情報通信審議会 情報通信技術分科会 陸上無線通信委員会 第三回VHF帯加入者系無線システム作業班 資料

VHF帯加入者系無線システム 技術的条件の補足

2019年12月24日 日本電信電話株式会社

第二回作業班で頂いたコメントへのご提案 NTT [®]

■ 送信電力

10W固定のように資料上読み取れるとご指摘頂きました。従前より、 ご提案は10W以下を意図しておりましたので、改めて、**10W以下**に てご提案いたします。(P3の通り)

■ 空中線利得

ARIB STDにかかわらず、市販の5素子アンテナの空中線利得は、11.15dBiであるとご指摘頂きました。

そのため、**ARIB STDの記述は削除**し、空中線利得を**11.15dBi以下**にてご提案いたします。(P5の通り)

■ 2波モデルの前提条件の文言

「最悪条件」⇒「干渉の最悪条件」と修正致します。(P6の通り)

■ 算出モデル

算出モデルとして、電話回線数が3回線以外の場合も必要であるとご指摘頂きました。

そのため、電話回線数 **1 回線・2 回線・4 回線**の場合に加え、上記の空中線利得**11.15dBi**を活用する場合のモデルも追加でご提示致します。(P7~P9の通り)

送信電力 (案)

第二回作業班資料(VHF作2-1)P8の修正

- 前提条件である、50km地点で電話を3回線(制御回線 含む)提供として、回線設計例を実施した。

<回線設計例:電話3回線提供>※見通し内

〜 国際政制が、电面3日際促汽/※見通U内						
項目	記号	単位	数值	備考		
無線周波数	f	MHz	60			
送信電力	Pt	dBm	40	10W		
送信アンテナ局	ht	m	12			
送信給電線損失	Lft	dB	3			
送信アンテナ利得	Gt	dBi	8	3素子八木アンテナ		
受信アンテナ高	hr	m	6			
受信給電線損失	Lfr	dB	2.5		【修正箇所】 変動値の表現変更	
受信アンテナ利得	Gr	dBi	8	3素子八木アンテナ	変動値算出方法を	
伝搬距離	d	km	50		次ページにて補足	
伝搬損失		dB	128.2	ITU-R勧告P.1812-3		
受信電力算出値	Pr1	dBm	-77.7	Pt-Lft+Gt-L+Gr-Lfr		
変動値(マージン)	Lv	dB	_	見通し内のため変動値を考慮せる	J "	
標準受信入力値	Pr0	dBm	-78.0	電話3回線+制御回線		
受信電力設計値	Pr	dBm	-77.7	Pt-Lft+Gt-L+Gr-Lfr-Lv		

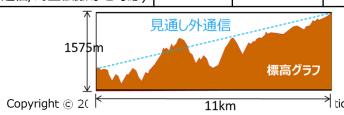
【補足】変動値の算出方法

- 第二回作業班(VHF作2-1)P13において、「**見通し外 通信や海上伝搬等**によりやむを得ない場合には、伝搬 損失に10dBを上限とする変動値を加えて」と提案した。
- 変動値(上限10dB)の具体的な**算出方法**は以下の通り。

く変動値の算出方法(右表を例に算出)> 変動値を含まない受信電力算出値Pr1は、

• Pr1 = Pt - Lft + Gt - L + Gr - Lfr
=
$$40-3+8-123.3+8-2.5$$

= -72.8 [dBm]

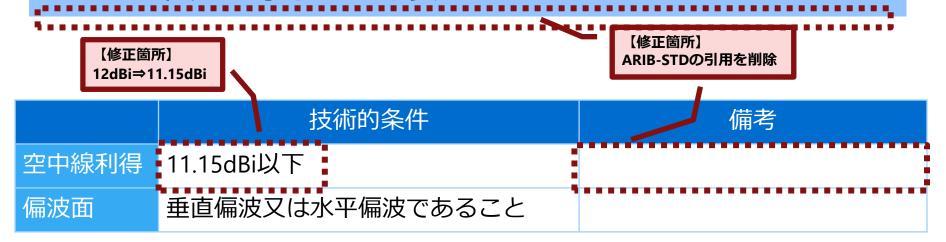

右表は見通し外通信のため、変動値Lvは、

上記より、受信電力設計値Prは、

•
$$Pr = Pr1 - Lv = (-72.8) - 5.2$$

= -78.0 [dBm]

く回線設計例:電話3回線提供>※見通し外


項目	記号	単位	数值
無線周波数	f	MH z	60
送信電力	Pt	dBm	40
送信アンテナ高	ht	m	12
送信給電線損失	Lft	dB	3
送信アンテナ利得	Gt	dBi	8
受信アンテナ高	hr	m	6
受信給電線損失	Lfr	dB	2.5
受信アンテナ利得	Gr	dBi	8
伝搬距離	d	km	11
伝搬損失(P.1812)	L	dB	123.3
受信電力算出値	Pr1	dBm	-72.8
変動値(マージン)	Lv	dB	5.2
標準受信入力値	Pr0	dBm	-78.0
受信電力設計値 (見通し外通信/海上伝搬等を考慮)	Pr	dBm	-78.0

第二回作業班資料(VHF作2-1)P9の修正

空中線利得 (案)

- 現行システムは、見通し外通信で数十km地点へ回線を 提供している。
- このルートへ回線提供する場合、装置の小型化・省電力化を考慮すると、**送信出力は上げず、高利得アンテナを適用**するのが適当であると考える。
- ただし、高利得アンテナの適用時には、他のシステム との干渉を考慮する必要がある。

第二回作業班資料(VHF作2-1)P12の修正

伝送の質の考え方(系)

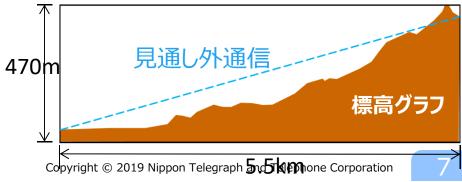
【修正箇所】 最悪条件⇒干渉の最悪条件

- 周波数共用条件の検討においては、他システムとの離隔距離が数km程度であることから、干渉の最悪条件を検討すべく、伝搬損失の算出は2波モデルを採用した。
- 高度化システムは現行システムと同様に、**見通し外通 信も含む数十kmの通信距離**へ回線を提供する。
- そのため、回線設計の精度を向上すべく、伝搬損の算出は、VHF/UHFの伝搬推定モデルであるITU-R勧告P.1812-3以降*の採用を希望する。
- さらに、P.1812では、ルーラルエリアにおいて**50km地域で約 10.8dBの変動**があることが報告されている※。
- 上記より標準受信入力値は、変動値として10dBを考慮し、次ページの通り提案する。
- また、見通し外通信を考慮し、**伝送の質**は、「**所要の 回線品質はBERが10⁻⁴以下とし、標準受信入力値を満足すること。**」を提案する。

【参考】標準受信入力値の算出モデル(1)

NTT 😃

■ 更改を予定している実際のルートに基づき、電話1回線と2回線提供時の算出例を示す。


<電話1回線提供の例>※見通し外

7 4 - 2 17 5		<u> </u>
記号	単位	数值
f	MH z	60
Pt	dBm	30
ht	m	15
Lft	dB	3
Gt	dBi	8
hr	m	10
Lfr	dB	3
Gr	dBi	8
d	km	5.3
L	dB	126.7
Pr1	dBm	-86.7
Lv	dB	4.3
Pr0	dBm	-91.0
Pr	dBm	-91.0
	f Pt ht Lft Gt hr Lfr Gr d L Pr1 Lv Pr0	記号 単位 f MHz Pt dBm ht m Lft dB Gt dBi hr m Lfr dB Gr dBi d km L dB Pr1 dBm Lv dB Pr0 dBm

<電話2回線提供の例>※見通し外

項目	記号	単位	数值
無線周波数	f	MH z	60
送信電力	Pt	dBm	30
送信アンテナ高	ht	m	10
送信給電線損失	Lft	dB	3
送信アンテナ利得	Gt	dBi	8
受信アンテナ高	hr	m	10
受信給電線損失	Lfr	dB	3
受信アンテナ利得	Gr	dBi	8
伝搬距離	d	km	5.5
伝搬損失(P.1812)	L	dB	119.2
受信電力算出値	Pr1	dBm	-79.2
変動値(マージン)	Lv	dB	4.8
標準受信入力値	Pr0	dBm	-84.0
受信電力設計値	Pr	dBm	-84.0

【参考】標準受信入力値の算出モデル(2)

NTT (9)

■ 更改を予定している実際のルートに基づき、電話3回線(制御回線含む)を提供時の算出例を示す。

〈電話3回線提供の例〉※見通し内

(电面) 口水ルバンバン ≪光通しげ				
項目	記号	単位	数值	
無線周波数	f	MH z	60	
送信電力	Pt	dBm	40	
送信アンテナ高	ht	m	12	
送信給電線損失	Lft	dB	3	
送信アンテナ利得	Gt	dBi	8	
受信アンテナ高	hr	m	6	
受信給電線損失	Lfr	dB	2.5	
受信アンテナ利得	Gr	dBi	8	
伝搬距離	d	km	50	
伝搬損失(P.1812)	L	dB	128.2	
受信電力算出値	Pr1	dBm	-77.7	
変動値(マージン)	Lv	dB	-	
標準受信入力値	Pr0	dBm	-78.0	
受信電力設計値	Pr	dBm	-77.7	

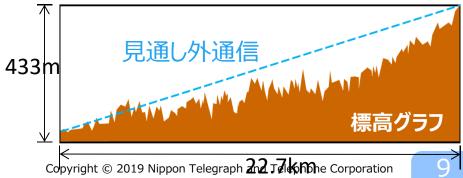
2079m 見通し内通	標高グラフ
+	50km

<電話3回線提供の例>※見通し外

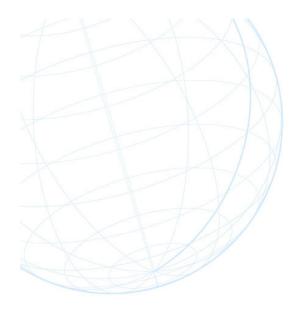
項目	記号	単位	数值
無線周波数	f	MH z	60
送信電力	Pt	dBm	40
送信アンテナ高	ht	m	12
送信給電線損失	Lft	dB	3
送信アンテナ利得	Gt	dBi	8
受信アンテナ高	hr	m	6
受信給電線損失	Lfr	dB	2.5
受信アンテナ利得	Gr	dBi	8
伝搬距離	d	km	11
伝搬損失(P.1812)	L	dB	123.3
受信電力算出値	Pr1	dBm	-72.8
変動値(マージン)	Lv	dB	5.2
標準受信入力値	Pr0	dBm	-78.0
受信電力設計値	Pr	dBm	-78.0

【参考】標準受信入力値の算出モデル(3)

NTT (9)


■ 更改を予定している実際のルートに基づき、電話4回線提供 時と11.15dBiアンテナ適用時[3回線提供時]の算出例を示す。

〈電話4回線提供の例〉※見通し内


項目	記号	単位	数值
無線周波数	f	MH z	60
送信電力	Pt	dBm	30
送信アンテナ高	ht	m	5
送信給電線損失	Lft	dB	3
送信アンテナ利得	Gt	dBi	8
受信アンテナ高	hr	m	5
受信給電線損失	Lfr	dB	2.5
受信アンテナ利得	Gr	dBi	8
伝搬距離	d	km	14.2
伝搬損失(P.1812)	L	dB	111.8
受信電力算出値	Pr1	dBm	-71.3
変動値(マージン)	Lv	dB	1
標準受信入力値	Pr0	dBm	-72.0
受信電力設計値	Pr	dBm	-71.3

項目	記号	単位	数值
無線周波数	f	MH z	60
送信電力	Pt	dBm	30
送信アンテナ高	ht	m	20
送信給電線損失	Lft	dB	3
送信アンテナ利得	Gt	dBi	11.15
受信アンテナ高	hr	m	5
受信給電線損失	Lfr	dB	2.5
受信アンテナ利得	Gr	dBi	8
伝搬距離	d	km	22.7
伝搬損失(P.1812)	L	dB	117.4
受信電力算出値	Pr1	dBm	-73.75
変動値(マージン)	Lv	dB	4.25
標準受信入力値	Pr0	dBm	-78.0
受信電力設計値	Pr	dBm	-78.0

他の技術的条件の補足

高度化システムの電波防護指針

■「電波防護のための基準への適合確認の手引き」の電波の強度の基準値より、離隔距離を算出した。

アンテナ利得 = 8dBiの場合: 2.38m

アンテナ利得 = 11.15dBiの場合: 3.42m

■ アンテナは高い電柱/ポール上に設置、または 保守者の他は容易に出入りできない場所に 設置するため、電波防護指針を十分満たし ている。

<算出過程>

・基本算出式より離隔距離の導出式を求める

$$S = \frac{PG}{40\pi R^2} \cdot K \qquad \qquad R = \sqrt{\frac{PGK}{40\pi S}}$$

・アンテナ利得 = 8dBiの場合

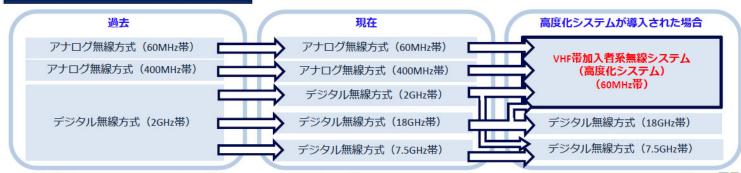
$$R = \sqrt{\frac{PGK}{40\pi S}} = \sqrt{\frac{10 \div 10^{\frac{2.5}{10}} \times 10^{\frac{8}{10}} \times 4}{40 \times 3.14 \times 0.2}} = 2.38 [m]$$

・アンテナ利得 = 11.15dBiの場合

$$R = \sqrt{\frac{PGK}{40\pi S}} = \sqrt{\frac{10 \div 10^{\frac{2.5}{10}} \times 10^{\frac{11.15}{10}} \times 4}{40 \times 3.14 \times 0.2}} = 3.42 [m]$$

パラメータ	記号	数值	備考
無線周波数	f	60 MHz	
送信電力	Р	10 W	
給電線損失	L	2.5 dB	
空中線利得	G	8 dBi/ 11.15 dBi	
大地面の反射係数	К	4	76MHz 未満
電力束密度	S		電波法施行規則 別表第2号の3の2 30MHz - 300MHz

高度化システムへの更改の考え方

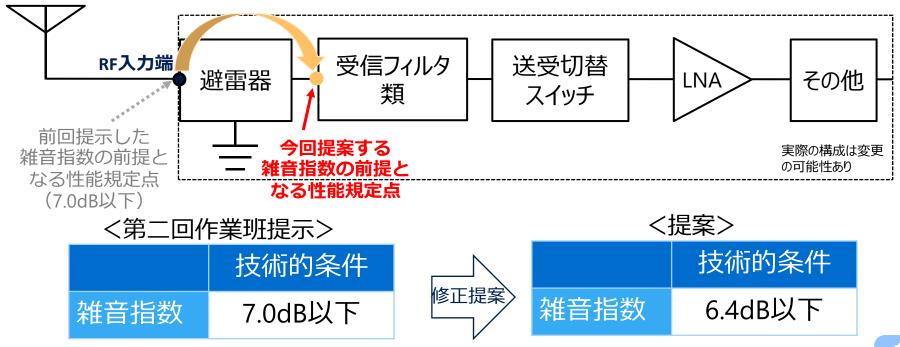


- 高度化システムへ更改する対象は以下とする。
 - ✓ アナログ無線方式(60MHz帯/400MHz帯)の全て※
 - ✓ デジタル無線方式(2GHz帯/18GHz帯)の一部
- 上記の更改において、同一ルート内で電話回線数が4を超える場合は、高度化システムの装置増設で対応する。
- 上記のデジタル無線方式の更改で、高度化システムの装置増設を伴う場合は、アナログ無線方式の更改完了後に**周辺の周波数利用状況**を踏まえ、改めて増設を検討する。

※旧スプリアス規格で運用中

<VHF作参考1-1抜粋>

■加入者系無線システムの変遷



※3 NTT西日本の事例

雑音指数の見直し

- 第二回作業班資料 (VHF作2-1) P11で「雑音指数」を7.0dB以下と提案した。
- 上記の提案にあたり、**性能規定点をRF入力端とする**前提をおいていた ことから、雑音指数に避雷器を含めていた。
- このため、**性能規定点を下図のとおり変更**の上、回線設計に用いる雑音指数として、改めて下記のとおり提案する。

スプリアス発射/不要発射の強度の見直し

- 第二回作業班資料(VHF作2-1) P10で、「帯域外領域におけるスプリアス発射の強度」と「スプリアス領域における不要発射の強度」を、無線設備規則の別表3号の第4項に基づき、提案した。
- しかしながら現在開発中の高度化システムにおいては、 当該発射の強度を**更に小さくすることが可能**であった。
- そのため、当該発射の強度を改めて下記の通り提案する。

<第二回作業班提示>

	技	術的条件	備考
帯域外領域における	1 W	100μW以下	無線設備規則
スプリアス発射の強度	10W	25μW以下	別表3号の第4項
スプリアス領域における	1 W	50μW以下	に基づく
不要発射の強度	10W	25μW以下	

く提案>

	技術的条件
帯域外領域における スプリアス発射の強度	10μW以下
スプリアス領域における 不要発射の強度	25μW以下