ICTイノベーションフォーラム 2019/10/9

課題番号:175003017

CMOSミリ波帯フェーズドアレイ 無線機の研究開発

代表者:岡田健一(東京工業大学) 分担者:堀真一(NEC)、大島直樹(NEC) 筒井弘(北海道大学)

研究期間 平成29年度~平成30年度

60GHz CMOS R&D in Tokyo Tech since 2007

60GHz帯CMOS無線機の開発の歴史

1.03mm

1.25mm

0.90mm²

0.67mm²

ISSCC 2016

42Gbps by 64QAM

ISSCC 2017 50Gbps, 128QAM Self-calibration

HCI-recovery

60GHz帯CMOS無線機

J. Pang *et. al.*, ISSCC 2017

3

Up to 50.1Gbps

Channel/ Carrier freq.	ch.1 58.32GHz	ch.2 60.48GHz	ch.3 62.64GHz	ch.4 64.80GHz		
Modulation	64QAM					
Data rate*	10.56Gb/s	10.56Gb/s	10.56Gb/s	10.56Gb/s		
Constellation**						
Spectrum**	0 -10 -20 -30 -40 -55.82 58.32 60.82	0 -10 -20 -30 -40 -50 57.98 60.48 62.98	0 -10 -20 -30 -40 -50 60.14 62.64 65.14	0 -10 -20 -30 -40 -50 62.30 64.80 67.30		
TX EVM**	-30.3dB	-30.0dB	-29.3dB	-28.4dB		
TX-to-RX EVM***	-28.2dB	-27.0dB	-25.2dB	-27.1dB		

K. Okada

60GHz帯無線機の性能比較

120Gbps 100GHz帯CMOS無線機

(with 56dBi antenna 120Gb/s @ 400m is possible)

K.K.Tokgoz, ISSCC 2018

waveguide module K. Okada

フェーズドアレイ方式

RF Phase Shifter LO Phase Shifter (This work) No gain variation **Gain variation RF PS** LO LO PS **RF PS** LO IF IF ٥L و **RF PS** LO PS LO **_O PS RF PS** 10

K. Okada

J. Pang, et al., RFIC2018, JSSC2019

共振器型位相器

- DC-to-phase conversion
- 0.04degree resolution by 10-bit DAC

J. Pang, et al., RFIC2018, JSSC2019

28GHz帯フェーズドアレイ無線機

- 28GHz 4-element TRX
- ■65nm CMOS
- LO phase shifting
 Gain-invariant tuning
 - Small phase error
- Heterodyne
 - 4-GHz IF in / out
- Symmetric & differential IF signal distribution
- Symmetric & single-ended LO distribution

J. Pang, et al., RFIC2018, JSSC2019

穴

OTA評価

10

With 0°, 20°, 50° beam direction

	Modulation	256QAM	256QAM	256QAM	64QAM	
	Data rate	6.4Gb/s	6.4Gb/s	6.4Gb/s	4.8Gb/s	
5m OTA Measurement	Beam direction	0°	20°	50°	NLOS (20°)	
	Constellation*				• •	
	TX EVM (RMS)*	-36.7dB (1.5%)	-36.3dB (1.5%)	-35.9dB (1.6%)	-36.6dB (1.5%)	
	TX-to-RX EVM (RMS)**	-34.9dB (1.8%)	-33.4dB (2.1%)	-30.7dB (2.9%)	-22.9dB (7.2%)	

0.1度のビーム制御精度

J. Pang, et al., RFIC2018, JSSC2019

28GHzフェーズドアレイICの比較

	This work	[2] UCSD	[1] IBM	[3] Qualcomm
Process	65nm CMOS	0.18µm SiGe	0.13µm SiGe	28nm CMOS
PS Architecture	LO PS	RF PS	RF PS	RF PS
Beam-steering Res.	0.1°	1°	1.4°	-
P1dB/path	15.7dBm	10dBm	14dBm	12dBm
Psat/path	18.0dBm	13dBm	16.4dBm	14dBm
Max Data Rate	15Gbps 64QAM, 256QAM	3Gbps 64QAM, 256QAM	3.5Gbps	2.4Gbps 64QAM
Chip Area	12mm ²	11.7mm ²	165.9mm ²	27.8mm ²

[1] B. Sadhu, et al., IEEE JSSC 2017 [2] K. Kibaroglu, et al., IEEE JSSC 2018 [3] J. Dunworth, et al., ISSCC 2018

K. Okada

J. Pang, et al., RFIC2018, JSSC2019

39GHzフェーズドアレイ無線機

64素子構成

-**4**0°

K. Okada

位相差検出機構を内蔵

*RMS power normalized EVM, measured with external down-conversion mixer

え

IEEE RFIC Symposium 2019 @ Boston Best Student Paper Award

Future Direction & Conclusions

Demand for higher data rate - Traffic Trend in Japan 1.

1.4²⁰=900

http://www.soumu.go.jp/johotsusintokei/field/data/gt010602.pdf

K. Okada

Theoretical Data Rate Limit

$$C = B \log_2(1 + S/N)$$

$$N = kT B$$

$$S = P_r = P_t G_t G_r \left(\frac{c}{4\pi f_c d}\right)^2$$

$$B_r = \alpha f_c$$

new assumption

$$C_{\text{peak}} = C_0 \alpha^{\frac{2}{3}} \left(\frac{P_t G_t G_r}{d^2}\right)^{\frac{1}{3}}$$
$$C_0 = 822 \text{Gb/s}$$

K. Okada, IEDM 2013

K. Okada, IMS 2019, WSF-2

K. Okada, BCICTS 2019

K. Okada

C: channel capacity B: bandwidth S: signal power N: noise power P_t : transmitting power P_r : receiving power $G_t G_r$: antenna gains f_c : carrier frequency c: light of speed d: distance btw Tx and Rx

Theoretical Data Rate Limit

Theoretical Data Rate Limit

- K. Okada, IEDM 2013
- K. Okada, IMS 2019, WSF-2
- K. Okada, BCICTS 2019
- K. Okada

$$C = B\log_2\left\{\det\left(I + \frac{\gamma_0}{n}H^HH\right)\right\} \qquad \gamma_0 = SNR$$

- (1) SISO $C = B \log_2(1 + \gamma_0)$
- (2) MIMO (spatial correlation=1) *e.g.* $H = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $C = B \log_2(1 + n \gamma_0)$ *equivalent to phased array
- (3) MIMO (spatial correlation=0) e.g. $H = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $C = B n \log_2(1 + \gamma_0/n)$

E. Telatar, "Capacity of Multi-antenna Gaussian Channels," European transactions on telecommunications, vol. 10, no. 6, pp. 585-595, Nov. 1999.

Capacity with Multiple Antennas

まとめと今後の方向性

Tokyo Tech

- ・ <u>ミリ波の高度化</u>
- ・ フェーズドアレイの高度化・大規模アレイ対応
- 低消費電力・高エネルギー効率化

Satellite(non-terrestrial) for beyond 5G

- GEO (Geostationary Earth Orbit): 36,000km
- LEO (Low-Earth Orbit): 400-2000km
 - 7.6km/s, orbital period 95min @500km height
- HAPS (High-Altitude Pseudo-Satellite): 20km (stratosphere)

