令和元年度

情報通信審議会 情報通信技術分科会 新世代モバイル通信システム委員会報告

(案)

令 和 2 年 3 月 4 日 新世代モバイル通信システム委員会

目次

I	検討事項		1
ΙI		F業班の構成	
ΙΙΙ	検討経過		2
I۷	検討概要		4
第	[1章	調査検討の背景	4
	1. 1	既存バンドの5G化	4
	1. 2	無線局免許における周波数の指定方法に関する課題	7
	1. 3	定期検査における課題	8
	1. 4	国際標準化動向	10
	1.4.	1 ITUにおける検討状況	10
	1.4.	2 3GPP における検討状況	12
	1.4.	3 WiMAX フォーラムにおける検討状況	13
	1.4.	4 XGP フォーラムにおける検討状況	14
笋	[2章	既存バンドの5G化に関する検討	16
	2. 1	既存バンドの5G化の必要性	16
	2. 2	DSS(Dynamic Spectrum Sharing)技術	17
	2. 3	既存バンドの5G化の利用シーン	18
	2. 4	既存バンドの5G化におけるユーザー保護方策	19
	2. 5	他システムとの共用検討	20
	2. 5.	1 パラメータの比較	20
	2. 5.	2 アクティブアンテナを導入する場合の共用検討について	24
	2. 5.	3 高度化 BWA システムのスペクトラムマスクの緩和の検討	29
第	3章	免許時の周波数指定の検討及び定期検査の在り方	32
	3. 1	免許における周波数の指定について	32
	3. 2	5 Gの定期検査について	34
第	4章	第 5 世代移動通信システム(FDD-NR)の技術的条件	35
	4. 1	無線諸元	35
	4. 2	システム設計上の条件	36
	4. 3	無線設備の技術的条件	36
	4. 4	測定法	53
	4. 5	端末設備として移動局に求められる技術的な条件	58
	4. 6	その他	63
第	5章	第 5 世代移動通信システム(TDD-NR)の技術的条件	64
	5. 1	3.5GHz 帯、3.7GHz 帯及び 4.5GHz 帯における技術的条件	64

5. 1.	1	無線諸元	64
5. 1.	2	システム設計上の条件	64
5. 1.	3	無線設備の技術的条件	65
5. 1.	4	測定法	97
5. 1.	5	端末設備として移動局に求められる技術的な条件	105
5. 1.	6	その他	110
5. 2	2	8GHz 帯における技術的条件	111
5. 2.	1	無線諸元	111
5. 2.	2	システム設計上の条件	111
5. 2.	3	無線設備の技術的条件	112
5. 2.	4	測定法	129
5. 2.	5	端末設備として移動局に求められる技術的な条件	136
5. 2.	6	その他	136
第6章	戊	広帯域移動無線アクセスシステムの技術的条件	137
6. 1	٧	ViMAX(3GPP 参照規格)の技術的条件	137
6. 1.	1	無線諸元	137
6. 1.	2	システム設計上の条件	138
6. 1.	3	無線設備の技術的条件	139
6. 1.	4	測定法	151
6. 1.	5	端末設備として移動局に求められる技術的な条件	162
6. 1.	6	その他	162
6. 2	X	´GP の技術的条件	163
6.2.	1	無線諸元	163
6.2.	2	システム設計上の条件	164
6.2.	3	無線設備の技術的条件	166
6. 2.	4	測定法	178
6. 2.	5	端末設備として移動局に求められる技術的な条件	189
6. 2.	6	その他	190
6. 3	В	BWA 5GNR(WiMAX 及び XGP のNR)の技術的条件	191
6. 3.	1	無線諸元	191
6. 3.	2	システム設計上の条件	191
6.3.	3	無線設備の技術的条件	192
6. 3.	4	測定法	202
6.3.	5	端末設備として移動局に求められる技術的な条件	210
6. 3.	6	その他	211
検討結果			212

I 検討事項

新世代モバイル通信システム委員会(以下「委員会」という。)は、情報通信審議会諮問第 2038 号「新世代モバイル通信システムの技術的条件」(平成 28 年 10 月 12 日諮問)のうち「第5世代移動通信システム(5 G)及び BWA の高度化に関する技術的条件」について検討を行った。

II 委員会、作業班の構成

委員会の構成は別表1のとおりである。

委員会の下に、委員会の調査を促進することを目的とした、技術検討作業班を設置した。 技術検討作業班の構成は別表2のとおりである。

Ⅲ検討経過

- 1 委員会での検討
 - ① 第 11 回委員会(平成 30 年 12 月 3 日) 技術検討作業班における主な議題及び今後のスケジュールについて検討を行った。
 - ② 第 15 回委員会(令和 2 年 1 月 22 日) 既存バンドの 5 G化等に関する委員会報告案及び報告の概要案のとりまとめを行った。
 - ③ 第16回委員会(令和2年3月4日~3月6日にかけてメール審議) 既存バンドの5G化等に関する委員会報告案及び報告の概要案のとりまとめを行った。

2 技術検討作業班での検討

- ① 第 11 回技術検討作業班(平成 31 年 2 月 27 日) 事務局から、5 Gシステムのこれまでの検討状況、主な議題の整理・検討事項及び 今後のスケジュールについて説明があった。
- ② 第 12 回技術検討作業班(平成 31 年 3 月 27 日) 構成員から今後の検討議題等についてプレゼンテーションが行われた。
- ③ 第 13 回技術検討作業班(令和元年 5 月 31 日) 既存バンドの 5 G化の共用検討等を行ったほか、DSS 技術の国際標準化動向に関するプレゼンテーションが行われた。
- ④ 第 14 回技術検討作業班(令和元年 7 月 4 日) 追加周波数帯の共用検討等を行った。
- ⑤ 第 15 回技術検討作業班(令和元年 7 月 31 日) 追加周波数帯の共用検討等を行ったほか、構成員から定期検査に関するプレゼン テーションが行われた。
- ⑥ 第 16 回技術検討作業班(令和元年9月6日) 追加周波数帯の共用検討等に加え、既存バンドの5 G化について検討を行ったほか、構成員から BWA の高度化等に関するプレゼンテーションが行われた。
- ⑦ 第 17 回技術検討作業班(令和元年 10 月 7 日) 追加周波数帯の共用検討等に加え、技術的条件について検討を行ったほか、構成員 から定期検査及び周波数の指定方法に関するプレゼンテーションが行われた。
- ⑧ 第18回技術検討作業班(令和元年11月26日) 5G周波数の指定方法、報告書案及び今後のスケジュール等について検討を行ったほか、構成員から既存バンドの5G化のユースケース、ユーザー保護方策、定期検査に関するプレゼンテーションが行われた。

- ⑨ 第19回技術検討作業班(令和元年12月19日) 委員会報告書案について検討を行ったほか、構成員からWRC-19で合意された既存 業務との周波数共用条件に関するプレゼンテーションが行われた。
- ① 第20回技術検討作業班(令和2年1月16日) 委員会報告書案及び報告書概要案について検討を行った。

IV 検討概要

第1章 調査検討の背景

1. 1 既存バンドの5G化

次世代の移動通信システムである第5世代移動通信システムについては、平成30年7月に技術的条件が取りまとめられたのち、制度化が行われ、平成31年4月には5Gの周波数として3.7/4.5GHz 帯及び28GHz 帯が、携帯電話事業者に割当てられたところである。これらについては、令和2年3月頃から商用サービス開始が予定されているほか、全都道府県において周波数の割当てから2年以内のサービス提供や、令和6年春には全国を10km四方で区切った場合の約98%のメッシュにおいて5G高度特定基地局の整備が予定(携帯電話事業者4者の5G基盤展開率の計画値を合算した値)されており、今後、5G基地局が広く展開されていくことが想定される。

一方、4G及びBWAで使用している周波数帯(以下「既存バンド」という。)については、平成31年4月に割り当てられた5G周波数より低い周波数を使用していることから、モビリティの確保等に向けて広域な5Gエリアを構築するためにも、4Gだけでなく5Gとしても使用したいというニーズがある。

周波数	700мнz	800мнz	900мнz	1.5GHz	1.7GHz	2GHz	2.5GHz	3.4GHz 3.5GHz	3.7GHz 4.5GHz 28GHz
		第2世代 移行 第3世代		第2世代 移行		第3世代			
世代	第3.9世代	第3.5世代	第3.5世代	第3.5世代	第3.5世代	第3.5世代 第3.9世代			
[第4世代	第4世代	第4世代	第4世代	第4世代	第4世代	BWA (第4世代と互換)	2019年4月(第4世代	こ割当て済
	第5世代 ・特定ラジオ	第5世代	第5世代	第5世代	第5世代	5G化の	第5世代 ニーズ	第5世代	第5世代 第5世代 第5世代
他の無線 通信シス テム	マイク ・地上デジタ ルテレビ ・ITS	特定ラジオマイクMCA (業務用デジタル無線)	・ MCA ・ RFID(無 線タグ)	• 電波天文	 気象援助 	• PHS	 衛星通信 (移動) 	• 衛星通信 (固定)	* 衛奎迪信 (固定) * 航空機電 波高度計 等

図 1. 1-1 携帯電話で用いられている周波数帯

また、本年3月には、3GPP リリース16が策定される予定であり、そのなかで、5 Gにおける「高信頼・超低遅延」、「多数同時接続」の国際標準化が完了する見込みである。高信頼・超低遅延通信等は、5 Gを利活用した地域産業における生産性向上という観点において、特に期待されている5 Gの特長であり、既存バンドを5 G化して展開することで、高信頼・超低遅延通信を広域において実現し、地域産業などの5 Gの利活用が加速することが期待されている。

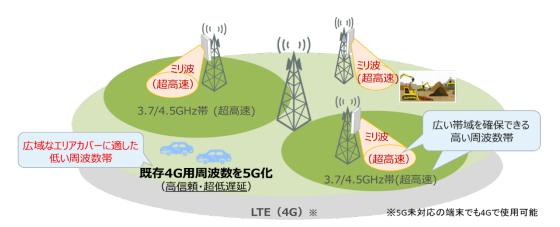


図 1. 1-2 既存バンドの5G化

更には、既存バンドの5G化によって、携帯電話から携帯電話基地局に対して通信する際の上りリンクカバレッジの拡大や、通信中に携帯電話が接続先の携帯電話基地局を切替えるハンドオーバー時の消費電力の低減や通信の安定化の効果が得られ、3.7/4.5GHz帯及び28GHz帯を使用する5Gのユーザビリティの向上も期待されているところである。

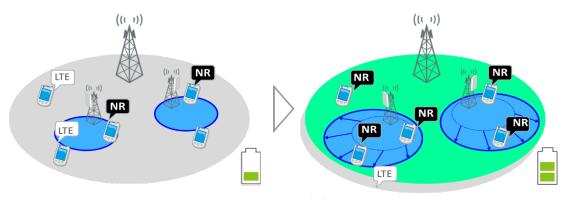


図 1. 1-3 ユーザビリティの向上

一方で、既存バンドを5G化したとしても、既存バンドの周波数帯域が拡大するわけではないため、3.7/4.5GHz 帯又は28GHz 帯を用いず、既存バンドのみを使用する5G通信のみでは、高信頼・超低遅延通信等は実現できるものの、通信速度の向上は期待できないことから、5Gとしての性能を、ユーザーが誤認しないような方策が必要ではないかという指摘がなされているところである。

1. 2 無線局免許における周波数の指定方法に関する課題

3GPP では、キャリア配置が可能な周波数の絶対値(チャネルラスター)が定義されている。LTE ではチャネルラスターが 100kHz の整数倍であり、割当周波数帯の中心にキャリアが配置されるが、3.7/4.5GHz 帯及び 28GHz 帯を使用する5Gではチャネルラスターが 15kHz 若しくは 60kHz の整数倍となるため、割当周波数帯の中心にキャリアを配置することができない。

以上により、現行の無線局免許制度では、原則として送信装置から発射される周波数の中心を指定して免許がなされているなかで、3.7/4.5GHz 帯及び 28GHz 帯を使用する5G については割当周波数帯の中心を指定して免許することができないという課題がある。

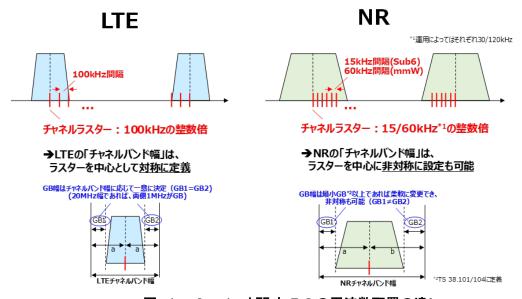


図 1. 2-1 LTE と5 Gの周波数配置の違い

1. 3 定期検査における課題

現在、空中線電力が1Wを超える携帯電話システムの基地局のうち、適合表示無線設備を使用するものにあっては、5年に1度、定期検査を行い、そのなかで周波数及び空中線電力を測定し、その偏差が電波法令に定められている技術基準に合致していることを確認することが義務づけられている。

携帯電話事業者等及び基地局ベンダーからは、5 Gシステムの基地局については、GPS 等の信号を外部から取り込むことで時刻同期されており、送信装置の周波数発振回路はこれらの外部信号を参照することで、同じ周波数が生成されるような仕組みが有ること、また、基地局が正常に動作していることを常時遠隔から監視できるようになっていることなどの説明があるとともに、これらの仕組み等を踏まえ、5 Gシステムの基地局の定期検査における電気的特性の測定を省略できないか、との提案があった。

また、5 Gシステムの基地局のうち、空中線と増幅器が一体となったアクティブアンテナを用いるものにあっては、空中線の小型化にともない、アクティブアンテナが半導体と一体構造で製造されており、測定端子(RF コネクタ)を具備することができないという実態がある。

そのため、アクティブアンテナを用いる基地局にあっては、空間波を測定する OTA (Over The Air) という手法を用いて電気的特性の測定を行う必要があるが、開設後の定期検査においては、設置現場における OTA 測定では、外来波の影響等によって、電気的特性を正確に測定できないという課題がある。

Sul	ミリ波帯 (28GHz)		
BS Type 1-C	BS Type 1-H	BS Type 1-0	BS Type 2-0
アンテナ分離型		アンテナー体型	
アンテナ 無線装置	無線装置 RFコネクタ (装置内部) アンテナ パネル	無線装置アンテナパネル	無線装置アンテナパネル
従来装置と同等のアンテナケー ブル接続タイプ	アンテナー体型装置だが 内部にアンテナパネルへの接続 用RFコネクタがある。 アンテナパネル分離は不可 (性能保証外)	アンテナー体型装置 RFコネクタ無し	アンテナー体型装置 RFコネクタ無し (ミリ波帯ではコネクタによる特性面影響が大きく具備不可)

図 1. 3-1 5 Gシステムで用いられるアンテナの種別

加えて、5 G基地局のうちアクティブアンテナを用いず、測定ポートを有するものであっても、5 Gシステムは4 Gシステムと違い、省電力性向上等の観点から、電気的特性の測定に用いることができる制御信号を常時発射しない仕様になっており、実運用環境下での電気的特性を測定することが困難という技術的課題も存在している(基地局をテストモードにすることで測定することは可能であるものの、測定の間、当該5 G基地局のエリアでサービス断が生じる)。

1. 4 国際標準化動向

1. 4. 1 I T U における検討状況

ITU-R では、IMT-Advanced の検討以降、「第*世代携帯電話」という名称の利用を避けており、2015 年 10 月の ITU-R 無線通信総会(RA-15)において、ITU における IMT-Advanced の後継・発展システムの名称が「IMT-2020」となることが決定された。現実には、IMT-2020 無線インタフェースの標準化は、5 Gの国際標準化を念頭に置いた作業となっている。

5 Gに対する世界的な関心の高まりや技術開発の進展を踏まえ、I T U (国際電気通信連合) は、IMT-2020 の無線インタフェースに関する ITU-R 勧告の策定に向けた作業を進めている。2015年9月には、5 Gの主要な能力やコンセプトをまとめた「IMT ビジョン勧告 (M. 2083)」が策定され、5 G実現に向けた本格的な活動が開始された。

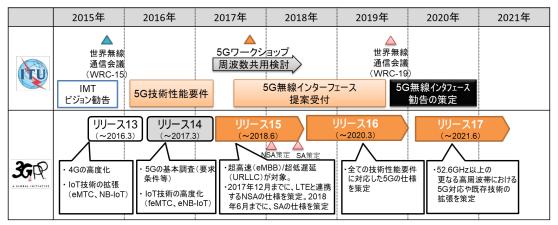


図 1. 4. 1-1 5 G仕様策定に関する国際標準化スケジュール

同勧告では、5 Gの代表的な利用シナリオとして、①モバイルブロードバンドの高度化(eMBB: enhanced Mobile Broadband)、大量のマシーンタイプ通信(mMTC: massive Machine Type Communication)、超高信頼・低遅延通信(URLLC: Ultra Reliable and Low Latency Communication)の3つが提示され、5 Gは、単一のネットワークでこれらの全てのシナリオに対応する必要はなく、それぞれの利用シーンに応じて必要な性能を提供すればよいとされた(図1. 4. 1 -2)。

また、同勧告において、5 Gが実現すべき要求条件も提示されており、主な要件としては、最高伝送速度 20Gbps (一定の条件下において)、100 万台/km²の接続機器数、1 ミリ 秒程度の遅延時間などがあり、いずれも4 Gよりも高い性能が目標値とされた。

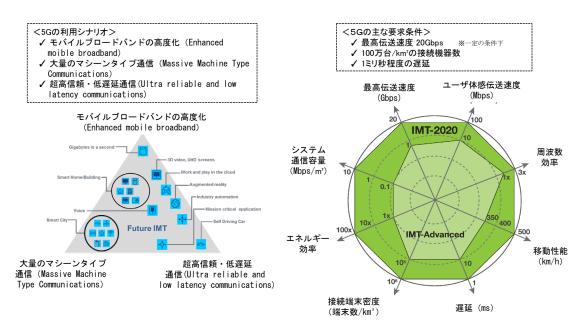


図 1. 4. 1-2 IMTビジョン勧告における5Gの利用シナリオ及び要求条件

IMT-2020 無線インタフェースに関し、13 の技術性能要件の項目と要求値、評価環境をまとめた ITU-R 報告 M. 2410、IMT-2020 無線インタフェースの評価方法をまとめた ITU-R 報告 M. 2412 が 2017 年 11 月の ITU 会合 (SG5)で承認された (図 1. 4. 1-3)。

	評価環境 要求条件	屋内ホットスポット (超高速/eMBB)	人口密集都市 (超高速/eMBB)	郊外 (超高速/eMBB)	都市部広域 (多数接続/mMTC)	都市部広域 (超低遅延/URLLC)	評価方法
1	最高伝送速度	T	り:20Gbit/s、上り:10Gbi	t/s	-	_	Analytical
2	最高周波数効率	下り:	30bit/s/Hz、上り: 15bit/	s/Hz	-	-	Analytical
3	ユーザ体感伝送速度	-	下り:100Mbit/s 上り:50Mbit/s	-	-	-	Analytical for single band and single user Simulation for multi-layer
4	5%ユーザ周波数利用効率	下り: 0.3 bit/s/Hz 上り: 0.21 bit/s/Hz	下り: 0.225bit/s/Hz 上り: 0.15bit/s/Hz	下り: 0.12bit/s/Hz 上り: 0.045bit/s/Hz	-	_	Simulation
5	平均周波数効率	下り:9bit/s/Hz/TRxP 上り:6.75bit/s/Hz/TRxP	下り: 7.8bit/s/Hz/TRxP 上り: 5.4bit/s/Hz/TRxP		-	-	Simulation
6	エリア 当たりの 通信容量	10Mbit/s/m²	-	-	-	-	Analytical
7	遅延(U-Plane)		4ms		-	1 ms	Analytical
'	遅延(C-Plane)		20ms		-	20ms	Analytical
8	端末接続密度	-	-	-	1,000,000 台/km²	-	Simulation
9	エネルギー効率		効率データ伝送(平均周) 【力(高いスリープ率及び		-	-	Inspection
10	信頼性	-	-	-	-	伝送成功確率 1-10 ⁻⁵ (L2 PDUサイズ32byte)	Simulation
11	移動性能	1.5bit/s/Hz (10km/h)	1.12bit/s/Hz (30km/h)	0.8bit/s/Hz (120km/h) 0.45bit/s/Hz (500km/h)	-	-	Simulation
12	移動時中断時間		Oms		-	Oms	Analytical
13	帯域幅		高周波数帯(例えば、6	100MHz以上 iGHz以上)では、最大1GH	七までの帯域幅に対応		Inspection

図 1. 4. 1-3 5 Gの技術性能要件・評価方法

2017 年 10 月より、ITU から 3GPP 等の外部国際標準化機関・国等に対して、IMT-2020 無線インタフェースの提案募集が開始され、2019 年 7 月に受付が締め切られた。3GPP、中国、韓国、ETSI/DECT Forum、TSDSI、NuFRONT の 6 者からの提案が行われており、今後、ITU において、技術性能要件に基づく評価を行った後、2020 年には、IMT-2020 無線インタフェースが勧告化される予定となっている。

また、5 Gを国際的に調和のとれた周波数で利用できるよう、IMT 用周波数を追加特定する議論が、WRC-19 の議題 1.13 として取り扱われた。候補周波数帯である 24.25-86GHz の範囲に含まれる 11 のバンドについて、ITU-R の SG5/TG5/1 において他の無線システムとの周波数共用検討が行われ、検討結果が CPM レポートとして取り纏められた。この CPM レポートの内容に基づき、2019 年 10~11 月に開催された WRC-19 において、IMT 用周波数の追加特定に関する議論が行われた。この結果、24.25-27.5GHz、37-43.5GHz、66-71GHzの各周波数帯がグローバル特定されるとともに、45.5-47GHz、47.2-48.2GHz が、一部の地域・国へ特定された(図 1 . 4 . 1 - 4)。

図1. 4. 1-4 WRC-19 議題 1.13 における IMT 用周波数の追加特定結果

WRC-19 では、次回の WRC-23 における議題も決定され、更なる IMT 用周波数の追加特定に向け、3300-3400MHz (米州地域が対象、欧州、ロシア、中東、アフリカ地域での見直し)、3600-3800MHz (米州地域が対象)、6425-7025MHz (欧州、ロシア、中東、アフリカ地域が対象)、7025-7125MHz (全世界が対象)、10-10.5GHz (米州地域が対象)の各周波数帯について、IMT 特定に向けた周波数共用等の検討が今後 ITU-R において行われる。

1. 4. 2 3GPP における検討状況

携帯電話の国際標準化団体である3GPPにおいても5Gの議論が進行している。

2017年3月に策定されたリリース 14では、5 Gの新たな無線技術(NR)に関する基本調査が行われ、要求条件(TR 38.913)、チャネルモデル(TR 38.901)、主な無線アクセス技術(TR 38.912)が合意された。

2018 年 6 月に策定されたリリース 15 では、ノンスタンドアローン及びスタンドアローンの 5 G初期機能についての仕様化が行われた。本リリースでは、国内において 2019 年 4 月に 5 G向けとして周波数割り当てが行われた 3.7GHz 帯 (Band n77/n78)、4.5GHz 帯 (Band n79)、28GHz 帯 (Band n257) 等の新たなバンドに加えて、従来 LTE 等で運用されていた 3.5GHz 帯以下の既存バンドでの 5 G化も同時に仕様化が行われている。

さらに、2020 年3月には、5 Gの機能拡張 (新バンド、IoT 機能の拡張、MIMO 機能の拡張等) に対応するリリース 16 の策定が完了予定である。

図 1. 4. 2 - 1 に、リリース 16 までにおけるで策定された国内既存バンドに対応した 5 G仕様化状況を示す。

FDD/TDD	国内LTE 周波数帯	LTE Band	NR Band	備考		
FDD	2 GHz	1	n1			
FDD	1.7 GHz	3	n3	・ LTE band番号をNRでもそのまま踏襲して仕様化済		
FDD	900MHz	8	n8	・ LIE band番号をNKでもそのまま踏襲し(仕様化分		
FDD	700 MHz	28	n28			
FDD		18	n18	Rel.16で仕様化完了		
FDD	800 MHz	19	n5	・ 米国等が利用するn5が国内利用可能(周波数ハーモナイズ完了)		
FDD		26	n26	・ Rel.16で仕様化完了予定		
FDD	1.5 GHz	11/21	n74	 WRC-15の結果を受けて仕様策定したLTE Band 74(LTE Band 11/21を包含)をベースに、n74として仕様化済 		
TDD	3.5 GHz(3.4GHz を含む)	42	n77/n78	・ 国内NR 3.7GHz帯と同じバンド(n77/78)として仕様化済		

図1.4.2-1 国内既存バンドに対応した5G仕様化状況

今後のスケジュールについては、リリース 17 として 52.6GHz 以上の更なる高周波帯における 5 G対応や既存技術の拡張等について、2021 年 6 月の仕様化に向けた議論が開始されているところである。

1. 4. 3 WiMAX フォーラムにおける検討状況

WiMAX フォーラムは、今後も増大が予想されるデータ通信需要に対する対応に加え、多様な IoT アプリケーションに対する柔軟性を向上させるため、継続的に WiMAX 規格の高度化を行っている。

3GPP 参照規格としては 2012 年 10 月、従来の WiMAX 技術との親和性を確保し、 LTE TDD で利用している技術 (3GPP リリース 11 に対応) を融合、共存させ、エコシステム 構築を目指した WiMAX フォーラムリリース 2.1 規格を策定した。以降 WiMAX フォーラム ムでは、3GPP 規格改正に合わせて WiMAX 規格の更新を進めており、2019 年 5 月には、3GPP リリース 15 仕様に対応し R3. 0v01 を策定した。

R3.0v01 により従来の TD-LTE 仕様だけでなく 5GNR 仕様に対応した規定が追加される

こととなった。

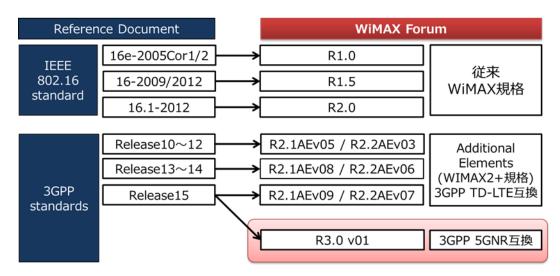


図 1. 4. 3-1 WiMAX フォーラム規格の改版状況

今後も WiMAX フォーラムでは、増加する移動通信トラヒックへの対応や多様な IoT アプリケーションに適した通信各機能の高度化を図るため、迅速な標準化活動により、WiMAX の持続的な発展を目指していく予定である。

1. 4. 4 XGP フォーラムにおける検討状況

XGP の標準化を行っている業界団体である XGP フォーラムは、PHS MoU Group を前身とし (2009 年 4 月に名称変更)、2007 年 8 月に PHS 技術を発展させた次世代 PHS として XGP 規格バージョン 1 (XGP1) を策定した。2012 年 1 月、3GPP の TD-LTE 仕様を参照することにより、XGP 規格のグローバル化と互換性の確保を図る Global mode を導入した。

XGP フォーラム規格と 3GPP 仕様の相関図を図 1. 4. 3 - 1 に示す。

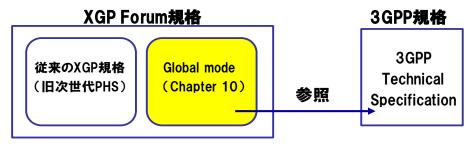


図 1. 4. 4-1 XGP フォーラム規格の構成

XGP フォーラムは Global mode 導入後も、3GPP 規格改訂に合わせて XGP 規格の更新をしており、2019 年 8 月には、3GPP リリース 15 仕様に対応した XGP バージョン 4.0 を策定した。

	XGP Forum Standard							
Version	Date of Issue	Revision work	Supporting 3GPP release					
Ver2.2	2011.04	➤ Harmonize with LTE(TDD mode)	-					
Ver2.3	2012.01	≻Global mode	Release 8					
Ver2.4	2012.11	≻Enhanced Global mode	Release 9					
Ver3.0	2013.05	➤ Enhanced Global mode ➤ CA	Release 10					
Ver3.1	2014.02	➤ Enhanced Global mode ➤ CA Enhancement	Release 11					
Ver3.2	2015.09	➤ Enhanced Global mode ➤ UP link CA、256QAM	Release 12					
Ver3.3	2017.03	➤ Enhanced Global mode ➤ eMTC	Release 13					
Ver3.4	2017.12	> Enhanced Global mode > Advanced technology(HPUE, FeMTC)etc.	Release 14					
Ver4.0	2019.8	➤ Enhanced Global mode ➤ 5G NR Specification	Release 15					

図 1. 4. 4-2 XGP フォーラム規格の改版状況

XGP バージョン 4.0 により、従来の TD-LTE 仕様だけでなく 5 G 仕様に対応した規定が 追加されることとなった。

今後も XGP フォーラムでは、利用シーンを見据えた各機能の高度化や経済性を意識したエコシステムの強化を図るため、XGP の継続的な発展を目指していく予定である。

第2章 既存バンドの5G化に関する検討

2. 1 既存バンドの5G化の必要性

5 G社会の早期実現に向けては、帯域幅の広い 3.7/4.5/28GHz 帯の5 Gの充実による 超高速通信の実現に加え、既存バンドの5 G化による広域な5 Gエリアの形成が求めら れているところである。

特に、5 Gの特徴の 1 つである高信頼・超低遅延通信の実現は帯域幅によらないため、 周波数が高くカバレッジが狭い 3.7/4.5/28GHz 帯を用いるよりも、4 Gで用いられてい たカバレッジの広いローバンドを使用することによる広域をカバーする高信頼・超低遅 延通信の実現が期待されており、諸外国においてもローバンドを使用する 5 Gの実現に 向けた動きが見られる。

	周波数	動向
中国	2.5GHz帯 (既存パンド)	2019年中に50都市以上でサービス予定(CMCCは5万局のコミット) 2020年中に301都市に拡大予定
	3.5GHz帯	・ 2019年中に15都市、2020年中に40都市でサービス予定
	(700MHz)	・ 中国広電が5G利用の報道あり
韓国	3.5GHz帯	 2019年2Q中に85都市、人口カバー85%、8万局展開済み
欧州	700MHz带	 スイスSunrise 全国カバレッジ向けに展開(屋内、FWA含む)、2019年春に 150都市、2020年に90%カバーの報道あり イタリアは10MHz幅×2/社割り当て済。
	3.5GHz帯	15都市でサービス中(スペイン)9都市でサービス中(イギリス)
米国	Low band (600MHzなど)	 T-Mobileが2019年後半に600MHzで30都市でサービス予定 AT&TがLow Bandで5G導入意向を公表
	2.5GHz帯 (既存パンド)	Sprintが4都市でサービス中2019年夏以降に5大都市でサービス予定

図2. 1-1 諸外国におけるローバンドを使用する5Gの動向

既存バンドの5G化によって、広域をカバーする高信頼・超低遅延通信の実現のみならず、3.7/4.5/28GHz帯を使用する5Gの上りリンクカバレッジの拡大や、5G端末の消費電力の低減・通信の安定化等の効果が得られることから、既存バンドの5G化について検討することが望ましい。

併せて、4 Gと互換性があり、4 Gとキャリアアグリゲーションして利用することが可能な WiMAX 及び XGP についても同様の効果が期待できることから、 4 Gの 5 G化と合わせて BWA の高度化について検討することが望ましい。

2. 2 DSS (Dynamic Spectrum Sharing) 技術

既存バンドの5G化を導入する場合、既に4Gとして使用されている周波数を5Gに切り替えることで、5Gエリアを拡大していくことが考えられるが、その場合、既存バンドの5G化によって、エリア内で4Gとして使用できる周波数が減じることになるため、4Gのユーザビリティが低下する可能性がある。

3GPPでは、全 FDD バンド及び 2.5 GHz 帯の TDD バンドを対象として、リソースエレメント単位で柔軟に 4 G と 5 G の信号を配置することが可能な DSS 技術 (DSS: Dynamic Spectrum Sharing) が標準化されている。この技術を導入することで、エリア内に存在する 4 G端末と 5 G端末の割合によって、基地局が送信する 4 G信号と 5 G信号を柔軟に切り替えることができるため、4 G と 5 G の共存が容易になると考えられる。既存バンドの 5 G 化の実現にあたっては、当該技術等の活用も考慮した円滑なシステムの移行が求められる。

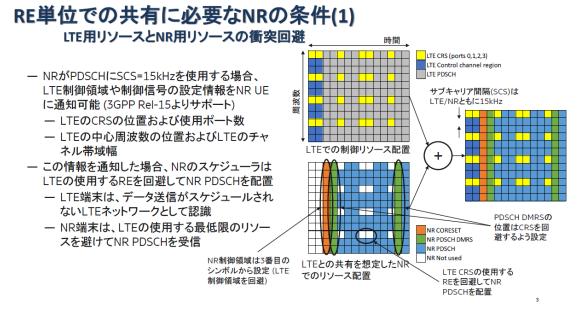


図2.2-1 DSS 技術の概要

2. 3 既存バンドの5G化の利用シーン

5 Gシステムによる高信頼・超低遅延通信の実現は、地域産業の生産性向上の観点からも特に重要であり、工場内のあらゆるものがリアルタイムにネットワークに接続するスマート工場、出発地から目的地まで途切れることなく最適な移動手段を提供可能とする MaaS (Mobility as a Service:モビリティ・アズ・ア・サービス)、ドローンなどを活用した高精度な測量や建機の自動操縦等が可能となる遠隔操作等は、産業用途での5 Gの利用ニーズとして挙げられることが多い。

図2. 3-1 産業用途における5Gの利用シーン

スマート工場においては、高品質映像等を行わない場合には、工場機械や配管が張り巡らされている環境下において確実に通信を行うためにも、周波数が高く伝搬損失の大きい 3.7/4.5GHz 帯及び 28GHz 帯を使用する 5 Gよりも、周波数が低く電波が回折することが見込まれる既存バンドを用いた 5 Gのほうが適している。

また、MaaS 分野では全国の道路等、広域なエリアにおいて、高信頼・超低遅延通信を 実現することが求められ、カバレッジの広い既存バンドを用いることで効率良く5 G エ リアを作ることができると考えられる。

遠隔操作においても、高精細映像等の大容量データを伝送するためには、3.7/4.5GHz 帯及び 28GHz 帯を使用する5 Gが適している一方で、操縦信号等の小容量データを長距離間で超低遅延で伝送したいという場合には既存バンドが適しており、これらを組み合わせて実現することが求められる。

このように、3.7/4.5GHz 帯及び 28GHz 帯を含めた新たな5G帯域の拡大と既存バンドの5G化を組み合わせることによって、地域産業における5Gの利活用が期待される。

2. 4 既存バンドの5G化におけるユーザー保護方策

既存バンドの5G化を導入した場合、従来4Gとして使用されていた周波数を5Gとして使用できるようになる。一方で、5Gの特長の1つである超高速通信は、帯域幅の広い 3.7/4.5/28GHz 帯を用いることで実現されることから、既存バンドについては5G化したとしても通信速度は従来の4Gと同等程度になると予想される。

その場合、既存バンドを使用する5Gエリアと 3.7/4.5/28GHz 帯を使用する5Gのエリアで、通信速度が大きく違うことが想定される。そのため、5G端末の性能をユーザーが誤認しないような方策の必要性について指摘があったところである。

5 Gエリアの形成にあたっては、5 Gを使用するにあたって、ユーザーがどの程度の最大通信速度が出るのか把握することができるように、携帯事業者がエリア別の速度が分かるマップやリストを公表する等、適切な周知手段をもってユーザー保護に努めていくことが望ましい。

そのほか、構成員から、スマートフォン等の端末におけるピクト表示(通信がどの通信 規格に基づいて行われているかを示す表記)について、通信中は5Gで通信している場合 に限り、5Gと表示し、従来のLTE や、e-LTE (NSA 構成の5Gにおいて、5Gのアンカ ーバンドに設定可能なLTE)を用いて通信する場合は従来どおり4Gと表示する方向性で、 国内の携帯事業者が検討している旨の報告があった。

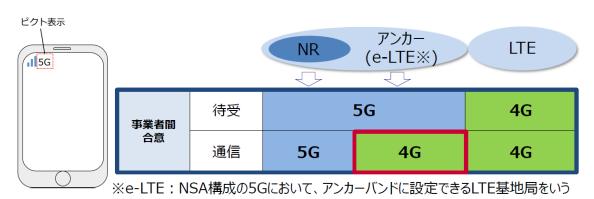


図2. 4-1 5Gピクト表示のパターン

2. 5 他システムとの共用検討

既存バンドの5G化を行うにあたっては、従来、LTEシステム及びBWAシステムであれば共用可能と結論づけられてきた同一/隣接周波数を使用する他システムに対して、改めて共用検討を行う必要があるか考察する必要がある。

既存バンドを使用する5Gの EIRP、アンテナパターン、占有周波数帯幅、不要発射の強度(隣接チャネル漏洩電力、スペクトラムマスク、スプリアス発射)は、基本的には4Gの規格値以下であり、許容干渉電力も4Gの値と同じであるため、既存バンドの5G化にあたっては、与干渉・被干渉ともに新たな共用検討は不要であると考えられる。しかしながら、アクティブアンテナを用いる場合にはアンテナパターンが変化するため、アクティブアンテナの導入が見込まれる周波数にあっては、アクティブアンテナのアンテナパターンを適用した場合にあっても共用可能であるかどうか検討する必要がある。

以上を踏まえ、LTE 及び BWA で使用している帯域について、既存バンドを使用する 5 G と 4 Gのパラメータに差分がなく、アクティブアンテナを導入しない場合にあっては従来の共用検討を 5 Gにおいても適用可能であることを確認した。更には、アクティブアンテナの導入が見込まれる 2.5 GHz 帯及び 3.4/3.5 GHz 帯については、アクティブアンテナを導入した場合の条件を適用して共用検討を行った。

今後、2.5GHz 帯及び 3.4/3.5GHz 帯以外にアクティブアンテナを導入する場合にあっては、アクティブアンテナを導入した場合の条件を適用して共用検討を行う必要がある。

2. 5. 1 パラメータの比較

5 G化とLTE の送信パラメータを比較した結果を以下に示す。干渉検討に必要とする全てのパラメータにおいて、LTE における規格値以下であることから、新たな共用検討は不要であることが分かる。10MHz システム以外の隣接チャネル漏洩電力については、参考資料を参照。

	基地局	陸上移動局
LTE-A方式(FDD)	①±(0.05ppm+12Hz)以内 ②±(0.1ppm+12Hz)以内	± (0.1ppm+15Hz) 以内
LTE-A方式(TDD)	①±(0.05ppm+12Hz)以内 ②±(0.1ppm+12Hz)以内	±(0.1ppm+15Hz)以内
3GPP-5G-NR仕様	①±(0.05ppm+12Hz)以内 ②±(0.1ppm+12Hz)以内	±(0.1ppm+15Hz)以内

【補足1】LTE-A方式(FDD)は、700MHz/800MHz/900MHz/1.5GHz/2GHz帯、LTE-A方式(TDD)は 3.5GHz帯に対応する技術的条件であることをそれぞれ示す。

【補足2】①・②はそれぞれ最大送信出力が、①24dBmより大きい基地局、②24dBm以下の基地局に対する技術的条件であることを示す。

図2.5.1-1 周波数の許容偏差

		基地局		陸	上移動局	
	周波数範囲	許容値	参照帯域幅	周波数範囲	許容値	参照帯域幅
	9kHz以上 150kHz未満	-13dBm	1kHz	9kHz以上 150kHz未満	-36dBm	1kHz
LTE-A方式(FDD)	150kHz以上 30MHz未満	-13dBm	10kHz	150kHz以上 30MHz未満	-36dBm	10kHz
LIE-A/JE((FDD)	30MHz以上 1000MHz未満	-13dBm	100kHz	30MHz以上 1000MHz未満	-36dBm	100kHz
	1000MHz以上 12.75GHz未満	-13dBm	1MHz	1000MHz以上 12.75GHz未満	-30dBm	1MHz
	9kHz以上 150kHz未満	-13dBm	1kHz	9kHz以上 150kHz未満	-36dBm	1kHz
LTE-A方式(TDD)	150kHz以上 30MHz未満	-13dBm	10kHz	150kHz以上 30MHz未満	-36dBm	10kHz
LIE-A/JA(IDD)	30MHz以上 1000MHz未満	-13dBm	100kHz	30MHz以上 1000MHz未満	-36dBm	100kHz
	1000MHz以上 12.75GHz未満	-13dBm	1MHz	1000MHz以上 12.75GHz未満	-30dBm	1MHz
	9kHz以上 150kHz未満	-13dBm	1kHz	9kHz以上 150kHz未満	-36dBm	1kHz
2000 50 ND##	150kHz以上 30MHz未満	-13dBm	10kHz	150kHz以上 30MHz未満	-36dBm	10kHz
3GPP-5G-NR仕様	30MHz以上 1000MHz未満	-13dBm	100kHz	30MHz以上 1000MHz未満	-36dBm	100kHz
	1000MHz以上 12.75GHz未満	-13dBm	1MHz	1000MHz以上 12.75GHz未満	-30dBm	1MHz

図2.5.1-2 スプリアス領域における不要発射の強度

		基	地局		陸上移動局			
	システム	周波数 離調	許容値	参照 帯域幅	システム	周波数 離調	許容値	参照 帯域幅
	絶対値規定	10MHz	-13dBm/MHz	9MHz	絶対値規定	10MHz	-50dBm	9MHz
	相対値規定	10MHz	-44.2dBc	9MHz	相対値規定	10MHz	-29.2dBc	9MHz
	絶対値規定	20MHz	-13dBm/MHz	9MHz	_	_	_	_
 LTE-A方式(FDD)	相対値規定	20MHz	-44.2dBc	9MHz	_	_	_	_
LIE-AJIK (FDD)	絶対値規定	7.5MHz	-13dBm/MHz	3.84MHz	絶対値規定	7.5MHz	-50dBm	3.84MHz
	相対値規定	7.5MHz	-44.2dBc	3.84MHz	相対値規定	7.5MHz	-32.2dBc	3.84MHz
	絶対値規定	12.5MHz	-13dBm/MHz	3.84MHz	絶対値規定	12.5MHz	-50dBm	3.84MHz
	相対値規定	12.5MHz	-44.2dBc	3.84MHz	相対値規定	12.5MHz	-35.2dBc	3.84MHz
	絶対値規定	10MHz	-13dBm/MHz	9MHz	絶対値規定	10MHz	-50dBm	9MHz
LTE-A方式(TDD)	相対値規定	10MHz	-44.2dBc	9MHz	相対値規定	10MHz	-29.2dBc	9MHz
	絶対値規定	20MHz	-13dBm/MHz	9MHz	_	-	_	_
	相対値規定	20MHz	-44.2dBc	9MHz	_	1	_	_
	絶対値規定	10MHz	-13dBm/MHz	9.36MHz	絶対値規定	10MHz	-50dBm	9.375MHz
	相対値規定	10MHz	-44.2dBc	9.36MHz	相対値規定	10MHz	-29.2dBc	9.375MHz
	絶対値規定	20MHz	-13dBm/MHz	9.36MHz	_	-	_	_
3GPP-5G-NR仕様	相対値規定	20MHz	-44.2dBc	9.36MHz	_	_	_	_
	絶対値規定	7.5MHz	-13dBm/MHz	4.5MHz	絶対値規定	7.5MHz	-50dBm	3.84MHz
	相対値規定	7.5MHz	-44.2dBc	4.5MHz	相対値規定	7.5MHz	-32.2dBc	3.84MHz
	絶対値規定	12.5MHz	-13dBm/MHz	4.5MHz	絶対値規定	12.5MHz	-50dBm	3.84MHz
	相対値規定	12.5MHz	-44.2dBc	4.5MHz	相対値規定	12.5MHz	-35.2dBc	3.84MHz

図2. 5. 1-3 隣接チャネル漏洩電力 (10MHz システム)

	基地局					
	オフセット周波数 △f (MHz)	許容值	参照帯域幅			
	0.05MHz以上5.05MHz未満	-5.5dBm-7/5 × (△f-0.05)dB	100kHz			
LTE-A方式(FDD) ^{※1}	5.05MHz以上10.05MHz未満	-12.5dBm	100KHz			
	10.05MHz以上	-13dBm	1MHz			
	0.05MHz以上5.05MHz未満	-5.2dBm-7/5 × (△f-0.05)dB	100kHz			
LTE-A方式(TDD)	5.05MHz以上10.05MHz未満	-12.2dBm	100KHz			
	10.5MHz以上	-13dBm	1MHz			
2CDD EC ND### **2	0.05MHz以上5.05MHz未満	-5.5dBm-7/5 × (△f-0.05)dB	100kHz			
3GPP 5G NR仕様 **2	5.05MHz以上10.05MHz未満	-12.5dBm	100KHz			
	10.5MHz以上	-13dBm	1MHz			
※1:1GHz以上の場合。※2:3GHz以下の場合。						

図2.5.1-4 スペクトラムマスク(基地局)

	陸上移動局			
	オフセット	許容値(dBm)	参照	
	周波数 △f (MHz)	10MHz	帯域幅	
	0MHz以上1MHz未満	-16.5dBm	30kHz	
	1MHz以上2.5MHz未満	-8.5dBm	1MHz	
 	2.5MHz以上5MHz未満	-8.5dBm	1MHz	
LTE-A方式(FDD) 	5MHz以上6MHz未満	-11.5dBm	1MHz	
	6MHz以上10MHz未満	-11.5dBm	1MHz	
	10MHz以上15MHz未満	-23.5dBm	1MHz	
	0MHz以上1MHz未満	-16.5dBm	30kHz	
	1MHz以上2.5MHz未満	-8.5dBm	1MHz	
 	2.5MHz以上5MHz未満	-8.5dBm	1MHz	
LTE-A方式(TDD)	5MHz以上6MHz未満	-11.5dBm	1MHz	
	6MHz以上10MHz未満	-11.5dBm	1MHz	
	10MHz以上15MHz未満	-23.5dBm	1MHz	
	0MHz以上1MHz未満	-11.5dBm	100kHz	
3GPP 5G NR仕様	1MHz以上5MHz未満	-8.5dBm	1MHz	
	5MHz以上6MHz未満	-11.5dBm	1MHz	
	6MHz以上10MHz未満	-11.5dBm	1MHz	
	10MHz以上15MHz未満	-23.5dBm	1MHz	

図2.5.1-5 スペクトラムマスク (移動局)

	基地局		陸上移動局	
	システム	占有周波数幅	システム	占有周波数幅
	5MHzシステム	5MHz以下	5MHzシステム	5MHz以下
	10MHzシステム	10MHz以下	10MHzシステム	10MHz以下
LTE-A方式(FDD)	15MHzシステム	15MHz以下	15MHzシステム	15MHz以下
	20MHzシステム	20MHz以下	20MHzシステム	20MHz以下
	5MHzシステム	5MHz以下	5MHzシステム	5MHz以下
	10MHzシステム 10MHz以下		10MHzシステム	10MHz以下
LTE-A方式(TDD) 	15MHzシステム	5MHzシステム 15MHz以下		15MHz以下
	20MHzシステム	20MHz以下	20MHzシステム	20MHz以下
	5MHzシステム	5MHz以下	5MHzシステム	5MHz以下
	10MHzシステム 10MHz		10MHzシステム	10MHz以下
	15MHzシステム	15MHz以下	15MHzシステム	15MHz以下
3GPP-5G-NR仕様	20MHzシステム	20MHz以下	20MHzシステム	20MHz以下
	30MHzシステム	30MHz以下	30MHzシステム	30MHz以下
	40MHzシステム	40MHz以下	40MHzシステム	40MHz以下
	50MHzシステム	50MHz以下	50MHzシステム	50MHz以下

図2.5.1-6 占有周波数帯幅の許容値

	基地局 最大空中線 電力 許容偏差		陸上移動局		
			最大空中線 電力	許容偏差	
LTE-A方式(FDD)	規定無し	定格空中線電力の±2.7dB以内	23dBm	定格空中線電力の +2.7dB/-6.7dB以内	
LTE-A方式(TDD)	規定無し	定格空中線電力の±3.0dB以内	23dBm	定格空中線電力の +3.0dB/-6.7dB以内	
3GPP-5G-NR仕様	規定無し	3GHz以下:定格空中線電力の ±2.7dB以内 3GHz超:定格空中線電力の ±3.0dB以内	23dBm	定格空中線電力の +2.7dB/-6.7dB以内	

図2.5.1-7 最大空中線電力及び空中線電力の許容偏差

	基地局	陸上移動局
LTE-A方式(FDD)	規定無し	3dBi以下
LTE-A方式(TDD)	規定無し	3dBi以下
3GPP-5G-NR仕様	規定無し	3dBi以下

図2.5.1-8 空中線絶対利得

また、既存バンドを使用する5Gの許容干渉電力についても、4Gと同等の許容値であることから、被干渉となる場合においても新たな共用検討は不要であると考えられる。

2. 5. 2 アクティブアンテナを導入する場合の共用検討について

アクティブアンテナシステムの利用が想定される周波数帯においては、各空中線素子に給電される信号の位相を制御し、空中線の指向特性を動的に変えるビームフォーミングを考慮した評価が必要となる。

現実的にアクティブアンテナの導入が見込まれている $3.4/3.5 \, \text{GHz}$ 帯について、図 2.5.2-1 の基地局パラメータを用いて、図 2.5.2-2 における共用検討の条件で、LTE-Advanced (TDD) の導入時の共用検討 (平成 25 年: $3.4~4.2 \, \text{GHz}$ 帯地球局と 4 Gの共用検討)と、5 G (NR) の導入時の共用検討 (平成 30 年: $3.6~4.2 \, \text{GHz}$ 帯地球局と 5 G の共用検討)の評価手法と評価結果を比較する形で考察を行った。

スモールセル

スモールセル	4G基地局(2013年度)	5G基地局(2018年度)
空中線電力	20dBm/MHz	5dBm/MHz
空中線利得	5dBi	23dBi
送信系各種損失	0dB	3dB
EIRP	25dBm/MHz	25dBm/MHz
アンテナパターン	<u>静的なアンテナパターン</u> (オムニアンテナ)	<u>ビームフォーミングを考慮したアンテナ</u> パターン(最大/平均)

マクロセル

マクロセル	4G基地局(2013年度)	5G基地局(2018年度)	
空中線電力	36dBm/MHz	28dBm/MHz	
空中線利得	17dBi 23dBi		
送信系各種損失	5dB	3dB	
<u>EIRP</u>	48dBm/MHz	48dBm/MHz	
アンテナパターン	静的なアンテナパターン (指向性アンテナ)	ビームフォーミングを考慮したアンテナ パターン (最大/平均)	

図2. 5. 2-1 基地局のパラメータ

		4G基地局(2013年度)	5G基地局(2018年度)
1対1対向モデル(机上検討)		所要改善量を算出	未実施
干渉時間率 100%の条	シングルエン トリー評価	地形影響、小セル基地局、サイトシールディング による干渉軽減効果を算出	未実施
件による検討	アグリゲート 評価	スモールセルの適用、サイトシールディング、離隔 距離確保(15km程度)、見通し内の基地局設 置回避等の条件により、1,000局程度のスモー ルセル基地局の設置が可能との結果(地球局 Aの例)	未実施 4Gの評価とは 異なる算出手法
干渉時間率 を考慮し、長 時間干渉基 準/短時間干 渉基準のそれ	シングルエン トリー評価	メッシュ中心に基地局1局を配置、伝搬計算を 実施し、干渉影響の及ぶ地理的範囲の算出 (マクロセル/スモールセルのそれぞれ、長時間干 渉基準/短時間干渉基準の両基準で実施)	・昼間人口の多いメッシュより順に、メッシュ中心に基地局1局を配置、伝搬計算を実施・長時間干渉が一定閾値以下、かつ短時間干渉が基準未満となるメッシュを、基地局の設置可能性のあるメッシュと判断
ぞれを検討 (伝搬モデル に勧告ITU- R P.452を適 用)	アグリゲート 評価	地球局 B を対象に、山口県内の主要な市毎の 干渉電力の総和を評価し、単一干渉源で保護 基準を超える基地局に対して干渉軽減対策 (周波数分離、セクタアンテナ適用等)を行う ことで、アグリゲート干渉量の緩和効果を算出 受信設備(LNA)飽和について総受信電力を算 出し、山口市内基地局からの干渉量によるリス ク評価	・累積干渉電力が長時間干渉基準未満となるまで、基地局の設置可能性のあるメッシュを抽出した上で、陸上移動局からの干渉影響を無視できない各地球局等からの離隔距離を算出し、当該距離範囲内のメッシュを除外・残りの基地局設置可能性のあるメッシュにおいて、陸上移動局から地球局への影響評価を行い(詳細割愛)、最終的に基地局設置可能数の規模感を算出。

図2.5.2-2 共用検討の評価手法

LTE-Advanced (TDD) の導入時の共用検討の結果は、

- 全国一律に一様な共用条件を各地球局に設定することは困難であるだけでなく、不要な離隔距離を考慮することにもなり、周波数の有効活用という観点で問題である。
- ▶ したがって、対象とする地球局毎に干渉基準や、置局条件を考慮し、個別の共用条件を規定することが必要である。
- ▶ 以上の点を踏まえ、個別の共用条件の設定については、総務省、衛星通信事業者、 携帯事業者等の関係者による協議の上、適切に設定していくことが望ましい。

との結論が得られた。

5G(NR)導入時の共用検討の結果は、

- 現状のままでは首都圏の中心部ではスモールセル基地局の設置には課題があり、 十分な検討・調整を行うことが適当である。
- ▶ 現状のままでは首都圏の中心部ではマクロセル基地局には課題があり、十分な検討・調整を行うことが適当であること、中京・近畿圏でも同様の課題があり、十分な検討・調整を行うことが適当であることが分かった。
- ▶ 現状の 3.4-3.6GHz の周波数において LTE-Advanced 基地局の設置する場合と同様に、基地局を設置する事業者と地球局等を運用する事業者との間で事前に調整を行い、個別の基地局の設置可否を判断する必要がある。

という結論となっている。

これらの結果を踏まえ、3.4/3.5GHz 帯を使用する LTE 又は3.7GHz 帯を使用する5G と、衛星システムとの周波数共用においては、携帯事業者と衛星事業者間で個別に周波数共用に向けた調整を行い、地理的離隔を取る、4G/5Gから衛星システムに対しての総和干渉量を確認する等の方策がとられているところである。

3.4/3.5GHz 帯に5 Gを導入する場合においても、5 G基地局の個別の置局に際して、アクティブアンテナの導入について考慮し、4 G基地局からの干渉と5 G基地局からの干渉が混在する状況における地球局への干渉影響に関する評価手法に留意しながら、従来どおり携帯事業者と衛星事業者間で調整を行うことで、共用が可能と考えられる。

また、2.5GHz 帯を使用する BWA の5 G化にあってもアクティブアンテナの導入が見込まれるため、3.4/3.5GHz 帯と同様にビームフォーミングを考慮した共用検討を行った。ビームパターン及びスプリアス発射の強度以外は従来の BWA のパラメータと同じであるため、それらのパラメータを用いてビームフォーミングを行った場合に形成されるビームパターンを考慮したうえで、隣接の周波数帯を使用する衛星通信システム及び BWA システム(旧方式、高度化方式)との検討を行った。

BWA を対象とした 5 Gのパラメータを図 2. 5. 2 -3 に、アクティブアンテナのビームパターンを図 2. 5. 2 -4 に、共用検討モデルを図 2. 5. 2 -5 に、与干渉の共用検討結果を図 2. 5. 2 -6 に示す。

パラメータ	値		
送信電力	46	dBm/BW	
アンテナ利得	17	dBi	
給電線損失	5	dB	
スプリアス発射(≧2655MHz)	-13	dBm/MHz	
スプリアス発射(≦2535MHz)	-42	dBm/MHz	
アンテナパターン	下図		
チルト角[degree]	4.0	deg	
空中線高	40	m	

図2. 5. 2-3 5G化したBWAのパラメータ

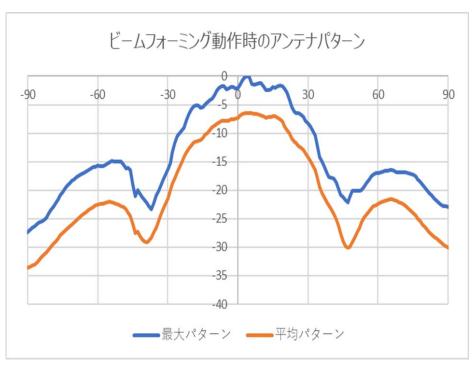
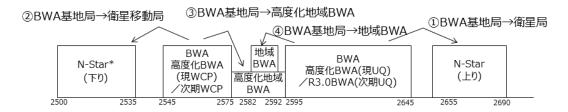



図2. 5. 2-4 アクティブアンテナのアンテナパターン

<周波数配置>

		干渉シナリオ	検討手法
干渉シナリオ①	1	BWA(現行)基地局→衛星局(現行)	N対1対向モデル/一部の基地局で のみアクティブアンテナ利用
	2	BWA(現行)基地局→衛星局(次期)	מתניא ל לל ללל ללל ללי ללי
	3	BWA(次期)基地局→衛星局(現行)	N対1対向モデル/全ての基地局ア クティブアンテナ利用の可能性あり
	4	BWA(次期)基地局→衛星局(次期)	1 ソノイノアフナノ不り用の中配性のツ
干渉シナリオ②		BWA基地局(現行/次期)→衛星移動局	1対1対向モデル
干渉シナリオ③		BWA(現行/次期)基地局→高度化地域BWA基地局	
干渉シナリオ④		BWA(現行/次期)基地局→地域BWA基地局	

図2.5.2-5 共用検討モデル

		従来検討	アクティブアンテナ			
			現行基地局		次期基地局	
			最大 パターン	平均 パターン	最大 パターン	平均 パターン
N-Star	衛星局(現行)	0.3dB	0.3dB	0.3dB	<u>1.3dB</u>	<u>0.4dB</u>
	衛星局(次期)	13.5dB	13.5dB	13.5dB	<u>14.5dB</u>	<u>13.6dB</u>
	衛星移動局(帯域内)	0dB	_	_	0dB	-5.1dB
	衛星移動局(帯域外)	4.1dB	_	_	4.1dB	-1.0dB
地域 バンド	高度化基地局	_	_	_	_	_
	WiMAX方式基地局	49.7dB	_	_	<u>54.9dB</u>	<u>49.7dB</u>

図2.5.2-6 衛星通信システムへの与干渉の検討結果

アクティブアンテナを導入した場合の所要改善量は、従来の検討に対して減少若しく はわずかな増加にとどまる結果となった。

所要改善量がマイナスとなる組み合わせはもとより、プラスとなる組み合わせにおいても事業者間調整による合意が得られれば、共用可能であると考えられる。

2. 5. 3 高度化 BWA システムのスペクトラムマスクの緩和の検討

平成26年に制度化された高度化BWAシステムについては、2.6GHz帯衛星デジタル音声放送(モバイル放送)の終了や、非同期BWAシステムの高度化地域BWAシステムへの移行により、BWAシステムの導入当初に比べて共存の前提となる対象システムが変わってきている。

<BWA導入時の隣接システム>

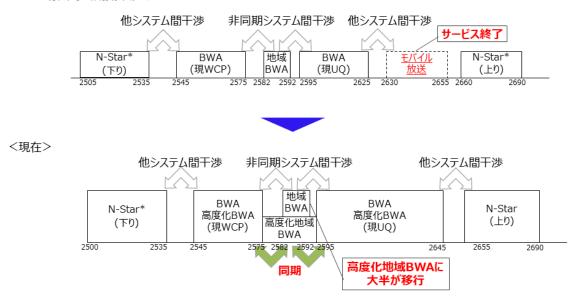
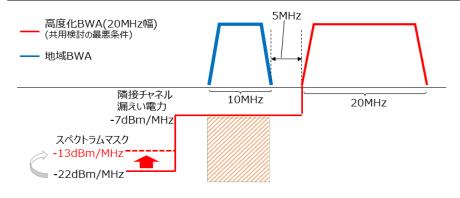
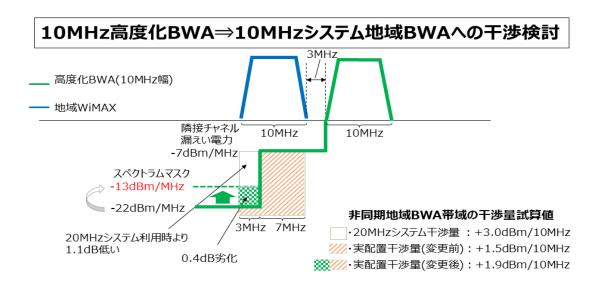



図2.5.2-7 共用検討における対象システム

これらの共用相手の移行等を踏まえ、これまで、高度化 BWA システムの不要発射の強度については、隣接システムとの共用のために-22dBm/MHz と規定されていたが、今後、5 G化した BWA の不要発射の強度と同じ-13dBm/MHz とすることが可能かどうか考察するべく、現在もシステムが存在している地域 BWA システムとの共用について検討した。

過去の情通審における検討(平成 25 年 5 月携帯電話等高度化委員会報告)では、地域 BWA と 5MHz 離れた位置に 20MHz 幅の高度化 BWA が存在する場合を最悪条件として検討している。この場合、高度化 BWA から地域 BWA への干渉電力は、隣接チャネル漏えい電力である-7dBm/MHz が適用されることになり、不要発射の強度が-22dBm/MHz から-13dBm/MHz に変わっても、共用検討結果は従来と同じになる。

20MHz高度化BWA⇒10MHzシステム地域BWAへの干渉検討



【共用検討結果】

- 所要改善量: 43.9dB
- サイトエンジニアリングの併用で共存可能

図2. 5. 2-8 高度化 BWA (20MHz) における共用検討結果

一方、当時は地域 BWA と 3MHz 離れた位置に 10MHz 幅の高度化 BWA が存在する場合も検討しており、その場合、不要発射の強度が-22dBm/MHz から-13dBm/MHz に上がることにより、高度化 BWA から地域 BWA への干渉電力が、当時の検討結果よりも一部増大する。しかしながら、増大後の干渉電力であっても、20MHz 幅の高度化 BWA 使用時の隣接チャネル漏えい電力の許容値-7dBm/MHz よりも小さいため、影響はないと考えられる。

【共用検討結果】

 一部干渉量は増大するものの、増加後の干渉量であっても20MHz高度化BWA利用時の 干渉量よりも低いため、従来通りサイトエンジニアリングにより対応可能と考えられる。

図2. 5. 2-9 高度化 BWA (10MHz) における共用検討結果

また、スペクトラムマスクを-22dBm/MHz から-13dBm/MHz に変えることにより、BWA の 周波数配置によっては N-Star 上り帯域への規格上の干渉量が増える組み合わせも出て くるが、過去の委員会報告(平成 30 度 12 月 情報通信審議会衛星通信システム委員会報告)の N-Star との干渉検討においては、スプリアス領域における不要発射の強度(-13dBm/MHz)を元に検討を行っているため、共用検討結果は従来と同じになる。

第3章 免許時の周波数指定の検討及び定期検査の在り方

3. 1 免許における周波数の指定について

3GPP 標準仕様 (TS 36.101, 36.104, 38.101-1/2/3, 38.104) では、キャリア配置が可能な周波数の絶対値 (チャネルラスター) が定義されている。

4 Gの標準仕様 (TS 36.101, 36.104) では、チャネルラスターは 100kHz の整数倍と 定義されており、チャネルバンド幅はチャネルラスターを中心として左右対称に定義されている。また、チャネルバンド幅内の両端のガードバンドは使用するチャネルバンド幅に応じて一意に決定され、上端と下端で同一の値を取る。

一方、3.7/4.5GHz 帯及び 28GHz 帯を使用する5 Gの標準仕様(TS 38.101-1/2/3, 38.104)では、チャネルラスターは利用する周波数に応じて 15kHz または 60kHz(運用によってはそれぞれ 30kHz/120kHz となる場合もある)の整数倍と定義されており、なおかつ、チャネルバンド幅はチャネルラスターを中心として非対称に設定することが可能である。また、チャネルバンド幅内の両端のガードバンドは使用するチャネルバンド幅に応じて一意に決定されるものではなく、上端と下端で異なる値を取ることも可能である。

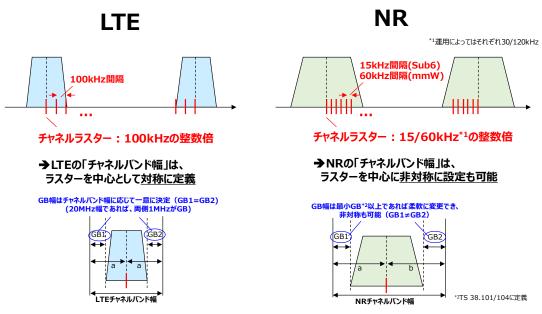


図3. 1-1 標準仕様上の4G (LTE) と5G (NR) の差分

上記5Gの標準仕様の背景としては、4Gではサブキャリア間隔が15kHzである一方でチャネルラスターは100kHzであったことから、同一周波数帯内における連続キャリアアグリゲーション等の際、複数キャリアを跨るサブキャリア間の周波数直交性を保つために中心周波数間隔を300kHz(15kHzと100kHzの最小公倍数)の倍数とする制約が生じていた。この制約に対して、5Gではサブキャリア間隔(運用により複数の値を取り得る)とチャネルラスターの粒度を一致させることで、どのチャネルラスターにキャリアを配置したとしても常に周波数直交性が保たれる等の利点があることから、新たな考え方が導入されたものである。

一方、無線局の免許状では、指定した中心周波数に対して左右対称のキャリア配置を前提に、中心周波数、占有帯域幅及び電波型式が記載されるが、4 Gではチャネルラスターが 100kHz の整数倍であるため、常に割当帯域の中心をチャネルラスターとして設定可能であったが、5 Gではチャネルラスターが 15kHz または 60kHz の整数倍であるため、必ずしも割当帯域の中心を設定することができないという課題がある。

今後、5 Gに加えて、このような仕様の新たな無線システムが導入されることも想定され、前述の課題を踏まえ、国際規格と国内の周波数の指定範囲の整合が取れるような 周波数の指定の方法を検討することが望ましい。

3. 2 5 G の 定期検査について

現在、空中線電力が 1W を超える携帯電話システムの基地局においては、5年に1度、定期検査において周波数及び空中線電力の測定が義務づけられている。

携帯電話事業者等及び基地局ベンダーからは、 5 Gシステムの基地局については、 GPS 等の信号を外部から取り込むことで時刻同期されており、送信装置の周波数発振回路はこれらの外部信号を参照することで、同じ周波数が生成されるような仕組みが有ること、また、基地局が正常に動作していることを常時遠隔から監視できるようになっていることなどの説明があるとともに、これらの仕組み等を踏まえ、5 Gシステムの基地局の定期検査における電気的特性の測定を省略できないか、との提案があった。

加えて、5 Gシステムの基地局においては、空中線と送信装置が一体となったアクティブアンテナを用いるものが一般的であるが、空中線の小型化に伴い、アクティブアンテナは半導体と一体構造で製造され、測定用の空中線端子の設置が難しく、測定器を接続して電気的特性を測定することが困難であるという課題がある。

そのため、5Gシステムの基地局の定期検査については、測定器を接続して電気的特性を測定することが困難であるという課題に対し、上述のような、基地局が正常に動作していることを確保・監視できる仕組み等を踏まえ、今後さらに検討を深めていくことが望ましいと考えられる。

第4章 第5世代移動通信システム(FDD-NR)の技術的条件

4. 1 無線諸元

(1) 無線周波数帯

700MHz 帯、800MHz 帯、900MHz 帯、1. 5GHz 帯、1. 7GHz 帯及び 2 GHz 帯の周波数を使用すること。

(2) キャリア設定周波数間隔

<u>設定しうるキャリア周波数間の最低周波数設定ステップ幅であること。</u> 100kHz とすること。

(3) 送受信周波数間隔

<u>各システムにおける使用する周波数帯ごとの送受信周波数間隔は、表4.1-1のと</u>おりとすること。

使用する周波数帯	<u>送受信周波数間隔</u>
700MHz 帯	<u>55MHz</u>
800MHz 帯、900MHz 帯	<u>45MHz</u>
<u>1. 5GHz 帯</u>	<u>48MHz</u>
<u>1.7GHz 帯</u>	<u>95MHz</u>
2 GHz 帯	190MHz

表 4. 1-1 送受信周波数間隔

(4) 多元接続方式/多重接続方式

OFDM (Orthogonal Frequency Division Multiplexing: 直交周波数分割多重)方式及び TDM (Time Division Multiplexing: 時分割多重)方式との複合方式を下り回線(基地局送信、移動局受信)に、SC-FDMA (Single Carrier Frequency Division Multiple Access: シングル・キャリア周波数分割多元接続)方式又は OFDMA (Orthogonal Frequency Division Multiple Access: 直交周波数分割多元接続)方式を上り回線(移動局送信、基地局受信)に使用すること。

(5) 通信方式

FDD (Frequency Division Duplex:周波数分割複信)方式とすること。

(6) 変調方式

ア 基地局(下り回線)

QPSK (Quadrature Phase Shift Keying)、16QAM (16 Quadrature Amplitude Modulation)、64QAM (64 Quadrature Amplitude Modulation) 又は256QAM (256 Quadrature Amplitude Modulation) 方式を採用すること。

イ 移動局(上り回線)

BPSK (Binary Phase Shift Keying)、 $\pi/2$ shift-BPSK ($\pi/2$ shift-Binary Phase Shift Keying)、QPSK、16QAM、64QAM又は256QAM方式を採用すること。

4. 2 システム設計上の条件

(1) フレーム長

<u>フレーム長は 10ms であり、サブフレーム長は 1 ms(10 サブフレーム/フレーム)であること。スロット長は 1. 0ms、0. 5ms 又は 0. 25ms(10、20 又は 40 スロット/フレーム</u>)であること。

(2) 送信電力制御

基地局からの電波の受信電力の測定又は当該基地局からの制御情報に基づき空中線 電力が必要最小限となるよう自動的に制御する機能を有すること

(3) 電磁環境対策

移動局と自動車用電子機器や医療電子機器等との相互の電磁干渉に対しては、十分 な配慮が払われていること。

(4) 電波防護指針への適合

電波を使用する機器については、基地局については電波法施行規則第 21 条の3、移動局については無線設備規則第 14 条の2 に適合すること。

(5) 移動局送信装置の異常時の電波発射停止

次の機能が独立してなされること。

- ア 基地局が移動局の異常を検出した場合、基地局は移動局に送信停止を要求すること。
- <u>イ 移動局自身がその異常を検出した場合は、異常検出タイマのタイムアウトにより</u> 移動局自身が送信を停止すること。

(6) 他システムとの共用

他の無線局及び電波法第56条に基づいて指定された受信設備に干渉の影響を与えないように、設置場所の選択、フィルタの追加等の必要な対策を講ずること。

4. 3 無線設備の技術的条件

(1) 送信装置

通常の動作状態において、以下の技術的条件を満たすこと。なお、本技術的条件の一部規定については暫定値であり、3GPPの議論が確定した後、適正な値を検討することが望ましい。

ア キャリアアグリゲーション

基地局については、一の送信装置から異なる周波数帯の搬送波を発射する場合に ついては今回の検討の対象外としており、そのような送信装置が実現される場合には、 その不要発射等について別途検討が必要である。

移動局については、キャリアアグリゲーション(複数の搬送波を同時に用いて一体として行う無線通信をいう。)で送信可能な搬送波の組合せで送信している状態で搬送波毎にイからコに定める技術的条件を満足すること。また、LTE-Advanced 方式又は広帯域移動無線アクセスシステムとのキャリアアグリゲーションにおいては、各搬送波の合計値がキの技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

イ 周波数の許容偏差

(7) 基地局

空中線端子あたりの最大空中線電力が38dBm を超えるものにおいては、±(0.05ppm +12Hz)以内、空中線端子あたりの最大空中線電力が38dBm 以下のものにおいては、 ±(0.1ppm+12Hz)以内であること。

(イ) 移動局

基地局送信周波数より55MHz (700MHz帯の周波数を使用する場合)、45MHz (800MHz帯、900MHz帯の周波数を使用する場合)、48MHz (1.5GHz帯の周波数を使用する場合)、95MHz (1.7GHz帯の周波数を使用する場合)又は190MHz (2 GHz帯の周波数を使用する場合)低い周波数に対して、± (0.1ppm+15Hz)以内であること。

ウ スプリアス領域における不要発射の強度

スプリアス領域における不要発射の許容値は、以下の表に示す値以下であること。 (7) 基地局

基地局における許容値は、基地局が使用する周波数帯(773~803MHz、860~890MHz、945~960MHz、1475.9~1510.9MHz、1805~1880MHz又は2110~2170MHzの周波数帯のうち、基地局が使用する周波数帯をいう。以下、1において同じ。)の端から10MHz以上離れた周波数範囲に適用する。空間多重方式を用いる基地局にあっては各空中線端子で測定した不要発射の強度が表4.3-1の許容値以下であること。また、一の送信装置において同一周波数帯で複数搬送波(変調後の搬送波をいう。以下4.3において同じ。)を送信する場合にあっては、複数の搬送波を同時に送信した場合においても、本規定を満足すること。

表4.3-1 スプリアス領域における不要発射の強度の許容値(基地局)基本

周波数範囲	許容値	参照帯域幅
9 kHz以上150kHz未満	<u>-13dBm</u>	<u>1 kHz</u>
150kHz以上30MHz未満	<u>-13dBm</u>	<u>10kHz</u>
30MHz以上1000MHz未満	<u>-13dBm</u>	<u>100kHz</u>
1000MHz以上12.75GHz未満	<u>-13dBm</u>	<u>1 MHz</u>

以下に示すPHS帯域については、表4.3-2に示す許容値以下であること。 ただし、周波数帯の端からオフセット周波数10MHz未満の範囲においても優先される。

表4.3-2 スプリアス領域における不要発射の強度の許容値(基地局) PHS 帯域

周波数範囲	<u>許容値</u>	参照帯域幅
1884.5MHz以上1915.7MHz以下	<u>-41 dBm</u>	<u>300kHz</u>

以下に示す周波数範囲については、表4.3-3に示す許容値以下であること。

表4.3-3 スプリアス領域における不要発射の強度の許容値(基地局) 2 GHz 帯

周波数範囲	<u>許容値</u>	参照帯域幅
2010MHz以上2025MHz以下	<u>−52dBm</u>	<u>1 MHz</u>

(イ) 移動局

移動局における許容値は、5 MHzシステムにあっては周波数離調(送信周波数帯域の中心周波数から参照帯域幅の送信周波数帯に近い方の端までの差の周波数を指す。以下同じ。)が12.5MHz以上、10MHzシステムにあっては周波数離調が20MHz以上、15MHzシステムにあっては周波数離調が27.5MHz以上、20MHzシステムにあっては周波数離調が35MHz以上に適用する。なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること又はそれらの組合せの制御によって制限することで、その条件での許容値とすることができる。ただし、470MHz以上710MHz以下、773MHz以上803MHz以下、860MHz以上890MHz以下、945MHz以上960MHz以下、1475.9MHz以上1510.9MHz以下、1805MHz以上1880MHz以下、1884.5MHz以上1915.7MHz以下、2010MHz以上2025MHz以下、2110MHz以上2170MHz以下の周波数にあっては上の周波数離調以内にも、適用する。

搬送波が隣接しないキャリアアグリゲーションで送信する場合、一の搬送波の

スプリアス領域が他の搬送波の送信周波数帯域及び帯域外領域と重複する場合は、 当該周波数範囲においては本規定を適用しない。なお、送信する周波数の組合せ により測定する周波数範囲における許容値が異なる場合は、どちらか高い方の許 容値を適用する。

表4. 3-4 スプリアス領域における不要発射の強度の許容値(移動局)基本

周波数範囲	<u>許容値</u>	参照帯域幅
9 kHz以上150kHz未満	<u>-36dBm</u>	<u>1 kHz</u>
150kHz以上30MHz未満	<u>-36dBm</u>	10kHz
30MHz以上1000MHz未満	<u>-36dBm</u>	<u>100kHz</u>
1000MHz以上12. 75GHz未満	-30dBm	<u> 1 MHz</u>

表 4.3 - 5 に示す周波数範囲については、同表に示す許容値以下であること。

表4.3-5 スプリアス領域における不要発射の強度の許容値(移動局)個別周波数帯

1. 6 6 777777 [] [] [] [] [] [] [] []		
日油粉签田	<u>許容値</u>	参照帯域
<u>周波数範囲</u>		<u>幅</u>
DTV帯域 470MHz以上710MHz以下	<u>-26. 2dBm^{注 1}</u>	<u>6 MHz</u>
700MHz帯受信帯域 773MHz以上803MHz以下	_50dBm ^{注 2}	<u> 1 MHz</u>
800MHz帯受信帯域 860MHz以上890MHz以下	_50dBm ^{注 3}	<u> 1 MHz</u>
900MHz帯受信帯域 945MHz以上960MHz以下	<u>-50dBm</u>	<u> 1 MHz</u>
1.5GHz帯受信帯域 1475.9MHz以上1510.9MHz以下	_50dBm ^{注4注5}	1 MHz
1.7GHz帯受信帯域 1805MHz以上1880MHz以下	_50dBm ^{注 5}	<u> 1 MHz</u>
PHS帯域 1884.5MHz以上1915.7MHz以下	<u>-41dBm</u>	300kHz
2 GHz帯TDD方式送受信帯域 2010MHz以上2025MHz以下	<u>-50dBm</u>	<u> 1 MHz</u>
2 GHz帯受信帯域 2110MHz以上2170MHz以下	_50dBm ^{注 5}	<u> 1 MHz</u>
3.5GHz帯受信帯域 3400MHz以上3600MHz以下	_50dBm ^{注 5}	<u> 1 MHz</u>
3.7GHz帯受信帯域 3600MHz以上4100MHz以下	_50dBm ^{注 5}	<u> 1 MHz</u>
4.5GHz帯受信帯域 4500MHz以上4900MHz以下	_50dBm ^{注 5}	<u> 1 MHz</u>

- 注1:700MHz帯の周波数を使用する場合にのみ適用する。
- <u>注2:800MHz帯の周波数を使用する場合には、799MHz以上803MHz以下の周波数</u> 範囲については-40dBm/MHzの許容値とする。
- 注3:800MHz帯、900MHz帯の周波数を使用する場合には、860MHz以上890MHz以下 の周波数範囲については-40dBm/MHzの許容値とする。
- <u>注4:1.5GHz帯の周波数を使用する場合には、1475.9MHz以上1510.9MHz以下の</u> 周波数範囲については-35dBm/MHzの許容値とする。
- <u>注5:700MHz帯、800MHz帯、900MHz帯、1.7GHz帯、2GHz帯の搬送波による2次</u>から5次までの高調波の周波数の下端-1MHz及び上端+1MHzの間の周波数

範囲が上表の周波数範囲と重複する場合には、当該周波数範囲において-30dBm/MHzの許容値とする。

エ 隣接チャネル漏えい電力

(7) 基地局

表4.3-6に示す絶対値規定又は相対値規定のいずれかの許容値を各離調周 波数において満足すること。空間多重方式を用いる基地局にあっては、各空中線 端子において表4.3-6の空中線端子ありに示す絶対値規定又は相対値規定の いずれかの規定を満足すること。

一の送信装置において同一周波数帯で複数の搬送波を同時に送信する場合の許容値は、最も下側の搬送波の下側及び最も上側の搬送波の上側において、表4.3 一6に示す絶対値規定又は相対値規定のいずれかの許容値を各離調周波数において満足すること。

表4.3-6 隣接チャネル漏えい電力(基地局)

照帯域幅
l. 5MHz
l. <u>5MHz</u>
I. <u>5MHz</u>
l. 5MHz
. 36MHz
. 36MHz
. 36MHz
. 36MHz
I. 5MHz
I. 5MHz
I. <u>5MHz</u>
l. 5MHz
l. 22MHz
l. 22MHz
l. <u>22MHz</u>
l. <u>22MHz</u>
I. <u>5MHz</u>
I. 5MHz
I. 5MHz
l. 5MHz

	<u>絶対値規定</u>	<u>20MHz</u>	-13dBm/MHz	19. 08MHz
	相対値規定	<u>20MHz</u>	<u>-44. 2dBc</u>	<u>19.08MHz</u>
	<u>絶対値規定</u>	<u>40MHz</u>	<u>-13dBm/MHz</u>	<u>19.08MHz</u>
<u>20MHz</u>	相対値規定	<u>40MHz</u>	<u>-44. 2dBc</u>	19. 08MHz
システム	<u>絶対値規定</u>	<u>12, 5MHz</u>	<u>-13dBm/MHz</u>	4. 5MHz
	相対値規定	<u>12.5MHz</u>	<u>-44. 2dBc</u>	4. 5MHz
	<u>絶対値規定</u>	17. 5MHz	-13dBm/MHz	4. 5MHz
	相対値規定	<u>17. 5MHz</u>	<u>-44. 2dBc</u>	<u>4. 5MHz</u>

一の送信装置において同一周波数帯で隣接しない複数の搬送波を同時に送信する場合は、表4.3-7に示す絶対値規定又は相対値規定のいずれかの許容値を 各オフセット周波数において満足すること。

表4. 3-7 隣接チャネル漏えい電力 (隣接しない複数の搬送波を発射する基地局)

<u>周波数差^注</u>	規定の種別	<u>オフセット</u> <u>周波数^{注3}</u>	<u>許容値</u>	参照帯域幅
<u> 5 MHz以上</u>	<u>絶対値規定</u>	<u>2.5MHz</u>	-13dBm/MHz	<u>4. 5MHz</u>
<u>10MHz以下</u>	相対値規定	<u>2.5MHz</u>	_44. 2dBc ^{注 4}	<u>4. 5MHz</u>
10MU- + +7	<u>絶対値規定</u>	2. 5MHz	-13dBm/MHz	4. 5MHz
10MHzを超	相対値規定	2. 5MHz	_44. 2dBc ^{注 4}	4. 5MHz
<u>え15MHz未</u> ***	<u>絶対値規定</u>	7. 5MHz	-13dBm/MHz	4. 5MHz
<u>満</u>	相対値規定	7. 5MHz	_44. 2dBc ^{注 4}	4. 5MHz
	<u>絶対値規定</u>	2. 5MHz	-13dBm/MHz	4. 5MHz
15MHz以上	相対値規定	2. 5MHz	_44. 2dBc ^{注 5}	4. 5MHz
20MHz未満	<u>絶対値規定</u>	7. 5MHz	-13dBm/MHz	4. 5MHz
	相対値規定	7. 5MHz	_44. 2dBc ^{注 4}	4. 5MHz
	<u>絶対値規定</u>	2. 5MHz	-13dBm/MHz	4. 5MHz
2000-11	相対値規定	2. 5MHz	_44. 2dBc ^{注 5}	4. 5MHz
20MHz以上	<u>絶対値規定</u>	7. 5MHz	-13dBm/MHz	4. 5MHz
	相対値規定	7. 5MHz	_44. 2dBc ^{注 5}	4. 5MHz

注1:本表は、下側の搬送波の送信周波数帯域の上端から、上側の搬送波の送信周 波数帯域の下端までの周波数範囲に適用する。3 波以上の搬送波の場合には、 近接する搬送波の間の周波数範囲に適用する。

注2:下側の搬送波の送信周波数帯域の上端から、上側の搬送波の送信周波数帯域 の下端までの周波数差

注3:下側の搬送波の送信周波数帯域の上端又は上側の搬送波の送信周波数帯域の 下端から隣接チャネル漏えい電力の測定帯域の中心までの差の周波数 注4:基準となる搬送波の電力は、複数の搬送波の電力の和とする。

注5:基準となる搬送波の電力は、下側の搬送波又は上側の搬送波の電力とする。

(イ) 移動局

許容値は、表4.3-8に示す絶対値規定又は相対値規定のどちらか高い値であること。なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること又はそれらの組合せによる制御によって制限することで、その条件での許容値とすることができる。

表4. 3-8 隣接チャネル漏えい電力(移動局)基本

<u>システム</u>	規定の種別	離調周波数	<u>たい電力(砂</u> 許容値 ^注	<u>参照帯域幅</u>
		<u>5 MHz</u>	<u>-50dBm</u>	4. 515MHz
	<u>絶対値規定</u>	<u>5 MHz</u>	<u>-50dBm</u>	3.84MHz
E MU-2.7 = /		<u>10MHz</u>	<u>-50dBm</u>	3. 84MHz
<u>5MHzシステム</u>		5 MHz	<u>−29. 2dBc</u>	4. 515MHz
	相対値規定	<u>5 MHz</u>	<u>−32. 2dBc</u>	3.84MHz
		<u>10MHz</u>	<u>−35. 2dBc</u>	3.84MHz
		<u>10MHz</u>	<u>-50dBm</u>	<u>9. 375MHz</u>
	<u>絶対値規定</u>	<u>7. 5MHz</u>	<u>-50dBm</u>	3.84MHz
10MHzシステム		<u>12.5MHz</u>	<u>-50dBm</u>	3.84MHz
TOMITZ J X J X		<u>10MHz</u>	<u>−29. 2dBc</u>	<u>9. 375MHz</u>
	相対値規定	<u>7.5MHz</u>	<u>−32. 2dBc</u>	3.84MHz
		<u>12.5MHz</u>	<u>−35. 2dBc</u>	3.84MHz
		<u>15MHz</u>	<u>-50dBm</u>	14. 235MHz
	<u>絶対値規定</u>	<u>10MHz</u>	<u>-50dBm</u>	3.84MHz
15MHzシステム		<u>15MHz</u>	<u>-50dBm</u>	3.84MHz
15MIIZ J X J A		<u>15MHz</u>	<u>−29. 2dBc</u>	<u>14. 235MHz</u>
	相対値規定	<u>10MHz</u>	<u>−32. 2dBc</u>	3.84MHz
		<u>15MHz</u>	<u>−35. 2dBc</u>	3.84MHz
<u>20MHzシステム</u>		<u>20MHz</u>	<u>-50dBm</u>	<u>19. 095MHz</u>
	<u>絶対値規定</u>	<u>12.5MHz</u>	<u>-50dBm</u>	3.84MHz
		<u>17. 5MHz</u>	<u>-50dBm</u>	3.84MHz
		<u>20MHz</u>	<u>−29. 2dBc</u>	<u>19. 095MHz</u>
	相対値規定	<u>12.5MHz</u>	<u>−32. 2dBc</u>	3. 84MHz
		<u>17. 5MHz</u>	<u>-35. 2dBc</u>	3. 84MHz

- 注1:送信周波数帯域の中心周波数から離調周波数分だけ離れた周波数を中心周波 数とする参照帯域幅分の値とする。
- 注2:700MHz帯、1.5GHz帯の周波数を使用する場合は、参照帯域幅が3.84MHzの許容値は適用しない。

搬送波が隣接しないキャリアアグリゲーションで送信する場合は、各送信周波 数帯域の端(他方の送信搬送波に近い端に限る。)の間隔内における、以下の①か ら③までの各項目に掲げるシステムに関する表4.3-8における許容値を適用 しない。

- ① 各送信周波数帯域の端の間隔が各搬送波の占有周波数帯幅よりも狭い場合 5 MHzシステム 離調周波数が 5 MHzかつ参照帯域幅が4.515MHz 10MHzシステム 離調周波数が10MHzかつ参照帯域幅が9.375MHz 15MHzシステム 離調周波数が15MHzかつ参照帯域幅が14.235MHz 20MHzシステム 離調周波数が20MHzかつ参照帯域幅が19.095MHz
- ② 各送信周波数帯域の端の間隔が5MHz未満の場合

5 MHzシステム 離調周波数が 5 MHz及び10MHzかつ参照帯域幅が3.84MHz 10MHz システム 離調周波数が7.5MHz及び12.5MHzかつ参照帯域幅が 3.84MHz

15MHzシステム 離調周波数が10MHz及び15MHzかつ参照帯域幅が3.84MHz 20MHz システム 離調周波数が12.5MHz 及び17.5MHz かつ参照帯域幅が 3.84MHz

 ③ 各送信周波数帯域の端の間隔が5MHzを超え15MHz未満の場合 5MHzシステム 離調周波数10MHzかつ参照帯域幅が3.84MHz 10MHzシステム 離調周波数12.5MHzかつ参照帯域幅が3.84MHz 15MHzシステム 離調周波数15MHzかつ参照帯域幅が3.84MHz 20MHzシステム 離調周波数17.5MHzかつ参照帯域幅が3.84MHz

オ スペクトラムマスク

(7) 基地局

送信周波数帯域の端(不要発射の強度の測定帯域に近い端に限る。)から不要発射の強度の測定帯域の中心周波数までの差のオフセット周波数(Δf)に対して、表4.3-9又は表4.3-10に示す許容値以下であること。ただし、基地局が使用する周波数帯の端から10MHz未満の周波数範囲に限り適用する。空間多重方式を用いる基地局にあっては各空中線端子で測定した不要発射の強度が表4.3-9又は表4.3-10に示す許容値以下であること。また、一の送信装置において同一周波数帯で複数の搬送波を送信する場合にあっては、複数の搬送波を同時に送信した場合においても、最も下側の搬送波の下側及び最も上側の搬送波の上側において、本規定を満足すること。

一の送信装置において同一周波数帯で隣接しない複数の搬送波を同時に送信する場合にあっては、複数の搬送波を同時に送信した場合において、下側の搬送波の送信周波数帯域の上端から、上側の搬送波の送信周波数帯域の下端までの周波

数範囲においては、各搬送波に属するスペクトラムマスクの許容値の総和を満たすこと。ただし、下側の搬送波の送信周波数帯域の上端、及び上側の搬送波の送信周波数帯域の下端から10MHz以上離れた周波数範囲においては、700MHz帯、800MHz帯、900MHz帯の周波数にあっては-13dBm/100kHz、1.5GHz帯、1.7GHz帯、2GHz帯の周波数にあっては-13dBm/1 MHzを満足すること。

700MHz帯、800MHz帯、900MHz帯の周波数にあっては表4.3-9に示す許容値以下であること。

表 4. 3-9 スペクトラムマスク (基地局) 700MHz帯、800MHz帯、900MHz帯

<u>オフセット周波数 Δf (MHz)</u>	許容值	参照帯域幅
0.05MHz以上5.05MHz未満	$-5.5 dBm - 7/5 \times (\Delta f - 0.05) dB$	<u>100kHz</u>
5.05MHz以上10.05MHz未満	<u>−12. 5dBm</u>	<u>100kHz</u>
<u>10.05MHz以上</u>	<u>−13dBm</u>	<u>100kHz</u>

<u>1.5GHz帯、1.7GHz帯、2GHz帯の周波数にあっては表4.3-10に示す許容値以下であること。</u>

<u>表4.3-10 スペクトラムマスク (基地局) 1.5GHz帯、1.7GHz帯、2 GHz帯</u>

<u>オフセット周波数 Δ f (MHz)</u>	<u>許容値</u>	参照帯域幅
0.05MHz以上5.05MHz未満	$-5.5 dBm - 7/5 \times (\Delta f - 0.05) dB$	<u>100kHz</u>
5.05MHz以上10.05MHz未満	<u>−12. 5dBm</u>	<u>100kHz</u>
10. 5MHz以上	<u>-13dBm</u>	<u>1MHz</u>

(イ) 移動局

送信周波数帯域の端(不要発射の強度の測定帯域に近い端に限る。)から不要発射の強度の測定帯域の最寄りの端までのオフセット周波数(Δf)に対して、システム毎に表4.3-11に示す許容値以下であること。なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること又はそれらの組合せによる制御によって制限することで、その条件での許容値とすることができる。

表4.3-11 スペクトラムマスク (移動局) 基本

	<u>シ</u>	システム毎の許容値(dBm)			
<u>オフセット周波数 Δf </u>	<u>5</u>	<u>10</u>	<u>15</u>	<u>20</u>	<u>参照帯</u>
	<u>MHz</u>	<u>MHz</u>	<u>MHz</u>	<u>MHz</u>	<u>域幅</u>
OMHz以上 1 MHz未満	<u>-11. 5</u>	<u>-11. 5</u>	<u>-11. 5</u>	<u>-11. 5</u>	<u>注</u> _
<u>1 MHz以上 5 MHz未満</u>	<u>-8. 5</u>	<u>-8. 5</u>	<u>-8. 5</u>	<u>-8. 5</u>	<u> 1 MHz</u>
<u>5 MHz以上 6 MHz未満</u>	<u>-11. 5</u>	<u>-11. 5</u>	<u>-11. 5</u>	<u>-11. 5</u>	<u> 1 MHz</u>
6 MHz以上10MHz未満	<u>-23. 5</u>	<u>-11. 5</u>	<u>-11. 5</u>	<u>-11.5</u>	<u> 1 MHz</u>
10MHz以上15MHz未満		<u>-23. 5</u>	<u>-11. 5</u>	<u>-11.5</u>	1 MHz
15MHz以上20MHz未満			<u>-23. 5</u>	<u>-11. 5</u>	<u> 1 MHz</u>
20MHz以上25MHz未満				<u>-23. 5</u>	<u> 1 MHz</u>

注: 5 MHzシステムにあっては参照帯域幅を50kHz、10MHzシステムにあっては 100kHz、15MHzシステムにあっては150kHz、20MHzシステムにあっては200kHzとして 適用する。

搬送波が隣接しないキャリアアグリゲーションで送信する場合、各搬送波の不 要発射の強度の測定帯域が重複する場合は、どちらか高い方の許容値を適用する。 また、各搬送波の不要発射の強度の測定帯域が他方の搬送波の送信周波数帯域と 重複する場合、その周波数範囲においては本規定を適用しない。

カ 占有周波数帯幅の許容値

(7) 基地局

各システムの99%帯域幅は、表4.3-12のとおりとする。

表 4. 3-12 各システムの99%帯域幅(基地局)

<u>システム</u>	99%帯域幅
<u>5 MHzシステム</u>	<u>5 MHz以下</u>
<u>10MHzシステム</u>	<u>10MHz以下</u>
<u>15MHzシステム</u>	<u>15MHz以下</u>
<u>20MHzシステム</u>	20MHz以下

(1) 移動局

各システムの99%帯域幅は、表4.3-13のとおりとする。

表4.3-13 各システムの99%帯域幅(移動局)

<u>システム</u>	99%帯域幅
<u>5MHzシステム</u>	<u>5 MHz以下</u>

<u>10MHzシステム</u>	10MHz以下
<u>15MHzシステム</u>	<u>15MHz以下</u>
<u>20MHzシステム</u>	20MHz以下

キ 最大空中線電力及び空中線電力の許容偏差

(7) 基地局

空中線電力の許容偏差は、定格空中線電力の±2.7dB以内であること。

<u>(イ) 移動局</u>

定格空中線電力の最大値は、23dBmであること。

定格空中線電力の最大値は、空間多重方式(送信機、受信機で複数の空中線を用い、無線信号の伝送路を空間的に多重する方式。以下同じ。)で送信する場合は各空中線端子の空中線電力の合計値、キャリアアグリゲーションで送信する場合は各搬送波の空中線電力の合計値、空間多重方式とキャリアアグリゲーションを併用して送信する場合は各空中線端子及び各搬送波の空中線電力の合計値について、それぞれ23dBmであること。

空中線電力の許容偏差は、定格空中線電力の+3dB/-6.7dB以内であること。

ク 空中線絶対利得の許容値

(7) 基地局

規定しない。

(1) 移動局

空中線絶対利得は、3dBi以下とすること。

ケ 送信オフ時電力

(7) 基地局

規定しない。

(化) 移動局

送信を停止した時、送信機の出力雑音電力スペクトル密度の許容値は、送信帯域の周波数で、移動局空中線端子において、以下の許容値以下であること。

<u>表 4. 3 - 1</u>	4 送信オフ時電力	(移動局) 基本
ステ <u>ム</u>	<u>許容値</u>	参照帯域軸

<u>システム</u>	<u>許容値</u>	<u>参照帯域幅</u>
<u>5 MHzシステム</u>	<u>-48.5dBm</u>	<u>4. 515MHz</u>
<u>10MHzシステム</u>	<u>-48.5dBm</u>	9. 375MHz
<u>15MHzシステム</u>	<u>-48.5dBm</u>	14. 235MHz
<u>20MHzシステム</u>	<u>-48.5dBm</u>	19. 095MHz

送信波に対して異なる周波数の妨害波が、送信機出力段に入力された時に発生する相互変調波電力レベルと送信波電力レベルの比に相当するものであるが、主要な特性は、送信増幅器の飽和点からのバックオフを規定するピーク電力対平均電力比によって決定される。

(7) 基地局

加える妨害波のレベルは、空中線端子あたりの最大定格電力より30dB低いレベルとする。また、妨害波は変調波(5 MHz幅)とし、搬送波の送信周波数帯域の上端又は下端から変調妨害波の中心周波数までの周波数差を±2.5MHz、±7.5MHz、±12.5MHz離調とする。ただし、変調妨害波の中心周波数が700MHz帯では760.5MHz 未満および800.5MHzより高い場合、800MHz帯では862.5MHz未満および891.5MHzより高い場合、900MHz帯では957.5MHzより高い場合、1.5GHz帯では1477.5MHz未満および1515.5MHzより高い場合、1.7GHz帯では1807.5MHz未満および1877.5MHzより高い場合、2GHz帯では2112.5MHz未満および2167.5MHzより高い場合は除く。

<u>許容値は、隣接チャネル漏えい電力の許容値、スペクトラムマスクの許容値及</u> びスプリアス領域における不要発射の強度の許容値とすること。

一の送信装置において同一周波数帯で複数の搬送波を送信する場合にあっては、 複数の搬送波を同時に送信する条件で、最も下側の搬送波の送信周波数帯域の下 端からの周波数離調又は最も上側の搬送波の送信周波数帯域の上端からの周波数 離調の妨害波を配置し、上記許容値を満足すること。妨害波周波数の除外範囲は 上記のとおりとする。

(イ) 移動局

規定しない。

(2) 受信装置

マルチパスのない受信レベルの安定した条件下(静特性下)において、以下の技術的条件を満たすこと。なお、本技術的条件の一部の規定については暫定値であり、3GPPの議論が確定した後、適正な値を検討することが望ましい。

ア キャリアアグリゲーション

基地局については、一の受信装置で異なる周波数帯の搬送波を受信する場合については今回の検討の対象外としており、そのような受信装置が実現される場合には、 その副次的に発する電波等の限度について別途検討が必要である。

移動局については、キャリアアグリゲーションで受信可能な搬送波の組合せで受信している状態で搬送波毎にイから才に定める技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

イ 受信感度

受信感度は、規定の通信チャネル信号 (QPSK、符号化率 1/3) を最大値の 95%以上 のスループットで受信するために必要な最小受信電力であり静特性下において以下 に示す値 (基準感度) であること。

(7) 基地局

各空中線端子における空中線電力を最大空中線電力とし、静特性下において最大空中線電力毎に表4.3-15の値以下の値であること。

表 4. 3-15 受信感度

<u> </u>				
		システム毎の基準感度(dBm)		
田油粉类材	早十灾山组命由	<u>5 、10、15MHz</u> <u>20MHz</u>		
周波数帯域	<u>最大空中線電力</u>	<u>システム</u>	<u>システム</u>	
700MIL=## 000MIL=##	38dBmを超える基地局	<u>-98. 2</u>	<u>-94. 6</u>	
700MHz帯、800MHz帯、	24dBmを超え、38dBm	<u>-93. 2</u>	<u>-89. 6</u>	
900MHz帯、1.5GHz帯、	<u>以下の基地局</u>			
<u>1.7GHz帯、2GHz帯</u>	24dBm以下の基地局	<u>-90. 2</u>	<u>-86. 6</u>	

(イ) 移動局

静特性下において、チャネル帯域幅毎に表4.3-16の値以下であること。

表 4. 3-16 受信感度(移動局)基本

	システム毎の基準感度(dBm)_			
周波数帯域	5 MHz	10 MHz	15 MHz	20 MHz
	<u>システム</u>	<u>システム</u>	<u>システム</u>	<u>システム</u>
700MHz帯	<u>-97. 8</u>	<u>-94. 8</u>	<u>-92. 8</u>	<u>-90. 1</u>
800MHz帯	06.0	02.0	02.0	06.0
(860MHz-75MHz)	<u>-96. 8</u>	<u>-93. 8</u>	<u>-92. 0</u>	<u>-86. 9</u>
800MHz帯	07.2	0.4 1	02.2	07.4
(875MHz890MHz)	<u>-97. 3</u>	<u>-94. 1</u>	<u>-92. 3</u>	<u>-87. 4</u>
900MHz帯	<u>-96. 3</u>	<u>-93. 1</u>	<u>-90. 7</u>	<u>-85. 1</u>
<u>1.5GHz帯</u>	<u>99. 3</u>	<u>-96. 1</u>	<u>-94. 3</u>	<u>-89. 1</u>
<u>1. 7GHz帯</u>	<u>-96. 3</u>	<u>-93. 1</u>	<u>-91. 3</u>	<u>-90. 1</u>
<u>2 GHz帯</u>	<u>-99. 3</u>	<u>-96. 1</u>	<u>-94. 3</u>	<u>-93. 1</u>

搬送波が隣接するキャリアアグリゲーションで受信する場合、静特性下において複数の搬送波で受信している条件とし、受信搬送波毎に上記の表の基準感度以下の値であること。

<u>異なる周波数帯のキャリアアグリゲーションの受信に対応した移動局については、静特性下において複数の搬送波を受信している条件で、受信周波数帯の受信</u>感度は、上記の表の値からさらに0.5dBだけ高い値であること。

<u>ウ ブロッキング</u>

ブロッキングは、1つの変調妨害波存在下で希望信号を受信する受信機能力の尺度であり、以下の条件下で希望波と変調妨害波を加えた時、規定の通信チャネル信号(QPSK、符号化率 1/3)を最大値の 95%以上のスループットで受信できること。

(7) 基地局

<u>空中線端子あたりの空中線電力を最大空中線電力とし、各空中線端子において、</u> 静特性下において以下の条件とする。

表 4. 3-17 ブロッキング

	5 MHz	<u>10MHz</u>	15MHz	<u>20MHz</u>
	<u>システム</u>	<u>システム</u>	<u>システム</u>	<u>システム</u>
希望波の受信電力		基準感度+6dB		
変調妨害波の	10MHz	12.50MHz	15MHz	17.5MHz
<u>離調周波数</u>	<u>TOMITZ</u>	12. 30WITZ	<u> 1 JIVII 12</u>	17. JIMITZ
	<u>最大空中線電力が38dBmを超える基地局:-43dBm</u>			
変調妨害波の電力	最大空中線電力	」が24dBmを超え	、38dBm以下の基	基地局:-38dBm
	<u>最大空</u>	中線電力が24dBr	n以下の基地局:	-35dBm
変調妨害波の周波数幅	<u>5 MHz</u>			

(イ) 移動局

<u>静特性下において、以下の条件とする。</u>

表4.3-18 ブロッキング(移動局)基本

	<u>5 MHz</u>	<u>10MHz</u>	<u>15MHz</u>	<u>20MHz</u>
	<u>システム</u>	<u>システム</u>	<u>システム</u>	<u>システム</u>
希望波の	甘淮咸庄, c dD	甘淮咸庄, c dD	基準感度+7dB	甘淮咸庄, OdP
<u>受信電力</u>	基準感度+6dB	<u>基準感度+6dB</u>	<u> </u>	<u>基準感度+9dB</u>
第1変調妨害波	10MU-	10 EMU-	1 EMU -	17 EMU-
の離調周波数	<u>10MHz</u>	<u>12. 5MHz</u>	<u>15MHz</u>	<u>17. 5MHz</u>
第1変調妨害波	E6dDm	E6dDm	-56dBm	E G d D m
<u>の電力</u>	<u>-56dBm</u>	<u>-56dBm</u>	-300DIII	<u>-56dBm</u>
第1変調妨害波	<u>5 MHz</u>	<u>5 MHz</u>	<u>5 MHz</u>	<u>5 MHz</u>

の周波数幅				
第2変調妨害波	15MU-11 F	17.5MHz以上	20MH-121 F	22.5MHz以上
の離調周波数	<u>15MHz以上</u>	17. 5MHZ以上	<u>20MHz以上</u>	<u> 22. 5MH2以上</u>
第2変調妨害波	4.4 dPm	4.4 d D m	4.4 dDm	4.4 dDm
の電力	<u>-44dBm</u>	<u>-44dBm</u>	<u>-44dBm</u>	<u>-44dBm</u>
第2変調妨害波	E MU-	E MU-	E MU-	E MU-
の周波数幅	<u>5 MHz</u>	<u>5 MHz</u>	<u>5 MHz</u>	<u>5 MHz</u>

エ 隣接チャネル選択度

隣接チャネル選択度は、隣接する搬送波に配置された変調妨害波の存在下で希望 信号を受信する受信機能力の尺度であり、以下の条件下で希望波と変調妨害波を加 えた時、規定の通信チャネル信号(QPSK、符号化率 1/3)を最大値の 95%以上のスル ープットで受信できること。

(7) 基地局

空中線端子あたりの空中線電力を最大空中線電力とし、各空中線端子において、 静特性下において以下の条件とする。

表 4. 3-19 隣接チャネル選択度

	<u>5 MHz</u>	<u>10MHz</u>	15MHz	<u>20MHz</u>
	<u>システム</u>	<u>システム</u>	<u>システム</u>	<u>システム</u>
希望波の受信電力	<u>基準感度+6dB</u>			
変調妨害波の離調	<u>5. 0025</u>	<u>7. 5075</u>	<u>10. 0125</u>	<u>12. 5025</u>
周波数	<u>MHz</u>	<u>MHz</u>	<u>MHz</u>	<u>MHz</u>
	最大空中線電力が38dBmを超える基地局:-52dBm			
変調妨害波の電力	最大空中線電力	カが24dBmを超え	、38dBm以下の基	基地局:-47dBm
	最大空中線電力が24dBm以下の基地局:-44dBm			
変調妨害波の周波	5 MHz			
<u>数幅</u>		<u>51</u>	<u>VII 1 Z</u>	

<u>(イ)移動局</u>

<u>静特性下において、以下の条件とすること。</u>

表4. 3-20 隣接チャネル選択度(移動局)基本

	<u>5 MHz</u>	<u>10MHz</u>	<u>15MHz</u>	<u>20MHz</u>
	<u>システム</u>	<u>システム</u>	<u>システム</u>	<u>システム</u>
希望波の	基準感度+14dB	基準感度+14dB	基準感度+14dB	基準感度+14dB

受信電力				
変調妨害波の 離調周波数	<u>5 MHz</u>	<u>7. 5MHz</u>	<u>10MHz</u>	<u>12. 5MHz</u>
変調妨害波の	<u>基準感度</u>	<u>基準感度</u>	<u>基準感度</u>	<u>基準感度</u>
<u>電力</u>	<u>+45. 5dB</u>	<u>+45. 5dB</u>	<u>+42. 5dB</u>	<u>+39. 5dB</u>
変調妨害波の <u>周波数幅</u>	<u>5 MHz</u>	<u>5 MHz</u>	<u>5 MHz</u>	<u>5 MHz</u>

才 相互変調特性

3次相互変調の関係にある電力が等しい2つの無変調妨害波又は一方が変調された妨害波の存在下で希望信号を受信する受信機能力の尺度であり、次の条件下で希望波と3次相互変調を生ずる関係にある無変調波と変調波の2つの妨害波を加えた時、規定の通信チャネル信号(QPSK、符号化率1/3)を最大値の95%以上のスループットで受信できること。

(7) 基地局

空中線端子あたりの空中線電力を最大空中線電力とし、各空中線端子において、 静特性下において以下の条件とする。

表 4. 3-21 相互変調特性

	<u> </u>		<u> </u>			
	<u>5 MHz</u>	<u>10MHz</u>	<u>15MHz</u>	<u>20MHz</u>		
	<u>システム</u>	<u>システム</u>	<u>システム</u>	<u>システム</u>		
希望波の		甘淮咸	± . C dD			
受信電力		<u>奉华您)</u>	<u> </u>			
無変調妨害波 1	1 OMU ~	10 AGEMU-	14 O2MU-	17 20EMU-		
の離調周波数	<u>10MHz</u>	<u>12. 465MHz</u>	<u>14. 93MHz</u>	<u>17. 395MHz</u>		
無亦理忧害汝 1	<u>最大空</u> 中	線電力が38dBm	を超える基地局	: −52dBm		
無変調妨害波1	最大空中線電力が24dBmを超え、38dBm以下の基地局:-47dBm					
<u>の電力</u>	最大空	中線電力が24dBn	n以下の基地局:	-44dBm		
変調妨害波2	20MHz	22. 5MHz	25MHz	27. 5MHz		
の離調周波数	<u>ZOWITZ</u>	<u>ZZ. 31WITZ</u>	ZOWITZ	<u>27. 3MHZ</u>		
亦無忧寒浊?	<u>最大空</u> 中	線電力が38dBm	を超える基地局	: -52dBm		
変調妨害波2	最大空中線電力が24dBmを超え、38dBm以下の基地局:-47dBm					
<u>の電力</u>	最大空	中線電力が24dBn	m以下の基地局:	-44dBm		
変調妨害波2	5 MHz					
の周波数幅		<u> </u>	<u> </u>			

(イ) 移動局

<u>静特性下において、以下の条件とすること。</u>

表 4. 3-22 相互変調特性(移動局)基本

	<u>5 MHz</u>	<u>10MHz</u>	<u>15MHz</u>	<u>20MHz</u>	
	<u>システム</u>	<u>システム</u>	<u>システム</u>	<u>システム</u>	
希望波の	基準感度+6dB	基準感度+6dB	基準感度+7dB	基準感度+9dB	
<u>受信電力</u>	基华总及+ 0 ub	基华总及+Oub	基华您及↑/ub	<u> </u>	
無変調妨害波 1	10MHz	12.5MHz	15MHz	17.5MHz	
の離調周波数	<u>10WI12</u>	12. JWI12	<u>1 JWI12</u>	17. JWI12	
無変調妨害波 1	-46dBm	-46dBm	-46dBm	-46dBm	
の電力	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
変調妨害波2	20MHz	25MHz	30MHz	35MHz	
の離調周波数	ZOWITZ	ZJWIIZ	<u>30MHZ</u>	SUMITE	
変調妨害波2	-46dBm	-46dBm	-46dBm	-46dBm	
の電力	<u> 4000111</u>	<u> 4000III</u>	_400biii	<u>4000III</u>	
変調妨害波2	5 MHz	5 MHz	5 MHz	5 MHz	
の周波数幅	<u>3 IVII Z</u>	<u>3 IVII12</u>	<u> 3 IVII Z</u>	<u>SIMITZ</u>	

カ 副次的に発する電波等の限度

受信状態で、空中線端子から発射される電波の限度とする。

(7) 基地局

各空中線端子で測定した不要発射の強度が表4.3-23に示す値以下である こと。

表4.3-23 副次的に発する電波等の限度(基地局)

周波数範囲	許容値	参照帯域幅
30MHz以上1,000MHz未満	<u>-57dBm</u>	<u>100kHz</u>
<u>1,000MHz以上12.75GHz未満</u>	<u>-47dBm</u>	<u> 1 MHz</u>
2 GHz帯TDD方式送受信帯域 2010MHz以上	E0dDm	1 MU¬
<u>2025MHz以下</u>	<u>-52dBm</u>	<u>1 MHz</u>

なお、使用する周波数に応じて表4.3-24に示す周波数範囲を除くこと。

表4.3-24 副次的に発する電波等の限度(基地局)除外する周波数

使用する周波数	<u>除外する周波数範囲</u>
<u>2 GHz帯</u>	2100MHz以上2180MHz以下
<u>1. 7GHz帯</u>	<u>1795MHz以上1890MHz以下</u>
<u>1. 5GHz帯</u>	<u>1465MHz以上1528MHz以下</u>
900MHz帯	915MHz以上970MHz以下
800MHz帯	850MHz以上904MHz以下
700MHz帯	748MHz以上813MHz以下

<u>(イ) 移動局</u>

30MHz以上1000MHz未満では-57dBm/100kHz以下、1000MHz以上12.75GHz以下では-47dBm/MHz以下であること。

4. 4 測定法

空中線端子を有する基地局及び移動局における 700MHz 帯、800MHz 帯、900MHz 帯、1.5GHz 帯、1.7GHz 帯及び 2 GHz 帯の 5 Gシステムの測定法については、国内で適用されている LTE の測定法に準ずることが適当である。基地局送信、移動局受信については、複数の送受空中線を有する無線設備にあっては、アダプティブアレーアンテナを用いる場合は各空中線端子で測定した値を加算(技術的条件が電力の絶対値で定められるもの。)した値により、空間多重方式を用いる場合は空中線端子毎に測定した値による。移動局送信、基地局受信については、複数の送受空中線を有し空間多重方式を用いる無線設備にあっては、最大空中線電力及び空中線電力の許容偏差は各空中線端子で測定した値を加算した値により、それ以外は空中線端子毎に測定した値による。

(1) 送信装置

ア 周波数の許容偏差

(7) 基地局

<u>被試験器の基地局を変調波が送信されるように設定し、波形解析器等を使用し、</u> 周波数偏差を測定する。

<u>被試験器が、無変調の状態にできる場合は周波数計を用いて測定することができる。</u>

(イ)移動局

<u>被試験器の移動局を基地局シミュレータと接続し、波形解析器等を使用し周波</u> 数偏差を測定する。

イ スプリアス領域における不要発射の強度

(7) 基地局

被試験器の基地局を定格出力で送信するよう設定し、空中線端子に接続された スペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照 帯域幅とし、規定される周波数範囲毎にスプリアス領域における不要発射の強度 を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

<u>また、搬送波近傍等において分解能帯域幅を参照帯域幅にすると搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域</u>幅に換算する方法を用いることができる。

なお、被試験器の空中線端子からアンテナ放射部までにフィルタあるいは給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。 アダプティブアレーアンテナを用いる場合は、空中線電力の総和が最大となる 状態にて測定すること。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及びスペクトルアナライザを分配器等により接続し、試験周波数に設定して最大出力で送信する。分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎にスプリアス領域における不要発射の強度を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

また、搬送波近傍等において分解能帯域幅を参照帯域幅にすると搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

ウ 隣接チャネル漏えい電力

(7) 基地局

被試験器の基地局を定格出力で送信するよう設定し、空中線端子に接続された スペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照 帯域幅とし、規定される周波数範囲毎に隣接チャネル漏えい電力を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、被試験器の基地局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正するこ と。

(化) 移動局

被試験器の移動局と基地局シミュレータ及びスペクトルアナライザを分配器等により接続し、試験周波数に設定して最大出力で送信する。分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に隣接チャネル漏えい電力を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

エ スペクトラムマスク

(7) 基地局

スプリアス領域における不要発射の強度の(ア)基地局と同じ測定方法とするが、 技術的条件により定められた条件に適合するように測定又は換算する。

(イ) 移動局

スプリアス領域における不要発射の強度の(4)移動局と同じ測定方法とするが、 技術的条件により定められた条件に適合するように測定又は換算する。

才 占有周波数帯幅

(7) 基地局

被試験器の基地局を定格出力で送信するよう設定する。スペクトルアナライザ を搬送波周波数に設定してその電力分布を測定し、全電力の0.5%となる上下の限 界周波数点を求め、その差を占有周波数帯幅とする。

(化) 移動局

被試験器の移動局と基地局シミュレータ及びスペクトルアナライザを分配器等により接続し、試験周波数に設定して最大出力で送信する。スペクトルアナライザを搬送波周波数に設定してその電力分布を測定し、全電力の0.5%となる上下の限界周波数点を求め、その差を占有周波数帯幅とする。

カ 空中線電力

(7) 基地局

<u>被試験器の基地局を定格出力で送信するよう設定し、電力計により空中線電力</u> を測定する。

アダプティブアレーアンテナを用いる場合は、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

なお、被試験器の基地局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ) 移動局

<u>被試験器の移動局と基地局シミュレータ及び電力計を分配器等により接続する。</u> 最大出力の状態で送信し、電力計により空中線電力を測定する。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正するこ と。

キ 送信オフ時電力

(7) 基地局

<u>規定しない。</u>

(化) 移動局

被試験器の移動局を基地局シミュレータ及びスペクトルアナライザを分配器等により接続し、送信停止状態とする。分解能帯域幅を技術的条件により定められた参照帯域幅とし、漏えい電力を測定する。

<u>分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、</u> <u>分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に</u> 渡って積分した値を求める。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正するこ と。

ク 送信相互変調特性

(7) 基地局

被試験器の基地局と不要波信号発生器及びスペクトルアナライザを分配器等により接続する。被試験器の基地局を定格出力で送信するよう設定し、不要波信号発生器の送信出力及び周波数を技術的条件に定められた値に設定する。スペクトルアナライザにより隣接チャネル漏えい電力、スペクトラムマスク及びスプリアス領域における不要発射の強度と同じ方法で測定する。

(イ) 移動局

規定しない。

(2) 受信装置

ア 受信感度

<u>(7) 基地局</u>

被試験器の基地局と移動局シミュレータを接続し、技術的条件に定められた信

<u> 号条件に設定する。移動局シミュレータからランダムデータを送信し、スループットを測定する。</u>

(イ) 移動局

<u>被試験器の移動局と基地局シミュレータを接続し、技術的条件に定められた信</u> 号条件に設定する。基地局シミュレータからランダムデータを送信し、スループットを測定する。

イ ブロッキング

(7) 基地局

被試験器の基地局と移動局シミュレータ及び変調信号発生器を接続し、技術的 条件に定められた信号レベルに設定する。移動局シミュレータからランダムデー タを送信し、変調信号発生器の周波数を掃引してスループットを測定する。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及び変調信号発生器を接続し、技術的 条件に定められた信号レベルに設定する。基地局シミュレータからランダムデータを送信し、変調信号発生器の周波数を掃引してスループットを測定する。

ウ 隣接チャネル選択度

(7) 基地局

被試験器の基地局と移動局シミュレータ及び信号発生器を接続し、技術的条件に定められた信号レベルに設定する。信号発生器の周波数を隣接チャネル周波数に設定してスループットを測定する。

(化) 移動局

被試験器の移動局と基地局シミュレータ及び信号発生器を接続し、技術的条件 に定められた信号レベルに設定する。信号発生器の周波数を隣接チャネル周波数 に設定してスループットを測定する。

工 相互変調特性

(7) 基地局

被試験器の基地局と移動局シミュレータ及び2つの妨害波信号発生器を接続する。希望波及び妨害波を技術的条件により定められた信号レベル及び周波数に設定する。移動局シミュレータからランダムデータを送信し、スループットを測定する。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及び2つの妨害波信号発生器を接続する。希望波及び妨害波を技術的条件により定められた信号レベル及び周波数に設 定する。基地局シミュレータからランダムデータを送信し、スループットを測定 <u>する。</u>

オ 副次的に発する電波等の限度

(7) 基地局

被試験器の基地局を受信状態(送信出力停止)にし、受信機入力端子に接続されたスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に副次的に発する電波の限度を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、被試験器の空中線端子からアンテナ放射部までにフィルタあるいは給電 線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及びスペクトルアナライザを分配器等により接続し、試験周波数に設定して受信状態(送信出力停止)にする。分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に副次的に発する電波の限度を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、被試験器の移動局の受信部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正するこ と。

(3) 運用中の設備における測定

運用中の無線局における設備の測定については、(1)及び(2)の測定法によるほか、 (1)及び(2)の測定法と技術的に同等と認められる方法によることができる。

4. 5 端末設備として移動局に求められる技術的な条件

(1) データ伝送用端末

情報通信審議会携帯電話等周波数有効利用方策委員会報告(平成 20 年 12 月 11 日) により示された LTE 方式の技術的な条件等を参考とし、5 Gの技術的な条件としては、 以下に示すとおりとする。

ア 基本的機能

(7) 発信

発信を行う場合にあっては、発信を要求する信号を送出するものであること。

(イ)着信応答

応答を行う場合にあっては、応答を確認する信号を送出するものであること。

イ 発信時の制限機能

規定しない。

ウ 送信タイミング

<u>基地局から受信したフレームに同期させ、かつ基地局から指定されたシンボルにおいて送信を開始するものとし、その送信の開始の時の偏差は、サブキャリア間隔が15kHz 及び30kHz においては±130 ナノ秒、サブキャリア間隔が60kHz においては±65</u>ナノ秒、サブキャリア間隔が120kHz においては±16.25 ナノ秒の範囲であること

エ ランダムアクセス制御

- (7) 基地局から指定された条件においてランダムアクセス制御信号を送出した後、送受信切り替えに要する時間の後に最初に制御信号の検出を試みるシンボルから 10 ミリ秒以内の基地局から指定された時間内に基地局から送信許可信号を受信した場合は、送信許可信号を受信した時から、基地局から指定された条件において情報の送信を行うこと。
- (1) (7)において送信禁止信号を受信した場合又は送信許可信号若しくは送信禁止信号を受信できなかった場合は、再び(7)の動作を行うこととする。この場合において、再び(7)の動作を行う回数は、基地局から指示される回数を超えないこと。

オ タイムアライメント制御

基地局からの指示に従い送信タイミングを調整する機能を有すること。

力 位置登録制御

- (7) 基地局からの位置情報が、データ伝送用端末に記憶されているものと一致しない場合のみ、位置情報の登録を要求する信号を送出すること。ただし、基地局から指示があった場合、又は利用者が当該端末を操作した場合は、この限りでない。
- (1) 基地局からの位置情報の登録を確認する信号を受信した場合にあっては、データ伝送用端末に記憶されている位置情報を更新し、かつ、保持するものであること。
- (ウ) LTE-Advanced 方式又は広帯域移動無線アクセスシステムと構造上一体となって おり、位置登録制御を LTE-Advanced 方式又は広帯域移動無線アクセスシステムにお いて行うデータ伝送用端末にあっては、(ア)、(イ)の規定を適用しない。

キ 送信停止指示に従う機能

基地局からチャネルの切断を要求する信号を受信した場合は、送信を停止する機能 を有すること。

ク 受信レベル通知機能

基地局から指定された条件に基づき、データ伝送用端末の周辺の基地局の指定された参照信号の受信レベルについて検出を行い、当該端末の周辺の基地局の受信レベルが基地局から指定された条件を満たす場合にあっては、その結果を基地局に通知すること。

ケ 端末固有情報の変更を防止する機能

- (ア) データ伝送用端末固有情報を記憶する装置は、容易に取り外せないこと。ただし、データ伝送用端末固有情報を記憶する装置を取り外す機能を有している場合は、この限りでない。
- (イ) データ伝送用端末固有情報は、容易に書き換えができないこと。
- (ウ) データ伝送用端末固有情報のうち利用者が直接使用するもの以外のものについては、容易に知得ができないこと。

コ チャネル切替指示に従う機能

<u>基地局からのチャネルを指定する信号を受信した場合にあっては、指定されたチャ</u>ネルに切り替える機能を備えなければならない。

サ 受信レベル等の劣化時の自動的な送信停止機能

通信中の受信レベル又は伝送品質が著しく劣化した場合にあっては、自動的に送信 を停止する機能を備えなければならない。

シ 故障時の自動的な送信停止機能

<u>故障により送信が継続的に行われる場合にあっては、自動的にその送信を停止する</u>機能を備えなければならない。

ス 重要通信の確保のための機能

<u>重要通信を確保するため、基地局からの発信の規制を要求する信号を受信した場合</u>にあっては、発信しない機能を備えなければならない。

(2) インターネットプロトコル移動電話端末

情報通信審議会情報通信技術分科会 IP ネットワーク設備委員会報告 (平成 24 年 9 月 27 日) により示された IP 移動電話端末の技術的条件等を参考とし、5 Gの技術的な条件としては、以下に示すとおりとする。

ア 基本的機能

(7) 発信

発信を行う場合にあっては、発信を要求する信号を送出するものであること。

<u>(イ) 着信応答</u>

<u>応答を行う場合にあっては、応答を確認する信号を送出するものであること。</u>

(ウ) メッセージ送出

発信又は応答を行う場合にあっては、呼の設定を行うためのメッセージ又は当該 メッセージに対応するためのメッセージを送出するものであること。

(エ) 通信終了メッセージ

通信を終了する場合にあっては、通信終了メッセージを送出するものであること。

イ 発信の機能

発信に際して相手の端末設備からの応答を自動的に確認する場合にあっては、電気 通信回線からの応答が確認できない場合、呼の設定を行うためのメッセージ送出終了 後 128 秒以内に通信終了すること。

<u>ウ 送信タイミング</u>

基地局から受信したフレームに同期させ、かつ基地局から指定されたシンボルにおいて送信を開始するものとし、その送信の開始の時の偏差は、サブキャリア間隔が15kHz 及び30kHz においては±130 ナノ秒、サブキャリア間隔が60kHz においては±65ナノ秒、サブキャリア間隔が120kHz においては±16.25 ナノ秒の範囲であること。

エ ランダムアクセス制御

- (7) 基地局から指定された条件においてランダムアクセス制御信号を送出した後、送受信切り替えに要する時間の後に最初に制御信号の検出を試みるシンボルから 10 ミリ秒以内の基地局から指定された時間内に基地局から送信許可信号を受信した場合は、送信許可信号を受信した時から、基地局から指定された条件において情報の送信を行うこと。
- (イ) (ア)において送信禁止信号を受信した場合又は送信許可信号若しくは送信禁止信号を受信できなかった場合は、再び(ア)の動作を行うこととする。この場合において、再び(ア)の動作を行う回数は、基地局から指示される回数を超えないこと。

オ タイムアライメント制御

基地局からの指示に従い送信タイミングを調整する機能を有すること。

力 位置登録制御

インターネットプロトコル移動電話端末は、以下の条件に適合する位置登録制御 を行う機能を備えなければならない。

- (7) 基地局からの位置情報が、インターネットプロトコル移動電話端末に記憶され ているものと一致しない場合には、位置情報の登録を要求する信号を送出するも のであること。ただし、基地局から指示があった場合は、この限りでない。
- (イ) 基地局からの位置情報の登録を確認する信号を受信した場合には、インターネットプロトコル移動電話端末に記憶されている位置情報を更新し、かつ、保持するものであること。

(ウ) LTE-Advanced 方式と構造上一体となっており、位置登録制御を LTE-Advanced 方式において行うインターネットプロトコル移動電話端末にあっては、(ア)、(イ)の規定を適用しない。

キ チャネル切替指示に従う機能

インターネットプロトコル移動電話端末は、基地局からのチャネルを指定する信号 を受信した場合にあっては、指定されたチャネルに切り替える機能を備えなければな らない。

ク 受信レベル通知機能

インターネットプロトコル移動電話端末の近傍の基地局から指示された参照信号の 受信レベルについて、検出を行い、当該受信レベルが基地局から指示された条件を満 たす場合にあっては、その結果を基地局に通知する機能を備えなければならない。

ケ 送信停止指示に従う機能

<u>インターネットプロトコル移動電話端末は、基地局からのチャネルの切断を要求す</u>る信号を受信した場合は、送信を停止する機能を備えなければならない。

コ 受信レベル等の劣化時の自動的な送信停止機能

インターネットプロトコル移動電話端末は、通信中の受信レベル又は伝送品質が著しく劣化した場合にあっては、自動的に送信を停止する機能を備えなければならない。

サ 故障時の自動的な送信停止機能

<u>インターネットプロトコル移動電話端末は、故障により送信が継続的に行われる場</u>合にあっては、自動的にその送信を停止する機能を備えなければならない。

シ 重要通信の確保のための機能

インターネットプロトコル移動電話端末は、重要通信を確保するため、基地局から の発信の規制を要求する信号を受信した場合にあっては、発信しない機能を備えなければならない。

ス ふくそう通知機能

<u>規定しない。</u>

セ 緊急通報機能

インターネットプロトコル移動電話端末であって、通話の用に供するものは、緊急 通報機能を発信する機能を備えなければならない。

ソ 端末固有情報の変更を防止する機能

- (7) インターネットプロトコル移動電話端末固有情報を記憶する装置は、容易に取り外せないこと。ただし、インターネットプロトコル移動電話端末固有情報を記憶する装置を取り外す機能を有している場合は、この限りでない。
- <u>(イ) インターネットプロトコル移動電話端末固有情報は、容易に書き換えができな</u>いこと。
- (ウ) インターネットプロトコル移動電話端末固有情報のうち利用者が直接使用する もの以外のものについては、容易に知得ができないこと。

タ 特殊なインターネットプロトコル移動電話端末

アからソまでの条件によることが著しく不合理なインターネットプロトコル移動電 話端末については、個別に適した具体的条件を柔軟に設定するため、例外規定を設定 しておく必要がある。

4.6 その他

国内標準化団体等では、無線インタフェースの詳細仕様や高度化に向けた検討が引き続き行われていることから、今後、これらの国際的な動向等を踏まえつつ、技術的な検討が不要な事項について、国際的な整合性を早期に確保する観点から、適切かつ速やかに国際標準の内容を技術基準に反映していくことが望ましい。

第5章 第5世代移動通信システム(TDD-NR)の技術的条件

5. 1 3.5GHz 帯、3.7GHz 帯及び 4.5GHz 帯における技術的条件

5. 1. 1 無線諸元

(1) 無線周波数帯

3. 5GHz 帯 (3. 4GHz-3. 6GHz)、3. 7GHz 帯 (3. 6GHz-4. 1GHz) 及び 4. 5GHz 帯 (4. 5GHz-4. 9GHz) の周波数を使用すること。

(2) キャリア設定周波数間隔

設定しうるキャリア周波数間の最低周波数設定ステップ幅であること。 15kHz とすること。

(3) 多元接続方式/多重接続方式

OFDM (Orthogonal Frequency Division Multiplexing: 直交周波数分割多重)方式及び TDM (Time Division Multiplexing: 時分割多重)方式との複合方式を下り回線(基地局送信、移動局受信)に、SC-FDMA (Single Carrier Frequency Division Multiple Access: シングル・キャリア周波数分割多元接続)方式又は OFDMA (Orthogonal Frequency Division Multiple Access: 直交周波数分割多元接続)方式を上り回線(移動局送信、基地局受信)に使用すること。

(4) 通信方式

TDD (Time Division Duplex:時分割複信)方式とすること。

(5) 変調方式

ア 基地局(下り回線)

QPSK (Quadrature Phase Shift Keying)、16QAM (16 Quadrature Amplitude Modulation)、64QAM (64 Quadrature Amplitude Modulation) 又は256QAM (256 Quadrature Amplitude Modulation) 方式を採用すること。

イ 移動局(上り回線)

BPSK (Binary Phase Shift Keying)、 $\pi/2$ shift-BPSK ($\pi/2$ shift-Binary Phase Shift Keying)、QPSK、16QAM、64QAM又は256QAM方式を採用すること。

5. 1. 2 システム設計上の条件

(1) フレーム長

フレーム長は 10ms であり、サブフレーム長は 1ms(10 サブフレーム/フレーム)であること。スロット長は 1.0ms、0.5ms 又は 0.25ms(10、20 又は 40 スロット/フレー

ム) であること。

(2) 送信電力制御

基地局からの電波の受信電力の測定又は当該基地局からの制御情報に基づき空中線 電力が必要最小限となるよう自動的に制御する機能を有すること

(3) 電磁環境対策

移動局と自動車用電子機器や医療電子機器等との相互の電磁干渉に対しては、十分な配慮が払われていること。

(4) 電波防護指針への適合

電波を使用する機器については、基地局については電波法施行規則第21条の3、移動局については無線設備規則第14条の2に適合すること。

(5) 移動局送信装置の異常時の電波発射停止

次の機能が独立してなされること。

ア 基地局が移動局の異常を検出した場合、基地局は移動局に送信停止を要求すること。

イ 移動局自身がその異常を検出した場合は、異常検出タイマのタイムアウトにより 移動局自身が送信を停止すること。

(6) 他システムとの共用

他の無線局及び電波法第56条に基づいて指定された受信設備に干渉の影響を与えないように、設置場所の選択、フィルタの追加等の必要な対策を講ずること。

5. 1. 3 無線設備の技術的条件

(1) 送信装置

通常の動作状態において、以下の技術的条件を満たすこと。なお、本技術的条件に適用した<u>一部の規定</u>は暫定値であり、3GPP の議論が確定した後、適正な値を検討することが望ましい。

ア キャリアアグリゲーション

基地局については、一の送信装置から異なる周波数帯の搬送波を発射する場合については今回の検討の対象外としており、そのような送信装置が実現される場合には、その不要発射等について別途検討が必要である。

移動局については、キャリアアグリゲーション(複数の搬送波を同時に用いて一体として行う無線通信をいう。)で送信可能な搬送波の組合せで送信している状態で搬送波毎につからサに定める技術的条件を満足すること。また、LTE-Advanced 方式又は広帯域移動無線アクセスシステムとのキャリアアグリゲーションにおいては、

各搬送波の合計値がクの技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

イ アクティブアンテナ

複数の空中線素子及び無線設備を用いて1つ又は複数の指向性を有するビームパターンを形成・制御する技術をいう。

基地局については、ノーマルアンテナ(アクティブアンテナではなく、ビームパターンが固定のものをいう。)においては、空中線端子がある場合のみを定義し、空中線端子のないノーマルアンテナについては、今回の検討の対象外とする。

空中線端子があり、かつアクティブアンテナを組合せた基地局については、1空中線端子における最大空中線電力又は各技術的条件の許容値に 10 log(N) (N は 1 つの搬送波を構成する無線設備の数又は8のいずれか小さい方の値とする。以下、6.

1. 3において同じ)を加えた値を最大空中線電力又はその技術的条件における許容値とすること。基地局が複数のアクティブアンテナを組合せることが可能な場合は、各アクティブアンテナにおいてウからサの技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

移動局については、アクティブアンテナを定義せず、空中線端子がある場合のみを今回の検討の対象とし、空中線端子がない場合は対象外とする。

ウ 周波数の許容偏差

(7) 基地局

空中線端子のある基地局のうち<u>空中線端子あたりの</u>最大空中線電力が 38dBm を超えるもの 及び 空中線端子のない基地局のうち最大空中線電力が 47dBm を超えるものにおいては、± (0.05ppm+12Hz) 以内、

空中線端子のある基地局のうち<u>空中線端子あたりの</u>最大空中線電力が 38dBm 以下のもの 及び 空中線端子のない基地局のうち最大空中線電力が 47dBm 以下のものにおいては、± (0.1ppm+12Hz) 以内であること。

空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合にあっては、空中線端子における空中線電力の総和を最大空中線電力とし、最大空中線電力が 38dBm+10log(N) を超える場合は、± (0.05ppm+12Hz) 以内、最大空中線電力が 38dBm+10log(N) 以下の場合は、± (0.1ppm+12Hz) 以内であること。

(イ) 移動局

基地局の制御信号により指示された移動局の送信周波数に対し、± (0.1ppm+15Hz) 以内であること。

エ スプリアス領域における不要発射の強度

スプリアス領域における不要発射の許容値は、以下の表に示す値以下であること。

(7) 基地局

基地局における許容値は、基地局が使用する周波数帯 (3.4GHz-4.1GHz、又は4.5GHz-4.9GHzの周波数帯をいう。以下、1において同じ。)の端から40MHz以上離

れた周波数範囲に適用する。空中線端子のある基地局(空間多重方式を用いる場合を含む)にあっては各空中線端子で測定した不要発射の強度が表 5. 1. 3 - 1 の空中線端子ありに示す許容値以下であること。また、一の送信装置において同一周波数帯で複数搬送波(変調後の搬送波をいう。以下 1. 3 において同じ。)を送信する場合にあっては、複数の搬送波を同時に送信した場合においても、本規定を満足すること。

空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合にあっては、測定周波数における全空中線端子の不要発射の総和が表 5. 1. 3-1に示す空中線端子ありの許容値に10log(N)を加えた値以下であること。

空中線端子のない基地局であり、かつアクティブアンテナと組合せた場合にあっては、測定周波数における不要発射の総和が表 5.1.3-1に示す空中線端子なしの許容値以下であること。

表 5. 1. 3-1 スプリアス領域における不要発射の 強度の許容値(基地局)基本

温度等的 自信 (至40%) 至中						
	許額					
周波数範囲	空中線端子	空中線端子	参照帯域幅			
	あり	なし				
9 kHz以上150kHz未満	−13dBm	-	1 kHz			
150kHz以上30MHz未満	−13dBm	-	10kHz			
30MHz以上1000MHz未満	−13dBm	– 4 dBm	100kHz			
1000MHz以上12.75GHz未満	−13dBm	– 4 dBm	1 MHz			
12.75GHz以上上端の周波数の5倍未満	−13dBm	– 4 dBm	1 MHz			

以下に示すPHS帯域については、表 5. 1.3-2に示す許容値以下であること。 空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合にあっては、測定周波数における全空中線端子の不要発射の総和が表 5. 1.3-2に示す空中線端子ありの許容値に10log(N)を加えた値以下であること。

空中線端子のない基地局であり、かつアクティブアンテナと組合せた場合にあっては、測定周波数における不要発射の総和が表 5.1.3-2に示す空中線端子なしの許容値以下であること。

表 5. 1. 3 - 2 スプリアス領域における不要発射の 強度の許容値(基地局) PHS 帯域

	許容	F値	
周波数範囲	空中線端子	空中線端子	参照帯域幅
	あり	なし	
1884. 5MHz以上1915. 7MHz以下	-41dBm	-32dBm	300kHz

(イ) 移動局

移動局における許容値は、10MHzシステムにあっては周波数離調(送信周波数帯域の中心周波数から参照帯域幅の送信周波数帯に近い方の端までの差の周波数を指す。搬送波が隣接するキャリアアグリゲーションの場合を除き、以下同じ。)が20MHz以上、15MHzシステムにあっては周波数離調が27.5MHz以上、20MHzシステムにあっては周波数離調が35MHz以上、40MHzシステムにあっては周波数離調が65MHz以上、50MHzシステムにあっては周波数離調が80MHz以上、60MHzシステムにあっては周波数離調が110MHz以上、80MHzシステムにあっては周波数離調が110MHz以上、80MHzシステムにあっては周波数離調が125MHz以上、90MHzシステムにあっては周波数離調が155MHz以上に適用する。なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること又はそれらの組合せの制御によって制限することで、その条件での許容値とすることができる。

搬送波が隣接するキャリアアグリゲーションで送信する場合、複数の搬送波で送信している条件での許容値とし、複数の搬送波の帯域幅の合計値が、110MHzシステムにあっては周波数離調(隣接する複数の搬送波の送信帯域幅の中心周波数から参照帯域幅の送信周波数帯に近い方の端までの差の周波数を指す。搬送波が隣接するキャリアアグリゲーションの場合にあっては、以下同じ。)が170MHz以上、120MHzシステムにあっては周波数離調が185MHz以上、130MHzシステムにあっては周波数離調が200MHz以上、140MHzシステムにあっては周波数離調が215MHz以上、150MHzシステムにあっては周波数離調が230MHz以上、160MHzシステムにあっては周波数離調が275MHz以上、200MHzシステムにあっては周波数離調が305MHz以上の周波数範囲に適用する。

搬送波が隣接しないキャリアアグリゲーションで送信する場合、一の搬送波のスプリアス領域が他の搬送波の送信周波数帯域及び帯域外領域と重複する場合は、 当該周波数範囲においては本規定を適用しない。なお、送信する周波数の組合せ により測定する周波数範囲における許容値が異なる場合は、どちらか高い方の許 容値を適用する。

表 5 .	1.	3 — 3	スプ	リアス	ス領域におけ	不要発射の強度の許容値(移動	局)基本

周波数範囲	許容値	参照帯域幅
9 kHz以上150kHz未満	-36dBm	1 kHz
150kHz以上30MHz未満	-36dBm	10kHz
30MHz以上1000MHz未満	-36dBm	100kHz
1000MHz以上12.75GHz未満	-30dBm	1 MHz
12.75GHz以上上端の周波数の5倍未満	-30dBm	1 MHz

表 5. 1. 3 - 4 に示す周波数範囲については、同表に示す許容値以下であること。

表5.1.3-4 スプリアス領域における不要発射の強度の 許容値(移動局)個別周波数帯

周波数範囲	許容値	参照帯域幅
700MHz帯受信帯域: 773MHz以上803MHz以下	-50dBm	1 MHz
800MHz帯受信帯域:860MHz以上890MHz以下	-50dBm	1 MHz
900MHz帯受信帯域: 945MHz以上960MHz以下	-50dBm	1 MHz
1.5GHz帯受信帯域:1475.9MHz以上1510.9MHz以下	-50dBm	1 MHz
1.7GHz帯受信帯域:1805MHz以上1880MHz以下	-50dBm	1 MHz
PHS帯域:1884.5MHz以上1915.7MHz以下	-41dBm	300kHz
2 GHz帯TDD方式送受信帯域:2010MHz以上2025MHz以下	-50dBm	1 MHz
2 GHz帯受信帯域: 2110MHz以上2170MHz以下	-50dBm	1 MHz

オ 隣接チャネル漏えい電力

(7) 基地局

表5. 1. 3-5に示す絶対値規定又は相対値規定のいずれかの許容値を各離調周波数において満足すること。空中線端子のある基地局(空間多重方式を用いる場合を含む)にあっては、各空中線端子において表5. 1. 3-5の空中線端子ありに示す絶対値規定又は相対値規定のいずれかの規定を満足すること。

一の送信装置において同一周波数帯で複数の搬送波を同時に送信する場合の許容値は、最も下側の搬送波の下側及び最も上側の搬送波の上側において、表 5. 1. 3-5に示す絶対値規定又は相対値規定のいずれかの許容値を各離調周波数において満足すること。

空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合にあっては、全空中線端子の総和が表 5.1.3-5に示す絶対値規定又は相対値規定のいずれかの空中線端子ありの許容値を各離調周波数において満足すること。ただし、絶対値規定の許容値は表 5.1.3-5の空中線端子ありの許容値に10log(N)を加えた値とする。

空中線端子のない基地局であり、かつアクティブアンテナと組合せた場合にあっては、空中線電力の総和が表 5.1.3-5に示す絶対値規定又は相対値規定のいずれかの空中線端子なしの許容値を各離調周波数において満足すること。

表5.1.3-5 隣接チャネル漏えい電力(基地局)

		離調	許容		
システム	規定の種別	用波数	空中線端子	空中線端子	参照帯域幅
		问収数	あり	なし	
1 OMU-	絶対値規定	10MHz	-13dBm/MHz	-4dBm/MHz	9. 36MHz
10MHz	相対値規定	10MHz	−44. 2dBc	<u>-43. 8dBc</u>	9. 36MHz
システム	絶対値規定	20MHz	-13dBm/MHz	-4dBm/MHz	9. 36MHz

	相対値規定	20MHz	-44. 2dBc	<u>-43. 8dBc</u>	9. 36MHz
	絶対値規定	15MHz	-13dBm/MHz	-4dBm/MHz	14. 22MHz
15MHz	相対値規定	15MHz	-44. 2dBc	<u>-43. 8dBc</u>	14. 22MHz
システム	絶対値規定	30MHz	-13dBm/MHz	-4dBm/MHz	14. 22MHz
	相対値規定	30MHz	-44. 2dBc	<u>-43. 8dBc</u>	14. 22MHz
	絶対値規定	20MHz	-13dBm/MHz	-4dBm/MHz	19.08MHz
20MHz	相対値規定	20MHz	-44. 2dBc	<u>-43. 8dBc</u>	19.08MHz
システム	絶対値規定	40MHz	-13dBm/MHz	-4dBm/MHz	19.08MHz
	相対値規定	40MHz	-44. 2dBc	<u>-43. 8dBc</u>	19.08MHz
	絶対値規定	30MHz	-13dBm/MHz	-4dBm/MHz	28. 8MHz
30MHz	相対値規定	30MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	28.8MHz
システム	絶対値規定	60MHz	-13dBm/MHz	-4dBm/MHz	28. 8MHz
	相対値規定	60MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	28. 8MHz
	絶対値規定	40MHz	-13dBm/MHz	-4dBm/MHz	38.88MHz
40MHz	相対値規定	40MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	38.88MHz
システム	絶対値規定	80MHz	-13dBm/MHz	-4dBm/MHz	38.88MHz
	相対値規定	80MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	38.88MHz
	絶対値規定	50MHz	-13dBm/MHz	-4dBm/MHz	48. 6MHz
50MHz	相対値規定	50MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	48.6MHz
システム	絶対値規定	100MHz	-13dBm/MHz	-4dBm/MHz	48. 6MHz
	相対値規定	100MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	48.6MHz
	絶対値規定	60MHz	-13dBm/MHz	-4dBm/MHz	58. 32MHz
60MHz	相対値規定	60MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	58. 32MHz
システム	絶対値規定	120MHz	-13dBm/MHz	-4dBm/MHz	58. 32MHz
	相対値規定	120MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	58. 32MHz
	絶対値規定	70MHz	-13dBm/MHz	-4dBm/MHz	68. 04MHz
70MHz	相対値規定	70MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	68. 04MHz
システム	絶対値規定	140MHz	-13dBm/MHz	-4dBm/MHz	68. 04MHz
	相対値規定	140MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	68. 04MHz
	絶対値規定	80MHz	-13dBm/MHz	-4dBm/MHz	78. 12MHz
80MHz	相対値規定	80MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	78. 12MHz
システム	絶対値規定	160MHz	-13dBm/MHz	-4dBm/MHz	78. 12MHz
	相対値規定	160MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	78. 12MHz
90MHz	絶対値規定	90MHz	-13dBm/MHz	-4dBm/MHz	88. 2MHz
システム	相対値規定	90MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	88. 2MHz

	絶対値規定	180MHz	-13dBm/MHz	-4dBm/MHz	88. 2MHz
	相対値規定	180MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	88. 2MHz
	絶対値規定	100MHz	-13dBm/MHz	-4dBm/MHz	98. 28MHz
100MHz	相対値規定	100MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	98. 28MHz
システム	絶対値規定	200MHz	-13dBm/MHz	-4dBm/MHz	98. 28MHz
	相対値規定	200MHz	<u>-43. 8dBc</u>	<u>-43. 8dBc</u>	98. 28MHz

一の送信装置において同一周波数帯で隣接しない複数の搬送波を同時に送信する場合は、表5.1.3-6に示す絶対値規定又は相対値規定のいずれかの許容値を各オフセット周波数において満足すること。

一の送信装置において同一周波数帯で隣接しない複数の搬送波を同時に送信する場合であって、空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合にあっては、全空中線端子の総和が表 5. 1. 3 - 6に示す絶対値規定又は相対値規定のいずれかの空中線端子ありの許容値を各オフセット周波数において満足すること。ただし、絶対値規定の許容値は表 5. 1. 3 - 6の空中線端子ありの許容値に10 log (N) を加えた値とする。

一の送信装置において同一周波数帯で隣接しない複数の搬送波を同時に送信する場合であって、空中線端子のない基地局であり、かつアクティブアンテナと組合せた場合にあっては、空中線電力の総和が表 5. 1. 3 - 6 に示す絶対値規定又は相対値規定のいずれかの空中線端子なしの許容値を各オフセット周波数において満足すること。

表5.1.3-6 隣接チャネル漏えい電力(隣接しない複数の搬送波を発射する基地局)

			オフセット	許和	字値	华 昭
システム	周波数差 ^{注2}	規定の種別	オフセット 周波数 ^{注3}	空中線端子	空中線端子	参照 帯域幅
			问/仪数"	あり	なし	市少线 帽
	5 MHz以上	絶対値規定	2.5MHz	-13dBm/MHz	-4dBm/MHz	4. 5MHz
	10MHz以下	相対値規定	2.5MHz	-44. 2dBc ^{注 4}	<u>-43.8dBc</u> ^{注 4}	4. 5MHz
		絶対値規定	2.5MHz	-13dBm/MHz	-4dBm/MHz	4. 5MHz
	10MHzを超え	相対値規定	2.5MHz	-44. 2dBc ^{注 4}	_43.8dBc ^{注 4}	4. 5MHz
20MHz以下の	15MHz未満	絶対値規定	7. 5MHz	-13dBm/MHz	-4dBm/MHz	4. 5MHz
システム		相対値規定	7. 5MHz	-44. 2dBc ^{注 4}	<u>-43.8dBc</u> ^{注 4}	4. 5MHz
		絶対値規定	2. 5MHz	-13dBm/MHz	-4dBm/MHz	4. 5MHz
	15MHz以上	相対値規定	2.5MHz	-44. 2dBc ^{注 5}	<u>-43.8dBc</u> ^{注 5}	4. 5MHz
	20MHz未満	絶対値規定	7. 5MHz	-13dBm/MHz	-4dBm/MHz	4. 5MHz
		相対値規定	7. 5MHz	-44. 2dBc ^{注 4}	_43.8dBc ^{注 4}	4. 5MHz
	20MHz以上	絶対値規定	2. 5MHz	-13dBm/MHz	-4dBm/MHz	4. 5MHz

		相対値規定	2. 5MHz	-44. 2dBc ^{注5}	_43.8dBc ^{注5}	4. 5MHz
		絶対値規定	7. 5MHz	-13dBm/MHz	-4dBm/MHz	4. 5MHz
		相対値規定	7. 5MHz	-44. 2dBc ^{注5}	_43.8dBc ^{注5}	4. 5MHz
	5 MHz以上	絶対値規定	2. 5MHz	-13dBm/MHz	-4dBm/MHz	4. 5MHz
	10MHz未満	相対値規定	2. 5MHz	-44. 2dBc ^{注4}	_43.8dBc ^{注4}	4. 5MHz
		絶対値規定	2. 5MHz	-13dBm/MHz	-4dBm/MHz	4. 5MHz
20111 111 - 2	10MHz以上	相対値規定	2. 5MHz	-44. 2dBc ^{注4}	_43.8dBc ^{注4}	4. 5MHz
20MHz以下の	45MHz未満	絶対値規定	7. 5MHz	-13dBm/MHz	-4dBm/MHz	4. 5MHz
システム		相対値規定	7. 5MHz	-44. 2dBc ^{注 4}	_43.8dBc ^{注 4}	4. 5MHz
(他方の搬 送波が20MHz		絶対値規定	2. 5MHz	-13dBm/MHz	-4dBm/MHz	4. 5MHz
<u>医</u> 版が20mm2	45MHz以上	相対値規定	2. 5MHz	-44. 2dBc ^{注5}	<u>-43.8dBc</u> ^{注5}	4. 5MHz
システムの	50MHz未満	絶対値規定	7. 5MHz	-13dBm/MHz	-4dBm/MHz	4. 5MHz
場合)		相対値規定	7. 5MHz	-44. 2dBc ^{注 4}	<u>-43.8dBc</u> ^{注 4}	4. 5MHz
791 ロ /		絶対値規定	2.5MHz	-13dBm/MHz	-4dBm/MHz	4. 5MHz
	50MHz以上	相対値規定	2.5MHz	-44. 2dBc ^{注5}	<u>-43.8dBc</u> ^{注5}	4. 5MHz
	JOWITZ以上	絶対値規定	7. 5MHz	-13dBm/MHz	-4dBm/MHz	4. 5MHz
		相対値規定	7. 5MHz	-44. 2dBc ^{注5}	<u>-43.8dBc</u> ^{注5}	4. 5MHz
	20MHz以上	絶対値規定	10MHz	-13dBm/MHz	-4dBm/MHz	19.08MHz
	40MHz以下	相対値規定	10MHz	_43.8dBc ^{注4}	<u>-43.8dBc</u> ^{注 4}	19.08MHz
		絶対値規定	10MHz	-13dBm/MHz	-4dBm/MHz	19.08MHz
	40MHzを超え	相対値規定	10MHz	_43.8dBc ^{注4}	<u>-43.8dBc</u> ^{注4}	19.08MHz
	60MHz未満	絶対値規定	30MHz	-13dBm/MHz	-4dBm/MHz	19.08MHz
		相対値規定	30MHz	_43.8dBc ^{注4}	_43.8dBc ^{注 4}	19.08MHz
20MHzを超え		絶対値規定	10MHz	-13dBm/MHz	-4dBm/MHz	19.08MHz
るシステム	60MHz以上	相対値規定	10MHz	<u>-43.8dBc</u> ^{注5}	<u>-43.8dBc</u> ^{注5}	19.08MHz
	80MHz未満	絶対値規定	30MHz	-13dBm/MHz	-4dBm/MHz	19.08MHz
		相対値規定	30MHz	_43.8dBc ^{注4}	<u>-43.8dBc</u> ^{注 4}	19.08MHz
		絶対値規定	10MHz	-13dBm/MHz	-4dBm/MHz	19.08MHz
	80MHz以上	相対値規定	10MHz	<u>-43. 8dBc</u> ^{注5}	<u>-43.8dBc</u> ^{注5}	19.08MHz
	OOMIZAT	絶対値規定	30MHz	-13dBm/MHz	-4dBm/MHz	19.08MHz
		相対値規定	30MHz	<u>-43. 8dBc</u> ^{注5}	<u>-43.8dBc</u> ^{注5}	19.08MHz
20MHzを超え	20MHz以上	絶対値規定	10MHz	-13dBm/MHz	-4dBm/MHz	19.08MHz
るシステム	30MHz未満	相対値規定	10MHz	<u>-43.8dBc</u> ^{注4}	<u>-43.8dBc</u> ^{注 4}	19.08MHz
(他方の搬	30MHz以上	絶対値規定	10MHz	-13dBm/MHz	-4dBm/MHz	19.08MHz
送波が20MHz	40MHz未満	相対値規定	10MHz	_43.8dBc ^{注5}	<u>-43.8dBc</u> ^{注5}	19.08MHz

以下の		絶対値規定	10MHz	-13dBm/MHz	-4dBm/MHz	19. 08MHz
システムの	40MHz以上	相対値規定	10MHz	<u>-43.8dBc</u> ^{注5}	<u>-43.8dBc</u> ^{注5}	19.08MHz
場合)	50MHz未満	絶対値規定	30MHz	-13dBm/MHz	-4dBm/MHz	19.08MHz
		相対値規定	30MHz	_43.8dBc ^{注4}	<u>-43.8dBc</u> 注4	19.08MHz
		絶対値規定	10MHz	-13dBm/MHz	-4dBm/MHz	19.08MHz
	50MHz以上	相対値規定	10MHz	_43.8dBc ^{注5}	<u>-43.8dBc</u> 注5	19.08MHz
	50MIN2以上	絶対値規定	30MHz	-13dBm/MHz	-4dBm/MHz	19.08MHz
		相対値規定	30MHz	<u>-43.8dBc</u> ^{注5}	<u>-43.8dBc</u> 注5	19.08MHz

注1:本表は、下側の搬送波の送信周波数帯域の上端から、上側の搬送波の送信周 波数帯域の下端までの周波数範囲に適用する。3波以上の搬送波の場合には、 近接する搬送波の間の周波数範囲に適用する。

注2:下側の搬送波の送信周波数帯域の上端から、上側の搬送波の送信周波数帯域 の下端までの周波数差

注3:下側の搬送波の送信周波数帯域の上端又は上側の搬送波の送信周波数帯域の 下端から隣接チャネル漏えい電力の測定帯域の中心までの差の周波数

注4:基準となる搬送波の電力は、複数の搬送波の電力の和とする。

注5:基準となる搬送波の電力は、下側の搬送波又は上側の搬送波の電力とする。

(イ) 移動局

許容値は、表5.1.3-7に示す絶対値規定又は相対値規定のどちらか高い値であること。なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること又はそれらの組合せによる制御によって制限することで、その条件での許容値とすることができる。

表5.1.3-7 隣接チャネル漏えい電力(移動局)基本

システム	規定の種別	離調周波数	許容值 ^注	参照帯域幅
10MHzシステム	絶対値規定	10MHz	-50dBm	9. 375MHz
TOMITZ	相対値規定	10MHz	<u>−29. 2dBc</u>	9. 375MHz
15MHzシステム	絶対値規定	15MHz	-50dBm	14. 235MHz
TOMITE	相対値規定	15MHz	<u>−29. 2dB</u> c	14. 235MHz
20MHzシステム	絶対値規定	20MHz	-50dBm	19.095MHz
20MH2 2 X) A	相対値規定	20MHz	<u>−29. 2dBc</u>	19.095MHz
40MHzシステム	絶対値規定	40MHz	−50dBm	38.895MHz
40MH2システム	相対値規定	40MHz	<u>−29. 2dBc</u>	38.895MHz
	絶対値規定	50MHz	−50dBm	48. 615MHz
50MHzシステム	相対値規定	50MHz	<u>−29. 2dBc</u>	48.615MHz

60MHzシステム	絶対値規定	60MHz	-50dBm	58. 35MHz
OUMITZ DATA	相対値規定	60MHz	<u>−29. 2dBc</u>	58. 35MHz
00MH22.7 = /	絶対値規定	80MHz	-50dBm	78. 15MHz
80MHzシステム	相対値規定	80MHz	<u>−29. 2dBc</u>	78. 15MHz
90MHzシステム	絶対値規定	90MHz	-50dBm	88. 23 <mark>MHz</mark>
90MI12 2 A F A	相対値規定	90MHz	<u>−29. 2dBc</u>	88. 23 <mark>MHz</mark>
100MIL-2 7 7 1	絶対値規定	100MHz	-50dBm	98. 31MHz
100MHzシステム	相対値規定	100MHz	<u>−29. 2dBc</u>	98. 31MHz

注:送信周波数帯域の中心周波数から離調周波数分だけ離れた周波数を中心 周波数とする参照帯域幅分の値とする。

搬送波が隣接するキャリアアグリゲーションで送信する場合、許容値は、複数の搬送波で送信している条件とし、表 5. 1. 3 - 8 に示す相対値規定又は絶対値規定のどちらか高い値であること。

表5.1.3-8 隣接チャネル漏えい電力(移動局)キャリアアグリゲーション

· ·	71327			
システム	規定の種別	離調周波数	許容值 ^{注1}	参照帯域幅
110MHz	絶対値規定	110MHz	-50dBm	109. 375MHz
システム	相対値規定	110MHz	<u>−29. 2dBc</u>	109. 375MHz
120MHz	絶対値規定	120MHz	-50dBm	119.095MHz
システム	相対値規定	120MHz	<u>−29. 2dBc</u>	119.095MHz
130MHz	絶対値規定	130MHz	-50dBm	128.815MHz
システム	相対値規定	130MHz	<u>−29. 2dBc</u>	128. 815MHz
140MHz	絶対値規定	140MHz	-50dBm	138.895MHz
システム	相対値規定	140MHz	<u>−29. 2dBc</u>	138. 895MHz
150MHz	絶対値規定	150MHz	-50dBm	148.615MHz
システム	相対値規定	150MHz	<u>−29. 2dBc</u>	148. 615MHz
160MHz	絶対値規定	160MHz	-50dBm	158. 35MHz
システム	相対値規定	160MHz	<u>−29. 2dBc</u>	158. 35MHz
180MHz	絶対値規定	180MHz	-50dBm	178. 15MHz
システム	相対値規定	180MHz	<u>−29. 2dBc</u>	178. 15MHz
200MHz	絶対値規定	200MHz	-50dBm	198. 31MHz
システム	相対値規定	200MHz	<u>−29. 2dBc</u>	198. 31MHz

注1:隣接する複数の搬送波の送信周波数帯域の中心周波数から離調周波数分だけ離れた周波数を中心周波数とする参照帯域幅分の値とする。

注2:相対値規定の際、基準となる搬送波電力は、キャリアアグリゲーションで送信する隣接する複数の搬送波電力の和とする。

搬送波が隣接しないキャリアアグリゲーションで送信する場合、各送信周波数帯域の端(他方の送信搬送波に近い端に限る。)の間隔が各搬送波の占有周波数帯幅よりも狭い場合はその間隔内においては本規定を適用しない。

カ スペクトラムマスク

(7) 基地局

送信周波数帯域の端(不要発射の強度の測定帯域に近い端に限る。)から不要発射の強度の測定帯域の中心周波数までの差のオフセット周波数(Δf)に対して、表5.1.3-9に示す許容値以下であること。ただし、基地局が使用する周波数帯の端から40MHz未満の周波数範囲に限り適用する。空中線端子のある基地局(空間多重方式を用いる場合を含む)にあっては各空中線端子で測定した不要発射の強度が表5.1.3-9の空中線端子ありに示す許容値以下であること。また、一の送信装置において同一周波数帯で複数の搬送波を送信する場合にあっては、複数の搬送波を同時に送信した場合においても、最も下側の搬送波の下側及び最も上側の搬送波の上側において、本規定を満足すること。

一の送信装置において同一周波数帯で隣接しない複数の搬送波を同時に送信する場合にあっては、複数の搬送波を同時に送信した場合において、下側の搬送波の送信周波数帯域の上端から、上側の搬送波の送信周波数帯域の下端までの周波数範囲においては、各搬送波に属するスペクトラムマスクの許容値の総和を満たすこと。ただし、下側の搬送波の送信周波数帯域の上端、及び上側の搬送波の送信周波数帯域の下端から10MHz以上離れた周波数範囲においては、-13dBm/1MHzを満足すること。

空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合にあっては、測定周波数における全空中線端子の総和が表 5.1.3 - 9に示す空中線端子ありの許容値に10log(N)を加えた値以下であること。

一の送信装置において同一周波数帯で隣接しない複数の搬送波を同時に送信する場合であって、空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合にあっては、下側の搬送波の送信周波数帯域の上端から、上側の搬送波の送信周波数帯域の下端までの周波数範囲においては、各搬送波に属するスペクトラムマスクの許容値の総和に10log(N)を加えた値以下であること。ただし、下側の搬送波の送信周波数帯域の上端、及び上側の搬送波の送信周波数帯域の下端から10MHz以上離れた周波数範囲においては、-13dBm/1MHzに10log(N)を加えた値を満足すること。空中線端子のない基地局であり、かつアクティブアンテナと組合せた場合にあっては、測定周波数における不要発射の総和が表5.1.3-9に示す空中線端子なしの許容値以下であること。

一の送信装置において同一周波数帯で隣接しない複数の搬送波を同時に送信する場合であって、空中線端子のない基地局であり、かつアクティブアンテナと組合せた場合にあっては、下側の搬送波の送信周波数帯域の上端から、上側の搬送波の送信周波数帯域の下端までの周波数範囲においては、各搬送波に属するスペクトラムマスクの許容値の総和を満たすこと。ただし、下側の搬送波の送信周波

数帯域の上端、及び上側の搬送波の送信周波数帯域の下端から10MHz以上離れた周波数範囲においては、-4dBm/1MHzを満足すること。

オフセット周波数 許容値 参照帯域幅 $|\Delta f|$ (MHz) 空中線端子あり 空中線端子なし 0.05MHz以上 -5.2dBm $-7/5 \times$ +4. $0dBm-7/5 \times$ 100kHz $(\Delta f -0.05) dB$ $(\Delta f -0.05) dB$ 5.05MHz未満 100kHz 5.05MHz以上 −12. 2dBm -3 dBm10.05MHz未満 10.5MHz以上 -13dBm-4 dBm 1 MHz

表 5. 1. 3 - 9 スペクトラムマスク (基地局)

(イ) 移動局

送信周波数帯域の端(不要発射の強度の測定帯域に近い端に限る。)から不要発射の強度の測定帯域の最寄りの端までのオフセット周波数(Δ f)に対して、システム毎に表 5. 1. 3 - 10に示す許容値以下であること。なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること又はそれらの組合せによる制御によって制限することで、その条件での許容値とすることができる。

衣 5. I	. 3 — I		ヘクトフ	ムイス	ノ(移期	向)
	シ	参照				
オフセット周波数 Δf	10	15	20	40	50	参照 帯域幅
	MHz	MHz	MHz	MHz	MHz	市場幅
OMHz以上 1 MHz未満	<u>-11. 2</u>	<u>-11. 2</u>	<u>-11. 2</u>	<u>-11. 2</u>		注
OMHz以上 1MHz未満					<u>-22. 2</u>	30kHz
1 MHz以上 5 MHz未満	<u>-8. 2</u>	1 MHz				
5 MHz以上10MHz未満	<u>-11. 2</u>	11 0				1 MHz
10MHz以上15MHz未満	<u>-23. 2</u>	<u>-11. 2</u>	<u>-11. 2</u>			1 MHz
15MHz以上20MHz未満		<u>-23. 2</u>		<u>-11. 2</u>		1 MHz
20MHz以上25MHz未満			<u>-23. 2</u>		<u>-11. 2</u>	1 MHz
25MHz以上40MHz未満						1 MHz
40MHz以上45MHz未満				<u>-23. 2</u>		1 MHz
45MHz以上50MHz未満						1 MHz
50MHz以上55MHz未満					<u>-23. 2</u>	1 MHz

表5.1.3-10 スペクトラムマスク (移動局)

	システ	ム毎の評	午容値(d	IBm)	参照
オフセット周波数 Δf	60	80	90	100	参照 帯域幅
	MHz	MHz	MHz	MHz	市沙州田
OMHz以上1MHz未満	<u>-22. 2</u>	<u>-22. 2</u>	<u>-22. 2</u>	<u>-22. 2</u>	30kHz
1 MHz以上 5 MHz未満	<u>-8. 2</u>	<u>-8. 2</u>	<u>-8. 2</u>	<u>-8. 2</u>	1 MHz
5 MHz以上60MHz未満	<u>-11. 2</u>				1 MHz
60MHz以上65MHz未満	<u>-23. 2</u>	<u>-11. 2</u>			1 MHz
65MHz以上80MHz未満			<u>-11. 2</u>		1 MHz
80MHz以上85MHz未満		<u>-23. 2</u>		<u>-11. 2</u>	1 MHz
85MHz以上90MHz未満					1 MHz
90MHz以上95MHz未満			<u>-23. 2</u>		1 MHz
95MHz以上100MHz未満					1 MHz
100MHz以上105MHz未満				<u>-23. 2</u>	1 MHz

注:10MHzシステムにあっては参照帯域幅を100kHz、15MHzシステムにあっては 150kHz、20MHzシステムにあっては200kHz、40MHzシステムにあっては400kHz として適用する。

搬送波が隣接するキャリアアグリゲーションで送信する場合、表 5. 1. 3-1 1に示す許容値以下であること。

表5. 1. 3-11 スペクトラムマスク(移動局)キャリアアグリゲーション

12.5.1		システム毎の許容値(dBm)					32		
オフセット周波数 Δf	110 MHz	120 MHz	130 MHz	140 MHz	150 MHz	160 MHz	180 MHz	200 MHz	参照带域幅
OMHz以上 1MHz未満	<u>-22. 2</u>	<u>-22. 2</u>	<u>-22. 2</u>	<u>-22. 2</u>	<u>-22. 2</u>	<u>-22. 2</u>	<u>-22. 2</u>	<u>-22. 2</u>	30 kHz
1 MHz以上 5 MHz未満	<u>-8. 2</u>	<u>-8. 2</u>	<u>-8. 2</u>	<u>-8. 2</u>	<u>-8. 2</u>	<u>-8. 2</u>	<u>-8. 2</u>	<u>-8. 2</u>	1 MHz
5 MHz以上110MHz未満	<u>-11. 2</u>								1 MHz
110MHz以上115MHz未満	<u>-23. 2</u>	<u>-11. 2</u>							1 MHz
115MHz以上120MHz未満			<u>-11. 2</u>						1 MHz
120MHz以上125MHz未満		<u>-23. 2</u>		<u>-11. 2</u>					1 MHz
125MHz以上130MHz未満					<u>-11. 2</u>				1 MHz
130MHz以上135MHz未満			<u>-23. 2</u>			<u>-11. 2</u>			1 MHz
135MHz以上140MHz未満							<u>-11. 2</u>		1 MHz
140MHz以上145MHz未満				<u>-23. 2</u>				<u>-11. 2</u>	1 MHz
145MHz以上150MHz未満									1 MHz
150MHz以上155MHz未満					<u>-23. 2</u>				1 MHz
155MHz以上160MHz未満									1 MHz
160MHz以上165MHz未満						<u>-23. 2</u>			1 MHz
165MHz以上180MHz未満									1 MHz
180MHz以上185MHz未満							<u>-23. 2</u>		1 MHz
185MHz以上200MHz未満									1 MHz
200MHz以上205MHz未満								<u>-23. 2</u>	1 MHz

搬送波が隣接しないキャリアアグリゲーションで送信する場合、各搬送波の不要発射の強度の測定帯域が重複する場合は、どちらか高い方の許容値を適用する。また、各搬送波の不要発射の強度の測定帯域が他方の搬送波の送信周波数帯域と重複する場合、その周波数範囲においては本規定を適用しない。

キ 占有周波数帯幅の許容値

(7) 基地局

各システムの99%帯域幅は、表5.1.3-12のとおりとする。

表 5. 1. 3-12 各システムの99%帯域幅(基地局)

システム	99%帯域幅
10MHzシステム	10MHz以下
15MHzシステム	15MHz以下
20MHzシステム	20MHz以下
30MHzシステム	30MHz以下
40MHzシステム	40MHz以下
50MHzシステム	50MHz以下
60MHzシステム	60MHz以下
70MHzシステム	70MHz以下
80MHzシステム	80MHz以下
90MHzシステム	90MHz以下
100MHzシステム	100MHz以下

(イ) 移動局

各システムの99%帯域幅は、表5.1.3-13のとおりとする。

表 5. 1. 3-13 各システムの99%帯域幅(移動局)

システム	99%帯域幅
10MHzシステム	10MHz以下
15MHzシステム	15MHz以下
20MHzシステム	20MHz以下
40MHzシステム	40MHz以下
50MHzシステム	50MHz以下
60MHzシステム	60MHz以下
80MHzシステム	80MHz以下
90MHzシステム	90MHz以下
100MHzシステム	100MHz以下
90MHzシステム	90MHz以下

搬送波が隣接するキャリアアグリゲーションで送信する場合、表5.1.3-1 4に示す幅以下の中に、発射される全平均電力の99%が含まれること。

表 5. 1. 3-14 搬送波が隣接するキャリアアグリゲーションで 送信する際の99%帯域幅(移動局)

システム	99%帯域幅
110MHzシステム	110MHz以下
120MHzシステム	120MHz以下
130MHzシステム	130MHz以下
140MHzシステム	140MHz以下
150MHzシステム	150MHz以下
160MHzシステム	160MHz以下
180MHzシステム	180MHz以下
200MHzシステム	200MHz以下

ク 最大空中線電力及び空中線電力の許容偏差

(7) 基地局

空中線端子のある基地局(空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合も含む。)の空中線電力の許容偏差は、定格空中線電力の±3.0dB以内であること。

空中線端子のない基地局の許容偏差は、定格空中線電力の総和の±3.5dB以内であること。

(イ) 移動局

定格空中線電力の最大値は、23dBmであること。

定格空中線電力の最大値は、空間多重方式(送信機、受信機で複数の空中線を用い、無線信号の伝送路を空間的に多重する方式。以下同じ。)で送信する場合は各空中線端子の空中線電力の合計値、キャリアアグリゲーションで送信する場合は各搬送波の空中線電力の合計値、空間多重方式とキャリアアグリゲーションを併用して送信する場合は各空中線端子及び各搬送波の空中線電力の合計値について、それぞれ23dBmであること。

空中線電力の許容偏差は、定格空中線電力の+3.0dB/-6.7dB以内であること。

ケ 空中線絶対利得の許容値

(7) 基地局 規定しない。

(イ) 移動局

空中線絶対利得は、3dBi以下とすること。

コ 送信オフ時電力

(7) 基地局 規定しない。

(イ) 移動局

送信を停止した時、送信機の出力雑音電力スペクトル密度の許容値は、送信帯域の周波数で、移動局空中線端子において、以下の許容値以下であること。

2.7=1	计索店	老四世 共后
システム	許容値	参照帯域幅
10MHzシステム	<u>-48. 2dBm</u>	9. 375MHz
15MHzシステム	<u>-48. 2dBm</u>	14. 235MHz
20MHzシステム	<u>-48. 2dBm</u>	19.095MHz
40MHzシステム	<u>-48. 2dBm</u>	38.895MHz
50MHzシステム	<u>-48. 2dBm</u>	48. 615MHz
60MHzシステム	<u>-48. 2dBm</u>	58. 35MHz
80MHzシステム	<u>-48. 2dBm</u>	78. 15MHz
90MHzシステム	<u>-48. 2dBm</u>	88. 23 MHz
100MHzシステム	<u>-48. 2dBm</u>	98. 31MHz

表5.1.3-15 送信オフ時電力(移動局)基本

サ 送信相互変調特性

送信波に対して異なる周波数の妨害波が、送信機出力段に入力された時に発生する相互変調波電力レベルと送信波電力レベルの比に相当するものであるが、主要な特性は、送信増幅器の飽和点からのバックオフを規定するピーク電力対平均電力比によって決定される。

(7) 基地局

空中線端子のある基地局(空間多重方式を用いる場合を含む)については、加える妨害波のレベルは、空中線端子あたりの最大定格電力より30dB低いレベルとする。空中線端子のない基地局については、定格全空中線電力と同等のレベルの妨害波を、基地局と一定距離(0.1m)を離して並列配置した妨害波アンテナ(垂直方向の長さは基地局のアクティブアンテナと同等とする。)に入力し基地局に妨害波を加える。また、3.5GHz帯及び3.7GHz帯を使用する基地局については、妨害波は変調波(10MHz幅)とし、搬送波の送信周波数帯域の上端又は下端から変調妨害波の中心周波数までの周波数差を±5MHz、±15MHz、±25MHz離調とし、4.5GHz帯を使用する基地局については、妨害波は変調波(40MHz幅)とし、搬送波の送信周波数帯域の上端又は下端から変調妨害波の中心周波数までの周波数差を±20MHz、±60MHz、±100MHz離調とする。

許容値は、隣接チャネル漏えい電力の許容値、スペクトラムマスクの許容値及 びスプリアス領域における不要発射の強度の許容値とすること。 一の送信装置において同一周波数帯で複数の搬送波を送信する場合にあっては、 複数の搬送波を同時に送信する条件で、最も下側の搬送波の送信周波数帯域の下 端からの周波数離調又は最も上側の搬送波の送信周波数帯域の上端からの周波数 離調の妨害波を配置し、上記許容値を満足すること。

(イ) 移動局

妨害波は無変調波とし、搬送波の中心周波数から無変調妨害波の中心周波数までの周波数差(離調周波数)に対して、妨害波を1波入力した状態で許容値を満足すること。離調周波数、妨害波電力、許容値及び参照帯域幅は表5.1.3-16のとおりとする。

表 5. 1. 3-16 相互変調特性 (移動局) 基本

2, 0.		14-24-31-31-3		•
システム	妨害波電力	離調周波数	許容値	参照帯域幅
10MHzシステム	−40dBc	10MHz	-29dBc	9. 375MHz
TOWITZ	-40dBc	20MHz	-35dBc	9. 375MHz
1EMU-2.7 = /	-40dBc	15MHz	-29dBc	14. 235MHz
15MHzシステム	-40dBc	30MHz	-35dBc	14. 235MHz
20MHzシステム	-40dBc	20MHz	-29dBc	19. 095MHz
ZUMITZ Z Z Z Z	-40dBc	40MHz	-35dBc	19.095MHz
40MHzシステム	−40dBc	40MHz	-29dBc	38. 895MHz
40MHZシステム	-40dBc	80MHz	-35dBc	38. 895MHz
50MHzシステム	−40dBc	50MHz	-29dBc	48. 615MHz
50MHZ 2 A F A	-40dBc	100MHz	-35dBc	48. 615MHz
60MHzシステム	−40dBc	60MHz	-29dBc	58. 35MHz
OUMITZ DATA	−40dBc	120MHz	−35dBc	58. 35MHz
80MHzシステム	−40dBc	80MHz	-29dBc	78. 15MHz
OUMITZ DATA	−40dBc	160MHz	-35dBc	78. 15MHz
90MHzシステム	-40dBc	90MHz	-29dBc	88. 23 MHz
SOMITE クステム	−40dBc	180MHz	-35dBc	88. 23 MHz
100MHzシステム	-40dBc	100MHz	-29dBc	98. 31MHz
TOUMINZシステム	−40dBc	200MHz	-35dBc	98. 31MHz

搬送波が隣接するキャリアアグリゲーションで送信する場合、妨害波は無変調波とし、搬送波の中心周波数から無変調妨害波の中心周波数までの周波数差(離調周波数)に対して、妨害波を1波入力した状態で許容値を満足すること。離調周波数、妨害波電力、許容値及び参照帯域幅は表5.1.3-17のとおりとする。

表5. 1. 3-17 相互変調特性(移動局)キャリアアグリゲーション

五0. 1. 0	• / 旧土久顺		11777	,, , , , ,
システム	妨害波電力	離調周波数	許容値	参照帯域幅
110MHzシステム	-40dBc	110MHz	-29dBc	109. 375MHz
TIOMITZ	-40dBc	220MHz	-35dBc	109.375MHz
120MHzシステム	-40dBc	120MHz	-29dBc	119.095MHz
120MI12 JATA	-40dBc	240MHz	-35dBc	119.095MHz
130MHzシステム	-40dBc	130MHz	-29dBc	128. 815MHz
130MHZ J X F A	-40dBc	260MHz	-35dBc	128.815MHz
140MHzシステム	-40dBc	140MHz	-29dBc	138. 895MHz
140MI12 / / / A	-40dBc	280MHz	-35dBc	138. 895MHz
150MHzシステム	-40dBc	150MHz	-29dBc	148. 615MHz
150MI12 JAFA	-40dBc	300MHz	−35dBc	148. 615MHz
160MUz\$.7 = /	-40dBc	160MHz	-29dBc	158. 35MHz
160MHzシステム	-40dBc	320MHz	-35dBc	158.35MHz
180MHzシステム	-40dBc	180MHz	-29dBc	178. 15MHz
TOUMITZ	-40dBc	360MHz	-35dBc	178. 15MHz
200MHzシステム	-40dBc	200MHz	-29dBc	198. 31MHz
ZOOIWIIZZXFA	-40dBc	400MHz	-35dBc	198. 31MHz

(2) 受信装置

マルチパスのない受信レベルの安定した条件下(静特性下)において、以下の技術的条件を満たすこと。なお、本技術的条件に適用した測定器の許容誤差については暫定値であり、3GPPの議論が確定した後、適正な値を検討することが望ましい。

ア キャリアアグリゲーション

基地局については、一の受信装置で異なる周波数帯の搬送波を受信する場合については今回の検討の対象外としており、そのような受信装置が実現される場合には、その副次的に発する電波等の限度について別途検討が必要である。

移動局については、キャリアアグリゲーションで受信可能な搬送波の組合せで受信している状態で搬送波毎にウから力に定める技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

イ アクティブアンテナ

複数の空中線素子及び無線設備を用いて1つ又は複数の指向性を有するビームパターンを形成・制御する技術をいう。

基地局については、ノーマルアンテナ(アクティブアンテナではなく、ビームパターンが固定のものをいう)においては、空中線端子がある場合のみを定義し、空中線端子のないノーマルアンテナについては、今回の検討の対象外とする。

空中線端子がありかつアクティブアンテナを組合せた基地局については、空中線端子においてウからカに定める技術的条件を満足すること。空中線端子がなく、アクティブアンテナと組合せた基地局については、アンテナ面における受信信号及び妨害波においてウからカに定める技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

移動局については、アクティブアンテナを定義せず、空中線端子がある場合のみを今回の検討の対象としており、空中線端子がない場合は対象外とする。

ウ 受信感度

受信感度は、規定の通信チャネル信号 (QPSK、符号化率 1/3) を最大値の 95%以上のスループットで受信するために必要な最小受信電力であり静特性下において以下に示す値 (基準感度) であること。

(7) 基地局

空中線端子のある基地局については、空中線端子あたりの空中線電力を最大空中線電力とし、各空中線端子において、N=1とし、静特性下において最大空中線電力毎に表5.1.3-18の値以下の値であること。

空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合にあっては、全空中線端子における空中線電力の総和を最大空中線電力とし、各空中線端子において、表5.1.3-18の値以下の値であること。

表5.1.3-18 受信感度(空中線端子のある基地局)

		システム毎の基準感度(dBm)						
周波数帯域	最大空中線電力	10、15MHzのシステム	20, 30, 40, 50, 60, 70, 80, 90, 100 MHz のシステム ^注					
3. 5GHz帯	38dBm+10log(N) を 超 える基地局	-97. 9	-94. 3					
(3. 4GHz- 3. 6GHz) 3. 7GHz帯 (3. 6GHz-	24dBm+10log(N) を 超 え、38dBm+10log(N)以 下の基地局	-92. 9	-89. 3					
4. 1GHz)	24dBm+10log(N) 以下 の基地局	-89. 9	-86. 3					
	38dBm+10log(N) を 超 える基地局	-	-94. 1					
4. 5GHz帯 (4. 5GHz- 4. 9GHz)	24dBm+10log(N) を 超 え、38dBm+10log(N)以 下の基地局	-	-89. 1					
	24dBm+10log(N) 以下 の基地局	-	-86. 1					

注: <u>3.5GHz帯</u>及び3.7GHz帯は20、30、40、50、60、70、80、90及び100MHzシステム、4.5GHz 帯は40、50、60、80及び100MHzシステムに適用する。

空中線端子のない基地局については、静特性下において、最大空中線電力毎に、アンテナ面での電力が表 5. 1. 3-19 の値以下の値であること。

表5.1.3-19 受信感度(空中線端子のない基地局)

		7110.X (= 1 10.11)					
		システム毎の基準感度(dBm)					
周波数帯域	最大空中線電力		20, 30, 40, 50, 60,				
		10、15MHzのシステム	70, 80, 90, 100 MHz				
			のシステム ^{注1}				
3.5GHz帯	47dBmを超える基地局	-97.5-空中線絶対利得	-93.9-空中線絶対利得				
(3. 4GHz-	33dBmを超え、47dBm以	00 5 中央的经验证据	00 0 市中的各共和国				
3. 6GHz)	下の基地局	│ -92. 5-空中線絶対利得 │	│ -88. 9-空中線絶対利得 │				
3.7GHz帯							
(3. 6GHz-	33dBm以下の基地局	-89.5-空中線絶対利得	-85.9-空中線絶対利得				
4. 1GHz)							
4 FOUL ##	47dBmを超える基地局	-	-93.7-空中線絶対利得				
4. 5GHz帯	33dBmを超え、47dBm以		00 7 克力約級共和領				
(4. 5GHz-	下の基地局	_	-88.7-空中線絶対利得 				
4. 9GHz)	33dBm以下の基地局	_	-85.7-空中線絶対利得				

注1:<u>3.5GHz帯</u>及び3.7GHz帯は20、30、40、50、60、70、80、90及び100MHzシステム、4.5GHz 帯は40、50、60、80及び100MHzシステムに適用する。

(イ) 移動局

静特性下において、チャネル帯域幅毎に表1.3-20の値以下であること。

表5.1.3-20 受信感度(移動局)基本

1X \	J. I. J	20 文	口心及(炒)	刬问/ 圣 个				
	システム毎の基準感度(dBm)							
周波数帯域	10 MHz	15 MHz	20 MHz	40 MHz	50 MHz			
	システム	システム	システム	システム	システム			
3. 5GHz帯								
(3. 4GHz-	<u>-94. 8</u>	<u>-93. 0</u>	<u>-91. 7</u>	<u>-88. 6</u>	<u>-87. 6</u>			
3. 6GHz)								
3. 7GHz帯								
(3.6GHz-	<u>-94. 8</u>	<u>-93. 0</u>	<u>-91. 7</u>	<u>-88. 6</u>	<u>-87. 6</u>			
3.8GHz)								
3. 7GHz帯								
(3.8GHz-	<u>-94. 3</u>	<u>-92. 5</u>	<u>-91. 2</u>	<u>-88. 1</u>	<u>-87. 1</u>			
4. 1GHz)								
4. 5GHz帯								
(4. 5GHz-	=	=	<u>=</u>	<u>-88. 6</u>	<u>-87. 6</u>			
4. 9GHz)								

	システム毎の基準感度(dBm)								
周波数帯域	60 MHz	80 MHz	90 MHz	100 MHz					
	システム	システム	システム	システム					
<u>3.5GHz帯</u>									
<u>(3. 4GHz-</u>	<u>-86. 9</u>	<u>-85. 6</u>	<u>-85. 1</u>	<u>-84. 6</u>					
<u>3. 6GHz)</u>									
3. 7GHz帯									
(3. 6GHz-	<u>-86. 9</u>	<u>-85. 6</u>	<u>-85. 1</u>	<u>-84. 6</u>					
3. 8GHz)									
3. 7GHz帯									
(3.8GHz-	<u>-86. 4</u>	<u>-85. 1</u>	<u>-84. 6</u>	<u>-84. 1</u>					
4. 1GHz)									
4. 5GHz帯									
(4. 5GHz-	<u>-86. 9</u>	<u>-85. 6</u>	=	<u>-84. 6</u>					
4. 9GHz)									

搬送波が隣接するキャリアアグリゲーションで受信する場合、静特性下において複数の搬送波で受信している条件とし、受信搬送波毎に上記の表の基準感度以

下の値であること。

異なる周波数帯のキャリアアグリゲーションの受信に対応した移動局については、静特性下において複数の搬送波を受信している条件で、受信周波数帯の受信感度は、上記の表の値からさらに0.5dBだけ高い値であること。

エ ブロッキング

ブロッキングは、1つの変調妨害波存在下で希望信号を受信する受信機能力の尺度であり、以下の条件下で希望波と変調妨害波を加えた時、規定の通信チャネル信号(QPSK、符号化率 1/3)を最大値の 95%以上のスループットで受信できること。

(7) 基地局

空中線端子のある基地局においては、<u>空中線端子あたりの空中線電力を最大空中線電力とし、</u>各空中線端子において、N=1とし、静特性下において以下の条件とする。

空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合にあっては、空中線端子における空中線電力の総和を最大空中線電力とし、静特性下において以下の条件とする。

表 5. 1. 3-21 ブロッキング (空中線端子のある基地局)

	10MHz	15MHz	20MHz	30MHz	40MHz	50MHz	60MHz	70MHz	80MHz	90MHz	100MHz
	システム	システム	システム	システム	システム	システム	システム	システム	システム	システム	システム
希望波の		基準感度+6dB									
受信電力					- 基	年您及▼℧	uБ				
変調妨害											
波の離調	12.50MHz	15MHz	17. 5MHz	45MHz	50MHz	55MHz	60MHz	65MHz	70MHz	75MHz	80MHz
周波数											
亦細址宝			最大3	空中線電力	」が38dBm+	-10 l og (N)	を超える	基地局:一	43dBm		
変調妨害		最大空	中線電力を	5∛24dBm+1	Olog(N)を	超え、38	dBm+10log	g(N)以下の)基地局:	-38dBm	
波の電力			最大	空中線電	力が24dBm	+10 l og (N)	以下の基	地局:-3	5dBm		
変調妨害											
波の周波	5 MHz 20MHz										
数幅											

空中線端子のない基地局においては、静特性下において以下の条件とする。ただし、希望波及び妨害波の電力はアンテナ面における電力とする。

表5.1.3-22 ブロッキング(空中線端子のない基地局)

	10MHz	15MHz	20MHz	30MHz	40MHz	50MHz	60MHz	70MHz	80MHz	90MHz	100MHz
	システム	システム	システム	システム	システム	システム	システム	システム	システム	システム	システム
希望波の		基準感度+6dB									
受信電力					荃	华您及▼0	ub				
変調妨害											
波の離調	12.50MHz	15MHz	17.5MHz	45MHz	50MHz	55MHz	60MHz	65MHz	70MHz	75MHz	80MHz
周波数											
変調妨害		聶	贵大空中 線	電力の総和	口が47dBm	を超える基	基地局:-4	3dBm-空中	線絶対利	导	
		最大空中	中線電力の	総和が33	dBmを超え	、47dBm以	下の基地	帚:−38dBr	n−空中線約	色対利得	
波の電力		;	最大空中紀	泉電力の総	和が33dBn	n以下の基	地局:−35	dBm−空中約	泉絶対利得	ļ	
変調妨害											
波の周波	5 MHz 20MHz										
数幅											

(イ) 移動局

静特性下において、以下の条件とする。

表5.1.3-23 ブロッキング(移動局)基本

	10MHz	15MHz	20MHz	40MHz	50MHz
	システム	システム	システム	システム	システム
 	基準感度	基準感度	基準感度	基準感度	基準感度
希望波の受信電力 	+ 6 dB				
第1変調妨害波の 離調周波数	20MHz	30MHz	40MHz	80MHz	100MHz
第1変調妨害波の電力	-56dBm	-56dBm	-56dBm	-56dBm	-56dBm
第1変調妨害波の 周波数幅	10MHz	15MHz	20MHz	40MHz	50MHz
第2変調妨害波の	30MHz	45MHz	60MHz	120MHz	150MHz
離調周波数	以上	以上	以上	以上	以上
第2変調妨害波の電力	-44dBm	-44dBm	-44dBm	-44dBm	-44dBm

第2変調妨害波の	10MHz	15MHz	20MHz	40MHz	50MHz
周波数幅	1 OMIT 12	1 3 1 1 1 2	2011112	4011112	JOHNIZ

	60MHz	80MHz	90MHz	100MHz
	システム	システム	システム	システム
本切沈の平信電力	基準感度+	基準感度+	基準感度+	基準感度+
希望波の受信電力 	6 dB	6 dB	6 dB	6 dB
第1変調妨害波の 離調周波数	120MHz	160MHz	180MHz	200MHz
第 1 変調妨害波の電力	−56dBm	-56dBm	-56dBm -56dBm	
第1変調妨害波の 周波数幅	60MHz	80MHz	90MHz	100MHz
第2変調妨害波の 離調周波数	180MHz以上	240MHz以上	270MHz以上	300MHz以上
第2変調妨害波の電力	-44dBm	-44dBm	-44dBm	-44dBm
第2変調妨害波の 周波数幅	60MHz	80MHz	90MHz	100MHz

搬送波が隣接するキャリアアグリゲーションで受信する場合、静特性下において複数の搬送波で受信している条件とし、受信搬送波毎に以下の条件とする。

表5.1.3-24 ブロッキング(移動局)キャリアアグリゲーション

	110MHz	120MHz	130MHz	140MHz	150MHz	160MHz	180MHz	200MHz	
	システム	システム	システム	システム	システム	システム	システム	システム	
希望波の受	基準感度	基準感度	基準感度	基準感度	基準感度	基準感度	基準感度	基準感度	
信電力	+ 6 dB	+ 6 dB	+ 6 dB	+ 6 dB	+ 6 dB	+ 6 dB	+ 6 dB	+ 6 dB	
第1変調妨									
害波の離調	220MHz	240MHz	260MHz	280MHz	300MHz	320MHz	360MHz	400MHz	
周波数									
第1変調妨	-56dBm	-56dBm	-56dBm	-56dBm	-56dBm	-56dBm	-56dBm	-56dBm	
害波の電力	-30 ub ili	-30 u bili	-30 ub ili	-30dbiii	-30dbiii	-30 ub ili	-30dbiii	_200BM	
第1変調妨	110MHz	120MHz	130MHz	140MHz	150MHz	160MHz	180MHz	200MHz	
害波の周波	TTOWITZ	I ZUWITZ	TOUNITZ	T4OMITZ	TOUNITIZ	TOOMITIZ	TOUWITZ	ZUUNITZ	

数幅								
第2変調妨 害波の離調 周波数	330MHz 以上	360MHz 以上	390MHz 以上	420MHz 以上	450MHz 以上	480MHz 以上	540MHz 以上	600MHz 以上
第2変調妨 害波の電力	-44dBm							
第2変調妨 害波の周波 数幅	110MHz	120MHz	130MHz	140MHz	150MHz	160MHz	180MHz	200MHz

オ 隣接チャネル選択度

隣接チャネル選択度は、隣接する搬送波に配置された変調妨害波の存在下で希望信号を受信する受信機能力の尺度であり、以下の条件下で希望波と変調妨害波を加えた時、規定の通信チャネル信号(QPSK、符号化率 1/3)を最大値の 95%以上のスループットで受信できること。

(7) 基地局

空中線端子のある基地局については、<u>空中線端子あたりの空中線電力を最大空中線電力とし、</u>各空中線端子において、N=1とし、静特性下において以下の条件とする。

空中線端子のある基地局であり、アクティブアンテナと組合せた場合にあっては、空中線端子における空中線電力の総和を最大空中線電力とし、静特性下において以下の条件とする。

表5. 1. 3-25 隣接チャネル選択度(空中線端子のある基地局)

	10MHz	15MHz	20MHz	30MHz	40MHz	50MHz	60MHz	70MHz	80MHz	90MHz	100MHz
	システ	システ	システ	システ	システ	システ	システ	システ	システ	システ	システ
	ム	ᄉ	ム	ム	ム	ム	ム	ム	厶	ム	ᄉ
希望波の	基準感度+6dB										
受信電力					基4	午您及+℃	ub				
変調妨害	7 5075	10. 0125	10 5005	04 4705	20 4675	24 4605	20 4725	44 467E	40 4625	E4 470E	EO 467E
波の離調											
周波数	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
中午日本			最大空	中線電力	が38dBm+	10 log (N)	を超える	基地局:	-52dBm		
変調妨害	:	最大空中	線電力が	24dBm+10	log(N)を	超え、38	dBm+101c	g(N)以下	の基地局	b : −47dBn	n
波の電力		最大空中線電力が24dBm+10log(N)を超え、38dBm+10log(N)以下の基地局:-47dBm 最大空中線電力が24dBm+10log(N)以下の基地局:-44dBm									
変調妨害		5 MHz					201	MHz			

波の周波	
数幅	

空中線端子のない基地局においては、静特性下において以下の条件とする。た だし、希望波及び妨害波の電力はアンテナ面における電力とする。

表5.1.3-26 隣接チャネル選択度(空中線端子のない基地局)

	10MHz	15MHz	20MHz	30MHz	40MHz	50MHz	60MHz	70MHz	80MHz	90MHz	100MHz
	システ	システ	システ	システ	システ	システ	システ	システ	システ	システ	システ
	ム	ム	ᄉ	ᄉ	ᄉ	ᄉ	ᄉ	ᄉ	ᄉ	ᄉ	ᄉ
希望波の		基準感度+6dB									
受信電力					至:	午您及▼0	ub				
変調妨害	7. 5075	10 0125	12, 5025	24 4725	20 4675	24 4625	20 4725	11 1675	40 4625	54 4725	50 4675
波の離調											
周波数	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
		最大	空中線電	力の総和	が47dBmを	と超える基	基地局:-	52dBm-空	中線絶対	利得	
変調妨害	最	大空中線	電力の総	:和が33dE	Smを超え、	、47dBm以	下の基地	边局:−470	dBm-空中:	線絶対利	得
波の電力		最力	大空中線電	直力の総和 かんかん かんかん かんかん かんかん かんかん かんかん かんかん かん	ロが33dBm	以下の基	地局:−4	4dBm-空口	中線絶対和	引得	
変調妨害											
波の周波		5 MHz					20	MHz			
数幅											

(イ) 移動局

静特性下において、以下の条件とすること。

表5.1.3-27 隣接チャネル選択度(移動局)基本

	10MHz	15MHz	20MHz	40MHz	50MHz					
	システム	システム	システム	システム	システム					
希望波の受信		¥	淮咸亩 11	٩D						
電力		基準感度+14dB								
変調妨害波の	10MHz	15MHz	20MHz	40MHz	50MHz					
離調周波数	TOWITZ	TOWITZ	ZUWITZ	40111112	JUMITZ					
変調妨害波の		# 1	達感度+45 .	END						
電力		基 4	产您及T40.	JUD						
変調妨害波の	10MHz	15MHz	20MHz	40MHz	50MHz					
周波数幅	TOWITZ	I JIVII IZ	ZUMITZ	401/1112	SUMHZ					

	60MHz	80MHz	90MHz	100MHz			
	システム	システム	システム	システム			
希望波の受信		甘淮咸					
電力	基準感度+14dB 						
変調妨害波の	60MHz	80MHz	90MHz	100MHz			
離調周波数	OOMI 12	OUWII1Z	90WII1Z	TOOMITIZ			
変調妨害波の			E+45. 5dB				
電力		奉华 您及	€+43. Jub				
変調妨害波の	60MHz	80MHz	90MHz	100MHz			
周波数幅	OOMILIZ	OUNIIZ	JOHN 12	TUUMITZ			

搬送波が隣接するキャリアアグリゲーションの場合、静特性下で複数の搬送波で受信している条件において、以下の条件とする。

表 5 1 3-28 隣接チャネル選択度(移動局)キャリアアグリゲーション

	110MHz	120MHz	130MHz	140MHz	150MHz	160MHz	180MHz	200MHz			
	システム	システム	システム	システム	システム	システム	システム	システム			
希望波の受信				甘淮咸亩	: _ 1 / AD 注 1						
電力		基準感度+14dB ^{注1}									
変調妨害波の	110MHz	120MHz	130MHz	140MHz	150MHz	160MHz	180MHz	200MHz			
離調周波数	TTOWITZ	1 ZUWITIZ	TSUMITZ	140WITZ	TOUMITZ	TOOMITIZ	TOUWITZ	ZUUWINZ			
変調妨害波の			类 切汰	の平に乗り	由の総€□□	21 EAD					
電力		希望波の受信電力の総和+31.5dB									
変調妨害波の	110MHz	120MHz	130MHz	140MHz	150MHz	160MHz	180MHz	200MHz			

注1 受信搬送波毎の電力とする

力 相互変調特性

3次相互変調の関係にある電力が等しい2つの無変調妨害波又は一方が変調された妨害波の存在下で希望信号を受信する受信機能力の尺度であり、次の条件下で希望波と3次相互変調を生ずる関係にある無変調波と変調波の2つの妨害波を加えた時、規定の通信チャネル信号(QPSK、符号化率1/3)を最大値の95%以上のスループットで受信できること。

(7) 基地局

空中線端子のある基地局については、<u>空中線端子あたりの空中線電力を最大空中線電力とし、</u>各空中線端子において、№1とし、静特性下において以下の条件とする。

空中線端子のある基地局であり、アクティブアンテナと組合せた場合にあって は、空中線端子における空中線電力の総和を最大空中線電力とする。

表5.1.3-29 相互変調特性(空中線端子のある基地局)

	10MHz	15MHz	20MHz	30MHz	40MHz	50MHz	60MHz	70MHz	80MHz	90MHz	100MHzシ	
	システム	システム	システム	システム	システム	システム	システム	システム	システム	システム	ステム	
希望波の		基準感度+6dB										
受信電力		委华≈及TOUD										
無変調妨												
害波1の	<u>12. 465</u>	14. 93	<u>17. 395</u>	22. 43	27. 45	32. 35	37. 49	42. 42	47. 44	<u>52. 46</u>	<u>57. 48</u>	
離調周波	<u>MHz</u>	MHz	<u>MHz</u>	MHz	MHz	MHz	MHz	MHz	MHz	<u>MHz</u>	<u>MHz</u>	
数												
無変調妨	最大空中線電力が38dBm+10log(N)を超える基地局:-52dBm											
害波1の	最大空中線電力が24dBm+10log(N)を超え、38dBm+10log(N)以下の基地局:-47dBm											
電力		最大空中線電力が24dBm+10log(N)以下の基地局:-44dBm										
変調妨害												
波2の離	22. 5MHz	25MHz	27. 5MHz	40MHz	45MHz	50MHz	55MHz	60MHz	65MHz	70MHz	75MHz	
調周波数												
変調妨害			最大空	2中線電力	が38dBm+	10 l og (N)	を超える	基地局:	-52dBm			
波2の電		最大空中	線電力が	₹24dBm+10	log(N)を	超え、38	dBm+10lo	g(N)以下	の基地局	: -47dBm		
カ			最大!	空中線電法	カが24dBm	ı+10 l og (N)以下の基	基地局:−	44dBm			
変調妨害												
波2の周		5 MHz					201	MHz				
波数幅												

空中線端子のない基地局については、静特性下において、以下の条件とする。た だし、希望波及び妨害波の電力はアンテナ面における電力とする。

表5.1.3-30 相互変調特性(空中線端子のない基地局)

							42/-101 1 02				
	10MHz	15MHz	20MHz	30MHz	40MHz	50MHz	60MHz	70MHz	80MHz	90MHz	100MHzシ
	システム	システム	システム	システム	システム	システム	システム	システム	システム	システム	ステム
希望波の		甘.维· ···································									
受信電力		基準感度+6dB									
無変調妨											
害波1の	<u>12. 465</u>	14. 93	<u>17. 395</u>	22. 43	27. 45	32. 35	37. 49	42. 42	47. 44	<u>52. 46</u>	<u>57. 48</u>
離調周波	<u>MHz</u>	MHz	<u>MHz</u>	MHz	MHz	MHz	MHz	MHz	MHz	<u>MHz</u>	<u>MHz</u>
数											
無変調妨		最大空中線電力の総和が47dBmを超える基地局:-52dBm-空中線絶対利得									
害波1の	責	最大空中線電力の総和が33dBmを超え、47dBm以下の基地局:-47dBm-空中線絶対利得									
電力		最:	大空中線管	電力の総和	ロが33dBm	以下の基	地局:−4	4dBm-空中	口線絶対和]得	
変調妨害											
波2の離	22. 5MHz	25MHz	27. 5MHz	40MHz	45MHz	50MHz	55MHz	60MHz	65MHz	70MHz	75MHz
調周波数											
変調妨害		最大空中線電力の総和が47dBmを超える基地局:-52dBm-空中線絶対利得									
波2の電	最大空中線電力の総和が33dBmを超え、47dBm以下の基地局:-47dBm-空中線絶対利得										
カ		最大空中線電力の総和が33dBm以下の基地局:-44dBm-空中線絶対利得									
変調妨害											
波2の周		5 MHz					201	MHz			
波数幅											

(イ) 移動局

静特性下において、以下の条件とすること。

表 5. 1. 3-31 相互変調特性(移動局)

	10MHz	15MHz	20MHz	40MHz	50MHz
	システム	システム	システム	システム	システム
本切沈の平に雨 も	基準感度	基準感度	基準感度	基準感度	基準感度
希望波の受信電力	+ 6 dB				
第1無変調妨害波の 離調周波数	20MHz	30MHz	40MHz	80MHz	100MHz

第1無変調妨害波の 電力	-46dBm	-46dBm	-46dBm	-46dBm	-46dBm
第2変調妨害波の 離調周波数	40MHz	60MHz	80MHz	160MHz	200MHz
第2変調妨害波の 電力	-46dBm	-46dBm	-46dBm	-46dBm	-46dBm
第2変調妨害波の 周波数幅	10MHz	15MHz	20MHz	40MHz	50MHz

	60MHz	80MHz	90MHz	100MHz	
	システム	システム	システム	システム	
希望波の受信電力	基準感度+	基準感度+6	基準感度+	基準感度+	
布主版の文信电力	6 dB	dB	6 dB	6 dB	
第1無変調妨害波の	120MHz	160MHz	180MHz	200MHz	
離調周波数	I ZUWITIZ	TOUMINZ TOUMINZ		ZUUMITZ	
第1無変調妨害波の	-46dBm	-46dBm	-46dBm	-46dBm	
電力	4000111	4000111	4000111	4000111	
第2変調妨害波の	240MHz	320MHz	360MHz	400MHz	
離調周波数	Z40WII 1Z	JZUWII IZ	300WII1Z	40011112	
第2変調妨害波の	-46dBm	-46dBm	-46dBm	-46dBm	
電力	-400DIII	-400DIII	-40ubiii	-400biii	
第2変調妨害波の	60MHz	80MH <i>z</i>	90MHz	100MHz	
周波数幅	UUWITZ	OUNITZ	30MITZ	TOUMHZ	

搬送波が隣接するキャリアアグリゲーションの場合、複数の搬送波で受信している条件において、以下の条件とする。

表 5. 1. 3-32 相互変調特性 (移動局) キャリアアグリゲーション

	110MHz	120MHz	130MHz	140MHz	150MHz	160MHz	180MHz	200MHz
	システム	システム	システム	システム	システム	システム	システム	システム
希望波の	基準感度	基準感度	基準感度	基準感度	基準感度	基準感度	基準感度	基準感度
受信電力	+ 6 dB	+ 6 dB	+ 6 dB	+ 6 dB	+ 6 dB	+ 6 dB	+ 6 dB	+ 6 dB
第1無変調妨害	220MHz	240MHz	260MHz	280MHz	300MHz	320MHz	360MHz	400MHz
波の離調周波数	ZZUWITZ	240WI1Z	2001/11/2	ZOUWITIZ	30011112	SZUWITZ	SOUMINZ	400111111111111111111111111111111111111
第1無変調妨害	-46dBm	-46dBm	-46dBm	-46dBm	-46dBm	-46dBm	-46dBm	-46dBm
波の電力	- 4 000III	-400DIII	- 4 000III	- 4 000III	-400DIII	- 4 000III	- 4 000III	-400DIII

第2変調妨害波 の離調周波数	440MHz	480MHz	520MHz	560MHz	600MHz	640MHz	720MHz	800MHz
第2変調妨害波 の電力	-46dBm							
第2変調妨害波 の周波数幅	110MHz	120MHz	130MHz	140MHz	150MHz	160MHz	180MHz	200MHz

キ 副次的に発する電波等の限度

受信状態で、空中線端子から発射される電波の限度とする。

(7) 基地局

空中線端子のある基地局については、各空中線端子で測定した不要発射の強度 が表5.1.3-33に示す空中線端子ありの許容値以下であること。

空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合にあっては、測定周波数における全空中線端子の総和が表 5. 1. 3 - 3 3 に示す空中線端子ありの許容値に10 log(N)を加えた値以下であること。

空中線端子のない基地局であり、かつアクティブアンテナと組合せた場合にあっては、測定周波数における不要発射の総和が表 5.1.3-33に示す空中線端子なしの許容値以下であること。

表5.1.3-33 副次的に発する電波等の限度(基地局)

Д	, w = 12, 17, 17, 12		
	許紹	·····································	
周波数範囲	空中線端子	空中線端子	参照帯域幅
	あり	なし	
30MHz以上1,000MHz未満	−57dBm	<u>-36dBm</u>	100kHz
1,000MHz以上上端の周波数の5倍未満	-47dBm	<u>-30dBm</u>	1 MHz

なお、使用する周波数に応じて表5.1.3-34に示す周波数範囲を除くこと。

表5.1.3-34 副次的に発する電波等の限度(基地局)除外する周波数

使用する周波数	除外する周波数範囲
<u>3.5GHz帯</u> 、3.7GHz帯	3260MHz以上4240MHz以下
4. 5GHz帯	<u>4360MHz</u> 以上 <u>5040MHz</u> 以下

(イ) 移動局

30MHz以上1000MHz未満では-57dBm/100kHz以下、1000MHz以上上端の周波数の5倍未満では-47dBm/MHz以下であること。

5. 1. 4 測定法

空中線端子を有する基地局及び移動局における 3.5GHz 帯、3.7GHz 帯及び 4.5GHz 帯の 5 Gシステムの測定法については、国内で適用されている LTE の測定法に準ずることが適当である。基地局送信、移動局受信については、複数の送受空中線を有する無線設備にあっては、アクティブアンテナを用いる場合は各空中線端子で測定した値を加算(技術的条件が電力の絶対値で定められるもの。)した値により、空間多重方式を用いる場合は空中線端子毎に測定した値による。移動局送信、基地局受信については、複数の送受空中線を有し空間多重方式を用いる無線設備にあっては、最大空中線電力及び空中線電力の許容偏差は各空中線端子で測定した値を加算した値により、それ以外は空中線端子毎に測定した値による。

空中線端子を有していない基地局における 3.5GHz 帯、3.7GHz 帯及び 4.5GHz 帯の5 Gシステムの測定法については、OTA (Over The Air) による測定法を適用することが適当である。また、技術的条件の規定内容に応じ、送信装置には実効輻射電力 (EIRP: Equivalent Isotropic Radiated Power) 又は総合放射電力 (TRP: Total Radiated Power) のいずれかの方法を、受信装置には等価等方感度 (EIS: Equivalent Isotropic Sensitivity) を適用する。

(1) 送信装置

ア 周波数の許容偏差

- (7) 基地局
- (A) 空中線端子がある場合

被試験器の基地局を変調波が送信されるように設定し、波形解析器等を使用し、 周波数偏差を測定する。

被試験器が、無変調の状態にできる場合は周波数計を用いて測定することができる。

(B) 空中線端子がない場合

被試験器の基地局を変調波が空中線から送信されるように設定し、指向性方向を固定する。試験用空中線に接続した波形解析器等を使用し、周波数偏差を測定する。

被試験器が、無変調の状態にできる場合は周波数計を用いて測定することができる。

(イ) 移動局

被試験器の移動局を基地局シミュレータと接続し、波形解析器等を使用し周波数偏差を測定する。

イ スプリアス領域における不要発射の強度

- (7) 基地局
 - (A) 空中線端子がある場合

被試験器の基地局を定格出力で送信するよう設定し、空中線端子に接続されたスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎にスプリアス領域における不要発射の強度を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

また、搬送波近傍等において分解能帯域幅を参照帯域幅にすると搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。

なお、被試験器の空中線端子からアンテナ放射部までにフィルタあるいは給電 線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

アクティブアンテナを用いる場合は、空中線電力の総和が最大となる状態にて 測定し、空中線端子毎に測定されたスプリアス領域における不要発射の強度の総 和を求める。

(B) 空中線端子がない場合

被試験器の基地局をアクティブアンテナから空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎にスプリアス領域における不要発射の強度を測定する。被試験器の基地局を一定の角度ごとに回転させ、順次、スプリアス領域における不要発射の強度を測定する。周波数毎に測定されたスプリアス領域における不要発射の強度の全放射面における総合放射電力を求める。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

また、搬送波近傍等において分解能帯域幅を参照帯域幅にすると搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。

なお、被試験器の基地局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及びスペクトルアナライザを分配器等により接続し、試験周波数に設定して最大出力で送信する。分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎にスプリアス領域における不要発射の強度を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

また、搬送波近傍等において分解能帯域幅を参照帯域幅にすると搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

ウ 隣接チャネル漏えい電力

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局を定格出力で送信するよう設定し、空中線端子に接続された スペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照 帯域幅とし、規定される周波数範囲毎に隣接チャネル漏えい電力を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

アクティブアンテナを用いる場合は、空中線電力の総和が最大となる状態にて 測定し、相対値規定については空中線端子毎に隣接チャネル漏えい電力を測定す る。絶対値規定については空中線端子毎に測定した隣接帯域の電力を測定し、そ の全空中線端子の総和が規定値以下となることを確認する。

なお、被試験器の基地局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(B) 空中線端子がない場合

被試験器の基地局をアクティブアンテナから空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に送信周波数を中心とした参照帯域幅の電力と、送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力を測定する。被試験器の基地局を一定の角度ごとに回転させ、順次、送信周波数を中心とした参照帯域幅の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力の総和をそれぞれ求める。相対値規定においては、送信周波数を中心とした参照帯域幅の総和の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の総和の電力の比を計算することで全放射面における隣接チャネル漏えい電力とする。絶対値規定においては、離調周波数を中心とした参照帯域幅の範囲において、全放射面の電力の総和を求める。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、

分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、絶対値規定については被試験器の基地局の出力部からアンテナ放射部までにフィルタあるいは給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及びスペクトルアナライザを分配器等により接続し、試験周波数に設定して最大出力で送信する。分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に隣接チャネル漏えい電力を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

エ スペクトラムマスク

(7) 基地局

スプリアス領域における不要発射の強度の(7)基地局と同じ測定方法とするが、 技術的条件により定められた条件に適合するように測定又は換算する。

(イ) 移動局

スプリアス領域における不要発射の強度の(イ)移動局と同じ測定方法とするが、 技術的条件により定められた条件に適合するように測定又は換算する。

才 占有周波数带幅

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局を定格出力で送信するよう設定する。スペクトルアナライザを搬送波周波数に設定してその電力分布を測定し、全電力の0.5%となる上下の限界周波数点を求め、その差を占有周波数帯幅とする。

(B) 空中線端子がない場合

被試験器の基地局をアクティブアンテナから空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線を被試験器の空中線と対向させる。試験用空中線に接続したスペクトルアナライザを搬送波周波数に設定してその電力分布を測定し、全電力の0.5%となる上下の限界周波数点を求め、その差を占有周波数帯幅とする。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及びスペクトルアナライザを分配器等により接続し、試験周波数に設定して最大出力で送信する。スペクトルアナライザを搬送波周波数に設定してその電力分布を測定し、全電力の0.5%となる上下の限界周波数点を求め、その差を占有周波数帯幅とする。

力 空中線電力

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局を定格出力で送信するよう設定し、電力計により空中線電力 を測定する。

アクティブアンテナを用いる場合は、一の空中線電力を最大にした状態で空中 線電力の総和が最大となる状態等で測定すること。

なお、被試験器の基地局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(B) 空中線端子がない場合

被試験器の基地局をアクティブアンテナから空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続した電力計により空中線電力を測定する。被試験器の基地局を一定の角度ごとに回転させ、順次、空中線電力を測定する。測定された空中線電力の全放射面における総合放射電力を求める。

なお、被試験器の基地局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及び電力計を分配器等により接続する。 最大出力の状態で送信し、電力計により空中線電力を測定する。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

キ 送信オフ時電力

(7) 基地局規定しない。

(イ) 移動局

被試験器の移動局を基地局シミュレータ及びスペクトルアナライザを分配器等により接続し、送信停止状態とする。分解能帯域幅を技術的条件により定められ

た参照帯域幅とし、漏えい電力を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

ク 送信相互変調特性

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局と不要波信号発生器及びスペクトルアナライザを分配器等により接続する。被試験器の基地局を定格出力で送信するよう設定し、不要波信号発生器の送信出力及び周波数を技術的条件に定められた値に設定する。スペクトルアナライザにより隣接チャネル漏えい電力、スペクトラムマスク及びスプリアス領域における不要発射の強度と同じ方法で測定する。

(B) 空中線端子がない場合

被試験器の基地局から0.1m離して並列に妨害波アンテナを配置する。不要波信号発生器と妨害波アンテナの空中線端子を接続し、妨害波アンテナにおける不要波の信号を技術的条件に定められた離調周波数に設定し、被試験器の基地局の定格電力と妨害波アンテナの入力電力が同様になるように調整する。被試験器の基地局をアクティブアンテナから空中線電力の総和が最大となる状態で送信するよう設定し、被試験器の基地局と妨害波アンテナを一定の角度ごとに回転させ、スペクトルアナライザにより隣接チャネル漏えい電力、スペクトラムマスク及びスプリアス領域における不要発射の強度と同じ方法で測定する。

(イ) 移動局

被試験器の移動局と不要波信号発生器及びスペクトルアナライザを分配器等により接続する。被試験器の移動局を定格出力で送信するよう設定し、不要波信号発生器の送信出力及び周波数を技術的条件に定められた値に設定する。スペクトルアナライザにより希望波の電力を測定する。次に、希望波及び妨害波からの離調周波数を中心とした参照帯域幅の電力をそれぞれ測定する。

(2) 受信装置

ア 受信感度

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局と移動局シミュレータを接続し、技術的条件に定められた信号条件に設定する。移動局シミュレータからランダムデータを送信し、スループットを測定する。

(B) 空中線端子がない場合

被試験器のアンテナ面に、技術的条件に定められた信号条件及び信号レベルとなるよう、試験用空中線に接続した移動局シミュレータから発射する。移動局シミュレータからランダムデータを送信し、スループットを測定する。

(イ) 移動局

被試験器の移動局と基地局シミュレータを接続し、技術的条件に定められた信号条件に設定する。基地局シミュレータからランダムデータを送信し、スループットを測定する。

イ ブロッキング

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局と移動局シミュレータ及び変調信号発生器を接続し、技術的 条件に定められた信号レベルに設定する。移動局シミュレータからランダムデータを送信し、変調信号発生器の周波数を掃引してスループットを測定する。

(B) 空中線端子がない場合

被試験器のアンテナ面に、技術的条件に定められた信号条件及び信号レベルとなるよう、試験用空中線に接続した移動局シミュレータ及び変調信号発生器から発射する。移動局シミュレータからランダムデータを送信し、スループットを測定する。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及び変調信号発生器を接続し、技術的 条件に定められた信号レベルに設定する。基地局シミュレータからランダムデー タを送信し、変調信号発生器の周波数を掃引してスループットを測定する。

ウ 隣接チャネル選択度

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局と移動局シミュレータ及び信号発生器を接続し、技術的条件に定められた信号レベルに設定する。信号発生器の周波数を隣接チャネル周波数に設定してスループットを測定する。

(B) 空中線端子がない場合

被試験器のアンテナ面に、技術的条件に定められた信号条件及び信号レベルとなるよう、試験用空中線に接続した移動局シミュレータ及び信号発生器から発射する。移動局シミュレータからランダムデータを送信し、スループットを測定する。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及び信号発生器を接続し、技術的条件に定められた信号レベルに設定する。信号発生器の周波数を隣接チャネル周波数に設定してスループットを測定する。

工 相互変調特性

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局と移動局シミュレータ及び2つの妨害波信号発生器を接続する。希望波及び妨害波を技術的条件により定められた信号レベル及び周波数に設定する。移動局シミュレータからランダムデータを送信し、スループットを測定する。

(B) 空中線端子がない場合

被試験器のアンテナ面に、技術的条件に定められた信号条件及び信号レベルとなるよう、試験用空中線に接続した移動局シミュレータ及び2つの妨害波信号発生器から発射する。移動局シミュレータからランダムデータを送信し、スループットを測定する。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及び2つの妨害波信号発生器を接続する。希望波及び妨害波を技術的条件により定められた信号レベル及び周波数に設定する。基地局シミュレータからランダムデータを送信し、スループットを測定する。

オ 副次的に発する電波等の限度

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局を受信状態(送信出力停止)にし、受信機入力端子に接続されたスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に副次的に発する電波の限度を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、被試験器の空中線端子からアンテナ放射部までにフィルタあるいは給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(B) 空中線端子がない場合

被試験器の基地局を受信状態(送信出力停止)にし、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件

により定められた参照帯域幅とし、規定される周波数範囲毎に副次的に発する電波の限度を測定する。被試験器の基地局を一定の角度ごとに回転させ、順次、副次的に発する電波の限度を測定する。測定された周波数毎に測定された副次的に発する電波の限度の全放射面における総和を求める。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

また、搬送波近傍等において分解能帯域幅を参照帯域幅にすると搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。

なお、被試験器の基地局の受信部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及びスペクトルアナライザを分配器等により接続し、試験周波数に設定して受信状態(送信出力停止)にする。分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に副次的に発する電波の限度を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、被試験器の移動局の受信部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(3) 運用中の設備における測定

運用中の無線局における設備の測定については、(1)及び(2)の測定法によるほか、(1)及び(2)の測定法と技術的に同等と認められる方法によることができる。

5. 1. 5 端末設備として移動局に求められる技術的な条件

(1) データ伝送用端末

情報通信審議会携帯電話等周波数有効利用方策委員会報告(平成 20 年 12 月 11 日) により示された LTE 方式の技術的な条件等を参考とし、5 Gの技術的な条件としては、以下に示すとおりとする。

ア 基本的機能

(7) 発信

発信を行う場合にあっては、発信を要求する信号を送出するものであること。

(イ) 着信応答

応答を行う場合にあっては、応答を確認する信号を送出するものであること。

イ 発信時の制限機能

規定しない。

ウ 送信タイミング

基地局から受信したフレームに同期させ、かつ基地局から指定されたシンボルにおいて送信を開始するものとし、その送信の開始の時の偏差は、サブキャリア間隔が 15kHz 及び 30kHz においては ± 130 ナノ秒、サブキャリア間隔が 60kHz においては ± 65 ナノ秒、サブキャリア間隔が 120kHz においては ± 16.25 ナノ秒の範囲であること

エ ランダムアクセス制御

- (7) 基地局から指定された条件においてランダムアクセス制御信号を送出した後、送受信切り替えに要する時間の後に最初に制御信号の検出を試みるシンボルから 10 ミリ秒以内の基地局から指定された時間内に基地局から送信許可信号を受信した場合は、送信許可信号を受信した時から、基地局から指定された条件において情報の送信を行うこと。
- (1) (7)において送信禁止信号を受信した場合又は送信許可信号若しくは送信禁止信号を受信できなかった場合は、再び(7)の動作を行うこととする。この場合において、再び(7)の動作を行う回数は、基地局から指示される回数を超えないこと。

オ タイムアライメント制御

基地局からの指示に従い送信タイミングを調整する機能を有すること。

力 位置登録制御

- (7) 基地局からの位置情報が、データ伝送用端末に記憶されているものと一致しない場合のみ、位置情報の登録を要求する信号を送出すること。ただし、基地局から指示があった場合、又は利用者が当該端末を操作した場合は、この限りでない。
- (イ) 基地局からの位置情報の登録を確認する信号を受信した場合にあっては、データ伝送用端末に記憶されている位置情報を更新し、かつ、保持するものであること。
- (ウ) LTE-Advanced 方式又は広帯域移動無線アクセスシステムと構造上一体となっており、位置登録制御を LTE-Advanced 方式又は広帯域移動無線アクセスシステムにおいて行うデータ伝送用端末にあっては、(ア)、(イ)の規定を適用しない。

キ 送信停止指示に従う機能

基地局からチャネルの切断を要求する信号を受信した場合は、送信を停止する機能 を有すること。

ク 受信レベル通知機能

基地局から指定された条件に基づき、データ伝送用端末の周辺の基地局の指定された参照信号の受信レベルについて検出を行い、当該端末の周辺の基地局の受信レベルが基地局から指定された条件を満たす場合にあっては、その結果を基地局に通知すること。

ケ 端末固有情報の変更を防止する機能

- (7) データ伝送用端末固有情報を記憶する装置は、容易に取り外せないこと。ただし、データ伝送用端末固有情報を記憶する装置を取り外す機能を有している場合は、この限りでない。
- (イ) データ伝送用端末固有情報は、容易に書き換えができないこと。
- (ウ) データ伝送用端末固有情報のうち利用者が直接使用するもの以外のものについては、容易に知得ができないこと。

コ チャネル切替指示に従う機能

基地局からのチャネルを指定する信号を受信した場合にあっては、指定されたチャネルに切り替える機能を備えなければならない。

サ 受信レベル等の劣化時の自動的な送信停止機能

通信中の受信レベル又は伝送品質が著しく劣化した場合にあっては、自動的に送信を停止する機能を備えなければならない。

シ 故障時の自動的な送信停止機能

故障により送信が継続的に行われる場合にあっては、自動的にその送信を停止する 機能を備えなければならない。

ス 重要通信の確保のための機能

重要通信を確保するため、基地局からの発信の規制を要求する信号を受信した場合 にあっては、発信しない機能を備えなければならない。

(2) インターネットプロトコル移動電話端末

情報通信審議会情報通信技術分科会 IP ネットワーク設備委員会報告(平成 24 年 9 月 27 日)により示された IP 移動電話端末の技術的条件等を参考とし、5 Gの技術的な条件としては、以下に示すとおりとする。

ア 基本的機能

(7) 発信

発信を行う場合にあっては、発信を要求する信号を送出するものであること。

(イ) 着信応答

応答を行う場合にあっては、応答を確認する信号を送出するものであること。

(ウ) メッセージ送出

発信又は応答を行う場合にあっては、呼の設定を行うためのメッセージ又は当該

メッセージに対応するためのメッセージを送出するものであること。

(エ) 通信終了メッセージ

通信を終了する場合にあっては、通信終了メッセージを送出するものであること。

イ 発信の機能

発信に際して相手の端末設備からの応答を自動的に確認する場合にあっては、電気通信回線からの応答が確認できない場合、呼の設定を行うためのメッセージ送出終了後 128 秒以内に通信終了すること。

ウ 送信タイミング

基地局から受信したフレームに同期させ、かつ基地局から指定されたシンボルにおいて送信を開始するものとし、その送信の開始の時の偏差は、サブキャリア間隔が 15kHz 及び 30kHz においては ± 130 ナノ秒、サブキャリア間隔が 60kHz においては ± 65 ナノ秒、サブキャリア間隔が 120kHz においては ± 16 . 25 ナノ秒の範囲であること。

エ ランダムアクセス制御

- (7) 基地局から指定された条件においてランダムアクセス制御信号を送出した後、送受信切り替えに要する時間の後に最初に制御信号の検出を試みるシンボルから 10 ミリ秒以内の基地局から指定された時間内に基地局から送信許可信号を受信した場合は、送信許可信号を受信した時から、基地局から指定された条件において情報の送信を行うこと。
- (4) (7)において送信禁止信号を受信した場合又は送信許可信号若しくは送信禁止信号を受信できなかった場合は、再び(7)の動作を行うこととする。この場合において、再び(7)の動作を行う回数は、基地局から指示される回数を超えないこと。

オ タイムアライメント制御

基地局からの指示に従い送信タイミングを調整する機能を有すること。

力 位置登録制御

インターネットプロトコル移動電話端末は、以下の条件に適合する位置登録制御 を行う機能を備えなければならない。

- (7) 基地局からの位置情報が、インターネットプロトコル移動電話端末に記憶されているものと一致しない場合には、位置情報の登録を要求する信号を送出するものであること。ただし、基地局から指示があった場合は、この限りでない。
- (1) 基地局からの位置情報の登録を確認する信号を受信した場合には、インターネットプロトコル移動電話端末に記憶されている位置情報を更新し、かつ、保持するものであること。
- (ウ) LTE-Advanced 方式と構造上一体となっており、位置登録制御を LTE-Advanced 方

式において行うインターネットプロトコル移動電話端末にあっては、(ア)、(イ)の規定 を適用しない。

キ チャネル切替指示に従う機能

インターネットプロトコル移動電話端末は、基地局からのチャネルを指定する信号 を受信した場合にあっては、指定されたチャネルに切り替える機能を備えなければな らない。

ク 受信レベル通知機能

インターネットプロトコル移動電話端末の近傍の基地局から指示された参照信号の 受信レベルについて、検出を行い、当該受信レベルが基地局から指示された条件を満 たす場合にあっては、その結果を基地局に通知する機能を備えなければならない。

ケ 送信停止指示に従う機能

インターネットプロトコル移動電話端末は、基地局からのチャネルの切断を要求する信号を受信した場合は、送信を停止する機能を備えなければならない。

コ 受信レベル等の劣化時の自動的な送信停止機能

インターネットプロトコル移動電話端末は、通信中の受信レベル又は伝送品質が著しく劣化した場合にあっては、自動的に送信を停止する機能を備えなければならない。

サ 故障時の自動的な送信停止機能

インターネットプロトコル移動電話端末は、故障により送信が継続的に行われる場合にあっては、自動的にその送信を停止する機能を備えなければならない。

シ 重要通信の確保のための機能

インターネットプロトコル移動電話端末は、重要通信を確保するため、基地局から の発信の規制を要求する信号を受信した場合にあっては、発信しない機能を備えなけ ればならない。

ス ふくそう通知機能

規定しない。

セ 緊急通報機能

インターネットプロトコル移動電話端末であって、通話の用に供するものは、緊急 通報機能を発信する機能を備えなければならない。

ソ 端末固有情報の変更を防止する機能

(ア) インターネットプロトコル移動電話端末固有情報を記憶する装置は、容易に取り外せないこと。ただし、インターネットプロトコル移動電話端末固有情報を記憶す

る装置を取り外す機能を有している場合は、この限りでない。

- (イ) インターネットプロトコル移動電話端末固有情報は、容易に書き換えができないこと。
- (ウ) インターネットプロトコル移動電話端末固有情報のうち利用者が直接使用するもの以外のものについては、容易に知得ができないこと。

タ 特殊なインターネットプロトコル移動電話端末

アからソまでの条件によることが著しく不合理なインターネットプロトコル移動電話端末については、個別に適した具体的条件を柔軟に設定するため、例外規定を設定しておく必要がある。

5. 1. 6 その他

国内標準化団体等では、無線インタフェースの詳細仕様や高度化に向けた検討が引き続き行われていることから、今後、これらの国際的な動向等を踏まえつつ、技術的な検討が不要な事項について、国際的な整合性を早期に確保する観点から、適切かつ速やかに国際標準の内容を技術基準に反映していくことが望ましい。

5. 2 28GHz 帯における技術的条件

5. 2. 1 無線諸元

(1) 無線周波数帯

28GHz 帯 (27.0GHz-29.5GHz) の周波数を使用すること。

(2) キャリア設定周波数間隔

設定しうるキャリア周波数間の最低周波数設定ステップ幅であること。 60kHz とすること。

(3) 多元接続方式/多重接続方式

OFDM (Orthogonal Frequency Division Multiplexing: 直交周波数分割多重)方式及び TDM (Time Division Multiplexing: 時分割多重)方式との複合方式を下り回線(基地局送信、移動局受信)に、SC-FDMA (Single Carrier Frequency Division Multiple Access: シングル・キャリア周波数分割多元接続)方式又は OFDMA (Orthogonal Frequency Division Multiple Access: 直交周波数分割多元接続)を上り回線(移動局送信、基地局受信)に使用すること。

(4) 通信方式

TDD (Time Division Duplex:時分割複信)方式とすること。

(5) 変調方式

ア 基地局(下り回線)

QPSK (Quadrature Phase Shift Keying)、16QAM (16 Quadrature Amplitude Modulation)、64QAM (64 Quadrature Amplitude Modulation) 又は256QAM (256 Quadrature Amplitude Modulation) 方式を採用すること。

イ 移動局(上り回線)

BPSK (Binary Phase Shift Keying)、 $\pi/2$ shift-BPSK ($\pi/2$ shift-Binary Phase Shift Keying)、QPSK、16QAM、64QAM又は256QAM方式を採用すること。

5. 2. 2 システム設計上の条件

(1) フレーム長

フレーム長は 10ms であり、サブフレーム長は 1ms(10 サブフレーム/フレーム)であること。スロット長は 0.25ms 又は 0.125ms(40 又は 80 スロット/フレーム)であること。

(2) 送信電力制御

基地局からの電波の受信電力の測定又は当該基地局からの制御情報に基づき空中線電力が必要最小限となるよう自動的に制御する機能を有すること。

(3) 電磁環境対策

移動局と自動車用電子機器や医療電子機器等との相互の電磁干渉に対しては、十分な配慮が払われていること。

(4) 電波防護指針への適合

電波を使用する機器については、基地局については電波法施行規則第21条の3に適合すること。移動局については、無線設備規則第14条の2に適合すること。

(5) 移動局送信装置の異常時の電波発射停止

次の機能が独立してなされること。

ア 基地局が移動局の異常を検出した場合、基地局は移動局に送信停止を要求すること。

イ 移動局自身がその異常を検出した場合は、異常検出タイマのタイムアウトにより移動局自身が送信を停止すること。

(6) 他システムとの共用

他の無線局及び電波法第56条に基づいて指定された受信設備に干渉の影響を与えないように、設置場所の選択、フィルタの追加等の必要な対策を講ずること。

5. 2. 3 無線設備の技術的条件

(1) 送信装置

通常の動作状態において、以下の技術的条件を満たすこと。なお、本技術的条件の一部の規定については暫定値であり、3GPPの議論が確定した後、適正な値を検討することが望ましい。

ア キャリアアグリゲーション

基地局については、一の送信装置から異なる周波数帯の搬送波を発射する場合については今回の検討の対象外としており、そのような送信装置が実現される場合には、その不要発射等について別途検討が必要である。

移動局については、キャリアアグリゲーション(複数の搬送波を同時に用いて一体として行う無線通信をいう。)で送信可能な搬送波の組合せで送信している状態で搬送波毎につからコに定める技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

イ アクティブアンテナ

複数の空中線素子及び無線設備を用いて1つ又は複数の指向性を有するビームパ

ターンを形成・制御する技術をいう。

28GHz 帯においては、空中線端子を有さないアクティブアンテナと組合せた基地局及び空中線端子を有さないアクティブアンテナ又はノーマルアンテナと組合せた移動局のみが定義されるため、全ての技術的条件における測定法はOTAによるものとする。基地局が複数のアクティブアンテナを組合せることが可能な場合は、各アクティブアンテナにおいてウからサの技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りではない。

ウ 周波数の許容偏差

(7) 基地局

± (0.1ppm+12Hz) 以内であること。

(イ) 移動局

基地局の制御信号により指示された移動局の送信周波数に対し、28GHz帯においては土(0.1ppm+0.005ppm)以内であること。

エ スプリアス領域における不要発射の強度

スプリアス領域における不要発射の許容値は、以下の表に示す値以下であること。

(7) 基地局

基地局における空中線電力の総和としての許容値は、表 5.2.3 - 1 に示す許容値以下であること。ただし、基地局が使用する周波数帯(27.0GHz-29.5GHzのうち、基地局が使用する周波数帯をいう。以下、3 において同じ。)の端から1.5GHz以上離れた周波数範囲に適用する。

また、一の送信装置において同一周波数帯で複数搬送波(変調後の搬送波をいう。以下 5. 2. 3 において同じ。)を送信する場合にあっては、複数の搬送波を同時に送信した場合においても、本規定を満足すること。ただし、基地局が使用する周波数帯の端から1.5 GHz以上離れた周波数範囲に適用する。

表5.2.3-1 スプリアス領域における不要発射の強度の許容値(基地局)基本

周波数範囲	許容値	参照帯域幅
30MHz以上1000MHz未満	−13dBm	100kHz
1000MHz以上上端の周波数の2倍未満又は60GHz未満	−13dBm	1 MHz

以下に示す周波数範囲については、表5.2.3-2に示す許容値以下であること。

表5.2.3-2 スプリアス領域における不要発射の強度の許容値(基地局)個別 周波数帯

周波数範囲	<u>許容値</u>	参照帯域幅
地球探査衛星帯域 23.6GHz以上24.0GHz未満	<mark>-39dBW^注</mark>	<u>200MHz</u>

<u>注:2021年1月1日から運用開始する無線局に対して、28GHz帯の周波数を使用する場合に、搬送波の周波数の下端が27.5GHz以下の場合に適用する。また、2021年1月1日から2027年9月1日前に運用開始する無線局に関しては、-33dBW/200MHzの許容値を</u>適用してもよい。

(化) 移動局

移動局における空中線電力の総和としての許容値は、50MHzシステムにあっては 周波数離調(送信周波数帯域の中心周波数から参照帯域幅の送信周波数帯に近い 方の端までの差の周波数を指す。搬送波が隣接するキャリアアグリゲーションの 場合を除き、以下同じ。)が125MHz以上、100MHzシステムにあっては周波数離調が 250MHz以上、200MHzシステムにあっては周波数離調が500MHz以上、400MHzシステム にあっては周波数離調が1000MHz以上に適用する。なお、通信にあたって移動局に 割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あ るいは送信電力を基地局や移動局の制御によって制限すること又はそれらの組合 せの制御によって制限することで、その条件での許容値とすることができる。

搬送波が隣接するキャリアアグリゲーションで送信する場合、複数の搬送波で送信している条件での許容値とし、複数の搬送波の帯域幅の合計値が、100MHzシステムにあっては周波数離調(隣接する複数の搬送波の送信帯域幅の中心周波数から参照帯域幅の送信周波数帯に近い方の端までの差の周波数を指す。搬送波が隣接するキャリアアグリゲーションの場合にあっては、以下同じ。)が250MHz以上、200MHzシステムにあっては周波数離調が500MHz以上、300MHzシステムにあっては周波数離調が750MHz以上、400MHzシステムにあっては周波数離調が1000MHz以上、450MHzシステムにあっては周波数離調が11250MHz以上、600MHzシステムにあっては周波数離調が1500MHz以上、650MHzシステムにあっては周波数離調が1750MHz以上、800MHzシステムにあっては周波数離調が1750MHz以上、800MHzシステムにあっては周波数離調が1750MHz以上、800MHzシステムにあっては周波数離調が2000MHz以上の周波数範囲に適用する。

搬送波が隣接しないキャリアアグリゲーションで送信する場合、一の搬送波の スプリアス領域が他の搬送波の送信周波数帯域及び帯域外領域と重複する場合は、 当該周波数範囲においては本規定を適用しない。なお、送信する周波数の組合せ により測定する周波数範囲における許容値が異なる場合は、どちらか高い方の許 容値を適用する。

表 5. 2. 3-3 スプリアス領域における不要発射の強度の許容値(移動局)基本 28GHz 帯

周波数範囲	許容値	参照帯域幅
6 GHz以上12. 75GHz未満	-30dBm	1 MHz
12.75GHz以上上端の周波数の2倍未満	-13dBm	1 MHz

以下に示す周波数範囲については、表5.2.3-4に示す許容値以下であるこ

ہ ع

表5.2.3-4 スプリアス領域における不要発射の強度の許容値(移動局)個別 周波数帯

<u> </u>		
周波数範囲	<u>許容値</u>	参照帯域幅
地球探査衛星帯域 23.6GHz以上24.0GHz未満	<mark>−35dBW^注</mark>	<u>200MHz</u>

<u>注:</u>2021年1月1日から運用開始する無線局に対して、28GHz帯の周波数を使用する場合に、搬送波の周波数の下端が27.5GHz以下の場合に適用する。また、2021年1月1日から2027年9月1日前に運用開始する無線局に関しては、-29dBW/200MHzの許容値を適用してもよい。

オ 隣接チャネル漏えい電力

(7) 基地局

空中線電力の総和が表5.2.3-5に示す絶対値規定又は相対値規定のいずれかの許容値を各離調周波数において満足すること。

一の送信装置において同一周波数帯で複数の搬送波を同時に送信する場合の許容値は、最も下側の搬送波の下側及び最も上側の搬送波の上側において、空中線電力の総和が表5.2.3-5に示す絶対値規定又は相対値規定のいずれかの許容値を各離調周波数において満足すること。

表5.2.3-5 隣接チャネル漏えい電力(基地局)

			1	
システム	規定の種別	離調周波数	許容値	参照帯域幅
50MHzシステム	絶対値規定	50MHz	−10. 3dBm/MHz	47. 52MHz
30WINZ システム	相対値規定	50MHz	−25. 7dBc	47. 52MHz
100MHzシステム	絶対値規定	100MHz	−10.3dBm/MHz	95. 04MHz
TOOMITZ DATA	相対値規定	100MHz	−25. 7dBc	95. 04MHz
200MHzシステム	絶対値規定	200MHz	−10.3dBm/MHz	190.08MHz
200MH2 2 A F A	相対値規定	200MHz	−25. 7dBc	190.08MHz
400MHzシステム	絶対値規定	400MHz	−10.3dBm/MHz	380.16MHz
400MI12 2777	相対値規定	400MHz	−25. 7dBc	380.16MHz

一の送信装置において同一周波数帯で隣接しない複数の搬送波を同時に送信する場合は、空中線電力の総和が表 5.2.3 - 6 に示す絶対値規定又は相対値規定のいずれかの許容値を各オフセット周波数において満足すること。

表5.2.3-6 隣接チャネル漏えい電力 (隣接しない複数の搬送波を発射する基地局)

	(1717)2 0	0 後数の放送が			1
システム	周波数差 ^注 2	規定の種別	オフセッ ト周波数 ^注 3	許容値	参照帯域幅
	50MHz以上	絶対値規定	25MHz	-10. 3dBm/MHz	47. 52MHz
200MHz未満の	100MHz未満	相対値規定	25MHz	−25. 7dBc ^{注 4}	47. 52MHz
システム	100MHz以上	絶対値規定	25MHz	-10. 3dBm/MHz	47. 52MHz
	TOOMITZ以上	相対値規定	25MHz	-25. 7dBc ^{注 5}	47. 52MHz
200MHz未満の	50MHz以上	絶対値規定	25MHz	−10. 3dBm/MHz	47. 52MHz
システム	250MHz未満	相対値規定	25MHz	-25. 7dBc ^{注 4}	47. 52MHz
(他方の搬送波が		絶対値規定	25MHz	-10. 3dBm/MHz	47. 52MHz
200MHz以上の	250MHz以上	相対値規定	25MHz	-25. 7dBc ^{注 5}	47. 52MHz
システムの場合)		作列但就是	ZJIVII IZ		
	200MHz以上	絶対値規定	100MHz	-10.3dBm/MHz	190.08MHz
200MHz以上の	400MHz未満	相対値規定	100MHz	-25. 7dBc ^{注 4}	190.08MHz
システム	400MHz以上	絶対値規定	100MHz	−10.3dBm/MHz	190.08MHz
	400㎞12以上	相対値規定	100MHz	-25. 7dBc ^{注 5}	190.08MHz
200MHz以上の	200MHz以上	絶対値規定	100MHz	-10. 3dBm/MHz	190.08MHz
システム	250MHz未満	相対値規定	100MHz	-25. 7dBc ^{注 4}	190.08MHz
(他方の搬送波が		絶対値規定	100MHz	-10. 3dBm/MHz	190.08MHz
200MHz未満の	250MHz以上	相対値規定	100MHz	-25. 7dBc ^{注 5}	190.08MHz
システムの場合)		11的 胆况止			

注1:本表は、下側の搬送波の送信周波数帯域の上端から、上側の搬送波の送信周波数帯域の下端までの周波数範囲に適用する。3波以上の搬送波の場合には、 近接する搬送波の間の周波数範囲に適用する。

注2:下側の搬送波の送信周波数帯域の上端から、上側の搬送波の送信周波数帯域 の下端までの周波数差

注3:下側の搬送波の送信周波数帯域の上端又は上側の搬送波の送信周波数帯域の 下端から隣接チャネル漏えい電力の測定帯域の中心までの差の周波数

注4:基準となる搬送波の電力は、複数の搬送波の電力の和とする。

注5:基準となる搬送波の電力は、下側の搬送波又は上側の搬送波の電力とする。

(イ) 移動局

空中線電力の総和が表5.2.3-7に示す相対値規定又は絶対値規定のいずれかの許容値を各離調周波数において満足すること。なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限

し、あるいは送信電力を基地局や移動局の制御によって制限すること又はそれら の組合せによる制御によって制限することで、その条件での許容値とすることが できる。

表5. 2. 3-7 隣接チャネル漏えい電力(移動局)基本

システム	規定の種別	離調周波数	許容値 ^注	参照帯域幅
50MHzシステム	相対値規定	50MHz	−10. 7dBc	47. 52MHz
JOIMINZ JA JA	絶対値規定	50MHz	-35dBm	47. 52MHz
100MHzシステム	相対値規定	100MHz	−10. 7dBc	95.04MHz
TOOMITZクステム	絶対値規定	100MHz	-35dBm	95.04MHz
200MHzシステム	相対値規定	200MHz	−7. 7dBc	190.08MHz
200MIN2システム	絶対値規定	200MHz	−35dBm	190.08MHz
400MHzシステム	相対値規定	400MHz	-4. 7dBc	380.16MHz
400MII2 2 7 7 A	絶対値規定	400MHz	−35dBm	380.16MHz

注:送信周波数帯域の中心周波数から離調周波数分だけ離れた周波数を中心 周波数とする参照帯域幅分の値とする。

搬送波が隣接するキャリアアグリゲーションで送信する場合、許容値は、複数の搬送波で送信している条件とし、空中線電力の総和において表 5.2.3-8に示す相対値規定又は絶対値規定のどちらか高い値であること。

表5. 2. 3-8 隣接チャネル漏えい電力(移動局)キャリアアグリゲーション

システム	規定の種別	離調周波数	許容値注	参照帯域幅
100MHzシステム	相対値規定	100MHz	−10. 7dBc	97. 58MHz
TOOMINZ システム	絶対値規定	100MHz	-35dBm	97. 58MHz
200MU-2.7 = /	相対値規定	200MHz	−7. 7dBc	195.16MHz
200MHzシステム	絶対値規定	200MHz	−35dBm	195. 16MHz
200MU-2.7 = /	相対値規定	300MHz	−5. 9dBc	295. 16MHz
300MHzシステム	絶対値規定	300MHz	-35dBm	295. 16MHz
400MHz 2 . 7 = 1	相対値規定	400MHz	−4. 7dBc	395. 16MHz
400MHzシステム	絶対値規定	400MHz	-35dBm	395. 16MHz
450MU-2.7.7.1	相対値規定	450MHz	−4. 2dBc	443. 89MHz
450MHzシステム	絶対値規定	450MHz	−35dBm	443. 89MHz
500MH-2.7 = /	相対値規定	500MHz	−3. 7dBc	495. 16MHz
500MHzシステム	絶対値規定	500MHz	−35dBm	495. 16MHz

600MHzシステム	相対値規定	600MHz	−2. 9dBc	595.16MHz
000MI12 JATA	絶対値規定	600MHz	−35dBm	595.16MHz
650MHzシステム	相対値規定	650MHz	−2. 6dBc	643.89MHz
05UMITZ システム	絶対値規定	650MHz	-35dBm	643. 89MHz
700MHzシステム	相対値規定	700MHz	−2. 3dBc	695.16MHz
700MI12 クステム	絶対値規定	700MHz	−35dBm	695.16MHz
800MHzシステム	相対値規定	800MHz	−1. 7dBc	795.16MHz
OUUMITZジステム	絶対値規定	800MHz	−35dBm	795. 16MHz

注1:隣接する複数の搬送波の送信周波数帯域の中心周波数から離調周波数分だけ離れた周波数を中心周波数とする参照帯域幅分の値とする。

注2:相対値規定の際、基準となる搬送波電力は、キャリアアグリゲーションで送信する隣接する複数の搬送波電力の和とする。

搬送波が隣接しないキャリアアグリゲーションで送信する場合、各送信周波数帯域の端(他方の送信搬送波に近い端に限る。)の間隔が各搬送波の占有周波数帯幅よりも狭い場合はその間隔内においては本規定を適用しない。

カ スペクトラムマスク

(7) 基地局

送信周波数帯域の端(不要発射の強度の測定帯域に近い端に限る。)から不要発射の強度の測定帯域の中心周波数までの差のオフセット周波数(Δf)に対して、不要発射の強度の総和が表 5.2.3-9に示す許容値以下であること。ただし、基地局が使用する周波数帯の端から1.5GHz未満の周波数範囲に限り適用する。

また、一の送信装置において同一周波数帯で複数の搬送波を送信する場合にあっては、複数の搬送波を同時に送信した場合においても、最も下側の搬送波の下側及び最も上側の搬送波の上側において、本規定を満足すること。ただし、基地局が使用する周波数帯の端から1.5GHz未満の周波数範囲に限り適用する。

一の送信装置において同一周波数帯で隣接しない複数の搬送波を同時に送信する場合は、下側の搬送波の送信周波数帯域の上端から、上側の搬送波の送信周波数帯域の下端までの周波数範囲においては、各搬送波に属するスペクトラムマスクの許容値の総和を満たすこと。

表5. 2. 3-9 スペクトラムマスク(基地局)

オフセット周波数 Δ f (MHz)	許容値	参照帯域幅
0.5MHz以上、送信周波数帯域幅	−2.3dBm	1 MH <i>7</i>
の10%に0.5MHzを加えた値未満	-2. Subili	I WILIZ
送信周波数帯域幅の10%に	-13dBm	1 MHz
0.5MHzを加えた値以上	- i sadili	IWIΠ∠

(イ) 移動局

送信周波数帯域の端(不要発射の強度の測定帯域に近い端に限る。)から不要発射の強度の測定帯域の最寄の端までのオフセット周波数(Δ f)に対して、システム毎に空中線電力の総和において表 5. 2. 3 - 10に示す許容値以下であること。なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること又はそれらの組合せによる制御によって制限することで、その条件での許容値とすることができる。

表5. 2. 3-10 スペクトラムマスク (移動局) 28GHz帯

					_
	シス	参照帯			
オフセット周波数 Δf	50	100	200	400	多照帝 域幅
	MHz	MHz	MHz	MHz	以幅
OMHz以上5MHz未満	<u>-1. 7</u>	<u>-1.7</u>	<u>-1.7</u>	<u>-1.7</u>	1 MHz
5 MHz以上10MHz未満	<u>-9. 7</u>	<u>-1. 7</u>	<u>-1.7</u>	<u>-1.7</u>	1 MHz
10MHz以上20MHz未満	<u>-9. 7</u>	<u>-9. 7</u>	<u>-1.7</u>	<u>-1.7</u>	1 MHz
20MHz以上40MHz未満	<u>-9. 7</u>	<u>-9. 7</u>	<u>-9. 7</u>	<u>-1.7</u>	1 MHz
40MHz以上100MHz未満	<u>-9. 7</u>	<u>-9. 7</u>	<u>-9. 7</u>	<u>-9. 7</u>	1 MHz
100MHz以上200MHz未満		<u>-9. 7</u>	<u>-9. 7</u>	<u>-9. 7</u>	1 MHz
200MHz以上400MHz未満			<u>-9. 7</u>	<u>-9. 7</u>	1 MHz
400MHz以上800MHz未満				<u>-9. 7</u>	1 MHz

搬送波が隣接するキャリアアグリゲーションで送信する場合、表5.2.3-1 1に示す許容値以下であること。

表 5. 2. 3-11 スペクトラムマスク (移動局) キャリアアグリゲーション 28GHz帯

			毎の許容	直 (dBm)		全 四世
オフセット周波数 Δf	100	200	300	400	450	参照帯
	MHz	MHz	MHz	MHz	MHz	域幅
OMHz以上10MHz未満	<u>-1.7</u>	<u>-1. 7</u>	<u>-1. 7</u>	<u>-1. 7</u>	<u>-1.7</u>	1 MHz
10MHz以上20MHz未満	<u>-9. 7</u>	<u>-1. 7</u>	<u>-1. 7</u>	<u>-1. 7</u>	<u>-1.7</u>	1 MHz
20MHz以上30MHz未満	<u>-9. 7</u>	<u>-9. 7</u>	<u>-1. 7</u>	<u>-1. 7</u>	<u>-1.7</u>	1 MHz
30MHz以上40MHz未満	<u>-9. 7</u>	<u>-9. 7</u>	<u>-9. 7</u>	<u>-1. 7</u>	<u>-1.7</u>	1 MHz
40MHz以上45MHz未満	<u>-9. 7</u>	<u>-9. 7</u>	<u>-9. 7</u>	<u>-9. 7</u>	<u>-1.7</u>	1 MHz
45MHz以上200MHz未満	<u>-9. 7</u>	<u>-9. 7</u>	<u>-9. 7</u>	<u>-9. 7</u>	<u>-9. 7</u>	1 MHz
200MHz以上400MHz未満		<u>-9. 7</u>	<u>-9. 7</u>	<u>-9. 7</u>	<u>-9. 7</u>	1 MHz
400MHz以上600MHz未満			<u>-9. 7</u>	<u>-9. 7</u>	<u>-9. 7</u>	1 MHz
600MHz以上800MHz未満				<u>-9. 7</u>	<u>-9. 7</u>	1 MHz
800MHz以上900MHz未満					<u>-9. 7</u>	1 MHz
		システム	ム毎の許容	直 (dBm)		券昭 世
オフセット周波数 Δf	500	システム 600	ム毎の許容(650	直(dBm) 700	800	参照帯
オフセット周波数 Δf	500 MHz	I	I	I	800 MHz	参照帯域幅
オフセット周波数 Δf OMHz以上50MHz未満		600	650	700		
	MHz	600 MHz	650 MHz	700 MHz	MHz	域幅
O MHz以上50MHz未満	MHz -1. 7	600 MHz <u>-1.7</u>	650 MHz <u>-1.7</u>	700 MHz <u>-1.7</u>	MHz -1.7	域幅 1 MHz
O MHz以上50MHz未満 50MHz以上60MHz未満	MHz -1. 7 -9. 7	600 MHz -1. 7 -1. 7	650 MHz -1. 7 -1. 7	700 MHz -1. 7 -1. 7	MHz -1.7 -1.7	域幅 1 MHz 1 MHz
O MHz以上50MHz未満 50MHz以上60MHz未満 60MHz以上65MHz未満	MHz -1. 7 -9. 7 -9. 7	600 MHz -1. 7 -1. 7 -9. 7	650 MHz -1. 7 -1. 7 -1. 7	700 MHz -1.7 -1.7 -1.7	MHz -1. 7 -1. 7 -1. 7	域幅 1 MHz 1 MHz 1 MHz
O MHz以上50MHz未満 50MHz以上60MHz未満 60MHz以上65MHz未満 65MHz以上75MHz未満	MHz -1. 7 -9. 7 -9. 7 -9. 7	600 MHz -1. 7 -1. 7 -9. 7 -9. 7	650 MHz -1. 7 -1. 7 -1. 7 -9. 7	700 MHz -1.7 -1.7 -1.7 -1.7	MHz -1. 7 -1. 7 -1. 7 -1. 7	域幅 1 MHz 1 MHz 1 MHz 1 MHz 1 MHz
O MHz以上50MHz未満 50MHz以上60MHz未満 60MHz以上65MHz未満 65MHz以上75MHz未満 70MHz以上80MHz未満	MHz -1. 7 -9. 7 -9. 7 -9. 7 -9. 7	600 MHz -1. 7 -1. 7 -9. 7 -9. 7 -9. 7	650 MHz -1. 7 -1. 7 -1. 7 -9. 7 -9. 7	700 MHz -1. 7 -1. 7 -1. 7 -1. 7 -9. 7	MHz -1. 7 -1. 7 -1. 7 -1. 7 -1. 7	域幅 1 MHz 1 MHz 1 MHz 1 MHz 1 MHz 1 MHz
O MHz以上50MHz未満 50MHz以上60MHz未満 60MHz以上65MHz未満 65MHz以上75MHz未満 70MHz以上80MHz未満 80MHz以上1000MHz未満	MHz -1. 7 -9. 7 -9. 7 -9. 7 -9. 7	600 MHz -1. 7 -1. 7 -9. 7 -9. 7 -9. 7 -9. 7	650 MHz -1. 7 -1. 7 -1. 7 -9. 7 -9. 7 -9. 7	700 MHz -1. 7 -1. 7 -1. 7 -1. 7 -9. 7 -9. 7	MHz -1. 7 -1. 7 -1. 7 -1. 7 -1. 7 -1. 7 -1. 7	域幅 1 MHz
O MHz以上50MHz未満 50MHz以上60MHz未満 60MHz以上65MHz未満 65MHz以上75MHz未満 70MHz以上80MHz未満 80MHz以上1000MHz未満 1000MHz以上1200MHz未満	MHz -1. 7 -9. 7 -9. 7 -9. 7 -9. 7	600 MHz -1. 7 -1. 7 -9. 7 -9. 7 -9. 7 -9. 7	650 MHz -1. 7 -1. 7 -1. 7 -9. 7 -9. 7 -9. 7 -9. 7	700 MHz -1. 7 -1. 7 -1. 7 -1. 7 -1. 7 -9. 7 -9. 7 -9. 7	MHz -1. 7 -1. 7 -1. 7 -1. 7 -1. 7 -1. 7 -1. 7 -9. 7 -9. 7	域幅 1 MHz

搬送波が隣接しないキャリアアグリゲーションで送信する場合、各搬送波の不要発射の強度の測定帯域が重複する場合は、どちらか高い方の許容値を適用する。 また、各搬送波の不要発射の強度の測定帯域が他方の搬送波の送信周波数帯域と 重複する場合、その周波数範囲においては本規定を適用しない。

キ 占有周波数帯幅の許容値

(7) 基地局

各システムの99%帯域幅は、表5.2.3-12のとおりとする。

表 5. 2. 3-12 各システムの99%帯域幅(基地局)

システム	99%帯域幅
50MHzシステム	50MHz以下
100MHzシステム	100MHz以下
200MHzシステム	200MHz以下
400MHzシステム	400MHz以下

(イ) 移動局

各システムの99%帯域幅は、表5.2.3-13のとおりとする。

表5. 2. 3-13 各システムの99%帯域幅(移動局) 28GHz帯

	(1) 2000
システム	99%帯域幅
50MHzシステム	50MHz以下
100MHzシステム	100MHz以下
200MHzシステム	200MHz以下
400MHzシステム	400MHz以下

搬送波が隣接するキャリアアグリゲーションで送信する場合、表5.2.3-1 4に示す幅以下の中に、発射される全平均電力の99%が含まれること。

表 5. 2. 3-14 搬送波が隣接するキャリアアグリゲーションで送信する際の 99%帯域幅(移動局)28GHz帯

システム	99%帯域幅
100MHz システム	100MHz 以下
200MHz システム	200MHz 以下
300MHz システム	300MHz 以下
400MHz システム	400MHz 以下
450MHz システム	450MHz 以下
500MHz システム	500MHz 以下
600MHz システム	600MHz 以下
650MHz システム	650MHz 以下
700MHz システム	700MHz 以下
800MHz システム	800MHz 以下

搬送波が隣接しないキャリアアグリゲーションで送信する場合、各送信周波数帯域幅に応じた表 5.2.3-14に示す幅以下の中に、各送信周波数帯域から発射される全平均電力の合計の99%が含まれること。

ク 最大空中線電力及び空中線電力の許容偏差

(7) 基地局

空中線電力の許容偏差は、28GHz帯の周波数にあっては定格空中線電力の±5.1dB以内であること。

(イ) 移動局

定格空中線電力の最大値は、23dBmであること。

空中線電力の許容偏差は、28GHz帯の周波数にあっては定格空中線電力に<u>+2.7dB</u>を加えた値以下であること。

ケ 空中線絶対利得の許容値

(7) 基地局

規定しない。

(イ) 移動局

空中線絶対利得は20dBi以下とすること。

ただし、等価等方輻射電力が、絶対利得 20dBiの空中線に定格空中線電力の最大値を加えたときの値以下となる場合は、その低下分を空中線の利得で補うことができるものとする。

コ 送信オフ時電力

(7) 基地局

規定しない。

(イ) 移動局

送信を停止した時、送信機の出力雑音電力スペクトル密度の許容値は、送信帯域の周波数で、移動局空中線端子において、以下の許容値以下であること。ただし、測定系の環境上、以下の許容値を測定することが困難な場合には、別途定める測定法の検知下限以下であるものとする。

	システム毎の許容値				
	50MHz 100MHz 200MHz 400MHz				
	システム	システム	システム	システム	
送信オフ時電力	−13. 6dBm	−10. 6dBm	−7. 6dBm	-4.6dBm	
参照帯域幅	47. 52MHz	95. 04MHz	190.08MHz	380.16MHz	

表 5. 2. 3-15 送信オフ時電力 28GHz帯

サ 送信相互変調特性

規定しない。

(2) 受信装置

マルチパスのない受信レベルの安定した条件下(静特性下)において、以下の技術的条件を満たすこと。なお、本技術的条件の一部の規定については暫定値であり、3GPPの議論が確定した後、適正な値を検討することが望ましい。

ア キャリアアグリゲーション

基地局については、一の受信装置で異なる周波数帯の搬送波を受信する場合については今回の検討の対象外としており、そのような受信装置が実現される場合には、その副次的に発する電波等の限度について別途検討が必要である。

移動局については、キャリアアグリゲーションで受信可能な搬送波の組合せで受信している状態で搬送波毎にウから才に定める技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

イ アクティブアンテナ

複数の空中線素子及び無線設備を用いて1つ又は複数の指向性を有するビームパターンを形成・制御する技術をいう。

28GHz 帯においては、空中線端子を有さないアクティブアンテナと組合せた基地局及び空中線端子を有さないアクティブアンテナ又はノーマルアンテナと組合せた移動局のみが定義されるため、全ての技術的条件における測定法はOTAによるものとする。

希望波電力、妨害波電力等の規定値は、受信機が配置される場所における電力とすること。

ウ 受信感度

受信感度は、規定の通信チャネル信号 (QPSK、符号化率 1/3) を最大値の 95%以上のスループットで受信するために必要な最小受信電力であり静特性下において以下に示す値 (基準感度) であること。

(7) 基地局

静特性下において、表5.2.3-16の値以下の値であること。ただし、希望 波の電力はアンテナ面における電力とする。

周波数帯域	基準感度(dBm)	
28GHz帯(27.0GHz-	-80. 6	
29. 5GHz)	-80. 0	

表 5. 2. 3-16 受信感度(基地局)

(イ) 移動局

静特性下において、チャネル帯域幅毎に表5.2.3-17の値以下であること。ただし、希望波の電力はアンテナ面における電力とする。

システム毎の基準感度(dBm) 周波数帯域 50MHz 100MHz 200MHz 400MHz システム システム システム システム 28GHz帯 <u>-84. 2</u> -78. 2 <u>-75. 2</u> <u>-81. 2</u> (27. 0GHz-29. 5GHz)

表 5. 2. 3-17 受信感度(移動局)

搬送波が隣接するキャリアアグリゲーションで受信する場合、静特性下において複数の搬送波で受信している条件とし、受信搬送波毎に上記の表の基準感度以下の値であること。

エ ブロッキング

ブロッキングは、1つの変調妨害波存在下で希望信号を受信する受信機能力の尺度であり、以下の条件下で希望波と変調妨害波を加えた時、規定の通信チャネル信号(QPSK、符号化率 1/3)を最大値の 95%以上のスループットで受信できること。

(7) 基地局

静特性下において、以下の条件とする。ただし、希望波及び妨害波の電力はアン テナ面における電力とする。

	50MHz	100MHz	200MHz	400MHz
	システム	システム	システム	システム
希望波の受信電力	基準感度+6dB	基準感度+6dB	基準感度+6dB	基準感度+6dB
変調妨害波の離調 周波数	100MHz	125MHz	175MHz	275MHz
変調妨害波の電力	基準感度+33dB	基準感度+33dB	基準感度+33dB	基準感度+33dB
変調妨害波の周波 数幅	50MHz	50MHz	50MHz	50MHz

表5. 2. 3-18 ブロッキング(基地局)

(イ) 移動局

静特性下において、以下の条件とする。ただし、希望波及び妨害波の電力はアン テナ面における電力とする。

表5. 2. 3-19 ブロッキング (移動局) 基本 28GHz帯

	50MHz	100MHz	200MHz	400MHz	
	システム	システム	システム	システム	
希望波の	基準感度+14dB	基準感度+14dB	基準感度+14dB	甘淮咸亩 L1/4D	
受信電力	基华总及*140D	基华您及*140D	基华您及*140D	基準感度+14dB	
変調妨害波の	100MHz	200MHz	400MHz	800MHz	
離調周波数	TOOMITZ	ZOOMITZ	40011112	OUUWITZ	
変調妨害波の	基準感度	基準感度	基準感度	基準感度	
電力	+35. 5dB	+35. 5dB	+35. 5dB	+35. 5dB	
変調妨害波の	50MHz	100MHz	200MHz	400MHz	
周波数幅	JUNITZ	ΙΟΟΙΝΙΠΖ	ZUUMITZ	400MITZ	

搬送波が隣接するキャリアアグリゲーションで受信する場合、静特性下において複数の搬送波で受信している条件とし、受信搬送波毎に以下の条件とする。

表5. 2. 3-20 ブロッキング (移動局) キャリアアグリゲーション 28GHz帯

	100MHz	200MHz	300MHz	400MHz	450MHz
	システム	システム	システム	システム	システム
希望波の 受信電力 ^{注1}	基準感度+14dB	基準感度+14dB	基準感度+14dB	基準感度+14dB	基準感度+14dB
変調妨害波の 離調周波数	200MHz	400MHz	600MHz	800MHz	900MHz
亦細は実決の	希望波の受信	希望波の受信	希望波の受信	希望波の受信	希望波の受信
変調妨害波の 電力	電力の合計	電力の合計	電力の合計	電力の合計	電力の合計
电刀	+21. 5dB				
変調妨害波の 周波数幅	100MHz	200MHz	300MHz	400MHz	450MHz
	500MHz	600MHz	650MHz	700MHz	800MHz
	システム	システム	システム	システム	システム
希望波の受信 電力 ^{注1}	基準感度+14dB	基準感度+14dB	基準感度+14dB	基準感度+14dB	基準感度+14dB
変調妨害波の 離調周波数	1000MHz	1200MHz	1300MHz	1400MHz	1600MHz

変調妨害波の	希望波の受信	希望波の受信	希望波の受信	希望波の受信	希望波の受信
	電力の合計	電力の合計	電力の合計	電力の合計	電力の合計
電力	+21. 5dB				
変調妨害波の 周波数幅	500MHz	600MHz	650MHz	700MHz	800MHz

注1 受信搬送波毎の電力とする

オ 隣接チャネル選択度

隣接チャネル選択度は、隣接する搬送波に配置された変調妨害波の存在下で希望信号を受信する受信機能力の尺度であり、以下の条件下で希望波と変調妨害波を基地局又は移動局が設置される場所に加えた時、規定の通信チャネル信号(QPSK、符号化率 1/3)を最大値の 95%以上のスループットで受信できること。

(7) 基地局

静特性下において、以下の条件とすること。ただし、希望波及び妨害波の電力は アンテナ面における電力とする。

	50MHz	100MHz	200MHz	400MHz
	システム	システム	システム	システム
希望波の受信	基準感度+6dB	基準感度+6dB	基準感度+6dB	基準感度+6dB
電力	圣华芯及 TOUD	率年芯及 · O ub	圣华态及 · Oub	圣华芯及 TOUD
変調妨害波の	49. 29MHz	74. 31MHz	124. 29MHz	224. 31MHz
離調周波数	49. Z9MIIZ	74. 31WIIZ	124. 2911112	224. 31WIIZ
変調妨害波の	基準感度	基準感度+27.7	基準感度+27.7	基準感度+27.7
電力	+27. 7dB	dB	dB	dB
変調妨害波の	50MHz	50MHz	50MHz	50MHz
周波数幅	JUNITZ	JONITZ	JONITZ	JUNITZ

表5. 2. 3-21 隣接チャネル選択度(基地局) 28GHz帯

(イ) 移動局

静特性下において、以下の条件とすること。ただし、希望波及び妨害波の電力は アンテナ面における電力とする。

表5. 2. 3-22 隣接チャネル選択度(移動局)基本 28GHz帯

	50MHz	100MHz	200MHz	400MHz
	システム	システム	システム	システム
希望波の 受信電力	基準感度+14dB	基準感度+14dB	基準感度+14dB	基準感度+14dB

変調妨害波の	50MHz	100MHz	200MHz	400MHz	
離調周波数	JOMITZ	TOOMITZ	200141112	400MHZ	
変調妨害波の	基準感度	基準感度	基準感度	基準感度	
電力	+35. 5dB	+35. 5dB	+35. 5dB	+35. 5dB	
変調妨害波の	50MHz	100MHz	200MHz	400MHz	
周波数幅	JUNITZ	ΙΟΟΙΝΙΠΖ	ΖΟΟΙΝΊΠΖ	400MITZ	

搬送波が隣接するキャリアアグリゲーションの場合、静特性下で複数の搬送波で受信している条件において、以下の条件であること。

表 5. 2. 3-23 隣接チャネル選択度 (移動局) キャリアアグリゲーション 28GHz帯

イヤリアアリリーション Zodiiz帝							
	100MHz	200MHz	300MHz	400MHz	450MHz		
	システム	システム	システム	システム	システム		
希望波の	基準感度	基準感度	基準感度	基準感度	基準感度		
受信電力 ^{注1}	+14dB	+14dB	+14dB	+14dB	+14dB		
変調妨害波の	100MHz	200MHz	300MHz	400MHz	450MU-		
離調周波数	TOUMINZ	ZUUWITZ	300WITZ	400WITZ	450MHz		
亦細址実次の	希望波の受	希望波の受	希望波の受	希望波の受	希望波の受		
変調妨害波の 電力	信電力の合	信電力の合	信電力の合	信電力の合	信電力の合		
电刀	計+21.5dB	計+21.5dB	計+21.5dB	計+21.5dB	計+21.5dB		
変調妨害波の	100MHz	200MHz	300MHz	400MHz	450MHz		
周波数幅	10011112	20011112	300MH1Z	400111112	4301111112		
	500MHz	600MHz	650MHz	700MHz	800MHz		
	システム	システム	システム	システム	システム		
希望波の	基準感度	基準感度	基準感度	基準感度	基準感度		
受信電力 ^{注1}	+14dB	+14dB	+14dB	+14dB	+14dB		
変調妨害波の	500MHz	600MHz	650MHz	700MHz	800MHz		
離調周波数	JUUMITZ	OUDWITZ	030141112	/ 00 WITZ	OUUWITZ		
亦無忧実決の	希望波の受	希望波の受	希望波の受	希望波の受	希望波の受		
変調妨害波の	信電力の合	信電力の合	信電力の合	信電力の合	信電力の合		
電力	計+21.5dB	計+21.5dB	計+21.5dB	計+21.5dB	計+21.5dB		
変調妨害波の 周波数幅	500MHz	600MHz	650MHz	700MHz	800MHz		

注1 受信搬送波毎の電力とする

力 相互変調特性

3次相互変調の関係にある電力が等しい2つの無変調妨害波又は一方が変調された妨害波の存在下で希望信号を受信する受信機能力の尺度であり、次の条件下で希望波と3次相互変調を生ずる関係にある無変調波と変調波の2つの妨害波を加えた時、規定の通信チャネル信号(QPSK、符号化率 1/3)を最大値の95%以上のスループットで受信できること。

(7) 基地局

静特性下において、以下の条件とすること。ただし、希望波及び妨害波の電力は アンテナ面における電力とする。

	50MHz	100MHz	200MHz	400MHz	
	システム	システム	システム	システム	
希望波の	基準感度+6dB	基準感度+6dB	基準感度+6dB	甘淮咸庄」 G dD	
受信電力	基华总及+OUD	基华总及*OUD	基华总及* OUD	基準感度+6dB	
無変調妨害波 1	32. 5MHz	56.88MHz	105.64MHz	206. 02MHz	
の離調周波数	JZ. JIVII IZ	30. 00MH2	103. 04MHZ	ZOO. UZIVIITZ	
無変調妨害波 1	基準感度+25dB	基準感度+25dB	基準感度+25dB	基準感度+25dB	
の電力	基华总及*200D				
変調妨害波2の	65MHz	90MHz	140MHz	245MHz	
離調周波数	O JWII 12	9011112	14011112	245WI12	
変調妨害波2の	基準感度+25dB	甘淮咸庄」25dD	基準感度+25dB	甘淮咸市 L OE dD	
電力	基件您及*200D	基準感度+25dB	圣华宓及*200D	基準感度+25dB	
変調妨害波2の	50MHz	50MHz	50MHz	FOMU-	
周波数幅	JUNITZ	JUNITZ	JUNITZ	50MHz	

表 5. 2. 3-24 相互変調特性(基地局)

(イ) 移動局

規定しない。

キ 副次的に発する電波等の限度

受信状態で、空中線端子から発射される電波の限度とする。

(7) 基地局

表5.2.3-25に示す値以下であること。ただし、基地局が使用する周波数帯の下端より1.5GHz低い周波数から、基地局が使用する周波数帯の上端より1.5GHz高い周波数の範囲を除く。

搬送波が隣接するキャリアアグリゲーションの場合にあっては、表5.2.3-25に示す値以下であること。ただし、基地局が使用する周波数帯の下端より

1.5GHz低い周波数から、基地局が使用する周波数帯の上端より1.5GHz高い周波数の範囲を除く。

表5. 2. 3-25 副次的に発する電波等の限度(基地局) 28GHz 帯

周波数範囲	許容値	参照帯域幅
30MHz以上1,000MHz未満	<u>-36dBm</u>	100kHz
1,000MHz以上 <u>18GHz</u> 未満	<u>-30dBm</u>	1 MHz
18GHz以上23.5GHz未満	<u>-15dBm</u>	<u>10MHz</u>
23. 5GHz以上25GHz未満	<u>-10dBm</u>	<u>10MHz</u>
31GHz以上32.5GHz未満	<u>-10dBm</u>	<u>10MHz</u>
32. 5GHz以上41. 5GHz未満	<u>-15dBm</u>	<u>10MHz</u>
<u>41.5GHz</u> 以上上端の周波数の2倍未満	<u>-20dBm</u>	<u>10MHz</u>

(イ) 移動局

表5.2.3-26に示す値以下であること。

表5. 2. 3-26 副次的に発する電波等の限度(移動局) 28GHz 帯

周波数範囲	許容値	参照帯域幅
6 GHz以上20GHz未満	−36. 8dBm	1 MHz
20GHz以上40GHz未満	−29. 8dBm	1 MHz
40GHz以上上端の周波数の2倍未満	−13. 9dBm	1 MHz

5. 2. 4 測定法

28GHz 帯における第5世代移動通信システムの測定法については、OTAによる測定法 を適用することが適当である。また、技術的条件の規定内容に応じ、送信装置には実効輻 射電力又は総合放射電力のいずれかの方法を、受信装置には等価等方感度を適用する。

(1) 送信装置

ア 周波数の許容偏差

(7) 基地局

被試験器の基地局を変調波が空中線から送信されるように設定し、指向性方向を固定する。試験用空中線に接続した波形解析器等を使用し、周波数偏差を測定する。

被試験器が、無変調の状態にできる場合は周波数計を用いて測定することができる。

(イ) 移動局

試験用空中線もしくは被試験器の制御用空中線に基地局シミュレータを接続する。被試験器の移動局を変調波が空中線から送信されるように設定し、指向性方向を固定する。信号レベルが最大となる方向に試験用空中線を配置し、試験用空中線に接続した波形解析器等を使用し、周波数偏差を測定する。

被試験器が、無変調の状態にできる場合は周波数計を用いて測定することができる。

イ スプリアス領域における不要発射の強度

(7) 基地局

被試験器の基地局をアクティブアンテナから空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎にスプリアス領域における不要発射の強度を測定する。被試験器の基地局を一定の角度ごとに回転させ、順次、スプリアス領域における不要発射の強度を測定する。周波数毎に測定されたスプリアス領域における不要発射の強度の全放射面における総合放射電力を求める。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

また、搬送波近傍等において分解能帯域幅を参照帯域幅にすると搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。

なお、被試験器の基地局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ) 移動局

試験用空中線もしくは被試験器の制御用空中線に基地局シミュレータを接続する。被試験器の移動局を空中線から空中線電力の総和が最大となる状態で試験周波数にて送信するよう設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎にスプリアス領域における不要発射の強度を測定する。被試験器の移動局もしくは試験用空中線を一定の角度ごとに回転させ、順次、スプリアス領域における不要発射の強度を測定する。周波数毎に測定されたスプリアス領域における不要発射の強度の全放射面における総合放射電力を求める。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

また、搬送波近傍等において分解能帯域幅を参照帯域幅にすると搬送波等の影

響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域 幅に換算する方法を用いることができる。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

ウ 隣接チャネル漏えい電力

(7) 基地局

被試験器の基地局をアクティブアンテナから空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に送信周波数を中心とした参照帯域幅の電力と、送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力を測定する。被試験器の基地局を一定の角度ごとに回転させ、順次、送信周波数を中心とした参照帯域幅の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力の総和をそれぞれ求める。相対値規定においては、送信周波数を中心とした参照帯域幅の電力の総和の電力の比を計算することで全放射面における隣接チャネル漏えい電力とする。絶対値規定においては、離調周波数を中心とした参照帯域幅の範囲において、全放射面の電力の総和を求める。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、絶対値規定については被試験器の基地局の出力部からアンテナ放射部までにフィルタあるいは給電線等による減衰領域がある場合には、測定結果を前記減衰量で補正すること。

(イ) 移動局

試験用空中線もしくは被試験器の制御用空中線に基地局シミュレータを接続する。

被試験器の移動局を空中線から空中線電力の総和が最大となる状態で試験周波数にて送信するよう設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に隣接チャネル漏えい電力を測定する。被試験器の移動局もしくは試験用空中線を一定の角度ごとに回転させ、順次、隣接チャネル漏えい電力を測定する。周波数毎に測定された隣接チャネル漏えい電力の全放射面における総合放射電力を求める。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

エ スペクトラムマスク

(7) 基地局

スプリアス領域における不要発射の強度の(ア)基地局と同じ測定方法とするが、 技術的条件により定められた条件に適合するように測定又は換算する。

(イ) 移動局

スプリアス領域における不要発射の強度の(イ)移動局と同じ測定方法とするが、 技術的条件により定められた条件に適合するように測定又は換算する。

才 占有周波数带幅

(7) 基地局

被試験器の基地局をアクティブアンテナから空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線を被試験器の空中線と対向させる。試験用空中線に接続したスペクトルアナライザを搬送波周波数に設定してその電力分布を測定し、全電力の0.5%となる上下の限界周波数点を求め、その差を占有周波数帯幅とする。

(イ) 移動局

試験用空中線もしくは被試験器の制御用空中線に基地局シミュレータを接続する。被試験器の移動局を空中線から空中線電力の総和が最大となる状態で試験周波数にて送信するよう設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザを搬送波周波数に設定してその電力分布を測定し、全電力の0.5%となる上下の限界周波数点を求め、その差を占有周波数帯幅とする。

力 空中線電力

(7) 基地局

被試験器の基地局をアクティブアンテナから空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続した電力計により空中線電力を測定する。被試験器の基地局を一定の角度ごとに回転させ、順次、空中線電力を測定する。測定された空中線電力の全放射面における総合放射電力を求める。

なお、被試験器の基地局の出力部からアンテナ放射までにフィルタあるいは給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ) 移動局

試験用空中線もしくは被試験器の制御用空中線に基地局シミュレータを接続す

る。被試験器の移動局を空中線から空中線電力の総和が最大となる状態で試験周 波数にて送信するよう設定し、指向性方向を固定する。試験用空中線に接続した 電力計により空中線電力を測定する。被試験器の移動局もしくは試験用空中線を 一定の角度ごとに回転させ、順次、空中線電力を測定する。測定された空中線電力 の全放射面における総合放射電力を求める。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

キ 送信オフ時電力

(7) 基地局 規定しない。

(イ) 移動局

試験用空中線もしくは被試験器の制御用空中線に基地局シミュレータを接続する。被試験器の移動局を送信停止状態にする。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、漏えい電力を測定する。被試験器の移動局もしくは試験用空中線を一定の角度ごとに回転させ、順次、漏えい電力を測定する。被試験器の移動局もしくは試験用空中線を一定の角度ごとに回転させ、順次、空中線電力を測定する。測定された空中線電力の全放射面における総合漏えい電力を求める。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

ク 送信相互変調特性

- (7) 基地局 規定しない。
- (イ) 移動局規定しない。

(2) 受信装置

ア 受信感度

(7) 基地局

被試験器のアンテナ面に、技術的条件に定められた信号条件及び信号レベルとなるよう、試験用空中線に接続した移動局シミュレータから発射する。移動局シミュレータからランダムデータを送信し、スループットを測定する。

(イ) 移動局

被試験器の受信感度が最大となる方向に被試験器を配置する。被試験器のアンテナ面に、技術的条件に定められた信号条件及び信号レベルとなるよう、試験用空中線に接続した基地局シミュレータから発射する。基地局シミュレータからランダムデータを送信し、スループットを測定する。

イ ブロッキング

(7) 基地局

被試験器のアンテナ面に、技術的条件に定められた信号条件及び信号レベルとなるよう、試験用空中線に接続した移動局シミュレータ及び変調信号発生器から発射する。移動局シミュレータからランダムデータを送信し、スループットを測定する。

(イ) 移動局

被試験器の受信感度が最大となる方向に被試験器を配置する。被試験器のアンテナ面に、技術的条件に定められた信号条件及び信号レベルとなるよう、試験用空中線に接続した基地局シミュレータ及び変調信号発生器から発射する。基地局シミュレータからランダムデータを送信し、スループットを測定する。

ウ 隣接チャネル選択度

(7) 基地局

被試験器のアンテナ面に、技術的条件に定められた信号条件及び信号レベルとなるよう、試験用空中線に接続した移動局シミュレータ及び信号発生器から発射する。移動局シミュレータからランダムデータを送信し、スループットを測定する。

(イ) 移動局

被試験器の受信感度が最大となる方向に被試験器を配置する。被試験器のアンテナ面に、技術的条件に定められた信号条件及び信号レベルとなるよう、試験用空中線に接続した基地局シミュレータ及び信号発生器から発射する。基地局シミュレータからランダムデータを送信し、スループットを測定する。

工 相互変調特性

(7) 基地局

被試験器のアンテナ面に、技術的条件に定められた信号条件及び信号レベルとなるよう、試験用空中線に接続した移動局シミュレータ及び2つの妨害波信号発生器から発射する。移動局シミュレータからランダムデータを送信し、スループットを測定する。

(イ) 移動局

規定しない。

オ 副次的に発する電波等の限度

(7) 基地局

被試験器の基地局を受信状態(送信出力停止)にし、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に副次的に発する電波の限度を測定する。被試験器の基地局を一定の角度ごとに回転させ、順次、副次的に発する電波の限度を測定する。測定された周波数毎に測定された副次的に発する電波の限度の全放射面における総和を求める。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

また、搬送波近傍等において分解能帯域幅を参照帯域幅にすると搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。

なお、被試験器の基地局の受信部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ) 移動局

試験用空中線もしくは被試験器の制御用空中線に基地局シミュレータを接続する。被試験機の移動局を試験周波数に設定して受信状態(送信出力停止)に設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に副次的に発する電波の限度を測定する。被試験器の移動局もしくは試験用空中線を一定の角度ごとに回転させ、順次、副次的に発する電波の限度を測定する。周波数毎に測定された副次的に発する電波の限度の全放射面における総合放射電力を求める。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

また、搬送波近傍等において分解能帯域幅を参照帯域幅にすると搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。

なお、被試験器の移動局の受信部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(3) 運用中の設備における測定

運用中の無線局における設備の測定については、(1)及び(2)の測定法によるほか、

- (1) 及び(2) の測定法と技術的に同等と認められる方法によることができる。
- 5. 2. 5 端末設備として移動局に求められる技術的な条件
 - (1) データ伝送用端末
 - 5. 1. 5 (1) データ伝送用端末と同じものとする。
 - (2) インターネットプロトコル移動電話端末
 - 5. 1. 5 (2) インターネットプロトコル移動電話端末と同じものとする。

5. 2. 6 その他

国内標準化団体等では、無線インタフェースの詳細仕様や高度化に向けた検討が引き続き行われていることから、今後、これらの国際的な動向等を踏まえつつ、技術的な検討が不要な事項について、国際的な整合性を早期に確保する観点から、適切かつ速やかに国際標準の内容を技術基準に反映していくことが望ましい。

第6章 広帯域移動無線アクセスシステムの技術的条件

6. 1 WiMAX (3GPP 参照規格) の技術的条件

6. 1. 1 無線諸元

無線設備の種別は以下のとおりと想定する。

- ① 基地局
- ② 移動局
- ③ 中継局(基地局と移動局との間の通信を中継する無線局) 中継局の技術的条件については、基地局対向は移動局の技術的条件、移動局対向は基 地局の技術的条件を準用する。
- ④ 小電力レピータ

(1) 無線周波数帯

2.5GHz 帯の周波数を使用すること。

(2) 多元接続方式/多重接続方式

OFDM (Orthogonal Frequency Division Multiplexing: 直交周波数分割多重)方式及び TDM (Time Division Multiplexing: 時分割多重)方式との複合方式、又は OFDM 方式、TDM 方式及び SDM (Space Division Multiplexing: 空間分割多重)方式との複合方式を下り回線(基地局送信、移動局受信(再生中継方式の小電カレピータの移動局対向も含む))に、SC-FDMA (Single Carrier Frequency Division Multiple Access: シングル・キャリア周波数分割多元接続)方式及び TDMA (Time Division Multiple Access: 時分割多元接続)方式との複合方式、若しくは SC-FDMA 方式、TDMA 方式及び SDMA (Space Division Multiple Access: 空間分割多元接続)方式との複合方式、又は OFDMA (Orthogonal Frequency Division Multiple Access: 直交周波数分割多元接続)方式及び TDMA 方式との複合方式、若しくは OFDMA 方式、TDMA 方式及び SDMA 方式との複合方式を上り回線(移動局送信、基地局受信(再生中継方式の小電カレピータの基地局対向も含む))に使用すること。

(3) 通信方式

TDD (Time Division Duplex: 時分割複信) 方式とすること。

(4) 変調方式

ア 基地局 (下り回線)

BPSK (Binary Phase Shift Keying)、QPSK (Quadrature Phase Shift Keying)、16QAM (16 Quadrature Amplitude Modulation)、64QAM (64 Quadrature Amplitude Modulation) 又は256QAM (256 Quadrature Amplitude Modulation) 方式を採用すること。

イ 移動局 (上り回線)

BPSK、QPSK、16QAM、64QAM又は256QAM方式を採用すること。

ウ 移動局(上り回線 eMTC方式)BPSK、QPSK又は16QAM方式を採用すること。

エ 小電カレピータ (再生中継方式のみ適用)BPSK、QPSK、16QAM、64QAM又は256QAM方式を採用すること。eMTC (基地局対向) は、BPSK、QPSK 又は16QAM 方式を採用すること。

(5) 中継方式

中継局及び小電カレピータに適用される中継方式は表 6. 1. 1-1に示す通りとする。

表 6. 1. 1 - 1 中継方式

中継方式	非再生	中継方式	再生中継方式		
中継周波数	同一周波数	異周波数	同一周波数	異周波数	
構成	一体型ま?	たは分離型	一体型ま	たは分離型	

6. 1. 2 システム設計上の条件

(1) フレーム長(送信バースト繰り返し周期)

ア 基地局および移動局

5ms ± 10 µ s 以内又は 10ms ± 10 µ s 以内

イ 小電力レピータ (再生中継方式のみ適用)

 $5ms \pm 10 \mu s$ 以内又は $10ms \pm 10 \mu s$ 以内

(2) 認証・秘匿・情報セキュリティ

不正使用を防止するための移動局装置固有の番号付与、認証手順の適用、通信情報に 対する秘匿機能の運用等を必要に応じて講じること。

(3) 電磁環境対策

移動局と自動車用電子機器や医療電子機器等との相互の電磁干渉に対しては、十分な配慮が払われていること。

(4) 電波防護指針への適合

電波を使用する機器については、基地局については電波法施行規則第21条の3、移

動局については無線設備規則第14条の2に適合すること。

(5) 移動局送信装置の異常時の電波発射停止 次の機能が独立してなされること。

ア 基地局が移動局の異常を検出した場合、基地局は移動局に送信停止を要求すること。

イ 移動局自身がその異常を検出した場合は、異常検出タイマのタイムアウトにより 移動局自身が送信を停止すること。

(6) 移動局識別番号

移動局の識別番号の付与、送出の手順はユーザーによるネットワークの自由な選択、ローミング、通信のセキュリティ確保、無線局の監理等について十分配慮して定められることが望ましい。

(7) 小電カレピータ非再生中継方式の最大収容可能局数 1 基地局(=1 セル) 当たりの本レピータの最大収容可能局数は 100 局を目安とする。

6.1.3 無線設備の技術的条件

(1) 送信装置

通常の動作状態において、以下の技術的条件を満たすこと。

ア キャリアアグリゲーション

基地局については、一の送信装置から異なる周波数帯の搬送波を発射する場合については今回の検討の対象外としており、そのような送信装置が実現される場合には、その不要発射等について別途検討が必要である。

移動局については、キャリアアグリゲーション(複数の搬送波を同時に用いて一体として行う無線通信をいう。)で送信可能な搬送波の組合せで送信している状態で搬送波毎につからサに定める技術的条件を満足すること。また、5 G N R 方式、LTE-Advanced 方式又は広帯域移動無線アクセスシステムとのキャリアアグリゲーションにおいては、各搬送波の合計値がクの技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

イ eMTC

基地局については、5 MHz、10MHz 及び 20MHz の各システムの送信周波数帯域内の連続する6リソースブロック(1.08MHz 幅)の範囲で送信することとし、5 MHz、10MHz 及び 20MHz の各システムの送信可能なすべての搬送波を送信している状態で、ウからシに定める各システムの技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

移動局については、ウからシに定める各システムの技術的条件を満足すること。

ただし、それぞれの項目において別に定めがある場合は、この限りでない。

ウ 周波数の許容偏差

(7) 基地局

±3×10⁻⁶ 以内であること。

(イ) 移動局

±3×10⁻⁶以内であること。

(ウ) 移動局 (eMTC)

± (0.1ppm+15Hz) 以内であること。

(エ) 小電力レピータ

±3×10⁻⁶以内であること。

エ スプリアス領域における不要発射の強度

スプリアス領域における不要発射の許容値は、以下の表に示す値以下であること。

(7) 基地局

表 6. 1. 3-1に示す許容値以下であること。

一の送信装置において複数の搬送波を同時に送信する場合にあっては、最も下側の搬送波の下側及び最も上側の搬送波の上側において、本規定を満足すること。

表 6.	1.	3 —	1	スブ	゚リフ	アス領域におけ	る不要発射の強度の許容値	(基地局)
------	----	-----	---	----	-----	---------	--------------	-------

X = 1		(44-01-07
周波数範囲	許容値	参照帯域幅
9 kHz以上150kHz未満	−13dBm	1 kHz
150kHz以上30MHz未満	−13dBm	10kHz
30MHz以上1000MHz未満	−13dBm	100kHz
1000MHz以上2505MHz未満	-13dBm	1 MHz
2505MHz以上2535MHz未満	-42dBm	1 MHz
2535MHz以上2655MHz未満*	<u>-13dBm</u>	1 MHz
2655MHz以上	−13dBm	1 MHz

* 上記のうち 2535MHz から 2655MHz までの値は、搬送波の中心周波数から占有周 波数帯幅の 2.5 倍以上の範囲に適用する。

(イ) 移動局

表 6. 1. 3-2に示す許容値以下であること。

なお、移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること 又はそれらの組合せの制御によって制限することで、その条件での許容値とする ことができる。

表。		(12 30 1-07
周波数範囲	許容値	参照帯域幅
9 kHz以上150kHz未満	-13dBm	1 kHz
150kHz以上30MHz未満	-13dBm	10kHz
30MHz以上1000MHz未満	-13dBm	100kHz
1000MHz以上2505MHz未満	-13dBm	1 MHz
2505MHz以上2530MHz未満	-30dBm	1 MHz
2530MHz以上2535MHz未満	-25dBm	1 MHz
2535MHz以上2655MHz未満*	-30dBm	1 MHz

表6.1.3-2 スプリアス領域における不要発射の強度の許容値(移動局)

* 上記のうち 2535MHz から 2655MHz までの値は、搬送波の中心周波数から占有周 波数帯幅の 2.5 倍以上の範囲に適用する。

-13dBm

1 MHz

2655MHz以上

eMTC の場合は、10MHz 及び 20MHz システムの各搬送波の中心周波数から占有周波数帯幅の 2.5 倍以上の範囲に適用する。

搬送波が隣接するキャリアアグリゲーションで送信する場合、2つの搬送波で送信している条件でもこの許容値を満足すること。この場合において、10MHz+10MHz システムにあっては周波数離調(隣接する2つの搬送波の送信帯域幅の中心周波数から参照帯域幅の送信周波数帯に近い方の端までの差の周波数を指す。搬送波が隣接するキャリアアグリゲーションの場合にあっては、以下同じ。)が34.85MHz 以上、10MHz+20MHz システムにあっては周波数離調が49.85MHz 以上、20MHz+20MHz システムにあっては周波数離調が64.7MHz 以上に適用する。

搬送波が隣接しないキャリアアグリゲーションで送信する場合、一の搬送波の スプリアス領域が他の搬送波の送信周波数帯域及び帯域外領域と重複する場合は、 当該周波数範囲においては本規定を適用しない。

(ウ) 小電力レピータ

表 6. 1. 3-3に示す許容値以下であること。

なお、通信に当たって小電力レピータに割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や小電力レピータの制御によって制限すること又はそれらの組合せの制御によって制限することで、その条件での許容値とすることができる。

Ю.	. 1. 3-3 人ノリア人領域における个委託別の強度の計谷値(小竜刀レビー)			
		周波数範囲	許容値	参照帯域幅
		9 kHz以上150kHz未満	-13dBm	1 kHz
		150kHz以上30MHz未満	-13dBm	10kHz
		30MHz以上1000MHz未満	-13dBm	100kHz
		1000MHz以上2505MHz未満	-13dBm	1 MHz
		2505MHz以上2530MHz未満	-30dBm	1 MHz
		2530MHz以上2535MHz未満	-25dBm	1 MHz
		2535MHz以上2655MHz未満*	-30dBm	1 MHz
		2655MHz 以 ト	-13dRm	1 MHz

表 6. 1. 3-3 スプリアス領域における不要発射の強度の許容値(小電力レピータ)

* 上記のうち 2535MHz から 2655MHz までの値は、搬送波の中心周波数から占有周 波数帯幅の 2.5 倍以上の範囲に適用する。

搬送波が隣接しないキャリアアグリゲーションで送信する場合、一の搬送波の スプリアス領域が他の搬送波の送信周波数帯域及び帯域外領域と重複する場合は、 当該周波数範囲においては本規定を適用しない。

オ 隣接チャネル漏えい電力

2535-2655MHzの周波数範囲においては、以下の規定を適用し、その他周波数においては、エースプリアス領域における不要発射の強度を適用する。

(7) 基地局

表 6. 1. 3 - 4に示すシステム毎に、それぞれの許容値以下であること。 - の送信装置において複数の搬送波を同時に送信する場合にあっては、最も 下側の搬送波の下側及び最も上側の搬送波の上側において、本規定を満足する こと。

衣ひ. 1. 3 4 隣接アヤヤル欄えい電力(基地局)			
システム	離調周波数	許容値	参照帯域幅
10MHzシステム	10MHz	3dBm	10MHz
20MHzシステム	20MHz	6dBm	20MHz

表6.1.3-4 隣接チャネル漏えい電力(基地局)

(イ) 移動局

許容値は、表 6. 1. 3-5に示すに示すシステム毎に、それぞれの許容値以下であること。

表6.1.3-5 隣接チャネル漏えい電力(移動局)基本

システム	離調周波数	許容値	参照帯域幅
10MHzシステム	10MHz	2dBm	10MHz
20MHzシステム	20MHz	3dBm	20MHz

搬送波が隣接するキャリアアグリゲーションで送信する場合は、隣接する2つの搬送波の送信周波数帯域の中心周波数から離調周波数分だけ離れた周波数を中心周波数とする参照帯域幅分の値が表6.1.3-6に示す許容値以下であること。なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること又はそれらの組合せの制御によって制限することで、その条件での許容値とすることができる。

表 6. 1. 3-6 隣接チャネル漏えい電力(移動局)キャリアアグリゲーション

システム	離調周波数	許容値	参照帯域幅
10MHz+10MHz	19.9MHz	3dBm	19.9MHz
システム	19.9WITZ	SUDIII	19. 9MITZ
10MHz+20MHz	29. 9MHz	4. 76dBm	29. 9MHz
システム	29. 9WITZ	4. / OUDIII	29. 9MITZ
20MHz+20MHz	20 OMU-	6dBm	39.8MHz
システム	39.8MHz	OUDIII	აყ. οι⊮ι⊓∠

(ウ) 小電力レピータ

許容値は、表6.1.3-7に示すに示すシステム毎に、それぞれの許容値以下であること。

表6.1.3-7 隣接チャネル漏えい電力(小電力レピータ)基本

システム	離調周波数	許容値	参照帯域幅
10MHzシステム	10MHz	2dBm	10MHz
20MHzシステム	20MHz	3dBm	20MHz

基地局対向について、搬送波が隣接するキャリアアグリゲーションで送信する場合は、隣接する2つの搬送波の送信周波数帯域の中心周波数から離調周波数分だけ離れた周波数を中心周波数とする参照帯域幅分の値が表6.1.3-8に示す許容値以下であること。なお、通信にあたって小電カレピータに割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や小電カレピータの制御によって制限すること又はそれらの組合せの制御によって制限することができる。

表6.1.3-8 隣接チャネル漏えい電力(小電力レピータ)キャリアアグリゲーション

システム	離調周波数	許容値	参照帯域幅
10MHz+10MHz	19. 9MHz	3dBm	19.9MHz
システム	19. 9MHZ	Judiii	19. 911112
10MHz+20MHz	29. 9MHz	4.76dBm	29. 9MHz
システム	29. 9WI12	4. / OUDIII	29. 9WITZ
20MHz+20MHz	39. 8MHz	6dBm	39.8MHz
システム	Ja. OMITZ	UUDIII	Ja. OMITZ

カ スペクトラムマスク

2535-2655MHzの周波数範囲においては、以下の規定を適用し、その他周波数においては、エースプリアス領域における不要発射の強度を適用する。

(7) 基地局

送信周波数帯の中心周波数から不要発射の強度の測定帯域の中心周波数までの 離調周波数に対して、システム毎に表6.1.3-9に示す許容値以下であるこ と。一の送信装置において複数の搬送波を同時に送信する場合にあっては、最も 下側の搬送波の下側及び最も上側の搬送波の上側において、本規定を満足するこ と。

 システム
 離調周波数
 許容値

 10MHz システム
 15MHz 以上 25MHz 未満
 -13dBm/MHz

 20MHz システム
 30MHz 以上 50MHz 未満
 -13dBm/MHz

表 6. 1. 3-9 スペクトラムマスク (基地局)

(イ) 移動局

送信周波数帯の中心周波数から不要発射の強度の測定帯域の中心周波数までの 離調周波数に対して、システム毎に表 6.1.3-10に示す許容値以下であること。

システム	離調周波数	許容値
 10MHz システム	15MHz 以上 20MHz 未満	-25dBm/MHz
TOWITZ DATA	20MHz 以上 25MHz 未満	-30dBm/MHz
20MHz システム	30MHz 以上 35MHz 未満	-25dBm/MHz
	35MHz 以上 50MHz 未満	-30dBm/MHz

表 6. 1. 3-10 スペクトラムマスク (移動局)

搬送波が隣接しないキャリアアグリゲーションで送信する場合、各搬送波の不要発射の強度の測定帯域が重複する場合は、どちらか高い方の許容値を適用する。 また、各搬送波の不要発射の強度の測定帯域が他方の搬送波の送信周波数帯域と 重複する場合、その周波数範囲においては本規定を適用しない。

搬送波が隣接するキャリアアグリゲーションで送信する場合は、表 6. 1. 3 - 1 1に示す許容値以下であること。なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること又はそれらの組合せの制御によって制限することができる。

表6.1.3-11 スペクトラムマスク(移動局)キャリアアグリゲーション

システム	離調周波数	許容値
10MHz+10MHz	14.95MHz 以上 29.85MHz 未満	-13dBm/MHz
システム	29.85MHz 以上 34.85MHz 未満	-25dBm/MHz
10MHz+20MHz	19.95MHz 以上 44.85MHz 未満	-13dBm/MHz
システム	44.85MHz 以上 49.85MHz 未満	-25dBm/MHz
20MHz+20MHz	24. 9MHz 以上 59. 7MHz 未満	-13dBm/MHz
システム	59. 7MHz 以上 64. 7MHz 未満	−25dBm/MHz

(ウ) 小電力レピータ

送信周波数帯の中心周波数から不要発射の強度の測定帯域の中心周波数までの 離調周波数に対して、システム毎に表 6.1.3-12に示す許容値以下であること。

表 6. 1. 3-12 スペクトラムマスク(小電力レピータ)

システム	離調周波数	許容値
10MHz システム	15MHz 以上 20MHz 未満	-25dBm/MHz
TOMITZ DATA	20MHz 以上 25MHz 未満	-30dBm/MHz
20MHz システム	30MHz 以上 35MHz 未満	-25dBm/MHz
ZOMITZ DATA	35MHz 以上 50MHz 未満	-30dBm/MHz

搬送波が隣接しないキャリアアグリゲーションで送信する場合、各搬送波の不要発射の強度の測定帯域が重複する場合は、どちらか高い方の許容値を適用する。 また、各搬送波の不要発射の強度の測定帯域が他方の搬送波の送信周波数帯域と 重複する場合、その周波数範囲においては本規定を適用しない。

搬送波が隣接するキャリアアグリゲーションで送信する場合は、表 6. 1. 3 - 1 3 に示す許容値以下であること。なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること又はそれらの組合せの制御によって制限することができる。

表6.1.3-13 スペクトラムマスク(小電力レピータ) キャリアアグリゲーション

システム	離調周波数	許容値
10MHz+10MHz	14.95MHz 以上 29.85MHz 未満	-13dBm/MHz
システム	29.85MHz 以上 34.85MHz 未満	−25dBm/MHz
10MHz+20MHz	19.95MHz 以上 44.85MHz 未満	-13dBm/MHz
システム	44.85MHz 以上 49.85MHz 未満	-25dBm/MHz

20MHz+20MHz	24. 9MHz 以上 59. 7MHz 未満	-13dBm/MHz
システム	59.7MHz 以上 64.7MHz 未満	-25dBm/MHz

キ 占有周波数帯幅の許容値

(7) 基地局

各システムの99%帯域幅は、表6.1.3-14のとおりとする。

表 6. 1. 3-14 各システムの99%帯域幅(基地局)

システム	99%帯域幅
10MHzシステム	10MHz以下
20MHzシステム	20MHz以下

(イ) 移動局

各システムの99%帯域幅は、表6.1.3-15のとおりとする。

表 6. 1. 3-15 各システムの99%帯域幅(移動局)

システム	99%帯域幅	
10MHzシステム	10MHz以下	
20MHzシステム	20MHz以下	
eMTC	1. 4MHz以下	

搬送波が隣接するキャリアアグリゲーションで送信する場合、表6.1.3-1 6に示す幅以下の中に、発射される全平均電力の99%が含まれること。

表 6. 1. 3-16 搬送波が隣接するキャリアアグリゲーションで送信する際の 99%帯域幅(移動局)

システム	99%帯域幅
10MHz+10MHzシステム	19.9MHz以下
10MHz+20MHzシステム	29.9MHz以下
20MHz+20MHzシステム	39.8MHz以下

(ウ) 小電力レピータ

各システムの99%帯域幅は、表6.1.3-17のとおりとする。

表 6. 1. 3-17 各システムの99%帯域幅 (移動局)

システム	99%帯域幅	
10MHzシステム	10MHz以下	
20MHzシステム	20MHz以下	
eMTC	1. 4MHz以下	

搬送波が隣接するキャリアアグリゲーションで送信する場合、表6.1.3-1 8に示す幅以下の中に、発射される全平均電力の99%が含まれること。

表 6. 1. 3-18 搬送波が隣接するキャリアアグリゲーションで送信する際の 99%帯域幅(移動局)

システム	99%帯域幅
10MHz+10MHzシステム	19.9MHz以下
10MHz+20MHzシステム	29.9MHz以下
20MHz+20MHzシステム	39.8MHz以下

ク 最大空中線電力及び空中線電力の許容偏差

(7) 基地局

定格空中線電力の最大値は40W以下(20MHzシステムの場合に限る。10MHzシステムの場合は20W以下とする。)であること。

空中線電力の許容偏差は、定格空中線電力の+87%/-47%以内であること

(イ) 移動局

定格空中線電力の最大値は、400mW以下であること。

キャリアアグリゲーションで送信する場合は各搬送波の空中線電力の合計値、 空間多重方式とキャリアアグリゲーションを併用して送信する場合は各空中線端 子及び各搬送波の空中線電力の合計値について、いずれも200mW以下であること。

空中線電力の許容偏差は、定格空中線電力の+87%/-79%以内であること。 ただしeMTCの場合の空中線電力の許容偏差は、定格空中線電力の+87%/-47%以内であること。

(ウ) 小電力レピータ

定格空中線電力の最大値は、200mW以下*であること。

* 非再生中継方式においては、全搬送波の総電力とし、下り回線及び上り回線合わせて、同時送信可能な定格空中線電力の最大値は200mW以下とする。再生中継方式においては、1搬送波あたりの電力とし、下り回線及び上り回線合わせて、同時に送信可能な定格空中線電力の最大値は600mW以下とする。

空中線電力の許容偏差は、定格空中線電力の+87%/-47%以内であること。

ケ 空中線絶対利得の許容値

(7) 基地局

空中線絶対利得は、17dBi以下とする。

(イ) 移動局

空中線絶対利得は、4dBi以下とすること。

ただし、空中線電力が 200mW を超える場合は 1dBi 以下とすること。

なお、等価等方輻射電力が絶対利得 1 dBi の 空中線に 400mW の空中線電力を加えたときの値以下となる場合は、その低下分を空中線の利得で補うことが できる。

(ウ) 小電カレピータ

空中線絶対利得は、4dBi以下とすること。

- コ 送信オフ時電力(搬送波を送信していないときの漏洩電力)
 - (7) 基地局

搬送波を送信していないときの漏洩電力は、-30dBm以下とすること。

(イ) 移動局

搬送波を送信していないときの漏洩電力は、-30dBm以下とすること。

(ウ) 小電力レピータ

搬送波を送信していないときの漏洩電力は、-30dBm以下とすること。

- サ スプリアス領域における不要発射の強度(送信相互変調特性)
 - (7) 基地局

希望波を定格出力で送信した状態で、希望波から1チャネル及び2チャネル離れた妨害波を希望波の定格出力より30dB低い送信電力で加えた場合において発生する相互変調波の電力が、不要発射の強度の許容値及び隣接チャネル漏洩電力の許容値以下であること。。

(イ) 移動局

規定しない。

シ 筐体輻射

受信待受状態において、等価等方輻射電力にて、

1GHz 未満のとき 4nW 以下

1GHz 以上のとき 20nW 以下

であること。

- ス 帯域外利得(小電力レピータ非再生中継方式のみ適用)
 - ·割当周波数帯域端から 5MHz 離れた周波数において、利得 35dB 以下であること。

- ・割当周波数帯域端から10MHz離れた周波数において、利得20dB以下であること。
- ·割当周波数帯域端から 40MHz 離れた周波数において、利得 0dB 以下であること。

(2) 受信装置

マルチパスのない受信レベルの安定した条件下(静特性下)において、以下の技術的 条件を満たすこと。

ア キャリアアグリゲーション

移動局及び小電力レピータ(基地局対向)については、キャリアアグリゲーションで受信可能な搬送波の組合せで受信した状態において、搬送波ごとにウからカに定める技術的条件を満たすこととする。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

イ eMTC

基地局については、5 MHz、10MHz 及び 20MHz の各システムの送信周波数帯域内の連続する6リソースブロック(1.08MHz 幅)の範囲で受信することとし、ウからキに定める各システムの技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

移動局については、ウからキに定める 5 MHz、10MHz 及び 20MHz の各システムの技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

ウ 受信感度

受信感度は、QPSK で変調された信号を規定の品質(最大スループットの95%以上)で受信するために必要な空中線端子で測定した最小受信電力であり静特性下において、以下に示す値(基準感度)以下であること。

静特性

基地局: -101.5dBm 以下

移動局: -94dBm 以下

移動局 (eMTC): -101dBm 以下

小電カレピータ: -94dBm 以下(再生中継方式のみ適用)

エ スプリアスレスポンス

スプリアスレスポンスは、一の無変調妨害波存在下で希望信号を受信する受信機能力の尺度であり、以下の条件で希望波と無変調妨害波を加えたとき、QPSKで変調された信号を規定の品質(最大スループットの95%以上)で受信できること。

静特性

基地局:希望波 基準感度+6dB、無変調妨害波:-45dBm

移動局:希望波 基準感度+9dB、無変調妨害波:-44dBm

小電カレピータ:希望波 基準感度+9dB、無変調妨害波:-44dBm

(再生中継方式のみ適用)

オ 隣接チャネル選択度

隣接チャネル選択度は、隣接する搬送波の周波数に配置された変調妨害波の存在下で希望信号を受信する受信機能力の尺度であり、以下の条件で希望波と隣接帯域の変調妨害波を加えたとき、QPSKで変調された信号を規定の品質(最大スループットの95%以上)で受信できること。

静特性

基地局:希望波 基準感度+6dB、変調妨害波:-52dBm

移動局:希望波 基準感度+14dB、変調妨害波:-54.5dBm

小電力レピータ:希望波 基準感度+14dB、変調妨害波:-54.5dBm

(再生中継方式のみ適用)

力 相互変調特性

3 次相互変調の関係にある電力が等しい 2 つの無変調妨害波又は一方が変調された妨害波の存在下で希望信号を受信する受信機能力の尺度であり、以下の条件で希望波と 3 次相互変調を生ずる関係にある無変調波と変調波の 2 つの妨害波を加えたとき、QPSK で変調された信号を規定の品質(最大スループットの 95%以上)で受信できること。

静特性

基地局:希望波:基準感度+6dB

無変調妨害波(隣接チャネル) : -52dBm 変調妨害波(次隣接チャネル) : -52dBm

移動局:希望波:基準感度+9dB

無変調妨害波(隣接チャネル) : -46dBm 変調妨害波(次隣接チャネル) : -46dBm

小電力レピータ:希望波:基準感度+9dB

無変調妨害波(隣接チャネル) : -46dBm 変調妨害波(次隣接チャネル) : -46dBm

(再生中継方式のみ適用)

キ 副次的に発する電波等の限度

受信状態において、空中線端子から発射される電力

9kHz から 150kHz : -54dBm/kHz 以下 150kHz から 30MHz : -54dBm/10kHz 以下 30MHz から 1000MHz : -54dBm/100kHz 以下 1000MHz超え : -47dBm/MHz以下

(3) その他必要な機能(小電力レピータのみ適用)

ア 包括して免許の申請を可能とするための機能

「通信の相手方である無線局からの電波を受けることによって自動的に選択される周波数の電波のみを発射する」こと。

イ その他、陸上移動局として必要な機能(非再生中継方式のみ適用) 周囲の他の無線局への干渉を防止するための発振防止機能を有すること。

6. 1. 4 測定法

6. 1. 4. 1 基地局、移動局

WiMAX(3GPP 参照規格)の測定法は、国内で適用されている測定法に準ずることが適当であるが、今後、国際電気標準会議(IEC)等の国際的な動向を踏まえて対応することが望ましい。

WiMAX (3GPP 参照規格) は、複数の送受信空中線 (MIMO やアダプティブアレーアンテナ等の複数の送信増幅部含む無線設備) を有する送受信装置が一般的であると考えられるため、複数の空中線を前提とした測定方法としている。

(1) 送信装置

ア 周波数の許容偏差

無変調波(搬送波)を送信した状態で、周波数計を用いて測定(バースト波にあってはバースト内の平均値)する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの測定値のうち周波数偏差が最大となる値を周波数の偏差とすることが適当である。ただし、同一の基準周波数に位相同期している等が証明された場合には一の空中線端子にて測定することができる。

また、波形解析器等専用の測定器を用いる場合は変調状態として測定することができる。

イ スプリアス領域における不要発射の強度

スプリアス領域における不要発射の強度の測定は、以下のとおりとすることが適 当である。

この場合において、スプリアス領域における不要発射の強度の測定を行う周波数

範囲については、可能な限り 9kHz から 110GHz までとすることが望ましいが、当面の間は 30MHz から第 5 次高調波までとすることができる。

標準符号化試験信号を入力信号として加えたときの不要発射の平均電力(バースト波にあってはバースト内の平均電力)を、スペクトルアナライザを用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を不要発射の強度とすること。この場合において、スペクトルアナライザの分解能帯域幅は参照帯域幅に設定することが適当である。ただし、アダプティブアレーアンテナの場合にあっては、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

また、一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

ウ 隣接チャネル漏えい電力

標準符号化試験信号を入力信号とし、バースト波にあっては、規定の隣接チャネル帯域内の電力についてスペクトルアナライザ等を用い、掃引速度が 1 サンプル点あたり 1 個以上のバーストが入るようにし、ピーク検波、マックスホールドモードで測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を隣接チャネル漏洩電力とすること。連続波にあっては、電力測定受信機又はスペクトルアナライザを用いて規定の隣接チャネル帯域の電力を測定し、それぞれの測定値の総和を隣接チャネル漏洩電力とすることが適当である。ただし、アダプティブアレーアンテナの場合にあっては、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

また、一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。複数波同時発射時に規定の測定帯域幅に満たない場合は、分解能帯域幅に応じた値を10logで換算した値を基準値とみなして測定することが適当である。

エ スペクトラムマスク

標準符号化試験信号を入力信号として加えたときの規定の離調周波数の平均電力(バースト波にあってはバースト内の平均電力)を、スペクトルアナライザを用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を不要発射の強度とすること。この場合において、スペクトルアナライザの分解能帯域幅は参照帯域幅より狭くして測定し参照帯域幅内の電力に換算することが適当である。ただし、アダプティブアレーアンテナの場合にあっては、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

また、一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射し

た状態で測定を行うこと。

才 占有周波数帯幅

標準符号化試験信号(符号長 511 ビット 2 値疑似雑音系列等。)を入力信号として加えたときに得られるスペクトル分布の全電力をスペクトルアナライザ等を用いて測定し、スペクトル分布の上限及び下限部分における電力の和が、それぞれ全電力の 0.5%となる周波数幅を測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値のうち最大となる値を占有周波数帯幅とすることが適当である。

ただし、空中線端子ごとに発射する周波数が異なる場合は、各空中線端子を校正された RF 結合器等で結合し、全ての空中線端子からの信号を合成して測定することが適当である。

移動局において一の送信装置から連続した複数波を同時に発射する場合は、搬送 波を同時に発射した状態で測定を行うこと。

力 空中線電力

標準符号化試験信号を入力信号端子に加えたときの平均電力を、高周波電力計を用いて測定する。

複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を空中線電力とすること。

また、連続送信波により測定することが望ましいが、バースト送信波にて測定する場合は、送信時間率が最大となるバースト繰り返し周期よりも十分長い期間における平均電力を測定し、その測定値に送信時間率の逆数を乗じて平均電力とすることが適当である。ただし、アダプティブアレーアンテナ(個々の空中線の電力及び位相を制御することによって空中線の指向特性を制御するものであって、一の空中線の電力を増加させた場合、他の空中線の電力を低下させることによって、複数空中線の総電力を一定に制御する機能を有するもの。)の場合にあっては、空中線電力の総和が最大となる状態にて測定すること。

移動局において一の送信装置から複数波を同時に発射する場合は、搬送波を同時 に発射した状態で測定を行うこと。

キ 送信オフ時電力(搬送波を送信していないときの漏洩電力)

搬送波を送信していない状態において、送信周波数帯域内の規定の周波数幅の電力をスペクトルアナライザ等を用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を搬送波を送信していないときの漏洩電力とすること。

ク 送信相互変調特性

基地局及び中継局

希望波を定格出力で送信している状態において、希望波から 1 チャネル及び 2 チャネル離れた無変調妨害波を規定の電力で加えた場合において発生する相互変調波の電力を測定する。

複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を相互変調の強度とすること。ただし、アダプティブアレーアンテナの場合にあっては、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

また、一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。なお連続した周波数配置による複数波同時発射の場合、測定対象とする周波数帯から最も離れた周波数の搬送波から1チャネル及び2チャネル離れた無変調妨害波を規定の電力で加えた場合において発生する相互変調波の電力を測定する。また不連続な周波数配置による複数波同時発射の場合、測定対象となる搬送波から1チャネルまたは2チャネル離れた位置に他の同時発射される搬送波が配置されている場合は、測定対象外とする。

ケ 送信同期

送信バースト繰り返し周期及び送信バースト長

スペクトルアナライザの中心周波数を試験周波数として、掃引周波数幅を OHz (ゼロスパン) として測定する。ただし、十分な時間分解能が得られない場合は、広帯域検波器を用いオシロスコープ又は、周波数カウンタ等の測定器を用いて測定することが望ましい。この場合において、複数の空中線端子を有する場合は各空中線端子を校正された RF 結合器で結合し、全ての送信装置からの信号を合成して測定することが適当である。

(2) 受信装置

ア 受信感度

標準信号発生器から規定の変調方式で変調された信号を加え、規定の品質(規定のスループット)になるときの空中線端子で測定した最小受信電力であり静特性下において許容値(基準感度)以下であること。

イ スプリアスレスポンス

標準信号発生器から規定の変調方式で変調された信号を加え、標準信号発生器のレベルを技術基準で定められる希望波レベルとする。一の無変調妨害波を技術基準で規定される妨害波レベルとして、周波数を掃引し、規定の品質(規定のスループット)以上で受信できることを確認する。

ウ 隣接チャネル選択度

標準信号発生器から規定の変調信号で変調された信号を加え、標準信号発生器の

レベルを技術基準で定められる希望波レベルとする。別の標準信号発生器から隣接する搬送波の周波数に配置された変調波を隣接妨害波とし技術基準で規定される妨害波レベルとして、規定の品質(規定のスループット)以上で受信できることを確認する。

工 相互変調特性

標準信号発生器から規定の変調信号で変調された信号を加え、標準信号発生器の レベルを技術基準で定められる希望波レベルとする。別の標準信号発生器から3次相 互変調の関係にある電力が等しい妨害波として隣接チャネル周波数の無変調波と次 隣接チャネル周波数の変調波の2つの妨害波を技術基準で規定される妨害波レベル として、規定の品質(規定のスループット)以上で受信できることを確認する。

オ 副次的に発する電波等の限度

スペクトルアナライザを用いて測定する。複数の空中線端子を有する場合は空中 線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を副次的に発す る電波等の限度とすること。

この場合、スペクトルアナライザの分解能帯域幅は、測定帯域幅に設定することが 適当である。

6. 1. 4. 2 小電力レピータ非再生中継方式

レピータには下り方向(対移動対向)と上り方向(対基地対向)の2つの異なる送受信機能が存在する為、測定では下り方向と上り方向をそれぞれ測定する必要がある。また、国内で適応されている測定法に準ずることが適当であるが、今後、国際電気標準会議(IEC)等の国際的な動向を踏まえて対応することが望ましい。

(1) 送信装置

ア 周波数の許容偏差

標準信号発生器等の信号源から無変調波(搬送波)を送信した状態で、周波数計を用いて測定(バースト波にあってはバースト内の平均値)する。複数の空中線端子を有する場合は空中線端子毎に測定し、それぞれの測定値のうち周波数偏差が最大となる値を周波数偏差とすることが適当である。ただし、同一の基準周波数に位相同期している等が証明された場合は一の空中線端子にて測定することができる。また、波形解析装置等専用の測定器を用いる場合は、変調状態として測定することができる。

イ スプリアス領域における不要発射の強度

スプリアス領域における不要発射の強度の測定は、以下のとおりとすることが適 当である。この場合において、スプリアス領域における不要発射の強度の測定を行 う周波数範囲については、可能な限り 9kHz から 110GHz までとすることが望ましいが、当面の間は 30MHz から第 5 次高調波までとすることができる。標準信号発生器等の信号源から標準符号化試験信号等により変調をかけた信号を入力信号として加え、被試験機を送信電力が最大となる状態で送信するように設定する。このときの不要発射の平均電力 (バースト波にあってはバースト内の平均電力) を、スペクトルアナラザを用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を不要発射の強度とすること。この場合において、スペクトルアナライザの分解能帯域幅は参照帯域幅に設定することが適当である。

小電カレピータ (基地局対向) において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

ウ 隣接チャネル漏えい電力

標準信号発生器等の信号源から標準符号化試験信号等により変調をかけた信号を入力信号として加え、被試験機を送信電力が最大となる状態で送信するように設定する。バースト波にあっては、規定の隣接チャネル帯域内の電力についてスペクトルアナライザ等を用い、掃引速度が1 サンプル点あたり1 個以上のバーストが入るようにし、ピーク検波、マックスホールドモードで測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を隣接チャネル漏えい電力とすること。連続波にあっては、電力測定受信機又はスペクトラムアナライザを用いて規定の隣接チャネル帯域の電力を測定し、それぞれの測定値の総和を隣接チャネル漏えい電力とすることが適当である。

小電力レピータ(基地局対向)において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

エ スペクトラムマスク

信号発生器等の信号源から標準符号化試験信号等により変調をかけた信号を入力 信号として加え、被試験機を送信電力が最大となる状態で送信するように設定する。 このときの規定の離調周波数の平均電力(バースト波にあってはバースト内の平均 電力)を、スペクトルアナライザを用いて測定する。複数の空中線端子を有する場合 は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を不要発 射の強度とすること。この場合において、スペクトルアナライザの分解能帯域幅は 参照帯域幅より狭くして測定し参照帯域幅内の電力に換算することが適当である。

小電力レピータ(基地局対向)において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

才 占有周波数帯幅

標準信号発生器等の信号源から標準符号化試験信号(符号長 511 ビット 2 値疑似雑音系列等。)等により変調をかけた信号を入力信号として加え、被試験機を送信電力が最大となる状態で送信するように設定する。このときに得られるスペクトル分布の全電力をスペクトルアナライザ等を用いて測定し、スペクトル分布の上限及び下限部分における電力の和が、それぞれ全電力の 0.5%となる周波数幅を測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの測定値のうち最大となる値を占有周波数帯幅とすることが適当である。

小電力レピータ (基地局対向) において一の送信装置から連続した複数波を同時 に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

力 空中線電力

標準信号発生器等の信号源から標準符号化試験信号等により変調をかけた信号を入力信号として加え、被試験機を送信電力が最大となる状態で送信するように設定し、そのときの送信電力を高周波電力計を用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの総和を空中線電力とすることが適当である。また、連続送信波にて測定することが望ましいが、バースト波にて測定する場合は、送信時間率が最大となるバースト繰り返し周期よりも十分長い期間における平均電力を測定し、その測定値に送信時間率の逆数を乗じることにより空中線電力とすることができる。

小電力レピータ(基地局対向)において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

キ 帯域外利得

当該割当周波数帯域端から技術的条件で定められた周波数だけ離れた周波数において、標準信号発生器等の信号源から無変調連続波を加え、入力信号レベルに対する出力信号レベルの比を帯域外利得とする。なお、送信電力が最大となる状態で送信する状態と送信電力が最大となる状態から10dB低いレベルで送信する状態で測定する。

(2) 受信装置

ア 副次的に発する電波等の限度

被試験機を受信状態にし、受信入力端子に接続されたスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた測定帯域幅とし、規定される周波数範囲毎に副次的に発する電波の強度を測定する。複数の空中線端子を有する場合は、空中線端子毎に測定し、それぞれの測定値の総和を副次的に発する電波等の限度とすること。

(3) 包括して免許の申請を可能とするための機能の測定以下のいずれかの方法にて測定する。

- (7) 受信する電波のうち、自システムの基地局又は陸上移動局からの通信のみを中継開始することをスペクトルアナライザ等にて確認する。
- (イ) 基地局からの円滑操作により、レピータの動作が停止(利得0dB以下) していることをスペクトルアナライザ等にて確認すること。

(4) 運用中の設備における測定

以下のいずれかの方法にて測定する。

運用中の無線局における設備の測定については、ア及びイの測定法によるほか、 ア及びイの測定法と技術的に同等と認められる方法によることが出来る。

6. 1. 4. 3 小電カレピータ再生中継方式

レピータには下り方向(移動局対向)と上り方向(基地局対向)の2つの異なる送受信機能が存在する為、測定では下り方向と上り方向をそれぞれ測定する必要がある。また、国内で適応されている測定法に準ずることが適当であるが、今後、国際電気標準会議(IEC)等の国際的な動向を踏まえて対応することが望ましい。複数の送受信空中線(MIMO やアダプティブアレーアンテナ等の複数の送信増幅部含む無線設備)を有する送受信装置が一般的であると考えられるため、複数の空中線を前提とした測定方法としている。

(1) 送信装置

ア 周波数の許容偏差

標無変調波(搬送波)を送信した状態で、周波数計を用いて測定(バースト波にあってはバースト内の平均値)する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの測定値のうち周波数偏差が最大となる値を周波数の偏差とすることが適当である。ただし、同一の基準周波数に位相同期している等が証明された場合には一の空中線端子にて測定することができる。また、波形解析器等専用の測定器を用いる場合は変調状態として測定することができる。

イ スプリアス領域における不要発射の強度

スプリアス領域における不要発射の強度の測定は、以下のとおりとすることが適当である。この場合において、スプリアス領域における不要発射の強度の測定を行う周波数範囲については、可能な限り 9kHz から 110GHz までとすることが望ましいが、当面の間は 30MHz から第 5 次高調波までとすることができる。標準符号化試験信号を入力信号として加えたときの不要発射の平均電力(バースト波にあってはバースト内の平均電力)を、スペクトルアナラザを用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を不要発射の強度とすること。この場合において、スペクトルアナライザの分

解能帯域幅は参照帯域幅に設定することが適当である。ただし、アダプティブアレーアンテナの場合にあっては、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

小電力レピータ (基地局対向) において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

ウ 隣接チャネル漏えい電力

標準符号化試験信号を入力信号とし、バースト波にあっては、規定の隣接チャネル帯域内の電力についてスペクトルアナライザ等を用い、掃引速度が1 サンプル点あたり1 個以上のバーストが入るようにし、ピーク検波、マックスホールドモードで測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を隣接チャネル漏えい電力とすること。連続波にあっては、電力測定受信機又はスペクトラムアナライザを用いて規定の隣接チャネル帯域の電力を測定し、それぞれの測定値の総和を隣接チャネル漏えい電力とすることが適当である。ただし、アダプティブアレーアンテナの場合にあっては、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

小電力レピータ(基地局対向)において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

エ スペクトラムマスク

標準符号化試験信号を入力信号として加えたときの規定の離調周波数の平均電力(バースト波にあってはバースト内の平均電力)を、スペクトルアナライザを用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を不要発射の強度とすること。この場合において、スペクトルアナライザの分解能帯域幅は参照帯域幅より狭くして測定し参照帯域幅内の電力に換算することが適当である。ただし、アダプティブアレーアンテナの場合にあっては、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

小電力レピータ(基地局対向)において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

才 占有周波数帯幅

標準符号化試験信号(符号長 511 ビット 2 値疑似雑音系列等。)を入力信号として加えたときに得られるスペクトル分布の全電力をスペクトルアナライザ等を用いて測定し、スペクトル分布の上限及び下限部分における電力の和が、それぞれ全電力の 0.5%となる周波数幅を測定する。複数の空中線端子を有する場合は空中線端子

ごとに測定し、それぞれの空中線端子にて測定した値のうち最大となる値を占有周波数帯幅とすることが適当である。ただし、空中線端子ごとに発射する周波数が異なる場合は、各空中線端子を校正された RF 結合器等で結合し、全ての空中線端子からの信号を合成して測定することが適当である。

小電力レピータ (基地局対向) において一の送信装置から連続した複数波を同時 に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

力 空中線電力

準符号化試験信号を入力信号端子に加えたときの平均電力を、高周波電力計を用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を空中線電力とすること。また、連続送信波により測定することが望ましいが、バースト送信波にて測定する場合は、送信時間率が最大となるバースト繰り返し周期よりも十分長い期間における平均電力を測定し、その測定値に送信時間率の逆数を乗じて平均電力とすることが適当である。ただし、アダプティブアレーアンテナ(個々の空中線の電力及び位相を制御することによって空中線の指向特性を制御するものであって、一の空中線の電力を増加させた場合、他の空中線の電力を低下させることによって、複数空中線の総電力を一定に制御する機能を有するもの。)の場合にあっては、空中線電力の総和が最大となる状態にて測定すること。

小電力レピータ (基地局対向) において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

キ 送信オフ時電力(搬送波を送信していないときの漏洩電力)

搬送波を送信していない状態において、送信周波数帯域内の規定の周波数幅の電力をスペクトルアナライザ等を用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を搬送波を送信していないときの漏えい電力とすること。

ク 送信同期

送信バースト繰り返し周期及び送信バースト長

スペクトルアナライザの中心周波数を試験周波数として、掃引周波数幅をOHz(ゼロスパン)として測定する。ただし、十分な時間分解能が得られない場合は、広帯域検波器を用いオシロスコープまたは、周波数カウンタ等の測定器を用いて測定することが望ましい。この場合において、複数の空中線端子を有する場合は各空中線端子を校正されたRF 結合器で結合し、全ての送信装置からの信号を合成して測定することが適当である。

(2) 受信装置

ア 受信感度

標準信号発生器から規定の変調方式で変調された信号を加え、規定の品質(規定のスループット)になるときの空中線端子で測定した最小受信電力であり静特性下において許容値(基準感度)以下であること。

イ スプリアスレスポンス

標準信号発生器から規定の変調方式で変調された信号を加え、標準信号発生器の レベルを技術基準で定められる希望波レベルとする。一の無変調妨害波を技術基準 で規定される妨害波レベルとして、周波数を掃引し、規定の品質(規定のスループット)以上で受信できることを確認する。

ウ 隣接チャネル選択度

標準信号発生器から規定の変調信号で変調された信号を加え、標準信号発生器のレベルを技術基準で定められる希望波レベルとする。別の標準信号発生器から隣接する搬送波の周波数に配置された変調波を隣接妨害波とし技術基準で規定される妨害波レベルとして、規定の品質(規定のスループット)以上で受信できることを確認する。

工 相互変調特性

標準信号発生器から規定の変調信号で変調された信号を加え、標準信号発生器の レベルを技術基準で定められる希望波レベルとする。別の標準信号発生器から3次 相互変調の関係にある電力が等しい妨害波として隣接チャネル周波数の無変調波と 次隣接チャネル周波数の変調波の2つの妨害波を技術基準で規定される妨害波レベルとして、規定の品質(規定のスループット)以上で受信できることを確認する。

オ 副次的に発する電波等の限度

スペクトルアナライザを用いて測定する。複数の空中線端子を有する場合は空中 線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を副次的に発す る電波等の限度とすること。この場合、スペクトルアナライザの分解能帯域幅は、測 定帯域幅に設定することが適当である。

- (3) 包括して免許の申請を可能とするための機能の測定 以下のいずれかの方法にて測定する。
 - (ア) 受信する電波のうち、自システムの基地局又は陸上移動局からの通信のみを中継開始することをスペクトルアナライザ等にて確認する。
 - (イ) 基地局等からの円滑操作により、レピータの動作が停止していることをスペクトルアナライザ等にて確認すること。

(4) 運用中の設備における測定

以下のいずれかの方法にて測定する。

運用中の無線局における設備の測定については、ア及びイの測定法によるほか、

ア及びイの測定法と技術的に同等と認められる方法によることが出来る。

6. 1. 5 端末設備として移動局に求められる技術的な条件

情報通信審議会諮問第81号「携帯電話等の周波数有効利用方策」のうち「2GHz 帯における IMT-2000 (TDD 方式)の技術的条件」(平成17年5月30日)の答申により示された技術的な条件に準ずるものとする。ただし、以下、アからウについては、以下に示す技術的な条件とする。

ア 送信タイミング

標準送信タイミングは、基地局から受信したフレームに同期させ、かつ基地局から指定されるチャネルおいて送信を開始するものとし、その送信の開始時点の偏差は±208ns(eMTCにおいては、±130ns)の範囲にあること。

イ ランダムアクセス制御

- (ア) ランダムアクセス制御信号の送信は、基地局からの制御信号に同期して行うものであること。
- (イ) ランダムアクセス制御信号を送信した後、基地局から 1.2 秒 (eMTC においては、0.403 秒) 以内に通信チャネルを指定する信号を受信した場合は、指定された通信チャネルにおいて情報の送信を開始するものであること。
- (ウ) 基地局からの通信チャネルを指定する信号が受信できなかった場合にあっては、不規則な遅延時間の後に(ア)以降の動作を行うものであること。ただし、この動作の回数は 200 回を超えてはならない。

ウ 基地局に受信レベルを通知する機能

基地局から指定された条件に基づき、周辺基地局の指定された参照信号の受信レベルについて検出を行い、周辺基地局の受信レベルが基地局から指定された条件を満たす場合は、その結果を基地局に通知する機能を有すること。

6. 1. 6 その他

国内標準化団体等では、無線インタフェースの詳細仕様や高度化に向けた検討が引き続き行われていることから、今後、これらの国際的な動向等を踏まえつつ、技術的な検討が不要な事項について、国際的な整合性を早期に確保する観点から、適切かつ速やかに国際標準の内容を技術基準に反映していくことが望ましい。

6. 2 XGP の技術的条件

6. 2. 1 無線諸元

無線設備の種別は以下のとおりと想定する。

- ① 基地局
- ② 移動局
- ③ 中継局(基地局と移動局との間の通信を中継する無線局) 中継局の技術的条件については、基地局対向は移動局の技術的条件、移動局対向は基 地局の技術的条件を準用する。
- ④ 小電力レピータ

(1) 無線周波数帯

2.5GHz 帯の周波数を使用すること。

(2) 多元接続方式/多重接続方式

OFDM (Orthogonal Frequency Division Multiplexing: 直交周波数分割多重)方式及び TDM (Time Division Multiplexing: 時分割多重)方式との複合方式、又は OFDM 方式、TDM 方式及び SDM (Space Division Multiplexing: 空間分割多重)方式との複合方式を下り回線(基地局送信、移動局受信(再生中継方式の小電力レピータの移動局対向も含む))に、SC-FDMA (Single Carrier Frequency Division Multiple Access: シングル・キャリア周波数分割多元接続)方式及び TDMA (Time Division Multiple Access: 時分割多元接続)方式との複合方式、若しくは SC-FDMA 方式、TDMA 方式及び SDMA (Space Division Multiple Access: 空間分割多元接続)方式との複合方式、又は OFDMA (Orthogonal Frequency Division Multiple Access: 直交周波数分割多元接続)方式及び TDMA 方式との複合方式、若しくは OFDMA 方式、TDMA 方式及び SDMA 方式との複合方式を上り回線(移動局送信、基地局受信(再生中継方式の小電力レピータの基地局対向も含む))に使用すること。

(3) 通信方式

TDD (Time Division Duplex:時分割複信)方式とすること。

(4) 変調方式

ア 基地局(下り回線)

BPSK (Binary Phase Shift Keying)、QPSK (Quadrature Phase Shift Keying)、16QAM (16 Quadrature Amplitude Modulation)、32QAM (32 Quadrature Amplitude Modulation)、64QAM (64 Quadrature Amplitude Modulation) 又は256QAM (256 Quadrature Amplitude Modulation) 方式を採用すること。

イ 移動局(上り回線)

BPSK、QPSK、16QAM、32QAM、64QAM又は256QAM方式を採用すること。

- ウ 移動局(上り回線 eMTC方式)BPSK、QPSK、又は16QAM方式を採用すること。
- エ 小電カレピータ(再生中継方式のみ適用) BPSK、QPSK、16QAM、32QAM、64QAM又は256QAM方式を採用すること。 eMTC(基地局対向)は、BPSK、QPSK又は16QAM方式を採用すること。

(5) 中継方式

中継局及び小電カレピータに適用される中継方式は表 6. 2. 1 - 1 に示す通りとする。

表 6. 2. 1-1 中継方式

中継方式	非再生中継方式		再生中	¹ 継方式
中継周波数	同一周波数 異周波数		同一周波数	異周波数
構成	一体型または分離型		一体型ま	たは分離型

6. 2. 2 システム設計上の条件

(1) フレーム長

ア 基地局および移動局

A 送信バースト繰り返し周期

2.5ms $\pm 10 \mu$ s 以内、5ms $\pm 10 \mu$ s 以内又は 10ms $\pm 10 \mu$ s 以内

B 送信バースト長

基地局: $625 \times M \mu s$ 以内

移動局: 625×Nμs以内

ただし、M+N=4、8 又は 16 であること。(N、M は自然数)

もしくは、

基地局:1000×Mμs以内

移動局: 1000×Nμs 以内

ただし、M+N は、5、10 であること。(N、M は正の数 ※小数も含む)

C 下り/上り比率

M : N

イ 小電カレピータ (再生中継方式のみ適用)

A 送信バースト繰り返し周期

2.5 ms ± $10 \mu s$ 以内、5 ms ± $10 \mu s$ 以内又は 10 ms ± $10 \mu s$ 以内

B 送信バースト長

移動局対向: $625 \times M \mu s$ 以内

基地局対向: $625 \times N \mu s$ 以内

ただし、M+N=4、8 又は 16 であること。(N、M は自然数)

もしくは、

移動局対向: $1000 \times M \mu s$ 以内

基地局対向: 1000×Nμs 以内

ただし、M+N は、5、10 であること。(N、M は正の数 ※小数も含む)

C 下り/上り比率

M:N

(2) 認証・秘匿・情報セキュリティ

不正使用を防止するための移動局装置固有の番号付与、認証手順の適用、通信情報に 対する秘匿機能の運用等を必要に応じて講じること。

(3) 電磁環境対策

移動局と自動車用電子機器や医療電子機器等との相互の電磁干渉に対しては、十分な配慮が払われていること。

(4) 電波防護指針への適合

電波を使用する機器については、基地局については電波法施行規則第 21 条の 3 、移動局については無線設備規則第 14 条の 2 に適合すること。

(5) 移動局送信装置の異常時の電波発射停止

次の機能が独立してなされること。

ア 基地局が移動局の異常を検出した場合、基地局は移動局に送信停止を要求すること。

イ 移動局自身がその異常を検出した場合は、異常検出タイマのタイムアウトにより 移動局自身が送信を停止すること。

(6) 移動局識別番号

移動局の識別番号の付与、送出の手順はユーザーによるネットワークの自由な選択、ローミング、通信のセキュリティ確保、無線局の監理等について十分配慮して定められることが望ましい。

(7) 小電カレピータ非再生中継方式の最大収容可能局数

1基地局(=1セル)当たりの本レピータの最大収容可能局数は100局を目安とする。

6. 2. 3 無線設備の技術的条件

(1) 送信装置

通常の動作状態において、以下の技術的条件を満たすこと。

ア キャリアアグリゲーション

基地局については、一の送信装置から異なる周波数帯の搬送波を発射する場合については今回の検討の対象外としており、そのような送信装置が実現される場合には、その不要発射等について別途検討が必要である。

移動局については、キャリアアグリゲーション(複数の搬送波を同時に用いて一体として行う無線通信をいう。)で送信可能な搬送波の組合せで送信している状態で搬送波毎につからサに定める技術的条件を満足すること。また、5 G N R 方式、LTE-Advanced 方式又は広帯域移動無線アクセスシステムとのキャリアアグリゲーションにおいては、各搬送波の合計値がクの技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

イ eMTC

基地局については、5 MHz、10MHz 及び 20MHz の各システムの送信周波数帯域内の連続する6リソースブロック(1.08MHz 幅)の範囲で送信することとし、5 MHz、10MHz 及び 20MHz の各システムの送信可能なすべての搬送波を送信している状態で、ウからシに定める各システムの技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

移動局については、ウからシに定める各システムの技術的条件を満足すること。 ただし、それぞれの項目において別に定めがある場合は、この限りでない。

ウ 周波数の許容偏差

(7) 基地局

±3×10⁻⁶ 以内であること。

(イ) 移動局

±3×10⁻⁶以内であること。

(ウ) 移動局 (eMTC)

± (0.1ppm+15Hz) 以内であること。

(エ) 小電力レピータ

±3×10⁻⁶以内であること。

エ スプリアス領域における不要発射の強度

スプリアス領域における不要発射の許容値は、以下の表に示す値以下であること。

(7) 基地局

表 6. 2. 3-1に示す許容値以下であること。

一の送信装置において複数の搬送波を同時に送信する場合にあっては、最も下 側の搬送波の下側及び最も上側の搬送波の上側において、本規定を満足すること。

表6.2.3-1 スプリアス領域における不要発射の強度の許容値(基地局)

周波数範囲	許容値	参照帯域幅
9 kHz以上150kHz未満	−13dBm	1 kHz
150kHz以上30MHz未満	-13dBm	10kHz
30MHz以上1000MHz未満	-13dBm	100kHz
1000MHz以上2505MHz未満	-13dBm	1 MHz
2505MHz以上2535MHz未満	-42dBm	1 MHz
2535MHz以上2655MHz未満*	-13dBm	1 MHz
2655MHz以上	-13dBm	1 MHz

* 上記のうち 2535MHz から 2655MHz までの値は、搬送波の中心周波数から占有周波数帯幅の 2.5 倍以上の範囲に適用する。

(化) 移動局

表6.2.3-2に示す許容値以下であること。

なお、移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること 又はそれらの組合せの制御によって制限することで、その条件での許容値とする ことができる。

表6.2.3-2 スプリアス領域における不要発射の強度の許容値(移動局)

周波数範囲	許容値	参照帯域幅
9 kHz以上150kHz未満	-13dBm	1 kHz
150kHz以上30MHz未満	-13dBm	10kHz
30MHz以上1000MHz未満	-13dBm	100kHz
1000MHz以上2505MHz未満	-13dBm	1 MHz
2505MHz以上2530MHz未満	-30dBm	1 MHz
2530MHz以上2535MHz未満	-25dBm	1 MHz
2535MHz以上2655MHz未満*	-30dBm	1 MHz
2655MHz以上	-13dBm	1 MHz

* 上記のうち 2535MHz から 2655MHz までの値は、搬送波の中心周波数から占有周 波数帯幅の 2.5 倍以上の範囲に適用する。

eMTC の場合は、5MHz、10MHz 及び 20MHz システムの各搬送波の中心周波数から 占有周波数帯幅の 2.5 倍以上の範囲に適用する。

搬送波が隣接するキャリアアグリゲーションで送信する場合、2つの搬送波で送信している条件でもこの許容値を満足すること。この場合において、5MHz+5MHz システムにあっては周波数離調(隣接する2つの搬送波の送信帯域幅の中心周波数から参照帯域幅の送信周波数帯に近い方の端までの差の周波数を指す。搬

送波が隣接するキャリアアグリゲーションの場合にあっては、以下同じ。)が 19.7MHz 以上、5 MHz+10MHz システムにあっては周波数離調が 27.425MHz 以上、10MHz+10MHz システムにあっては周波数離調が 34.85MHz 以上、5MHz+20MHz システムにあっては周波数離調が 42.425MHz 以上、10MHz+20MHz システムにあっては周波数離調が 49.85MHz 以上、20MHz+20MHz システムにあっては周波数離調が 64.7MHz 以上に適用する。

搬送波が隣接しないキャリアアグリゲーションで送信する場合、一の搬送波の スプリアス領域が他の搬送波の送信周波数帯域及び帯域外領域と重複する場合は、 当該周波数範囲においては本規定を適用しない。

(ウ) 小電カレピータ

表6.2.3-3に示す許容値以下であること。

なお、通信に当たって小電力レピータに割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や小電力レピータの制御によって制限すること又はそれらの組合せの制御によって制限することで、その条件での許容値とすることができる。

表 6. 2. 3-3 スプリアス領域における不要発射の強度の許容値(小電力レピータ)

周波数範囲	許容値	参照帯域幅
9 kHz以上150kHz未満	−13dBm	1 kHz
150kHz以上30MHz未満	−13dBm	10kHz
30MHz以上1000MHz未満	−13dBm	100kHz
1000MHz以上2505MHz未満	−13dBm	1 MHz
2505MHz以上2530MHz未満	-30dBm	1 MHz
2530MHz以上2535MHz未満	−25dBm	1 MHz
2535MHz以上2655MHz未満*	-30dBm	1 MHz
2655MHz以上	−13dBm	1 MHz

^{*} 上記のうち 2535MHz から 2655MHz までの値は、搬送波の中心周波数から占有 周波数帯幅の 2.5 倍以上の範囲に適用する。

搬送波が隣接しないキャリアアグリゲーションで送信する場合、一の搬送波の スプリアス領域が他の搬送波の送信周波数帯域及び帯域外領域と重複する場合は、 当該周波数範囲においては本規定を適用しない。

オ 隣接チャネル漏えい電力

2535-2655MHzの周波数範囲においては、以下の規定を適用し、その他周波数においては、エースプリアス領域における不要発射の強度を適用する。

(7) 基地局

表 6. 2. 3 - 4に示すシステム毎に、それぞれの許容値以下であること。 一の送信装置において複数の搬送波を同時に送信する場合にあっては、最も 下側の搬送波の下側及び最も上側の搬送波の上側において、本規定を満足する こと。

表6.2.3-4 隣接チャネル漏えい電力(基地局)

システム	離調周波数	許容値	参照帯域幅
2.5MHzシステム	2. 5MHz	3dBm	2. 5MHz
5 MHzシステム	5 MHz	3dBm	5 MHz
10MHzシステム	10MHz	3dBm	10MHz
20MHzシステム	20MHz	6dBm	20MHz

(イ) 移動局

許容値は、表 6.2.3-5に示すに示すシステム毎に、それぞれの許容値以下であること。

表6.2.3-5 隣接チャネル漏えい電力(移動局)基本

システム	離調周波数	許容値	参照帯域幅
2. 5MHzシステム	2. 5MHz	2dBm	2. 5MHz
5 MHzシステム	5MHz	2dBm	5MHz
10MHzシステム	10MHz	2dBm	10MHz
20MHzシステム	20MHz	3dBm	20MHz

搬送波が隣接するキャリアアグリゲーションで送信する場合は、隣接する2つの搬送波の送信周波数帯域の中心周波数から離調周波数分だけ離れた周波数を中心周波数とする参照帯域幅分の値が表6.2.3-6に示す許容値以下であること。なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること又はそれらの組合せの制御によって制限することで、その条件での許容値とすることができる。

表6.2.3-6 隣接チャネル漏えい電力(移動局)キャリアアグリゲーション

システム	離調周波数	許容値	参照帯域幅
5 MHz+5 MHzシステム	9.8MHz	2dBm	9.8MHz
5MHz+10MHzシステム	14.95MHz	2.87dBm	14.95MHz
10MHz+10MHzシステム	19.9MHz	3dBm	19.9MHz
5 MHz+20MHzシステム	24.95MHz	3. 97dBm	24.95MHz
10MHz+20MHzシステム	29. 9MHz	4.76dBm	29. 9MHz
20MHz+20MHzシステム	39.8MHz	6dBm	39.8MHz

(ウ) 小電力レピータ

許容値は、表 6.2.3-7に示すに示すシステム毎に、それぞれの許容値以下であること。

表6.2.3-7 隣接チャネル漏えい電力(小電力レピータ)基本

システム	離調周波数	許容値	参照帯域幅
2. 5MHzシステム	2. 5MHz	2dBm	2.5MHz
5 MHzシステム	5MHz	2dBm	5MHz
10MHzシステム	10MHz	2dBm	10MHz
20MHzシステム	20MHz	3dBm	20MHz

基地局対向について、搬送波が隣接するキャリアアグリゲーションで送信する場合は、隣接する2つの搬送波の送信周波数帯域の中心周波数から離調周波数分だけ離れた周波数を中心周波数とする参照帯域幅分の値が表6.2.3-8に示す許容値以下であること。なお、通信にあたって小電カレピータに割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や小電カレピータの制御によって制限すること又はそれらの組合せの制御によって制限することができる。

表 6. 2. 3-8 隣接チャネル漏えい電力(小電力レピータ) キャリアアグリゲーション

システム	離調周波数	許容値	参照帯域幅
5MHz+5MHzシステム	9.8MHz	2dBm	9.8MHz
5MHz+10MHzシステム	14.95MHz	2. 87dBm	14.95MHz
10MHz+10MHzシステム	19.9MHz	3dBm	19.9MHz
5MHz+20MHzシステム	24.95MHz	3. 97dBm	24.95MHz
10MHz+20MHzシステム	29. 9MHz	4. 76dBm	29. 9MHz
20MHz+20MHzシステム	39.8MHz	6dBm	39.8MHz

カ スペクトラムマスク

2535-2655MHzの周波数範囲においては、以下の規定を適用し、その他周波数においては、エースプリアス領域における不要発射の強度を適用する。

(7) 基地局

送信周波数帯の中心周波数から不要発射の強度の測定帯域の中心周波数までの 離調周波数に対して、システム毎に表6.2.3-9に示す許容値以下であるこ と。一の送信装置において複数の搬送波を同時に送信する場合にあっては、最も 下側の搬送波の下側及び最も上側の搬送波の上側において、本規定を満足するこ と。

表 6. 2. 3-9 スペクトラムマスク (基地局)

システム	離調周波数	許容値
2. 5MHz システム	3. 75MHz 以上 6. 25MHz 未満	−5. 25dBm/MHz
5 MHz システム	7. 5MHz 以上 12. 5MHz 未満	−15.7dBm/MHz
10MHz システム	15MHz 以上 25MHz 未満	<u>-13dBm/MHz</u>
20MHz システム	30MHz 以上 50MHz 未満	<u>-13dBm/MHz</u>

(イ) 移動局

送信周波数帯の中心周波数から不要発射の強度の測定帯域の中心周波数までの 離調周波数に対して、システム毎に表 6.2.3-10に示す許容値以下であること。

表6. 2. 3-10 スペクトラムマスク (移動局)

システム	離調周波数	許容値
2. 5MHz システム	3. 75MHz 以上 6. 25MHz 未満	-10dBm/MHz
5 MHz システム	7. 5MHz 以上 12. 5MHz 未満	-10dBm/MHz
10MHz システム	15MHz 以上 20MHz 未満	−25dBm/MHz
TOMITZ JA JA	20MHz 以上 25MHz 未満	-30dBm/MHz
20MHz システム	30MHz 以上 35MHz 未満	-25dBm/MHz
ZOMITZ JA JA	35MHz 以上 50MHz 未満	-30dBm/MHz

搬送波が隣接しないキャリアアグリゲーションで送信する場合、各搬送波の不要発射の強度の測定帯域が重複する場合は、どちらか高い方の許容値を適用する。 また、各搬送波の不要発射の強度の測定帯域が他方の搬送波の送信周波数帯域と 重複する場合、その周波数範囲においては本規定を適用しない。

搬送波が隣接するキャリアアグリゲーションで送信する場合は、表 6.2.3-11に示す許容値以下であること。なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること又はそれらの組合せの制御によって制限することで、その条件での許容値とすることができる。

表6.2.3-11 スペクトラムマスク(移動局)キャリアアグリゲーション

システム	離調周波数	許容値
5 MHz+5 MHz	9. 9MHz 以上 14. 7MHz 未満	-13dBm/MHz
システム	14.7MHz 以上 19.7MHz 未満	-25dBm/MHz
5 MHz+10MHz	12. 475MHz 以上 22. 425MHz 未満	-13dBm/MHz
システム	22. 425MHz 以上 27. 425MHz 未満	−25dBm/MHz
10MHz+10MHz	14.95MHz 以上 29.85MHz 未満	-13dBm/MHz
システム	29.85MHz 以上 34.85MHz 未満	-25dBm/MHz

5 MHz+20MHz	17. 475MHz 以上 37. 425MHz 未満	-13dBm/MHz
システム	37. 425MHz 以上 42. 425MHz 未満	-25dBm/MHz
10MHz+20MHz	19.95MHz 以上 44.85MHz 未満	-13dBm/MHz
システム	44.85MHz 以上 49.85MHz 未満	-25dBm/MHz
20MHz+20MHz	24.9MHz 以上 59.7MHz 未満	-13dBm/MHz
システム	59.7MHz 以上 64.7MHz 未満	-25dBm/MHz

(ウ) 小電カレピータ

送信周波数帯の中心周波数から不要発射の強度の測定帯域の中心周波数までの 離調周波数に対して、システム毎に表 6.2.3-12に示す許容値以下であること。

☆ 0. 2.	0 12 7 7 7 7 7 7 7 7	
システム	離調周波数許容値	
2. 5MHz システム	3. 75MHz 以上 6. 25MHz 未満	-10dBm/MHz
5 MHz システム	7. 5MHz 以上 12. 5MHz 未満	-10dBm/MHz
10MHz システム	15MHz 以上 20MHz 未満	-25dBm/MHz
TOMITE DATA	20MHz 以上 25MHz 未満	-30dBm/MHz
20MHz システム	30MHz 以上 35MHz 未満	-25dBm/MHz
	35MHz 以上 50MHz 未満	-30dBm/MHz

表 6. 2. 3-12 スペクトラムマスク (小雷カレピータ)

搬送波が隣接しないキャリアアグリゲーションで送信する場合、各搬送波の不要発射の強度の測定帯域が重複する場合は、どちらか高い方の許容値を適用する。 また、各搬送波の不要発射の強度の測定帯域が他方の搬送波の送信周波数帯域と 重複する場合、その周波数範囲においては本規定を適用しない。

搬送波が隣接するキャリアアグリゲーションで送信する場合は、表 6. 2. 3 - 1 3 に示す許容値以下であること。なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって制限すること又はそれらの組合せの制御によって制限することができる。

表6.2.3-13 スペクトラムマスク(小電力レピータ) キャリアアグリゲーション

システム	離調周波数	許容値
5 MHz+ 5 MHz	9.9MHz 以上 14.7MHz 未満	-13dBm/MHz
システム	14.7MHz 以上 19.7MHz 未満	-25dBm/MHz
5 MHz+10MHz	12.475MHz 以上 22.425MHz 未満	-13dBm/MHz
システム	22. 425MHz 以上 27. 425MHz 未満	-25dBm/MHz
10MHz+10MHz	14.95MHz 以上 29.85MHz 未満	-13dBm/MHz

システム	29.85MHz 以上 34.85MHz 未満	-25dBm/MHz
5 MHz+20MHz	17.475MHz 以上 37.425MHz 未満	-13dBm/MHz
システム	37. 425MHz 以上 42. 425MHz 未満	−25dBm/MHz
10MHz+20MHz	19.95MHz 以上 44.85MHz 未満	-13dBm/MHz
システム	44.85MHz 以上 49.85MHz 未満	-25dBm/MHz
20MHz+20MHz	24. 9MHz 以上 59. 7MHz 未満	-13dBm/MHz
システム	59. 7MHz 以上 64. 7MHz 未満	−25dBm/MHz

キ 占有周波数帯幅の許容値

(7) 基地局

各システムの99%帯域幅は、表6.2.3-14のとおりとする。

表 6. 2. 3-14 各システムの99%帯域幅(基地局)

		7 · · · · · · · · · · · · · · · · · · ·
システ	ム	99%帯域幅
2. 5MHzシス	ステム	2.5MHz以下
5MHzシス	テム	5MHz以下
10MHzシス	テム	10MHz以下
20MHzシス	テム	20MHz以下

(イ) 移動局

各システムの99%帯域幅は、表6.2.3-15のとおりとする。

表 6. 2. 3-15 各システムの99%帯域幅(移動局)

99%帯域幅
2.5MHz以下
5MHz以下
10MHz以下
20MHz以下
1. 4MHz以下

搬送波が隣接するキャリアアグリゲーションで送信する場合、表6.2.3-16に示す幅以下の中に、発射される全平均電力の99%が含まれること。

表 6. 2. 3-16 搬送波が隣接するキャリアアグリゲーションで送信する際の 99%帯域幅(移動局)

システム	99%帯域幅
5MHz+5MHzシステム	9.8MHz以下
5MHz+10MHzシステム	14.95MHz以下
10MHz+10MHzシステム	19.9MHz以下

5 MHz+20MHzシステム	24.95MHz以下
10MHz+20MHzシステム	29.9MHz以下
20MHz+20MHzシステム	39.8MHz以下

(ウ) 小電力レピータ

各システムの99%帯域幅は、表6.2.3-17のとおりとする。

表 6. 2. 3-17 各システムの99%帯域幅(移動局)

	112 2711 112 2701 27
システム	99%帯域幅
2. 5MHzシステム	2.5MHz以下
5MHzシステム	5MHz以下
10MHzシステム	10MHz以下
20MHzシステム	20MHz以下
eMTC	1. 4MHz以下

搬送波が隣接するキャリアアグリゲーションで送信する場合、表6.2.3-1 8に示す幅以下の中に、発射される全平均電力の99%が含まれること。

表 6. 2. 3-18 搬送波が隣接するキャリアアグリゲーションで 送信する際の99%帯域幅(移動局)

是旧, 6 陈 50 6 7 6 市 3 届 (19 3) 7 月 7	
システム	99%帯域幅
5 MHz+5 MHzシステム	9.8MHz以下
5 MHz+10MHzシステム	14.95MHz以下
10MHz+10MHzシステム	19.9MHz以下
5 MHz+20MHzシステム	24.95MHz以下
10MHz+20MHzシステム	29.9MHz以下
20MHz+20MHzシステム	39.8MHz以下

ク 最大空中線電力及び空中線電力の許容偏差

(7) 基地局

定格空中線電力の最大値は40W以下(20MHzシステムの場合に限る。2.5MHz、5MHz、10MHzシステムの場合は20W以下とする。) であること。

空中線電力の許容偏差は、定格空中線電力の+87%/-47%以内であること

(イ) 移動局

定格空中線電力の最大値は、400mW以下であること。 キャリアアグリゲーションで送信する場合は各搬送波の空中線電力の合計値、 空間多重方式とキャリアアグリゲーションを併用して送信する場合は各空中線端 子及び各搬送波の空中線電力の合計値について、いずれも200mW以下であること。

空中線電力の許容偏差は、定格空中線電力の+87%/-79%以内であること。 ただしeMTCの場合の空中線電力の許容偏差は、定格空中線電力の+87%/-47%以内であること。

(ウ) 小電カレピータ

定格空中線電力の最大値は、200mW以下*であること。

* 非再生中継方式においては、全搬送波の総電力とし、下り回線及び上り回線合わせて、同時送信可能な定格空中線電力の最大値は200mW以下とする。再生中継方式においては、1搬送波あたりの電力とし、下り回線及び上り回線合わせて、同時に送信可能な定格空中線電力の最大値は600mW以下とする。

空中線電力の許容偏差は、定格空中線電力の+87%/-47%以内であること。

ケ 空中線絶対利得の許容値

(7) 基地局

空中線絶対利得は、17dBi以下とする。

(イ) 移動局

空中線絶対利得は、4dBi以下とすること。

ただし、空中線電力が 200mW を超える場合は 1dBi 以下とすること。

なお、等価等方輻射電力が絶対利得 1 dBi の 空中線に 400mW の空中線電力を加えたときの値以下となる場合は、その低下分を空中線の利得で補うことが できる。

(ウ) 小電カレピータ

空中線絶対利得は、4dBi以下とすること。

- コ 送信オフ時電力(搬送波を送信していないときの漏洩電力)
 - (7) 基地局

搬送波を送信していないときの漏洩電力は、-30dBm以下とすること。

(イ) 移動局

搬送波を送信していないときの漏洩電力は、-30dBm以下とすること。

(ウ) 小電力レピータ

搬送波を送信していないときの漏洩電力は、-30dBm以下とすること。

サ スプリアス領域における不要発射の強度(送信相互変調特性)

(7) 基地局

希望波を定格出力で送信した状態で、希望波から1チャネル及び2チャネル離れた妨害波を希望波の定格出力より30dB低い送信電力で加えた場合において発生する相互変調波の電力が、不要発射の強度の許容値及び隣接チャネル漏洩電力の許容値以下であること。

(イ) 移動局

規定しない。

シ 筐体輻射

受信待受状態において、等価等方輻射電力にて、

1GHz 未満のとき 4nW 以下

1GHz 以上のとき 20nW 以下

であること。

ス 帯域外利得(小電力レピータ非再生中継方式のみ適用)

- ・割当周波数帯域端から 5MHz 離れた周波数において、利得 35dB 以下であること。
- ・割当周波数帯域端から10MHz離れた周波数において、利得20dB以下であること。
- ・割当周波数帯域端から 40MHz 離れた周波数において、利得 0dB 以下であること。

(2) 受信装置

マルチパスのない受信レベルの安定した条件下(静特性下)において、以下の技術的条件を満たすこと。

ア キャリアアグリゲーション

移動局及び小電力レピータ(基地局対向)については、キャリアアグリゲーションで受信可能な搬送波の組合せで受信した状態において、搬送波ごとにウからカに定める技術的条件を満たすこととする。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

イ eMTC

基地局については、5 MHz、10MHz 及び 20MHz の各システムの送信周波数帯域内の連続する6リソースブロック(1.08MHz 幅)の範囲で受信することとし、ウからキに定める各システムの技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

移動局については、ウからキに定める 5 MHz、10MHz 及び 20MHz の各システムの技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、

この限りでない。

ウ 受信感度

受信感度は、QPSK で変調された信号を規定の品質(最大スループットの95%以上)で受信するために必要な空中線端子で測定した最小受信電力であり静特性下において、以下に示す値(基準感度)以下であること。

静特性

基地局: -101.5dBm 以下

移動局: -94dBm 以下

移動局 (eMTC): -101dBm 以下

小電カレピータ: -94dBm 以下(再生中継方式のみ適用)

エ スプリアスレスポンス

スプリアスレスポンスは、一の無変調妨害波存在下で希望信号を受信する受信機能力の尺度であり、以下の条件で希望波と無変調妨害波を加えたとき、QPSKで変調された信号を規定の品質(最大スループットの95%以上)で受信できること。

静特性

基地局:希望波 基準感度+6dB、無変調妨害波:-45dBm

移動局:希望波 基準感度+9dB、無変調妨害波:-44dBm

小電力レピータ:希望波 基準感度+9dB、無変調妨害波:-44dBm

(再生中継方式のみ適用)

オ 隣接チャネル選択度

隣接チャネル選択度は、隣接する搬送波の周波数に配置された変調妨害波の存在下で希望信号を受信する受信機能力の尺度であり、以下の条件で希望波と隣接帯域の変調妨害波を加えたとき、QPSKで変調された信号を規定の品質(最大スループットの95%以上)で受信できること。

静特性

基地局:希望波 基準感度+6dB、変調妨害波:-52dBm

移動局:希望波 基準感度+14dB、変調妨害波:-54.5dBm

小電力レピータ:希望波 基準感度+14dB、変調妨害波:-54.5dBm

(再生中継方式のみ適用)

力 相互変調特性

3 次相互変調の関係にある電力が等しい 2 つの無変調妨害波又は一方が変調された妨害波の存在下で希望信号を受信する受信機能力の尺度であり、以下の条件で希望波と 3 次相互変調を生ずる関係にある無変調波と変調波の 2 つの妨害波を加えた

とき、QPSK で変調された信号を規定の品質(最大スループットの 95%以上)で受信 できること。

静特性

基地局:希望波:基準感度+6dB

無変調妨害波(隣接チャネル) : -52dBm 変調妨害波(次隣接チャネル) : -52dBm

移動局:希望波:基準感度+9dB

無変調妨害波(隣接チャネル) : -46dBm 変調妨害波(次隣接チャネル) : -46dBm

小電力レピータ:希望波:基準感度+9dB 無変調妨害波(隣接チャネル) : -46dBm 変調妨害波(次隣接チャネル) : -46dBm (再生中継方式のみ適用)

キ 副次的に発する電波等の限度

受信状態において、空中線端子から発射される電力

9kHz から 150kHz : -54dBm/kHz 以下 150kHz から 30MHz : -54dBm/10kHz 以下 30MHz から 1000MHz : -54dBm/100kHz 以下 1000MHz超え : -47dBm/MHz以下

(3) その他必要な機能(小電力レピータのみ適用)

ア 包括して免許の申請を可能とするための機能

「通信の相手方である無線局からの電波を受けることによって自動的に選択される周波数の電波のみを発射する」こと。

- イ その他、陸上移動局として必要な機能(非再生中継方式のみ適用) 周囲の他の無線局への干渉を防止するための発振防止機能を有すること。
- 6. 2. 4 測定法
- 6. 2. 4. 1 基地局、移動局

XGPの測定法は、国内で適用されている測定法に準ずることが適当であるが、今後、国際電気標準会議(IEC)等の国際的な動向を踏まえて対応することが望ましい。

XGP は、複数の送受信空中線(MIMO やアダプティブアレーアンテナ等の複数の送信増幅

部含む無線設備)を有する送受信装置が一般的であると考えられるため、複数の空中線を 前提とした測定方法としている。

(1) 送信装置

ア 周波数の許容偏差

無変調波(搬送波)を送信した状態で、周波数計を用いて測定(バースト波にあってはバースト内の平均値)する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの測定値のうち周波数偏差が最大となる値を周波数の偏差とすることが適当である。ただし、同一の基準周波数に位相同期している等が証明された場合には一の空中線端子にて測定することができる。

また、波形解析器等専用の測定器を用いる場合は変調状態として測定することができる。

イ スプリアス領域における不要発射の強度

スプリアス領域における不要発射の強度の測定は、以下のとおりとすることが適 当である。

この場合において、スプリアス領域における不要発射の強度の測定を行う周波数 範囲については、可能な限り 9kHz から 110GHz までとすることが望ましいが、当面 の間は 30MHz から第 5 次高調波までとすることができる。

標準符号化試験信号を入力信号として加えたときの不要発射の平均電力(バースト波にあってはバースト内の平均電力)を、スペクトルアナライザを用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を不要発射の強度とすること。この場合において、スペクトルアナライザの分解能帯域幅は参照帯域幅に設定することが適当である。ただし、アダプティブアレーアンテナの場合にあっては、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

また、一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

ウ 隣接チャネル漏えい電力

標準符号化試験信号を入力信号とし、バースト波にあっては、規定の隣接チャネル帯域内の電力についてスペクトルアナライザ等を用い、掃引速度が 1 サンプル点あたり 1 個以上のバーストが入るようにし、ピーク検波、マックスホールドモードで測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を隣接チャネル漏洩電力とすること。連続波にあっては、電力測定受信機又はスペクトルアナライザを用いて規定の隣接チャネル帯域の電力を測定し、それぞれの測定値の総和を隣接チャネル漏洩電力とすること

が適当である。ただし、アダプティブアレーアンテナの場合にあっては、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

また、一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。複数波同時発射時に規定の測定帯域幅に満たない場合は、分解能帯域幅に応じた値を10logで換算した値を基準値とみなして測定することが適当である。

エ スペクトラムマスク

標準符号化試験信号を入力信号として加えたときの規定の離調周波数の平均電力(バースト波にあってはバースト内の平均電力)を、スペクトルアナライザを用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を不要発射の強度とすること。この場合において、スペクトルアナライザの分解能帯域幅は参照帯域幅より狭くして測定し参照帯域幅内の電力に換算することが適当である。ただし、アダプティブアレーアンテナの場合にあっては、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

また、一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

才 占有周波数带幅

標準符号化試験信号(符号長 511 ビット 2 値疑似雑音系列等。)を入力信号として加えたときに得られるスペクトル分布の全電力をスペクトルアナライザ等を用いて測定し、スペクトル分布の上限及び下限部分における電力の和が、それぞれ全電力の 0.5%となる周波数幅を測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値のうち最大となる値を占有周波数帯幅とすることが適当である。

ただし、空中線端子ごとに発射する周波数が異なる場合は、各空中線端子を校正された RF 結合器等で結合し、全ての空中線端子からの信号を合成して測定することが適当である。

移動局において一の送信装置から連続した複数波を同時に発射する場合は、搬送波 を同時に発射した状態で測定を行うこと。

力 空中線電力

標準符号化試験信号を入力信号端子に加えたときの平均電力を、高周波電力計を用いて測定する。

複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を空中線電力とすること。

また、連続送信波により測定することが望ましいが、バースト送信波にて測定す

る場合は、送信時間率が最大となるバースト繰り返し周期よりも十分長い期間における平均電力を測定し、その測定値に送信時間率の逆数を乗じて平均電力とすることが適当である。ただし、アダプティブアレーアンテナ(個々の空中線の電力及び位相を制御することによって空中線の指向特性を制御するものであって、一の空中線の電力を増加させた場合、他の空中線の電力を低下させることによって、複数空中線の総電力を一定に制御する機能を有するもの。)の場合にあっては、空中線電力の総和が最大となる状態にて測定すること。

移動局において一の送信装置から複数波を同時に発射する場合は、搬送波を同時 に発射した状態で測定を行うこと。

キ 送信オフ時電力(搬送波を送信していないときの漏洩電力)

搬送波を送信していない状態において、送信周波数帯域内の規定の周波数幅の電力をスペクトルアナライザ等を用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を搬送波を送信していないときの漏洩電力とすること。

ク 送信相互変調特性

基地局及び中継局

希望波を定格出力で送信している状態において、希望波から1 チャネル及び2 チャネル離れた無変調妨害波を規定の電力で加えた場合において発生する相互変調波の電力を測定する。

複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を相互変調の強度とすること。ただし、アダプティブアレーアンテナの場合にあっては、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

また、一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。なお連続した周波数配置による複数波同時発射の場合、測定対象とする周波数帯から最も離れた周波数の搬送波から1チャネル及び2チャネル離れた無変調妨害波を規定の電力で加えた場合において発生する相互変調波の電力を測定する。また不連続な周波数配置による複数波同時発射の場合、測定対象となる搬送波から1チャネルまたは2チャネル離れた位置に他の同時発射される搬送波が配置されている場合は、測定対象外とする。

ケ 送信同期

送信バースト繰り返し周期及び送信バースト長

スペクトルアナライザの中心周波数を試験周波数として、掃引周波数幅を OHz (ゼロスパン) として測定する。ただし、十分な時間分解能が得られない場合は、広帯域検波器を用いオシロスコープ又は、周波数カウンタ等の測定器を用いて測定するこ

とが望ましい。この場合において、複数の空中線端子を有する場合は各空中線端子を校正された RF 結合器で結合し、全ての送信装置からの信号を合成して測定することが適当である。

(2) 受信装置

ア 受信感度

標準信号発生器から規定の変調方式で変調された信号を加え、規定の品質(規定のスループット)になるときの空中線端子で測定した最小受信電力であり静特性下において許容値(基準感度)以下であること。

イ スプリアスレスポンス

標準信号発生器から規定の変調方式で変調された信号を加え、標準信号発生器のレベルを技術基準で定められる希望波レベルとする。一の無変調妨害波を技術基準で規定される妨害波レベルとして、周波数を掃引し、規定の品質(規定のスループット)以上で受信できることを確認する。

ウ 隣接チャネル選択度

標準信号発生器から規定の変調信号で変調された信号を加え、標準信号発生器のレベルを技術基準で定められる希望波レベルとする。別の標準信号発生器から隣接する搬送波の周波数に配置された変調波を隣接妨害波とし技術基準で規定される妨害波レベルとして、規定の品質(規定のスループット)以上で受信できることを確認する。

工 相互変調特性

標準信号発生器から規定の変調信号で変調された信号を加え、標準信号発生器のレベルを技術基準で定められる希望波レベルとする。別の標準信号発生器から3次相互変調の関係にある電力が等しい妨害波として隣接チャネル周波数の無変調波と次隣接チャネル周波数の変調波の2つの妨害波を技術基準で規定される妨害波レベルとして、規定の品質(規定のスループット)以上で受信できることを確認する。

オ 副次的に発する電波等の限度

スペクトルアナライザを用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を副次的に発する電波等の限度とすること。

この場合、スペクトルアナライザの分解能帯域幅は、測定帯域幅に設定すること が適当である。

6. 2. 4. 2 小電力レピータ非再生中継方式

レピータには下り方向(対移動対向)と上り方向(対基地対向)の2つの異なる送受信機

能が存在する為、測定では下り方向と上り方向をそれぞれ測定する必要がある。また、国内で適応されている測定法に準ずることが適当であるが、今後、国際電気標準会議 (IEC) 等の国際的な動向を踏まえて対応することが望ましい。

(1) 送信装置

ア 周波数の許容偏差

標準信号発生器等の信号源から無変調波(搬送波)を送信した状態で、周波数計を用いて測定(バースト波にあってはバースト内の平均値)する。複数の空中線端子を有する場合は空中線端子毎に測定し、それぞれの測定値のうち周波数偏差が最大となる値を周波数偏差とすることが適当である。ただし、同一の基準周波数に位相同期している等が証明された場合は一の空中線端子にて測定することができる。また、波形解析装置等専用の測定器を用いる場合は、変調状態として測定することができる。

イ スプリアス領域における不要発射の強度

スプリアス領域における不要発射の強度の測定は、以下のとおりとすることが適当である。この場合において、スプリアス領域における不要発射の強度の測定を行う周波数範囲については、可能な限り 9kHz から 110GHz までとすることが望ましいが、当面の間は 30MHz から第 5 次高調波までとすることができる。標準信号発生器等の信号源から標準符号化試験信号等により変調をかけた信号を入力信号として加え、被試験機を送信電力が最大となる状態で送信するように設定する。このときの不要発射の平均電力 (バースト波にあってはバースト内の平均電力)を、スペクトルアナラザを用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を不要発射の強度とすること。この場合において、スペクトルアナライザの分解能帯域幅は参照帯域幅に設定することが適当である。

小電力レピータ (基地局対向) において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

ウ 隣接チャネル漏えい電力

標準信号発生器等の信号源から標準符号化試験信号等により変調をかけた信号を入力信号として加え、被試験機を送信電力が最大となる状態で送信するように設定する。バースト波にあっては、規定の隣接チャネル帯域内の電力についてスペクトルアナライザ等を用い、掃引速度が1 サンプル点あたり1 個以上のバーストが入るようにし、ピーク検波、マックスホールドモードで測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を隣接チャネル漏えい電力とすること。連続波にあっては、電力測定受信機又はス

ペクトラムアナライザを用いて規定の隣接チャネル帯域の電力を測定し、それぞれ の測定値の総和を隣接チャネル漏えい電力とすることが適当である。

小電力レピータ (基地局対向) において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

エ スペクトラムマスク

信号発生器等の信号源から標準符号化試験信号等により変調をかけた信号を入力 信号として加え、被試験機を送信電力が最大となる状態で送信するように設定する。 このときの規定の離調周波数の平均電力 (バースト波にあってはバースト内の平均 電力)を、スペクトルアナライザを用いて測定する。複数の空中線端子を有する場合 は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を不要発 射の強度とすること。この場合において、スペクトルアナライザの分解能帯域幅は 参照帯域幅より狭くして測定し参照帯域幅内の電力に換算することが適当である。

小電力レピータ(基地局対向)において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

才 占有周波数帯幅

標準信号発生器等の信号源から標準符号化試験信号(符号長 511 ビット 2 値疑似雑音系列等。)等により変調をかけた信号を入力信号として加え、被試験機を送信電力が最大となる状態で送信するように設定する。このときに得られるスペクトル分布の全電力をスペクトルアナライザ等を用いて測定し、スペクトル分布の上限及び下限部分における電力の和が、それぞれ全電力の 0.5%となる周波数幅を測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの測定値のうち最大となる値を占有周波数帯幅とすることが適当である。

小電力レピータ(基地局対向)において一の送信装置から連続した複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

力 空中線電力

標準信号発生器等の信号源から標準符号化試験信号等により変調をかけた信号を入力信号として加え、被試験機を送信電力が最大となる状態で送信するように設定し、そのときの送信電力を高周波電力計を用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの総和を空中線電力とすることが適当である。また、連続送信波にて測定することが望ましいが、バースト波にて測定する場合は、送信時間率が最大となるバースト繰り返し周期よりも十分長い期間における平均電力を測定し、その測定値に送信時間率の逆数を乗じることにより空中線電力とすることができる。

小電力レピータ (基地局対向) において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

キ 帯域外利得

当該割当周波数帯域端から技術的条件で定められた周波数だけ離れた周波数において、標準信号発生器等の信号源から無変調連続波を加え、入力信号レベルに対する出力信号レベルの比を帯域外利得とする。なお、送信電力が最大となる状態で送信する状態と送信電力が最大となる状態から10dB低いレベルで送信する状態で測定する。

(2) 受信装置

ア 副次的に発する電波等の限度

被試験機を受信状態にし、受信入力端子に接続されたスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた測定帯域幅とし、規定される周波数範囲毎に副次的に発する電波の強度を測定する。複数の空中線端子を有する場合は、空中線端子毎に測定し、それぞれの測定値の総和を副次的に発する電波等の限度とすること。

- (3) 包括して免許の申請を可能とするための機能の測定 以下のいずれかの方法にて測定する。
 - (7) 受信する電波のうち、自システムの基地局又は陸上移動局からの通信のみを中継開始することをスペクトルアナライザ等にて確認する。
 - (イ) 基地局からの円滑操作により、レピータの動作が停止(利得0dB以下) している ことをスペクトルアナライザ等にて確認すること。
- (4) 運用中の設備における測定

以下のいずれかの方法にて測定する。

運用中の無線局における設備の測定については、ア及びイの測定法によるほか、 ア及びイの測定法と技術的に同等と認められる方法によることが出来る。

6. 2. 4. 3 小電カレピータ再生中継方式

レピータには下り方向(移動局対向)と上り方向(基地局対向)の2つの異なる送受信機能が存在する為、測定では下り方向と上り方向をそれぞれ測定する必要がある。また、国内で適応されている測定法に準ずることが適当であるが、今後、国際電気標準会議(IEC)等の国際的な動向を踏まえて対応することが望ましい。複数の送受信空中線(MIMO やアダプティブアレーアンテナ等の複数の送信増幅部含む無線設備)を有する送受信装置が一般的であると考えられるため、複数の空中線を前提とした測定方法としている。

(1) 送信装置

ア 周波数の許容偏差

標無変調波(搬送波)を送信した状態で、周波数計を用いて測定(バースト波にあってはバースト内の平均値)する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの測定値のうち周波数偏差が最大となる値を周波数の偏差とすることが適当である。ただし、同一の基準周波数に位相同期している等が証明された場合には一の空中線端子にて測定することができる。また、波形解析器等専用の測定器を用いる場合は変調状態として測定することができる。

イ スプリアス領域における不要発射の強度

スプリアス領域における不要発射の強度の測定は、以下のとおりとすることが適当である。この場合において、スプリアス領域における不要発射の強度の測定を行う周波数範囲については、可能な限り9kHz から110GHz までとすることが望ましいが、当面の間は30MHz から第5次高調波までとすることができる。標準符号化試験信号を入力信号として加えたときの不要発射の平均電力(バースト波にあってはバースト内の平均電力)を、スペクトルアナラザを用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を不要発射の強度とすること。この場合において、スペクトルアナライザの分解能帯域幅は参照帯域幅に設定することが適当である。ただし、アダプティブアレーアンテナの場合にあっては、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

小電力レピータ(基地局対向)において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

ウ 隣接チャネル漏えい電力

標準符号化試験信号を入力信号とし、バースト波にあっては、規定の隣接チャネル帯域内の電力についてスペクトルアナライザ等を用い、掃引速度が1 サンプル点あたり1 個以上のバーストが入るようにし、ピーク検波、マックスホールドモードで測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を隣接チャネル漏えい電力とすること。連続波にあっては、電力測定受信機又はスペクトラムアナライザを用いて規定の隣接チャネル帯域の電力を測定し、それぞれの測定値の総和を隣接チャネル漏えい電力とすることが適当である。ただし、アダプティブアレーアンテナの場合にあっては、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

小電力レピータ(基地局対向)において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

エ スペクトラムマスク

標準符号化試験信号を入力信号として加えたときの規定の離調周波数の平均電力 (バースト波にあってはバースト内の平均電力) を、スペクトルアナライザを用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を不要発射の強度とすること。この場合において、スペクトルアナライザの分解能帯域幅は参照帯域幅より狭くして測定し参照帯域幅内の電力に換算することが適当である。ただし、アダプティブアレーアンテナの場合にあっては、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。

小電力レピータ(基地局対向)において一の送信装置から複数波を同時に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

才 占有周波数帯幅

標準符号化試験信号(符号長 511 ビット 2 値疑似雑音系列等。)を入力信号として加えたときに得られるスペクトル分布の全電力をスペクトルアナライザ等を用いて測定し、スペクトル分布の上限及び下限部分における電力の和が、それぞれ全電力の 0.5%となる周波数幅を測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値のうち最大となる値を占有周波数帯幅とすることが適当である。ただし、空中線端子ごとに発射する周波数が異なる場合は、各空中線端子を校正された RF 結合器等で結合し、全ての空中線端子からの信号を合成して測定することが適当である。

小電力レピータ(基地局対向)において一の送信装置から連続した複数波を同時 に発射する場合は、搬送波を同時に発射した状態で測定を行うこと。

力 空中線電力

準符号化試験信号を入力信号端子に加えたときの平均電力を、高周波電力計を用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を空中線電力とすること。また、連続送信波により測定することが望ましいが、バースト送信波にて測定する場合は、送信時間率が最大となるバースト繰り返し周期よりも十分長い期間における平均電力を測定し、その測定値に送信時間率の逆数を乗じて平均電力とすることが適当である。ただし、アダプティブアレーアンテナ(個々の空中線の電力及び位相を制御することによって空中線の指向特性を制御するものであって、一の空中線の電力を増加させた場合、他の空中線の電力を低下させることによって、複数空中線の総電力を一定に制御する機能を有するもの。)の場合にあっては、空中線電力の総和が最大となる状態にて測定すること。

小電力レピータ(基地局対向)において一の送信装置から複数波を同時に発射す

る場合は、搬送波を同時に発射した状態で測定を行うこと。

キ 送信オフ時電力(搬送波を送信していないときの漏洩電力)

搬送波を送信していない状態において、送信周波数帯域内の規定の周波数幅の電力をスペクトルアナライザ等を用いて測定する。複数の空中線端子を有する場合は空中線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を搬送波を送信していないときの漏えい電力とすること。

ク 送信同期

送信バースト繰り返し周期及び送信バースト長

スペクトルアナライザの中心周波数を試験周波数として、掃引周波数幅を0Hz(ゼロスパン)として測定する。ただし、十分な時間分解能が得られない場合は、広帯域検波器を用いオシロスコープまたは、周波数カウンタ等の測定器を用いて測定することが望ましい。この場合において、複数の空中線端子を有する場合は各空中線端子を校正されたRF 結合器で結合し、全ての送信装置からの信号を合成して測定することが適当である。

(2) 受信装置

ア 受信感度

標準信号発生器から規定の変調方式で変調された信号を加え、規定の品質(規定のスループット)になるときの空中線端子で測定した最小受信電力であり静特性下において許容値(基準感度)以下であること。

イ スプリアスレスポンス

標準信号発生器から規定の変調方式で変調された信号を加え、標準信号発生器のレベルを技術基準で定められる希望波レベルとする。一の無変調妨害波を技術基準で規定される妨害波レベルとして、周波数を掃引し、規定の品質(規定のスループット)以上で受信できることを確認する。

ウ 隣接チャネル選択度

標準信号発生器から規定の変調信号で変調された信号を加え、標準信号発生器の レベルを技術基準で定められる希望波レベルとする。別の標準信号発生器から隣接 する搬送波の周波数に配置された変調波を隣接妨害波とし技術基準で規定される妨 害波レベルとして、規定の品質(規定のスループット)以上で受信できることを確認 する。

工 相互変調特性

標準信号発生器から規定の変調信号で変調された信号を加え、標準信号発生器のレベルを技術基準で定められる希望波レベルとする。別の標準信号発生器から3次相互変調の関係にある電力が等しい妨害波として隣接チャネル周波数の無変調波と

次隣接チャネル周波数の変調波の2つの妨害波を技術基準で規定される妨害波レベルとして、規定の品質(規定のスループット)以上で受信できることを確認する。

オ 副次的に発する電波等の限度

スペクトルアナライザを用いて測定する。複数の空中線端子を有する場合は空中 線端子ごとに測定し、それぞれの空中線端子にて測定した値の総和を副次的に発す る電波等の限度とすること。この場合、スペクトルアナライザの分解能帯域幅は、測 定帯域幅に設定することが適当である。

- (3) 包括して免許の申請を可能とするための機能の測定以下のいずれかの方法にて測定する。
 - (ア) 受信する電波のうち、自システムの基地局又は陸上移動局からの通信のみを中継開始することをスペクトルアナライザ等にて確認する。
 - (イ) 基地局等からの円滑操作により、レピータの動作が停止していることをスペクトルアナライザ等にて確認すること。

(4) 運用中の設備における測定

以下のいずれかの方法にて測定する。

運用中の無線局における設備の測定については、ア及びイの測定法によるほか、ア及 びイの測定法と技術的に同等と認められる方法によることが出来る。

6. 2. 5 端末設備として移動局に求められる技術的な条件

情報通信審議会諮問第81号「携帯電話等の周波数有効利用方策」のうち「2GHz 帯における IMT-2000 (TDD 方式)の技術的条件」(平成17年5月30日)の答申により示された技術的な条件に準ずるものとする。ただし、以下、アからウについては、以下に示す技術的な条件とする。

ア 送信タイミング

標準送信タイミングは、基地局から受信したフレームに同期させ、かつ基地局から指定されるチャネルおいて送信を開始するものとし、その送信の開始時点の偏差は±208ns (eMTCにおいては、±130ns)の範囲にあること。

イ ランダムアクセス制御

- (7) ランダムアクセス制御信号の送信は、基地局からの制御信号に同期して行うものであること。
- (イ) ランダムアクセス制御信号を送信した後、基地局から 1.2 秒 (eMTC においては、0.403 秒) 以内に通信チャネルを指定する信号を受信した場合は、指定された通信チャネルにおいて情報の送信を開始するものであること。

(ウ) 基地局からの通信チャネルを指定する信号が受信できなかった場合にあっては、不規則な遅延時間の後に(ア)以降の動作を行うものであること。ただし、この動作の回数は200回を超えてはならない。

ウ 基地局に受信レベルを通知する機能

基地局から指定された条件に基づき、周辺基地局の指定された参照信号の受信レベルについて検出を行い、周辺基地局の受信レベルが基地局から指定された条件を満たす場合は、その結果を基地局に通知する機能を有すること。

6. 2. 6 その他

国内標準化団体等では、無線インタフェースの詳細仕様や高度化に向けた検討が引き続き行われていることから、今後、これらの国際的な動向等を踏まえつつ、技術的な検討が不要な事項について、国際的な整合性を早期に確保する観点から、適切かつ速やかに国際標準の内容を技術基準に反映していくことが望ましい。

6. 3 BWA 5 G N R (WiMAX 及び XGP の N R) の技術的条件

6. 3. 1 無線諸元

(1) 無線周波数帯

2. 5GHz 帯の周波数を使用すること。

(2) キャリア設定周波数間隔

<u>設定しうるキャリア周波数間の最低周波数設定ステップ幅であること。</u> 15kHz とすること。

(3) 多元接続方式/多重接続方式

OFDM (Orthogonal Frequency Division Multiplexing: 直交周波数分割多重)方式及び TDM (Time Division Multiplexing: 時分割多重)方式との複合方式を下り回線(基地局送信、移動局受信)に、SC-FDMA (Single Carrier Frequency Division Multiple Access: シングル・キャリア周波数分割多元接続)方式又は OFDMA (Orthogonal Frequency Division Multiple Access: 直交周波数分割多元接続)方式を上り回線(移動局送信、基地局受信)に使用すること。

(4) 通信方式

TDD (Time Division Duplex: 時分割複信) 方式とすること。

(5) 変調方式

ア 基地局(下り回線)

QPSK (Quadrature Phase Shift Keying)、16QAM (16 Quadrature Amplitude Modulation)、64QAM (64 Quadrature Amplitude Modulation) 又は256QAM (256 Quadrature Amplitude Modulation) 方式を採用すること。

<u>イ 移動局(上り回線)</u>

BPSK (Binary Phase Shift Keying)、 $\pi/2$ shift-BPSK ($\pi/2$ shift-Binary Phase Shift Keying)、QPSK、16QAM、64QAM又は256QAM方式を採用すること。

6. 3. 2 システム設計上の条件

(1) フレーム長(送信同期)

<u>フレーム長は 10ms であり、サブフレーム長は 1 ms(10 サブフレーム/フレーム)であること。スロット長は 1. 0ms、0. 5ms 又は 0. 25ms(10、20 又は 40 スロット/フレーム</u>)であること。

(2) 認証・秘匿・情報セキュリティ

不正使用を防止するための移動局装置固有の番号付与、認証手順の適用、通信情報に 対する秘匿機能の運用等を必要に応じて講じること。

(3) 電磁環境対策

<u>移動局と自動車用電子機器や医療電子機器等との相互の電磁干渉に対しては、十分</u>な配慮が払われていること。

(4) 電波防護指針への適合

移動局等、電波を使用する機器については、電波法施行規則第 21 条の3及び無線設備規則第 14 条の2に適合すること。

(5) 移動局送信装置の異常時の電波発射停止

次の機能が独立してなされること。

- ア 基地局が移動局の異常を検出した場合、基地局は移動局に送信停止を要求するこ と。
- <u>イ 移動局自身がその異常を検出した場合は、異常検出タイマのタイムアウトにより</u> 移動局自身が送信を停止すること。

(6) 移動局識別番号

移動局の識別番号の付与、送出の手順はユーザーによるネットワークの自由な選択、 ローミング、通信のセキュリティ確保、無線局の監理等について十分配慮して定められることが望ましい。

6.3.3 無線設備の技術的条件

(1) 送信装置

通常の動作状態において、以下の技術的条件を満たすこと。なお、本技術的条件に適用した一部の規定は暫定値であり、標準化団体の議論が確定した後、適正な値を検討することが望ましい。

ア キャリアアグリゲーション

基地局については、一の送信装置から異なる周波数帯の搬送波を発射する場合については今回の検討の対象外としており、そのような送信装置が実現される場合には、その不要発射等について別途検討が必要である。搬送波が隣接しないキャリアアグリゲーションで送信する場合は、隣接チャネル漏洩電力、帯域外領域における不要発射の強度及びスプリアス領域における不要発射の強度について、最大の数の搬送波を同時に発射した状態で、搬送波間において、同時発射される全搬送波の技術的条件として定められた許容値のうち、最も高い値を満たすこと。

移動局については、キャリアアグリゲーション(複数の搬送波を同時に用いて一体として行う無線通信をいう。)で送信可能な搬送波の組合せで送信している状態で搬送波毎にウからサに定める技術的条件を満足すること。また、5 G NR方式、LTE-Advanced 方式又は広帯域移動無線アクセスシステムとのキャリアアグリゲーションにおいては、各搬送波の合計値がクの技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

<u>イ アクティブアンテナ</u>

複数の空中線素子及び無線設備を用いて1つ又は複数の指向性を有するビームパターンを形成・制御する技術をいう。

基地局については、ノーマルアンテナ(アクティブアンテナではなく、ビームパターンが固定のものをいう)においては、空中線端子がある場合のみを定義し、空中線端子のないノーマルアンテナについては、今回の検討の対象外とする。基地局の技術的条件については、特段の記載がないかぎり空中線端子のある基地局のノーマルアンテナの基地局の空中線端子の総和の技術的条件を示すものとする。

空中線端子がありかつアクティブアンテナを組合せた基地局については、空中線端子の総和においてウからサに定める技術的条件を満足すること。空中線端子がなく、アクティブアンテナと組合せた基地局については、アンテナ面における受信信号及び妨害波においてウからサに定める技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

移動局については、アクティブアンテナを定義せず、空中線端子がある場合のみ を今回の検討の対象とし、空中線端子がない場合は対象外とする。

ウ 周波数の許容偏差

(7) 基地局

±3×10⁻⁶ 以内であること。

(イ) 移動局

±3×10⁻⁶以内であること。

エ スプリアス領域における不要発射の強度

スプリアス領域における不要発射の許容値は、以下の表に示す値以下であること。 (7) 基地局

<u>表6.3.3-1に示す許容値以下であること。</u>

<u>一の送信装置において複数の搬送波を同時に送信する場合にあっては、最も下</u> 側の搬送波の下側及び最も上側の搬送波の上側において、本規定を満足すること。

表6.3.3-1 スプリアス領域における不要発射の強度の許容値(基地局)基本

周波数範囲	<u>許容値</u>	参照帯域幅
9 kHz以上150kHz未満	<u>-13dBm</u>	<u>1 kHz</u>
150kHz以上30MHz未満	<u>-13dBm</u>	<u>10kHz</u>

30MHz以上1000MHz未満	<u>-13dBm</u>	<u>100kHz</u>
1000MHz以上2505MHz未満	<u>-13dBm</u>	1 MHz
2505MHz以上2535MHz未満	-42dBm	1 MHz
2535MHz以上2655MHz未満*	-13dBm	1 MHz
2655MHz以上	-13dBm	1 MHz

* 上記のうち 2535MHz から 2655MHz までの値は、搬送波の中心周波数から占有周 波数帯幅の 2.5 倍以上の範囲に適用する。

空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合にあっては、全空中線端子の総和が表6.3.3-1に示す許容値に10log(N)を加えた値とする。Nは1つの搬送波を構成する無線設備の数又は8のいずれか小さい方の値とする。以下、6.3.3において同じ)

空中線端子のない基地局であり、かつアクティブアンテナと組合せた場合にあっては、空中線電力の総和が表 6.3.3-1に示す許容値に10 log(8) を加えた値を各離調周波数において満足すること。

搬送波が隣接しないキャリアアグリゲーションで送信する場合、一の搬送波の スプリアス領域が他の搬送波の送信周波数帯域及び帯域外領域と重複する場合は、 当該周波数範囲においては本規定を適用しない。

(化) 移動局

表 6. 3. 3 - 2 に示す許容値以下であること。

なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を 基地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によっ て制限すること又はそれらの組合せの制御によって制限することで、その条件で の許容値とすることができる。

表6.3.3-2 スプリアス領域における不要発射の強度の許容値(移動局)

周波数範囲	<u>許容値</u>	参照帯域幅
9 kHz以上150kHz未満	<u>-13dBm</u>	<u>1 kHz</u>
150kHz以上30MHz未満	<u>-13dBm</u>	<u>10kHz</u>
30MHz以上1000MHz未満	<u>-13dBm</u>	100kHz
1000MHz以上2505MHz未満	<u>-13dBm</u>	<u> 1 MHz</u>
2505MHz以上2530MHz未満	<u>-30dBm</u>	<u> 1 MHz</u>
2530MHz以上2535MHz未満	<u>-25dBm</u>	<u> 1 MHz</u>
2535MHz以上2655MHz未満*	<u>-30dBm</u>	<u> 1 MHz</u>
<u>2655MHz以上</u>	<u>-13dBm</u>	<u>1 MHz</u>

* 上記のうち 2535MHz から 2655MHz までの値は、10MHz システムにあっては搬送 波の中心周波数から 20MHz 以上、20MHz システムにあっては搬送波の中心周波数 から 35MHz 以上、30MHz システムにあっては搬送波の中心周波数から 50MHz 以上、 40MHz システムにあっては搬送波の中心周波数から 65MHz 以上、50MHz システム にあっては搬送波の中心周波数から80MHz以上の範囲に適用する。

搬送波が隣接するキャリアアグリゲーションで送信する場合、複数の搬送波で送信している条件でもこの許容値を満足すること。上記のうち 2535MHz から 2655MHz までの値は、搬送波の中心周波数から搬送波の組合せ毎に合計した周波数幅と同じシステム帯域幅の許容値をみたすこと。

搬送波が隣接しないキャリアアグリゲーションで送信する場合、一の搬送波の スプリアス領域が他の搬送波の送信周波数帯域及び帯域外領域と重複する場合は、 当該周波数範囲においては本規定を適用しない。

オ 隣接チャネル漏えい電力

2535-2655MHzの周波数範囲においては、以下の規定を適用し、その他周波数においては、エスプリアス領域における不要発射の強度を適用する。

(7) 基地局

表 6. 3. 3 - 3 に示す許容値以下であること。

<u>一の送信装置において複数の搬送波を同時に送信する場合にあっては、最も下</u>側の搬送波の下側及び最も上側の搬送波の上側において、本規定を満足すること。

<u>システム</u>	<u>離調周波数</u>	<u>許容值</u>	参照帯域幅
<u>10MHzシステム</u>	<u>10MHz</u>	3dBm	<u>10MHz</u>
<u>20MHzシステム</u>	<u>20MHz</u>	<u>6dBm</u>	<u>20MHz</u>
<u>30MHzシステム</u>	<u>30MHz</u>	8dBm	<u>30MHz</u>
<u>40MHzシステム</u>	<u>40MHz</u>	<u>9dBm</u>	<u>40MHz</u>
50MHzシステム	50MHz	10dBm	50MHz

表6.3.3-3 隣接チャネル漏えい電力(基地局)

空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合にあっては、全空中線端子の総和が表 6.3.3-3に示す許容値に10log(N)を加えた値とする。

空中線端子のない基地局であり、かつアクティブアンテナと組合せた場合にあっては、空中線電力の総和が表 6.3.3-3に示す許容値に10log(8) を加えた値を 各離調周波数において満足すること。

(イ) 移動局

表6.3.3-4に示す許容値以下であること。

表6.3.3-4 隣接チャネル漏えい電力(移動局)

<u>システム</u>	<u>離調周波数</u>	<u>許容値</u>	参照帯域幅
<u>10MHzシステム</u>	<u>10MHz</u>	2dBm	<u>10MHz</u>
<u>20MHzシステム</u>	<u>20MHz</u>	3dBm	<u>20MHz</u>

<u>30MHzシステム</u>	<u>30MHz</u>	<u>5dBm</u>	<u>30MHz</u>
40MHzシステム	<u>40MHz</u>	<u>6dBm</u>	<u>40MHz</u>
50MHzシステム	<u>50MHz</u>	<u>7dBm</u>	<u>50MHz</u>

搬送波が隣接するキャリアアグリゲーションで送信する場合は、搬送波の組合 世毎に合計した周波数幅において表6.3.3-4に示す許容値以下であること。 なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基 地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって 制限すること又はそれらの組合せの制御によって制限することで、その条件での 許容値とすることができる。

搬送波が隣接しないキャリアアグリゲーションで送信する場合、各搬送波の不要発射の強度の測定帯域が重複する場合は、どちらか高い方の許容値を適用する。 また、各搬送波の不要発射の強度の測定帯域が他方の搬送波の送信周波数帯域と 重複する場合、その周波数範囲においては本規定を適用しない。

カ スペクトラムマスク

2535-2655MHzの周波数範囲においては、以下の規定を適用し、その他周波数においては、エスプリアス領域における不要発射の強度を適用する。

(7) 基地局

送信周波数帯の中心周波数から不要発射の強度の測定帯域の中心周波数までの 離調周波数に対して、システム毎に表6.3.3-5に示す許容値以下であるこ と。

一の送信装置において複数の搬送波を同時に送信する場合にあっては、最も下側の搬送波の下側及び最も上側の搬送波の上側において、本規定を満足すること。

<u>システム</u>	<u>離調周波数</u>	<u>許容値</u>
<u>10MHz システム</u>	15MHz 以上 25MHz 未満	<u>-13dBm/MHz</u>
<u>20MHz システム</u>	30MHz 以上 50MHz 未満	-13dBm/MHz
<u>30MHz システム</u>	45MHz 以上 75MHz 未満	-13dBm/MHz
<u>40MHz システム</u>	60MHz 以上 100MHz 未満	<u>-13dBm/MHz</u>
50MHz システム	75MHz 以上 125MHz 未満	-13dBm/MHz

表6.3.3-5 スペクトラムマスク(基地局)

空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合にあっては、全空中線端子の総和が表 6.3.3-5に示す許容値に10log(N)を加えた値とする。

空中線端子のない基地局であり、かつアクティブアンテナと組合せた場合にあっては、空中線電力の総和が6.3.3-5に示す許容値に10log(8) を加えた値を各離調周波数において満足すること。

(イ) 移動局

送信周波数帯の中心周波数から不要発射の強度の測定帯域の中心周波数までの 離調周波数に対して、システム毎に表6.3.3-6に示す許容値以下であること。

表 6. 3. 3-6 スペクトラムマスク (移動局)

<u>システム</u>	<u>離調周波数</u>	<u>許容値</u>
10MU- 2.7 = /	10MHz 以上 15MHz 未満	<u>-13dBm/MHz</u>
<u>10MHz システム</u>	15MHz 以上 20MHz 未満	<u>-25dBm/MHz</u>
<u>20MHz システム</u>	15MHz 以上 30MHz 未満	<u>-13dBm/MHz</u>
	30MHz 以上 35MHz 未満	<u>-25dBm/MHz</u>
<u>30MHz システム</u>	20MHz 以上 45MHz 未満	<u>-13dBm/MHz</u>
	45MHz 以上 50MHz 未満	<u>-25dBm/MHz</u>
40MUz S. 7 = 1	25MHz 以上 60MHz 未満	<u>-13dBm/MHz</u>
<u>40MHz システム</u>	60MHz 以上 65MHz 未満	<u>-25dBm/MHz</u>
<u>50MHz システム</u>	30MHz 以上 75MHz 未満	<u>-13dBm/MHz</u>
	75MHz 以上 80MHz 未満	<u>-25dBm/MHz</u>

搬送波が隣接しないキャリアアグリゲーションで送信する場合、各搬送波の不 要発射の強度の測定帯域が重複する場合は、どちらか高い方の許容値を適用する。 また、各搬送波の不要発射の強度の測定帯域が他方の搬送波の送信周波数帯域と 重複する場合、その周波数範囲においては本規定を適用しない。

搬送波が隣接するキャリアアグリゲーションで送信する場合は、搬送波の組合 世毎に合計した周波数幅において表 6.3.3 - 6に示す許容値以下であること。 なお、通信にあたって移動局に割り当てる周波数の範囲(リソースブロック)を基 地局の制御によって制限し、あるいは送信電力を基地局や移動局の制御によって 制限すること又はそれらの組合せの制御によって制限することで、その条件での 許容値とすることができる。

キ 占有周波数帯幅の許容値

(7) 基地局

各システムの99%帯域幅は、表6.3.3-7のとおりとする。

表 6. 3. 3-7 各システムの99%帯域幅(基地局)

<u>システム</u>	99%帯域幅
<u>10MHzシステム</u>	<u>10MHz以下</u>
<u>20MHzシステム</u>	<u>20MHz以下</u>
<u>30MHzシステム</u>	30MHz以下

<u>40MHzシステム</u>	40MHz以下
<u>50MHzシステム</u>	50MHz以下

(イ) 移動局

各システムの99%帯域幅は、表6.3.3-8のとおりとする。

表 6. 3. 3-8 各システムの99%帯域幅(移動局)

<u> </u>	7 = 100 co : 0 70 (1) 231:37
<u>システム</u>	99%帯域幅
<u>10MHzシステム</u>	<u>10MHz以下</u>
<u>20MHzシステム</u>	<u>20MHz以下</u>
<u>30MHzシステム</u>	30MHz以下
<u>40MHzシステム</u>	40MHz以下
<u>50MHzシステム</u>	50MHz以下

<u>搬送波が隣接するキャリアアグリゲーションで送信する場合、表6.3.3-8</u> に示す幅以下の中に、発射される全平均電力の99%が含まれること。

ク 最大空中線電力及び空中線電力の許容偏差

(7) 基地局

定格空中線電力の最大値は10MHz幅あたり20W以下であること。

空中線端子のある基地局(空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合も含む。)の空中線電力の許容偏差は、定格空中線電力の+100%/-50以内であること。

空中線端子のない基地局の許容偏差は、定格空中線電力の総和の+124%/-55%以内であること。

(化) 移動局

定格空中線電力の最大値は、400mWであること。

キャリアアグリゲーションで送信する場合は全搬送波の空中線電力の総和、空間多重方式とキャリアアグリゲーションを併用して送信する場合は各空中線端子及び全搬送波の総電力について、いずれも200mW以下であること。

空中線電力の許容偏差は、定格空中線電力の+100%/-79%以内であること。

ケ 空中線絶対利得の許容値

(7) 基地局

空中線絶対利得は、17dBi以下とする。

(イ) 移動局

空中線絶対利得は、4dBi以下とすること。

ただし、空中線電力が 200mW を超える場合は 1dBi 以下とすること。

なお、等価等方輻射電力が絶対利得 1 dBi の 空中線に400mWの空中線電力を加えたときの値以下となる場合は、その低下分を空中線の利得で補うことができる。

- コ 送信オフ時電力(搬送波を送信していないときの漏洩電力)
 - <u>(7) 基地局</u> 規定しない。
 - (イ) <u>移動局</u> −30dBm以下

サ 送信相互変調特性

送信波に対して異なる周波数の妨害波が、送信機出力段に入力された時に発生する相互変調波電力レベルと送信波電力レベルの比に相当するものであるが、主要な特性は、送信増幅器の飽和点からのバックオフを規定するピーク電力対平均電力比によって決定される。

(7) 基地局

希望波を定格出力で送信した状態で、希望波の送信周波数帯域の上端又は下端から±5MHz、±15MHz、±25MHz離調の中心周波数となる妨害波(変調波10MHz幅)を希望波の定格出力より30dB低い送信電力で加えた場合において発生する相互変調波の電力が、不要発射の強度の許容値及び隣接チャネル漏洩電力の許容値以下であること

<u>(イ) 移動局</u> 規定しない。

(2) 受信装置

マルチパスのない受信レベルの安定した条件下(静特性下)において、以下の技術的条件を満たすこと。なお、本技術的条件に適用した測定器の許容誤差については暫定値であり、標準化団体の議論が確定した後、適正な値を検討することが望ましい。

<u>ア キャリアアグリゲーション</u>

移動局については、キャリアアグリゲーションで受信可能な搬送波の組合せで受信した状態において、搬送波ごとにウから力に定める技術的条件を満たすこととする。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

イ アクティブアンテナ

複数の空中線素子及び無線設備を用いて1つ又は複数の指向性を有するビームパターンを形成・制御する技術をいう。

基地局については、ノーマルアンテナ(アクティブアンテナではなく、ビームパタ

ーンが固定のものをいう)においては、空中線端子がある場合のみを定義し、空中線端子のないノーマルアンテナについては、今回の検討の対象外とする。

空中線端子がありかつアクティブアンテナを組合せた基地局については、空中線端子においてウからカに定める技術的条件を満足すること。空中線端子がなく、アクティブアンテナと組合せた基地局については、アンテナ面における受信信号及び妨害波においてウからカに定める技術的条件を満足すること。ただし、それぞれの項目において別に定めがある場合は、この限りでない。

<u>移動局については、アクティブアンテナを定義せず、空中線端子がある場合のみ</u>を今回の検討の対象としており、空中線端子がない場合は対象外とする。

ウ 受信感度

受信感度は、QPSKで変調された信号を規定の品質(最大スループットの95%以上)で受信するために必要な空中線端子で測定した最小受信電力であり静特性下において、以下に示す値(基準感度)以下であること。

(7) 基地局

静特性下において、以下の条件とすること。

-101.8dBm 以下

空中線端子のない基地局については、静特性下において、最大空中線電力毎に、 アンテナ面での電力が上記の値から絶対利得を引いた値以下であること。

<u>(イ) 移動局</u>

<u>静特性下において、以下の条件とすること。</u> -95.5dBm以下

エ 隣接チャネル選択度

隣接チャネル選択度は、隣接する搬送波の周波数に配置された変調妨害波の存在下で希望信号を受信する受信機能力の尺度であり、以下の条件で希望波と隣接帯域の変調妨害波を加えたとき、QPSKで変調された信号を規定の品質(最大スループットの95%以上)で受信できること。

(7) 基地局

<u>静特性下において、以下の条件とすること。</u> 希望波 基準感度+6dB、変調妨害波: -52dBm

空中線端子のない基地局については、静特性下において、最大空中線電力毎に、 アンテナ面での電力が上記の値から絶対利得を引いた値以下であること。

(イ) 移動局

静特性下において、以下の条件とすること。

希望波 基準感度+14dB、変調妨害波:-54.5dBm

力 相互変調特性

3次相互変調の関係にある電力が等しい2つの無変調妨害波又は一方が変調された妨害波の存在下で希望信号を受信する受信機能力の尺度であり、以下の条件で希望波と3次相互変調を生ずる関係にある無変調波と変調波の2つの妨害波を加えたとき、QPSKで変調された信号を規定の品質(最大スループットの95%以上)で受信できること。

(7) 基地局

<u>静特性下において、以下の条件とすること。</u>

基地局:

希望波:基準感度+6dB

無変調妨害波(隣接チャネル) : -52dBm 変調妨害波(次隣接チャネル) : -52dBm

空中線端子のない基地局については、静特性下において、最大空中線電力毎に、 アンテナ面での電力が上記の値から絶対利得を引いた値以下であること。

(イ) 移動局

静特性下において、以下の条件とすること。

移動局:

希望波:基準感度+13dB

無変調妨害波(隣接チャネル) : -46dBm 変調妨害波(次隣接チャネル) : -46dBm

キ 副次的に発する電波等の限度

受信状態で、空中線端子から発射される電波の限度とする。

(7) 基地局

30MHz以上1000MHz未満では-36dBm/100kHz以下、1000MHz以上上端の周波数の5倍未満では-30dBm/MHz以下であること。空中線端子のある基地局であり、かつアクティブアンテナと組合せた場合にあっては、全空中線端子の総和がそれぞれの許容値に10log(N)を加えた値とする。

<u>(イ) 移動局</u>

30MHz以上1000MHz未満では-36dBm/100kHz以下、1000MHz以上上端の周波数の5

6. 3. 4 測定法

BWA 5 G N R (Wi MAX および XGP の N R 対応)の測定法は、国内で適用されている測定法に準ずることが適当であるが、今後、国際電気標準会議 (IEC) 等の国際的な動向を踏まえて対応することが望ましい。

BWA 5 G N R (Wi MAX および XGP の N R 対応) は、複数の送受信空中線(MIMO やアダプティブアレーアンテナ等の複数の送信増幅部含む無線設備)を有する送受信装置が一般的であると考えられるため、複数の空中線を前提とした測定方法としている。基地局送信、移動局受信については、複数の送受空中線を有する無線設備にあっては、各空中線端子で測定した値を加算(技術的条件が電力の絶対値で定められるもの。)した値による。移動局送信、基地局受信については、複数の送受空中線を有し空間多重方式を用いる無線設備にあっては、最大空中線電力及び空中線電力の許容偏差は各空中線端子で測定した値を加算した値による。また空中線端子を有していない基地局の測定法については、OTA(Over The Air)による測定法を適用することが適当である。また、技術的条件の規定内容に応じ、送信装置には実効輻射電力(EIRP: Equivalent Isotropic Radiated Power)又は総合放射電力(TRP: Total Radiated Power)のいずれかの方法を、受信装置には等価等方感度(EIS: Equivalent Isotropic Sensitivity)を適用する。

(1) 送信装置

ア 周波数の許容偏差

(7) 基地局

(A) 空中線端子がある場合

<u>被試験器の基地局を変調波が送信されるように設定し、波形解析器等を使用し、</u> 周波数偏差を測定する。

被試験器が、無変調の状態にできる場合は周波数計を用いて測定することができる。

(B) 空中線端子がない場合

被試験器の基地局を変調波が空中線から送信されるように設定し、指向性方向 を固定する。試験用空中線に接続した波形解析器等を使用し、周波数偏差を測定 する。

被試験器が、無変調の状態にできる場合は周波数計を用いて測定することができる。

(イ) 移動局

<u>被試験器の移動局を基地局シミュレータと接続し、波形解析器等を使用し周波</u> 数偏差を測定する。

イ スプリアス領域における不要発射の強度

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局を定格出力で送信するよう設定し、空中線端子に接続された スペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照 帯域幅とし、規定される周波数範囲毎にスプリアス領域における不要発射の強度 を測定する。

<u>分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、</u> <u>分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に</u> <u>渡って積分した値を求める。</u>

<u>また、搬送波近傍等において分解能帯域幅を参照帯域幅にすると搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域</u>幅に換算する方法を用いることができる。

なお、被試験器の空中線端子からアンテナ放射部までにフィルタあるいは給電 線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

アクティブアンテナを用いる場合は、空中線電力の総和が最大となる状態にて 測定し、空中線端子毎に測定されたスプリアス領域における不要発射の強度の総 和を求める。

(B) 空中線端子がない場合

被試験器の基地局をアクティブアンテナから空中線電力の総和が最大となる 状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯 域幅とし、規定される周波数範囲毎にスプリアス領域における不要発射の強度を 測定する。被試験器の基地局を一定の角度ごとに回転させ、順次、スプリアス領域における不要発射の強度を測定する。周波数毎に測定されたスプリアス領域における不要発射の強度の全放射面における総合放射電力を求める。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合 は、分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅 内に渡って積分した値を求める。

<u>また、搬送波近傍等において分解能帯域幅を参照帯域幅にすると搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。</u>

なお、被試験器の基地局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正するこ と。

(イ) 移動局

<u>被試験器の移動局と基地局シミュレータ及びスペクトルアナライザを分配器等</u>により接続し、試験周波数に設定して最大出力で送信する。分解能帯域幅を技術

<u>的条件により定められた参照帯域幅とし、規定される周波数範囲毎にスプリアス</u> 領域における不要発射の強度を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

また、搬送波近傍等において分解能帯域幅を参照帯域幅にすると搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

ウ 隣接チャネル漏えい電力

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局を定格出力で送信するよう設定し、空中線端子に接続された スペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照 帯域幅とし、規定される周波数範囲毎に隣接チャネル漏えい電力を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

アクティブアンテナを用いる場合は、空中線電力の総和が最大となる状態にて 測定し、空中線端子毎に測定した隣接帯域の電力を測定し、その全空中線端子の 総和が規定値以下となることを確認する。

なお、被試験器の基地局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正するこ と。

(B) 空中線端子がない場合

被試験器の基地局をアクティブアンテナから空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に送信周波数を中心とした参照帯域幅の電力と、送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力を測定する。被試験器の基地局を一定の角度ごとに回転させ、順次、送信周波数を中心とした参照帯域幅の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力の総和をそれぞれ求め、離調周波数を中心とした参照帯域幅の電力の総和をそれぞれ求め、離調周波数を中心とした参照帯域幅の範囲において、全放射面の電力の総和を求める。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、

<u>分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に</u> 渡って積分した値を求める。

なお、被試験器の基地局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及びスペクトルアナライザを分配器等により接続し、試験周波数に設定して最大出力で送信する。分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に隣接チャネル漏えい電力を測定する。

<u>分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、</u> <u>分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に</u> 渡って積分した値を求める。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正するこ と。

エ スペクトラムマスク

(7) 基地局

スプリアス領域における不要発射の強度の(ア)基地局と同じ測定方法とするが、 技術的条件により定められた条件に適合するように測定又は換算する。

(イ) 移動局

スプリアス領域における不要発射の強度の(4)移動局と同じ測定方法とするが、 技術的条件により定められた条件に適合するように測定又は換算する。

才 占有周波数帯幅

(7) 基地局

(A)空中線端子がある場合

被試験器の基地局を定格出力で送信するよう設定する。スペクトルアナライザ を搬送波周波数に設定してその電力分布を測定し、全電力の0.5%となる上下の限 界周波数点を求め、その差を占有周波数帯幅とする。

(B) 空中線端子がない場合

被試験器の基地局をアクティブアンテナから空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線を被試験器の空中線と対向させる。試験用空中線に接続したスペクトルアナライザを搬送波周波数に設定してその電力分布を測定し、全電力の0.5%となる上下の限界周波数点を求め、その差を占有周波数帯幅とする。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及びスペクトルアナライザを分配器等により接続し、試験周波数に設定して最大出力で送信する。スペクトルアナライザを搬送波周波数に設定してその電力分布を測定し、全電力の0.5%となる上下の限界周波数点を求め、その差を占有周波数帯幅とする。

カ 空中線電力

(7) 基地局

(A) 空中線端子がある場合

<u>被試験器の基地局を定格出力で送信するよう設定し、電力計により空中線電力</u> を測定する。

<u>アクティブアンテナを用いる場合は、一の空中線電力を最大にした状態で空中</u> 線電力の総和が最大となる状態等で測定すること。

なお、被試験器の基地局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正するこ と。

(B) 空中線端子がない場合

被試験器の基地局をアクティブアンテナから空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続した電力計により空中線電力を測定する。被試験器の基地局を一定の角度ごとに回転させ、順次、空中線電力を測定する。測定された空中線電力の全放射面における総合放射電力を求める。

なお、被試験器の基地局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正するこ と。

(イ) 移動局

<u>被試験器の移動局と基地局シミュレータ及び電力計を分配器等により接続する。</u> 最大出力の状態で送信し、電力計により空中線電力を測定する。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正するこ と。

キ 送信オフ時電力 (搬送波を送信していないときの漏洩電力)

(7) 基地局

規定しない。

(イ) 移動局

<u>被試験器の移動局を基地局シミュレータ及びスペクトルアナライザを分配器等</u>により接続し、送信停止状態とする。分解能帯域幅を技術的条件により定められ

た参照帯域幅とし、漏えい電力を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、被試験器の移動局の出力部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

ク 送信相互変調特性

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局と不要波信号発生器及びスペクトルアナライザを分配器等により接続する。被試験器の基地局を定格出力で送信するよう設定し、不要波信号発生器の送信出力及び周波数を技術的条件に定められた値に設定する。スペクトルアナライザにより隣接チャネル漏えい電力、スペクトラムマスク及びスプリアス領域における不要発射の強度と同じ方法で測定する。

(B) 空中線端子がない場合

被試験器の基地局から0.1m離して並列に妨害波アンテナを配置する。不要波信号発生器と妨害波アンテナの空中線端子を接続し、妨害波アンテナにおける不要波の信号を技術的条件に定められた離調周波数に設定し、被試験器の基地局の定格電力と妨害波アンテナの入力電力が同様になるように調整する。被試験器の基地局をアクティブアンテナから空中線電力の総和が最大となる状態で送信するよう設定し、被試験器の基地局と妨害波アンテナを一定の角度ごとに回転させ、スペクトルアナライザにより隣接チャネル漏えい電力、スペクトラムマスク及びスプリアス領域における不要発射の強度と同じ方法で測定する。

(イ) 移動局

被試験器の移動局と不要波信号発生器及びスペクトルアナライザを分配器等により接続する。被試験器の移動局を定格出力で送信するよう設定し、不要波信号 発生器の送信出力及び周波数を技術的条件に定められた値に設定する。スペクト ルアナライザにより希望波の電力を測定する。次に、希望波及び妨害波からの離 調周波数を中心とした参照帯域幅の電力をそれぞれ測定する。

(2) 受信装置

ア 受信感度

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局と移動局シミュレータを接続し、技術的条件に定められた信 号条件に設定する。移動局シミュレータからランダムデータを送信し、スループ ットを測定する。

(B) 空中線端子がない場合

被試験器のアンテナ面に、技術的条件に定められた信号条件及び信号レベルと なるよう、試験用空中線に接続した移動局シミュレータから発射する。移動局シ ミュレータからランダムデータを送信し、スループットを測定する。

(イ) 移動局

<u>被試験器の移動局と基地局シミュレータを接続し、技術的条件に定められた信</u> <u>号条件に設定する。基地局シミュレータからランダムデータを送信し、スループットを</u>測定する。

イ 隣接チャネル選択度

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局と移動局シミュレータ及び信号発生器を接続し、技術的条件 に定められた信号レベルに設定する。信号発生器の周波数を隣接チャネル周波数 に設定してスループットを測定する。

(B) 空中線端子がない場合

被試験器のアンテナ面に、技術的条件に定められた信号条件及び信号レベルと なるよう、試験用空中線に接続した移動局シミュレータ及び信号発生器から発射 する。移動局シミュレータからランダムデータを送信し、スループットを測定す る。

(1) 移動局

被試験器の移動局と基地局シミュレータ及び信号発生器を接続し、技術的条件 に定められた信号レベルに設定する。信号発生器の周波数を隣接チャネル周波数 に設定してスループットを測定する。

ウ 相互変調特性

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局と移動局シミュレータ及び2つの妨害波信号発生器を接続する。希望波及び妨害波を技術的条件により定められた信号レベル及び周波数に設定する。移動局シミュレータからランダムデータを送信し、スループットを測定する。

(B) 空中線端子がない場合

被試験器のアンテナ面に、技術的条件に定められた信号条件及び信号レベルと

なるよう、試験用空中線に接続した移動局シミュレータ及び2つの妨害波信号発生器から発射する。移動局シミュレータからランダムデータを送信し、スループットを測定する。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及び2つの妨害波信号発生器を接続する。希望波及び妨害波を技術的条件により定められた信号レベル及び周波数に設定する。基地局シミュレータからランダムデータを送信し、スループットを測定する。

エ 副次的に発する電波等の限度

(7) 基地局

(A) 空中線端子がある場合

被試験器の基地局を受信状態(送信出力停止)にし、受信機入力端子に接続されたスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に副次的に発する電波の限度を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、被試験器の空中線端子からアンテナ放射部までにフィルタあるいは給電 線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(B) 空中線端子がない場合

被試験器の基地局を受信状態(送信出力停止)にし、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に副次的に発する電波の限度を測定する。被試験器の基地局を一定の角度ごとに回転させ、順次、副次的に発する電波の限度を測定する。測定された周波数毎に測定された副次的に発する電波の限度の全放射面における総和を求める。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

また、搬送波近傍等において分解能帯域幅を参照帯域幅にすると搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。

なお、被試験器の基地局の受信部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ) 移動局

被試験器の移動局と基地局シミュレータ及びスペクトルアナライザを分配器等

により接続し、試験周波数に設定して受信状態(送信出力停止)にする。分解能帯 域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲毎に 副次的に発する電波の限度を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、 分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に 渡って積分した値を求める。

なお、被試験器の移動局の受信部からアンテナ放射部までにフィルタあるいは 給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正するこ と。

(3) 運用中の設備における測定

<u>運用中の無線局における設備の測定については、(1)及び(2)の測定法によるほか、</u>(1)及び(2)の測定法と技術的に同等と認められる方法によることができる。

6. 3. 5 端末設備として移動局に求められる技術的な条件

情報通信審議会諮問第81号「携帯電話等の周波数有効利用方策」のうち「2GHz 帯における IMT-2000(TDD 方式)の技術的条件」(平成17年5月30日)の答申により示された技術的な条件に準ずるものとする。ただし、以下アからウについては、以下に示す技術的な条件とする。

ア 送信タイミング

基地局から受信したフレームに同期させ、かつ基地局から指定されたシンボルにおいて送信を開始するものとし、その送信の開始の時の偏差は、サブキャリア間隔が 15kHz 及び 30kHz においては±130 ナノ秒、サブキャリア間隔が 60kHz においては±65 ナノ秒、サブキャリア間隔が 120kHz においては±16. 25 ナノ秒の範囲であること

イ ランダムアクセス制御

(7) 基地局から指定された条件においてランダムアクセス制御信号を送出した後、 送受信切り替えに要する時間の後に最初に制御信号の検出を試みるシンボルから 10 ミリ秒以内の基地局から指定された時間内に基地局から送信許可信号を受信した場 合は、送信許可信号を受信した時から、基地局から指定された条件において情報の送 信を行うこと。

(イ) (ア)において送信禁止信号を受信した場合又は送信許可信号若しくは送信禁止信号を受信できなかった場合は、再び(ア)の動作を行うこととする。この場合において、再び(ア)の動作を行う回数は、基地局から指示される回数を超えないこと。

ウ 基地局に受信レベルを通知する機能

基地局から指定された条件に基づき、周辺基地局の指定された参照信号の受信レベルについて検出を行い、周辺基地局の受信レベルが基地局から指定された条件を満たす場合は、その結果を基地局に通知する機能を有すること。

6.3.6 その他

国内標準化団体等では、無線インタフェースの詳細仕様や高度化に向けた検討が引き続き行われていることから、今後、これらの国際的な動向等を踏まえつつ、技術的な検討が不要な事項について、国際的な整合性を早期に確保する観点から、適切かつ速やかに国際標準の内容を技術基準に反映していくことが望ましい。

V 検討結果

新世代モバイル通信システム委員会は、情報通信審議会諮問第 2038 号「新世代モバイル通信システムの技術的条件」(平成 28 年 10 月 12 日諮問) のうち「第5世代移動通信システム (5 G) 及び BWA の高度化に関する技術的条件」について、別添のとおり取りまとめた。

情報通信審議会 情報通信技術分科会 新世代モバイル通信システム委員会 構成員

(敬称略)

氏		 名	主要現職
	•		工女、坑、椒
主査	森川	博之	東京大学大学院 工学系研究科 教授
主査代理	三瓶	政一	大阪大学大学院 工学研究科 電気電子情報工学専攻 教授
委員	江村	克己	日本電気株式会社 NEC フェロー
専門委員	岩浪	剛太	株式会社インフォシティ 代表取締役
"	内田	信行	楽天モバイル株式会社 ネットワーク本部副本部長兼技術開発室長
"	内田	義昭	KDDI 株式会社 代表取締役執行役員副社長 技術統括本部長
"	大岸	裕子	ソニー株式会社 コーポレートテクノロジー戦略部門 テクノロジー企画部 統括部長
"	大谷	和子	株式会社日本総合研究所 執行役員 経営管理部門 法務部長
"	岡	敦子	日本電信電話株式会社 取締役 技術企画部門長
"	河東	晴子	三菱電機株式会社 情報技術総合研究所 主管技師長
"	高田	潤一	東京工業大学 環境・社会理工学院 教授
"	福井	晶喜	独立行政法人国民生活センター 相談情報部相談第2課長
"	藤本	正代	情報セキュリティ大学院大学 教授、GLOCOM 客員研究員
"	藤原	洋	株式会社ブロードバンドタワー 代表取締役会長 兼 社長 CEO
"	町田	奈穂	インテル株式会社 技術本部 副本部長
"	松井	房樹	一般社団法人電波産業会 専務理事・事務局長
"	松本	端 午	富士通株式会社 執行役員常務
"	宮川	潤一	ソフトバンク株式会社 代表取締役 副社長執行役員 兼 CTO テクノロジーユニット統括 兼 技術戦略統括
"	三好	みどり	NPO 法人ブロードバンドスクール協会 講師/シニア情報アドバイザー
"	山崎	正勝	株式会社 NTT ドコモ ネットワーク部長
"	行武	剛	パナソニック株式会社 コネクティッドソリューションズ社 常務 CTO

情報通信審議会 情報通信技術分科会 新世代モバイル通信システム委員会 技術検討作業班 構成員

(敬称略)

			(項 人 化外面)
氏	2	3	主 要 現 職
主 任	三瓶	政一	大阪大学大学院 工学研究科 電気電子情報工学専攻 教授
主任代理	山尾	泰	電気通信大学 先端ワイヤレス・コミュニケーション研究センター教授
構成員	浅野	弘明	パナソニック株式会社 コネクティッドソリューションズ社 イノ ベーションセンター ネットワーク事業統括部 次世代ワイヤレス 事業開発室長
"	天野	茂	日本電気株式会社 テレコムキャリアビジネスユニット ワイヤレスネットワーク開発本部 シニアエキスパート
"	市川	麻里	国立研究開発法人宇宙航空研究開発機構 周波数管理室 室長
"	伊東	克俊	ソニー株式会社 R&D センター 基盤技術研究開発第 1 部門 コネクティビティ技術開発部 統括部長
"	岩山	直文	三菱電機株式会社 通信システム事業本部 通信システムエンジニ アリングセンター 戦略事業推進グループ 標準化・渉外担当部長 国立王立会 王立徳報告と名 国連教祭源保護党 京馬・佐び教
"	大石	雅寿	国立天文台 天文情報センター 周波数資源保護室 室長・特任教授
"	小竹	信幸	一般財団法人テレコムエンジニアリングセンター 技術部 技術部 長
"	加藤	康博	一般社団法人電波産業会 研究開発本部 移動通信グループ 担当部 長
"	上村	治	プフトバンク株式会社/Wireless City Planning 株式会社 電波企画室 室長
"	川崎	光博	内閣府 政策統括官(防災担当)付 参事官(災害緊急事態対処担当)付参事官補佐(通信担当)
"	菊池	弘明	全日本空輸株式会社 整備センター技術部 マネージャー
"	久保田] 啓一	楽天モバイル株式会社 ネットワーク本部 技術戦略部 インフラ 開発課長
"	黒澤	葉子	KDDI 株式会社 技術統括本部 モバイル技術本部 次世代ネットワーク開発部 副部長
"	城田	雅一	クアルコムジャパン合同会社 標準化部長
"	杉浦	誠司	アイピースタージャパン株式会社 ゼネラルマネージャー
"	鈴木	淳	スカパーJSAT 株式会社 宇宙事業部門 スペースインテリジェンス 開発部 スペースチーム 電波統括専任部長
"	谷澤	正彦	日本無線株式会社 事業本部 部長 技術統括担当
"	中川	孝之	NHK 放送技術研究所 伝送システム研究部
"	中村	隆治	富士通株式会社 ネットワークビジネス戦略室 プリンシパルエンジニア
"	中村	武宏	株式会社 NTT ドコモ 執行役員 5G イノベーション推進室 室長
"	福島	裕之	株式会社 JAL エンジニアリング 品質保証部 企画グループ
"	本多	美雄	欧州ビジネス協会 電気通信機器委員会 委員長
"	南淳	<u> </u>	UQ コミュニケーションズ株式会社 技術部門 技術企画部長
"	四本	宏二	株式会社日立国際電気 モノづくり統括本部 プロダクト本部 通信プロダクト部 担当部長
"	米本	成人	国立研究開発法人海上·港湾·航空技術研究所 電子航法研究所 上 席研究員

<参考資料>

5 G化と LTE の 10MHz システム以外の隣接チャネル漏洩電力を比較した結果を以下に示す。

	基地局				陸上移動局				
	システム	周波数 離調	許容値	参照 帯域幅	システム	周波数 離調	許容値	参照 帯域幅	
	絶対値規定	5MHz	-13dBm/MHz	4.5MHz	絶対値規定	5MHz	-50dBm	4.5MHz	
	相対値規定	5MHz	-44.2dBc	4.5MHz	相対値規定	5MHz	-29.2dBc	4.5MHz	
1.TE A.T.*/EDD)	_	_	_	-	絶対値規定	5MHz	-50dBm	3.84MHz	
LTE-A方式(FDD) 	_	_	_	_	相対値規定	5MHz	-32.2dBc	3.84MHz	
	絶対値規定	10MHz	-13dBm/MHz	4.5MHz	絶対値規定	10MHz	-50dBm	3.84MHz	
	相対値規定	10MHz	-44.2dBc	4.5MHz	相対値規定	10MHz	-35.2dBc	3.84MHz	
	絶対値規定	5MHz	-13dBm/MHz	4.5MHz	絶対値規定	5MHz	-50dBm	4.5MHz	
LTE A + + (TDD)	相対値規定	5MHz	-44.2dBc	4.5MHz	相対値規定	5MHz	-29.2dBc	4.5MHz	
LTE-A方式(TDD) 	絶対値規定	10MHz	-13dBm/MHz	4.5MHz	_	_	_	_	
	相対値規定	10MHz	-44.2dBc	4.5MHz	-	_	-	_	
	絶対値規定	5MHz	-13dBm/MHz	4.5MHz	絶対値規定	5MHz	-50dBm	4.515MHz	
	相対値規定	5MHz	-44.2dBc	4.5MHz	相対値規定	5MHz	-29.2dBc	4.515MHz	
0000 50 ND/14*	_	_	_	_	絶対値規定	5MHz	-50dBm	3.84MHz	
3GPP-5G-NR仕様	_	_	_	_	相対値規定	5MHz	-32.2dBc	3.84MHz	
	絶対値規定	10MHz	-13dBm/MHz	4.5MHz	絶対値規定	10MHz	-50dBm	3.84MHz	
	相対値規定	10MHz	-44.2dBc	4.5MHz	相対値規定	10MHz	-35.2dBc	3.84MHz	

参考 1 - 1 隣接チャネル漏洩電力 (5 MHz システム)

	基地局				陸上移動局				
	システム	周波数 離調	許容値	参照 帯域幅	システム	周波数 離調	許容値	参照 帯域幅	
	絶対値規定	15MHz	-13dBm/MHz	13.5MHz	絶対値規定	15MHz	-50dBm	13.5MHz	
	相対値規定	15MHz	-44.2dBc	13.5MHz	相対値規定	15MHz	-29.2dBc	13.5MHz	
	絶対値規定	30MHz	-13dBm/MHz	13.5MHz	絶対値規定	10MHz	-50dBm	3.84MHz	
LTE-A方式(FDD) 	相対値規定	30MHz	-44.2dBc	13.5MHz	相対値規定	10MHz	-32.2dBc	3.84MHz	
	絶対値規定	10MHz	-13dBm/MHz	3.84MHz	絶対値規定	15MHz	-50dBm	3.84MHz	
	相対値規定	10MHz	-44.2dBc	3.84MHz	相対値規定	15MHz	-35.2dBc	3.84MHz	
	絶対値規定	15MHz	-13dBm/MHz	13.5MHz	絶対値規定	15MHz	-50dBm	13.5MHz	
	相対値規定	15MHz	-44.2dBc	13.5MHz	相対値規定	15MHz	-29.2dBc	13.5MHz	
LTE-A方式(TDD) 	絶対値規定	30MHz	-13dBm/MHz	13.5MHz	_	_	_	_	
	相対値規定	30MHz	-44.2dBc	13.5MHz	_	_	_	_	
	絶対値規定	15MHz	-13dBm/MHz	14.22MHz	絶対値規定	15MHz	-50dBm	14.235MHz	
	相対値規定	15MHz	-44.2dBc	14.22MHz	相対値規定	15MHz	-29.2dBc	14.235MHz	
	絶対値規定	30MHz	-13dBm/MHz	14.22MHz	-	-	_	_	
2000 FO ND4-+*	相対値規定	30MHz	-44.2dBc	14.22MHz	_	_	_	_	
3GPP-5G-NR仕様	絶対値規定	10MHz	-13dBm/MHz	4.5MHz	絶対値規定	10MHz	-50dBm	3.84MHz	
	相対値規定	10MHz	-44.2dBc	4.5MHz	相対値規定	10MHz	-32.2dBc	3.84MHz	
	絶対値規定	15MHz	-13dBm/MHz	4.5MHz	絶対値規定	15MHz	-50dBm	3.84MHz	
	相対値規定	15MHz	-44.2dBc	4.5MHz	相対値規定	15MHz	-35.2dBc	3.84MHz	

参考 1 - 2 隣接チャネル漏洩電力 (15MHz システム)

	基地局				陸上移動局				
	システム	周波数 離調	許容値	参照 帯域幅	システム	周波数 離調	許容値	参照 帯域幅	
	絶対値規定	20MHz	-13dBm/MHz	18MHz	絶対値規定	20MHz	-50dBm	18MHz	
	相対値規定	20MHz	-44.2dBc	18MHz	相対値規定	20MHz	-29.2dBc	18MHz	
	絶対値規定	40MHz	-13dBm/MHz	18MHz	-	_	_	_	
LTE A + + (EDD)	相対値規定	40MHz	-44.2dBc	18MHz	-	-	_	-	
LTE-A方式(FDD) 	絶対値規定	12.5MHz	-13dBm/MHz	3.84MHz	絶対値規定	12.5MHz	-50dBm	3.84MHz	
	相対値規定	12.5MHz	-44.2dBc	3.84MHz	相対値規定	12.5MHz	-32.2dBc	3.84MHz	
	絶対値規定	17.5MHz	-13dBm/MHz	3.84MHz	絶対値規定	17.5MHz	-50dBm	3.84MHz	
	相対値規定	17.5MHz	-44.2dBc	3.84MHz	相対値規定	17.5MHz	-35.2dBc	3.84MHz	
	絶対値規定	20MHz	-13dBm/MHz	18MHz	絶対値規定	20MHz	-50dBm	18MHz	
	相対値規定	20MHz	-44.2dBc	18MHz	相対値規定	20MHz	-29.2dBc	18MHz	
LTE-A方式(TDD) 	絶対値規定	40MHz	-13dBm/MHz	18MHz	_	_	_	_	
	相対値規定	40MHz	-44.2dBc	18MHz	_	_	_	_	
	絶対値規定	20MHz	-13dBm/MHz	19.08MHz	絶対値規定	20MHz	-50dBm	19.095MHz	
	相対値規定	20MHz	-44.2dBc	19.08MHz	相対値規定	20MHz	-29.2dBc	19.095MHz	
	絶対値規定	40MHz	-13dBm/MHz	19.08MHz	_	_	_	_	
00DD 50 ND/I +*	相対値規定	40MHz	-44.2dBc	19.08MHz	_	_	_	_	
3GPP-5G-NR仕様	絶対値規定	12.5MHz	-13dBm/MHz	4.5MHz	絶対値規定	12.5MHz	-50dBm	3.84MHz	
	相対値規定	12.5MHz	-44.2dBc	4.5MHz	相対値規定	12.5MHz	-32.2dBc	3.84MHz	
	絶対値規定	17.5MHz	-13dBm/MHz	4.5MHz	絶対値規定	17.5MHz	-50dBm	3.84MHz	
	相対値規定	17.5MHz	-44.2dBc	4.5MHz	相対値規定	17.5MHz	-35.2dBc	3.84MHz	

参考1-3 隣接チャネル漏洩電力 (20MHz システム)