線一般放送の品質に関する技 術基準を定める省令」で規定される性能を十分満足していることと、23GHz帯無線伝送シ ステム上でもその性能に十分考慮していることから、単一周波数やCTBなどの妨害波の影 響はほぼないと考えられることから考慮しないこととした。

試作した 0.3m 径パラボラアンテナと OMT を図 3-1 と図 3-2 に示す。

図 3-1 0.3m 径パラボラアンテナ

図 3-2 偏波分離器(OMT)

試作した 0.3m 径パラボラアンテナと OMT の性能(XPD と偏波間結合量)を表 3-2 に 示す。0.3m 径パラボラアンテナの XPD については 33.3dB 以上を、OMT の偏波間結合量 については、同一 OMT の偏波間(V1-H1、及び V2-V3)で 51dB 以上、また、異なる 2 つ の OMT を直結したときの偏波間(V1-Hz、及び V2-H1)でも 49dB 以上を実現した。

	XPD	[dB]	偏波間結合量 [dB]				
	垂直(Tx H) 水平(Tx V)		V1-H1 V2-H2 V1-H2 V2-H				
目標値	33dB以上 レドーム有		-40dB以下				
	レドーム有						
宇测店	33.3	34.2	× 4.00	51.44	-49.74		
夫側他	レドー	ムなし	-56.08	-51.44		-50.54	
	40.4	44.8					

表 3-2 XPD、及び偏波間結合量の実性能

また、試作した OMT を用いた偏波多重によるケーブルテレビ信号(OFDM、64QAM と 256QAM、J.382、及び DOCSIS)の室内伝送試験では、信号品質に影響することなく伝送 できることを確認しており、垂直偏波を水平偏波の D/U 比を変化させることにより擬似的 に XPD を劣化させたときの室内試験結果でも、無線区間の C/N 比が十分確保できている 状態では、有線一般放送で規定されている所要 C/N 比程度の D/U 比(XPD)が必要となる ことがわかった(表 3-3 参照)。

項目	デジタ	<新 い有線テレ (J.	「規> /ビジョン〕 382)	<既 デジタル ビジョン	存> 有線テレ 放送方式	<既存> 標準デシ シジョ が送 方式	
変調方式	256QAM (OFDM)	1024QAM (OFDM)	4096QAM 符号化率 4/5 (OFDM)	4096QAM 符号化率 5/6 (OFDM)	64QAM	256QAM	OFDM
雑音レベルと の差(所要 C/N比)	26dB 以上	33dB 以上	37dB 以上	40dB 以上	26dB 以上	34dB 以上	24dB 以上
D/U比[dB] (XPD)	26.4	33.1	37.5	-	25.4	32.2	-

表 3-3 無線区間の C/N 比が確保されているときの最小 D/U 比(XPD)

※ 無線区間の C/N 比: 38dB (レベル差伝送無し)

※ J.382 の信号のうち 4096QAM 符号化率 5/6 については、無線区間の C/N 比が所要 C/N 比にみたず計測できていない。

※ OFDM の試験は未実施。

実際の偏波多重による無線伝送においては、無線区間における降雨減衰等による CN 比の劣化量と XPDの劣化量を考慮した回線品質(無線区間における伝送性能)が必要になる。 XPD の所要性能を検討するに当り、降雨減衰等による XPD の劣化量がどの程度かを把握する必要があるため、本調査検討では、降雨量と無線区間の CN 比の関係に加え、実フィールドにおける XPD の劣化量や特性を評価する。

3.1.2. 交差偏波識別度(XPD)に関するフィールド試験

本調検討では、平成 28 年度調査検討で試作した双方向機能(90MHz~770MHzの下り ケーブルテレビ信号及び 15MHz~65MHz の上りケーブルテレビ信号を同時に伝送)を有 する 23GHz 帯無線伝送システムと 0.3m 径パラボラアンテナ、及び OMT を試験フィール ドに設置し、XPD と降雨量、並びにデジタルケーブルテレビ信号(256QAM など)の信号 品質(搬送波レベル、C/N 比、BER(ビット誤り率)、MER(変調誤差比)等)を一定期間 計測し、無線回線断の時間率(回線不稼働率)と降雨減衰特性を評価した。

XPD の計測については、垂直偏波を主偏波として送信し、垂直・水平偏波での受信電力 結果より、下記の計算式により算出した。

$$XPD[dB] = 10\log\left(\frac{P_V}{P_H}\right)$$

フィールドへの設置時に偏波面調整を実施した結果、標準状態(降雨などの影響による劣化が無い状態)での XPD 値は 37.6dB となり、平成 28 年度の調査検討時よりも高い性能を実現し、同性能下においてデジタルテレビ信号(OFDM、64QAM、256QAM)の偏波多重伝送が問題なく行えることを確認した。フィールド試験期間中、降雨等による XPD の大きな劣化は観測されず、デジタルテレビ信号への影響も無かったことを確認した。詳細については 4 章で述べる。

3.2. 双方向化技術の検討

「双方向化技術の検討」の目的は、平成28年度調査検討で実現した、23GHz帯無線伝送 システムで一般的に利用されているケーブルテレビの独自方式である FDM-SSB 方式にお ける双方向化技術に関する有用性について、フィールド試験を通じて確認を行うことであ る。また、アンテナの設置及び適切な離隔についての検討を行い、試験過程で抽出された課 題については対策・改善を図る。

本調査検討では、平成28年度調査検討で実現したFDM-SSB方式における双方向化技術 を用いた23GHz帯無線伝送システム(パラボラアンテナと偏波分離器(OMT)を含む)を 用いてフィールド試験を実施し、その有用性を確認すると共に、実現した双方向技術に関す る課題点について検討を行う。

3.2.1. 双方向化の実現

平成 28 年度調査検討では、以下の2 つの理由からアンテナ共用器は用いず、上り信号と下り信号をそれぞれ別々のアンテナで送受する送受分離型とした。1 つ目は 23GHz 帯の400MHz 帯域幅を偏波多重で2 倍の 800MHz 帯域幅を実現した際、ケーブルテレビの上り

(15MHz~65MHz) と下り(90MHz~770MHz)で必要となる帯域幅と、隣接する他の帯 域(携帯エントランスと電波天文)への影響を考慮したガードバンドの設定より導き出した 50MHz 程度のガードバンドで上り信号と下り信号を分離するには、非常に高性能(急峻) なフィルタが必要になり、フィルタサイズも大きなものになるためである。2つ目は異なる 偏波間において下り信号と上り信号の帯域の一部が同じであり、空中線ポイント(アンテナ 接続部)で大きなレベル差が発生し、アンテナの交差偏波識別度(XPD)及び OMT の偏波 分離度だけでは、D/U 比の確保が非常に困難になるためである。これらの理由から上り信 号と下り信号をそれぞれ別々のアンテナで送受する送受分離型として試作を行い、 DOCSIS3.0 (ケーブルインターネット)の信号の疎通(PING 試験)及びスループットに 問題がないことを確認した。

偏波面の適用については、室内試験の結果、「H 偏波(水平偏波) - H 偏波(水平偏波)」 配置のときの回り込み量がもっとも小さいため上り回線を H 偏波とした。

図 3-4 にアンテナ配置を垂直方向にしたときの 23.4GHz におけるアンテナ間回り込み 量 (V 偏波-V 偏波、H 偏波-H 偏波、及びV 偏波-H 偏波間)の比較図を、図 3-5 に平 成 28 年度調査検討で試作した双方向機能を有する 23GHz 帯無線伝送システムのイメージ 図を示す。

図 3-4 アンテナ間回り込み量(垂直設置)@23.4GHz

図 3-5 双方向機能を有する 23GHz 帯無線伝送システム

本調査検討では、試作した双方向機能を有する 23GHz 帯無線伝送システムを用いてフィ ールド試験を実施し、その有用性を確認すると共に、実現した双方向技術に関する課題点に ついて検討を行う。

3.2.2. フィールドにおける双方向試験

平成 28 年度調査検討で試作した双方向機能(90MHz~770MHzの下りケーブルテレビ信 号及び 15MHz~65MHz の上りケーブルテレビ信号を同時に伝送)を有する 23GHz 帯無 線伝送システムと 0.3m 径パラボラアンテナ、及び OMT を試験フィールドに設置し、 DOCSIS3.0 (ケーブルインターネット)の信号の疎通(PING 試験)及びスループットを 計測した。単一偏波、並びに偏波多重伝送によるデータ通信試験では、有線接続時と同じ性 能(スループットと PING)となり劣化無く通信できることを確認した。

	A •				
		スループット		PING	
		[Mbps]	実施[回]	失敗回	失敗率[%]
出一個油	上り	99.2	COO	0	0.00/
单一 偏 仮	下り	282.0	600	0	0.0%
厄 油 夕 舌	上り	97.6	COO	0	0.00/
偏似多里	下り	282.0	600	0	0.0%
方组控结	上り	98.6	<u> </u>	0	0.00/
们 脉 1女 സ	下り	280.0	600	0	0.0%

表 3-4 DOCSIS3.0 データ通信試験結果

3.2.3. 双方向化技術における課題と対策

本調査検討では、上り信号と下り信号をそれぞれ別々のアンテナで送受する送受分離型 とした双方向機能を有する 23GHz 帯無線伝送システム試作を行い、室内試験とフィールド 試験を通じて、DOCSIS3.0 (ケーブルインターネット)の信号の疎通 (PING 試験) 及びス ループットに問題がないことを確認した。

試作した双方向機能を有する 23GHz 帯無線伝送システムのフィールドへの導入では、設置するアンテナが4面となったことから、従来の物より設置・調整に時間を要することとなり、加えて、偏波多重伝送を実現するための偏波面調整を実施しなければならず、既存の無

線システムよりも導入が煩雑になる。これらの課題を解決するため、アンテナの調整機構、 並びにアンテナ方向調整の簡便化について検討・試作を行い、改善を図った。詳細について は、4.8 アンテナ・偏波分離器調整に記載する。

また、設置スペースの問題から、フィールド試験では、室内試験で検討した垂直設置では なく水平設置(離隔:700mm)とし、上りパイロット信号(水平偏波)の下り空中線端子 への回り込み量(水平偏波と垂直偏波)が、下り水平偏波では88dB、下り垂直偏波では約 96dBという状態での試験となったが、問題なく双方向通信ができることがわかった。

3.3. 変調方式高度化技術の検討

「変調方式高度化技術の検討」の目的は、平成28年度調査検討における室内試験結果を 踏まえ、FDM-SSB方式において既存の256値直交振幅変調方式(256QAM)、ITU-T 勧告 J.382 に準拠した高度な変調方式等を伝送する際に必要となる所要 C/N 比及び CI 値を 3.1.1 で検討する XPD を考慮して基準値を策定し、フィールド試験等を通じて基準値の妥 当性を確認するとともに、23GHz 帯は降雨の影響を受けやすい周波数帯であることを考慮 し、各変調方式と降雨減衰との関係についても調査を行うことである。

また、本変調方式を導入するにあたってのその他の条件(隣接帯域等を使用する他の無線 システムへの干渉等)についても検討を行う。

本調査検討では、23GHz帯無線伝送システムにてデジタルケーブルテレビ信号(256QAM、 J.382 など)を伝送するために必要となる技術的条件(送信周波数の許容偏差、通信系の受 信端における C/N、混信保護 C/I など)を机上検討し、平成 28 年度調査検討で実現した FDM-SSB 方式における双方向化技術を用いた 23GHz帯無線伝送システム(パラボラアン テナと偏波分離器(OMT)を含む)を用いてフィールド試験を通じてその妥当性を評価す る。

3.3.1. [C/N]0、及び C/Iの検討

平成 28年度調査検討で実施した[C/N]0、及び C/Iの検討について振り返る。

[C/N]0、及び C/I の検討については、平成 10 年度 電気通信技術審議会回答申(諮問 102 号「有線テレビジョン放送事業用無線局の技術的条件」のうち「23GHz 帯を使用する有線 テレビジョン放送事業に用いる固定局の技術条件」) で行われた検討手法を踏襲し、有線系 及び無線系を含むトータルシステムの所要 C/N 比が、「有線一般放送の品質に関する技術基 準を定める省令」で定められた受信者端子における「搬送波のレベルと雑音のレベルとの比」 を確保できるよう有線系及び無線系への性能配分(C/N 比配分)を行い、配分された無線系 C/N 比を無線伝送路で発生する劣化要因(干渉雑音や熱雑音など)へ配分し、熱雑音に配分 された C/N 比を無線伝送区間における降雨減衰発生時の最悪値[C/N]0として決定する。

図 3-6 に本調査検討における性能配分の検討手順を図示する。

上記の検討手法と併せて、平成 21 年度 総務省 四国総合通信局 調査検討(有線テレビ ジョン放送事業用固定局における地上デジタル放送の伝送に関する調査検討報告書)で実 施された検討手法も参照することとする。

3.3.1.1. 23GHz帯無線伝送システムの利用シーン検討

平成 28 年度調査検討では、23GHz 帯無線伝送システムを適用する有線系伝送モデルを HFC (Hybrid Fiber Coax) と FTTH (Fiber To The Home) / FTTB (Fiber To The Building) の 2 つに絞り検討を行った。検討した利用シーンについて以下に示す。

(ア) HFC

23GHz 帯無線伝送システムを HFC へ適用するときの利用シーンとしては、図 3-7 に示すようにサービスエリアの拡張、並びに応急復旧利用が想定される。

サービスエリアの拡張として特に期待されるのは河川横断や無線柱化地域への伝送路としての利用であり、23GHz帯無線伝送システムの接続先は、同軸伝送路、または棟内伝送路が主となる。本利用シーンでは、HFCとFTTHのカスケード接続は基本的に無いことを想定した。

応急復旧利用としては、HFC 伝送路の光幹線部、又は同軸部(同軸増幅器間)が被 災した際に、23GHz 帯無線伝送システムを用いて、ケーブルテレビ信号(下り:90~ 770MHz、上り:15~65MHz)を伝送し、被災部が復旧するまで伝送路とて利用され る。ノード間を結ぶことになるため、無線伝送距離は比較的短いことが予想される。

図 3-7 23GHz 帯無線伝送システムの利用シーン(HFC)

(イ) FTTH

23GHz 帯無線伝送システムを FTTH/FTTB へ適用するときの利用シーンとしては、 図 3-8 に示すようにサービスエリアの拡張、並びに応急復旧利用が想定される。

HFC への適用のときと異なり、FTTH/FTTB への適用では通信サービスに DOCSIS 方式を使用しない(通信方式は PON 方式を利用)ため、23GHz 帯無線伝送システム で伝送する信号は、下りのケーブルテレビ信号(90MHz~770MHz)のみとなる。

サービスエリアの拡張として期待されるのは河川横断や離島への伝送路(下り信号 で映像のみ)としての利用である。ヘッドエンドから23GHz帯無線伝送システム適用 箇所までは光伝送路(幹線相当)で整備し、無線伝送後の接続先はサブヘッドエンドと なる。通信サービスは、メディアコンバータを介して、別のデータ通信用無線伝送装置 (25GHz/60GHz/80GHzなど)を使用して伝送する。

応急復旧利用としては、光伝送路が被災した際に、23GHz帯無線伝送システムを用いて、下りケーブルテレビ信号(映像系のみ)を伝送し、被災部が復旧するまで伝送路とて利用される。ノード間を結ぶことになるため、無線伝送距離は比較的短いことが予想されるが、FTTH/FTTBの幹線部は多心となっており、23GHz帯無線伝送システムを用いて復旧できるのは任意の1心のみとなる。

20

図 3-8 23GHz帯無線伝送システムの利用シーン(FTTH/FTTB)

3.3.1.2. 性能配分モデルの検討

23GHz 帯無線伝送システムを適用する有線系伝送モデルを HFC と FTTH/FTTB とし、 3.3.1.1 で検討した利用シーンを踏まえた性能配分モデルをそれぞれ検討する。

(ア) HFC

23GHz帯無線伝送システムを河川横断や無電柱化地域への伝送路として想定すると、 適用するHFC伝送路は新設でなく、既設伝送路が主になると考えられるため、ヘッド エンドに加え、HFC伝送路と無線伝送路の構成となる。

また、接続先に想定される「有線一般放送の品質に関する技術基準を定める省令」で 規定される性能規定点(受信者端子)となる集合住宅については、戸宅伝送路と棟内伝 送路のうち最も所要性能が厳しい棟内伝送路を想定すると、性能配分モデルは図 3-9 のような構成になる。

図 3-9 性能配分モデル(HFC)

HFC 伝送路の性能に関する技術基準等は存在しないため、実運用されている平均的 な中継段数を有するシステムをモデル化することとし、平成 10 年度 電気通信技術審 議会回答申(諮問 102 号)で検討された「光伝送路1リンク+幹線分岐増幅器4段+延 長増幅器1段」の性能で検討を行う。

なお、応急復旧時における性能配分モデルについては、無線システムを適用する箇所 が地理的要因に左右され一意に決まらないことから、実施設計の段階で考慮すること とし、ここでは図 3-9 の性能配分モデルのみの検討を行なった。

(√) FTTH/FTTB

23GHz帯無線伝送システムを河川横断や離島への伝送路として想定すると、適用する FTTH/FTTB 伝送路は既設伝送路ではなく、新設伝送路への適用が主となる。23GHz 帯無線伝送システムの適用箇所まで光伝送路(幹線相当)を敷設し、無線システムの後 段に FTTH 伝送路が接続される構成となる。

また、接続先に想定される「有線一般放送の品質に関する技術基準を定める省令」で 規定される性能規定点(受信者端子)となる集合住宅については、戸宅伝送路と棟内伝 送路のうち最も所要性能が厳しい棟内伝送路を想定すると、性能配分モデルは図 3-10 のような構成になる。

図 3-10 性能配分モデル(FTTH/FTTB)

FTTH 伝送路の性能については、一般社団法人日本 CATV 技術協会標準規格 JCTEA STD-018-3.0 を参照して検討を行う。

応急復旧時におけるモデルについては、幹線部に近い比較的光レベルの高い箇所で 断線が起きた場合、図 3·10 の性能配分モデルの適用が考えられる。一方、支線部に近 い光レベルの低い箇所で断線が起きた場合には、FTTH 伝送路が2段となる構成が想 定されるが、その場合、新たに光送信器を設置することになり、光レベルをある程度上 げることも可能であるが、無線システムを適用する箇所が地理的要因に左右され一意 に決まらないことから、実施設計の段階で考慮することとし、ここでは図 3·10 の性能 配分モデルのみの検討を行うこととする。

3.3.1.3. CATV システム全体での性能配分

3.3.1.2 でモデル化した有線系及び無線系を含むトータルシステムの CAIV システム全体 で、所要 CN 比が、「有線一般放送の品質に関する技術基準を定める省令」で定められた受 信者端子における「搬送波のレベルと雑音のレベルとの比」を確保できるよう有線系及び無 線系への性能配分(C/N 比)を行った。

(ア) HFC

平成 10年度 電気通信技術審議会回答申(諮問 102号「有線テレビジョン放送事業 用無線局の技術的条件」では、HFCにおける性能配分(CN 配分)を検討するには実 運用されている平均的な中継段数を有するシステムをモデルとすればよいとし、図 3・11 のように HFC 伝送モデルを、住宅密集地域(TO 間隔約 30m)で幹線は2段、郊 外地域(TO 間隔約 70m)では幹線4段程度でカバーできるため、モデルシステムは幹 線系4段、EAは1段としている。

図 3-11 NTSC-VSB-AM 方式における HFC 性能配分モデル

本検討においても、NTSC-VSB-AM 方式における検討性能を基準とし、OFDM と 64QAM における伝送レベルは-10dB、256QAM やJ.382のデジタル信号は 64QAM を 基準としたレベル差伝送を適用する。

表 3-5 に NTSC-VSB-AM を基準にした HFC 伝送路における各性能を、伝送レベル 差や雑音帯域換算を行い、OFDM や 64QAM/256QAM、ITU-T 勧告 J.382 に準拠し た高度な変調方式に関する性能を算出した結果を示す。

						J.3	382		
	NTSC- VSB-AM	OFDM	64QAM	256QAM	256QAM	1024QAM	4096QAM 符号化率 4/5	4096QAM 符号化率 5/6	
雑音帯域幅 [MHz]	4.00	5.60	5.30	5.30	5.71	5.71	5.71	5.71	
帯域換算値 [dB]	0.00	-1.47	-1.23	0.00	-0.33	-0.33	-0.33	-0.33	
レベル差 [dB]	0	-10	-10	+6	+0	+6	+8	+10	
光伝送路 C/NR[dB]	51.0	39.5	39.8	45.8	39.5	45.5	47.5	49.5	
同軸伝送路 C/NR[dB]	49.9	38.5	38.7	44.7	38.4	44.4	46.4	48.4	
TBA(Tr)1	57.0	45.53	45.77	51.77	45.44	51.44	53.44	55.44	
TBA(Tr)2	57.0	45.53	45.77	51.77	45.44	51.44	53.44	55.44	
TBA(Tr)3	57.0	45.53	45.77	51.77	45.44	51.44	53.44	55.44	
TBA(Br)	55.0	43.53	43.77	49.77	43.44	49.44	51.44	53.44	
EA	60.0	48.53	48.77	54.77	48.44	54.44	56.44	58.44	
総合性能	47.4	36.0	36.2	42.2	35.9	41.9	43.9	45.9	

表 3-5 HFC 伝送路における性能①

帯域換算値[dB]ならびにレベル差[dB]の項目における数値は、OFDM と 64QAM については NTSC-VSB-AM、256QAM、J. 382 については 64QAM 信号を基準とした ときの値となる。

表 3-5の結果(光伝送路、及び同軸伝送路における性能)を用いて、HFC 伝送路に よるモデルにおける有線系及び無線系への性能配分(C/N比)を行った結果を表 3-6示 す。

			伝送性能 (C/N 比)									
		> 兴 п 存			J. 382							
	[[] [[] [] [] [] [] [] [] [] [] [] [] []	r OFDM	64QAM	256QAM			4096QAM	4096QAM				
					256QAM	1024QAM	符号化率	符号化率				
1	ヘッドエンド	27.0	35.0	43.0	35.0	42.0	4/ 5	49.0				
-	.)	2 0	00.0	10.0	00.0	12. 0	10.0	10.0				
2	HFC (光伝送路)	39.5	39.8	45.8	39.5	45.5	47.5	49.5				
3	HFC (同軸伝送路)	38.5	38.7	44.7	38.4	44.4	46.4	48.4				
4	無線伝送路 (計算値)	29.10	28.37	37.91	28.42	36.06	42.65	49.35				
5	棟内伝送路	33.0	33.0	39.0	33.0	39.0	41.0	43.0				
6	受信者端子	24.0	26.0	34.0	26.0	33.0	37.0	40.0				
無線伝送路性能		33.0	29.0	38.0	29.0	37.0	43.0	50.0				

表 3-6 CATV システム全体での性能配分(HFC の場合①)

項番 1: JCTEA STD-018-3.0 より

項番 5:有線一般放送(省令)。4096QAM については、JCTEA STD-018-3.0 を参照。

項番 6:有線一般放送(省令)

表 3-6 では、項番 1~5 までの電力和(総合性能)が、項番 6 の受信者端子性能(CN 比)以上となるように無線伝送路(項番 4)の性能を決めている。

平成 21 年度 四国総合通信局「有線テレビジョン放送事業用固定局における地上デ ジタル放送の伝送に関する調査検討会」で実施された既存の OFDM と 64QAM の結果 は、それぞれ 27.1dB と 29.0dB となっており、OFDM についてはより高い性能が必要 との結果になった。しかし、OFDM の無線伝送路性能を 27.1dB として実導入した固 定系で性能不足であるということは現在のところない。

J.382 のうち 4096QAM(符号化率 56) については、有線系の伝送路よりも高い性能が必要になる結果となっており、無線装置の性能上、4096QAMについては非常に厳

しい結果となった。

また、有線系の伝送路で、256QAM や J.382 などの変調信号は、64QAM に対して レベル差をつけて運用することになっているが、算出された無線伝送路性能は、実際の 運用レベル差との整合が取れておらず、ケーブルテレビ信号の性質を変えることなく 周波数のみ変換して無線伝送する FDM-SSB 方式の利点が十分に活かされないことに なる。

そこで検討した一部の性能を見直し、HFC の性能配分モデルで配分した結果を表 3-7 に示す。

				伝送	生能(C/N	1比)			
		仁光政			J. 382				
	(公达路	OFDM	64QAM	256QAM	256QAM	1024QAM	4096QAM 符号化率 4/5	4096QAM 符号化率 5/6	
1	ヘッドエンド	31.0	35.0	43.0	35.0	42.0	46.0	49.0	
2	HFC (光伝送路)	40.5	40.8	46.8	40.5	46.5	48.5	50.5	
3	HFC (同軸伝送路)	38.5	38.7	44.7	38.4	44.4	46.4	48.4	
4	無線伝送路 (計算値)	26.10	28.31	35.68	28.4	36.0	42.4	48.6	
5	棟内伝送路	33.0	33.0	39.0	33.0	39.0	41.0	43.0	
6	受信者端子	24.0	26.0	33.0	26.0	33.0	37.0	40.0	
無線伝送路性能		27.0	29.0	36.0	29.0	36.0	43.0	49.0	

表 3-7 CATV システム全体での性能配分(HFC の場合②)

項番 1: JCTEA STD-018-3.0 より

項番 5:有線一般放送(省令)。4096QAM については、JCTEA STD-018-3.0 を参照。 項番 6:有線一般放送(省令)

表 3-6から見直した点は次の通り:

- 光伝送路(HFC 幹線相当)の性能を NTSC-VSB-AB 方式の 51dB から、52dB(現 行機種のカタログ性能より)に変更。
- ▶ OFDM のヘッドエンド性能を、HFC 伝送路では主に都市型ケーブルテレビが対象 となるため、比較的受信環境が良い受信点を選定できることを鑑み、放送波中継時 の3段目の中継局からの受信を想定した31dBとする(平成21年度四国総合通

信局「有線テレビジョン放送事業用固定局における地上デジタル放送の伝送に関する調査検討会」に基づく)。

▶ 256QAMの受信者端子C/N比を34dBから33dBへ変更。

一部の有線系伝送路の性能を見直した結果、全ての変調信号で無線伝送路に比較的 現実的な性能を配分することができた。

256QAM、及びJ.382のうち4096QAM(符号化率56)については、若干、所要性 能が若干緩和されたが、レベル差伝送、及び無線装置の性能に関する課題は残ったまま となる。さらに、同性能を満足させるには64QAMに対して20dB以上のレベル差が必 要であり、有線一般放送の品質に関する技術基準を定める省令で規定されている他の 搬送波のレベルとの差16dB以内を満足しないことになる。また、棟内伝送路の性能に ついては、新設の場合には実情に合わせた設計が可能であるが、既設の場合でもNTSC-VSB-AMを伝送可能な性能(46dB以上)を有しているため、NTSC-VSB-AMに対す る 64QAMのレベル差(-10dB)と、64QAMに対するJ.382(4096QAM)のレベル差を想 定し、それぞれの棟内伝送路性能を44dBと46dBとすると、4096QAM(4/5)で41dB、 4096QAM(5/6)で45dBとなる。

(✓) FTTH/FTTB

FTTH/FTTB伝送路によるモデルにおいて、有線系及び無線系への性能配分(CN比) を行った結果を表 3-8 に示す。

	伝送路	伝送性能 (C/N比)							
		OFDM	64QAM	256QAM	J. 382				
					256QAM	1024QAM	4096QAM 符号化率 4/5	4096QAM 符号化率 5/6	
1	ヘッドエンド	27.0	35.0	43.0	35.0	42.0	46.0	49.0	
2	HFC (光伝送路)	39.5	39.8	45.8	39.5	45.5	47.5	49.5	
3	無線伝送路 (計算値)	37.04	_	_	-	44.84	55.14	_	

表 3-8 CATV システム全体での性能配分 (FTTH/FTTC の場合①)

4	FTTH 伝送路	29.3	27.7	37.0	27.7	36.0	41.3	45.7
5	棟内伝送路	33.0	33.0	39.0	33.0	39.0	41.0	43.0
6	受信者端子	24.0	26.0	34.0	26.0	33.0	37.0	40.0
無線伝送路性能		38.0	-	-	-	45.0	56.0	-

項番 1: JCTEA STD-018-3.0 より

項番 3: JCTEA STD-018-3.0 に記載されている棟内伝送路の 64QAM の C/N 比が 33dB 以上 のときの ヘッドエンド入力と光受信機出力における C/N 比より算出。 項番 5: 有線一般放送(省令)。4096QAM については、JCTEA STD-018-3.0 を参照。

項番 6:有線一般放送(省令)

表 3-8 では、項番1~5 までの電力和(総合性能)が、項番6の受信者端子性能(CN 比)以上となるように無線伝送路(項番4)の性能を決めている。

既存の基準(伝送性能)で検討を進めると、ほぼ全変調信号で破綻するうえ、HFCよりも高い性能を要求される結果となった。

そこで一部性能を変更し、FTTH/FTTCの性能配分モデルで配分した結果を表 3-9 に示す。

	伝送路	伝送性能 (C/N 比)							
		OFDM	64QAM	256QAM	J. 382				
					256QAM	1024QAM	4096QAM 符号化率	4096QAM 符号化率	
							4/5	5/6	
1	ヘッドエンド	31.0	35.0	43.0	35.0	42.0	46.0	49.0	
2	HFC (光伝送路)	40.5	40.8	46.8	40.5	46.5	48.5	50.5	
3	無線伝送路 (計算値)	26.74	29.46	37.75	29.48	37.71	43.02	-	
4	FTTH 伝送路	33.2	33.2	39.2	33.2	39.2	41.2	43.2	
5	棟内伝送路	33.0	33.0	39.0	33.0	39.0	41.0	43.0	
6	受信者端子	24.0	26.0	33.0	26.0	33.0	37.0	40.0	
無線伝送路性能		27.0	30.0	38.0	32.0	38.0	54.0	_	

表 3-9 CATV システム全体での性能配分(FTTH/FTTC の場合②)

項番 1: JCTEA STD-018-3.0 より

項番 3: JCTEA STD-018-3.0 に記載されている棟内伝送路の 64QAM の C/N 比が 33dB 以上 のときの ヘッドエンド入力と光受信機出力における C/N 比より算出。 項番 5: 有線一般放送(省令)。4096QAM については、JCTEA STD-018-3.0 を参照。 項番 6: 有線一般放送(省令)

表 3-8から見直した点は次の通り:

- 光伝送路(HFC 幹線相当)の性能を NTSC-VSB-AB 方式の 51dB から、52dB(現 行機種のカタログ性能より)に変更。
- > OFDM のヘッドエンド性能を、HFC 伝送路では主に都市型ケーブルテレビが対象 となるため、比較的受信環境が良い受信点を選定できることを鑑み、放送波中継時 の3段目の中継局からの受信を想定した31dBとする(平成21年度四国総合通 信局「有線テレビジョン放送事業用固定局における地上デジタル放送の伝送に関す る調査検討会」に基づく)。
- ▶ 256QAMの受信者端子C/N比を34dBから33dBへ変更。
- FTTH 伝送路における光受信機の受光レベルを 2dB 上げたときの 64QAM における
 FTTH 伝送路性能を基準として、その他の信号(OFDM、256QAM、J.382)についてはレベル差伝送を適用する。

一部の有線系伝送路の性能を見直した結果、J.382(4096QAM 符号化率 56)を除く全ての変調信号で無線伝送路に性能を配分できたが、無線系としては無理な配分も多く、 全体的に HFC 伝送路の場合よりも高い性能が必要になるうえ、HFC と同様の課題が ある。

23GHz 帯無線伝送システムを適用する FTTH/FTTB の性能配分モデルでは、新設を 想定していることを踏まえると、適用する FTTH 伝送路の性能は、無線導入に適した 性能での設計が可能である。以上のことを踏まえ、FTTH 伝送路における 64QAM の 性能を 39dB としてレベル差を適用すると、無線伝送路性能は HFC 伝送路と同じ結果 となる。

23GHz帯無線伝送システムの利用シーンを「HFC伝送路」と「FTTH/FTTB伝送路」適用するモデルに分類し、既存の技術基準(省令)や標準規格をベースにそれぞれ性能配分を行った。

既存の技術基準(省令)や標準規格をベースにした有線伝送路系に23GHz帯無線伝送シ

ステムを適用すると全体的に性能配分が厳しくなるため、設計や運用により変更が可能な 一部性能を緩和した結果(基本的には標準規格のみ)、表 3-10 のように現実的な配分が可 能となった。

	OFDM	64QAM	256QAM	J. 382				
				256QAM	1024QAM	4096QAM 符号化率 4/5	4096QAM 符号化率 5/6	
HFC 伝送路[dB]	27	29	36	29	36	43	49	
FTTH/FTTB 伝送路[dB]	27	30	38	30	38	54	_	

表 3-10 無線システムへの性能配分結果

性能配分モデルで言及したとおり、「23GHz 帯無線伝送システムを河川横断や離島への 伝送路として想定すると、適用する FTTH/FTTB 伝送路は既設伝送路ではなく、新設伝送 路への適用が主となる」ことから、導入当初より「23GHz 帯無線伝送システム」を組み込 んだ設計が可能になる。また、23GHz 帯無線伝送システムを双方向の通信システムとして 利用される場合は、通信用変調方式(DOCSIS)を利用することになり、DOCSIS は、HFC 伝 送路で使われる変調方式であることを考慮し、無線システムへの性能配分モデルは、「HFC 伝送路」における利用シーンを採用することにする。

J.382 の 4096QAM (符号化率 5/6) については、表 3-10 の性能 (49dB) を満足させる には、64QAM に対して 20dB のレベル差伝送が必要であり、有線一般放送の品質に関する 技術基準を定める省令で規定されている他の搬送波のレベルとの差 16dB 以内を満足し無 いことから、既設の棟内伝送路性能が、NTSC-VSB-AM を伝送可能な性能 (46dB 以上)を 有していることを踏まえ、NTSC-VSB-AM に対する 64QAM のレベル差(-10dB)と、64QAM に対する J.382(4096QAM)のレベル差を適用し、それぞれの棟内伝送路性能を 44dB と 46dB とすることにする。その結果、4096QAM(符号化率:4/5)を 41dB、 4096QAM(符号化 率:5/6)を 45dB とした。
				J. 382					
OFDM	64QAM	256QAM	256QAM	1024QAM	4096QAM 符号化率 4/5	4096QAM 符号化率 5/6			
27	29	36	29	36	43	49			

表 3-11 無線伝送路性能

3.3.1.4. 無線系雑音配分

平成 10 年度 電気通信技術審議会回答申(諮問 102 号)で検討された無線系雑音配分モ デル(参照)を用いて、で配分された無線伝送路の所要 C/N 比を各劣化要因に配分し、熱 雑音に配分された C/N 比([C/N]0)を算出する。

図 3-12 無線系雑音配分モデル

	雑音配分系 備考			
	無線伝送敗訴要 C/N[dB]	CATV システム全体で有線系と無線系に性能を配分し		
(I)	黑冰石区昭川安 0/11[uD]	た値。		
	干涉雑音 C/N[dB]	無線区間で発生する干渉雑音。C/Iの規定値となる。		
		FDM-SSB 方式の既設局のうちアナログ TV 信号を伝送		
0		している無線局がある場合の干渉を考慮する場合、		
2		より厳しいC/I値(52dB)となるが、現状ではデジ		
		タル TV 信号のみとなっていると考えられるため、既		
		存のデジタル TV 信号における C/I 値(42dB)を基準		

表 3-12 無線系雑音配分モデル

		とし、その他は実運用に応じたレベル差を適用する
		ものとする。
3	熱雑音 C/N[dB]	無線区間で発生する熱雑音は、送信機熱雑音と受信 機熱雑音とする。回線設計(伝送の質)上の閾値 [C/N] ₀ となる。
4	送信機熱雑音 C/N[dB]	
5	受信機熱雑音 C/N[dB]	

3.3.1.3 で検討した無線伝送路性能(表 3-11)を用いた無線系雑音配分の結果を表 3-13 に示す。

			無線系雑音配分(C/N比) HFC②							
					J. 382					
	(公达路	OFDM	64QAM	256QAM	256QAM	1024QAM	4096QAM 符号化率 4/5	4096QAM 符号化率 5/6		
1	無線伝送路 所要 C/NR[dB]	27.0	29.0	36.0	29.0	36.0	41.0	45.0		
2	干渉雑音 C/NR[dB]	42.0	42.0	48.0	42.0	48.0	50.0	52.0		
3	熱雑音 C/NR[dB]	27.14	29.22	36.28	29.22	36.28	41.58	45.97		
4	送信機熱雑音 C/NR[dB]	42.0	42.0	48.0	42.0	48.0	50.0	52.0		
5	受信機熱雑音 C/NR[dB]	27.3	29.5	36.6	29.5	36.6	42.3	47.2		
	[C/N]0	27.1	29.2	36.3	29.2	36.3	41.6	46.0		

表 3-13 無線系雑音配分(HFC 伝送路)

項番 1:HFC 伝送路との性能配分結果(表 3-11)より

項番 2:電波法関係審査基準の OFDM/64QAM における C/I 値。レベル差伝送を適用。 項番 4:干渉雑音と同等に設定(例)

送信機熱雑音と受信機熱雑音への配分は、熱雑音を配分した結果であり、受信機熱雑音 については、送信機熱雑音を干渉雑音程度に設定した結果となる(製作する送信機の性 能によるため参考となる)。

3.3.2. [C/N]0、及びC/I

3.3.1 で検討した[C/N]0と C/Iを表 3-14 に示す。

算出した[CN]0については、平成28年度に実施した試作装置を用いた室内試験結果と比較して問題のない値となっており、フィールド試験を通じてその妥当性について検証を行う。

					J. 382				
	OFDM	64QAM	256QAM	256QAM	1024QAM	4096QAM 符号化率 4/5	4096QAM 符号化率 5/6		
[C/N]0	27.1	29.2	36.3	29.2	36.3	41.6	46.0		
C/I	42.0	42.0	48.0	42.0	48.0	50.0	52.0		

表 3-14 [C/N]0 と C/I 値

3.3.3. デジタルケーブルテレビ信号の品質測定に関するフィールド試験

本調査検討では、平成 28 年度調査検討で試作した双方向機能(90MHz~770MHzの下 りケーブルテレビ信号及び 15MHz~65MHz の上りケーブルテレビ信号を同時に伝送)を 有する 23GHz帯無線伝送システムと 0.3m 径パラボラアンテナ、及び OMT を試験フィー ルドに設置し、デジタルケーブルテレビ信号(256QAM など)の信号品質(搬送波レベル、 C/N 比、BER(ビット誤り率)、MER(変調誤差比)等)と降雨量を一定期間計測し、無線 回線断の時間率(回線不稼働率)と降雨減衰特性を評価し、机上計算との整合性を確認する とともに、所要受信 C/N 比について確認した。

偏波多重伝送の場合、降雨減衰による信号レベルの低下(CN比の劣化)に加え、交差偏 波識別度(XPD)の劣化量を考慮することがあることから、調査検討項目 3.1.2の XPD に 関するフィールド試験と同時に実施した。

図 3-13 デジタルケーブルテレビ信号の品質測定系統

2017年12月28日から2018年3月20日まで長野県松本市にて無線伝送実験を実施した。期間を通じて回線設計で適用した1分間降雨量(1.33m/分)を超える降雨は無く、良好な結果を得ることができた。また、XPDについても期間を通じて大きな劣化は発生しておらず、降雨や降雪による影響は信号レベルの低下よりも少ない結果となった。 詳細については4章で述べる。

34

3.4. 小型·軽量化の検討

「小型・軽量化の検討」の目的は、平成28年度調査検討において実現した23GHz帯無線伝送システムにおける小型・軽量化の結果を踏まえ、実フィールドにおける23GHz帯無線伝送システムの簡便な導入・設置を実現させる手法(小型化等)について検討することである。

本調査検討では、平成28年度調査検討で実現した FDM-SSB 方式における双方向化技術 を用いた23GHz 帯無線伝送システムについて、実装モジュールの配置や配線等を見直すこ とで小型化を実現するとともに、23GHz 帯無線伝送システムの簡便な設置・調整方法につ いて検討を行う。

3.4.1. 目的

平成 28 年度「23GHz 帯無線伝送システムの双方向化等に関する技術的条件の調査検討 の請負」にて作成した無線機は各モジュールをプレートに取り付けた状態にて性能試験を 行っていた。昨年度の実績より従来の片方向の無線装置(以下現行無線装置)と比較すると、 実装すべきモジュールが単純計算で3倍以上となるが、装置サイズで263%、装置重量で 135%の軽量化を実現している。

今年度フィールド試験を実施するにあたり、試作装置を屋外設置可能なものにして現地 に取り付け実験を行うこと、同時に実装モジュールの配置や配線等を見直すことで更なる 小型化の実現と屋外設置可能な筐体を製作することを目的とする。

3.4.2. 測定用筐体

平成 28 年度「23GHz 帯無線伝送システムの双方向化等に関する技術的条件の調査検討 の請負」にて作成した無線機を屋外設置するためにボックスに収容し現地に設置した。平成 28 年度に製作したプレート実装の写真を図 3·14 に示し、屋外設置のためボックスに収容 した親局(1次)側の写真を図 3·16 に子局(2次)側の写真を図 3·18 に示す。なお、本 ボックスは測定のための屋外設置を目的としており小型化は現地測定とは別に検討を行っ た。

図 3-14 平成 28 年度製作品(左:親局(1次)側 右:子局(2次)側)

図 3-15 測定用 親局(1次)側 製作図

図 3-16 測定用 親局(1次)側(左:外観 右:筐体内)

図 3-17 測定用子局(2次)側製作図

図 3-18 測定用子局(2次)側(左:外観 右:筐体内)

3.4.3. 小型化

3.42の測定用筐体で測定を行うことと並行して、実装モジュールの配置や配線等の見直 しを行うことで小型化を実現した。

平成 28 年度製作品はベースプレートへの実装であったことから内寸で比較すると、現行 無線機が 222×387×160(W×D×H、mm)に対し平成 28 年度は 480×470×160(W×D× H、mm)となっていた。これは実装すべきモジュールが単純計算で 3 倍以上となるところを 見直しにより 263%に納めた結果であったが、今回の小型化により 480×470×160(W×D ×H、mm)と現行比 188%まで小型化することができた。本結果を表 3-15 に示す。この小 型化により平成 28 年度製作品に対して 71.4%の小型化を達成することができた。

さらに内部搭載する機器が小型化されたことにより、筐体を含めた外寸を比較すると294 ×427×178(W×D×H、mm)に対し、378×484×180(W×D×H、mm)となり、こちらも 実装モジュールが3倍以上となるのに対して147%に抑えることができた。本結果を表3-16 に示す。

今回小型化した親局(1次)側の製作図を図 3-19 に、その写真を図 3-20 に示し、子局(2次)側の製作図を図 3-21 に、その写真を図 3-22 示す。また、図 3-23 に現行無線装置 との比較写真を示す。

装置名	幅 [mm]	奥行 [mm]	高さ [mm]	容積 [m ³]	備考
現行無線装置	222	387	160	0.013746	
平成 28 年度	480	470	160	0.036096	現行比 : 263% ベースプレート実装
平成 29 年度 小型化	458	352	160	0.025785	現行比 : 188% 平成 28 年度比 : 71. 4% 筐体実装

表 3-15 内寸比較

表 3-16 外寸比較

装置名	幅 [mm]	奥行 [mm]	高さ [mm]	容積 [m ³]	備考
現行無線装置	294	427	178	0.0223	
平成 29 年度 小型化	378	484	180	0.0329	現行比 : 147%

図 3-20 小型化後 親局(1次)側(左:外観 右:筐体内)

図 3-21 小型化後 子局 (2次)側 製作図

図 3-22 小型化後 子局(2次)側(左:外観 右:筐体内)

図 3-23 現行無線機との比較(左:外観比較 右:内観比較)

3.4.4. 軽量化

表 3·17 に現行無線装置と平成 28 年度製作品および平成 29 年度小型化した製品の質量 比較を示す。なお、平成28年度製作品については無線装置の筐体製作は行っていないため、 現行装置との比較は筐体部を除いた質量(装置質量)で比較し、平成 29 年度小型化品は筐 体部を含めた質量(全体質量)で比較している。

こちらも現行無線装置と比較すると、実装すべきモジュールが単純計算で3倍以上となり、それに合わせた重量が必要となるが、ベースプレートをなくしてモジュールが筐体に直接接触するよう変更したことにより軽量化を図ると共に、放熱性能の向上につながっている。

結果、23GHz 帯無線親局(1次側)が133.8%、23GHz 帯無線子局(2次側)が128.8% となり、2倍以下に抑え大幅な軽量化を達成した。

今回試作した筐体は小型化を中心に検討を行ったため、防水・防塵性能確保が確認されて おらず今後の課題となるが、保護等級3~4程度は十分確保可能であると考えられる。

埩	目	23GHz 帯無線親局 (1 次側)	23GHz 帯無線親局 (2 次側)	備考
坦 /二/	全体質量[kg]	17.0	17.0	
現仃無旅装直	装置質量[kg]	9.4	9.4	筐体部:7.6kg
亚式 20 年 亩	装置質量[kg]	12.7	11.8	
平成 20 平皮	装置質量比[%]	135.2	125.9	装置質量比
平成 29 年度	全体質量	22.7	21.9	
小型化	全体質量比[%]	133.8	128.8	全体質量比

表 3-17 質量比較

4. フィールド試験

4.1. フィールド試験の概要

変調方式にFDM-SSB方式を用い、双方向機能を有する23GHz帯無線伝送装置と0.3m 径パラボラアンテナ、偏波分離器(OMT)、及び降雨強度計を試験フィールドに設置し、デ ジタルケーブルテレビ信号(256QAMなど)の信号品質(搬送波レベル、C/N比、BER(ビ ット誤り率)、MER(変調誤差比)等)と交差偏波識別度(XPD)、並びに降雨量を計測す る。

4.1.1. 目的

本実証実験では、変調方式に FDM-SSB 方式を用い、双方向機能を有する 23GHz 帯無線 伝送システムを試験フィールドに設置し、23GHz 帯におけるデジタルケーブルテレビ信号 の電波伝搬特性を調査し、無線区間における所要性能を確認する。

実験では、下記の4項目を実験の主たる目的とする。

(1).無線伝送装置による伝送品質の検証

今回試作した無線伝送装置においては、従来の OFDM や 64QAM などのデジタル ケーブルテレビ信号に加え、より高度な変調方式となる 256QAM や ITU-T 勧告 J.382、ケーブルインターネットの DOCSIS 信号を良好な品質で伝送する必要があ る。本実証実験では、無線伝送装置を用いて 23GHz 帯無線伝送をした信号の品質を 測定し、その伝送品質について検証する。

(2). XPD と高度な変調方式に係る所要性能の確認、並びに無線伝送装置の安定性の検証 FDM-SSB 方式において偏波多重伝送を行う際に必要となる交差偏波識別度 (XPD)、256QAMや ITU-T 勧告 J.382 に準拠した高度な変調方式等を伝送する際 に必要となる所要 C/N 比及び C/I 値等を策定するにあたり、23GHz 帯が降雨の影響 を受けやすい周波数帯であることを考慮し、XPD 並びに各変調方式と降雨減衰との 関係について調査を行う必要がある。本実証実験では、フィールドに設置した無線伝 送装置を数ヶ月間連続稼働させ、伝送した信号の品質、並びに降雨強度データを連続 で取得し、所要 XPD や所要 C/N 比の関係について検証する。併せて、試作した無 線伝送装置の安定性についても検証を行う。 (3). 無線伝送装置と既存 CATV ネットワークとの接続検証

試作した無線伝送装置においては、どのようなケーブルテレビ事業者のネットワ ークに接続しても利用が出来るよう、既存の CATV ネットワークとの高い親和性が 求められる。そのため、本実証実験では、テレビ松本ケーブルビジョン様にご協力頂 き、テレビ松本ケーブルビジョン様有線伝送路において伝送しているケーブルテレ ビ信号を無線伝送装置へ繋ぎこみ、その接続性について検証する。

(4). 無線伝送装置の調整方法に関する簡易化の検証

従来の 23GHz 帯無線伝送装置(固定局)では、400MHz 帯域幅内で多チャンネル のケーブルテレビ信号を単一偏波で伝送するものであり、アンテナの方向調整など については様々な簡易方法が考案され、比較的容易に対応できるようになっている。

今回試作した無線伝送装置は、FDM-SSB 方式において偏波多重伝送を行い、 800MHz 帯域幅相当の多チャンネル伝送を可能にするものであるが、従来のアンテ ナ方向調整に加えて偏波面の調整を実施しなければならず、その設置・施工、並びに アンテナの調整等にかなりの時間を要することが予想される。本実証実験では、無線 伝送装置を現地に導入する際のアンテナ調整・偏波面調整等について、簡易な調整機 能の検討・試作を行い、使い勝手や所要時間を確認し、その有効性について検証する。

4.1.2. 試験期間

平成 28 年度「23GHz 帯無線伝送システムの双方向化等に関する技術的条件の調査検討の請負」にて作成した無線装置を2017年12月11日より長野県松本市に設置し、2018年3月25日までのデータ取得を行った。表 4-1に試験実施スケジュールを示す。

		2017年					2018年		
	8月	9月	10月	11月	12月	1月	2月	3月	
フィールド試験									
フィールド試験						24-	storm.		
フィールド選定・免許等		フィールド適定	末秋用充汗中消	 予備免許 (11/1) 	◆免許 (12/11)				
工事				÷	↓				

表	4-1	フ	ィー	ール	ド	試験	ス	ケ	ジ	고	—	ル
---	------------	---	----	----	---	----	---	---	---	---	---	---

4.1.3. 試験回線の概要

伝搬試験回線は長野県松本市里山辺3044-1と長野県松本市里山辺2504-1間に開設した。 実験局の概要を表4-2に、伝搬試験回線概略ルート図を図4-1に、プロファイル図を図4-2 に示す。また、実験局の概観を図4-3と図4-4にそれぞれ示す。

局名	識別信号	場所	アンテナ高	距離	
<u>朝巳(1次</u>)側	きょうせら23G	長野県松本市	640m (海井)		
税同(1次)側	でんぱんじっけん1	1 里山辺 3044-1 649m(海抜		1010	
フロ(の物)側	きょうせら23G	長野県松本市	co4(海井)	1312m	
于局(2次)側	でんぱんじっけん2	里山辺 2504-1	094m())		

表 4-2 実験局の概要

図 4-1 伝搬試験回線概略ルート図

図 4-2 伝搬試験回線概略プロファイル図

図 4-3 親局(1次)側概観

図 4-4 子局(2次)側概観

4.1.4. 試験装置の主要概要

4.1.4.1. 無線装置

表 3-17 に 23GHz 帯無線装置の主な仕様を示す。

項目			定格		
		上り信号	VHF带信号	UHF带信号	
安調	方式	FDM-SSB方式	FDM-SS8方式	FDM-SSB方式	
テレビ信号	引用波数	15MHz~65MHz	90MHz~402MHz	402MHz~770MHz	
マイクロ3	即波数	23,218.125MHz ~23,273.125MHz	23,277.5MHz ~23,589.5MHz	23,214.5MHz ~23,582.5MHz	
占有周波	数带域幅	SOMHz	312MHz	368MHz	
伝送容量		4ch	50ch	61ch	パイロット信号を除く
If (D-1/ES	テレビ信号	70MHz	156.25MHz	468.75MHz	
//107/16*5	マイクロ波	23,273.125MHz	23,343.75MHz	23,280.75MHz	
送信機出力(トータル電力)	7.0dBm	13.0dBm typ.	13.0dBm typ.	
编2	支流	水平偏波	水平偏波	重直偏波	
0.07-7	アンテナ部	SMA(J)	SMA(J)	SMA(J)	
17971-7	テレビ信号部	FT(J)	FT(J)	FT(J)	
電源電圧		AC100V (50/60Hz)	AC100V (50/60Hz)	AC100V (50/60Hz)	
周波数安定度(対向)		送信機と位相	同期(パイロット信号を用いた)	周波数同期)	

表 4-3 試験装置緒元

4.1.4.2. アンテナの仕様

表 4-4 にパラボラアンテナの主な仕様を示す。

項目	仕様	備考
アンテナ形式	レドーム付パラボラアンテナ	レドーム形式 : フロンシート型レドーム
アンテナ径	0.3m	Φ9.4mm 円形導波管
周波数範囲	$23{,}200\mathrm{MHz}{\sim}23{,}600\mathrm{MHz}$	
利得	34.0dBi 以上	
半値角	3度 typ.	
VSWR	1.4 以下	
交差偏波識別度(XPD)	33dB以上	

表 4-4 パラボラアンテナ緒元

4.1.4.3. 偏波分離器 (OMT) の仕様

表 4-5 に偏波分離器 (OMT)の主な仕様を示す。

項目	仕様	備考
インタフェース(V/H 偏波)	SMA-J 型	インピーダンス:50Ω
インタフェース(複偏波)	WRI-220	Φ9.4mm 円形導波管
周波数範囲	$23{,}200\mathrm{MHz}{\sim}23{,}600\mathrm{MHz}$	
挿入損失	1.0dB以下	
偏波間結合量	-40dB以下	
VSWR	1.4 以下	

表 4-5 偏波分離器 (OMT) 緒元

4.1.4.4. 降雨強度計の仕様

表 4-6 に降雨強度計の主な仕様を、図 4-5 に降雨強度計の概観を示す。

項目	緒元
検出方式	水滴計数方式
測定精度	0.0083mm±10%以内
受水口径	200mm
測定範囲	0mm~100mm/h
検出器	LED~フォトトランジスタ
電源	DC10.5~16.5V,約 20mA
外形寸法	約
重量	4.5kg

表 4-6 降雨強度計緒元

図 4-5 降雨強度計概観

4.2. 技術試験の条件

4.2.1. 23GHz 無線装置の設定

本技術試験に用いた23GHz帯無線装置の設定を表4-7に示す。

屋外試験では、降雨による受信レベルの減衰量を明らかにするために、23GHz帯無線装置の持つAGC(Auto Gain Control)等の機能をオフにし、MGC(Manual Gain Control) モードで動作させて影響の確認を行った。

23GHz 帯無線	裝置	緒元
親局(1次)側	上り	MGC(Manual Gain Control)モード
	下り	ALC(Auto Level Control)モード
子局(2次)側	上り	MGC(Manual Gain Control)モード
	下り	MGC(Manual Gain Control)モード

表 4-7 23GHz 帯無線装置の設定

4.3. 技術試験評価

4.3.1. 目的

23GHz 帯の周波数を利用する有線テレビジョン放送事業用無線局のうち、変調方式に FDM-SSB方式を使用するものにおいて、標準デジタルテレビジョン放送方式(以下「OFDM」 という。)やデジタル有線テレビジョン放送方式(以下「64QAM」という)のデジタル信号 のみを伝送する場合の信号品質(搬送波レベル、搬送波対雑音比(以下「C/N比」という)、 ビット誤り率(以下「BER」という)、変調誤差比(以下「MER」という)等)と降雨量を 計測し、無線回線断の時間率(回線不稼働率)と降雨減衰特性を評価し、机上計算との整合 性を確認するとともに、所要受信 C/N 比について検討する。

4.3.2. 測定項目

測定項目について表 48 に示す。記載データの取得間隔は測定するチャンネルの変調方 式やチャンネル数に依存している。また、CN 比については、子局(2次側)のみの測定年、 雑音電力測定については隣接するチャンネルの空き帯域で計測している。

			測定	官局				
測定項目	信号	親局 (1 次側)		子局 (2 次側)		データ 取得間隔	測定器	備考
		∨ 偏 波	H偏 波	∨ 偏 波	H偏 波			
搬送波対	OFDM	×	×	0	0		スペクトラムアナラ	親局(1 次側)
<u>維</u> 音比	64QAM	×	×	0	0	1 分間	イザ:FPH	の 測定はスポットのフ
(C/N比)	256QAM	×	×	0	0		(RQS 裘)	測定はスパットのみ実施。
搬送波	OFDM	0	0	0	0		シグナル・レベルメ	
	64QAM	0	0	0	0	1 分間	ータ:LF990	
	256QAM	0	0	0	0		(リーター電子製)	
ビット誤り	OFDM	0	0	0	0		シグナル・レベルメ	
率	64QAM	0	0	0	0	1 分間	-タ:LF990 (リーダ-雪子制)	
(BER)	256QAM	0	0	0	0		(9-9-电]表)	
変調誤差	OFDM	0	0	0	0		シグナル・レベルメ	
比	64QAM	0	0	0	0	1 分間	ータ:LF990 (リーダー雪之制)	
(MER)	256QAM	0	0	0	0		(9-9-电]表)	
受信レベル	無変調信 号	×	×	0	0	1 分間	スペクトラムアナラ イザ : FPH (R&S 製)	主偏波:V 編波
降雨強度	_	0		()	1 分間	降雨強度計: B-061 (横河電子製)	0.0083mmの 雨量をカウント

表 4-8 測定項目

4.3.3. 測定方法

本伝送試験では、図 4-1 と図 4-2 の伝搬試験回線概略図 (ルート図とプロファイル図) に示す通り、長野県松本市里山辺 3044-1 に設置した親局(1次)側(以下、親局)と長野 県松本市里山辺 2504-1 に設置した子局(2次)側(以下、子局)間で 23GHz 帯無線周波 数による無線伝送を行う。

伝送する信号については、テレビ松本ケーブルビジョン様より借用した商用信号に信号 発生器による信号を加えたものを親局より伝送する。信号発生器による信号は、標準デジタ ルテレビジョン放送方式による OFDM 信号を 2 波(V 偏波と H 偏波)、デジタル有線テレ ビジョン放送方式による 64QAM 信号を 2 波(V 偏波と H 偏波)、同様に 256QAM 信号を 2 波(V 偏波と H 偏波)入力し、1.3km 先の子局側と信号入力元の親局側で測定を実施し た。

親局側・子局側とも搬送波レベル、BER、MER を取得すると共に子局側で CN 比と無 変調信号の測定それぞれ1分間隔で取得し、各局に設置した測定用パソコンに保存した。ま た降雨量等の気象データについては、親局と子局それぞれに設置した降雨強度計を使用し て、1分間降雨量を計測し、各局に設置した測定用パソコンに保存した。併せて、気象庁よ り発表されている長野県松本市の AMeDAS (Automated Meteorological Data Acquisition System) データ (10分間降水量、1時間降水量等)を取得した。

4.3.3.1. 搬送波対雑音比(C/N比)

搬送波対雑音比(CN比)の測定について、子局(2次)側に設置したスペクトラムアナ ライザを用いて測定を行った。設定を表 4-9 に示す。

信号	変調 方式	スペクト	ラムア	ナライサ	測定で使用する帯域幅			
		検波	RBW	VBW	SPAN	Ave.	伝送帯域幅	雑音帯 域
		モード	[kHz]	[kHz]	[MHz]		[MHz]	[MHz]
標準デジタル								
テレビジョン	OFDM	SAMPLE	30	300	10	30 以上	5.70	5.60
放送								
	64QAM		100	1000	10	30 以上	6.00	5.30
	256QAM	SAMPLE	100	1000	10	30 以上	6.00	5.30

表 4-9 測定設定

デジタル有線 テレビジョン	OFDM	SAMPLE	30	300	10	30 以上	5.82	5.71
放送	(J.382)							

4.3.4. 信号周波数配列

伝送試験において、23GHz 帯無線周波数で無線伝送し品質測定する信号は、表 4-10 に 示す通り OFDM 信号 2 波、64QAM 信号 2 波、256QAM 信号 2 波の 6 波であるが、偏波 多重による影響を確認するため、テレビ松本ケーブルビジョン様の商用信号と偏波多重し て伝送を行っている。チャンネル配列イメージを図 4-6 に示す。

СН	変調方式	偏波面	テレビ周波数 [MHz]	無線周波数 [MHz]	信号源	備考
XPD _H	CW	垂直	254	23,441.5	信号発生器	XPD _v のH偏波成分、C28
XPD_{V}	CW	垂直	629	23,441.5	信号発生器	39CH
11	256QAM	水平	213	23,400.5	信号発生器	偏波多重
C45	64QAM	水平	357	23,544.5	信号発生器	単一偏波
C47	OFDM	水平	369	23,556.5	信号発生器	単一偏波
35	64QAM	垂直	605	23,420.5	テレビ松本	偏波多重
41	OFDM	垂直	641	23,453.5	テレビ松本	偏波多重
53	256QAM	垂直	713	23,525.5	信号発生器	単一偏波

表 4-10 測定チャンネル

図 4-6 チャンネル配列イメージ

4.3.5. 測定系統図

デジタルケーブルテレビ信号伝送試験における測定系統図(データ収集系)を図 47 に 示す。本データ収集系統では、親局(1次)側および子局(2次)側で収集したデータを各 局に設置している測定用パソコンに約1分間間隔で集積し、1時間ごとに測定サーバへアッ プロードしている。

4.3.6. 回線設計

実験時の回線設計を表 4·11 に示す。FDM-SSB 方式における所要受信 C/N 比を 28.6dB (OFDM 信号: 27.3dB(電波法関係審査基準より)、64QAM 信号: 29.4dB(電波法関係審 査基準より)、256QAM 信号: 35.4dB(一般的なケーブルテレビ事業におけるレベル差伝送 を適用し、64QAM の所要 C/N 比に対して+6dB))、年間回線稼働率の目標値を 99.95%以 上として設計した。なお、降雨量の地域分布による係数および 0.0075%1 分間降雨量 1.66mm/分の降雨減衰量は電波法案系審査基準の図 4·8、図 4·9 より算出している。

項番	項目	単位	FDM-SSB	OFDM	64QAM	256QAM	備考
1	伝搬距離	km	1.31	1.31	1.31	1.31	
2	1分間雨量累積分布 の0.0075%値	mm/min	1.33	1.33	1.33	1.33	電波法関係審査基準より(長野県 松本)
3	中心周波数	GHz	23.4	23.4	23.4	23.4	23.2GHz~23.6GHz の中心周波 数。
4	チャンネル帯域幅	MHz	151.4	5.6	5.3	5.3	FDM-SSB : 28ch (OFDM:10ch, 64QAM:17ch, 256QAM:1ch)
5	空中線電力	dBm	11.8	-3.1	-3.1	2.9	CH 当たりの送信電力[dBm]。 256QAM:64QAM+6dB
6	給電線系損失(送信)	dB	4.6	4.6	4.6	4.6	送信局側における給電線損失、 接続損失の合計値
7	送信空中線の絶対利 得	dBi	34.0	34.0	34.0	34.0	アンテナ径 : 0.3[m]。
8	自由空間損失	dB	122.2	122.2	122.2	122.2	Lp = 32.4+20log(d)+20log(f) d[km], f[MHz]
9	受信空中線の絶対利 得	dBi	34.0	34.0	34.0	34.0	アンテナ径:0.3[m] 。
10	給電線系損失(受信)	dB	3.6	3.6	3.6	3.6	受信局側における給電線損失、 接続損失の合計値
11	外部からの干渉等に よる許容劣化量	dB	0.0	0.0	0.0	0.0	
12	受信入力レベル	dBm	-50.6	-65.5	-65.5	-59.5	
13	受信機雑音電カレベル	dBm	8.0	8.0	8.0	8.0	NF=8.0dB
14	算出された受信 CNR	dB	33.6	33.1	33.3	39.3	標準状態における受信 CNR[dB]
15	送信 CNR	dB		34.4	34.7	40.7	
16	無線リンクトータル CNR	dB	-	30.7	30.9	36.9	送信 CNR と受信 CNR の電力和。
17	降雨量の地域分布に よる係数	-	0.8	0.8	0.8	0.8	電波法関係審査基準 図1より

表 4-11 回線設計

18	0.0075%1分間降雨量 1.66mm/分の降雨減 衰量	dB	4.8	4.8	4.8	4.8	電波法関係審査基準 図2より
19	当該区間の降雨減衰 量	dB	3.9	3.9	3.9	3.9	
20	降雨時における受信 CNR	dB	29.7	29.2	29.4	35.4	
21	降雨時における無線 リンクトタル CNR	dB	·	28.1	28.3	34.3	送信 CNR と降雨時における受信 CNR の電力和。
22	所要 CNR	dB	28.6	27.3	29.4	35.4	電波法関係審査基準より。本リン クにおける閾値。
23	降雨減衰マージン	dB	5.0	5.8	3.9	3.9	標準状態の受信 CNR[dB]と最小 受信 CNR[dB]の差分
24	降雨マージン	dB	1.1	1.9	0.0	0.0	降雨減衰時における回線マージ ン
25	0.0075%1分間降雨量 1.66mm/分相当の降 雨減衰量	dB	6.3	7.3	4.9	4.9	電波法関係審査基準 図1及び 図2より
26	回線稼動率	%	99.95 以上	99.95 以上	99.95 以上	99.95 以上	電波法関係審査基準 図1及び 図2より
27	システム不稼動時間	min	262.8 以下	262.8 以 下	262.8 以下	262.8 以下	

図 4-8 降雨量の地域分布による係数

図 4-9 0.0075%1 分間降雨量 1.66mm/分の降雨減衰量

4.3.7. 干涉検討

干渉検討について、既存の23GHz帯無線伝送システムにおける隣接システム(「移動通 信基地局エントランス回線用無線システム」と「法第56条の規定により指定を受けた電波 天文業務の受信設備(以下、電波天文台)」)との共存条件に沿って、より条件の厳しい電波 天文台に対する与干渉検討を実施する。

フィールド試験時の電波天文台へ与干渉検討については、双方向のシステムであることから親局(1次側)及び子局(2次側)それぞれについて検討を行い、条件を満足することを確認した。親局側の結果を図4-10、表 4-12に子局側の結果を図4-11、表 4-13にそれぞれ示す。

図 4-10 親局における電波天文台への余干渉ルート図

	項番 項目					;					
項番			単位	高萩局	日立局	つくば局	NICT 鹿島局	野辺山 局	JAXA 白田局	岐阜大 岐阜局	備考
1	被干渉局までの伝搬距離	d	km	246.9	246.6	188.5	241.5	53.4	24.5	142.4	
2	周波数	f	MHz	23,600	23,600	23,600	23,600	23,600	23,600	23,600	
3	 被干渉局の角度	θ1	deg	-13.7	-13.7	3.0	5.7	36.2	18.3	142.8	送信空中線の指向方向に対する 被干渉局の角度
4	23GHz帯送信局の帯域外不 要輻射電力	P _{tspt}	dBm/M Hz	-33.0	-33.0	-33.0	-33.0	-33.0	-33.0	-33.0	
5	23GHz帯固定局の送信給電 線系損失	L _{ftt}	dB	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
6	23GHz帯固定局の角度θ ₁ 方 向の送信アンテナ利得	G _{23G}	dBi	-5.3	-1.0	23.9	15.6	-4.6	-7.9	-25.8	パラボラアンテナ(φ0.3m)のθ₁方向 の利得
7	23.6GHzにおける自由空間伝 搬損失	L,	dB	167.7	167.7	165.4	167.5	154.4	147.6	162.9	L _p = 32.4+20log(d)+20log(f) d[km], f[MHz]
8	山岳等による遮蔽損失	L,	dB	0.0	0.0	15.4	4.8	0.0	0.0	0.0	自由空間伝搬損失のみで許容干 渉量を満足する場合は0.0[dB]とし て計算
9	電波天文業務の角度θ ₂ 方向 の受信アンテナ利得	G _{天文}	dBi	0.0	0.0	0.0	0.0	0.0	0.0	0.0	電波法関係審査基準より
10	算出された与干渉値	P _{rs}	dBm/M Hz	-210.5	-206.2	-194.4	-194.2	-196.5	-193.0	-226.2	$ \begin{aligned} P_{\text{rs}} &= P_{\text{tspt}} - L_{\text{ft}} + G_{23G}(\theta_1) - L_p - L_s + G \\ & \underset{\mathcal{T} \neq s}{\times} (\theta_2) \end{aligned} $
11	電波天文業務の許容干渉量	P _{lims}	dBm/M Hz	-191.6	-191.6	-191.6	-191.6	-191.6	-191.6	-191.6	電波法関係審査基準より
12	許容干渉量までのマージン	Ms	dB	18.9	14.6	2.8	2.6	4.9	1.4	34.6	$M_{s} = P_{ims} - P_{rs}$

表 4-12 「電波天文台への与干渉 (法第 56条)」検討結果 (親局 (1次側))

図 4-11 子局における電波天文台への余干渉ルート図

				電波天	文高萩局
テレビ松 二次側	*		E M	電波引 電波引 (天文 国土地)	天文 日立局
	電波天文 野辺に			電波天文	NICT鹿島局
Ber Ber	局名	北緯	東経	子局(二次 側)からの距 離[km]	子局(二次側) からの方位 [度]
	23GHz带子局(二次側)	36度14分12秒	138度00分90秒		-
電波天文 岐阜大岐阜局	23GHz带親局(一次側)	36度14分13秒	138度00分02秒	1.31	270.87
	電波天文 高萩局	36度41分55秒	140度41分42秒	245.629	77.12
NER STATES /-	電波天文 日立局	36度41分52秒	140度41分31秒	2 <mark>45.356</mark>	77.14
and the set of the set	電波天文 国土地理院つくば局	36度06分11秒	140度05分20秒	187.163	93.88
ATA VIII	電波天文 NICT鹿島局	35度57分21秒	140度39分36秒	240.207	96.64
	電波天文 野辺山局	35度56分40秒	138度28分21秒	52.339	127.94
	電波天文 JAXA臼田局	36度07分59秒	138度21分43秒	33.217	109.91
A Contraction	電波天文 岐阜大岐阜局	35度28分03秒	136度44分14秒	143.471	233.95

	播項目		単位	被干涉局							
項番				高萩局	日立局	つくば局	NICT 鹿島局	野辺山 局	JAXA 白田局	岐阜大 岐阜局	備考
1	被干渉局までの伝搬距離	d	km	246.6	245.4	187.2	240.2	53.3	33.2	143.5	
2	周波数	f	MHz	23,600	23,600	23,600	23,600	23,600	23,600	23,600	
3	 被干渉局の角度	θ1	deg	166.3	166.3	-177.0	-174.2	-142.9	-161.0	-36.9	送信空中線の指向方向に対する 被干渉局の角度
4	23GHz帯送信局の帯域外不 要輻射電力	P _{tspt}	dBm/M Hz	-33.0	-33.0	-33.0	-33.0	-33.0	-33.0	-33.0	電波法関係審査基準より 固定局:-33[dBm/MHz]
5	23GHz帯固定局の送信給電 線系損失	L _{ftt}	dB	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
6	23GHz帯固定局の角度θ ₁ 方 向の送信アンテナ利得	G _{23G}	dBi	-33.5	-29.8	-23.6	-31.6	-23.7	-26.4	5.0	パラボラアンテナ(φ0.3m)のθ₁方向 の利得
7	23.6GHzにおける自由空間伝 搬損失	L,	dB	167.7	167.7	165.3	167.5	154.4	150.3	163.0	L _p = 32.4+20log(d)+20log(f) d[km], f[MHz]
8	山岳等による遮蔽損失	L,	dB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	自由空間伝搬損失のみで許容干 渉量を満足する場合は0.0[dB]とし て計算
9	電波天文業務の角度 ₆₂ 方向 の受信アンテナ利得	G _{天文}	dBi	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 電波法関係審査基準より
10	算出された与干渉値	P _{rs}	dBm/M Hz	-238.7	-235.0	-226.4	-236.6	-215.6	-214.2	-205.5	$ \begin{aligned} P_{\text{rs}} &= P_{\text{tspt}} - L_{\text{ft}} + G_{23G}(\theta_1) - L_{p} - L_{s} + G \\ &= & \mathcal{R}_{\hat{\mathcal{K}}}(\theta_2) \end{aligned} $
11	電波天文業務の許容干渉量	P _{lims}	dBm/M Hz	-191.6	-191.6	-191.6	-191.6	-191.6	-191.6	-191.6	電波法関係審査基準より
12	許容干渉量までのマージン	Ms	dB	47.1	43.4	34.8	45.0	24.0	22.6	13.9	$M_{s} = P_{lims} - P_{rs}$

表 4-13 「電波天文台への与干渉 (法第 56 条)」検討結果 (子局 (2次側))

既存の 23GHz 帯無線伝送システムにおける隣接システム(「移動通信基地局エントラン ス回線用無線システム」と「電波天文台」)との共存条件については、FDM-SSB 変調波1 波としての規定である。また、関係する送信スペクトルマスク規定についても、伝送するデ ジタルケーブルテレビ信号の種類によらず FDM-SSB 変調波1波として満足すべき条件で あることから、伝送するデジタルケーブルテレビ信号の変調方式が OFDM 信号や 64QAM 信号以外であったとしても、既存の送信スペクトルマスク規定を満足するよう 23GHz 帯無 線伝送システムは設計・調整される。

よって、FDM-SSB 方式で新たなデジタルケーブルテレビ信号(256QAM や J.382、 DOCSIS などの変調方式)を伝送する場合でも、与干渉検討で使用する 23GHz 帯送信局の 帯域外不要発射電力(23.6GHz~23.8GHz)は既存の値(固定局:-33dBm/MHz、陸上移動局: -63dBm/MHz)と同じになるため、隣接システムとの共存条件についても、現行基準と同じ にすることが望ましいと考える。

4.3.8. 測定結果

4.3.8.1. 256QAMにおける時系列変化

図 4-12 に 2017 年 12 月 28 日から 2018 年 3 月 20 日までの、子局側(2 次側)における 256QAM(11ch: H 偏波)の信号品質(C/N 比、BER、MER など)と1分間降雨量の 時系 列変化を示す。期間を通じて回線設計で使用した降雨量(1.33mm/min)を超える降雨 はなかったが、2/28 日に比較的大きな減衰が発生しており、同タイミングで MER や BER の劣化も発生している。

次に図 4-13 に 2017 年 12 月 28 日から 2018 年 3 月 20 日までの、親局側(1 次側)に おける 256QAM(11ch: H 偏波)の信号品質(C/N 比、BER、MER など)と1分間降雨 量の時系列変化を示す。期間を通じて安定しており、入力信号系には異常がなかったことが 分かる。

図 4-13 親局側 256QAM 信号品質・降雨量

4.3.8.2. 256QAMにおける時系列詳細変化

図 4-14 に 2018 年 2 月 28 日から 2018 年 3 月 1 日までの、子局側(2 次側)における 256QAM(11ch: H 偏波)の信号品質(C/N 比、BER、MER など)と 1 分間降雨量の時 系列変化を示す。

3月1日の7時ごろ10dB程度の搬送波レベルの減衰が発生し、それに伴いCN比や BER、MERの劣化も発生しているが、降雨のタイミングとはズレており、また観測された 降雨量も10dB程度の減衰が発生するほどの降雨強度ではない。

図 4-15 に 2018 年 2 月 28 日から 2018 年 3 月 1 日までの、子局側(2 次側)における 256QAM(11ch: H 偏波)の信号品質(C/N 比、BER、MER など)、XPD、1 分間降雨量、 並びに天候の時系列変化を示す。

3月1日の7時ごろに発生した10dB程度の搬送波レベルの低下では、CN比やMER、 BERの劣化が観測されたが、XPDについては特に劣化は見られなかった。

一方、搬送波レベルの変動に着目すると、3月1日の4時から7時にかけてほぼ連続的 に低下し、その後10時にかけてゆっくりと連続的に上昇しており、最も搬送波レベルが低 下した前後において1分間降雨量が観測されておらず、一般的な降雨によるレベル変動(減 衰)とは異なる現象を示している。1分間降雨量が観測されていない原因としては、7時か ら13時にかけて長時間に渡る少量の1分間降雨量が連続して観測されていること、気象庁 のデータによると3月1日の未明から10時にかけて霙(みぞれ)が観測されており、気温 も氷点下であったことから、霙が降雨強度計の受水口に氷として固まってしまい、その後ゆ っくり溶け出したことにより1分間降雨量が正確に計測できなかったと予想される。また、 搬送波レベルの変動についても、本気象条件から、アンテナのレドーム面に霙が付着して氷 として固まった影響よるものと考えられ、本現象については通常の降雨減衰や XPD の劣化 によるものとは異なると推測される。

4.3.8.3. XPD における時系列変化

図 4-16 に 2017 年 12 月 28 日から 2018 年 3 月 20 日までの子局側(2 次側)における V 偏波を主偏波とする無変調信号(CW: 629MHz/23441.5MHz)のレベルと同無変調信号

(CW: 254MHz/23441.5MHz)のH偏波からの出力レベル、XPD、1分間降雨量の時系列 変動を示す。

期間を通じて XPD の大きな劣化は見られないが、H 偏波からの出力レベルが大きく減衰 しており、見かけ上 XPD が改善するといった現象が発生している。

図 4-16 子局側無変調信号レベル・XPD・降雨量

4.3.8.4. 降雨量・降雨強度、及び気象状況(天候)における時系列変化

図 4-17 に 2017年 12月 28日から 2018年 3月 20日までの、長野県松本市における気象状況 (天候)、気象庁による 10分間降雨量、並びに降雨強度計による 10分間降雨量の時系列変化を示す。

降雨強度計による 10 分間降雨量と気象庁発表の 10 分間降雨量に大きな差異は発生して いないが、2月28日から3月1日のピーク値について、降雨強度による結果の方が時間的 に遅いことが分かり、4.3.8.2 で言及した霙による影響と考えられる。

図 4-17 松本市における天候・降雨量・降雨強度

4.3.8.5. XPD 相関

C/N 比と XPD の相関を確認するため、フィールドの設置した 23GHz 帯無線システムを 使用 してスポット測定を実施した。

4.3.8.5.1. 測定方法

図 418 に測定系統を示す。なお、本スポット測定においては、多チャンネル信号伝送に よる歪み等の影響を排除するため、UHF帯(V 偏波)に信号発生器からのデジタルケーブ ルテレビ信号 4 波 (31、32、33、34 チャンネル)と VHF帯(H 偏波)にケーブルインタ ーネットの下り信号となる CMTS (Cable Modern Termination System)を用いた DOCSIS3.0 の 8 波 (8、9、10、11、12、C23、C24、C25 チャンネル)の構成とした。本 測定におけるチャンネル構成を図 4-19 に、信号条件を表 4-14 に示す。

図 4-18 測定系統

表 4-14 XPD スポット測定信号条件

	下り		備考
信号数	DOCSIS3.0:8 波 波 64QAM:1波 波	256QAM : 2 OFDM : 1	256QAM は 6dB のレベル差伝 送

測定箇所BにてV偏波を主偏波とする無変調信号(CW:23441.5MHz)のH偏波にお けるレベル(CW_H:254MHz)とV偏波におけるレベル(CW_V:629MHz)を測定し、そ の比を求めることでXPDの値を確認する。なお、測定箇所Bでの測定は無線機内部の周波 数特性が関係することからアンテナ出力箇所(2次側無線機入力部)でも同様の測定を行う。 本測定により算出されるXPD(XPD1)は以下の式で表される。

$$XPD1 = 10\log\left(\frac{CW_V}{CW_H}\right)$$

また、XPD について測定区間の CN 比からも算出を行う。CN 比は二次側の値と一次側

の値との差分で求めることができることから、単一偏波で伝送した時の C/N 比と多重偏波 にて伝送を行ったときの C/N 比を比較した差分が XPD の性能に相当すると考えられる。

具体的な算出方法として、測定箇所Aにて伝送する信号の CN 比(CN_{TX})、単一偏波伝送を行った際の測定箇所Bでの C/N 比(CN_{Rx1})、多重偏波伝送を行った際の測定箇所Bでの C/N 比(CN_{Rx2})をそれぞれ測定する。この時、単一偏波伝送時の C/N 比(CN₁)と多重偏波伝送時の C/N 比(CN₂)はそれぞれ次の式にて表される。

$$CN1 = -10\log\left(10^{-\frac{CN_{Tx}}{10}} + 10^{-\frac{CN_{Rx1}}{10}}\right)$$

$$CN2 = -10\log\left(10^{-\frac{CN_{Tx}}{10}} + 10^{-\frac{CN_{Rx2}}{10}}\right)$$

また、上記 CN1、CN2 は以下の関係で表される。

CN1 + XPD = CN2

上式より算出される XPD (XPD2) は次のように表される。

$$XPD2 = -10\log\left(10^{-\frac{CN2}{10}} - 10^{-\frac{CN1}{10}}\right)$$

これらにより算出された XPD1 と XPD2 より XPD の性能について検討を行う。

4.3.8.5.2. 結果

XPD1の測定結果を表 4-15 に示す。子局出力の **XPD** 値は 40.5dB、子局入力での **XPD** 値は 37.6dB となり、2.9dB の差が生じた。これは無線機内における周波数特性が関係して いると考えられる。

測定点 C₩v СWн XPD[dB]23GHz 帯 23441.5 23441.5 周波数 [MHz] VHF/UHF 帯 254 629 子局出力 [dBm] -65.0 -24.5 40.5 子局入力 [dBm] -99.3 -61.7 37.6

表 4-15 XPD1 測定結果(CN)

次に親局の入力、偏波多重時の子局の出力、単一偏波の子局の出力における CN 比の測 定結果を表 4-16 に示す。本表より本伝送における伝送についてほぼ劣化なく伝送すること ができていることがわかる。

		1	2	3	4	5	6
		31ch	32ch	33ch	34ch	8ch	9ch
		581MHz	587MHz	593MHz	599MHz	195MHz	201MHz
測定点	測定項目	23393.5MHz	23399.5MHz	23405.5MHz	23411.5MHz	23382.5MHz	23388.5MHz
		Ⅴ 偏波	Ⅴ 偏波	Ⅴ 偏波	Ⅴ 偏波	H偏波	H偏波
		OFDM	256QAM	64QAM	256QAM	256QAM Annex.B	256QAM Annex.B
	C/N[dB]	50.2	53.2	47.4	47.2	38.4	38.2
親局入力 (1 公岐主信号)	BER[Pre]	1.00E-09	1.00E-09	1.00E-09	3.90E-09	1.00E-09	1.00E-09
	MER[dB]	35.0	47.4	42.3	44.1	50.0	50.0
	C/N[dB]	35.3	41.9	35.4	35.4	32.6	32.2
一子局出力 【偏波多重伝送】	BER[Pre]	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09
	MER[dB]	32.1	40.5	34.6	35.0	32.6	32.3
	C/N[dB]	36.8	42.4	36.8	36.0	31.8	31.8
子局出力	BER[Pre]	1.00E-09	1.00E-09	1.00E-09	4.90E-09	1.00E-09	1.00E-09
	MER[dB]	32.6	41.2	35.4	35.6	31.5	31.5
	測定項目	7	8	9	10	11	12
		10	11	12	C23	C24	C25
御守古		207MHz	213MHz	219MHz	225MHz	231MHz	237MHz
则正品		23394.5MHz	23400.5MHz	23406.5MHz	23412.5MHz	23418.5MHz	23424.5MHz
		H 偏波	H 偏波	日偏波	日偏波	日偏波	H 偏波
		256QAM Annex.B	256QAM Annex.B	256QAM Annex.B	256QAM Annex.B	256QAM Annex.B	256QAM Annex.B
	C/N[dB]	38.8	38.4	38.2	37.7	37.7	37.8
親局入力	BER[Pre]	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09
	MER[dB]	50.0	50.0	50.0	50.0	50.0	50.0
	C/N[dB]	29.7	27.7	30.2	29.4	31.6	31.7
子局出力 【偏波多重伝送】	BER[Pre]	6.80E-08	1.80E-05	1.00E-09	3.60E-07	1.00E-09	1.00E-09
	MER[dB]	29.9	27.5	30.5	29.0	31.6	31.4
子局出力	C/N[dB]	31.9	31.5	31.7	29.6	30.8	30.8
【単一波伝送】	BER[Pre]	1.00E-09	1.00E-09	1.00E-09	9.20E-08	1.00E-09	1.00E-09

表 4-16 XPD スポット測定結果 (C/N比)

MER[dB] 31.7 31.4 31.3 29.3 30.9 30.7

最後に表 4-17 に算出した結果を示す。XPD2 について表 4-15 の XPD1 と比較すると、 DOCSIS 信号との偏波多重伝送を行ったチャンネルにおいて CN1 よりも CN2 が高くなっ たことで算出されていない項目はあるものの、DOCSIS 以外の 3 チャンネル (31、33、34 チャンネル)においては近い値となっていることがわかる。

一方、32 チャンネル(256QAM)及び同帯域にて多重伝送を行った 11 チャンネル (256QAM)については 10dB以上の大きな差分が発生しており、これは該当チャンネルが 6dBのレベル差伝送を行っていることが要因であると考えられる。該当チャンネルにおい て CN1 と XPD2 からの CN2 を算出した値についても 3dB 程度の差が発生しており、この ことから偏波多重による 256QAMのレベル差伝送を行う際はチャンネル配列等を検討して 伝送する等の注意が必要である。

Ν	0.	1	2	3	4	5	6
チャンネル		31	32	33	34	8	9
田.本*finan]	RF 周波数	581	587	593	599	195	201
向波致[MHZ]	無線周波数	23393.5	23399.5	2405.5	23411.5	23382.5	23388.5
変調	方式	OFDM	256QAM	64QAM	256QAM	256QAM Annex.B	256QAM Annex.B
CN1(多重	i無)[dB]	36.6	42.1	36.4	35.7	30.9	30.9
CN2(多重	首有)[dB]	35.2	41.6	35.1	35.1	31.6	31.2
XPD2		40.6	51.5	41.0	44.3	-	-
CN1とXPD1 CN2 換算	(40.5)からの [値 [dB]	35.1	38.2	35.0	34.5	30.5	30.5
CN1とXPD1(37.6)からの CN2 換算値 [dB]		34.1	36.3	34.0	33.5	30.1	30.1
N	0.	7	8	9	10	11	12
チャン	ノネル	10	11	12	C23	C24	C25
田油粉[MIL]	RF 周波数	207	213	219	225	231	237
向波致[WIHZ]	無線周波数	23394.5	23400.5	2406.5	23412.5	23418.5	23424.5
CN1(多重	[dB]	31.1	30.7	30.8	29.0	30.0	30.0
CN2(多重	 有)「dB]	29.2	27.3	29.6	28.8	30.6	30.7

表 4-17 XPD スポット測定結果 (XPD)

35.5

30.4

42.9

28.7

_

29.6

_

29.6

30.0

30.3

XPD2

CN1とXPD1(40.5)からの

CN2 換算值 [dB]

33.7

30.6

CN1とXPD1(37.6)からの CN2 換算値 [dB]	30.2	29.9	30.0	28.4	29.3	29.3
-----------------------------------	------	------	------	------	------	------

また、「CN1 と XPD1 から算出される CN2 換算値」と CN2 について比較するとほぼ同 じ値であることから、XPD による C/N 比への影響は殆ど無いことがわかる。今回の現地測 定においては XPD 値が 37.6dB 確保できていたことから、前年度の「23GHz 帯無線伝送 システムの双方向化等に関する技術的条件の調査検討」平成 28 年度成果報告における「表 5-7 偏波多重伝送試験 (D/U 比変化)レベル差なし」(表 4-18) より 4096QAM (符号化率 4/5) の伝送が可能であると言える。

しかしながら、本検討は今回のスポット測定をベースとしたものであることから、更なる 測定を行い、値を検討することが今後の課題となる。

表 4-18 偏波多重伝送試験(D/U比変化)レベル差なし

(「23GHz 帯無線伝送システムの双方向化等に関する技術的条件の調査検討」平成28年 度成果報告における表 5-7より引用)

3	変調 方式	所要 CNR	D/U比 [dB]	C/N 比 [dB]	BER	MER [dB]	備考
	640AM	26dB	49.4	38.6	0.00E+00	36.9	
		以上	25.4	25.0	9.70E-05	24.8	
		34dB	48.9	38.3	2.00E-07	46.5	
256QAM		以上	32.2	31.8	1.90E-04	31.3	
	256QAM 符号化率 9/10 1024QAM	26dB	49.4	37.2	0.00E-08	34.5	
		以上	26.4	24.8	3.28E-06	25.5	
		33dB 以上	48.9	38.5	0.00E-08	35.2	
1000	符号化率 9/10		33.1	32.2	2.18E-07	31.2	BER 計測 3 分
J.382 4 符·	4096QAM	4096QAM 37dB	48.6	38.2	0.00E-08	34.9	
	符号化率 4/5	以上	37.5	34.9	2.96E-06	33.4	BER 計測1分
	4096QAM	40dB	-	-	-	_	
	符号化率 5/6	以上	_	_	-	_	

4.4. 偏波多重伝送試験

4.4.1. 目的

偏波多重伝送試験では、平成28年度調査検討にて試作した双方向機能を有する23GHz 帯無線伝送システム(0.3m径パラボラアンテナ、OMTを含む)をフィールドに設置し、 256QAM等のデジタルケーブルテレビ信号を偏波多重により無線伝送し、その性能を確認 することにある。

偏波多重伝送試験は、降雨減衰や XPD の劣化などによる影響を確認するための長期測定 と、無線伝送区間の性能を確認するスポット測定の2つからなり、長期測定に関しては別途 記述する。

4.4.2. 測定系統図

図 4-20 に偏波多重伝送に関する測定系統図を示す。

図 4-20 偏波多重伝送試験に関する測定系統図

4.4.3. 試験方法

フィールドに設置した双方向機能を有する 23GHz 帯無線伝送システムに信号発生器からのデジタルケーブルテレビ信号(OFDM、64QAM、256QAM など)と、ケーブルインターネットの下り信号となる CMTS(Cable Modem Termination System)のよる下り DOCSIS 信号(DOCSIS3.0)を入力し、無線伝送前後での信号品質(C/N比、BER、MER など)を計測する。

デジタルケーブルテレビ信号については垂直偏波(V偏波)で、DOCSIS 信号について は水平偏波(H偏波)で伝送することとし、単一偏波で伝送する場合と、偏波多重で伝送す る場合の2つの伝送パターンで図 4-20 の赤丸で示した性能規定点でデジタルケーブルテ レビ信号(OFDM、64QAM、256QAM)の品質(C/N比、BER、MER)を計測する。

4.4.4. 伝送信号条件

本試験で伝送する変調信号について、図4-21と表4-19に示す。

偏波多重伝送による影響を確認するため、無線伝送周波数である 23GHz 帯において各偏 波の信号が重なる用に信号を配置する。伝送信号のレベルについては、通常のケーブルテレ ビ利用を想定し、256QAM については 64QAM の信号レベルに対して+6dB となるように し、その他の信号については同じレベルに設定する。

図 4-21 偏波多重伝送試験で使用する伝送信号イメージ(信号配列)

			周波数		
	偏波面	СН	[MHz]	変調方式	備考
	水平	-	20.0	64QAM	Annex. B/6. 4MHz
	水平	-	30.0	64QAM	Annex. B/6. 4MHz
上り	水平	_	40.0	64QAM	Annex. B/6. 4MHz
	水平	1	50.0	64QAM	Annex. B/6. 4MHz
	水平	PT_{UP}	70.0	CW	23, 273. 125MHz. パイロット信号。

表 4-19 測定チャンネルプラン

	水平	8	195.0	256QM	Annex. B/6. OMHz
	水平	9	201.0	256QM	Annex. B/6. OMHz
	水平	10	207.0	256QM	Annex. B/6. OMHz
	水平	11	213.0	256QM	Annex. B/6. OMHz
	水平	12	219.0	256QM	Annex. B/6. OMHz
	水平	C23	225.0	256QM	Annex. B/6. OMHz
	水平	C24	231.0	256QM	Annex. B/6. OMHz
下り	水平	C25	237.0	256QM	Annex. B/6. OMHz
	水平	PT_{H}	156.25	CW	23,343.75MHz.パイロット信号。
	垂直	31	581.0	OFDM	
	垂直	32	587.0	256QAM	33chに対して+6dB
	垂直	33	593.0	64QAM	
	垂直	34	599.0	256QAM	33ch に対して+0dB
	垂直	39	629.0	CW	XPD 計測用無変調信号
	垂直	PTv	467.75	CW	23,281.25MHz.パイロット信号。

4.4.5. 測定結果

表 4-20 に本無線リンクにおける XPD の測定結果を、表 4-21 に偏波多重伝送における 試験結果を示す。

CH	亦钿		測定結果			
周波数	返 詞 古式	性能規定点	受信レベル	D/U 比	XPD	備考
[MHz]	ノム		[dBm]	[dB]	[dB]	
XPDv	CW	下り空中線端	-617			
629.0	000	子[V 偏波]	01.7	37.6	376	
XPD_H	CW	下り空中線端	-00.2	57.0	57.0	
254.0	CW	子[H 偏波]	-99.3			
XPD は、垂直偏波を主偏波として垂直・水平偏波での受信電力結果より、下記の計算式により算出。						
$XPD[dB] = 10\log\left(\frac{P_V}{P_H}\right)$						

表 4-20 XPD 測定結果

СН	亦田		測定結果			
周波数 [MHz]	愛調 方式	性能規定点	C/N 比 [dB]	BER	MER [dB]	備考
		無線機入力	47.2	1.00E-09	33.1	
31ch 5810	OFDM	無線機出力 (偏波多重)	32.3	1.00E-09	32.1	
361.0		無線機出力 (単一偏波)	31.5	1.00E-09	32.6	
		無線機入力	53.2	-	-	データ欠損。
32ch 587.0	256QAM	無線機出力 (偏波多重)	41.9	1.00E-09	37.0	
		無線機出力 (単一偏波)	42.4	1.00E-09	42.3	
		無線機入力	47.4	1.00E-09	42.3	
33ch 593.0	64QAM	無線機出力 (偏波多重)	35.4	1.00E-09	34.6	
555.0		無線機出力 (単一偏波)	36.8	1.00E-09	35.4	
		無線機入力	47.2	3.90E-09	44.1	
34ch 599.0	256QAM	無線機出力 (偏波多重)	35.4	1.00E-09	35.0	
599.0		無線機出力 (単一偏波)	36.0	4.90E-09	35.6	

表 4-21 偏波多重伝送における試験結果

表 4・21 の結果より、単一偏波伝送時の C/N 比と比較して偏波多重伝送時の C/N 比の方 が 0.5dB から 1.0dB ほど劣化するという結果になった。それに伴い MER も劣化している が、BER についてはほぼ劣化していない。XPD の性能(37.5dB)を踏まえると、単一偏波 伝送時からの劣化量はもう少し大きくなると予想されたが、実測値は異なる結果となった。 図 4・22 から図 4・25 に偏波多重伝送時と単一偏波伝送時におけるコンスタレーション図 を示す。本結果についても大きな劣化は認められなかった。

図 4-22 OFDM コンスタレーション比較図

図 4-23 256QAM (64QAM+6dB) コンスタレーション比較図

図 4-24 64QAMコンスタレーション比較図

4.5. アンテナ間回り込みによる影響

4.5.1. 目的

本調査検討では、平成28年度調査検討にて試作した上り信号と下り信号をそれぞれ別々のアンテナで送受する送受分離型とした双方向機能を有する23GHz帯無線伝送システムを使用してフィールド試験を実施する。アンテナの設置については、設置スペースの問題から、平成28年度に検討した垂直設置ではなく水平設置とし、アンテナ間の離隔については約600mmとした。

本試験では、フィールドに設置した送受分離型双方向機能を有する 23GHz 帯無線伝送シ ステムにおけるアンテナ間の回り込み量を計測し、同条件におけるデジタルテレビ信号品 質への影響について確認する。

4.5.2. 測定系統図

図 4-26 にアンテナ間回り込み量による影響確認に関する測定系統図を示す。

図 4-26 アンテナ間回り込み量による影響確認に関する測定系統図

4.5.3. 試験方法

フィールドに設置した送受分離型双方向機能を有する 23GHz 帯無線伝送システムにお けるアンテナ間の回り込み量の計測では、子局(2次側)の上り空中線端子(図 426の青 丸部分)で上りのパイロット信号(23,273.125MHz)の送信レベルを、下り水平偏波と垂直 偏波用のそれぞれの空中線端子部(図 4-26の青丸部分)で上りのパイロット信号の受信レ ベル(回り込みによるレベル)をスペクトラムアナライザで計測し、その差分から回り込み 量を算出する。

デジタルケーブルテレビ信号への影響については、上り信号を連続送信状態とするため にスループット計測ソフト(iPerf)を使用し、上りのスループットの計測時(上り信号が常 時送信状態)と非計測時(上り信号の送信がほぼ無い状態)の2パターンで、デジタルケー ブルテレビ信号 (OFDM、64QAM、256QAM) の品質 (搬送波レベル、BER、MER) を計 測する。

使用する計測ツール、並びに主な設定を表 4-26 に示す。

測定内容	測定ツール	備考
スループット測定	iPerf3 Ver.3.1.3	計測:TCPスループット TCPWindowSize:256Kbyte ストリーム数:10 計測時間:60sec CMからCMTS方向を計測。

表 4-22 DOCSIS 計測ツール

4.5.4. 伝送信号条件

本試験で伝送する変調信号について図 4-27 と表 4-23 に示す。

アンテナ間の回りこみによる影響については、異なる偏波間で無線伝送周波数となる 23GHz帯の信号が上りと下りで重なっている部分の影響が最も大きいことから、上りチャ ンネル(H偏波)の帯域と重なっている下りチャンネルの周波数帯(V偏波)に、信号品質 の測定チャンネルを設定する。本試験では、20.0MHzを中心とする上り信号(BH1UP1) と 23GHz帯で帯域が重なる C54(411.0MHz:垂直偏波)を測定用チャンネルに設定し、 上り信号の有無で各変調方式(OFDM、64QAM、256QAM)の下り信号(測定毎に変更) への影響がどのように現れるのかを確認する。

図 4-27 アンテナ間回り込み量による影響確認に関する伝送信号イメージ

	偏波面	СН	周波数 [MHz]	変調方式	備考
	水平	UP1	20.0	64QAM	Annex. B/6. 4MHz
	水平	UP2	30.0	64QAM	Annex. B/6. 4MHz
上り	水平	UP3	40.0	64QAM	Annex. B/6. 4MHz
	水平	UP4	50.0	64QAM	Annex. B/6. 4MHz
	水平	$\mathrm{PT}_{\mathrm{UP}}$	70.0	CW	23,273.125MHz.パイロット信号
	水平	8	195.0	256QM	Annex. B/6. OMHz
	水平	9	201.0	256QM	Annex. B/6. OMHz
	水平	10	207.0	256QM	Annex. B/6. OMHz
	水平	11	213.0	256QM	Annex. B/6. OMHz
	水平	12	219.0	256QM	Annex. B/6. OMHz
тn	水平	C23	225.0	256QM	Annex. B/6. OMHz
	水平	C24	231.0	256QM	Annex. B/6. OMHz
	水平	C25	237.0	256QM	Annex. B/6. OMHz
	水平	PT_{H}	156.25	CW	23,343.75MHz.パイロット信号
	垂直	C54	411 0		64QAM/256QAM/OFDM
	坐臣	004	411.0		測定チャンネル
	垂直	C56	423.0		64QAM/256QAM/OFDM

表 4-23 測定チャンネルプラン(アンテナ間回り込みによる影響試験)

垂直	C58	435.0		64QAM/256QAM/OFDM
垂直	C60	447.0		64QAM/256QAM/OFDM
垂直	PTv	467.75	CW	23,281.25MHz.パイロット信号

4.5.5. 測定結果

表 4-24 にアンテナ間の回り込み量の計測結果を示す。

上りと下りのアンテナの離隔を 600mm として水平設置したとき、上りパイロット信号 (水平偏波)の下り空中線端子(水平偏波と垂直偏波)への回り込み量は、下り水平偏波で は約 88dB、下り垂直偏波では、約 96dB という結果になった。平成 28 年度調査検討で行 った室内試験では、アンテナ間隔 600mm で垂直設置したときに、異なる偏波間で 105dB 程確保できていたことを考慮すると、より厳しい条件下での技術試験となる。

	PTupレベル	回り込み量	准						
	[dBm]	[dB]	順方						
上り(水平偏波)	-2.5	_							
下り(水平偏波)	-91.3	-88.6							
下り(垂直偏波)	-98.8	-96.5							

表 4-24 アンテナ間回り込み量

表 4-25 にデジタルケーブルテレビ信号への影響の確認結果(信号品質)を示す。

全ての信号において、回り込み(上り送信)の有無により、MERの劣化が見られた。OFDM の MER で 1.4dB、64QAM で 5.7dB、256QAM で 5.8dB となっているが、BERの劣化は 認められず、また、上りのスループットへの影響も無かったことより、アンテナ離隔 600mm で水平設置した場合でも映像伝送と DOCSIS3.0 通信が可能であることが分かった。

表 4-25 デジタルテレビ信号品質への影響

	上り送信			上り	
信号	(回り込み)	MER[dB]	BER	スループット	備考
	の有無			[Mbps]	
OFDM	無	32.5	1.0E-09	-	

	有	31.1	1.0E-09	97.6	
C404M	無	36.2	1.0E-09	_	
04QAM	有	30.6	1.0E-09	96.8	
2560 4 M	無	42.3	1.0E-09	-	
ZOOQAM	有	37.3	1.0E-09	97.3	

図 4-28 に OFDM のコンスタレーションを、図 4-29 と図 4-30 に 64QAM と 256QAM のコンスタレーション図を示す。

図 4-28 OFDM コンスタレーション

図 4-30 256QAM コンスタレーション

4.6. スループット試験

4.6.1. 目的

23GHz帯無線伝送システムで一般的に利用されているケーブルテレビの独自方式である FDM-SSB 方式において、双方向化した試験装置を用いて、ケーブルインターネット通信

(DOCSIS (Data Over Cable Service Interface Specifications) 信号) とデジタルケーブ ルテレビ信号の変調波を単一偏波伝送した場合と偏波多重伝送した場合のパフォーマンス について確認する。

4.6.2. 測 定系統図

図 4-31 と図 4-32 に偏波多重伝送における双方向通信試験(DOCSIS 信号伝送)の測定 系統図を示す。

4.6.3. 試験方法

設置した 23GHz 帯無線伝送システムの親局(1次)側、子局(2次)側にそれぞれ測定 用の PC を設置し、DOCSIS3.0 信号を含む 4.6.3.1 に示す変調信号を伝送させ、図 4-31 と 図 4-32 に示す PC1 と PC2 の間でスループットを計測する。また、ケーブルモデム終端シ ステム(Cable Modem Termination System、以下 CMTS)とケーブルモデムを同軸ケー ブルで直接繋いだ状態でのパフォーマンスについても確認する。

使用する計測ツール、並びに主な設定を表 4-26 に示す。

測定内容	測定ツール	備考					
スループット測定	iPerf3 Ver.3.1.3	計測:TCPスループット TCPWindowSize:256Kbyte ストリーム数:10 計測時間:60sec 測定回数:5回					
PING 測定	ExPing Ver.1.33	繰り返し回数:600回 実行間隔:1000msec ブロックサイズ:64バイト タイムアウト:1000msec					

表 4-26 DOCSIS 計測ツール

4.6.3.1. 伝送信号条件

本試験で伝送する変調信号について表 4-27 に、DOCSIS3.0 信号のチャンネルプランに ついて表 4-28 に示す。

表 4-27 DOCSIS 通信測定における伝送信号条件

方向 信号数 備考 DOCSIS3.0 信号(256QAM):8波(VHF H 偏波:8波(PT信号除く) 帯) 下り V 偏波: 27 波(PT 信号除く)※偏 テレビ信号(OFDM, 64/256QAM): 26 波多重伝送のみ $CMTS \Rightarrow CM$ 波 (UHF帯) 無変調信号:1波(UHF帯) 4 波(PT 信号除く) 上り DOCSIS3.0 信号(64QAM): 4波 帯域幅: 6.4MHz/ch $CM \Rightarrow CMTS$

伝送試験	方向	偏波面	СН	周波数 [MHz]	変調方式	備考
		水平	UP1	20.0	64QAM	Annex. B/6. 4MHz
	Ŀр	水平	UP2	30.0	64QAM	Annex. B/6. 4MHz
	<u>т</u> , у	水平	UP3	40.0	64QAM	Annex. B/6. 4MHz
		水平	UP4	50.0	64QAM	Annex. B/6. 4MHz
		水平	C33	285.0	256QM	Annex. B/6. OMHz
単一偏波		水平	C34	291.0	256QM	Annex. B/6. OMHz
伝送		水平	C35	297.0	256QM	Annex. B/6. OMHz
	下り	水平	C36	303.0	256QM	Annex. B/6. OMHz
	РУ	水平	C37	309.0	256QM	Annex. B/6. OMHz
		水平	C38	315.0	256QM	Annex. B/6. OMHz
		水平	C39	321.0	256QM	Annex. B/6. OMHz
		水平	C40	327.0	256QM	Annex. B/6. OMHz
 	FD	水平	UP1	20.0	64QAM	Annex. B/6. 4MHz
m似罗里	上り	水平	UP2	30.0	64QAM	Annex. B/6. 4MHz

表 4-28 DOCSIS3.0 信号チャンネルプラン

	水平	UP3	40.0	64QAM	Annex. B/6. 4MHz
	水平	UP4	50.0	64QAM	Annex. B/6. 4MHz
	水平	3	105.0	256QM	Annex. B/6. OMHz
	水平	C13	111.0	256QM	Annex. B/6. OMHz
	水平	C14	117.0	256QM	Annex. B/6. OMHz
T ID	水平	C15	123.0	256QM	Annex. B/6. OMHz
トリ	水平	C16	129.0	256QM	Annex. B/6. OMHz
	水平	C17	135.0	256QM	Annex. B/6. OMHz
	水平	C18	141.0	256QM	Annex. B/6. OMHz
	水平	C19	147.0	256QM	Annex. B/6. OMHz

4.6.4. 双方向化技術、及び偏波多重技術の検討の測定結果

表 4-29 に双方向化技術の検討に係わる DOCSIS3.0 信号の伝送結果を示す。なお、表中 のスループットは 5 回の計測結果より、最大値と最小値を除いた値の平均値を、SNR は CMTS の保守画面より取得した値のうちデータ伝送時開始から1分間の平均値を記載して いる。

		単·	一偏波伝道	<u><u>¥</u></u>	偏	波多重伝道	<u>ŧ</u>	ケーブル直結	
		スループット [Mbps]	C/N 比 [dB]	SNR [dB]	スループット [Mbps]	C/N 比 [dB]	SNR [dB]	スループット [Mbps]	SNR [dB]
	U1		_	32.9		_	33.6		43.5
FU	U2	00.2	_	33.6	617	_	34.1	09.6	44.7
	U3	99.2	-	33.8	01.7	-	34.0	90.0	42.9
	U4		_	32.5		_	32.8		43.2
	D1		35.5	35.4		32.8	31.4		38.1
	D2		34.8	34.6		27.9	32.5		37.8
ㅈ네	D3	202.0	34.7	34.3	202.0	34.4	32.8	200.0	37.8
19	D4	202.0	34.2	34.0	202.0	34.9	33.0	200.0	38.1
	D5		34.1	33.9		34.8	33.3		38.2
	D6		34.0	33.9		34.7	32.6		38.1

表 4-29 DOCSIS3.0 スループット試験結果

D7	34.3	34.1	34.8	32.5	38.3
D8	33.9	34.0	35.0	32.7	38.5

単一偏波伝送におけるスループット試験では、TCP スループットが下り 282.0Mbps と上 り 99.2Mbps 程度(物理レイヤの理論値:下り 320Mbps、上り 120Mbps)となり、CMTS と CM(ケーブルモデム)を直接同軸で接続した場合のパフォーマンスとほぼ同じになった。 偏波多重伝送におけるスループット試験においては、上りの速度が遅くなり、偏波多重によ る影響がみられる結果となった。

偏波多重伝送試験のうち、レベル差伝送(デジタル有線テレビジョン放送方式のうち 256QAM 信号のレベルを 64QAM に対して+6dB)の有無により、データ通信品質(スルー プットと PING)がどのように影響を受けるかについて、図 4-33 と表 4-30 に示すチャン ネルプランで確認を行った。

表 4-31 に測定結果を示す。レベル差伝送時には、スループットが大きく振れる(15~277Mbit/sec)状態となり、PINGの失敗率の増加が確認されたが、レベル差無し(32chの256QAM信号の送信レベルを6dB下げ)の状況で再度確認を行ったところ単一偏波に近い値を得ることができた。

	偏波面	СН	周波数	変調方式	備考
			LMHZ	C 40 AM	
	水平	UPI	20.0	64QAM	Annex. B/6. 4MHz
	水平	UP2	30.0	64QAM	Annex. B/6. 4MHz
上り	水平	UP3	40.0	64QAM	Annex. B/6. 4MHz
	水平	UP4	50.0	64QAM	Annex. B/6. 4MHz
	水平	$\mathrm{PT}_{\mathrm{UP}}$	70.0	CW	23,273.125MHz.パイロット信号
	水平	8	195.0	256QM	Annex. B/6. OMHz
	水平	9	201.0	256QM	Annex. B/6. OMHz
	水平	10	207.0	256QM	Annex. B/6. OMHz
下り	水平	11	213.0	256QM	Annex. B/6. OMHz
	水平	12	219.0	256QM	Annex. B/6. OMHz
	水平	C23	225.0	256QM	Annex. B/6. OMHz
	水平	C24	231.0	256QM	Annex. B/6. OMHz

表 4-30 DOCSIS 信号伝送試験チャンネルプラン

水平	C25	237.0	256QM	Annex. B/6. OMHz
水平	PT_{H}	156.25	CW	23,343.75MHz.パイロット信号
垂直	PTv	467.75	CW	23,281.25MHz.パイロット信号
垂直	31	581.0	OFDM	1/7MHz オフセットあり。
垂古	2.0	597 0	256044	レベル差伝送(64QAM に対して
甲旦	32	367.0	ZOOQAM	+6dB)
垂直	33	593.0	64QAM	
垂直	34	599.0	256QAM	
垂直	39	629.0	CW	XPD 測定用信号

表 4-31 DOCSIS 伝送試験結果(レベル差伝送の有無による)

			SNR [dB] BER		MER	スループット	PING		
		[dB]		[Mbps]	回数	失敗回数	失敗率		
単一偏波	上り	U1	37.3	_	_		600	0	0.0%
		U2	38.6	_	_	97.6			
		U3	37.3						
		U4	37.3	-	_				
	ጉሀ	D1	32.1	1.00E-09	31.5	277.0			
		D2	31.6	1.00E-09	31.5				
		D3	29.1	1.00E-09	31.7				
		D4	31.7	1.00E-09	31.4				
		D5	29.3	1.00E-09	31.3				
		D6	29.1	1.00E-09	28.3				
		D7	31.3	1.00E-09	30.9				
		D8	30.9	1.00E-09	30.7				
	上り	U1	35.8	-	-	57.2	600	38	6.3%
		U2	36.5	-	_				
偏波多重 (レベル差伝 送あり)		U3	37.1	_	_				
		U4	37.7	-	-				
	ኾり	D1	32.2	1.00E-09	32.6	125.2			
		D2	31.9	1.00E-09	32.3				
		D3	29.2	6.80E-08	29.9				
		D4	26.3	1.80E-05	27.5				
		D5	29.8	1.00E-09	30.5				

		D6	29.3	3.60E-07	29.0				
		D7	31.4	1.00E-09	31.6				
		D8	31.1	1.00E-09	31.4				
	上り	U1	37.7	-	-	94.2	600	3	0.5%
		U2	38.1	_	_				
		U3	39.1	_	_				
		U4	37.9	_	_				
	ጉሀ	D1	31.9	1.00E-09	31.6	277.0			
偏波多重		D2	31.5	1.00E-09	31.3				
(レヘル差伝送なし)		D3	28.4	1.00E-09	28.4				
		D4	28.8	1.00E-09	28.5				
		D5	28.9	1.00E-09	28.6				
		D6	28.8	1.00E-09	28.0				
		D7	31.0	1.00E-09	30.9				
		D8	31.9	1.00E-09	30.6				

4.7. 映像 (地デジ) 伝送試験

4.7.1. 目的

23GHz帯無線伝送システムにおいて一般的に利用されているケーブルテレビの独自方式 である FDM-SSB 方式において、ケーブルテレビ信号のうち標準デジタルテレビジョン放 送方式 (OFDM)、及びデジタル有線テレビジョン放送方式 (64QAM)を偏波多重伝送した ときの受像状態を確認する。信号品質 (C/N 比、BER、MER など) については別途長期測 定にて確認していることから、本項目では受像状態のみ確認する。

4.7.2. 測定系統図

図 4-34、及び図 4-35 と図 4-36 に映像伝送試験に係わる測定系統図を示す。

図 4-34 系統図 親局(1次)側

図 4-35 系統図 子局(2次)側(OFDM映像確認時)

4.7.3. 伝送信号条件

本試験で確認する信号について、表4-32に示す。

両チャンネルとも多重偏波伝送を行っているが、単一偏波の場合は多重偏波よりも条件 がよくレベルが確保されていることから多重偏波のチャンネルのみの確認としている。

	\mathbf{CH}	周波数[MHz]	チャンネル名称	偏波	変調方式	
測定1	41	638-644	ニレビ市古	V偏波	OFDM	
			アレヒ東京	多重有	(パススルー)	
測定 2	35	<u> </u>	ニレビシナ	V偏波		
		602-608	クレビ松本	多重有	64QAM	

表 4-32 映像伝送試験における伝送信号条件

4.7.4. 映像(地デジ)伝送試験測定結果

図 4-37 と図 4-38 に映像(地デジ)伝送試験測定の映像を示す。 測定時は晴天の状況であったが、OFDMの信号伝送が問題なく行えたことを確認した。

図 4-37 測定1 テレビ東京 (OFDM) 受像状態

図 4-38 測定2 テレビ松本(64QAM) 受像状態

映像を確認した結果、ブロックノイズ等の発生なく伝送していることを確認することが でき、検討委員会の現地視察の際も本映像を確認頂いた。

4.8. アンテナ・偏波分離器調整

4.8.1. 目的

フィールド試験を実施するにあたり、アンテナ方向調整を行った後に下り方向の偏波面 (H 偏波とV 偏波)を偏波分離器(Ortho Mode Transducer、以下 OMT)で調整する必要 があるが、実験システム導入時の本調整作業において想定以上に時間を要した。

これらを踏まえ、23GHz帯無線システムの導入をより簡便にすることを目的として、ア ンテナ方向調整および OMT 調整(偏波面調整)について検討を行い、より簡易な操作で調 整が可能な機構について試作を行う。

4.8.2. アンテナ方向調整

4.8.2.1. アンテナ調整金具

フィールド試験を実施するにあたり、無線装置設置後にアンテナ方向調整を行う必要が ある。平成28年度の調査検討では室内試験のみであったことから、アンテナを取り付ける 金物について調整機構は必要としなかったが、試験フィールドへの設置には上下左右の方 向調整が必要となる。

上記を踏まえ、図 439 に示す調整機構つきのアンテナ取付金具を試作し、アンテナの取 り付けと方向調整を行った。図 4-40 に試験フィールドにおけるアンテナ取付状況を示す。 本アンテナ取付金具により、左右方向は柱とのUボルト調整含め 360°(ターンバックルに よる調整幅±5°)、上下方向に対しても±15°の調整が可能となった。

図 4-39 アンテナ調整金物

図 4-40 アンテナ取付状況(左:親局(1次)側 右:子局(2次)側)

4.8.2.2. 調整方法

アンテナ方向調整における測定系統をエラー!参照元が見つかりません。に示す。

始めに親局(1次)側、子局(2次)側それぞれで粗調整を実施する。図 4-39 に示す① のボルトを緩め左右方向にアンテナを振り対向する装置の方向におおよそ合わせて仮止す る。同様に同図内の②を緩め上下方向にアンテナを振り対向する装置の方向におおよそ合 わせて仮止する。

次にそれぞれの局にて微調整を実施する。本作業は親局(1次)側、子局(2次)側が同 時作業を行うと基準が定まらないことからどちらか一方の局から実施する必要がある。こ こでは下り信号方向のアンテナ方向調整について記載する。

スペクトラムアナライザを子局(2次)側のRF出力端子(図 441 内の①(垂直偏波、 水平偏波のどちらでも良い))に接続して左右方向に一度大きく動かし、23GHz帯親局(1 次側)から出力されるパイロット信号レベルが最大となる方向を探る。もっともレベルが高 くなる方向を確認できたらその位置で図 4-39 に示す①のボルトを固定する。次に図 4-39 に示す③のターンバックルを回してよりレベルが高くなるよう左右方向の微調整を行いう。 同様に上下方向への調整についても上下に一度大きく動かしレベルの高い方向で固定した 後、図 4-39 に示す④のターンバックルを用いて上下方向の微調整を行う。同じ作業を対向 側(子局(2次)側)でも行い、両局でピークとなる方向を決め固定する。

上り信号方向のアンテナ方向調整については、スペクトラムアナライザを親局(1次)側の RF 出力端子(図 4·41 内の③)に接続して、前述の作業を実施する。

図 4-41 アンテナ方向調整における測定系統

4.8.2.3. 調整結果

調整作業を行った結果、1時間程度で方向調整を完了させることができたが、課題として 次の2点があげられた。

- ①アンテナ設置位置と無線機設置位置が 2m 程度離れていることにより、アンテナ調整 者とスペクトラムアナライザを確認する作業者が別に必要であった。
- ②スペクトラムアナライザを確認・読み上げる作業者と調整者との間でタイミングのズレ発生してしまい、タイムリーにレベルのピークに合わせることができず、調整に時間を要した。

これらの課題に対して受信レベルインジケータを導入することで解決することを検討し、 試作を行った。試作したインジケータについては4.9項に記載する。

4.8.3. OMT 調整

4.8.3.1. 28 年度製作 OMT による調整方法

アンテナ方向調整後、親局(1次側)より、2つの無変調信号(Plot信号)をそれぞれ 垂直 偏波(23,281.25MHz)と水平偏波(23,343.75MHz)で送信させる。子局(2次側) の OMT の垂直偏波用のポートにスペクトラムアナライザ(MS2726C:アンリツ製)を接 続し、2つの無変調信号のレベルを測定し、その D/U 比が最大となるよう図 4-42 の通り OMT を調整する。

上記調整後、OMTの水平偏波用のポートにスペクトラムアナライザを接続し、2つの無変調信号のレベルを測定し、そのD/U比が劣化していないことを確認する。

図 4-42 OMT 調整部

4.8.3.2. 28 年度製作 OMT を用いた調整結果

調整結果を以下の表 4-8 に示す。

調整前、左一杯に回した状態、右一杯に回した状態の3つの状態を測定してから調整を行った。表記上途中の調整記載は1つとしたが、水平偏波で最大となるDU比が取れても垂直偏波では非常に低い値となってしまい、逆に水平偏波で値を調整すると水平偏波ではD/U比が小さくなるという状況となり、両偏波で適切な値(最大のDU比)とするための調整に時間を要した。また、図4-43に示すOMTを固定しているネジを締め付ける際の微

細なずれによっても値が変動し、測定も含めると調整に4時間以上を要する長時間の作業 となったが、調整前より1dBの改善とすることができた。

測定箇所	測定周波数 [MHz]	調整前	右一杯	左一杯	調整	調整後
V_{PT} - V_{out} [dBm]	23,281.25	-58.7	-58.5	-58.5	-58.3	-57.6
H_{PT} - V_{out} [dBm]	23,343.75	-93.6	-74.1	-76.0	-90.7	-93.5
D/U比[dB]		34.9	15.6	17.5	32.4	35.9
V _{PT} -H _{out} [dBm]	23,281.25	-57.4	-57.4	-57.5	-57.3	-56.3
H_{PT} - H_{out} [dBm]	23,343.75	-93.2	-74.4	-73.2	-97.7	-93.4
D/U比[dB]		35.8	17.0	15.7	40.4	37.1

表 4-33 OMT 調整記録

図 4-43 アンテナ背面 OMT 固定ネジ(4か所)

4.8.3.3. 考察

測定結果記載の通り OMT の調整について想定以上の時間がかかる結果となった。原因と しては片方の偏波を調整するともう一方の偏波で値が変わってしまうこと、OMT 固定のネ ジを締めこむときに微妙なずれが発生することが大きな要因である。本内容について検討 委員会で報告したところ OMT の調整機構について改善が必要とのご意見を頂いたことか ら、調整方法についての見直しと検討を行い、新たな調整機構付き OMT(以後、分離型 OMT)の試作を行った。

4.8.3.4. 分離型 OMT

4.8.33の考察を受け、より簡易な操作で調整が可能な機構とするため再度試作を行った。 新たな機構として OMT の水平偏波、垂直偏波をそれぞれ独立した部品構成とし、水平・垂 直偏波ポート間に角度調整機能を設けることで、水平・垂直偏波間の角度調整が可能となり、 短時間での微細な調整が可能な機構とした。また、分離した OMT 間は O リング設置溝を 設け防水性を確保している。新規試作した OMT を図 4-44、図 4-45 に示し、仕様を表 4-34 に示す。

図 4-44 分離型 OMT 外観図

図 4-45 新規 OMT (左:組み合わせ状態、右:分離状態)

項目	仕様	備考
インタフェース(V 偏波)	SMA-J 型	50Ω
インタフェース(H 偏波)	SMA-J 型	50Ω
インタフェース(複偏波)	WRI220	φ 9.4mm 円形導波管
周波数範囲	$23200\!\sim\!23600\mathrm{MHz}$	
挿入損失	1dB以下	
偏波間結合量	-40dB以下	
VSWR	1.4 以下	

表 4-34 分離型 OMT 仕様

4.8.3.5. 調整方法

分離型 OMT を用いた調整方法については 4.8.3.1 とほぼ同様の手順となるが、調整が 2 段階となる点が異なる。

まず親局(1次側)より、2つの無変調信号(Pilot 信号)をそれぞれ垂直偏波 (23,281.25MHz)と水平偏波(23,343.75MHz)で送信させる。アンテナ本体と固定され ている箇所(図4-46内の第一段階固定ネジ)を緩めた状況で分離型OMTの水平偏波ポー トにスペクトラムアナライザ(E4440A:アジレント製)を接続しレベルが最大となるとこ ろで仮止めを行い、次に垂直偏波のレベル測定を行う。DU比が最大となるところでネジ を締めこみ固定する。次に第一段階で測定したレベルの高い方の偏波を測定しながら分離 型OMT中央のネジ(図4-46内の第二段階固定ネジ)を緩めた状態にて第二段階の調整を 行い、DU比が最大となるところでネジを締めこみ固定する。最後に垂直・水平偏波それぞ れのレベル測定を行いD/U比を測定する。

図 4-46 分離型 OMT における調整作業

4.8.3.6. 調整結果

分離型 OMT を用いて電波暗室にて調整を行い、調整結果と調整に要する時間を測定した。

調整結果を表 4-35 に示し、測定時のスペクトラムアナライザの表示を図 4-47 と図 4-48 に示す。本結果より D/U 比はそれぞれ 41.55dB、43.42dB を確保することができた。また、 その調整にかかった時間は 10 分程度であり、試験フィールドで実施した 28 年度製作の OMT を用いた調整と比較して 1/10 以下の時間での調整を行うことができた。これは OMT を分離機構とすることにより第一段階の調整で大よその値を決めることができ、微細な調 整を後に回せること、第二段階の微細な調整時において第二段階固定ネジが手前に配置さ れており、締め込みによるずれが出にくい機構としたことが大きく影響している。

測定箇所	測定周波数[MHz]	レベル[dBm]	D/U 比[dB]
VPT-Vout	23,281.25	-73.73	
$H_{PT}-V_{out}$	23,343.75	-32.18	41.55
$V_{PT}-H_{out}$	23,281.25	-75.79	42.40
$H_{PT}-H_{out}$	23,343.75	-32.37	43.42

表 4-35 分離型 OMT 調整結果

図 4-47 23,281.25MHz での測定結果

図 4-48 23,3437.5MHz での測定結果

4.8.3.7. 分離型 OMT 評価

4.8.3.7.1. 挿入損失、偏波間結合量、電圧定在波比

試作した分離型 OMT について、図 4-49 に示す通り 2 個を直結した状態にして測定・評価を実施した。測定した挿入損失および偏波間結合量を表 4-36、図 4-50 と図 4-51 に、電圧定在波比(Voltage Standing Wave Ratio、以下 VSWR)を表 4-37 と図 4-52 に示す。なお図表中の番号は図 4-49 で示すポート番号を指す。

図 4-49 分離型 OMT 接続評価構成

	挿入損失(dB)		偏波間結合量(dB)					
	1-4	2-3	1-2	3-4	1-3	2-4		
帯域内最大	-0.56	-0.22	-68.23	-50.30	-49.74	-59.44		
带域内最小	-0.53	-0.21	-52.50	-49.05	-49.02	-51.60		
帯域内平均	-0.54	-0.22	-58.48	-49.62	-49.49	-55.30		

表 4-36 分離型 OMT 挿入損失と偏波間結合量

※挿入損失は2個直結の合計値

表 4-37 分離型 OMT VSWR

		VSWR						
	1	2	3	4				
带域内最大	1.08	1.09	1.14	1.08				

図 4-50 分離型 OMT 挿入損失

図 4-51 分離型 OMT 偏波間結合量

図 4-52 分離型 OMT VSWR

4.8.3.7.2. 交差偏波識別度評価

試作した分離型 OMT を H28 年度に試作した 0.3m 径パラボラアンテナに接続し、交差 偏波識別度(Cross Polarization. Discrimination、以下 XPD)の評価を行った。評価構成 は図 4-53 の通り、1 次側アンテナに H28 年度製作の OMT を、2 次側アンテナに分離型 OMT を接続し、1 次側の V 偏波と H 偏波それぞれの偏波面から、UHF と VHF に相当す るマイクロ波帯信号を同レベルで出力し、2 次側の分離型 OMT の V 偏波と H 偏波のそれ ぞれのポートで V/H、HV のレベル差を確認しながら調整する。偏波面の調整を行った後、 XPD の測定を実施した。測定結果を表 4-38 と図 4-54 に示す。

図 4-53 XPD 評価構成図

表	4-38	XPD i	則定結果
---	------	-------	------

	XPD(dB)				
	H-V 偏波	V-H 偏波			
帯域内最大	-38.8	-38.6			
带域内最小	-45.7	-48.5			
带域内平均	-40.8	-41.9			

図 4-54 XPD 測定結果

分離型 OMT を用いたときの XPD 性能は、38dB 以上を実現できた。平成 28 年度に試作 した一体型の OMT を用いたときの XPD 性能(図 4-55 参照)が 35dB 以上であること考 慮すると、3dB の改善となった。

図 4-55 XPD 測定結果(H28 年度製作 一体型 OMT 接続時)

4.8.4. まとめ

アンテナ調整機構の仕様、及び OMT の調整機構を変更したことで、交差偏波識別度の改善と調整時間の大幅な短縮を実現することができた。フィールド試験では実施期間の関係から平成 28 年度製作の OMT を使用したが、調整に多くの時間を要するという課題に対し、分離型 OMT を使用することで調整時間を 1/10 程度まで改善することができた。

また、XPD 性能についても、平成 28 年度製作の OMT を接続したときよりも約 3dB 程 度の改善を実現できた。

なお、分離型 OMT の調整機構については、微調整が細かくできるよう操作用の棒を取り 付ける等の意見を検討委員会で頂いたことから、より操作の行いやすい機構を検討するこ とが課題となる。

4.9. レベルインジケータの製作

4.9.1. 目的

4.8.23 で記載した通り、①アンテナの方向調整において調整人員が複数名必要となること、②スペクトラムアナライザを確認する人員と方向調整者が別になることからタイムリーに調整できず時間を要することが課題としてあげられたため、これを解決することを目的とする。

4.9.2. レベルインジケータの製作

本課題を解決する方法として、図 4-56 に示す現行無線装置に採用されているレベルイン ジケータを使用することとした。これは現行無線装置の子局(2次)側装置に設置されてお り、親局(1次)側からの無変調信号(Pilot信号)の受信レベルをLEDの点灯数で表示 するものである。本レベルインジケータを用いることで、スペクトラムアナライザ等の測定 器を必要とせず受信レベルを容易に確認可能としている。

図 4-56 現行無線装置のインジケータ

現行無線装置では、アンテナと無線装置が一体であることからレベルインジケータを確認しながら調整を行うことができるが、インジケータを確認できる位置(筐体の背面部)での調整が必要であり、設置状況によっては作業し辛いことも考えられる。

また、今回試作した双方向型 23GHz 帯無線システムでは、アンテナ分離型であることか ら筐体にレベルインジケータを実装してしまうとインジケータを確認する人と調整する人 が別になり今回の課題解決には至らない。

これらの課題を解決するために、アンテナ調整者が手元でレベルインジケータを確認で きるよう、図 4-57 に示す通り無線機本体と別構成として試作を行った。図 4-59 に無線機 本体との接続を示す。

図 4-57 レベルインジケータ外観

図 4-58 レベルインジケータ表示状態

図 4-59 インジケータ接続箇所

4.9.3. 調整結果

レベルインジケータを試作したことにより調整における時間が1時間程度から30分程度 とすることができた。現行無線装置におけるインジケータについて、好評価を頂いているこ とからも本インジケータの有用性は高いものであると考える。本レベルインジケータの導 入により、アンテナ方向調整者が直接レベルを確認しながら調整することができ、作業時間 の短縮と調整作業員の人数削減が可能となる。

本インジケータは16個のLEDで構成され、1つのLEDが3dBステップに相当する。 表示範囲は表4-39に示す通り-37dBm~-82dBmまでの表示が可能である。

これにより現地にスペクトラムアナライザなどの測定器を持ち込まずとも調整が可能に なり、無線システム導入時の利便性向上に大きく寄与すると考えられる。

今回製作したレベルインジケータは試作品であり、アルミ板に基盤を直接取り付けたも のであることから防塵・防水性能が確保されていない。そのため屋外、特に悪天候時の調整 などにも耐えうる筐体を作成することが課題となる。

さらには無線機本体との接続についても、筐体内部に接続ポートを備えていることから 一度筐体の蓋を開ける必要があり、筐体の外から容易に接続できるよう屋外用のコネクタ を別途設けるなどの利便性向上についても検討を行う必要がある。

Pilot信号 無線機入力レベル [dBm]								LE	ED				点灯数
-37	<=	LEVEL			• •	•	• •	•	• •	•	•	•	16
-40	<=	LEVEL	<	-37	•	•	•	•	•	•		0	15
-43	<=	LEVEL	<	-40	•		•		•	•	0	0	14
-46	<=	LEVEL	<	-43	•	•	•	•	•	0	0	0	13
-49	<=	LEVEL	<	-46	• •	•	• •	•	0	0	0	0	12
-52	<=	LEVEL	<	-49	• •	•	• •	0	0	C 🔸	0	C 🔸	11
-55	<=	LEVEL	<	-52	• •		C 🔸	0	C 🗢	C 🔸	0	C 🔸	10
-58	<=	LEVEL	<	-55	• •	0	0	0	0	0	0	0	9
-61	<=	LEVEL	<	-58	0	0	0	0	0	0	0	0	8
-64	<=	LEVEL	<	-61	0	0	0	0	0	0	0	00	7
-67	<=	LEVEL	<	-64	0	0	0	0	0	0	0 0	00	6
-70	<=	LEVEL	<	-67	0	0	0	0	0	0 0	00	0 0	5
-73	<=	LEVEL	<	-70	0	0	0	0	00	00	00	00	4
-76	<=	LEVEL	<	-73	0	0	0	00	00	00	00	00	3
-79	<=	LEVEL	<	-76	0	0	00	00	00	00	00	00	2
-82	<=	LEVEL	<	-79	0	000	00	00	000	00	000	00	1
		LEVEL	<	-82	00	000	00	00	0	00	0	00	0

表 4-39 無線機入力レベルと LED 点灯数

4.10. フィルタ製作

本 23GHz帯無線伝送システムは、上り信号(15MHz~65MHz)と下り信号(90MHz~770MHz)を伝送するために、下り信号をVHF帯(90MHz~402MHz)とUHF帯(402MHz~770MHz)の2つに分離し、外部インタフェースとして、上りポート、VHFポート、及びUHFポートの3つの入出力端子をもつ仕様となっている。下り信号については、親局(1次)側の入力部でVHF帯とUHF帯それぞれに分離(子局(2次)側では合成)する必要があることから、フィールド試験を行うに当り、UHF/VHFの分波フィルタの試作を行った。また、上り/下りの分波器についても、上りの通過帯域が既製品のものとは異なることから、併せて試作を行った。

4.10.1. 上り/下り分波フィルタ

4.10.1.1.目的

CATV における上り/下り分波器(フィルタ)については、上り信号(10~55MHz)と下 り信号(70~2610MHz)を分派する既製品が存在する。本フィールド試験では、既製品を 用いても伝送上問題はないが、本23GHz帯無線伝送システムの仕様に合ったフィルタ、及 び今後 CATV における上り信号周波数帯の拡張を想定し、上り信号(10~65MHz)と下り 信号(70~2610MHz)を分ける分波器を試作することを目的とする。

4.10.1.2.性能

試作した上り/下り分波フィルタにおける外観図を図 4-62 に示し、Common-High Path 間(下り方向)の性能を図 4-60、Common-Low Path 間(上り方向)の性能を図 4-61 に 示す。

65MHz における下り信号の抑圧性能は約 54.7dB となり、上り信号の通過損失性能は約 0.7dB という結果になった。

試作した上り/下り分波フィルタをフィールドに設置して試験を実施し、伝送性能上問題 ないことを確認した。

図 4-60 上り/下り分波フィルタ Common-High Pass 間

図 4-61 上り/下り分波フィルタ Common-Low Pass 間

図 4-62 上り/下り分波フィルタ外観図

4.10.2. UHF/VHF 分波フィルタ

4.10.2.1.目的

本 23G 帯無線伝送システムは、下り信号のうち 90MHz~402MHz の信号を水平偏波(H 偏波)、402MHz~770MHz の信号を垂直偏波(V 偏波)で伝送するシステムであり、無線 伝送前(23GHz 帯無線親局(1 次側)装置の入力時)に VHF帯(90MHz~402MHz)と UHF(402MHz~770MHz)に分ける分波フィルタが必要になる。402MHz の周波数で分 波するためには、急峻な特性を持つフィルタを利用することとなるが、フィルタの特性上、 402MHz 前後の隣接チャンネルに影響を与えてしまうことは避けられない。

そのため平成28年度の成果報告書に記載されている通り、信号品質、及び電波法に考慮 して、23GHz帯無線親局(1次側)装置の入力信号で対象となる帯域を十分抑圧すること とし、VHF帯で90MHz~384MHzを、UHF帯で420MHz~770MHzを通過させる性能 を持つフィルタ(VHF/UHF分波フィルタ)を製作することを目的とする。

4.10.2.2.性能

試作したVHF/UHF分波フィルタにおける Common-High Path間 (420MHz~770MHz) の性能を図 4-63 に、Common-Low Path 間(90MHz~384MHz)の性能を図 4-64 に示 し、外観を図 4-65 に示す。なお、今回無線装置の小型化を実現する必要から、無線装置と 別に設置することを前提として試作を行っている。

VHF/UHF 分波フィルタにおける抑圧性能は、VHF 帯通過時の 420MHz において約 73dB、UHF 帯通過時の 394MHz において約 66dB の性能を実現できた。また、402MHz の周波数における抑圧性能についても、VHF 帯で約 46dB、UHF 帯で約 51dB を実現して おり、23GHz へのアップコンバート時における平均電力が-10dBm/MHz となることから、 402MHz を境に伝送信号が存在し場合でも帯域外領域におけるスプリアス発射の規定値を 満足できると考える。

試作した VHF/UHF 分波フィルタをフィールドに設置して試験を実施し、伝送性能上問題ないことを確認した。

図 4-63 VHF/UHF分波フィルタ Common-High Pass 間(402MHz~770MHz)

図 4-64 VHF/UHF分波フィルタ Common-Low Pass 間(90MHz~402MHz)

図 4-65 UHF/VHF分波フィルタ外観図(左:外観、右:入出カインターフェース部)

5. 調査検討の成果と課題

5.1. 調査検討の成果

本調査検討では、FDM-SSB 方式による 23GHz 帯無線伝送システムにおいて、現状の帯 域内(23.2GHz~23.6GHz の 400MHz 帯域幅)でケーブルテレビ事業者が提供するサービ ス全体を伝送可能とするために、垂直偏波と水平偏波を偏波多重によって同時に用いるこ とで周波数利用効率を 2 倍にし、システムの双方化を図り、現行の変調方式と比較して伝 送速度換算で周波数利用効率を約 70%向上させる高度な変調方式を導入するための技術的 条件を取得することと目的として、23GHz 帯無線伝送システムにおける偏波多重技術、双 方向化技術、変調方式高度化技術及び小型・軽量化について検討を行い、平成 28 年度調査 検討において試作した双方向機能付 23GHz 帯無線伝送システムをフィールドに設置して 試験を実施した。

また、調査検討を進める中で発生した課題への取り組みや小型・軽量化についても検討を 進めた。

本調査検討で試作した無線伝送装置により、以下のような成果を得た。

- (1) 平成 28 年度の調査検討で試作した交差偏波識別度(XPD)を改良したパラボラアン テナ、及び偏波分離器(OMT)と双方向機能付 23GHz 帯無線伝送システムをフィー ルドに設置し、無線伝搬試験を実施してデジタルケーブルテレビ信号(OFDM、 64QAM、256QAM など)を偏波多重伝送できることを確認した。
- (2) 平成 28 年度の調査検討で試作したアンテナ、OMT、及び無線伝送装置を用いてケー ブルインターネット通信 (DOCSIS3.0)の無線伝送試験を実施し、アンテナ間の回り こみ量を 90dB としたときの信号の疎通 (PING 試験)及びスループットに問題がな いことを確認した。
- (3) 平成 28 年度の調査検討で試作した双方向機能付 23GHz 帯無線伝送システムをフィ ールドに長期間設置し、降雨等による C/N 比や XPD の劣化等を評価した。期間を通 じて想定した降雨(1分間降雨量:1.33mm/分)は観測されず、C/N 比と XPD 共に 大きな劣化は無かった。

(4) デジタルケーブルテレビ信号のうち、256QAMや高度な変調方式(J.382)に係る CN 比と CIL比、並びに XPDや OMT の性能について検討・評価を行い、CN 比と CIL比 については表 51 のような値を算出した。同基準は偏波多重伝送する場合でもその劣 化量を考慮して満足すべき値となる。XPD や OMT については今回試作した性能 (XPD: 37dB、OMT 偏波間結合量:-50dB)程度あれば偏波多重伝送が可能である ことが分かった。XPD については偏波多重による劣化量が想定より少ないため、同 ーレベルで伝送する場合は、無線伝送路性能以上あれば問題ないと考えられる。技術 基準としては 3dB 程度マージンをとることが望ましいが、あまり高い性能を規定す ると製作が難しくなるため考慮する必要がある。また、レベル差伝送する場合の性能 については、同一レベルよりも高い性能が必要になるが、所要値については更なる検 討が必要である。

				J 382					
	OFDM	64QAM	256QAM	256QAM	1024QAM	4096QAM 符号化率 4/5	4096QAM 符号化率 5/6		
無線伝送路性 能	27.0	29.0	36.0	29.0	36.0	41.0	45.0		
[dB]									
[C/N]0 [dB]	27.1	29.2	36.3	29.2	36.3	41.6	46.0		
C/I [dB]	42.0	42.0	48.0	42.0	48.0	50.0	52.0		
XPD [dB]	各無線伝送性能+3dBとすることが望ましいが、レベル差伝送する場合にはより高い性能が必要になる。								
OMT偏波間	-50dB 以	-50dB以上							
結合量	接続する	らアンテナ	性能(XPI)性能)が	支配的であ	り、XPD性	能以上あれ		
[dB]	ば問題な	ぬと考え	る。						

表 5-1 [C/N]0、及び C/I 値(技術基準)

(5) フィールドへの導入時に必要となる交差偏波識別度(XPD)の調整について、OMT に新たな調整機構を実装し、半日程度かかっていた調整時間を大幅に短縮した。また、

アンテナの面合せ(リンク調整)においても、外付けのレベルインジケータを試作し、 導入時間の短縮を実現した。

- (6) 従来の片方向の無線装置と比較すると、実装すべきモジュールは単純計算で3倍となり、それに合わせた装置サイズ、重量、電源容量が必要となるが、平成28年度に試作した双方向機能付23GHz帯無線伝送システムの実装モジュールの配置や配線等を見直すことで小型化を実現させ、現行の無線装置の容積比で147%となり、更なる小型化を達成した。
- (7) 実装モジュールの配置や配線等を見直すことにより実現した小型化をベースに筐体の試作を実施し、現行の質量比で、23GHz帯無線親局(1次側)が133.8%、23GHz 帯無線子局(2次側)が128.8%となり、3倍以下に抑え軽量化を達成した。

5.2. 今後の課題

- (1) C/N 比と CI 比の技術基準については、各種技術基準を参考にして性能配分を行い、 策定することができたが、各技術基準間の不整合については更に検討する必要がある。 また、XPD と OMT の偏波間結合量については、偏波多重の有無により所要性能が 変わることと、実際の製作面に課題があることから、更なる検討が必要になる。
- (2) 降雨に関する評価については、雨の少ない時期でかつ短期間であったことから、強雨 期を含めた更なる調査が必要と考えられる。
- (3) 近年、動画配信される映像の高精細化が進展しており、ケーブルテレビ事業者等は、 既に平成27年から「ケーブル4K」、「ひかりTV4K」といった4K実用放送を開始し ているが、さらに、平成30年12月からは、衛星放送により4K・8K実用放送が(4K18 番組、8K1番組)が開始される予定である。有線放送設備として、ケーブルテレビの伝 送路の一部を構成する23GHz帯無線伝送システムについては、帯域が限定されており、 現在の無線通信方式では4K・8K実用放送の再放送に対応する帯域が十分にないため、 4K・8K等の超高精細映像等のトラヒックの伝送を可能とするような高度化が必要とさ れていることから、現状の23GHz帯無線伝送システムの帯域内でケーブルテレビ事業 者が、BS-IFパススルー伝送やIPマルチキャスト方式等を柔軟に利用して、FITH等 により提供する4K・8K放送等の伝送等をできるようシステムの高度化を検討する必要 があると考えられる。

6. 資料編

6.1. 用語・略語

略語	用語
64QAM	64 Quadrature Amplitude Modulation
256QAM	256 Quadrature Amplitude Modulation
1024QAM	1024 Quadrature Amplitude Modulation
4096QAM	4096 Quadrature Amplitude Modulation
AGC	Automatic Gain Control
BER	Bit Error Rate
СМ	Cable Modem
CMTS	Cable Modem Termination System
C/N 比	Carrie to Noise Ratio
DOCSIS	Data Over Cable Service Interface Specifications
D/U 比	Desired to Undesired Signal Ratio
FDM-SSB	Frequency Division Multiplexing - Single Side Band
FTTB	Fiber To The Building
FTTH	Fiber To The Home
HFC	Hybrid Fiber - Coaxial
IF	Intermediate Frequency
MER	Modulation Error Ratio
MGC	Manual Gain Control
NF	Noise Figure
OCXO	Oven-Controlled Crystal Oscillator
OFDM	Orthogonal Frequency Division Multiplexing
OLT	Optical Line Terminal
OMT	OrthoMode Transducer
ONU	Optical Network Unit
QAM	Quadrature Amplitude Modulation
UHF	Ultra High Frequency

VCXO	Voltage-Controlled Crystal Oscillator
VHF	Very High Frequency
V-ONU	Video - Optical Network Unit
XPD	Cross Polarization Discrimination

6.2. 測定機材

	機器	型番	メーカー	備考
1	周波数カウンタ	MF2413C	アンリツ	
2	信号発生器	MG3700A	アンリツ	
		MSD5000A	エイデン	
		3555A	エイデン	
		SFC	Rohde&Schwarz	
3	QAM 変調器	NSG9000	住友電工	
4	OFDM 変調器	MR3000X	ミハル	
5	CMTS	MA5633	HUAWEI	
6	スイッチ	3560CG	シスコ	
7	ケーブルモデム	CBW383G4J	シンクレイヤ	
8	スペクトラム	E4440A	アジレント	
	アナライザ	N9030A	アジレント	
		MS2726C	アンリツ	
		FPH	Rohde&Schwarz	
9	USB パワーセン	MA24126A	アンリツ	
	サ			
10	シグナルレベルメ	LF990	リーダー電子	
	ータ			
11	テスター	DSAM	VIAVI	
12	可変アッテネータ	J7211C	アジレント	
		9012-9	Api	
		9012-70	Api	
		75BR023	JFW	
		5122	Waveline	
13	電源供給器	SPS-A6030U	シンクレイヤ	プラグイン機能付き

6.3. 参考文献

- JCTEASTD-015-4.0 FTTH 型ケーブルテレビシステム 光システム性能測定法 (一社)CATV 技術協会,2016 年
- JCTEASTD-018-3.0 FTTH 型ケーブルテレビシステム 光ネットワークの性能 (一社)CATV 技術協会,2016 年
- JCTEA STD-024-1.0 CATV 高速データ伝送装置 DCCSIS3.0 (一社)CATV 技術協会,2015 年
- 4.4K・8K衛星IF伝送システムに関する調査研究報告書
 (一社)CATV技術協会,2015年
- 5. JCTEASTD-017-4.0 有線一般放送設備と同等の試験施設
 (一社)CATV 技術協会,2015 年
- 6. JCTEASTD-014-5.0 FTTH 型ケーブルテレビシステム 光ネットワークとその機器 (一社)CATV 技術協会,2013 年
- 7. 電波法関係審査基準(財)情報通信振興会,2016年
- 8. 平成 10 年度 電気通信技術審議会答申(諮問第 102 号「有線テレビジョン放送事業用 無線局の技術的条件」のうち「23GHz帯を使用する有線テレビジョン放送事業に用 いる固定局の技術的条件」)
 電気通信技術審議会,1998年

9. 有線テレビジョン放送事業用固定局における地上デジタル放送の伝送に関する調査検

討 報告書
7. 参考資料

7.1. 23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査 検討に係わる調査検討委員会

7.1.1. 開催要綱

1 名称

本委員会は、「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査 検討に係わる調査検討委員会」と称する。

2 目的

総務省より受託した平成29年度技術試験事務「23GHz帯無線伝送システムの双 方向化等に関する技術的条件の調査検討」のうち、「偏波多重技術の検討」、「双方向化技 術の検討」、「変調方式高度化技術の検討」、「小型・軽量化の検討」、及び試験装置におい て、関連する要素技術間の調整、フィールド試験、成果の取りまとめ方等調査検討全体の 方針について幅広い観点から助言を頂くともに、実際の調査検討の進め方について適宜 指導を頂くことを目的に、「23GHz帯無線伝送システムの双方向化等に関する技術的 条件の調査検討に係わる検討委員会」を開催するものである。

- 3 調查檢討委員会内容
 - (1) 調査検討項目(偏波多重技術の検討」、「双方向化技術の検討」、「変調方式高度化 技術の検討」、「小型・軽量化の検討」)、及び試験装置における要素技術間の調整
 - (2) 調査検討の方針に関する助言
 - (3) 調査検討の進め方に関する指導
- 4 組織
 - (1) 本委員会は、京セラコミュニケーションシステム株式会社の委嘱を受けたものに より構成する。
 - (2) 本委員会に座長を置く。座長は構成員の互選により選出する。
 - (3) 本委員会に座長代理を置く。座長代理は、座長が指名する。
 - (4) 本委員会は必要に応じて本委員会の下に、作業部会を置くことができる。
 - (5) 本委員会は必要に応じてメールによる審議を行うことができる。

- 5 運営
 - (1)本委員会は座長が主宰する。
 - (2)本委員会は、あらかじめ構成員に対して日時、開催場所及び議題を通知して招集する。
 - (3) その他、本委員会の運営に関して必要な事項は、委員会において決定する。
- 6 設置の期間

本委員会は第1回委員会から平成30年3月31日までの間とする。

7 事務局

本委員会の事務局は京セラコミュニケーションシステム株式会社に置く。

- 8 その他
 - (1) 本委員会における調査検討事項に係る内容のうち周知の事実以外にあっては、 守秘義務を有し総務省の承諾なくして外部に公表してはならない。
 - (2) 本委員会において、特定した利用目的以外に個人情報をとりあつかわないものとする。

以上

7.1.2. 委員一覧

- (座長)かき ひでよ
脇 英世東京電機大学 工学部情報通信工学科 教授(座長代理)いしかわ わたる
石川 渉ヴイ・ネットワーク・システムズ株式会社
取締役 技術部長く委員:五十音順 敬称略>いしだ ひろゆき
石田 洋之古河電気工業株式会社 情報通信ソリューション統括部門
ブロードバンド事業部門 新商品企画担当うえぞの かずとも
- 上 園 一知 株式会社ジュピターテレコム

技術企画本部 技術戦略部 マネージャー

大原 久典 マスプロ電工株式会社

営業本部 営業本部副本部長 兼 システム営業部長

- 白鳥 忠夫 株式会社テレビ松本ケーブルビジョン 取締役 技術部長
- たかはし まこと

おおはら ひさのり

しらとり ただお

- 高橋 誠 シンクレイヤ株式会社 営業企画部 次長 兼 パブリシティ課 課長
- 中島 寛 一般社団法人 日本ケーブルテレビ連盟 技術部長

なかまる のりかね

なかじま ひろし

- 中丸 則兼 一般社団法人 日本CATV技術協会 事業部(規格・標準)部長
- オブザーバ 総務省 情報流通行政局

衛星 · 地域放送課 地域放送推進室

7.1.3. 審議経過

第 1 回調查檢討委員会

- 日 時:平成29年9月15日(金)15時00分~17時00分
- 場 所:農林水産省三番町共用会議所 第一会議室
- 1. 開会
- 2. 調查検討委員会事務局挨拶
- 3. 出席者の紹介
- 4. 調査検討委員会開催要綱の確認
- 5. 座長選出
- 6. 座長代理指名
- 7. 議事
 - (1) 調査検討委員会の開催予定
 - (2) 本調査検討の概要説明と調査検討に関する意見交換
 - (3) 次回調査検討委員会について
- 配布資料
 - 委 1-1 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」(第1回) 議事次第
 - 委 1-2 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」構成員一覧
 - 委 1-3 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」第1回調査検討委員会席次表
 - 委 1-4 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」 開催要綱(案)
 - 委 1-5 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」調査検討委員会開催予定(案)
 - 委 1-6 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」調査検討概要説明資料
 - 委 1-7 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」フィールド試験概要説明資料

第 2回調查檢討委員会

- 日 時:平成29年12月22日(金)15時00分~17時00分
- 場 所:中央合同庁舎第2号館 11階会議室
- 1. 開会
- 2. 前回の議事録確認
- 3. 議事
 - (1) フィールド試験について
 - (2) その他

配布資料

- 委 2-1 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」(第2回) 議事次第
- 委 2-2 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」構成員一覧
- 委 2-3 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」 第2回 調査検討委員会 席次表
- 委 2-4 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」 第2回 調査検討委員会説明資料

第3回調查檢討委員会

- 日 時:平成30年3月26日(月)15時00分~17時00分
- 場 所:センチュリー三田ビル 10階会議室
- 1. 開会
- 2. 前回の議事録確認
- 3. 議事
 - (1) 調査検討報告書(案)について
 - (2) その他

配布資料

- 委 3-1 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」(第3回) 議事次第
- 委 3-2 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」構成員一覧
- 委 3-3 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」 第3回 調査検討委員会 席次表
- 委 3-4 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」第2回調査検討委員会議事録
- 委 3-5 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」調査検討報告書(案)
- 委 3-6 「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」第3回調査検討委員会説明資料

7.1.4. 配布資料

第1回から第3回の調査検討委員会で配布した下記の資料を以下に示す。

- 委 1-6「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検討に 係わる調査検討委員会」調査検討概要説明資料
- 委 1-7「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検討に 係わる調査検討委員会」フィールド試験概要説明資料
- 委 2·4「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検討に 係わる調査検討委員会」 第2回 調査検討委員会説明資料
- 委 3-6「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検討に 係わる調査検討委員会」 第3回 調査検討委員会説明資料

7.1.4.1. 委 1-6「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」調査検討概要説明資料

委1-6

THE NEW VALUE FRONTIER. 🔣 KYOCERA 平成29年度 「23GHz帯無線伝送システムの双方向化等に関 する技術的条件の調査検討」 調査検討概要説明資料 京セラコミュニケーションシステム株式会社 2017年 9月 15日 KCCSGroup 京セラコミュニケーションシステム株式会社 委1-6 アジェンダ KCCS0roup 調査検討の概要 実施体制 調査検討項目
 偏波多重技術の検討
 双方向化技術の検討 変調方式高度化技術の検討 小型・軽量化の検討 ● スケジュール 23GHz帯無線伝送システム試験評価器

参考資料

C KYOCERA Communication Systems Co., Utd.

・ その知の条件(論後帝端寺を使用する知の無線システムの十歩寺)については、平成23年度(情報通信論論論) 情報通信技術分科会放送システム委員会報告「2301七帯無線伝送システムの技術的条件」において審議された内 容に基づき検討を行う。

. 5

C KYOCERA Communication Systems Ca., Unit.

<u>フィールド試験(案)</u>

6.0

¢

6

.

・ 変調方式にFDM-SSB 方式を用い、双方向機能(30MHz~770MHzの下りケーブルテレビ信号及び15MHz~65MHz の上りケーブルテレビ信号を同時に伝送)を有する23GHz帯無線伝送システムと0.3m径パラボラアンテナ、及び偏波分離器(0MT)を試験フィールド(場所は別途選定)に設置し、交差偏波識別度(XPD)と降雨量、並びにデジタル ケーブルテレビ信号(250QAM、J382など)の信号品質(搬送波レベル、C/N比、BER(ビット誤り率)、MER(変 調読差比)等)を一定期間計測し、無線回線断の時間率(回線不稼働率)と降雨減衰特性を評価し、机上計 算との整合性を確認するとともに、所要XPDについて確認する。

●>PDの計測では、垂直偏波を主偏波として送信し、垂直・水平偏波での受信電力結果より、PDを算出し、降雨量との関係について確認する。

●また、算出した>PD値とデジタルケーブルテレビ信号の信号品質との関係について確認する。

検討課題と手法:

フィールド試験

・ 変調方式CFDM-SSB方式を用い、双方向規範(30MHセ〜770MHセの下りケーブルテレビ信号及び15MHセ〜 65MHセの上りケーブルテレビ信号を同時に伝送)を有する23GHL帯無酸伝送システムを試験フィールド(場所は別途 選定)に設置し、通信品質(PNG応答など)と除雨量を一定期間計測し、無線回線所の時間率(回線不稼働 率)と降雨減衰特性を評価する。

アンテナ設置、及び離陽に関する検討

- 平成28年度調査検討であがった片側と基のアンテナの設置方法(縦並びや模並び)について、同調査検討での技術 試験結果等を踏まえ検討を行い、フィールド試験などを通じてその有用性を検証する。
- 試験を通じて抽出された課題点などを整理し、対策・改善業について検討する。

C KYOCERA Communication Trystems Co., Unit.

KCCS0roup

HERPECZERCERN OFFICENERS EZCONNICENALCOMM.

C KYOCERA Communication Systems Co., Utd.

C KYDCERA Communication Systems Co., Unit.

C KYOCERA Communication Systems Co., Utd.

C KYOCERA Communication Systems Co., Utd.

数16 参考:アンテナ、及びOMTの主な仕様(平成28年度製作分) KCCS0000

-

4 #	信者
レドーム付バラポラアンテナ	レドーム形式: 920ンシート型レドーム
0.3m	Φ9.4mm円形導波管
23,200MHz~23,600MHz	
34.0dBi以上	
3度 typ.	
1.4WF	
33d8以上	
	仕様 レドーム付バ3ボ5アンテナ 0.3m 23,200MHz~23,600MHz 34.0dBibL上 3減 typ. 1.4以下 33dBibL上

偏波分離器 (OMT)

	21 H	住福	后才
	インタフェース (V/H蜀波)	SMA-J킕	インピーダンス:500
	インタフェース(後端波)	WRI-220	Φ9.4mm円形導波管
	用波数範囲	23,200MHz~23,600MHz	
	挿入猿失	1.0dBQCF	
	備波開結合量	-40d8QLT	
	VSWR	1.4547F	
18			CYDCERA Communication Systems Co.

C KYOCERA Communication Systems Co., Ltd.

7.1.4.2. 委 1-7「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」フィールド試験概要説明資料

THE NEW VALUE FRONTIER.

委1-7

🗷 KYOCERa 平成29年度 「23GHz帯無線伝送システムの双方向化等に関 する技術的条件の調査検討| フィールド試験概要説明資料 京セラコミュニケーションシステム株式会社 2017年 9月 15日 KCCSGroup 京セラコミュニケーションシステム株式会社 ¢ 委1-7 フィールド試験概要 KCCSone × --変調方式にFDM-SSB 方式を用いた23GHz帯開線伝送システムを試験フィールドに設置し、長期 間測定を通じ、23GHz帯におけるデジタルケーブルテレビ信号の電波伝搬特性を調査し、無確区間 日的 における所要性能を確認する。 変調方式にFDM-SSB方式を用い、双方向機能を有する23GHz帯無線伝送装置と0.3m径パラ ボラアンテナ、備波分離器(OMT)、及び降雨強度計を試験フィールドに設置し、デジタルケーブルテ レビ信号(256QAMGE)の信号品質(搬送波レベル、C/N比、BER(ビット語り率)、MER (変調調差比)等)と交差偏波識別度(XPO)、並びに降雨量を計測する。 試験はスポット測定と長期創定を実施する: >スポット測定: 試験概要 無線伝送する複数のデジタルケーブルテルビ信号について、標準状態(回線設計における降雨マー ジンを持った状態)における信号品質やデータ通信(スループットなど)、受像状態を確認する。 >長期測定: 測定するチャンネル(信号)をしぼり、描述波レベル、C/N比、BER、MER、XPD、データ通信 (PINGなど)、及び陽雨後度を一定部隔で長肩間データを収集し、無線回線新の時間率(回 線不稼働率)と降雨減衰特性を評価する。 2017年10月~2018年2月 用間 場所 调整中 C KYOCERA Communication Tayliens Co., Unit.

		伝送	信号(試験信	1号)3	R	KCCS
 伝送する信号は、 て、信号発生器が 測用)とする。 	ケーブルテレビ らの変調信号	事業者相 (OFDA	はり提供) A、640.AM	頃く映像 1、及び25	信号 (OF 60.AM(Ar	DM254QAN mex C)) ,)	() とDOCSIS信号に加え 及び無変調信号 (XPD計
 常時源定につ 資本問題に広 	いては安定した	に信号を分	主成できる	信号究的	E器の信号	を主とし、そ	の他のチャンネルについては
★=ブルテレビ	い記述田を相に	101. 52.0		5.01 - CT	0.010-10-10	12 (1.4)	(F)(F)(¥)
 本フィールド店 日秋は埋を田 	験では、J382	の無線伝	送は実施	ほず、25	50AMØB	机转枯果,及	び前年度実施した室内
 周波数配列は、ク 	ーブルテレビ事	業者様の	。 の配列の3	IF26.3	さきチャンネ	いに信号発	生器の信号を設定すること
 C90。 伝送する信号数は 	は、下り信号に	ついては	各偏波で1	ロチャンネ	NULL (合計20チャン	ネル以上)とする(実施
する試験フィールド	や伝送距離に	:43) .					
10 00000 20 10			TO A	70 00511 2.0			64 04M (64 04M 04M
MAGAG MAGAG		_	236QAM 2	sequedase	open press	-	
				-			
	kapund	CAM	64 QAM	QAN O	DH OAN	1 /0	AN OAN OAN OAN
		GAM QAM	测定	(A) (O		\/e	Ser V Quer V Quer V Quer 2 ENOCIAA Communication hysteris C \$ KCCC55
(0FDM) (0FDM)	/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	QAM	测定	⊶~\/• :项目\$		·\ / e	Ser V QAH V QAH V QAH 2 KYOCIIA Communication Systems C SR K CCCCS
	(man)	GA QAM	(44) (34) 測定 (32) (32)	QAH \/o :項目系 E= 7= 0	27(4)	÷-9 200000	Ser V QAR V QAR V QAR 9 erocita communication bytems o 9 KCCC58
	(199 (199	GA QAM RUSS (VIE)21	(gaw) 測定 第2 12 12 12 12 12 12 12 12 12 12 12 12 12	역4위 (項目第 7유 ((사태)제	гон V он QAM 2.7548) HH228	र्9 अग्रह्म	Ser V QAH V QAH V QAH 2 CYOCERA Communication Systems C SR KCCCCSS
	(CE) OFDM		S4 QAM 測定 3.2(H) HE28 X	94H 項目第 2月 7月 (7月 (7)	20(146) HE226 O		אָרָאָי עַרָאָא עַרָאָא א ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג
のFOM OFDM	CES OFDM 64QAM		(cff))) (cff))) (cff)))))))))))))))))))	Guini (1) (項目第 (明 (1) (1) (1) (1) (1) (1) (1) (1)	22(18) 6 22(18) 1122 0 0		ACH / QAH / QAH / QAH 2 CYDCIAA Communication Systems C 第 KCCCSS リーダー電子数:LF990を利し 予定
Corom Corom	CCCC OFDM 64QAM 256QAM		(st.) 測定 313(8) 133(8) 14611 46114 × × ×	GANY 0 二項目第 2月 2月 2月 2月 2月 2月 2月 2月 2月 2月	REM (94) 22(14) 100 100 100 100 100 100 100 10		ACH V QAH V QAH V QAH 2 CYOCERA Communication Systems C 成 にここの リーダー電子数:LF990を利 予定
のFOM OFOM	CCCI OFDM G4QAM 256QAM OFDM		St () 別定 () 31.7(10) () 日日日日 () メ × × × × × × ×	анн (дер 75 (75 (75 (75 (75 (75 (75 (75 (R 22(CR) HH22R O O O	<u>, / c</u> ; क्रम्म् क्रम्म् 197व	
COFOM COFOM	CUI OFDM 64QAM 256QAM 0FDM 64QAM		(GABH) 別定 12(2月) 日日3日 12(2月) 12(2) 1		22(18) HE28 0 0 0 0 0	• • • • • • • • • • • • • • • • • • •	
Corow Corom	CEE OFDM 64QAM 256QAM 0FDM 64QAM 256QAM		(st.))))))))))))))))))))))))))))))))))))		R 2008 	1))間 1))間	
Corom Corom Corom Corom のEEEEEE 酸速液レベル 酸速液レベル	CCCC OFDM 64QAM 256QAM 0FDM 64QAM 256QAM 0FDM		(Star)別定 (All All All All All All All All All All	сфер (фер (ран)) (ран) (ран))) (ран)) (ран)) (ран))) (ран))) (ран))) (ран))) (ран)))) (ран))))))))))))))))))))))))))))))))))))		<u>म्-१</u> स्राह्म 19वि 19वि	COT (2000) (200
のFOM のFO	CEU OFDM G4QAM OFDM G4QAM OFDM G4QAM QFDM G4QAM		(st) (のか) (の		22(58) HE28 0 0 0 0 0 0 0 0 0 0 0 0 0	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	シロ・ソーダー電子数:LF990を利用 リーダー電子数:LF990を利用 ガニ 利目電力:要検討
のFDM の	CUI OFDM 64QAM 256QAM 0FDM 64QAM 256QAM 0FDM 64QAM 256QAM		(Star)))))))))))))))))))		R 20000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	APP QAP QAP </td
Corow Corom つrow Corom フロンマロー 発送波しへル 般送波スSNM第日に(C/NIL) ビット別の率(BER)	CCC CCC OFDM 64QAM 256QAM 0FDM 64QAM 256QAM 0FDM 64QAM 256QAM 0FDM		(Star)))))))))))))))))))			 データ 内部回転 19間 19間 19間 	シェイレーダー電子数:LF990を用U アン リーダー電子数:LF990を用U アン リーダー電子数:LF990を用U アン リーダー電子数:LF990を用U アン リーダー電子数:LF990を用U アン リーダー電子数:LF990を用U
	CCC OFDM G4QAM 256QAM OFDM G4QAM 256QAM OFDM G4QAM 256QAM OFDM G4QAM		(Star 測定 1次回) 日日1 メー ス ス ス ス ス ス ス ス ス ス ス ス ス			() / c () () () () () () () () () () () () ()	シェイレージー電子数:LF990を用り 予定 リーダー電子数:LF990を用り 予定 対目電力:要検討 リーダー電子数:LF990を用り 予定 リーダー電子数:LF990を用り 予定
	CUI OFDM 64QAM 256QAM 0FDM 64QAM 256QAM 0FDM 64QAM 256QAM 0FDM 64QAM 256QAM		St 312 1/(101) 101 HE31 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X			 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	APP QAP QAP </td
(orow) (orow) 21221日 () 第22支河和第12(C/NI2) () (どうト部ワ率(86R)) () 愛潮田見差出(MER) 愛信レベル	CCC OFDM G4QAM G4QAM G4QAM G5GQAM G5GQAM G5GQAM G5GQAM G5GQAM G5GQAM G5GQAM G5GQAM G5GQAM G5GQAM		(Star) (Star) (Star)) (Star)				APP QAP QAP </td

※データ物理整備は到支するチャンネルに依存する C KYOCIEA Communication Systems Ca., Ltd.

参考:降雨強度計の主な仕様

和田 清元 横出方式 水道計数方式 內定構度 0.0083mm#10%60/79 受水口径 200mm 为定範囲 0mm~100mm/h 核出群 LED~フォトトランジスタ 87 DC10.5~16.5V, 約20mA 外形寸透 的0210mm×450mm(H) 重要 4.5kp

降雨強度計の概聴

KCCS0roup

C KYDCERA Communication Tyyltems Ca., Utd

C KYDCERA Communication Trystems Ca., Unit.

7.1.4.3. 委 2-4「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」 第2回 調査検討委員会説明資料

C KYOCERA Communication Systems Ca., Unit.

			3	则定項	目案			\$2 KCC5	
			20	85					
REAR	6 15	朝時(1次朝) 子苑(2次朝)		22(21091)	9-9	1020	68		
		VIEW HIER VIEW HIER	011010						
	OFDM	0	×	0	0	LF990 (リーター電子製) 1分間	LF990		
根送波レベル	64QAM	0	×	0	0		1分間	(9-9-#780)	
	256QAM	0	×	0	0				
	OFDM	0	×	0	0	1分間	1分間	LF990	
ビット部ウ平(BER)	64QAM	0	×	0	0			1分間	(3-3-#180)
	256QAM	0	×	0	0	10-104-174			
	OFDM	0	ж.	0	0		LF990		
宜調調差比(MER)	64QAM	0	×	0	0	(リーター電子数) 1分間			
	256QAM	0	×	0	0				
受信レベル	無変調信可	- ×	- 25	0	0	1分間	FPH (R&S製)	主偏波:V编波	
网络依安	~		0	-	0	1分間	B-061 (標河電子製)	0.0083mmiti間置 カウント	

⇒デーダ取得整確は測定するチャンネルの変調方式でチャンネル数に依存する。
>−担送波対雑音比(C/N比)については、雑音電力測定に依存するためMERで代用する。

C KYDCERA Communication Trystems Ca., Unit.

¢ ¢ κ.

18

¢

スポット測定結果

KCCSine

爱2-4

●23GH+帯無線伝送前後における海定結果(スポット測定)を以下に記載する。

-		F#246	1.00	-		200		1000				
R.M.O.D.	CH	HING[Mz]	a feder	Mile to the	are-sim	伝統前	6.8.10					
					培子電圧[dBµV]	73.8	82.8					
OFDM	C46	363(1/7)	冰岸	里一偏波	BER	0.0E+0	0.0E+0					
			_		MER[dB]	>30	>30					
					嗎子電圧[dBµV]	74.4	84.1					
64QAM	C44	351	水平	里一偏波	BER	0.0E+0	0.0E+0					
	1.1		1811.	1.1.1	MER[dB]	>35	32.5					
					诺子電圧[dBµV]	82.8	89.0					
256QAM	53	713	委直	単一偏波	BER	0.0E+0	0.0E+0					
		100					10000	1222	111110	MER[d8]	>35	>35
	41	641(1/7)			第子電圧[dBµV]	75.3	82.4					
OFDM			重直 偏波多3	委査	偏波多重	BER.	0.0E+0	0.0E+0				
					MER[dB]	>30	29.5d8					
	IQAM 47 677 截道				電子電圧[dBuV]	70,2	77.4	入力レベルが小さいためCH変更を検討。				
64QAM		677	677	委直	保波多重	BER	0.oE+0	5.9E-7				
								MER[dB]	33.7	27.5		
					喝子電圧[dBuV]	77.3	90.9					
256QAM	11	1 213	水平	保波多重	BER			信号発生器の信号を復調できず。				
					MER[dB]		+	信号発生器の信号を復調できず。				

脱版(1次例はり、2つの無変調信号(Pilot信号)をそれぞれV個波(23,281,25MHz)とH偏波 ٠ (23.343.75M+セ) で送信させる。

- 子間(2次側)のOMT (OrtheMode Transducer: 偏波分離器)のV偏波用のボートにスペクトラムアナライザを 接続し、2つの無変調信号のレベルを測定し、そのCU比が最大となるようOMTを調整する。
 - OMTの調整はパラボラアンテナ背面に接続されているOMTの取り付けボルトを継め、OMTを左右に躍しながらレ ベルを確認する。
- 上記調整後、OMTのH幅波用のポートのスペクトラムアナライザを接続し、2つの無変調信号のレベルを測定し、そ のDU比が劣化していないことを確認する。
- 調整の結果、1dB程度の改善となった。

18

-	利型前	J11210	備有
Ver-Vout	-58.7dBm	-57.6dBm	23,281.25MHz
H _{PT} -Vout	-93.6dBm	-93.5dBm	23,323.75MHz
D/UE	34.9dB	35.9dB	
V _{FT} -Hout	-57.4d8m	-56.3dBm	23,281.25MHz
Her-Hout	-93.2dBm	-93.4d8m	23,323.75MHz
D/UH	35.8dB	37.1dB	

・調整作業は非常にセンシティブであり、ポルトの締め付けでレベルが変わる状態 であり、長時間の調整となった。

・ポルトの位置を定更するなど調整機構について見直しを行い、作業改善を検 討する必要がある。

2部所ののVT部分付けポルトを通ら、OMTを左右接して講覧する。

	スケジュール						¢ KCCS	
			2017年	ſ			2018年	
	6/8	979	10月	118	12月	18	2/1	318
测查快讨				100				
偏波多重技術の検討				4 R.L.	RÌT .		Hillitet-F-	192
双方化技術の検討				+	KL2401		HERE	F-192
変調方式高度化技術の検討				4 11.11	RIT .		NURSCO-F-	1972
小型・軽量化の検討							HER.SCA.	
技術試験・フィールド試験								1
稿材-部材調達、及び訪作			51	-Sittle-Un				
经济动动脉						-	BINRIC)	
フィールド記録	21-5782	-	• •	+####/11/	1) • MP(2)	20-6	- tech star	-
消查快讨委员会								
検討委員会開催		* 1812 (84) 1	(11)		19	(12月12日)		· #10
解告古等		-				1.000		
酒料作成		BANK .			Aun.	2	B11-8	2088

委2-4

×	P3 MHAQIOTALW					
9	88	調売				
	横出方式	水道計畫方式				
	为老精度	0.0083mmit10%GUP				
	受水口福	200mm				
	为定期间	0mm~100mm/h				
	林出都	LED~-7#1152529				
	8.7	DC10.5~16.5%, I/J20mA				
	外形寸波	I]0210mm×450mm(H)				
	8.0	4.5kg				

参考:降雨強度計の主な仕様

C KYOCERA Communication Systems Co., Utd.

7.1.4.4. 委 3-6「23GHz帯無線伝送システムの双方向化等に関する技術的条件の調査検 討に係わる調査検討委員会」第3回 調査検討委員会説明資料

委3-6

測定項目(長期間測定)

KCCSGroup

		制定局						
REAR	6 19	親時 (1次数)		子局 (2次側)		データ 取得問題	2028	61
		Vieze	Higg	VER	HER			
	OFDM	×	х	0	0		FPH (R&S製)	親島 (1次側) の測定
搬送波対雑音比 (C/N比)	64QAM	×	×	0	0	1分間		はんホットのか実施。
(411444)	256QAM	х	х	0	0			
	OFDM	0	0	0	0		LF990	
療送波レベル	64QAM	0	0	0	0	1分間	(9-9-電子制)	
	256QAM	0	0	0	0			
	OFDM	0	0	0	0	1分間	LF990	
ビット部の率(BER)	64QAM	0	0	0	0		(9-9-電子制)	
	256QAM	0	0	0	0			
	OFDM	0	0	0	0	1分間	LF990	
变調調差比(MER)	64QAM	0	0	0	0		(リーター電子表)	
	256QAM	0	0	0	0			
受信レベル	無安調信号	×	х	0	0	1分間	FPH (R&S数)	主偏波:V编波
降雨強度	-	0	0	(þ	1分間	B-061 (横河電子製)	0.0083mmの両量を カウント

※データ取得整理は測定するチャンネルの変調方式やチャンネル数に依存する。 3 一般送波対雑音比(C/N比)については、雑音電力測定に依存するためMERで代用する。

C KYOCERA Communication Systems Co., Utd.

			测定	ミチャンネル)Î	\$ KCCB
сн	素調方式	-	テレビ局波数 [MHz]	M線開波数 [MHz]	693	
XPD _H	CW	重直	254	23,441.5	信号発生器	XPD,のH個波成分、C28
XPD,	CW	重直	629	23,441.5	信号発生器	39CH
11	256QAM	水平	213	23,400.5	信号発生器	偏波多重 雑音レベル:12ch
C45	64QAM	水平	357	23,544.5	信号発生器	単一偏波 雑音レベル: C46ch
C47	OFDM	水平	369	23,556.5	信号発生器	単一個波 雑音レベル: C48ch
35	64QAM	重直	605	23,420.5	テレビ松本	個波多重 雑音レベル: 36ch
41	OFDM	重直	641	23,453.5	テレビ松本	偏波多重 雑音レベル:42ch
53	256QAM	重直	713	23,525.5	信号発生器	単一偏波 雑音レベル:54ch

 C/N比測定の雑音帯域は、測定チャンネルの1つ上のチャンネル(全て空きチャンネル)で測定。ただし、 スポット測定では、対象チャンネルの送信をオフにして雑音レベルを測定。

CKYDCERA Communication Systems Co., Ltd.

C KYOCERA Communication Systems Co., Utd.

7.2. 映像試験

試験風景1 一次側における測定器設置状況
室内試験風景2 二次側における測定器設置状況
室内試験風景 3 分離型 OMT 調整試験の風景。

a de la gran de la la	コンスタレーション測定
6 6 6 6 6 6 6 6	35ch(64QAM) コンスタレーション(IN)
* # * * * * * *	
	コンスタレーション測定
a a	53ch(256QAM) コンスタレーション(IN)
No. a A A M A A	コンスタレーション測定
· · · · · · · · · · · · · · · · · · ·	41ch(OFDM) コンスタレーション(IN)
· "你不要不要要要。" "你不是你不要?" "你不是你?"	

	コンスタレーション測定 11ch(256QAM) コンスタレーション(IN)
	コンスタレーション測定 C45ch(64QAM) コンスタレーション(IN)
· · · · · · · · · · · · · · · · · · ·	コンスタレーション測定 C47ch(OFDM) コンスタレーション(IN)

the second second second	コンスタレーション測定
and the second	35ch(64QAM)
and the second second second second	$\Box \cup X \land V - V = V (IN)$
and the second	
Sec. 2. A sec. a sec.	
a goar go b the soly	
and a going provide the con-	
in the second	
	コンスタレーション測定
	41ch(OFDM)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	コンスタレーション(IN)
2 10 14 10 10 10 10 10 10 10 10 10 10 10 10 10	
法法法法法法法 医	
(a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	
计算机分子 医结束	

n X X n A N X A	コンスタレーション測定
(4) δ (3) 50 € Λ 50 (4)	35ch(64QAM)
i i i i i i i i i i i i i i i i i i i	コンスタレーション(OUT_多
金 备 劳 举 举 举 神	重)
et 14 5 5 6 4 9 4 4	
19 18 19 14 19 af a m	
196 AP AP AP AP AP AP	
international and the second sec	

 A A C AL A A A A A A A A A A A A A A A A	コンスタレーション測定 53ch(256QAM) コンスタレーション(OUT_多 重)
金融资源各部公司 金融资源资源公司 每日公司 每日 每日 每日 每日 每日 每日 每日	コンスタレーション測定 41ch(OFDM) コンスタレーション(OUT_多 重)
	コンスタレーション測定 11ch(256QAM) コンスタレーション(OUT_多 重)

$\phi^{(0)}_{1} = -2 \phi_{1}^{0} - \phi_{2}^{0} - 2 \phi_{1}^{0} - \phi_{2}^{0} - \phi_{1}^{0} - \phi_{2}^{0} - \phi_{1}^{0} - \phi_{2}^{0} - \phi_{2}^{0}$	コンスタレーション測定
$(g_{1}, \dots, g_{n}) = \frac{1}{2} g_{1} \dots g_{n} \dots g_{n} \dots g_{n} \dots g_{n} \dots g_{n} \dots g_{n} \dots g_{n}$	C45ch(64QAM)
eg ≈ A no 85 no 4 no	コンスタレーション(OUT_多 重)
$Q^{*} = \frac{1}{2} \left(-\frac{1}{2} - \frac{1}{2} \right) \left(-\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(-\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(-\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right)$	里/
the group of the state of the state	
i de la companya de l	
de per og og lær har som stj	
the standard of the standard s	
	コンスタレーション測定
*****	C47ch(OFDM)
******	コンスタレーション(OUT_多
医苯基胆氨 医变形	
法法法律法律法律	
网络西班牙马马夫	
· · · · · · · · · · · · · · · · · · ·	
છે. આ તમે પ્રદુ દ્વાર તેને છે. ત	コンスタレーション測定
the the star the star of the s	35ch(64QAM)
કો બના જ મેર જ મ ે જ	コンスタレーション(OUT_単
ોક <mark>તા</mark> ન્ય છ≶ કે શે તકે છે.	—)
e so a to the total and the so	
e h x e e e e e x e e e e e e	
》 禁 嫩 姆 书 笑 是 电读 一 "	

$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	コンスタレーション測定 53ch(256QAM) コンスタレーション(OUT_単 一)
·新闻的"小学"的""小学"的""小学"的"大学"的"大学"的"大学"的"小学"的"小学"的"小学"的"小学"的"小学"的"小学"的"小学"的"小	コンスタレーション測定 41ch(OFDM) コンスタレーション(OUT_単 ー)
	コンスタレーション測定 11ch(256QAM)_コンスタレー ション(OUT_単一)

the of the first state of the	コンスタレーション測定
$d_{ij} = -\frac{1}{2} \left[\left(\left(\hat{\sigma}_{ij} - \hat$	C45ch(64QAM)
and the second of the second second	コンスタレーション(OUT_単 ー)
 International contraction of the second secon	
$m_{1}=22^{2}-2$	
	コンスタレーション測定
·····································	C47ch(OFDM)
· · · · · · · · · · · · · · · · · · ·	コンスタレーション(OUT_単
	—)
化水水 化化水水水	
·安方书书书书书书书书	
· · · · · · · · · · · · · · · · · · ·	
化溴化 法律 医子宫	
	コンスタレーション測定
· · · · · · · ·	コンスタレーション測定 32ch(256QAM)
· · · · · · · · ·	コンスタレーション測定 32ch(256QAM) コンスタレーション(IN)
· · · · · · · · ·	コンスタレーション測定 32ch(256QAM) コンスタレーション(IN)
	コンスタレーション測定 32ch(256QAM) コンスタレーション(IN)
	コンスタレーション測定 32ch(256QAM) コンスタレーション(IN)
	コンスタレーション測定 32ch(256QAM) コンスタレーション(IN)

e e a compañía de la	コンスタレーション測定
and the second	33ch(64QAM)
 A set of the set of	
 A set of the set of	
C y w w w w w w w w w w	
	コンスタレーション測定
	34ch(256QAM)
	コンスタレーション(IN)
 Solution of the second sec second second sec	
where the second second second	コンスタレーション測定
A A E P P P P P P	31ch(OFDM)
	コンスタレーション(IN)

医酸盐 医甲基苯甲酸	

コンスタレーション測定 8ch(AnexB) コンスタレーション(IN)
コンスタレーション測定 9ch(AnexB) コンスタレーション(IN)
コンスタレーション測定 10ch(AnexB) コンスタレーション(IN)

コンスタレーション測定
11ch(AnexB) コンスタレーション(IN)
コンスタレーション測定
12ch(AnexB) コンスタレーション(IN)
コンスタレーション測定
C23ch(AnexB) コンスタレーション(IN)

	コンスタレーション測定
	C24ch(AnexB) コンスタレーション(IN)
	コンスタレーション測定
	C25ch(AnexB)
	コンスタレーション(IN)
i de recenta	コンスタレーション測定
and the second	32ch(256QAM) コンスタレーション(OUT 多
an a	重)
and the second second second	
e e e e e i i i A i e e a a a c	
ang tao ang	

$f_{ij} = g_{ij} = g_{ij} = g_{ij} = f_{ij} = g_{ij} = g$	コンスタレーション測定
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33ch(64QAM) コンスタレーション(OUT_多 重)
	コンスタレーション測定 34ch(256QAM) コンスタレーション(OUT_多 重)
· · · · · · · · · · · · · · · · · · ·	コンスタレーション測定 31ch(OFDM) コンスタレーション(OUT_多 重)

 ····································	コンスタレーション測定 8ch(AnexB) コンスタレーション(OUT_多 重)
	コンスタレーション測定 9ch(AnexB) コンスタレーション(OUT_多 重)
	コンスタレーション測定 10ch(AnexB) コンスタレーション(OUT_多 重)

金属市 医金属的 化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化	コンスタレーション測定 11ch(AnexB) コンスタレーション(OUT_多 重)
	コンスタレーション測定 12ch(AnexB) コンスタレーション(OUT_多 重)
快速、低低、低低、低低、低低、低低、低低、低低、低低、低低、低低、低低、低低、低低	コンスタレーション測定 C23ch(AnexB) コンスタレーション(OUT_多 重)

(a) A set of the se	コンスタレーション測定
	C24ch(AnexB) コンスタレーション(OUT_多 重)
	コンスタレーション測定 C25ch(AnexB) コンスタレーション(OUT_多 重)
	コンスタレーション測定 C25ch(AnexB) コンスタレーション(OUT_単 一)

· · · · · · · · · · · · · · · · · · ·	コンスタレーション測定 C24ch(AnexB) コンスタレーション(OUT_多 重)
	コンスタレーション測定 C23ch(AnexB) コンスタレーション(OUT_単 ー)
	コンスタレーション測定 12ch(AnexB) コンスタレーション(OUT_単 ー)

コンスタレーション測定 11ch(AnexB) コンスタレーション(OUT_単 ー)
コンスタレーション測定 10ch(AnexB) コンスタレーション(OUT_単 ー)
コンスタレーション測定 9ch(AnexB) コンスタレーション(OUT_単 一)

○國國國國國國國國國國國國國國國國國國國國國國國國國國國國國國國國國國國國	コンスタレーション測定 8ch(AnexB) コンスタレーション(OUT_単 ー)
.	コンスタレーション測定 32ch(256QAM) コンスタレーション(OUT_単 ー)
	コンスタレーション測定 33ch(64QAM) コンスタレーション(OUT_単 ー)

	コンスタレーション測定 34ch(256QAM) コンスタレーション(OUT_単 ー)
· · · · · · · · · · · · · · · · · · ·	 コンスタレーション測定 31ch(OFDM) コンスタレーション(OUT_単 -)
读你的原来来感觉有人的现在是没有的现在。 这是不是是不是我们都是这些是是这些是是是是是 我们的是我们就是我们都是我们的是我们的。 我们的是我们的我们的我们的是我们的。 我们的我们的我们的我们的我们的。 我们们们们们们们的我们的我们的是我们的我们的我们的我们的我们的我们的我们的我们的我们就会是我们的我们的我们。 我们们们们们们们们们的我们的。 我们们们的我们们的我们的我们的我们的。 我们们们的我们们的我们的我们的我们的我们的我们的我们的我们的我们的我们的我们的我	コンスタレーション測定 11ch(AnexB) コンスタレーション(OUT_多 重)

en a trade a trade a trade	回り込み試験
en a se se se se s	54ch(64QAM)
a de la de la la la la la	
و چو و میلاند.	
a second provide the	
a the analysis of the second	
international and the second sec	
the second of the second of the	
	一 に い マ. 寺4 略A
the second to the providence of the second s	回り込み試験
and the second	54ch(64QAM)
and the analysis of the first	
i go na se na production producti production production production production production	
and the second provide the	
a na a a na su su su	
international and the second sec	
and the second sec	
	回り込み試験
$\mathcal{B}_{1}^{2}=\sqrt{2}K$ $\Phi^{2}=\Delta K$ $\Phi^{2}=\Phi^{2}=4K$	54ab(640 AM)
ing the second sec	04cm(04QAM)
ne ne ge ge ver kr €.	
يون رويه کړي هم خه کې ويو کړي . د	
and the second	
the court of the set of the	

	回り込み試験
	54ch(256QAM)
	回り込み試験
	54ch(256QAM)
 A second sec second second sec	
	回り込み試験
	54ch(256QAM)
ای مداور به دو این در مدارد به در در مداور است. به این مداور به اور به این در این و	

	チャンネル変更後
	32ch(256QAM) コンスタレーション
	チャンネル変更後
	32ch(256QAM) コンスタレーション_多重
 A second sec second second sec	
	チャンネル変更後
	32ch(256QAM) コンスタレーション_単一

1 2 a 2 4 4 4 4	チャンネル変更後
a a grand a gra	33ch(64QAM)
and the second	コンスタレーション
and the second	
and the second	
the second second second second	チャンネル変更後
$(1,1,2,\dots,2^{n-1}) = \frac{1}{2} (1,1,2,\dots,2^{n-1}) = \frac{1}{2} $	33ch(64QAM)
$(y_1, \dots, -w_n) = (y_1, \dots, y_n) = (y_1, \dots, y_n) = (x_n)$	コンスタレーション_多重
$(1, \dots, \infty) = (p_1, \dots, p_{n-1}, \infty) = (p_1, \dots, p_{n-1}, \dots, p_{n-1},$	
ing the second to be the	
$(M_{1}, \dots, M_{n}) = (M_{n}, \dots, M_{n}) = (M_{n}, \dots, M_{n}) = (M_{n}, \dots, M_{n})$	
the second of the second se	チャンネル変更後
and the second	33ch(64QAM)
$(2) = -p_{1}^{2} = -p_{2}^{2} = -p_{2}^{2}$	コンスタレーション_単一
$(1, \dots, N_{n-1}) = (1, \dots, N_{n-1}) + (1, \dots, N_{$	
in the second	
and the second sec	
$(-\infty) = \sum_{i=1}^{n} (-\infty) - i $	
and the second	

	チャンネル変更後
	34ch(256QAM) コンスタレーション
	チャンネル変更後
$ \begin{array}{c} \lambda_{1} = 0 (\lambda_{1} - \lambda_{2}) (\lambda_{2} - \lambda$	34ch(256QAM) コンスタレーション_多重
المراجع المراجع المراجع المراجع المراجع المراجع المراجع	
(2) A second se second second sec	チャンネル変更後
(a) A set of the se	34ch(256QAM) コンスタレーション_単一
المحمد المحم المحمد المحمد المحمد المحمد المحمد	