特定基地局開設料の標準的な金額に関する研究会報告書(案)

目 次

はじめに	····· 2
1. 特定基地局開設料の標準的な金額を試算する意義・背景	3
2. 周波数の経済的価値を踏まえた標準的な金額の算定方法	····· 5
3.「比較法」を用いた算定方法	····· 7
4. 標準的な金額の算定における各事項の補正	····10
4. 1 第一段階の補正	····10
4. 2 第二段階の補正	····17
5. 特定基地局開設料の標準的な金額の試算	····26
6. 特定基地局開設料の標準的な金額に基づいた審査等の在り方…	····28
おわりに	····30
開催要綱	····31
審議経過	····34
参考資料····································	····35

はじめに

我が国は、IoT、AI(人工知能)、ロボット、ビッグデータ等の先端技術をあらゆる産業や生活分野に取り入れ、経済成長と課題解決を図る新たな社会である「Society 5.0」を世界に先駆けて実現することを目指している。電波は、この Society 5.0 を支える必要不可欠なインフラである。

Society 5.0 時代に向けて、電波利用のニーズが飛躍的に拡大すると見込まれる中、 総務省は、平成29年11月より「電波有効利用成長戦略懇談会」(座長:多賀谷一照・ 千葉大学名誉教授)を開催し、周波数の割当て・移行制度等の電波の有効利用方策 や、2030年代に向けた電波利用の将来像とその実現方策等について、「規制改革 推進に関する第2次答申」(平成29年11月規制改革推進会議答申)の内容も踏まえ つつ、包括的に検討を行い、平成30年8月に報告書をとりまとめた。

その中で、電気通信業務用の移動通信システムを始めとして、

- ①一定程度のエリアにおいて、同一の無線システムの中では一の者が専用する 周波数であること、
- ②新たな周波数が割り当てられる場合であって、競争的な申請が見込まれるもの であること、

を満たすものを対象として、その経済的価値を踏まえた周波数の割当てを可能とする ための制度化を行うべきとの提言がなされた。

総務省では、この提言を踏まえ、Society 5.0 の基盤となる5G(第5世代移動通信システム)の迅速かつ円滑な普及・高度化を図り、電波の有効利用を促進するため、周波数の経済的価値を踏まえた周波数割当制度(特定基地局開設料制度)の整備を含む「電波法の一部を改正する法律案」を平成 31 年2月に国会へ提出し、令和元年5月に成立・公布された。

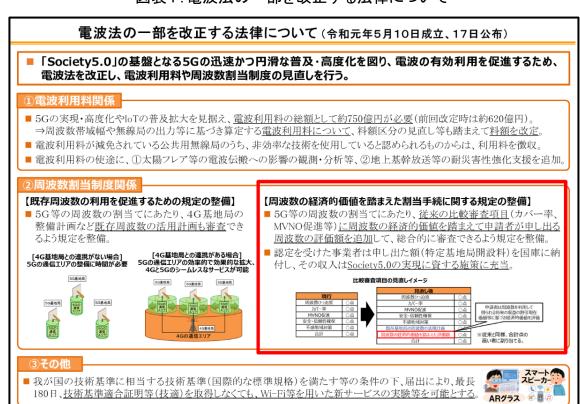
電波法改正により新たに導入された特定基地局開設料制度の運用に当たっては、 開設計画の申請者が合理的な評価額を算出できることが前提となる。

このため、事前に、周波数の経済的価値の標準的な試算について客観的な検討を行い、もって、申請者の予見可能性を高めるとともに、特定基地局開設料制度が適切に機能するよう、本研究会を開催し必要な検討を行ったものである。

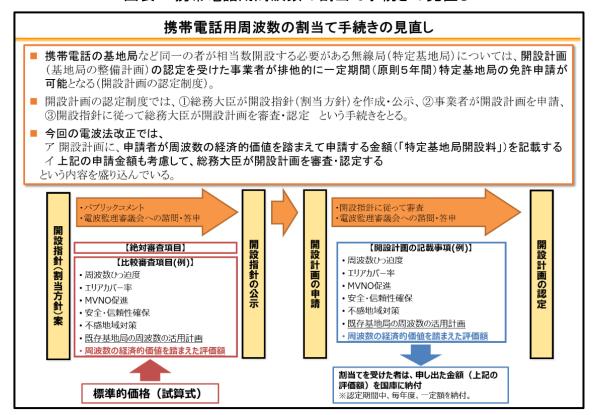
本報告書は、本研究会において、周波数の経済的価値に関する考え方やその評価手法について、様々な角度から検討した結果をまとめたものである。

1. 特定基地局開設料の標準的な金額を試算する意義・背景

携帯電話の基地局など同一の者が相当数開設する必要がある無線局(特定基地局)については、開設計画(基地局の整備計画)の認定を受けた事業者が排他的に一定期間(原則5年間)特定基地局の免許申請が可能となる(以下「開設計画の認定制度」という。)。


開設計画の認定制度においては、①総務大臣が開設指針(割当方針)を作成・公示、②事業者が開設計画を申請、③開設指針に従って総務大臣が開設計画を審査・認定といった一連の手続が必要となっている。

電波法の一部を改正する法律(令和元年法律第6号。以下「改正電波法」という。) により、周波数の経済的価値を踏まえた割当手続においては、


- 開設計画に、申請者が周波数の経済的価値を踏まえて申請する金額(「特定 基地局開設料」)を記載する
- 上記の申請金額も考慮して、総務大臣が開設計画を審査・認定する

こととされた。

図表1:電波法の一部を改正する法律について

図表2:携帯電話用周波数の割当て手続きの見直し

一方で、平成31年4月には、申請のあった携帯電話事業者4者に対して、5Gの導入のための特定基地局の開設に係る開設計画の認定(周波数の割当て)がなされた。

現在、情報通信審議会において、5Gへの新たな周波数割当てを行うための技術 的条件の検討がなされているところであるが、5Gの次期周波数割当てにおいては、 改正電波法に基づき、周波数の経済的価値を踏まえた割当手続を実施することとな る。

その際、申請者が開設計画を申請するに当たって、申請者の予見可能性を高め、 合理的な評価額を算出できるようにしておくことが必要であることから、特定基地局開 設料の標準的な金額を算出する考え方(試算式)について検討を行った。

2. 周波数の経済的価値を踏まえた標準的な金額の算定方法

周波数の経済的価値については、様々な捉え方が考えられるところ、当該周波数帯、周波数幅、他の無線通信システムとの共用、隣接周波数帯域との干渉、終了促進措置の有無などを考慮することが必要であると考えられる。

- 一般的に、周波数の経済的価値の代表的な算定方法としては、「比較法」、「AP (Administrative Pricing)法」、「収益還元法」といった手法が挙げられる。
 - ●「比較法」: 他国のオークション結果(落札額)をベンチマークとする方法
 - ●「AP 法」: 割り当てられる周波数を利用することで削減されるネットワーク関連 コストを周波数の価値とする方法
 - ●「収益還元法」:割り当てられる周波数を利用することによって得られる将来価値 を現在の価値に割り戻す方法

このうち「AP 法」については、設備・コストに注目しており、比較的算定の精度を高めることができる一方で、収入面が検討対象ではないこと、周波数の割当てがなかった場合の代替サービスの想定が困難であることから、現実的ではないと考えられる。なお、新規参入事業者においては、代替サービスの想定をすることができない点も考慮される必要がある。

また、「収益還元法」については、5G のビジネスモデルの変化などを踏まえた収益 モデルに不確実性があること、割当て済み周波数帯の多寡や収入及び費用など設 定するパラメータによって個々の事業者の事業戦略が明らかになってしまいかねない ことについての懸念があることに加え、急速な技術の進展などにより設備費用の配賦 基準等をあらかじめ明確に定めることは困難であることから、現時点では、費用情報 を正確に把握できず、現実的ではないと考えられる。

これらを踏まえると、周波数の経済的価値の算定においては、各国の複数のオークション事例に基づき目安を測ることができる「比較法」を用いることが現実的であり、適当である。

なお、「比較法」を採用する場合であっても、「AP 法」、「収益還元法」については、それぞれの特長や特定基地局開設料制度の運用実績、5G のビジネスモデルの変化等による収益モデルの確立や費用情報の把握等の状況を踏まえ、今後の活用の可能性も視野に、引き続き検討することが望ましい。

さらに、比較法により算定した標準的な金額を開設指針に提示する際には、①他国のオークション結果にばらつきがあるため一意的な値に定めることは適当ではないことから、算定式ではなく、一定の幅をもたせて金額を提示することや、②下限値の設定が重要であることに鑑み、割当ての可否を判断する際の材料の一つとして下限値のみを提示することが考えられる。

3. 「比較法」を用いた算定方法

(1)算定に当たっての基本的な前提

「比較法」を用いる場合、以下のように、算定に当たっての基本的な前提を置くことが適当である。

①算定の枠組み

第一段階として、各国のオークション制度に基づく落札総額から、各国ごとに考慮すべき事項を補正し、各国の補正後の金額を基に参照金額(以下「参照金額」という。)を算定する。

その上で、第二段階として、参照金額から、我が国の国内事情で考慮すべき事項を補正し、周波数の経済的価値を踏まえた「標準的な金額」を算定する。

②考慮すべき事項と補正する事項

周波数の経済的価値を踏まえた「標準的な金額」を算定するためには、考慮すべき様々な事項があるが、そのうち、「標準的な金額」に大きな影響を与えると考えられる主要な事項を抽出して補正する。

③時間的な変動の取扱い

算定に当たって考慮すべき事項については、例えば、経済規模の一つの指標である GDP 成長率など時間的な変動の観点を含めることも考えられるが、参照する各国のオークション結果の実施時期、期間等も異なるため変動要素を含めることには限度があることから、特別な事情がない限りは含めないこととすることが適当である。

(2)参照金額算定(第一段階)の際の考慮事項

第一段階として、各国のオークション金額を参照する際に、「標準的な金額」に大きな影響を与える事項として、検討すべき項目は以下のとおりである。

①周波数带

Sub6、ミリ波など様々な帯域について各国の 5G 周波数のオークション結果を参照する場合、それぞれの周波数帯の特性(用途・技術的難易度等)を踏まえた補正について検討する必要がある。

②周波数幅

各国のオークションにおいて割り当てられる周波数幅はそれぞれ異なることから、

その差異を補正する必要がある。

③各国の免許期間

各国において無線局の免許期間が大きく異なることから、その差異を補正する 必要がある。

4他の無線通信システムとの共用

他の無線通信システムと周波数を共用する場合には、周波数の利用に一定の制約が生じることから、制約の内容等を踏まえた補正について検討する必要がある。

⑤各国の規模(経済規模等)

各国において経済規模(GDP)等が異なることから、電波利用の需要等も勘案しつ、各国の規模を反映するよう補正する必要がある。

(3)標準的な金額算定(第二段階)の際の考慮事項

第二段階として、各国の参照金額をもとに「標準的な金額」を算定する際に、その結果に大きな影響を与えると考えられる我が国の事情に関する事項として、検討すべき項目は以下のとおりである。

①周波数帯

例えば世界市場での機器の流通状況など、エコシステムの観点を踏まえた係数を設定して、補正することについて検討が必要である。

②周波数幅

我が国で実際に割り当てる周波数幅を考慮して補正する必要がある。

③対象期間

周波数の経済的価値を算定する対象期間を決めた上で、当該期間を考慮して 補正する必要がある。

④他の無線通信システムとの共用・隣接周波数帯域との干渉

他の無線通信システムと周波数を共用するときや、隣接周波数帯域のシステムと干渉があるときであって、周波数の利用に一定の制約が生じる場合については、 我が国の事情を反映する係数を設定し、補正することについて検討が必要である。

⑤終了促進措置

周波数の割当ての際に終了促進措置が講じられる場合、携帯電話事業者への 周波数の割当てに係る負担を総合的に考慮する観点から、終了促進措置に関す る携帯電話事業者の負担額を踏まえて補正することについて検討が必要である。

⑥災害対策に係る経費

災害等の有事に対する通信の抗たん性・冗長性を確保するための経費を踏まえた補正をすることについて、その必要性も含めて検討する必要がある。

⑦日本の規模(経済規模等)

我が国における経済規模(GDP)や電波利用の需要等も勘案しつつ、日本の規模を反映するよう係数を設定し、補正する必要がある。

特定基地局開設料の標準的な金額の算定の全体概要 我が国において39.5GHz~41.0GHz帯の割当てを検討した場合、3.4GHz~3.6GHz帯の ※具体例として、 各国のオークション金額を参照するケース <考慮すべき事項(第1段階)> <考慮すべき事項(第2段階)> 各国のオークション制度に基づく参照補正後の 各国のオークション制度に基づく落札総額 標準的な金額」 波数の経済的価値を踏まえた 周波数带 対象期間 他の無線通信 周波数幅 システムとの共用・ 隣接周波数帯域 との干渉 周波数帯 各国の免許期間 終了促進措置 周波数幅 他の無線通信 災害対策に システムとの共用 係る経費 日本の規模 各国の規模 (経済規模等) 金額 諸外国の 補正 (例)39.5GHz~41.0GHz帯のうち (例)3.6GHz~3.7GHz帯の 補正 3.4GHz~3.6GHz帯の 600MHz/幅あたり 100MHz幅あたり それぞれの落札総額 ○○億円~○○億円 ○○億円~○○億円 億円

図表3:特定基地局開設料の標準的な金額の算定の全体概要

- 4. 標準的な金額の算定における各事項の補正
- 4.1 第一段階の補正

第一段階においては、各国のオークション制度に基づく落札総額から、各国ごとに 考慮すべき事項を踏まえて以下のとおり補正し、各国のオークション制度に基づく参 照金額を算定する。

(1) 周波数帯

周波数帯による補正については、各国における Sub6 のみ、あるいはミリ波帯のみの5G周波数のオークション結果を参照する場合には、Sub6 とミリ波帯のそれぞれの帯域内では技術的特性等に大きな違いがないことから、係数はそれぞれ「1」とすることが適当である。

- 一方、各国における Sub6 とミリ波帯のオークション結果を合わせて参照する場合については、
 - ①Sub6 とミリ波帯で用途・技術的難易度が異なるため、Sub6 は係数を「1」とし、ミリ波帯は係数を「1/2」とする、
 - ②低い帯域の方が利用しやすいため、周波数を分母として係数を設定する(例えば、「1/3.5」など)、
 - ③参照する各国のオークション結果においてミリ波帯の事例が少ないため、一律に 係数を「1」と設定する、

といった補正方法が考えられる。

これらのメリット・デメリットとしては、①については、帯域による用途・技術的難易度の違いを一定程度反映する一方で、ミリ波帯の価値と Sub6 の価値の違いを過剰又は過小に評価しうる(ミリ波帯の価値が Sub6 の価値の常に1/2であるとは言えない)こと、②については、帯域による用途・技術的難易度の違いを①の方法よりも詳細に反映すると考えられる一方で、Sub6 とミリ波帯のそれぞれの帯域内で細かく周波数の違いを反映する必要性に乏しいこと、③については、算定が容易である一方で、Sub6とミリ波帯の用途・技術的特性等による違いを捨象すること、といった点が挙げられる。

Sub6 とミリ波帯を比較すると、ミリ波帯の方が電波の届くセル半径が小さいため多くの設備が必要となること、及び無線設備の単価が上昇することが明らかであることから、Sub6 とミリ波帯を合わせて各国の5G周波数のオークション結果を参照する場

合には、参照する周波数帯の違いを一定程度反映することが必要であると言える。 一方で、それぞれの帯域内においては技術的特性等に大きな違いがあるとは言えないほか、これらの帯域ごとの差異を定量的かつ精緻に補正する係数を設定することは困難である。したがって、周波数帯による補正については、①の方法によることが適当であると考えられる。

図表4:第一段階における周波数帯の補正の方法と考え方

	補正の方法と考え方							
周波数帯	①Sub6は係数を「1」とし、ミリ波帯は係数を「1」とし、ミリ波帯は係数を「1/2」とする。 ※Sub6とミリ波帯で用途・技術的難易度が異なるため。	②周波数を分母として係数を設定する。 (例えば、「1/3.5」など) ※低い帯域の方が利用しやすいため。	③一律に係数を「1」と設定する。 ※参照する各国のオークション結果に おいてミリ波帯の事例が少ないため。					
メリット	・帯域による用途・技術的難易度 の違いを一定程度反映。	・帯域による用途・技術的難易度の違いを詳細に反映。	・算定が容易。					
デメリット	・ミリ波帯の価値とSub6の価値の 違いを過剰又は過小に評価しう る。 (ミリ波帯の価値がSub6の価値の常に 1/2で一定とは言えない。)	・Sub6とミリ波帯のそれぞれの帯域内で細かく周波数の違いを反映する必要性に乏しい。	・Sub6とミリ波帯の用途・技術的 特性等による違いを捨象する。					

なお、全国5Gのような移動通信システムの周波数帯については国際的な協調が 図られている一方、ホワイトスペースやプライベートバンドの状況によって各国ごとの 電波のひっ迫度合いは異なると考えられる。したがって、各国におけるホワイトスペー スやプライベートバンドの状況等周波数の割当て状況について、今後も注視していく ことが必要である。

(2)周波数幅

周波数幅については、オークションごとに違いがあるため、その差異を補正することが必要となるが、その場合、

- ①提供可能なサービスは周波数幅に比例して増加するとは限らないため、周波数幅の大きさに応じて逓減するよう係数を設定する、
- ②各国で異なる割当て周波数幅を単純化するため、一定の周波数幅(例えば 100MHz 幅)を分母として係数を設定する、
- ③提供可能なサービスは周波数幅に比例して増加しうるため、周波数幅の大きさに応じて逓増するよう係数を設定する、

といった補正方法が考えられる。

これらのメリット・デメリットとしては、①と③については、周波数幅に応じて提供可能なサービスの展開を反映する一方で、周波数幅と提供可能なサービス内容との関係は事前には明らかでないため具体的な係数の設定が困難であること、②については、算定が容易であり、一般に周波数幅に応じて多様で柔軟な周波数の利用が可能となることを反映する一方で、周波数幅に応じた提供可能なサービスの内容を十分に反映していないこと、といった点が挙げられる。

周波数幅を考慮する際には、各国のオークションにおいて対象とする周波数幅の 差異を一定の幅にそろえることは最低限必要であると考えられる一方、サービス開始 後のサービス内容や展開状況を事前に予測することは困難である。したがって、②の 方法により補正することが適当である。

補正の方法と考え方 ②一定の周波数幅(例えば100MHz ①周波数幅の大きさに応じて逓 ③周波数幅の大きさに応じて逓 幅)を分母として係数を設定す 周波数幅 減するよう係数を設定する。 増するよう係数を設定する。 ※提供可能なサービスは周波数幅に ※提供可能なサービスは周波数幅に ※各国で異なる割当て周波数幅を単 比例して増加するとは限らないため。 比例して増加しうるため。 純化するため。 ・算定が容易であり、一般に周波 ・周波数幅に応じて提供可能な 数幅に応じて多様で柔軟な周 ・周波数幅に応じて提供可能な メリット サービスの展開を反映する。 波数の利用が可能となることを サービスの展開を反映する。 反映する。 ・周波数幅と提供可能なサービ ・周波数幅と提供可能なサービ ・周波数幅に応じた提供可能な

ス内容との関係は事前には明

らかでないため具体的な係数の

設定が困難。

図表5:第一段階における周波数幅の補正の方法と考え方

(3)各国の免許期間

デメリット

ス内容との関係は事前には明

らかでないため具体的な係数の

設定が困難。

免許期間については、各国のオークションごとに違いがあるため、その差異を補正 することが必要となるが、その場合、

ていない。

サービスの内容を十分に反映し

- ①各国で免許期間が大きく異なるため、「免許期間の年数」を分母として係数を設 定する、
- ②事実上、特定の期間に限定されることなく落札帯域を使用できる場合が多いため、免許の更新を考慮し、一律に係数を「1」と設定する、

といった方法が考えられる。

これらのメリット・デメリットとしては、①については、免許期間内は地位が保証され

る以上、落札事業者は、その期間の長短を踏まえた入札額を提示しており、その差異を補正することができること、②については、各国で免許の更新制度が異なること、免許を更新するかどうかは各国の事業者で異なる不確実性があることにより、差異を補正することが困難であること、といった点が挙げられる。

これらの点を踏まえ、各国の免許期間の差異については、①の方法により補正することが適当である。

図表6:第一段階における各国の免許期間の補正の方法と考え方

	補正の方法	去と考え方
各国の 免許期間	①「免許期間の年数」を分母として係数を設定する。 ※各国で免許期間が大きく異なるため。	②免許の更新を考慮し、一律に係数を「1」と設定する。 ※事実上、特定の期間に限定されることなく落札帯域を使用できる場合が多いため。
メリット	・免許期間内は地位が保証される以上、落札事業者は、その期間の長短を踏まえた入札額を提示しており、その差異を補正することが可能。	・算定が容易。
デメリット	・特になし。	・各国で免許の更新制度が異なること、免許を更新するかどうかは各国の事業者で異なる不確実性があることにより、差異を補正することが困難。

(4)他の無線通信システムとの共用

他の無線通信システムと周波数を共用する場合については、周波数の利用に制 約が生じる可能性があることから、その差異を考慮するために、

- ①電波利用料制度において共用に係る係数を「1/2」としていることを踏まえ、周波数の国際分配上、他のシステムと共用しない場合は係数を「1」とし、共用する場合は係数を「1/2」とする、
- ②共用するシステムが少ない方が利用しやすいため、各国の周波数割当て上、他のシステムと共用しない場合は係数を「1」とし、共用する場合は「他のシステムの数」を分母として係数を設定する、
- ③共用する技術的条件の制約が少ない方が利用しやすいため、他のシステムと共 用しない場合は係数を「1」とし、共用する場合は共用する技術的条件を踏まえ て係数を設定する、
- ④共用の状況は各国で異なり、共用の状況の正確な把握も困難であることから、

他のシステムとの共用の有無を補正せず、一律に係数を「1」とする、

といった補正方法が考えられる。

これらのメリット・デメリットとしては、①については、明確かつ把握が容易である一方で、共用の状況を詳細には反映しないこと、②については、共用するシステムの状況を反映する一方で、共用の状況は各国で異なり、共用するシステム数の正確な把握は困難であること、③については、共用するシステムの状況を詳細に反映する一方で、共用の状況は各国で異なり、共用する技術的条件の正確な把握は困難であること、④については、算定が容易である一方で、共用の状況を反映しないこと、といった点が挙げられる。

周波数の共用の状況は各国で異なり、周波数利用における制約の状況も様々であると考えられることから、その内容を把握して係数を設定し、定量的に補正することは困難である。したがって、他の無線通信システムとの共用の補正については、④とすることが適当である。

ただし、国内における他の無線システムとの共用状況については、周波数の割当てに当たって、共用条件等を含めた当該候補帯域の技術的条件を詳細に検討することから、具体的に把握することが可能である。このため、他の無線通信システムとの共用の状況による補正については、国内事情に係る補正(第2段階)において対応することが妥当である。

図表7:第一段階における他の無線通信システムとの共用の補正の方法と考え方

		補正の方法	法と考え方	
他の無線通信 システムとの 共用	① 周波数の国際分配上、他のシステムと共用しない場合は係数を「1」とし、共用する場合は係数を「1/2」とする。	②各国の周波数割当て 上、他のシステムと共 用しない場合は係数 を「1」とし、共用する 場合は「他のシステム の数」を分母として係 数を設定する。	③他のシステムと共用しない場合は係数を「1」とし、共用する場合は共用する技術的条件を踏まえて係数を設定する。	④他のシステムとの共用の有無を補正せず、一律に係数を「1」と設定する。 ※共用の状況は各国で異な
	※電波利用料制度において 共用に係る係数を「1/2」 としているため。	※共用するシステムが少な い方が利用しやすいため。	※共用する技術的条件の制 約が少ない方が利用しや すいため。	り、共用の状況の正確な 把握も困難であるため。
メリット	・明確かつ把握が容易。	・共用するシステムの状 況を反映する。	・共用するシステムの状況を詳細に反映する。	 -算定が容易。
デメリット	・共用の状況を詳細には反映しない。	・共用の状況は各国で 異なり、共用するシス テム数の正確な把握は 困難。	・共用の状況は各国で 異なり、共用する技術 的条件の正確な把握 は困難。	・共用の状況を詳細には反映しない。

(5)各国の規模

各国において経済規模(GDP)等が異なることから、電波利用の需要等も勘案しつ、各国の経済規模等を反映するよう補正する必要があるが、その場合、

- ①電波利用の需要は経済規模に影響されるため、経済面に着目し、GDP を分母として係数を設定する、
- ②電波利用の需要は経済規模に影響されるため、経済面に着目し、為替レートの 影響を排除した購買力平価(PPP)を用いて係数を設定する、
- ③電波利用の需要は人口に影響されるため、人口面に着目し、人口を分母として 係数を設定する、
- ④電波利用の稠密度は人口密度に影響されるため、人口と面積に着目し、人口密度を用いて係数を設定する、

といった補正方法が考えられる。

これらのメリット・デメリットとしては、①については、電波利用の需要を一定程度反映する一方で、為替レートなどの影響が排除されないこと、②については、為替レートの影響が排除され、電波利用の需要をより適切に反映する一方で、購買力平価を示す指標が単一ではないこと、③については、電波利用の需要を一定程度反映する一方で、国土の状況やサービスの特性によっては電波利用の需要を適切に反映せず、人口の差は経済規模に吸収されること、④については、電波利用の需要や稠密度を一定程度反映する一方で、国土の状況やサービスの特性によっては電波利用の稠密度を適切に反映せず、人口密度の差は経済規模に吸収されること、といった点が挙げられる。

各国の経済規模等を検討する場合、人口や人口密度の差は経済規模に吸収されると考えられることから、為替レートによる影響を平準化しつつ、各国の経済状況によって異なる電波利用の需要を反映することができる経済規模による補正が適当であると考えられる。したがって、各国の規模の差異を補正する場合には、②の方法によることが適当である。その際、使用する経済規模の指標としては、例えば、国際通貨基金(IMF:International Monetary Fund)が公表している購買力平価 GDP(国内総生産)等を活用することが考えられる。

図表8:第一段階における各国の規模の補正の方法と考え方

		補正の方法	法と考え方	3) 2)	
各国の規模	① 経済面に着目し、 GDPを分母として係 数を設定する。 ※電波利用の需要は経済規 模に影響されるため。	②経済面に着目し、為替レートの影響を排除した購買カ平価(PPP)を用いて係数を設定する。 ※電波利用の需要は経済規模に影響されるため。	③人口面に着目し、人口を分母として係数を設定する。 ※電波利用の需要は人口に影響されるため。	④人口と面積に着目し、 人口密度を用いて係 数を設定する。 ※電波利用の稠密度は人口 密度に影響されるため。	
メリット	・電波利用の需要を一 定程度反映する。	・為替レートの影響が排除され、電波利用の需要をより適切に反映する。	・電波利用の需要を一 定程度反映する。	・電波利用の需要や稠 密度を一定程度反映 する。	
デメリット	・為替レートなどの影響 が排除されない。	・購買力平価を示す指標が単一ではない。	・国土の状況やサービス の特性によっては電波 利用の需要を適切に 反映しない。 ・人口の差は経済規模 に吸収される。	・国土の状況やサービス の特性によっては電波 利用の稠密度を適切 に反映しない。 ・人口密度の差は経済 規模に吸収される。	

4.2 第二段階の補正

第二段階においては、第一段階で得られた参照金額を、我が国の国内事情で考慮すべき事項により補正し、周波数の経済的価値を踏まえた「標準的な金額」を算定する。

(1) 周波数帯

割り当てる周波数帯による経済的価値への影響の違いを補正することについては、

- ①同じ帯域を使用している国が多いほど、サービスを提供する上で有利で、機器の調達も容易であり経済的価値が高いと考えられることから、「当該帯域を使用している国数」を分子として、「オークション結果のある国数」を分母として係数を設定する、
- ②同じ帯域を使用している国が多いほど、またそれらの国の経済規模が大きいほど、サービスを提供する上で有利で、機器の調達も容易であり経済的価値が高いと考えられることから、「オークション結果のある国数に占める当該帯域を使用している国数の割合及びオークション結果のある国の経済規模の総和に占める当該帯域を使用している国の経済規模の総和の割合の積」を係数として設定する、
- ③グローバルな移動通信システムとして 3GPP バンドであることが必要なため、 3GPP バンドである場合は係数を「1」とし、そうでなければ「1/2」とする、
- ④割当て対象の周波数帯は、グローバルな割当て状況を勘案済みであり、我が国 固有の事情としての補正は必要ないため、一律に係数を「1」と設定する、

といった方法が考えられる。

これらのメリット・デメリットとしては、①については、エコシステムを一定程度反映する一方で、国の数と機器数は一致していないこと、割合を係数化しているため、同じ値の割合が必ずしも実際の同じ帯域を使用している国数を反映しているものとは限らないこと、また、各国で使われている移動通信システムの世代の差異も含めた情報の把握が困難であること、②については、エコシステムをよりきめ細かく反映する一方で、経済規模が大きい国の結果に影響を受けるおそれがあること、また、各国で使われている移動通信システムの世代の差異も含めた情報の把握が困難であること、③については、エコシステムを反映する一方で、帯域の特性の差異を反映せず、3GPPバンドの価値とそれ以外のバンドの価値を過剰又は過小に評価しうること、④については、エコシステムを全く反映しないこと、といった点が挙げられる。

一般的に、同じ帯域を使用している国が多いほど、国境を跨いだサービス利用などの面で有利であり、かつ、それらの国の経済規模が大きいほど機器の調達も容易となり、機器の単価の低廉化につながることから、周波数の経済的価値は高まるものと考えられる。そのため、周波数帯による補正については、当該周波数帯域に係るエコシステムをよりきめ細やかに反映することが重要である。したがって、機器の調達の容易さなど我が国の国内市場の状況をより適切に反映するものとして、②の方法とすることが適当である。なお、その際には、経済規模の大きい国のオークション結果に必要以上に影響を受ける可能性があること等について留意する必要がある。

図表9:第二段階における周波数帯の補正の方法と考え方

		補正の方法	去と考え方		
周波数帯	①「当該帯域を使用している国数」を分子として、「オークション結果のある国数」を分母として係数を設定する。 ※同じ帯域を使用している国が多いほど、サービスを提供する上で有利で、機器の調達が容易なため。	②「オークション結果のある国数に占める当該帯域を使用している国数の割当及びオークション結果のある内を消費の総和にしいる国の経済規模の総和の出合の積」を分母として係数を設定する。 ※同じ帯域を使用している国が多いほど、またそれらの国の経済規模が大きいほど、サービスを提供する上で有利で、機器の調達が容易なため。	③3GPPパンドである場合は係数を「1」とし、そうでなければ「1/2」とする。 ※グローバルな移動通信システムとして3GPPパンドであることが必要なため。	④一律に係数を「1」と設定する。 ※割当て対象の周波数帯は、グローバルな割当て状況を勘案済みであり、我が国固有の事情としての補正は必要ないため。	
メリット	・エコシステムを一定程度反映する。	・エコシステムをよりきめ細かく 反映する。	・エコシステムを反映する。	・算定が容易。	
デメリット	・国の数と機器数は一致しない。 ・割合を係数化しているため、 同じ値の割合が必ずしも実際 の同じ帯域を使用している国 数を反映しているとは限らな い。 ・各国で使われている移動通 信システムの世代の差異も 含めた情報の把握が困難。	・経済規模が大きい国の結果に影響を受けるおそれがある。 ・各国で使われている移動通信システムの世代の差異も含めた情報の把握が困難。	・帯域の特性の差異を反映しない。 ・3GPPバンドの価値とそれ以外のバンドの価値を過剰又は過小に評価しうる。	・エコシステムを反映しない。	

(2) 周波数幅

割当てを行う周波数の幅に応じて補正することについては、

- ①提供可能なサービスは周波数幅に比例して増加するとは限らないため、周波数幅の大きさに応じて逓減するよう係数を設定する、
- ②実際に割り当てる周波数幅とするため、一定の周波数幅(例えば 100MHz 幅)を単位として係数を設定する、
- ③提供可能なサービスは周波数幅に比例して増加しうるため、周波数幅の大きさに応じて逓増するよう係数を設定する、

といった方法が考えられる。

これらのメリット・デメリットとしては、①と③については、周波数幅に応じて提供可能なサービスの展開を反映する一方で、周波数幅と提供可能なサービス内容の関係は事前には明らかでないため具体的な係数の設定が困難であること、②については、算定が容易であり、一般に周波数幅に応じて多様で柔軟な周波数の利用が可能となることが反映されるとともに、周波数幅の増加によって少なくとも増加分に相当する経済的価値が生じると考えられるため標準的な金額の下限値の確定に資する一方で、周波数幅に応じた提供可能なサービスの内容を十分に反映しないこと、といった点が挙げられる。

周波数幅の増加により将来提供されるサービス内容の広がりを事前に把握することは困難であり、①と③の方法により補正を行うことは現実的であるとは言えない。一方、②については、そこまでは考慮しないものの、多様で柔軟な周波数利用が可能になる特徴を反映しているほか、周波数幅の増加に応じて少なくとも利用者の収容能力の向上や高速化などが実現することから、経済的価値の下限値を反映していると考えられる。したがって、周波数幅による補正については、②の方法によることが適当である。

図表 10: 第二段階における周波数幅の補正の方法と考え方

		補正の方法と考え方	
周波数幅	①周波数幅の大きさに応じて逓減するよう係数を設定する。 ※提供可能なサービスは周波数幅に 比例して増加するとは限らないた め。	②一定の周波数幅(例えば 100MHz幅)を単位として係数を 設定する。 ※実際に割り当てる周波数幅とする ため。	③周波数幅の大きさに応じて逓増するよう係数を設定する。 ※提供可能なサービスは周波数幅に比例して増加しうるため。
メリット	・周波数幅に応じて提供可能なサービスの展開を反映する。	・算定が容易であり、一般に周波数幅に応じて多様で柔軟な周波数の利用が可能となることを反映する。・周波数幅の増加によって少なくとも増加分に相当する経済的価値が生じると考えられるため、標準的な金額の下限値の確定に資する。	・周波数幅に応じて提供可能なサー ビスの展開を反映する。
デメリット	・周波数幅と提供可能なサービス内容の関係は事前には明らかでないため具体的な係数の設定が困難。	・周波数幅に応じた提供可能なサー ビスの内容を十分に反映しない。	・周波数幅と提供可能なサービス内容の関係は事前には明らかでないため具体的な係数の設定が困難。

(3)対象期間

周波数の経済的価値を算定する対象期間を決めた上で、当該期間を考慮して補 正する必要があるが、対象期間の設定の考え方については、

- ①特定基地局開設料は開設計画の認定制度に基づくものであるため、開設計画の認定期間(5年)と設定する、
- ②投資回収等のために必要な期間であるため、次世代システムへの移行までの概ねの期間(10年)と設定する

等が考えられる。

これらのメリット・デメリットとしては、①については、制度上の権利の有効期間と一致する一方で、その後の免許更新等を考慮すると周波数を実質的に利用する期間より短い期間となること、②については、周波数を実際に利用する期間を反映する一方で、制度上の権利の有効期間とは一致しないこと、といった点が挙げられる。

これらの点を踏まえると、対象期間の補正については、周波数の経済的価値を評価する際には、実際の設備投資とその回収の状況等をより多く反映することを考慮することが重要であると考えられることから、②の方法により補正することが適当である。

	補正の方法と考え方							
対象期間	①開設計画の認定期間(5年)と設定する。 ※特定基地局開設料は開設計画の認定制度に基づくも のであるため。	②次世代システムへの移行までの概ねの期間 (10年)と設定する。 ※投資回収等のために必要な期間であるため。						
メリット	・制度上の権利の有効期間と一致する。	・周波数を実際に利用する期間を反映する。						
デメリット	・その後の免許更新等を考慮すると周波数を実 質的に利用する期間より短い期間となる。	・制度上の権利の有効期間とは一致しない。						

(4)他の無線通信システムとの共用・隣接周波数帯域との干渉

他の無線通信システムと周波数を共用するときや、隣接周波数帯域を使用するシステムと干渉調整が必要なときであって、設置場所の制限など周波数の利用に明らかな制約が生じる場合の補正については、

- ①電波利用料制度において共用に係る係数を「1/2」としていることを踏まえ、共用・干渉調整により制約を受ける場合は係数を「1/2」とし、そのような制約を受けない場合は係数を「1」とする、
- ②周波数の利用は、共用するシステムや干渉検討が必要な隣接周波数帯域のシステムが少ない方が有利であるため、共用・干渉調整により制約を受ける場合

は「共用する他のシステムの数や干渉調整が必要な隣接周波数帯域のシステムの数」を分母として係数を設定し、そのような制約がない場合は係数を「1」とする、

- ③周波数の利用は、共用するシステムや干渉検討が必要な隣接周波数帯域のシステムが少ない方が有利であるため、共用・干渉調整により制約を受ける場合はその技術的条件を踏まえて係数を設定し、そのような制約がない場合は係数を「1」とする、
- ④他のシステムとの共用・干渉調整による制約を受けることがない場合であっても、 自システム内の干渉調整は必ず発生するため、他のシステムとの共用・隣接周 波数帯域との干渉調整の有無を補正せず、一律に係数を「1」と設定する、

といった方法が考えられる。

これらのメリット・デメリットとしては、①については、明確かつ把握が容易である一方で、他のシステムとの共用・隣接周波数帯域との干渉の状況を詳細には反映しないこと、②については、共用するシステムや干渉検討が必要な隣接周波数帯域の状況を反映する一方で、共用するシステムの数や隣接周波数帯域における干渉調整が必要なシステムの数のみが共用・干渉調整の困難性を決める要因ではないこと、③については、共用・干渉するシステムとの調整状況を正確かつ詳細に反映する一方で、共用・干渉調整する技術的条件には、屋内・屋外の使用や離隔距離などの場所による条件や、基地局・陸上移動局の数や出力などの無線局の能力に関する条件などが想定されるため、定量的かつ合理的な係数を設定することは困難であること、④については、算定が容易である一方で、共用・干渉の状況を全く反映しないこと、といった点が挙げられる。

他の無線通信システムとの共用・隣接周波数帯域との干渉を踏まえた補正については、共用・干渉の状況をより詳細に把握し、反映することが重要であることは言うまでもない。その点、③の方法が最も正確に調整状況を把握する方法であると考えられるが、技術的条件を係数化することについては、パラメータが多岐にわたるほか、周波数の割り当て前の段階で個々のシステムとの調整状況を把握することは困難であり、現実的な方法であるとは言い難い。同様に②の方法についても、共用するシステムの数や、干渉調整が必要なシステムの数のみで共用・干渉調整の困難性を決めることはできない上、事前に調整するシステムの数を把握することは現実的ではないと考えられる。したがって、調整状況の困難性を詳細に把握するものであるとは言えないまでも、電波利用料制度において共用に係る係数を「1/2」としていることや、調整による制約の有無を明確に反映することができることを考慮し、①の方法により補正を行うことが適当である。

図表 12:第二段階における他の無線通信システムとの共用・ 隣接周波数帯域との干渉の補正の方法と考え方

		補正の方法	去と考え方	
他の無線通信 システムとの 共用・隣接 周波数帯域 との干渉	①共用・干渉調整により制約を受ける場合は係数を「1/2」とし、そのような制約を受けない場合は係数を「1」とする。 ※電波利用料制度において共用に係る係数を「1/2」としているため。	②共用・干渉調整により制約を受ける場合は「共用する他のシステムの数や干渉調整が必要な隣接周波数帯域のシステムの数」を分母として係数を設定し、そのような制約を受けない場合は係数を「1」とする。 ※共用するシステムや干渉検討が必要な隣接周波数帯域のシステムが少ない方が有利であるため。	③他のシステムと共用・隣接周 波数帯域と干渉しない場合 は係数を「1」とし、共用・干 渉する場合は共用・干渉調 整する場合は共用・干渉調 を登を設定する。 ※共用するシステムや干渉調整 が必要な隣接周波数帯域の システムが少ない方が有利で あるため。	④他のシステムとの共用・隣接周波数等を補正せず。一律に係数を「1」と設定する。 ※他のシステムとの共用・干渉調整による制約を受けることがない場合であっても、自システム内の干渉調整は必ず発生するため。
メリット	・明確かつ把握が容易。	・共用するシステムや干渉検討 が必要な隣接周波数帯域の 状況を反映する。	・共用・干渉するシステムとの 調整状況を正確かつ詳細に 反映する。	・算定が容易。
デメリット	・他のシステムとの共用・隣接 周波数帯域との干渉の状況 を詳細には反映しない。	・共用するシステムの数や隣接 周波数帯域における干渉調 整が必要なシステムの数の みが共用・干渉調整の困難 性を決めるものでない。	・共用・干渉調整する技術的条件には、場所による条件や無線局の能力に関する条件などが想定され、定量的かつ合理的な係数を設定することは困難。	・共用・干渉の状況を全く反映しない。

(5)終了促進措置

周波数の割当ての際に終了促進措置が必要となる場合については、

- ① 周波数の割当てにおいては、終了促進措置に係る費用の負担が審査基準となることから、当該周波数を利用するには終了促進措置に係る費用負担が必要となるため、終了促進措置の額を差し引いて標準的な金額を算定する、
- ②周波数の経済的価値と周波数移行費用は性質が異なるが、当該周波数を利用 するには終了促進措置に係る費用負担が必要となるため、終了促進措置の額 を一定程度差し引いて標準的な金額を算定する、
- ③周波数の経済的価値と終了促進措置に係る費用は性質が異なるため、終了促進措置の額を標準的な金額から差し引かずに標準的な金額を算定する、

といった方法により補正することが考えられる。

これらのメリット・デメリットとしては、①については、周波数割当てを受けた者が実際に支払う総額を考慮する一方で、異なる性質のものを同一に評価し差し引くこととなること、②については、異なる性質のものを同一に評価せずに、一定程度、周波数移行に係る支払額を考慮する一方で、周波数帯によって既存免許人の数や属性、移行先周波数の状況等を踏まえると、終了促進措置に係る費用の多寡も異なることから、差し引く額の程度を一律にあらかじめ設定することが困難であること、③については、異なる性質のものを同一に評価しないこととなる一方で、割当てを受けた者が実際に支払う額を考慮せずに算定することとなること、といった点が挙げられる。

周波数の経済的価値と終了促進措置はその性格を異にするものの、実際にその周波数を利用するには終了促進措置に係る費用負担が必要となること、終了促進措置の実施により移行が早まり割り当てられた周波数の早期利用が可能となることなどから、終了促進措置の費用には周波数の経済的価値が一定程度反映されていると言える。これらの点を踏まえると、終了促進措置の補正については、②の方法によることが適当である。

その際、②の方法で終了促進措置の額から差し引く額の程度については、周波数帯によって終了促進措置に係る費用の多寡も異なることから、あらかじめ一律に設定することが困難である。したがって、開設指針を策定する際に、過去に行われた終了促進措置における支払期間や支払額といった実績等も考慮して設定することなどが考えられる。

補正の方法と考え方 ①終了促進措置の額を差し引いて標準 ②終了促進措置の額を一定程度差し ③終了促進措置の額を標準的な金額 終了促進 的な金額を算定する。 引いて標準的な金額を算定する。 から差し引かずに標準的な金額を算 措置 定する。 ※周波数の割当てにおいては、終了促進措 置に係る費用の負担が審査基準となること ※周波数の経済的価値と周波数移行費用は 性質が異なるが、当該周波数を利用するに は終了促進措置に係る費用負担が必要と ※周波数の経済的価値と終了促進措置に係 る費用は性質が異なるため。 から、周波数を利用するには周波数移行の 費用が必要となるため。 ・異なる性質のものを同一に評価せず ・周波数の割当てを受けた者が実際に ・異なる性質のものを同一に評価しない メリット に、一定程度、周波数移行に係る支 支払う総額を考慮する。 こととなる。 払額を考慮する。 周波数帯によって既存免許人の数や 属性、移行先周波数の状況等により ・異なる性質のものを同一に評価し差し ・割当てを受けた者が実際に支払う額 デメリット 終了促進措置に係る費用の多寡も異 引くこととなる。 を考慮せずに算定することとなる。

図表 13: 第二段階における終了促進措置の補正の方法と考え方

(6)災害対策に係る経費

災害等の有事に対する通信の抗たん性・冗長性を確保するための経費を踏まえた 補正をすることについては、

なることから、差し引く額の程度を一律 にあらかじめ設定することが困難。

- ①災害等の有事に対する通信の抗たん性·冗長性を確保する経費が必要なため、 災害対策に係る経費の額を差し引いて標準的な金額を算定する、
- ②各国の落札額においても本経費は織り込まれているため、災害対策に係る経費 の額を差し引かずに標準的な金額を算定する、

といった方法が考えられる。

これらのメリット・デメリットとしては、①については、我が国は災害が多く、その対

策に多くの費用が発生するため、周波数の利用に当たっての災害対策等に係る費用 負担の実態を反映する一方で、災害等の有事に対する通信の抗たん性・冗長性を確 保する経費はその範囲が明確でないため、当該経費の正確な把握や補正に当たっ ての差し引く額を設定することが困難であること、②については、災害等の有事に対 する通信の抗たん性・冗長性を確保する経費の算定が不要となり、算定困難な要素 が解消される一方で、周波数の利用に当たっての災害対策等に係る費用負担の実 態を反映しないこと、といった点が挙げられる。

災害対策に係る経費については、周波数割当てによって新たに発生する費用ではなく、一定の対策が義務付けられている中で、各事業者において従来から対策費用を計上しているものであること、さらに、災害対策費用に該当するか否かの外延を定義することが困難であることを考慮し、②の方法とすることが適当である。

ただし、通常想定し得ないような、およそ予見しがたい事情が生じた場合には、手 続面において必要な対応を検討することが適当である。

図表 14: 第二段階における災害対策に係る経費の補正の方法と考え方

	補正の方法	と考え方
災害対策に 係る経費	①災害対策に係る経費の額を差し引いて標準的な金額を算定する。 ※災害等の有事に対する通信の抗たん性・冗長性を確保する経費が必要なため。	②災害対策に係る経費の額を差し引かずに標準的な金額を算定する。 ※各国の落札額においても本経費は織り込まれているため。
メリット	・我が国は災害が多く、その対策に多くの費用 が発生するため、周波数の利用に当たっての 災害対策等に係る費用負担の実態を反映す る。	・災害等の有事に対する通信の抗たん性・冗 長性を確保する経費の算定が不要となり、 算定困難な要素が解消。
デメリット	・災害等の有事に対する通信の抗たん性・冗長性を確保する経費はその範囲が明確でないため、当該経費の正確な把握や補正に当たっての差し引く額の設定が困難。	・周波数の利用に当たって災害対策等に係 る費用負担の実態を反映しない。

(7)日本の規模

我が国の経済規模等を踏まえた補正については、

- ①電波利用の需要は経済規模に影響されるため、経済面に着目し、GDP を分母として係数を設定する、
- ②電波利用の需要は経済規模に影響されるため、経済面に着目し、為替レートの 影響を排除した購買力平価(PPP)を用いて係数を設定する、

- ③電波利用の需要は人口に影響されるため、人口面に着目し、人口を分母として 係数を設定する、
- ④電波利用の稠密度は人口密度に影響されるため、人口面に着目し、人口密度を 用いて係数を設定する、

といった方法が考えられる。

これらのメリット・デメリットとしては、①については、電波利用の需要を一定程度反映する一方で、為替レートなどの影響が排除されないこと、②については、為替レートの影響が排除され、電波利用の需要を一定程度反映する一方で、購買力平価を示す指標が単一ではないこと、③については、電波利用の需要を一定程度反映する一方で、国土の状況やサービスの特性によっては電波利用の需要を適切に反映せず、人口の差は経済規模に吸収されること、④については、電波利用の需要や稠密度を一定程度反映する一方で、国土の状況やサービスの特性によっては電波利用の稠密度を適切に反映せず、人口密度の差は経済規模に吸収されること、といった点が挙げられる。

我が国の経済規模等の補正については、人口及び人口規模の差は経済規模に吸収されると考えられることから、為替レートによる影響を平準化しつつ、電波利用の需要を反映することができる経済規模による補正が適当であると考えられる。したがって、②の方法によることが適当である。その際、使用する経済規模の指標としては、例えば、国際通貨基金(IMF:International Monetary Fund)が公表している購買力平価 GDP(国内総生産)等を活用することが考えられる。

図表 15: 第二段階における日本の規模の補正の方法と考え方

		補正の方法	法と考え方		
日本の規模	① 経済面に着目し、 GDPを分母として係 数を設定する。 ※電波利用の需要は経済規 機に影響されるため。	②経済面に着目し、為替レートの影響を排除した購買カ平価(PPP)を用いて係数を設定する。 ※電波利用の需要は経済規模に影響されるため。	③人口面に着目し、人口を分母として係数を設定する。 ※電波利用の需要は人口に影響されるため。	④人口面に着目し、人口密度を用いて係数を設定する。※電波利用の稠密度は人口密度に影響されるため。	
メリット	・電波利用の需要を一 定程度反映する。	・為替レートの影響が排除され、電波利用の需要を一定程度反映する。	・電波利用の需要を一 定程度反映する。	・電波利用の需要や稠 密度を一定程度反映 する。	
デメリット	・為替レートなどの影響が排除されない。	・購買カ平価を示す指標が単一ではない。	・国土の状況やサービス の特性によっては電波 利用の需要を適切に 反映しない。 ・人口の差は経済規模 に吸収される。	・国土の状況やサービス の特性によっては電波 利用の稠密度を適切 に反映しない。 ・人口密度の差は経済 規模に吸収される。	

5. 特定基地局開設料の標準的な金額の試算

これまでの検討結果を踏まえ、特定基地局開設料の標準的な金額の試算についての基本的な考え方を整理すると、下の図表のとおりである。

特定基地局開設料の標準的な金額の試算イメージ <考慮すべき事項(第1段階)> <考慮すべき事項(第2段階)> 周波数帯を39.5GHz 41.0GHz帯に補正 × 〇 (係数) 結果を参照することの補正 ×1(係数) 割り当てる周波数幅を 600MHz幅に補正 图波数幅 各国の周波数幅を 100MHz幅に補正 対象期間を次期システムの ×100/00MHz幅 移行までの期間として 10年に補正 39.5GHz~41.0GHz帯 (各国の落札額の 3.4GHz~3.6GHz帯 の割当てにおける 補正(こよる参照額) ○億円~○億円 米国:〇〇億円 各国の免許期間を 標準的な金額 英国:〇〇億円 10年に補正 〇億円~〇億円 他の無線通信システムとの 韓国:〇〇億円 ×10/〇(年) (600MHz幅あたり) ・購買力平価GDP1兆ドル) 共用·隣接周波数带域 との干渉がある場合に補正 他の無線通信 システムとの共用の補正 × O (係数) ×1(係數) 終了促進措置が購じられる 場合その一部の費用を 差し3K 各国の規模を購買力平価 GDP1兆ドルに補正 - △億円 ×1兆ドル/〇兆ドル (購買力平価GDP))に補正 × 〇兆ドル/ 1兆ドル

図表 16: 特定基地局開設料の標準的な金額の試算イメージ

このような基本的な考え方に基づき、架空の国々(A国、B国、C国、D国、E国)の架空の Sub6 のオークション金額を仮定して、我が国で Sub6 の帯域(100MHz 幅)を割り当てると仮定した場合の特定基地局開設料の標準的な金額を算定する試算例は、下の図表のとおりである。

図表 17: 特定基地局開設料の標準的な金額の試算例

<u>E</u>	2Ø)Sub6Ø	ウオー	クション	金額?	を仮定し	て、我が国でSo	ub6の帯域	(100MHz相區)を割り当て	ると仮定	※あく	までもタ	架空の試算						
	6·08	98	HLEM	,#X	企物甲	他の無償組備 システムとの共用	免許期間	用液象值	程序原列 開置力子級 (個的)	100P 5/83	E of the		E後の参照額 の平均値針後						
ı			1007574		GHz 体		20年	1504014	30,000	0	5円	35.7	万円~98.6万円 中98.1 H 2579						
	AΞ	300			×1		×10/20	100/150	10,000/30		3	_	平均優±18%						
				3.6	анж		20年	300MH4 6	45,000			32.6	万円~39.8万円						
旅	ВΞ	150	5万円 -		×1		10/20	100/300	10,000/45		л т	_	学的性・39-20円0 を大価・最小価を						
克雷			3.		1.5GHzi	сны:	X1	10年	28050401	20,000	0	35.7万円	除外L 左平均值前接 11.1万円~30.0万円 (高平格底: 25.65円)						
	C国	20	07FP 1		×1	` ^'	10/10	300/280	10,000/20		2								
ı	o.e	25075[7]		3.6	2+15 %	15年	11010-01	15,000		98.6万円		②中央値前後 11.1万円~35.7万円							
	DΞ				×1		10/15	100/150	10,000/13		Ď	(総中央統・20-03年)							
	EΞ		_	3.7	GHbኞ		20年	30010101	25,000	30.0	ΣЩ	【单位】 1806年2億・免許期間18年							
	C田	30	07AP		×1		10/20	100/200	10,000/25				力平価の約1北下ル						
	国内の考慮すべき事項を担金額		神項	用液象带	他の無線 通常システム との共用・干渉	対条期間	別当 用金数個	終了 個連集業	連済機構 機関力平価 GDP(億ドル)	270	な金額	間定期間10年とし 場合の年間(33)							
			_	Subfi	ab/J	10年	300MH2 %	500万円	57,119		isi meti	(\$60) 30 069E - 1.4 e							
軍	①平均值的	平均値前後 35.7万円~ 68.6万円 68.6万円 32.6万円~ 30.8万円 30.8万円 11.1万円~ 30.0万円 11.1万円~ 中央値前後 11.1万円~												3万円 8.7万円	119.4万円 ~874.9万円				
解の政権	②平均值土														- 250万円	57,119		1万円 4.1万円	107.2万円 ~196.4万円
					× 14.2	×1/2	× 10/10	× 100/100	推薦を: 学師を 単し別した場合)	/10,000		2万円 35万円	20.0万円 ~96.7万円						
ı	②中央値測			_								2万円	20.2万円 ~119.6万円						

なお、補正後の参照額と標準的な金額のそれぞれの数値の範囲の設定方法については、①平均値前後、②平均値±10%、③最大値・最小値を除外した平均値前後、④中央値前後といった考え方がある。この点については、我が国の開設計画の認定制度(周波数の割当て)における比較審査の中では、標準的な金額の下限値が重要となる。参照する各国のオークション結果のサンプル数や分布など実態を踏まえた場合、例えば、サンプル数が少ないことにより数値にバラつきが生じること、①から④までの方法によって下限値の額が変わることが想定しうるため、それぞれの特定基地局開設料の算定に当たって、どの方式を採用するにせよ、その採用に至るまでの考え方について、客観的な説明が求められる。

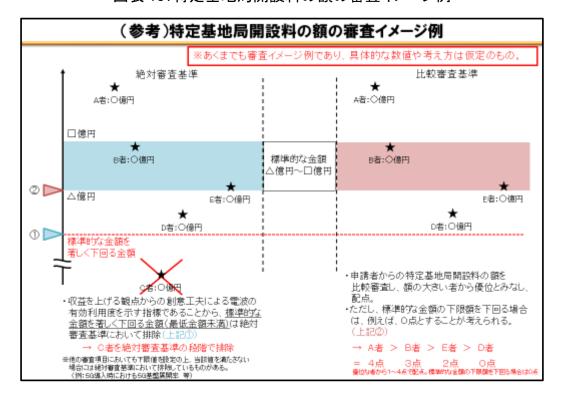
これらを踏まえて、数値の範囲の設定等においては、必要に応じて有識者からの意見等を反映できる場を設定し、その意見を反映することなどにより、標準的な金額を過小又は過大に評価することのないように、当該数値の範囲の設定に係る説明責任を果たしつつ、適切な方法を採用することが適当である。また、当該数値の範囲の設定をはじめ、標準的な金額の算定に当たっての考え方は、総務省のホームページに掲載するなど、あらかじめ公表することが望ましい。

6. 特定基地局開設料の標準的な金額に基づいた審査等の在り方

標準的な金額に基づいた特定基地局開設料の審査等は、以下の点に留意して行うことが適当である。

まずは、透明性・公平性及び予見可能性の確保の観点から、周波数の割当てごとに特定基地局開設料の標準的な金額は開設指針において明示することが必要である。開設指針の策定や、申請された開設計画の審査内容については、パブリックコメントや電波監理審議会への諮問といった手続を経ることとなっており、透明性・公平性が確保されるとともに、申請者にとっても予見可能性が確保されることとなる。

なお、特定基地局開設料の標準的な金額を実際に算定するに当たっては、例えば ミリ波帯など技術開発途上にある周波数を割り当てる場合等においては、将来の技 術の進展等も念頭に置くことが必要である。また、当該周波数帯におけるエコシステ ムや各国におけるオークション結果も含めた周波数の割当て状況についても、考慮し ていくことが必要である。


また、開設計画の審査における特定基地局開設料の額に係る配点及び特定基地局開設料以外の審査項目の配点のバランスについて、特定基地局開設料の額に係る配点は重点的な審査項目の一つとして、エリアカバーの計画や、安全・信頼性対策等の他の重点的な審査項目と同等の配点を設定することが適当である。

開設計画の審査基準としては、通常は、絶対審査基準と比較審査基準が設定される。この点、特定基地局開設料の額は、収益を上げる観点からの創意工夫による電波の有効利用度を示すパラメータの一つであり、申請された開設計画の特定基地局開設料の額が標準的な金額を著しく下回る場合には、電波が有効に活用されない可能性が極めて大きいものと判断される。

したがって、電波の有効利用が確実になされるよう、標準的な金額を著しく下回る と判断する際の基準となる金額については、予見可能性を確保するため周波数の割 当てごとに開設指針において明示するとともに、その基準を下回る申請については絶 対審査基準において排除することが適当である。

なお、他の事業者との競争的な比較審査により周波数が割り当てられること、開設計画に記載された金額が国庫に納入されることを踏まえると、事業者においては、標準的な金額を著しく下回ると判断する際の基準となる金額を考慮しながら、割当て周波数帯の経済的価値を算定することから、当該金額の設定においては、予見可能性

を高める観点から、その考え方を可能な限り明確にして、総務省のホームページに掲載すること等によりあらかじめ公開することが望ましい。

図表 18: 特定基地局開設料の額の審査イメージ例

なお、特定基地局開設料の標準的な金額と申請者の支払額の関係については、 特定基地局開設料の標準的な金額は、割り当てる周波数の枠ごとに示すこととし、割 当てを受けた申請者は、標準的な金額を踏まえて実際に申請した特定基地局開設料 の額を、国に納入することとなる。

おわりに

総務省においては、本報告書で示した考え方に基づいて、特定基地局開設料の標準的な金額の的確な算定を行うことにより、特定基地局開設料制度を円滑に運用することを期待する。

また、特定基地局開設料は、あくまでも電波の一層の有効利用を促進するための制度であることから、事業者にとって過度な負担が生じること等により、我が国の携帯電話インフラの整備が遅れるといった事態が生じないよう、適切に制度を運用していくことが望まれる。

開催要綱

「特定基地局開設料の標準的な金額に関する研究会」 開催要綱

1 目的

電波法(昭和25年法律第131号)において、携帯電話の基地局等の特定基地局については、一定期間、開設計画(基地局の整備計画)の認定を受けた者のみに免許の申請を可能とする「特定基地局の開設計画の認定制度」が設けられているが、更なる電波の有効利用を促進する観点から、令和元年5月、電波法の一部を改正する法律(令和元年法律第6号)が公布され、周波数の経済的価値を踏まえた割当手続(以下「特定基地局開設料制度」という。)に関する規定が整備されたところ。

特定基地局開設料制度の運用に当たり、申請者の予見可能性を高め、合理的な評価額を算出できるよう、周波数の経済的価値の標準的試算を示すことを目的として、本研究会を開催する。

2 名称

本研究会は、「特定基地局開設料の標準的な金額に関する研究会」と称する。

3 検討事項

周波数の経済的価値の考え方、評価手法等

4 構成及び運営

- (1) 本研究会は、総合通信基盤局長の研究会として開催する。
- (2) 本研究会の構成員は、別紙のとおりとする。
- (3) 本研究会に、座長及び座長代理を置く。
- (4) 本研究会は、座長が運営する。
- (5) 座長代理は、座長を補佐し、座長不在のときは、その職務を代行する。
- (6) 座長は、必要に応じて、構成員以外の関係者の出席を求め、その意見を聴くことができる。
- (7) その他、本研究会の運営に必要な事項は、座長が定めるところによる。

5 議事の公開

- (1) 本研究会の会議は、原則として公開とする。ただし、公開することにより当事者 又は第三者の権利及び利益並びに公共の利益を害するおそれがある場合そ の他座長が必要と認める場合については、非公開とする。
- (2) 本研究会の会議で使用した資料については、原則として総務省のホームページに掲載し、公開する。ただし、公開することにより当事者又は第三者の権利及び利益並びに公共の利益を害するおそれがある場合その他座長が必要と認める場合には、非公開とすることができる。
- (3) 本研究会の会議については、原則として議事要旨を作成し、総務省のホームページに掲載し、公開する。

6 開催期間

本研究会の開催期間は、令和元年 10 月から令和2年春頃までを目途とする。

7 庶務

本研究会の庶務は、総合通信基盤局電波部電波政策課及び移動通信課において行う。

「特定基地局開設料の標準的な金額に関する研究会」構成員 一覧

(敬称略、座長及び座長代理を除き五十音順)

(座長) 多賀谷 一照 千葉大学名誉教授

(座長代理) 大谷 和子 株式会社日本総合研究所執行役員法務部長

飯塚 留美 一般財団法人マルチメディア振興センター電波利用調査部研究主幹

牛山 誠 有限責任監査法人トーマッパートナー

関口 博正 神奈川大学経営学部教授

中尾 彰宏 東京大学大学院情報学環教授

柳川 範之 東京大学大学院経済学研究科教授

審議経過

- 〇第1回会合(令和元年 10 月7日)
 - ・特定基地局開設料制度について
 - ・周波数の経済的価値の考え方、評価手法について
 - •意見交換
- 〇第2回会合(令和2年1月27日)
 - 事業者からのヒアリング
 - •意見交換
- 〇第3回会合(令和2年5月19日)
 - ・論点整理(案)について
 - •意見交換
- 〇第4回会合(令和2年6月15日)
 - ・特定基地局開設料の標準的な金額に関する研究会 報告書(案)について
 - •意見交換
- 〇意見募集(令和2年6月30日~7月29日)
- 〇第5回会合(令和2年●月●日)
 - ・報告書(案)に対する意見募集の結果
 - •意見交換

参考資料

- 〇第1回会合資料「特定基地局開設料制度について」
- 〇第1回会合資料「周波数の経済的価値の考え方、評価手法について」