令和2年7月14日

総務大臣

高市早苗殿

情報通信審議会

会長内山田竹志

答 申 書

平成30年12月12日付け諮問第2043号「空間伝送型ワイヤレス電力 伝送システムの技術的条件」のうち「構内における空間伝送型ワイヤ レス電力伝送システムの技術的条件」について、審議の結果、別添の とおり答申する。

諮問第2043号

「空間伝送型ワイヤレス電力伝送システムの技術的条件」のうち「構内における空間伝送型ワイヤレス電力伝送システムの技術的条件」

<u>目 次</u>

Ι	検討事項1
П	委員会及び作業班の構成1
Ш	検討経過
IV	検討概要
第 1	章 検討の背景
1. 1. 1. 1.	2 空間伝送型ワイヤレス電力伝送システムの仕組み
第 2	章 電波利用に対する要求条件 19
2. 2. 2.	2 空間伝送型ワイヤレス電力伝送システムの利用ニーズ 2 O
第3	章 他の無線システムとの周波数共用の検討 37
3. 3. 3. 3.	2 共用検討パラメータ4 23 他の無線システムとの周波数共用条件4 54 電波防護指針への適合性8 1
第4	章 空間伝送型ワイヤレス電力伝送システムの技術的条件85
4. 4. 4.	2 2. 4GHz 帯システムの技術的条件
第5	
参考 (1 (2 (3) 2. 4GHz 帯 1 2 2
参考	· 資料 2 :設置環境等 1 3 1
(1 (2 (3	道用調整
(2 (5	
(6	

参考資料	3:対象システムにおける電波の安全性	1	3 4
(2) (3) (4) (4)	安全性の検討 920MHz 帯. 2. 4GHz 帯. 5. 7GHz 帯. 20 点法による算出.	1 1 1	3 4 3 6 3 7 3 8 3 8
参考資料	4 : 920MHz 帯における共用検討	1	4 0
(2) (3)	共用検討対象システム及び検討の絞り込み 高度 MCA システム 携帯電話システム 電波天文	1 1	4 0 4 1 4 5 4 9
参考資料	5 : 2. 4GHz 帯における共用検討	1	5 5
(2) (3) (4) (5) (6) (7) (8)	2. 4GHz 帯無線 LAN システム 構内無線局等 無人移動体高速伝送システム 無人移動体衛星通信システム (N-STAR) 移動体衛星通信システム (グローバルスター) 放送事業用 FPU システム 電波ビーコン 電波天文	1 1 1 1 1 1	5 5 6 1 6 2 6 3 6 7 6 9 7 8 8 0 8 2
参考資料	6 : 5. 7GHz 帯における共用検討	1	8 4
(2) I (3) ; (4) ; (5) ; (6) ; (7)	無線 LAN システム DSRC(狭域通信)システム 放送業務用 STL/TTL システム 放送事業用 FPU/TSL システム 無人移動体高速伝送システム 気象レーダー 電波天文 アマチュア無線	1 1 1 1 2 2	9 8 0 0 0 1
参考資料	7:キャリアセンス	2	0 5
(2) (3)	920MHz 帯 2. 4GHz 帯 5. 7GHz 帯 5. 7GHz 帯のキャリアセンスのパラメータ算出	2 2	0 5 0 6
参考資料	8:受電装置の位置推定	2	1 1
(2)	920MHz 帯 2. 4GHz 帯 5. 7GHz 帯	2	1 1
参考資料	9:壁等の通過時の損失	2	1 7

(1)	検討の背景	2	1	7
(2)	ITU-R にて定義される損失モデル	2	1	7
(3)	実際の各種外壁材の損失・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2	1	7
(4)	窓等の壁以外の損失	2	1	8
(5)	遮蔽損失値と実環境	2	1	8
参考資	料10:共用条件検討で使用した伝搬モデル	2	2	0
(1)	自由空間伝搬モデル	2	2	0
(2)	SEAMCAT 拡張秦モデル	2	2	0
(3)	クラッタ損失	2	2	2
参考資	料11:複数送信による空間影響	2	2	4
(1)	屋外への複数送信による影響	2	2	4
(2)	複数送信におけるシミュレーション	2	2	4
参考資	料12:920MHz 帯 1W 以下無線局の取扱い	2	2	8
(1)	920MHz 帯におけるユースケース	2	2	8
(2)	920MHz 帯の周囲への影響	2	2	8
(3)	空中線電力 1W 以下の 920MHz 帯空間伝送型ワイヤレス電力伝送システム	٠2	2	9
参考資	料13:不要発射の強度の許容値	2	3	0
(1)	不要発射の強度の許容値の検討に当たっての考え方*	2	3	0
(2)	920MHz 帯	2	3	1
(3)	2. 4GHz 帯	2	3	1
(4)	5. 7GHz 帯	2	3	2
参考資	料14:5. 7GHz 帯空間伝送型ワイヤレス電力伝送システムの使用周波数	(チ	ャネル)
		2	3	4
(1)	チャネル設定に当たっての考え方	2	3	4
(2)	ユースケースを元にしたチャネルの検討	2	3	6

I 検討事項

情報通信審議会情報通信技術分科陸上無線通信委員会(以下「委員会」という。)は、電気通信技術審議会諮問第2043号「空間伝送型ワイヤレス電力伝送システムの技術的条件」に基づき、 構内における空間伝送型ワイヤレス電力伝送システムの技術的条件について検討を行った。

Ⅱ 委員会及び作業班の構成

委員会は、検討の促進を図るために委員会の下に設置された空間伝送型ワイヤレス電力伝送システム作業班(以下「作業班」という。)で検討を行った。

委員会及び作業班の構成は、それぞれ別表1及び別表2のとおりである。

Ⅲ 検討経過

委員会及び作業班での検討経過は、以下のとおりである。

1. 委員会

ア 第46回 (平成31年1月16日)

空間伝送型ワイヤレス電力伝送システムの技術的条件について検討するために作業班の開始を承認した。

イ 第47回 (平成31年2月7日)

空間伝送型ワイヤレス電力伝送システムの技術的条件に関する提案募集の結果を踏まえ作業班において検討を進めることとした。

ウ 第54回(令和2年2月6日)

作業班において取りまとめられた空間伝送型ワイヤレス電力伝送システムの技術的条件 に関する報告書案について検討を行った。

工 第56回 (令和2年4月20日~24日)

空間伝送型ワイヤレス電力伝送システムの技術的条件に関する報告書案について意見募集を行った結果に基づいて検討を行った。

才 第59回(令和2年6月29日~7月9日)

空間伝送型ワイヤレス電力伝送システムの技術的条件に関する報告書案について意見募集を行った結果に基づいて検討を行い、後日一部修正の上、報告書として取りまとめた。

2. 作業班

ア 第1回 (平成31年2月20日)

空間伝送型ワイヤレス電力伝送システムの技術的条件について検討するために作業班の設立が承認された。

作業班の設置及び主任の指名について説明があり、主任代理及び構成員の指名並びにスケジュールについて確認等が行われた。また、空間伝送型ワイヤレス電力伝送システムの技術的条件に関する提案募集の結果等について説明があり、今後の検討課題等について議論が行われた。

- イ 第2回(平成31年4月9日) 各周波数帯における無線通信との共用条件案について議論が行われた。
- ウ 第3回(令和元年5月23日) 各周波数帯における無線通信との共用条件案について議論が行われた。
- エ 第4回(令和元年7月9日) 各周波数帯における無線通信との共用条件案について議論が行われた。
- オ 第5回(令和元年12月6日) 各周波数帯における無線通信との共用条件案について議論が行われた。
- カ 第6回(令和2年1月10日) 各周波数帯における無線通信との共用条件案、報告書案について議論が行われた。
- キ 第7回(令和2年1月31日) 各周波数帯における無線通信との共用条件案、報告書案について議論が行われた。
- ク 第8回(令和2年5月22日) 陸上無線通信委員会からの指摘を受けた事項・報告書案について議論が行われ、後日一 部修正の上、報告書として取りまとめられた。

Ⅳ 検討概要

第1章 検討の背景

1.1 ワイヤレス電力伝送システムの現状と動向

近年、家電製品や電気自動車等において、無線技術により迅速かつ容易に充電できるワイヤレス電力伝送(以下「WPT」という。)システムのニーズが高まっている。WPTシステムは、磁界結合等の方式により、電源コードを用いることなく、送電部から受電部に対して電力を伝送できる一方で、WPTシステムから放射される漏えい電波が課題となる。そのため、総務省では、WPTシステムの導入に当たり、他の無線通信システムとの共用のための技術的条件を検討し、これまで、磁界結合等の近接結合型 WPTシステムに関する制度化を行ってきた。

磁界結合等の近接結合型のWPTシステムでは、送電部と受電部を接近させて使用するが、これらの方式とは異なり、遠く離れた場所にある受電装置への電力伝送を目的として、電波によって電力を伝送する仕組み(空間伝送型WPTシステム)の研究開発が進められている。

近接結合型のWPTシステムの有効伝送距離が数十cmであるのに対し、空間伝送型WPTシステムでは10m以上離れた受電装置にも電力伝送が可能(空中線電力等による)となるため、家庭内や工場内にある電子機器のワイヤレス化をはじめ、災害時の遠隔地へ向けた電力伝送等、その展開に期待が寄せられている。

図 1.1.1 空間伝送型ワイヤレス電力伝送システムへの期待

特に近年は、IoT 技術の進展により、センサによる稼働状態等のデータ取得・蓄積が増加し、それらのデータを生産管理等に利用するセンサネットワークを活用したシステムの普及・拡大が進んでいる。空間伝送型 WPT システムにてこれらのセンサへ給電し、利用することで電池交換作業のために稼働を停止させる必要が無くなる。これにより工場等の 24 時間稼働と省力化が可能となる利点から、産業界からの導入を希望する声が多く、実証実験も行われている。また、空間伝送型 WPT システムを用いることで、配線の問題を解決、太陽電池で課題となるセンサへの汚れ

付着や照度不足となる課題も解決する空間伝送型 WPT システムの利点は、各種センサの利用の増加が予想される今後の IoT 化社会の発展にとって、非常に有効であると考えられる。

● 遍在するコンピュータへの電力供給に利用 ✓ 電源ケーブルが引けない場合や、少し離れたデバイスに手軽に給電

図1.1.2空間伝送型ワイヤレス電力伝送の利用シーン

【国内の実証実験の事例】

京都大学では、京都大学センター・オブ・イノベーション・プログラムの一環として、国家戦略特別区域の制度を活用した特定実験試験局制度を用いて、次のような民間企業との共同実証実験が実施されている。

- (ア) 5W の空中線電力で 10m 先のセンサを駆動し、データを収集するセンサネットワークシステムの社会実証実験(京都大学、パナソニック)
- (イ) 100W の空中線電力で約 30W の充電を行うといった電動車両向けの空間伝送型 WPT システムの社会実証実験(京都大学、三菱重工業株式会社)

図1.1.3 センサネットワークシステムの社会実証実験(ア)

図 1.1.4 電動車両向け空間伝送型 WPT システムの社会実証実験(イ)

また、高度利用を目指した内閣府の戦略的イノベーション創造プログラム(SIP:エスアイピー)の第2期研究開発計画のテーマの一つである「IoE 社会のエネルギーシステム」(平成30年度から5カ年計画)において、遠距離・高効率・大電力で安全な空間伝送型WPTシステムを用いたエネルギーマネジメントの実現に向けた技術の研究開発が課題の一つとなっている。

そこでは、我が国が強みを持つ次世代半導体を基にした高周波デバイスの研究開発、WPTシステムの送信側・受信側の高効率化、高度伝送制御技術の研究開発等の基盤要素技術の研究開発を実施するとともに、屋外でのマイクロ波電力伝送(ドローン(インフラ維持・管理))及び屋内でのマイクロ波電力伝送(センサや情報機器等)の社会実装に向けたシステムの研究開発、安全性確保、標準化等の実用化まで、一貫した取組にて推進されている。**1



図 1.1.5 SIP 第 2 期にて推進する WPT システム研究概要

1.2 空間伝送型ワイヤレス電力伝送システムの仕組み

空間伝送型 WPT システムは、送信/受電間で空中線を対向させ、配線することなく電波として電力を伝送する方式であるため、無線通信システムと同様に遠距離への送信が可能となる。

また、一方で放射された電波が他の無線通信に干渉を与えるおそれや送信装置の近くに人が立ち入ることによる電波ばく露が想定されるため、一般の無線通信システムと同様に他システムとの共用検討や生体への安全性について考慮する必要がある。

送信側(送電側)の空中線には、無線通信システムと同様に、1つの受電装置への送信に対しては、指向性の鋭いパラボラアンテナやアレーアンテナ等、同時に複数が受電する場合には、無

^{※1} 周波数資源開発シンポジウム 2019 資料 篠原, 2019

指向性又はセクタビーム等のブロードな指向性を持つ空中線が用いられ、受電側には、空中線素子で受信した高周波信号を、整流回路を介して電力として取り出すまでを一体構造としたレクテナと呼ばれる空中線が用いられる。

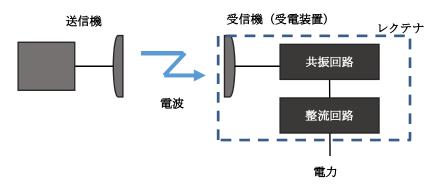


図1.2.1 空間伝送型ワイヤレス電力伝送システムの仕組み

1.3 空間伝送型ワイヤレス電力伝送システムの制度化に向けた検討

空間伝送型 WPT システムは、既に実用化されているコイルを介した磁界結合型 WPT システムや電極を介した電界結合型 WPT システムが外部への電波の放射を極力抑えたシステムとなっているのと異なり、空中線を用いて空間へ意図的に電波を発射することで電力を伝送するという性格を有している。このため、2018 年(平成30年)8月に公表された「電波有効利用成長戦略懇談会」の報告書において、「空間伝送型ワイヤレス電力伝送システム」の実用化に係る制度整備に当たっては、周波数の割当てや無線従事者の配置、受信設備への規律等が必要になると考えられることから、基本的には、無線設備として規律していくことが適当と考えられるとの提言がなされた。

○ 制度整備に当たっての考慮すべき課題等

• 周波数割当て

- ✓ 無線局(無線設備及び無線設備の操作を行う者の総体)には、電波有効利用に配意しつつ、使用目的に沿った個別の周波数が割り当てられる。免許審査では、他の無線局との干渉検討を実施する。
- ✓ 高周波利用設備^{※2}は、電波を意図的に発射するものではないため、個別の周波数は割り 当てられない。許可審査でも、他の無線局との干渉検討は実施しない。

• 操作者

- ✓ 無線局には原則、無線設備の操作を行う無線従事者の配置が必要。
- ✓ 高周波利用設備は、操作者に関する規定はない。

有効期間

- ✔ 無線局免許の有効期間は、5年。
- ✔ 高周波利用設備には、許可の有効期間はない。

• 受信設備に係る規律

- ✓ 無線設備には、受信設備の規律がある。
- ✓ 高周波利用設備には、送信・受信の概念がないため、受信設備に係る規律はない。

^{※2 「}電線路に十キロヘルツ以上の高周波電流を通ずる電信、電話その他の通信設備(ケーブル搬送設備、平衡二線式裸線搬送設備その他総務省令で定める通信設備を除く。)」及び「無線設備及び前号の設備以外の設備であつて十キロヘルツ以上の高周波電流を利用するもののうち、総務省令で定めるもの」(電波法第百条第1項)。電子レンジやIH調理器等が該当する。

• 電波利用料等

- ✔ 無線局は、電波利用料や手数料を徴収。
- ✓ 高周波利用設備は、電波利用料や手数料徴収の対象ではない。

本提言を受け、平成30年12月12日に「空間伝送型ワイヤレス電力伝送システムの技術的条件」 について情報通信審議会へ諮問がなされ、これを受け、情報通信技術分科会 陸上無線通信委員会 に空間伝送型ワイヤレス電力伝送システム作業班を設置する運びとなった。

空間伝送型ワイヤレス電力伝送システムの技術的条件の検討に当たり、導入を希望する空間伝送型ワイヤレス電力伝送システムの条件(送受信距離、利用周波数、空中線電力等)について平成31年1月に一般に広く募集が行われた。表1.3.1に提案募集の結果を示す。

表 1.3.1 「空間伝送型ワイヤレス電力伝送システムの技術的条件」に関する提案募集の結果

提案提出者	提案された 実用化の時期等	提案されたユースケース (出力は空中線電力)
ブロードバンドワイヤレスフォーラム(BWF) ワイヤレス電力伝送WG(WPT-WG)	第1ステップ 2020年実用化	屋内利用 1W~32W • IoTゼンサーネットワーク、モバイル機器への給電
	第2ステップ 2022年頃実用化	屋内・屋外利用 5W~32W ・屋外を含むioTセンサーネットワーク、モバイル機器への給電
	第3ステップ以降	屋内・屋外利用・大電力 〜kWクラス ・ スマートモビリティ、ロボット・ドローンへの給電・充電 ・ 災害時の電力供給等
パナソニック株式会社、オムロン株式会社、 株式会社東芝、電気興業株式会社、 新潟大学、信州大学、岩手大学、 千葉大学	事業化時期の目標 2024〜2025年 制度化検討 2022〜23年	広範囲のセンサへの小電力供給 0.25W~5W ・ 工場内の生産及び品質管理 ・ エイジフリー事業における監視 センサ及びモバイル機器への中電力給電 5W~32W ・ 工場におけるセンサやロボットへの給電 ・ インフラ点検 ・ モバイル機器への給電
東京電力ホールディングス株式会社、 三菱電機株式会社、京都大学	想定する実用化時期 2030年代	屋外でのマイクロ波によるドローン等への給電 1kW ・ インフラ点検 物流 農業や非常災害時対応等への活用

作業班では、提案募集の結果等を踏まえ、無線設備との共用、生体への安全性等、空間伝送型 WPT システムの技術的条件について検討を行った。

1.4 国際標準化等の動向

1.4.1 空間伝送型ワイヤレス電力伝送システムに関する国際制度化・標準化動向

(1) ITU-R 及び WRC における国際協調議論の状況

表 1.4.1 に ITU-R における空間伝送型 WPT システムに関する国際制度化・標準化動向を示す。

WPT システムに関する国際協調議論は古くから行われており、元々は 1978 年の CCIR (国際無線通信諮問委員会)総会における空間伝送型の WPT システムに対する課題提示とレポート策定が発端になっている。2013 年の ITU-R SG1 会合において、WPT システムを NON-BEAM WPT (磁界結合型、電界結合型等近傍界領域における WPT システム)と BEAM WPT (電磁波放射による空間伝送型電力送信にて電波を意図的に放射させるもの)に分けて議論を行うことになった。

BEAM WPT に関しては、2016年6月に、これまで作業文書(Working Document)として維持してきたレポート案をアプリケーションに特化させたレポートとして再構成することで、レポート ITU-R SM. 2392-0 として発行された**3

³ ITU-R: Report ITU-R SM. 2392-0, "Applications of wireless power transmission via radio

2019年6月時点では、レポートITU-R SM. 2392-0の中で提示した最初の実用化ターゲットとなるセンサやモバイル機器への応用に特化した共用化検討を新レポート ITU-R SM. [WPT. BEAM. IMPACT]として策定中である。この新レポートでは、日本が主導するセンサネットワーク(工場でのセンサへの給電、車両内への給電、介護ホーム内等での管理用センサへの給電等)、モバイル機器及びウェアラブル機器への給電をユースケースとして明確化し、共用検討の方法や結果を作成していくことになる。

並行して、レポート ITU-R SM. 2392-0 の改訂作業及び米国提案の新勧告 ITU-R SM. [WPT. BEAM. FRQ] による BEAM WPT の利用周波数の ITU-R 勧告化に向けた議論も開始された。この作業文書では、表 1.4.2 に示すような周波数帯が現状ではリストアップされている。新レポート ITU-R SM. [WPT. BEAM. IMPACT] の完成、レポート ITU-R SM. 2392-0 の改訂完了、新勧告 ITU-R SM. [WPT. BEAM. FRQ] の成立はすべて 2021 年が目標である。

無線通信規則 (RR: Radio Regulation) に WPT システム機器を新たなカテゴリに盛り込むべきという議論に関して、EV 用に利用される NON-BEAM WPT については WRC-19 での Urgent Study^{**4}という位置付けでこれまで検討されてきたが、WRC-19 への検討結果の報告になる CPM テキストでは RR 改訂は必要なしという結論になっている。しかし、電波を意図的に放射する BEAM WPT については RR にて明確に規定すべきという意見があることから、今後の ITU-R での BEAM WPT の検討推移を見て、WRC での RR 改訂の議題提案を行うかどうかという議論が行われると予想され、WRC-23 又は WRC-27 で議題提案される可能性がある。

(2) AWG における国際協調議論の状況

ITU 下部のアジア太平洋地区組織に当たる APT (Asia Pacific Telecommunity) の Wireless Group 会合 (AWG 会合) においても、BEAM WPT の議論が開始され、APT 各国の開発状況、制度 化及び標準化状況をまとめた新レポートを作成中である。

このレポートは、そのドラフトを ITU-R へ入力することも想定され、ITU-R で作成中のレポートとの整合性等が今後検討されるものと思われる。

表 1.4.1 ITU-R における空間伝送型ワイヤレス電力伝送システムに関する動向

BEAM.WPTの研究の元になったQuestion 20/2が承認 ・Report 679 "Characteristics and effects of radio techniques for the transmission of energy from space"が承認され、発行(1982年と1986年に改訂版を発行) 1997年 ITU-R会合 ・現在のWPT研究の元になっているQuestion 210-3/1の元になったQuestion 210/1が最初に承認 2013年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2015年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2016年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2016年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2016年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2016年1月 ITU-R WP1AWP1B会合 2017年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2017年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2017年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2017年6月 ITU-R WP1AWP1B会合 2017年6月 ITU-R WP1AWP1B会合 *WIDE-BEAM/方式(広角ビーム、マルチビームによるセンサーネットワーク、モバイル機器応用)に関する共用検討結果を含めた新Report ITU-R SM.[WPT.WIDE-BEAM.IMPACT]の作業開始 ・WIDE-BEAM/方式に関する新Report ITU-R SM.[WPT.WIDE-BEAM.IMPACT]の作業維続 -WIDE-BEAM/方式に関する新Report ITU-R SM.[WPT.WIDE-BEAM.IMPACT]の作業文書を更
from space"が承認され、発行(1982年と1986年に改訂版を発行) 1997年 ITU-R会合 ・現在のWPT研究の元になっているQuestion 210-3/1の元になったQuestion 210/1が最初に承認 2013年6月
1997年 ITU-R会合 2013年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2015年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2016年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2016年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2016年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2016年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2017年6月 ITU-R WP1AWP1B会合合む) 2017年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2017年7月 ITU-R WP1AWP1B会合含む) 2017年11月 ITU-R WP1AWP1B会合
2013年6月
TIU-R SG1会合 (WP1AWP1B会合含む)
ITU-R SG1会合 (WP1AWP1B会合含む)
TU-R SG1会合 (WP1A/WP1B会合含む)
(WP1AWP1B会合含む) -他システムとの共用検討に着目した新Report ITU-R SM.[WPT.BEAM.IMPACT]の作業開始 1TU-R WP1AWP1B会合 - 共用検討を含めたBEAM.WPT方式のレポート作成のためのワークプラン改訂 1TU-R SG1会合 (WP1AWP1B会合含む) - WIDE-BEAM方式(広角ビーム、マルチビームによるセンサーネットワーク、モバイル機器応用)に関する共用検討結果を含めた新Report ITU-R SM.[WPT.WIDE-BEAM.IMPACT]の作業開始 - WIDE-BEAM方式に関する新Report ITU-R SM.[WPT.WIDE-BEAM.IMPACT]の作成作業継続 1TU-R WP1AWP1B会合
2016年11月
TU-R WP1A/WP1B会合 1TU-R SG1会合 (WP1A/WP1B会合含む) 2017年1月 ITU-R WP1A/WP1B会合
17U-R WP1AWP1B会合 2017年6月 ITU-R SG1会合 (WP1AWP1B会合含む) 2017年11月 ITU-R WP1AWP1B会合 *WIDE-BEAM方式に関する新Report ITU-R SM.[WPT.WIDE-BEAM.IMPACT]の作業開始
TU-R SG1会合
TIU-R SG1会合 (WP1AWP1B会合含む)
2017年11月 ITU-R WP1A/WP1B会合 ・WIDE-BEAM方式に関する新Report ITU-R SM.[WPT.WIDE-BEAM.IMPACT]の作成作業継続
2019年6日 -WIDE DEAM大学に関する新Papart ITLI D SM IMDI MIDE DEAM IMDA O TIO 作業立事を更
vviDE-DEAWI/J 式に関する析でPoil II U-れるWi_[vv P I . WIDE-DEAWI.IIVPAC I]の作業又音を史
ITU-R WP1AWP1B会合 新。
*新Report ITU-R SM.[WPT.WIDE-BEAM.IMPACT]が新Report ITU-R SM.[WPT.BEAM.IMPACT] に変更され作業文書を更新 *Report ITU-R SM.2392-0の改訂作業が開始され、作業文書を作成 *米国提案によりBEAM WPTの利用周波数に関する新勧告ITU-R SM.[WPT.BEAM.FRQ]の作業 開始
・新Report ITU-R SM.[WPT.BEAM.IMPACT]は2021年完成が目標
- Report ITL-R SM 2392-1の改訂は2021年完成が日標
今後の目標および展開予想 ・新勧告ITU-R SM.[WPT.BEAM.FRQ]は2021年成立が目標
・無線通信規則(RR)におけるBEAMWPTを含むWPT機器の位置付けの検討

表 1.4.2 新勧告 ITU-R SM. [WPT. BEAM. FRQ] 作業文書にリスト化されている 空間伝送型 WPT システムの利用周波数候補

Frequency range	[Region / Sub-region]	Suitable Beam WPT technologies and applications	
[TBD] [902-928 MHz]	[TBD]		
[TBD] [2 400-2 500 MHz]	[TBD]	Wireless Charging of Mobile/Portable Devices	
[TBD] [5 725-5 875 MHz]	[TBD]	Devices	
[TBD] [915-930 MHz]	[TBD]	Wineless Democrat Courses Networks	
[TBD] [5 470-5 770 MHz]	[TBD]	Wireless Powered Sensor Networks	

(3) CISPR における動向

CISPR B小委員会においては、空間伝送型 WPT システムを WPT-AAD (AT A Distance) と呼び、利用周波数や放射妨害波許容値等についての検討を開始した。しかし、2019 年 8 月時点では作業文書等はない状況であり、ISM 機器と見なすかという議論がある。また、WPT-AAD としての伝送距離は 10m までとする方向で検討が進められている。

(4) IEC TC100 における標準化動向

韓国提案により、主にモバイル機器向けの空間伝送型ワイヤレス電力伝送を目的とした IEC 62980「Parasitic communication protocol for radio-frequency wireless power transmission」の製品規格化及び IEC TR (技術報告) 63239「Radio Frequency (RF) Beam Wireless Power Transfer/Transmission (WPT) for Mobile devices」の技術報告についての策定が進められている。しかし、実用化の前提となる制度化、電波ばく露への対応方法等の検討が不十分であり、実用化レベルにはまだ至っていない。

(5) IEC TC106 における電波ばく露評価、測定法の検討状況

IEC TC106 では、無線システムにおける人体への電波ばく露に対する評価法や測定法の標準化に取り組んでおり、近年、WPT システムに対する検討を進めている。

NON-BEAM WPT に関しては、2016 年 2 月に WG9 を設立し、NON-BEAM WPT システムのばく露評価法について検討を行い、その結果をまとめ、技術報告書 TR 62905 として 2018 年 2 月に発行した。これを受け、NON-BEAM WPT システムからのばく露評価の基本規格を策定する PT63184 が発足し、現在、規格化に向けた検討を行っている。

一方、BEAM WPT (TC106 では「Radiative WPT」と表現している)に関する電波ばく露の評価・測定法に関する TR 化の作業も並行して進められ、BEAM WPT に関しても、TR 発行後に、規格化の検討が行われる予定である。

(6) 国内の標準化検討状況

国内のWPTシステム標準化については、新たな無線通信技術を用いたシステムやサービスの早期実用化及び国際展開を図る組織として、ブロードバンドワイヤレスフォーラム(BWF)にて、磁界結合型・電界結合型のWPTシステムにおける課題解決に向けた活動が行われ、2011年には、WPTシステムの業界基準としてガイドラインを策定している。

標準規格としては一般社団法人電波産業会 (ARIB) にて標準規格等が策定され、電界結合型ワイヤレス電力伝送システム及び磁界結合ワイヤレス電力伝送システムでは、標準規格として ARIB STD-T113 として平成 27 年に制定されている。

1.4.2 空間伝送型ワイヤレス電力伝送システムの製品化、研究開発に関する動向※5※6

(1) 米国の製品化動向

米国では 2000 年代に入り、空間伝送型ワイヤレス電力伝送システムの商用化を目指したベンチャー企業が何社か立ち上がり、2010 年代後半には FCC (Federal Communications Commission; 連邦通信委員会)に直接に働きかけ商品の個別認可を得るようになってきた。

2017 年末には、このうち Energous と Powercast の 2 社の 900MHz 帯を用いた空間伝送型 WPT システムの製品、2019 年には、0ssia の 2.4GHz 帯の製品に対して FCC が承認を与えている。現在、5.7GHz 帯を加え 3 つの周波数帯で、主に開発を主導している企業を表 1.4.3 に示す。

^{※5} ワイヤレス電力伝送システムの利用に関する周波数共用条件の調査検討会 報告書 平成 31 年 3 月 総務省関東総合通信局

^{※6} ITU ジャーナル February 2020 Vol. 50 No. 2

表 1.4.3 米国における空間伝送型 WPT システムの製品開発企業

企業名	製品名	周波数带**	伝送距離※
Ossia	Cota®	2.4GHz 帯	~10m
		5.7GHz 帯	
Energous	WattUp®	2. 4GHz 帯	∼4.5m
		5.7GHz 帯	
		913MHz 帯	
Powercast	PowerCaster*	915MHz 帯	~25m
	PowerSpot [®]		

※実用化されていない技術も含む

3社ともプロトタイプ開発の段階から、チップセットメーカと提携して、量産化を見据えた送受信モジュールの開発を進めているほか、具体的なアプリケーションを想定して、国内外の機器メーカやサービス事業者とも連携や開発ツール等の提供を拡大している。

規制当局の承認が得られ次第、量産化が可能な体制を整えつつ、いち早く主要なアプリケーションを囲いこむことでデファクトスタンダート化を狙う戦略と考えられる。

その一社である Energous は電子装置向けの空間伝送型 WPT システムである WattUp 技術を開発する NASDAQ 上場会社で、2017 年 12 月に世界初となる空間伝送型 WPT システムの 900MHz 帯での FCC Part 18 の認可を得ている。Energous は WPT システムの世界標準規格を目指す AirFuel Alliance にも参加しており、AirFuel 規格の一部に空間伝送型ワイヤレス電力伝送システムを「AirFuel RF」として設定し、世界での普及を目指して、2019 年 12 月には FCC 認可の WattUp 技術を用いた Smart Glasses Developer Kit のリリースも始めている。

また、空間伝送型 WPT システムを開発するベンチャー企業である 0ssia も、2019 年 6 月及 び 10 月の 2 度にわたり、2.45GHz 帯で動作する Cota と名付けられたシステムについて、FCC Part 15 と Part 18 の認可を得ている。Cota システムは、室内でのマルチパス環境下で用いることを想定したシステムであり、受電装置から発射されたビーコン波のマルチパスを利用し、人体及び障害物を避けるマルチビームを形成し、安全かつ高効率、高速かつ安価なシステムでマイクロ波送信することを特徴としている。Cota は一種のフェーズドアレーアンテナシステムである。Ossia は携帯電話へマイクロ波送信により電力伝送するユースケースについて米国 CES (Consumer Electronics Show) 等でデモンストレーションを行っており、10m程度の距離で携帯電話の無線充電できるとしている。彼らは Cota 技術をベースに、現在 Valmart と共同で、電池レス、コードレスで動作する集中管理型の商品タグの開発を行っている。また、世界最大の電子レンジメーカーである中国 Valmart Valmar

表 1.4.4 米国での空間伝送型 WPT システムでの実用化品

企業名/方式 Ossia		Energous	Powercast		
概要			RFID PRICE TAG ANTER THE THEORY CANADA THE TEST OF 1 11558 ENGINE		
方式	マルチバス方式	Near / Middle Field	Oneアンテナ方式		
周波数帯	2.4 GHz帯 / 5.8 GHz帯 913 MHz / 2.4 GHz帯 / 5.8 GHz帯 915 MHz				
制度化	ISM機器として一部認可(FCC)	ISM機器として一部認可(FCC)	ISM機器として認可(FCC)		
販売	一部販売開始	一部販売開始	販売中		
人体防護	方護 近づいて良い距離が示されているのみ。機種によっては異物検知時に放射を抑制				
他通信システムと の共存	FCCは米国独自の解釈として、WPTをISM機器としている。干渉については双方システムで許容しなければならない				

(2) 欧州の研究開発動向

欧州委員会の研究枠組み Horizon2020 の助成を受けて 2018 年から開始されたプロジェクト EnABLES (European Infrastructure Powering the Internet of Things) の1テーマとして、Stichting IMEC Nederland (IMEC - NL) において、空間伝送型ワイヤレス電力伝送システムの研究が進められている。技術開発のターゲットは、10m 程度の距離のセンサノードへの電力伝送であり、ホームセンシング/オートメーションを主なアプリケーションとして想定している。具体的な技術開発として、868MHz/915MHz 及び 2.45GHz 帯の送受信空中線設計、RF-DC 変換機構の最適化等を予定している。

(3) 韓国の研究開発、製品化動向

韓国研究財団 (NRF) による Engineering Research Center (ERC)の助成 (2014-2021)を受け、成均館大学 (SKKU) に Energy Harvesting Communication Research Center (EHCRC)を設置し研究活動を行っている。助成額は総額約 1,000 万ドルであり、SKKU のほか韓国科学技術院 (KAIST) やソウル大学も参画している。無線通信と無線電力伝送を融合したWireless-Powered Communicationの開発を目指し、EHCRC内にテストベッド施設(Distributed wireless power transfer testbed)を備えている。また、企業パートナーとして KT、SK テレコム、LG 電子、サムスン電子等も参加しており、産学の連携体制で要素技術開発、商用システムへの適用検証、標準化活動を進める計画としている。

(4) 中国の研究開発動向※6

中国では空間伝送型 WPT システムを推進する目立った企業はない。しかし、西安、重慶、四川、上海等の複数の大学や研究機関にて重点的にマイクロ波による電力伝送システムの研究開発を行っている。

また、携帯電話基地局からの電波をハーベストし、ドローンに無線充電するシステムをファーウェイ社が計画中であると、2017年の展示会 MWC (Mobile World Congress) で発表され、その後の研究開発が期待されている。また、中国では屋外で複数の空間伝送型ワイヤレス電力伝送システムのデモンストレーションや実証実験が行われており、法制化の仕組みも他国とは異なるであろうことから、今後最も注目すべき国の一つである。

1.4.3 本システムの導入による国内市場規模予測

情報通信審議会情報通信技術分科会陸上無線通信委員会(第 47 回)の資料 47-3-2「空間伝送型ワイヤレス電力伝送システムの技術的条件」に関する提案(ブロードバンドワイヤレスフォーラム)における 2025 年の国内での空間伝送型 WPT システムの市場規模予測は、表 1. 4. 5 に示すように合計 5,520 億円である。

表 1.4.5 2025 年の国内での空間伝送型 WPT システムの市場規模予測 (ブロードバンドワイヤレスフォーラムにおいて試算)

用途	市場規模予測金額 (2025 年、国内)
①FA/IoT センサ	3,750 億円
②介護・見守り用途センサ	500 億円
③モバイル端末(スマートフォン、タブレット等)	1,270 億円
合計	5,520億円

この予測値は、FA/IoT センサ、スマートフォン、タブレットの数量、市場規模予測から下記のように推定した値である。

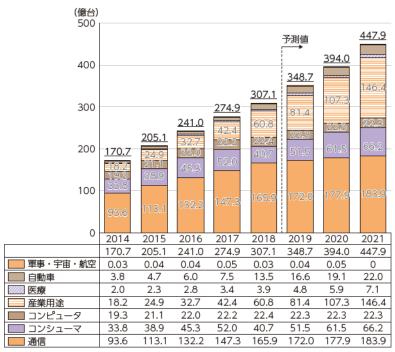
①FA/IoT センサ

2025年の IoT センサシステムは、250 万システム、12.5 兆円規模(矢野経済研究所資料より推定)。 うち、空間伝送型 WPT システム搭載率 30%、システム中の空間伝送型 WPT システムコスト比率 10%として算出。

②介護・見守り用途センサ

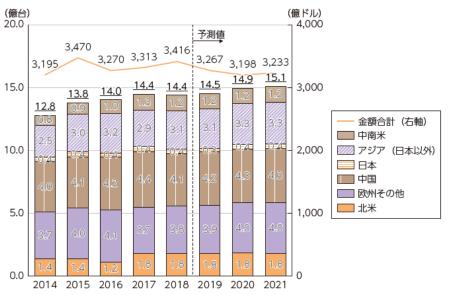
生体センシング、位置把握・管理、見守り等のセンサに空間伝送型 WPT システム機能を付加し、市場規模 5,000 億円の 10%に搭載されたと想定し算出。

③モバイル端末(スマートフォン、タブレット等)


スマートフォン市場は、34 百万システム、搭載率 47%として 550 億円。タブレット端末 24 百万システム搭載率 30%として 230 億円。(富士経済推定、送信機器を 3,200 円~3,500 円と想定)。さらに、電力の送信インフラ市場として 100 万システム×5 万円=500 億円を 想定し算出。

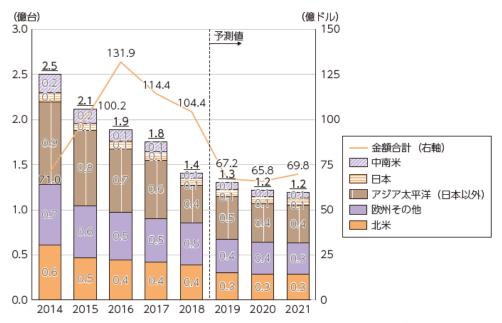
令和元年版情報通信白書によれば、図 1.4.1~図 1.4.3 に示すように 2018 年の世界市場の実績としては、産業用途の IoT 機器が 60.8 億台、ヘルスケア、医療用途の IoT デバイスが 3.9 億台、スマートフォンが 14.4 億台、タブレットが 1.4 億台であり、IoT 関連機器は今後も大きな成長が予測されている。そのため、国内市場だけでなく、全世界への市場に日本発の空間伝送型 WPT システムを普及させていくことが期待される。

「産業用途」 : オートメーション (IA/BA)、照明、エネルギー関連、セキュリティ、検査・


計測機器等オートメーション以外の工業・産業用途の機器。

「医療」: 画像診断装置ほか医療向け機器、コンシューマーヘルスケア機器

(出典) IHS Technology


図 1.4.1 世界の IoT デバイス数の推移及び予測**7

(出典) IHS Technology

図 1.4.2 世界のスマートフォン市場規模・出荷台数の推移及び予測**7

^{※7} 令和元年版情報通信白書,総務省,2019

(出典) IHS Technology

図 1.4.3 世界のタブレット市場規模・出荷台数の推移及び予測※7

空間伝送型ワイヤレス電力伝送システム作業班では提案募集によって、屋内へのシステム導入となる第1ステップ、屋外へのシステム導入を見込んだ第2ステップ及び将来的な大容量伝送を見込んだ第3ステップの段階を踏んだ普及案が示された。空間での電力伝送という新たなシステムと他の無線システムとの共用検討等を進めていく途上において、共用の難易度が異なる、3つのステップにおける共用の可能性を、一度に検討することは難しく、効率的ではないことから、早期の確実な導入を図る上でも、屋内利用など制限事項があるものの共用が比較的容易な、第1ステップに焦点を当てた検討と導入が妥当との検討結果になった。本項では、制限事項を設けた屋内でのWPTシステムとしての第1ステップによる市場の普及について検討を実施した。

920MHz 帯空間伝送型 WPT システムでは、実証試験にて行った空中線電力の半分以下の電力である RFID システムと同等の構成による使用に制限した。

2.4GHz 帯空間伝送型 WPT システムでは、1階又は地下階での使用のみとして2階以上の高層階では使用しないものとし、工場、倉庫、配送センター等のWPT管理環境下(定義は2.3(4)利用環境に記載)とした無人時の送信のみとし、キャリアセンスによる停波を設けた使用に制限した。

5.7GHz 帯空間伝送型 WPT システムでは、電力消費の大きい大型センサ、大規模工場での数十mの伝送距離となる各種センサ、監視カメラ等への送信用途を見込んでいたが、2.4GHz 帯と同様、キャリアセンスによる停波を設けたこと及び屋内の無人工場や無人倉庫等 WPT 管理環境下でのみとした使用に制限した。

このような他の無線システムとの共用をする上で第1ステップに制限事項を設けた使用環境としたことで、システム導入時の市場規模は表1.4.5での当初予想より小さくなると予想される。そのため、限定された使用環境におけるユースケース及び市場規模について見直し、また、空間伝送型 WPT システムの有用性と、社会的価値についても用途ごとに再検討した。

第1ステップではWPT屋内設置環境のうち、「WPT管理環境」での使用とし、920MHz帯のみ「WPT

管理環境」に加え、「WPT 一般環境」においても使用する。

「WPT 管理環境」で想定されるユースケース

- 工場、倉庫、配送センター等の無人エリアでの、センサ、カメラ等への送信であり、 920MHz 帯、2.4GHz 帯、5.7GHz 帯の3つの周波数帯が用いられる。
- 工場、倉庫、配送センター等の有人エリアでの、センサ、表示器等への送信であり、 920MHz 帯のみが用いられる。

「WPT 一般環境」で想定されるユースケース

- 物流現場での品質管理用センサ等への送信であり、920MHz 帯のみが用いられる。
- 老人介護施設等での見守りセンサ等への送信であり、920MHz 帯のみが用いられる。

上記のユースケースに該当する施設は下記を想定

- ①屋内の無人の工場ライン (組み立て型工場)
- ②プラント (加工型工場)
- ③自動倉庫
- ④自動仕分けライン(配送センター)
- ⑤介護施設、老人施設等 (920MHz 帯のみ)

施設における使用数は、用途面積を用いて設定し、空間伝送型 WPT システム市場の予測試算を実施した。

	WPT 管理環境	WPT 一般環境	
	無人	無人	有人
ユースケース	920MHz 帯 2. 4GHz 帯 5. 7GHz 帯	920MHz 帯	920MHz 帯
①屋内の無人の工場ライン (組み立て型工場)	用途1	_	_
②プラント (加工型工場)	用途2	-	_
③自動倉庫	用途3	_	_
④ (自動) 仕分けライン (配送センター)	用途3	用途4	用途4
⑤介護施設、老人施設等	-	_	用途 5

表 1.4.6 第1ステップで予想される使用用途

用途 1

組み立て型の無人工場ラインにおいて、ロボット及び周辺機器に設置されたセンサ群へ920MHz 帯、2.4GHz 帯及び5.7GHz 帯の空間伝送型 WPT システムを使用する。空間伝送型 WPT システムを用いることで、センサ群について、配線工事不要、可動部の配線の断線がない、センサ付きアタッチメント等の組込み器具の交換が自動で可能といった生産性向上、信頼性向上のメリットが得られる。このようにセンサ群に用いられる空間伝送型 WPT システムの台数を産業

用ロボットの国内出荷台数※8から予測し試算した。

用途 2

プラント等の加工型工場の無人エリアにおける圧力センサ、温度センサ、振動センサ、電流センサ等の低消費電力のインテリジェントセンサへ 920MHz 帯、2.4GHz 帯、5.7GHz 帯の空間伝送型 WPT システムを使用する。空間伝送型 WPT システムを用いることで、配線工事不要、センサの取付け位置変更が容易といった生産性向上のメリットが得られる。このように用いられる空間伝送型 WPT システムの台数を、インテリジェントセンサの国内市場台数※9から試算した。

用途 3

倉庫、配送センターの無人エリアにおけるセンサ、電子棚札等へ920MHz 帯、2.4GHz 帯、5.7GHz 帯の空間伝送型 WPT システムを使用する。空間伝送型 WPT システムを用いることで、構造物に設置するセンサの配線工事が不要になるだけでなく、運搬されるパレットや荷物にもセンサの設置が可能となり、荷物の温湿度や振動等の異常検知等、保管・仕分け品質管理、履歴管理ができるといった生産性向上、品質向上のメリットが得られる。このように用いられる空間伝送型 WPT システムの台数を、自動倉庫の出荷統計*10の面積(パレット数を面積に換算)から試算した。

用途 4

RFID システムが使用されている配送センター等の物流現場での有人エリア、無人エリアで品質センサ等へ920MHz 帯空間伝送型 WPT システムを RFID システムの置き換えとして使用する。空間伝送型 WPT システムを用いることで、構造物に設置するセンサの配線工事が不要になるだけでなく、パレット、コンテナ及び荷物にもセンサの設置が可能となり、荷物の温湿度や振動等の異常検知等、保管・仕分け品質管理、履歴管理ができるといった生産性向上、品質向上のメリットが得られる。このように用いられる空間伝送型 WPT システムの台数を、パッシブ系電子タグシステムの普及予測台数(中・高出力)※11の一部が置き換えられるとして試算した。

用途 5

老人介護施設等で、見守りセンサへ920MHz 帯空間伝送型 WPT システムを使用する。介護分野においては有効求人倍率3.5倍(2017年)と人材が不足しており、老齢化の進展に伴い必要な人材は2016年度の190万人から2025年度245万人と増加が見込まれている。この需要増に対して、離職防止や生産性向上が求められ、介護ロボットやICT活用推進が期待されている。空間伝送型WPTシステムを用いた、配線不要、電池交換不要の見守りセンサにより、高齢者等施設利用者の状態を把握することで、状態監視による介護サービスの向上、介護担当者の負担軽減等のメリットが得られる。このように用いられる空間伝送型WPTシステムの台数を、有料老人ホームの定員※12から試算した。

用途 $1\sim5$ に示したように、共用する上での制限事項を見込んだ屋内へのシステム導入となる第1ステップにおける空間伝送型 WPT システムの有用性を検証した。さらに、この結果を踏

^{※8 (}一社) 日本ロボット工業会 年間統計推移表 https://www.jara.jp/data/dl/yeartable.pdf ※9 NEXT FACTORY 関連市場の実態と将来展望 2019 (富士経済, 2019)

^{※10 「2018} 年度 物流システム機器生産出荷統計」公益社団法人日本ロジスティクスシステム協会 http://www.logistics.or.jp/data/survey/manufacture.html

^{※11 920}MHz 帯小電力無線システムの高度化に係る技術的条件,総務省,2019

^{※12} 平成 29 年社会福祉施設等調査の概況, 厚生労働省 2017,

https://www.mhlw.go.jp/toukei/saikin/hw/fukushi/17/index.html

[「]福祉・介護人材の確保に向けた 取組について」平成30年9月6日厚生労働省 社会・援護局 福祉基盤課 資料 https://www.mhlw.go.jp/content/12201000/000363270.pdf

まえた市場規模の試算を行った。その試算結果を図 1.4.4 に示す。第1ステップでの空間伝送型 WPT システムの市場規模は 2025 年に約 700 億円の市場が見込まれる。

図 1.4.4 第1ステップでの空間伝送型 WPT システムの国内市場予測 (ブロードバンドワイヤレスフォーラムにおいて試算)

また、空間伝送型 WPT システムの国外での動向を考慮すると、今後、我が国が本分野においてリードするためには、空間伝送型 WPT システムのいち早い市場の形成が期待される。

第2章 電波利用に対する要求条件

2.1 用語の解説

本章で使用している用語の解説を表 2.1.1 に示す。

表 2.1.1 用語集

No.	用語	用語解説
1	動作必要電力	センサ、表示器等アプリケーションによる受電方法(アプリ DUT 利得 と送信 DUT 損失)を考慮した受電装置が動作に必要な電力を指す。な お、空間を伝送する電力とは異なる。
2	アプリ DUT 利得	動作必要電力として必要とするエネルギーを連続して受信する必要はなく、送信される等価等方輻射電力と伝送距離を踏まえて、アプリケーションにより受信電力とその受信時間の積によるエネルギー量を満足すれば良い。一般的には、必要とするエネルギー量を満足するための受信時間に対する動作必要電力を消費する時間の比率は、数%程度である。この比率を10%とした場合(充電時間90msに対して、電力消費時間10ms)センサ等が必要とする電力は、等価的に受信電力の10倍となり、これを「アプリDUT利得」として定義。
3	送信 DUT 損失	受電側アプリケーション内では、受信した電波を電源として、整流するための整流効率、整流した電源を負荷に合わせた電圧へ変換する電圧変換効率等により、損失が発生する。また、整流効率は、受電する電界強度によっても変動し、その効率は10%~70%程度と広いものとなる。併せて、2.4GHz 帯及び5.7GHz 帯では、ビームフォーミングによる指向方向を変えて複数の受電装置へ逐次送信するため、送信空中線からは常に受電装置へ向けて送信していない状況になる。このため、全送信時間に対して、一つのアプリケーションへ向けた送信時間は少ない時間となる。送信空中線は一つの受電装置へ向けて常には送信しておらず、これは全送信時間に対して、一つのアプリケーションへの送信する時間率となり、この時間比はアプリケーション側からの要求指示により変わるものとなり、アプリケーション側からの充電要求指示により変わるものとなる。これらは、使用するアプリケーション、ユースケース、制御方式、動作必要電力、受信電力及びこれらの組合せ等にて異なる。このため、効率による損失、送信時間の比率等を総合して「送信DUT損失」として定義した。
4	等価受信電力	送信 EIRP(等価等方放射電力)、自由空間損失、受信空中線利得から求まる受信電力に「アプリ DUT 利得」及び「送信 DUT 損失」を適用した電力として定義。
5	空間伝送電力	送電空中線の電力と利得(指向性)により決まる等価等方輻射電力 (EIRP)と伝送距離、受電空中線の利得(指向性)により決まる電力。
6	受電効率	総時間に対する、総時間から他システムとの共用、電波防護指針遵守のため停波する時間を引いた時間(正味の送信時間)の比。

7	WPT 屋内設置環境	空間伝送型ワイヤレス電力伝送システムの設置環境として、窓を含め た四方の壁損失が参考資料9【壁等の通過時の損失】において検討し た壁損失以上を担保した屋内、閉空間として定義。
8	WPT 管理環境	WPT 屋内設置環境の区分であり、「WPT 管理環境」として整理した下記 4項目を満たす使用環境。 ● 屋内、閉空間であること。 ● 電波防護指針における管理環境の指針値を上記、屋内、閉空間内で満足するものとする。(電波防護指針における管理環境の指針値を超える範囲に人が立ち入った際には送電を停止することとする。) ● 屋内の管理環境に設置される空間伝送型ワイヤレス電力伝送システムの運用が、他の無線システム等に与える影響を回避・軽減するため、本システムの設置者、運用者、免許人等が、一元的に他の無線システムの利用、端末設置状況を管理できること。 ● 屋内の管理環境に隣接する空間(隣接室内、上下階等)においても他の無線システムとの共用条件を満たすか、屋内の管理環境と同一の管理者により一元的に管理できること。
9	WPT 一般環境	WPT 屋内設置環境の区分の一つであり、WPT 管理環境の定義を満たさない使用環境を指す。電波防護指針における一般環境の指針値を満足するものとする。
10	管理環境	電波防護指針における管理環境を指す。
11	一般環境	電波防護指針における一般環境を指す。
12	伝送距離	送信装置と受電装置間の距離を指す。

2.2 空間伝送型ワイヤレス電力伝送システムの利用ニーズ

空間伝送型ワイヤレス電力伝送システムにおける電波利用に対する利用ニーズについて、提 案募集及び作業班でのヒアリング等により、検討を行った。

2.3 要求条件

要求条件の検討に当たっては、空間伝送型ワイヤレス電力伝送システムの実用化に当たり、その技術的条件が本質的に満たすべき条件として「既存の無線設備に対する干渉を規定内に制限するよう付された条件を利用者が遵守すること」、「無線設備間での共用だけではなく人体や医療機器等への影響についても規定内に収まるよう制限すること」及び「本報告の想定外の問題が生じた場合には利用者は速やかに報告しその対策に貢献できること」に留意することが重要である。

前章に記載した背景やニーズをさらに具体的に検討した結果、低コスト、上述の人体や医療機器の安全性保証の無線設備実現、国際標準化の観点も踏まえ、空間伝送型ワイヤレス電力伝送システムに活用可能な3つの周波数に検討対象を絞り、上記のことに留意した上で検討を進めることとした。周波数帯及び定性的な利用方法の特徴を表2.3.1に示す。

表 2.3.1 利用希望周波数における特徴と利用方法

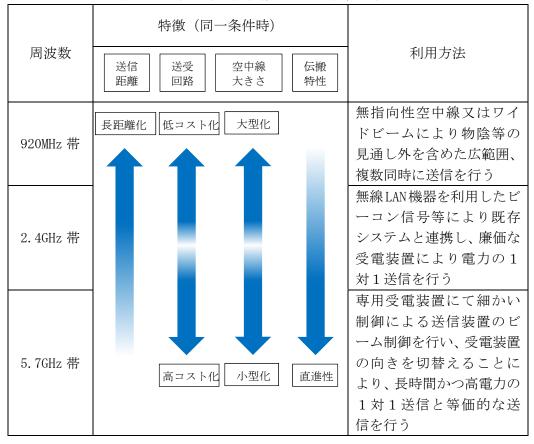


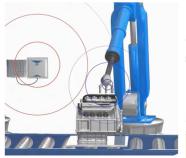
表 2.3.1 の周波数及び定性的な利用方法の特徴を踏まえた空間伝送型ワイヤレス電力伝送システムに係る具体的なユースケース及び要求条件を表 2.3.2 に示す。

表 2.3.2 空間伝送型ワイヤレス電力伝送システムに対する要求条件

使用環境	920MHz	: 屋内工場、介護施設等	
	2.4GHz	: 屋内工場、プラント、倉庫等	
	5.7GHz	: 屋内工場、プラント、倉庫等	
	920MHz	: センサネットワークの電源提供	
利用目的	2.4GHz	: センサ、表示器等の電源提供	
	5.7GHz	: センサ、表示器等の電源提供	
必需壮哭厶粉	920MHz	:5~10台(同時)	
受電装置台数	2.4GHz	:1~数10台(逐次)	
(送信装置1台あたり)	5.7GHz	:1~数10台(逐次)	
動作必要電力	920MHz	:数μW ~ 数百μW	
	2.4GHz	:約 50mW ~ 約 2W	
	5.7GHz	:数mW ∼ 数 100mW	
	920MHz	: ~5m 程度	
伝送距離	2.4GHz	: ~10m 程度	
	5.7GHz	: ~10m 程度	
設置者	他の無線認	设備の利用も可能	
人がいるときの送信	920MHz	: 実施可能	
		(電波防護指針を超えない範囲にて実施)	
	2.4GHz	: 実施しない	
	5.7GHz	: 実施しない	
送信環境への送信認知者 ^{※1} 以外の立入	920MHz	: 可能※2	
	2.4GHz	: 不可能	
	5.7GHz	: 不可能	
l .			

- ※1「送信環境への送信認知者」とは空間伝送型ワイヤレス電力伝送システムが送信を行っている環境であることを認知している者である。
- ※2 920MHz 帯についてはユースケースとして屋内工場、介護施設等を考えており、工場の従業員や介護施設の職員は送信認知者である。また、工場への従業員以外で立ち入る者や介護施設等で介護者や家族等の一般の訪問者等は送信認知者ではない。さらにこれらの送信認知者でないとされた者であっても送信認知者からの説明等を行われれば送信認知者として扱ってよいものとする。

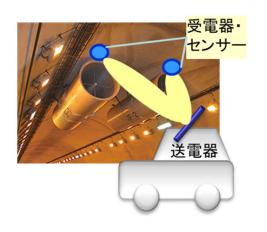
(1) 920MHz 帯


920MHz 帯の電波は伝搬損失が小さく、構造物の影等へも比較的回り込んで伝搬することから、 低電力ながら広範囲に設置されたセンサへの電力伝送が期待でき、工場や介護現場のセンサネットワークへの電源として1対Nの多数同時送信が適している。

なお、RFIDシステムと同一チャネル及び同等の電気的仕様であることから、既に市場に出回っている RFIDシステムへの応用が期待される。さらに装着者の移動により送信装置から受電装置へ人体により遮蔽されやすいバイタルセンサや位置センサ、ロボットアーム等の可動によりセンサの空中線を一定方向に向けることが難しい装置等で受電空中線の指向方向が常時、送信装置へ向かない状態でも低い電力受信となるがセンサへの電力伝送が可能であり、弱い電力での常時受電による、2次電池へのいわゆる「ながら充電」により、電池交換や配線が不要となる利点は、市場からのニーズがある。また、RFIDシステムが使用するバックスキャッタ通信等

の既存受信機器を流用することが可能であり既存市場への展開が見込まれる。

(a)製品や動線管理 (工場品質)


(b) ロボットの可動部センサ (工場品質)

(c)健康管理・見守り (介護現場)

図 2.3.1 920MHz 帯での利用シーン

技術的な要求条件としては、既存 RFID システムと同等の等価等方輻射電力 (EIRP) 4W による伝送距離 5m 程度までをサービスエリア (受電可能範囲) として整理した。ヒアリングでは、屋外利用での見守りセンサや構造物の点検用センサ等、伝送距離・使用環境を拡大した図 2.3.2 に示す第2ステップでのユースケースが見込まれている。しかし、これを実現するために必要な人体回避技術、他の通信システムの検出・回避技術等が必要であり、現時点では開発途上であることから今回の要求条件からは見送った。

(a) トンネル内センサ

(b) 敷地内での見守センサ

図 2.3.2 920MHz 帯での第2ステップ利用シーン

(2) 2.4GHz 帯

2.4GHz 帯は、既存無線システムである無線 LAN システム等の信号を利用した位置推定や制御通信が可能であり、これらのシステムに空間伝送型ワイヤレス電力伝送システムを組み込むことが可能である。また、空間伝送型ワイヤレス電力伝送システムの送信装置を他の構内無線局、特定小電力無線及び ISM 機器等に連携・追加する利用形態が想定され、広範囲な市場形成と世界市場への展開が見込まれる。

2.4GHz 帯は 920MHz 帯と比較して、指向性を制御した1対1の送信指向性の制御が可能なことから高い電力を伝送できるシステムとして期待できる。また、無線 LAN システム等で世界的に広く使用されており、装置設計に当たり汎用部品が安価かつ容易に調達可能であることから、

新規メーカの市場参入が容易な環境が整っており、低コスト化と早い展開による市場規模の拡大が見込まれる。

本検討における 2.4GHz 帯空間伝送型ワイヤレス電力伝送システムは高い等価等方輻射電力となることから、電波防護指針値を超える範囲に人が立ち入った場合及びキャリアセンスにより無線 LAN システム等の他無線設備への干渉が想定される場合は、送信を行わないものとして要求条件を整理した。

そのため、本システムでの利用シーンとして図 2.3.3 に示す無人倉庫、無人の工場及び人がいる工場等では休止中や夜間の無人時での送信となることを想定している。しかし、使用環境の制約はあるものの、センサ機器への配線不要によるレイアウトの自由化、電池交換や充電の管理が不要となる利点からニーズがあり、市場からの期待は大きい。

図 2.3.3 2.4GHz 帯での利用シーン

当初のヒアリングによる提案ではスマートオフィス、スマートホームにおける各種センサ、店舗における電子棚札、スマートフォン・タブレット等のモバイル端末への送信として、図 2.3.4 に示す、送信されていることが利用者に認知されない WPT 一般環境でのユースケースも見込まれていた。

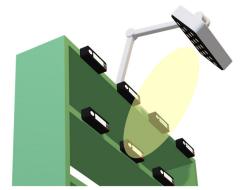
しかし、実用化に際しては人体を含めた送信伝搬上の障害物を回避する技術(ビーコン信号を利用したレトロディレクティブ方式等)の評価方法及び他の無線システム検出時の無停波による回避技術等に関して現時点で、検討・開発途上であることから今回の要求条件からは見送った。

(a) オフィスにおけるセンサ

天井埋め込み型送電装置電子機札 電子機札 フロアセンサ

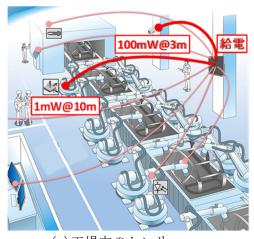
(b) 店舗における電子棚札

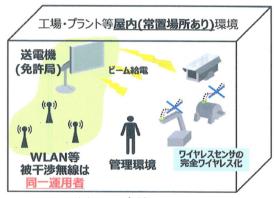
図 2.3.4 2.4GHz 帯での第 2 ステップ利用シーン


(3) 5.7GHz 帯

5.7GHz 帯は、周波数が高く、波長が短いため、2.4GHz 帯より空中線の小型化が可能となり、小型・軽量な専用受電装置の開発が可能である。また、受電装置からの専用ビーコンを使用した高精度な受電装置の位置推定と検出が可能となる。送信装置においても、指向性形成による狭ビームにて対象を絞り、ビームを切替えながらの逐次送信が可能となる。そのため、工場の無人ラインに使用するロボットへの組込みセンサ等への送信、倉庫の無人化が進む設備における大規模なセンサ群等への送信に利用されることが想定される。また、無線 LAN システム等で世界的に広く使用され、汎用部品等を容易に調達でき、低コストでの送受信装置の製品化が可能であることから、海外地域での製品化も容易であることから本技術の展開により世界市場への発展が見込まれる。

本検討における 5.7GHz 帯空間伝送型ワイヤレス電力伝送システムは、電波防護指針値を超える範囲に人が立ち入った場合及びキャリアセンスにより無線 LAN システム等の他無線システムへの干渉が想定される場合は送信を行わないものとして要求条件を整理した。そのため、本システムでの利用シーンとしては図 2.3.5 に示す工場の無人区画でのロボット用センサ、無人倉庫等のピッキング表示用等となる。制限の発生する利用環境ではあるが、無人区画への人が立ち入っての電池交換は不要となり、倉庫棚内の自由なレイアウト(保管品)変更等が容易となり、高精度な制御によりくまなく給電できる利点から市場からの期待は大きい。


(a) 工場内のセンサ



(b) 倉庫等のピッキング表示器

図 2.3.5 5.7GHz 帯での利用シーン例

当初のヒアリングによる提案では、図 2.3.6 に示すように作業者等がいる環境にて複数の送信装置を連携制御し、電力消費の大きい大型センサ、大規模工場での数十mの伝送距離となる各種センサ、屋外監視カメラ等へ継続的な送信を行うシステムがユースケースとして見込まれていた。しかし、実用化するための複数装置による連携制御技術、より広範囲な人体及び他の無線システムの検出と回避技術等に関して、現時点では開発途上であることから今回の要求条件からは見送った。

(a) 工場内のセンサ

(b) 工場内機器

図 2.3.6 5.7GHz 帯での利用シーン例

(4) 利用環境

空間伝送型ワイヤレス電力伝送システムの利用環境として、他の無線装置及び人への影響を 考慮して、送信装置を設置する環境として、「WPT 屋内設置環境」を定義することとした。

空間伝送型ワイヤレス電力伝送システムにて同一空間内に他の無線システムがある場合の与干渉の低減方法としては、現段階ではキャリアセンスによる干渉回避技術(停波のみ)となる。そこで、停波による受電効率の低下を最小限にしたいニーズと、実利用環境となる工場、倉庫等で輻輳する電波環境を考慮して、2.4GHz 帯及び 5.7GHz 帯では、無人の工場、倉庫等の送信エリア内及び周囲に設置された無線システムの把握が可能な「WPT 管理環境」で管理者による干渉を考慮した設置が可能な環境での導入として整理した。また、電波防護指針を上回る電波の強度となる範囲の周知を要すること及び安全対策の実施が容易になることから、電波防護指針における管理環境の指針値を満足することを要求条件とした。

920MHz 帯においては、他システムへの干渉に関しては既存の RFID システムと同等であり、電波防護指針を満たす距離が比較的短距離となる。このため、送信装置の設置場所を考慮すれば、他の無線システムの把握が不要となる「WPT 一般環境」での使用も可能とした。この「WPT 一般環境」においては、電波防護指針における一般環境の指針値を満足するものとする。(参考資料 2)

「WPT 管理環境」の定義【920MHz 帯、2.4GHz 帯、5.7GHz 帯の利用環境】

- 屋内(※)、閉空間であること。
- 電波防護指針における管理環境の指針値を上記、屋内、閉空間内で満足するものとする。(電波防護指針における管理環境の指針値を超える範囲に人が立ち入った際には送電を停止することとする。)
- 屋内の管理環境に設置される空間伝送型ワイヤレス電力伝送システムの運用が、他の無線システム等に与える影響を回避・軽減するため、本システムの設置者、運用者、免許人等が、一元的に他の無線システムの利用、端末設置状況を管理できること。
- 当該屋内に隣接する空間(隣接室内、上下階等)においても他の無線システムとの共用条件を満たすか、当該屋内と同一の管理者により一元的に管理できること。 【2.4GHz 帯、5.7GHz 帯】
 - ※ 窓を含めた「WPT 屋内設置環境」の周囲にある壁損失が参考資料9【壁等の 通過時の損失】にて検討した干渉検討に使用する壁損失以上を担保し、他の無 線システム等への干渉を低減できる環境

また、この定義に基づく管理が不要な使用環境を「WPT 一般環境」と区分。

空間伝送型ワイヤレス電力伝送システムの「WPT 屋内設置環境」では、屋内設置となり工場、 倉庫及び介護現場でのレイアウト変更などの利便性を考慮した柔軟な対応ができることが望ま しいことから、「WPT 屋内設置環境」外の他の無線システムへの影響が変わらない範囲に限定し て行えることとした。

(5) 動作必要電力と等価等方輻射電力

(ア)センサの必要電力

空間伝送型ワイヤレス電力伝送システムの対象として、表 2.3.3 のようなアプリケーションを想定している。空間伝送型ワイヤレス電力伝送システムにおける各アプリケーションが必要とする動作必要電力と伝送距離を位置付けた概要を図 2.3.7 に示す。3つの周波数帯において想定したアプリケーションを併せて示したが、動作必要電力と伝送距離でまとめると、周波数によらず、ほぼ4種の用途にグルーピングできることがわかる。

これらのアプリケーションが必要とする動作必要電力は、必要とする空間伝送電力とは 異なる。空間を伝送される電力は、送電空中線の電力と利得(指向性)により決まる等価 等方輻射電力(EIRP)と伝送距離、受電空中線の利得(指向性)により決まる。一方、動 作必要電力と等価等方輻射電力との関係は、充電機能の有無など、受電方法等の受電装置 の動作に依存する。

例えば、空間伝送電力で供給すべき電力は、センサが通信・動作を行うためにリアルタイムで電力が必要となる場合と充電機能により動作必要電力を得るものなど、アプリケーション、使用場所、使用方法、設計及びユースケースによって異なる。空間伝送型ワイヤレス電力伝送システムとしては、伝送距離と等価等方輻射電力に加え、受電装置動作を考慮し、動作必要電力を得ることとなる。

一方、他のシステムへの干渉の度合いを論じるには、他システムと送電装置の距離と等価等方輻射電力が重要である。次項(イ)の等価等方輻射電力の必要値では、主に通信を目的としてきた既存の無線システムとは性格を異にする空間伝送型ワイヤレス電力伝送システムの考え方を整理し、空間伝送電力としての必要値を求める。

なお、図 2.3.7 には、次項 (イ)で述べるそれぞれのアプリケーションにおける受電時の動作を考慮し、回線設計で想定し、他システムとの干渉計算にも用いられる等価等方輻射電力 (EIRP) の概略値も、参考として示している。

表 2.3.3 利用アプリケーション例

アプリケーション	利用シーン	利用環境	動作必要電力
モバイル機器	工場/オフィス/住環境	屋内/屋外	2W
人位置センサ	工場/介護施設/住環境	屋内/屋外	数 100mW
火災報知器	工場/オフィス/病院	屋内/屋外	数 100mW
速度センサ	工場	屋内	数 100mW
光電センサ	工場	屋内	数 10mW
バイタルセンサ	介護施設/病院	屋内/屋外	数 mW
電子棚札	倉庫/店舗	屋内/屋外	数 mW
C02 センサ	工場/オフィス/住環境	屋内	数 100 μ W
温湿度センサ	工場/オフィス/住環境	屋内	数 100 μ W
照度センサ	工場/オフィス/住環境	屋内	数 100 μ W
機器アラームセンサ	工場/オフィス	屋内	数 100 μ W
加速度センサ	工場	屋内	数 100 μ W
近接センサ	工場	屋内	数 100 μ W
ドアセンサ	工場/オフィス/住環境	屋内	数 10 μ W

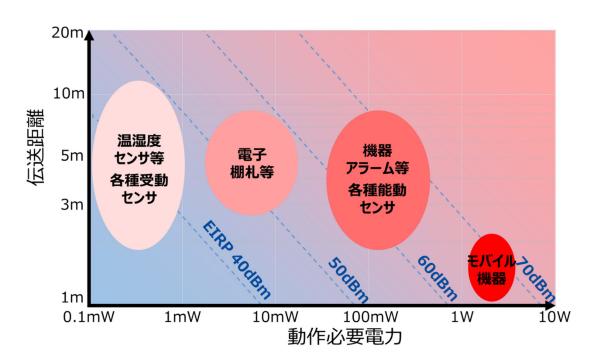


図2.3.7アプリケーションの動作必要電力と伝送距離の例

(イ)等価等方輻射電力の必要値

前項で述べたように、空間伝送型ワイヤレス電力伝送システムは、通信とは異なり、C/N 又は S/N といった回線受信電力とノイズによる比(リアルタイム)にて品質を担保する方 式ではなく、アプリケーションが間欠や連続など固有の動作をするために必要な電力であ り、充電機能の有無など受電時の動作に依存するため、動作必要電力を送る方式となり、 空間を伝送される電力とは直接結びつかない。

しかし、他のシステムへの干渉の度合いを論じるには、他システムと送電装置の距離と 等価等方輻射電力が重要である。そのため、受電装置の動作必要電力から、ユースケース を踏まえた上で、送信装置の等価等方輻射電力(空中線利得+空中線電力)の必要値を求める必要がある。

ここで、受電動作の具体例を挙げる。アプリケーションが必要とする電力は、一般的に数 μ sから数msの間隔でセンシングやデータ送信を間欠で行うときの動作必要電力であり、温湿度センサなどの環境センサでは数十秒から数分に1回程度、バイタルセンサでは脈拍となる数十~百数十回/分程度の動作頻度であるため、高速なデータ通信など連続的な動作のための大きな電力を必要とするものは少ない。

このため、動作必要電力として必要とするエネルギーを連続して受信する必要はなく、送信される等価等方輻射電力と伝送距離を踏まえて、アプリケーションにより受信電力とその受信時間の積によるエネルギー量を満足すれば良い。一般的には、必要とするエネルギー量を満足するための受信時間に対する動作必要電力を消費する時間の比率は、数%程度である。この比率を 10%とした場合(充電時間 90ms に対して、電力消費時間 10ms)センサ等が必要とする電力は、等価的に受信電力の 10 倍となり、これを「アプリ DUT 利得」として定義した。

受電したアプリケーションでは、受信した電波を電源として、整流するための整流効率、整流した電源を負荷に合わせた電圧へ変換する電圧変換効率等により、損失が発生する。また、整流効率は、受電する電界強度によっても変動し、その効率は 10%~70%程度と広いものとなる。併せて、2.4GHz 帯及び 5.7GHz 帯では、ビームフォーミングによる指向方向を変えて複数の受電装置へ逐次送信するため、送信空中線からは常に受電装置へ向けて送信していない状況になる。このため、全送信時間に対して、一つの受電装置へ向ける送信時間は少ない時間となる。送信空中線の全送信時間に対して、一つの受電装置へ送信する時間率となり、この時間率はアプリケーションからの要求指示によるものとなり、これにより送信する時間率は変わってくる。

これらは、使用するアプリケーション、ユースケース、制御方式、動作必要電力、受信電力及びこれらの組合せ等にて異なる。このため、本検討では、効率による損失、送信時間の比率等を総合して「送信 DUT 損失」として定義した。また、無指向性空中線を使用する920MHz 帯では、整流等の効率のみとなるが、同一名称として取り扱うこととした。

回線設計では、「アプリ DUT 利得」及び「送信 DUT 損失」とした受信の時間率、DC 電源への整流効率、電圧変換効率等を踏まえた受信電力となることから「<u>等価受信電力</u>」としてセンサ等の動作必要電力と対比できるように整理した。

他無線システムとの干渉等を検討するには、空間の電界強度がパラメータとなるため、 アプリケーションの「等価受信電力」と受電空中線利得、伝送距離から、送信装置に求め られる等価等方輻射電力が計算される。

上記の考え方を基に表 2.3.3 に示したアプリケーションの必要電力から送信装置に求められる等価等方輻射、さらに送信電力を算出した回線設計例を表 2.3.4~表 2.3.6 に示す。

表 2.3.4 小電力センサ (1mW 以下) への送信方式回線設計例

項目	単位	パラメータ	
周波数帯		920MHz 帯	5.7GHz 帯
送信電力	dBm	30.0	45. 0
空中線利得	dBi	6. 0	25. 0
伝送距離	m	5. 0	10.0
自由空間損失	dB	45. 7	67. 6
受電空中線利得	dBi	3. 0	1. 5
受信電力	dBm	-6. 7	3. 9
送信 DUT 損失	dB	3. 0	13. 0
アプリ DUT 利得	dB	10. 0	10.0
等価受信電力	dBm	0. 3	0. 9
動作必要電力	mW	1. 1	1. 2

表 2.3.5 中電力センサ (100mW 以下) への送信方式回線設計例

項目	単位	パラメータ	
周波数带		2.4GHz 帯	5.7GHz 帯
送信電力	dBm	41.8	45. 0
空中線利得	dBi	24. 0	25. 0
伝送距離	m	10.0	5. 0
自由空間損失	dB	60. 2	61.6
受電空中線利得	dBi	2. 2	7. 0
受信電力	dBm	7.8	15. 4
送信 DUT 損失	dB	5. 2	10.0
アプリ DUT 利得	dB	13.8	6.0
等価受信電力	dBm	16. 4	11. 4
動作必要電力	mW	43. 7	13.8

表 2.3.6 大電力センサ(100mW 以上)への送信方式回線設計例

項目	単位	パラメータ	
周波数带		2.4GHz 帯	5.7GHz 帯
送信電力	dBm	41.8	45. 0
空中線利得	dBi	24. 0	25. 0
伝送距離	m	5. 0	3. 0
自由空間損失	dB	54. 2	57. 2
受電空中線利得	dBi	5. 0	13. 0
受信電力	dBm	16. 6	25.8
送信 DUT 損失	dB	5. 2	7.8
アプリ DUT 利得	dB	13.8	3. 0
等価受信電力	dBm	25. 2	21.0
動作必要電力	mW	331. 1	125. 9

(6) 使用周波数帯と必要チャネル

(ア)使用周波数帯

920MHz 帯、2.4GHz 帯、5.7GHz 帯の3バンドを使用する。

920MHz 帯は、無指向又はブロードな指向性をもつ空中線を使用し、同時に複数の受電装置が受電する。また、920MHz 帯の準マイクロ波帯の周波数特性として回折を利用して送信装置から影となる受電装置へも電源を供給するケースにも対応も可能として、動作必要電力が比較的少ないアプリケーションが常時受電(ながら受電)し、使用することを想定している。また、同一周波数を使用する RFID システムとの共用も考慮して、使用チャネルの選定も実施した。

2. 4GHz 帯及び 5. 7GHz 帯は、マイクロ波帯の周波数特性を生かし、複数の空中線素子を使用したアレー配置とし、合成指向性により鋭いビーム指向性をもつ空中線を利用したビームフォーミング方式にて複数の受電装置に対して時分割にて送信し、効率的な電力伝送を行う。また、既存無線システムであり、センサ等でのデータ伝送にも広く使用されている無線 LAN システムと近い周波数を使用することから無線 LAN システムからの転用なども容易である。

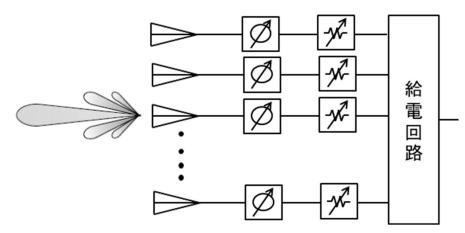


図 2.3.8 アレー空中線の構成例

2.4GHz 帯は時分割を実現するスケジューリングのために、送信装置と受電装置は電力伝送以外の時間枠と手段にて通信を行う。その通信のための 2.4GHz 帯小電力用通信システムが使用する部品等が比較的安価に調達可能であることから、これを併用した受電装置の低廉化も想定される。

2. 4GHz 帯では、無線 LAN システム、2. 4GHz 帯高度化特定小電力データ通信等の世界的に広く使用されているデータ通信を使用したシステムと同じ周波数帯域で使用することから送信装置を含めた装置の共用化が容易であり、半導体デバイスもシリコンなどを中心とした安価な素材での利用が可能である。このことから市場参入が容易であり、開発に掛かる時間、コストも低く抑えられ、世界市場へも受け入れやすい帯域でもあることから、今後の市場形成のためにも必要な帯域であると想定される。

5.7GHz 帯では、アンテナが小型であるため送電・受電装置を小型化しやすく、また、アンテナ利得を高くすることが容易であることから送電電力にも優れている。ロボットなどの駆動部や部品やユニットなどに付けるセンサは、5.7GHz 帯を利用した小型の受電装置が適している。

さらに、工場等無線 IoT 向け通信規格に対する特定小電力無線と周波数が異なるといっ

た特徴がある。例えば、工程ごとの品質管理を行っているような工場では、大規模な IoT 化を行っているため、特定小電力無線通信とは異なる周波数とする必要がある。

また、若干高価ではあるものの普及している高性能な化合物半導体(GaAs、GaN等)が利用される周波数帯でもあり、日本独自の半導体デバイス技術等を使用した専用性の高い装置開発と先進性が見込め、第2ステップやそのさらに先のユースケースを見込んだ場合に非常に有効な帯域である。なお、次項以降の必要チャネル数の算出では、空間伝送型ワイヤレス電力伝送システムのサービスそのものに必要な数に加え、第3章で検討する、これを運用する環境における他の無線システムの具体的な周波数利用状況に応じ、干渉を回避するためのチャネル選択の自由度も勘案したものを論じている。

(イ)920MHz 帯の必要チャネル

920MHz 帯では、半径約 5m 程度の範囲にある複数センサ(5~10 台)へ伝送距離 5m での同時給電を想定している。920MHz 帯では、920MHz 小電力無線システムとの共用の観点からパッシブ系 RFID システムの 1W 構内無線局に使用している 4 チャネル (916.8MHz、918MHz、919.2MHz、920.4MHz) を候補とした。その上で、無指向性空中線などにより送信し、RFIDシステムと共用することを考慮したチャネルについて検討を実施した。その場合、空間伝送型ワイヤレス電力伝送システムによる送信と RFIDシステムの通信を行う上では、受電装置との管理や RFIDと同様に受電装置からの送り返しを考慮すると、隣り合うエリアとは異なるチャネルを使用し図 2.3.9 に示すように 3 つ以上のチャネルとすることが好ましい。しかし、RFID 特定小電力無線局システムとの干渉が懸念されるため、同一使用チャネルとはならない 2 チャネルとした。

給電のユースケースを 2 つのチャネルで実現するには、工場の製造ライン等での設置を 考慮して図 2.3.10 に示す配置とし、同一チャネルでの干渉を防ぐ衝立などの設置により、 空間伝送型ワイヤレス電力伝送システムとしてのチャネル干渉を軽減することで、設置間 隔を近づけ、使用を可能とすることとした。

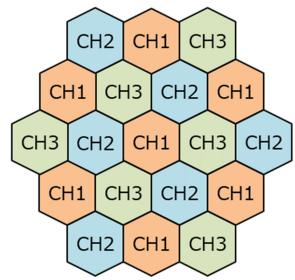


図 2.3.9 920MHz 帯のチャネル使用例(当初検討)

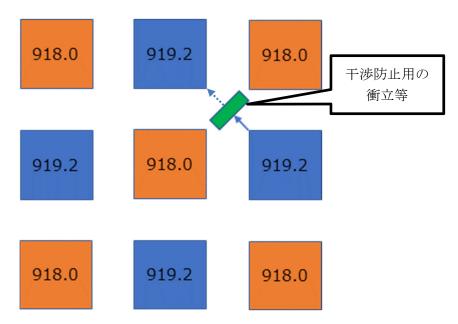


図 2.3.10 920MHz 帯の 2 チャネルでの配置例

(ウ)2.4GHz 帯の必要チャネル

2.4GHz 帯空間伝送型ワイヤレス電力伝送システムは天井から主に大地方向を中心とした範囲へ送信し、半径約 10m 程度の範囲に送信を行う。同一構内において、複数の空間伝送型ワイヤレス電力伝送システムを想定した場合、受電側からのビーコン信号はビーコン信号の識別のためにチャネルを分けて使用する必要があるが、ビーコン信号の EIRP が十分に大きく、隣接チャネルとの周波数差が広いために、D/U の確保ができる同一チャネルの距離は短く、カバーエリアを作るチャネルの組合せとしては、図 2.3.11 に示すように最低 3 つのチャネルで良い。

3 つのチャネルを利用する比較的大規模な構内において、2.4GHz 帯の無線 LAN を利用するケースがあることを考えると、無線 LAN は5つのチャネル ch1~ch5 を使用し、空間伝送型ワイヤレス電力伝送システムで残り3つのチャネル:2,437MHz、2,462MHz、2,484MHz を使用して運用することができる。この場合、無線 LAN システムの使用チャネル2,412MHz を空間伝送型ワイヤレス電力伝送システムには使用しない構成となる。キャリアセンスの対象としない使用チャネルを空間伝送型ワイヤレス電力伝送システムが使用することができ、無線 LAN システムも5つのチャネルを確保できることから、WPT 管理環境内で無線 LAN の通信効率の良い構成を実現でき、同一構内における共用が可能となる。

一方、同様に 3 チャネルを利用する規模の事業所がグローバルスターやロボット無線との調整が必要な地域にあり、干渉軽減措置が必要な場合は、2,412MHz、2,437MHz 及び 2,462MHz を 2.4GHz 帯空間伝送型ワイヤレス電力伝送システムとして使用し、2,484MHz を 使用しないことで、グローバルスターやロボット無線のシステムに影響を最小限とした上で、3つのチャネルの運用による共用が可能となる。

以上より、2.4GHz 帯空間伝送型ワイヤレス電力伝送システムでは、3つのチャネルで運用可能であるが、2.4GHz 帯の無線 LAN システムを運用する環境としない環境で使用するチャネル(周波数)が異なることから合計 4 チャネルを空間伝送型ワイヤレス電力伝送システム用に用意することとした。

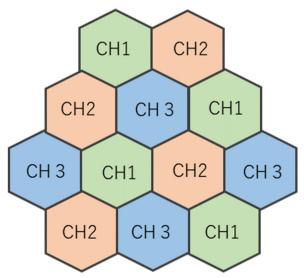


図 2.3.11 2.4GHz 帯におけるチャネル配置例

(エ)5.7GHz 帯の必要チャネル

5.7GHz 帯での必要チャネルの算出に当たっては、大規模工場などの使用を想定しており、 複数の空間伝送型ワイヤレス電力伝送システム使用と同一・隣接環境に存在する無線 LAN システム及び近隣に DSRC 等の無線システムと共用する環境について検討を実施した。

5.7GHz 帯は、半径 5m~10m の範囲を対象としたエリアへのセンサ等へ電力伝送を行うため、工場などの製造ラインに使用する場合には、10 台を超える送信装置を隣接して配置することが必要となる。また、2.4GHz 帯と異なり、受電装置の位置・伝搬路推定向けのビーコン信号が無変調(NON)信号かつ EIRP が 0dBm と比較的低いため、正確な推定とビームフォーカスに必要な D/U(概ね 10dB)を満足するため隣接する同一周波数給電エリアとの離隔距離を大きくする必要があり、図 2.3.12 のように少なくとも 4 つのチャネルが必要となる。一方で、工場内等において、送信装置から建物壁までの距離が短い等、送信装置からの反射・散乱の影響が多い場合には、次隣接エリアであっても WPT 送信信号によるビーコン信号の D/U の劣化が発生するため、同一・隣接チャネルが次隣接エリア以遠となる構成とする必要があり、図 2.3.13 に示すように最低限 7 つのチャネルが必要となる。

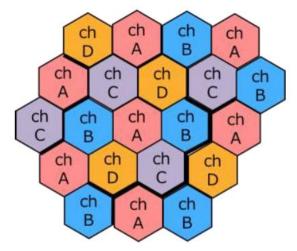


図 2.3.12 5.7GHz 帯 WPT システム同士で所要 D/U を確保できる場合のチャネル配置例

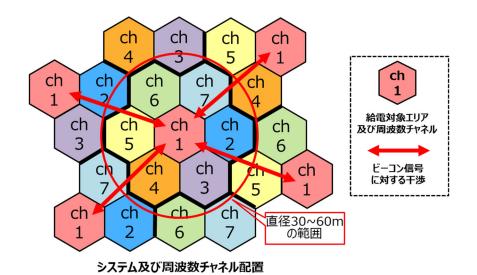


図 2.3.13 送信信号の反射・散乱による影響がある 環境でのチャネル配置例

無線 LAN システムが空間伝送型ワイヤレス電力伝送システムのエリア内もしくは近接された場所に存在し、通信を行っている状態では、無線 LAN システムの最近接周波数チャネル (Ch144、5,710MHz~5,730MHz)への影響を最小限とする必要がある。そのため、このエリアで使用する場合には、当該チャネルより離れた次隣接チャネルとなる周波数に空間伝送型ワイヤレス電力伝送システムの送信チャネル (ch7:5,752MHz、ch8:5,758MHz、ch9:5,764MHz)を配置する。無線 LAN システムが 2 システムある場合には、図 2.3.14 に示すように無線 LAN システムと場所的に隣接しないエリアでは、少なくとも ch3~ch6 の 4 チャネルを使用することでビーコン信号に対する干渉軽減を行う必要があり、無線 LAN システムと共用する使用環境では、7 チャネルを利用した構成とすることで運用が可能である。また、複数の無線 LAN システムと共用し、建物壁などからの反射・散乱の影響が多い場合には、無線 LAN の設置位置を反射・散乱の影響が少ないエリアとするなどの工夫も必要となる。

さらに、無線 LAN 及び近隣に DSRC 等(DSRC、FPU、アマチュア等)が設置される環境、近隣で無人移動体高速伝送システム(ロボット無線)が利用されるケースを考慮した検討の結果、他の無線システムとの共用状態により、組合せの異なる7つの周波数(チャネル)を数種類用意する必要があり、そのためには全部で9つの周波数を用意する必要がある。

なお、7つのチャネルというのは自在なエリア構成を実現するためのチャネル数であり、 実際に使用するチャネル数については、WPTを使用する広さ、エリア数、屋内形状に合わせ て節減し、最小のチャネル数とすることで周波数の有効利用を図るものとする。

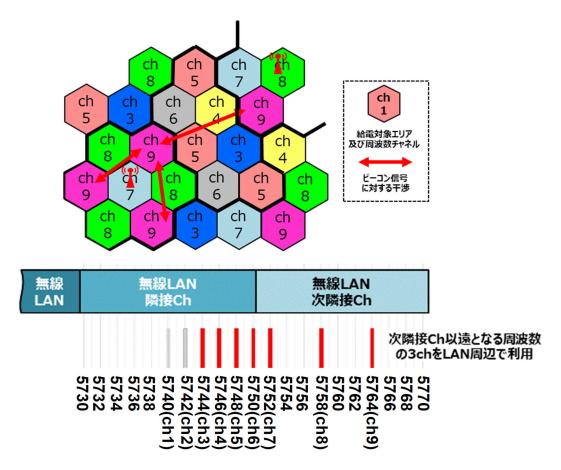


図 2.3.14 無線 LAN システムと共用する 5.7GHz 帯におけるチャネル配置例

第3章 他の無線システムとの周波数共用の検討

3.1 共用検討の条件

前章で記載した以下の候補周波数帯それぞれについて、当該周波数帯及び隣接周波数帯における既存システムについて、共用検討を行った。

また、空間伝送型ワイヤレス電力伝送システムは単一方向へ電波により電力を送信するシステムとなることから共用検討に当たっては、与干渉による検討のみとなる。

3.1.1 920MHz 帯における共用検討対象システム

920MHz 帯及びその隣接周波数帯の周波数の使用状況を図 3.1.1 に示す。

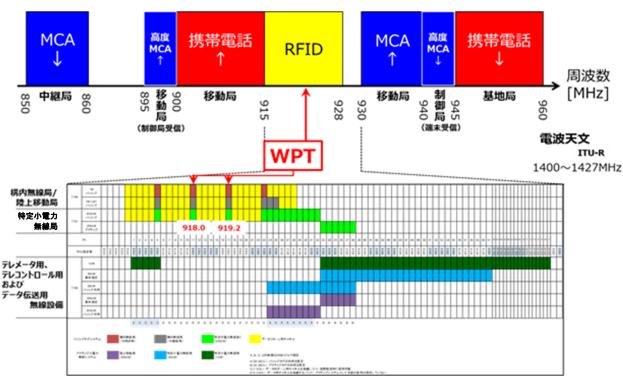


図 3.1.1 920MHz 帯の周波数使用状況

(1) デジタル MCA システム (上り:930MHz~940MHz、下り:850MHz~860MHz)

デジタル MCA システムは、現在、900MHz 帯の複数の通信チャネルを東ねて多くのユーザにより共用する業務用無線であり、主な利用者として陸上運輸、製造販売、各種サービス業、地方公共団体(防災、バス事業、上下水道事業、清掃事業等)等の事業者がある。また、最近では、地方公共団体による防災目的や、携帯電話等が輻輳して使用しづらい時等の企業における危機管理対策目的でも使用されている。移動局送信⇒中継局受信を上り、中継局送信→移動局受信を下りとして使用されている。

(2) 高度 MCA システム (上り:895MHz~900MHz、下り:940MHz~945MHz) 高度 MCA システムは、デジタル MCA システムの特徴を継承しつつ、多様なデータ通信に対応 するために LTE 技術を利用した自営用移動通信システムとなる。移動局送信⇒基地局受信を上 り、基地局送信⇒移動局受信を下りとして使用されている。

(3) 携帯電話システム (上り:900MHz~915MHz、下り:945MHz~960MHz)

周波数帯域を上り方向(携帯端末送信用)と下り方向(携帯端末受信用)の2つに分割して利用するFDD方式を用いたLTE携帯電話システムとなる。携帯端末送信⇒基地局受信を上り、

基地局送信⇒携帯端末受信を下りとして使用されている。

(4) RFID 構内無線局/陸上移動局システム (916.7MHz~920.9MHz)

RFID システムを用いた空中線電力 1W 以下の移動体識別 (無線設備が、応答器から発射された電波を受信することにより行う移動体の識別) 用であって、916.7MHz を超え 923.5MHz 以下の周波数の電波を使用する無線設備であり、同一の構内において使用される構内無線局及び陸上を移動する陸上移動局がある。

(5) RFID 特定小電力無線局システム (916.7MHz~923.5MHz)

RFID システムを用いた空中線電力 250mW 以下の移動体識別 (無線設備が、応答器から発射された電波を受信することにより行う移動体の識別) 用であって、無線設備規則第 49 条の 14 第 6 号に規定された 916.7MHz を超え 923.5MHz 以下の周波数の電波を使用する無線設備である。

(6) RFID テレメータ用、テレコントロール用 (915.9MHz~929.7MHz)

及びデータ伝送用無線設備 (920.5MHz~923.5MHz)

陸上移動局の用途等のうち、テレメータ用、テレコントロール用及びデータ伝送用であって、920.5MHz 以上 923.5MHz 以下の周波数の電波を使用する無線設備に関するもの及び特定小電力無線局の用途等のうち、テレメータ用、テレコントロール用及びデータ伝送用であって 915.9MHz 以上 929.7MHz 以下の周波数の電波を使用する無線設備である。

(7) 電波天文

電波天文業務は、宇宙から発する電波の受信を基礎とする天文学のための当該電波の受信の業務であり、微弱な信号を扱っている。

3.1.2 2.4GHz 帯における共用検討対象システム

2.4GHz 帯及びその隣接周波数帯の周波数の使用状況を図 3.1.2 に示す。

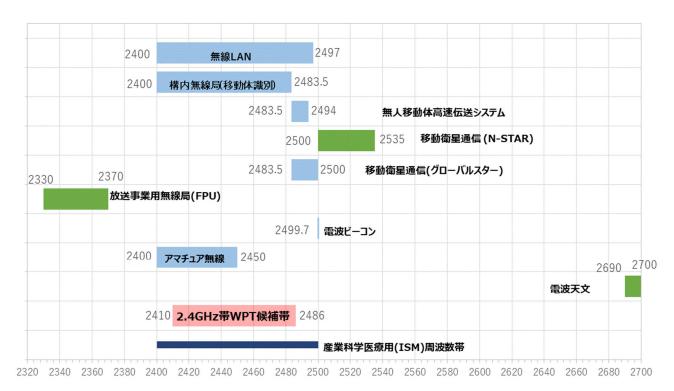


図 3.1.2 2.4GHz 帯の周波数使用状況

(1) 無線 LAN システム (2, 400MHz~2, 497MHz)

2400MHz~2497MHz において、2.4GHz 帯無線 LAN (LAN: Local Area Network) システムが利

用されている。無線 LAN システムの規格としては、米国電気電子学会(IEEE: The Institute of Electrical and Electronics Engineers) により標準化された規格が広く利用されている。

IEEE802.11b における 20MHz システムのチャネル配置を図 3.1.3 に示す。2412MHz から 2472MHz までの 5MHz 間隔の計 13 チャネル (ch1~ch13) と、2484MHz の ch14 (我が国においてのみ使用可能) の計 14 チャネルから構成される。

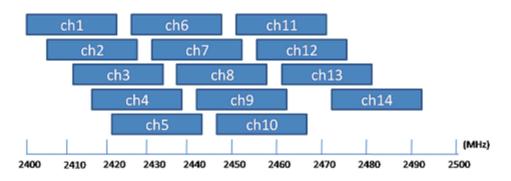


図 3.1.3 2.4GHz 帯無線 LAN システム (IEEE802.11b: 20MHz システム) のチャネル配置

(2) 構內無線局 (移動体識別) (2,400MHz~2,483.5MHz)

質問機から応答機に向けて電波を発射し、それを受けた応答機においてデータを確認後、移動体データを質問機に送信することで、同データにより移動体を識別する装置である。工場での生産物管理や物流分野における物品管理、人員の入退室管理等に用いられる。

(3) 無人移動体高速伝送システム (2,483.5MHz~2,494MHz)

人が容易に近づけない場所での作業、設備点検、映像伝送、輸送等、多様に活用されるロボット、無人航空機(ドローン)等の操縦用データの送信、ロボットからの映像やデータの送信 に用いられる。

(4) 移動衛星通信システム (N-STAR) (2,500MHz~2,535MHz)

静止衛星を利用した、日本及びその周辺海域をサービスエリアとして提供される移動通信システムである。2,500MHz~2,535MHz までをダウンリンク(衛星から送信される電波を地上側の通信端末において受信)として使用している。

- (5) 移動衛星通信システム (グローバルスター) (2,483.55MHz~2,500MHz) 低高度軌道衛星を利用した、グローバルにサービスを提供している移動通信システムである。 2,483.5MHz~2,500MHz までをダウンリンク (衛星から送信される電波を地上側の通信端末において受信)として使用している。
- (6) 放送事業用 FPU システム (2,330MHz~2,370MHz) マラソン・駅伝等のロードレースにおける中継車やバイクでの移動中継、ゴルフ・イベント でのワイヤレスカメラ伝送、報道中継等のテレビ放送番組素材の中継用として利用されている。
- (7) 電波ビーコン (2,499.7MHz)

道路交通情報通信システム (Vehicle Information and Communication System: VICS) の一部として、道路上に設置した電波ビーコンにより、車載機に対して情報(渋滞情報、規制情報、道路案内、駐車場情報等)を提供するシステムである。

(8) 電波天文 (2,695MHz)

電波天文業務は、宇宙から発する電波の受信を基礎とする天文学のための当該電波の受信の業務であり、微弱な信号を扱っている。

- (9) アマチュア無線局 (2,400MHz~2,450MHz)
 - 2,400MHz~2,450MHz をアマチュア無線局が使用している。

3.1.3 5.7GHz 帯における共用検討対象システム

5.7GHz 帯及びその隣接周波数帯の周波数の使用状況を図 3.1.4 に示す。

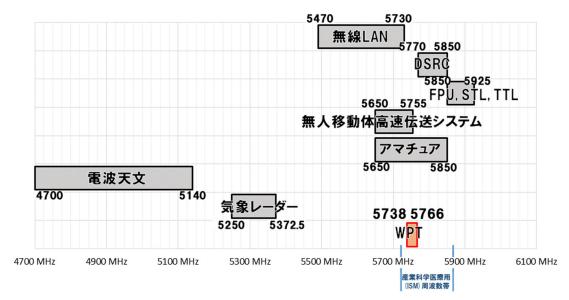


図 3.1.4 5.7GHz 帯の周波数使用状況

(1) 無線 LAN システム (5,470MHz~5,730MHz)

無線 LAN (LAN: Local Area Network) システムにおける 5.6GHz 帯(W56)として 5,470MHz ~ 5,730MHz が利用されている。無線 LAN システム規格としては、米国電気電子学会(IEEE: The Institute of Electrical and Electronics Engineers)により標準化された規格が広く利用されている。

IEEE802.11ac における 20MHz、40MHz、80MHz システムのチャネル配置を図 3.1.5 に示す。 5,490MHz から 5,730MHz までの 20MHz 間隔の計 12 チャネル (ch100~ch144) から構成される。

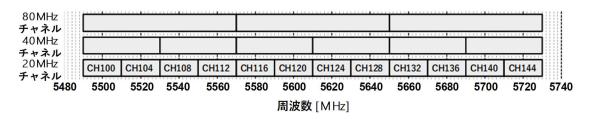


図 3.1.5 5.7GHz 帯における無線 LAN システムのチャネル配置

(2) DSRC (狭域通信) システム (5,770MHz~5,850MHz)

狭域通信システム (DSRC: Dedicated Short-Range Communication System) は、路車間の通信システムとして、自動料金収受システム (ETC: Electronic Toll Collection System) や、ITS スポットと車載器の通信等に利用されるシステムである。DSRC におけるチャネル配置図は図3.1.6のとおりであり、低域の7波をダウンリンク(車載機側受信)、高域7波をアップリンク(路側機側受信)で使用している。

また、料金収納及び料金所ゲートの開閉を行う通信に使用するため、通信環境として安全性

及び公共性が求められる無線システムとなっている。

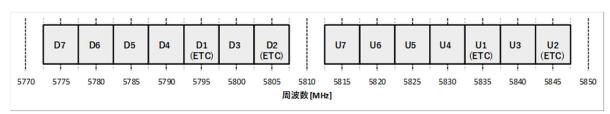


図 3.1.6 DSRC におけるチャネル配置

(3) 放送業務用 STL/TTL システム (5,850MHz~5,925MHz)

STL (Studio to Transmitter Link)は、放送局(演奏所)と親局(送信所)を結ぶ放送番組中継用回線、TTL (Transmitter to Transmitter Link)は、親局(送信所)又は中継局(送信所)と中継局(送信所)を結ぶ放送番組中継用回線である。5.7GHz 帯近傍のテレビ放送の中継用途回線として、Bバンド(5,850-5,925MHz)が用いられている。

(4) 放送事業用 FPU/TSL システム (5,850MHz~5,925MHz)

FPU(Field Pickup Unit)は、放送施設外の中継先からの番組素材を伝送するために用いられる可搬・移動無線システムであり、送信及び受信所の設置場所は運用によって多岐にわたる。

TSL (Transmitter to Studio Link)は、送信所又は中継局で受信した FPU の放送番組素材信号を放送局又は送信所に伝送する固定通信として用いられる。5.7GHz 帯近傍の番組素材伝送回線として、Bバンド(5,850-5,925MHz)が用いられている。

(5) 無人移動体高速伝送システム(5,650MHz~5,755MHz)

ロボットにおける電波利用として、設備点検、映像伝送及び輸送等の分野で多様に活用されるロボットや無人航空機(ドローン)等において、操縦用データの送信及び映像やデータのロボットからの送信に用いられる。無人移動体画像伝送システムにおけるチャネル配置図は図3.1.7に示す5MHz、10MHz、20MHz 帯域でのシステムとなる。

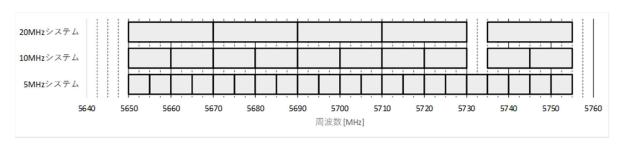


図3.1.7無人移動体画像伝送システムにおけるチャネル配置

(6) 気象レーダー (5,250MHz~5,372.5MHz)

気象レーダーは、台風・集中豪雨・ゲリラ豪雨・突風等を検知し、国民の生命・財産を守る ための防災情報を発信する重要なインフラである。

(7) 電波天文

電波天文業務は、宇宙から発する電波の受信を基礎とする天文学のための当該電波の受信の業務であり、微弱な信号を扱っている。

(8) アマチュア無線局 (5,650MHz~5,850MHz)

5,650MHz~5,850MHz をアマチュア無線局が使用している。

3.2 共用検討パラメータ

各周波数帯における空間伝送型ワイヤレス電力伝送システムの無線局の検討パラメータを以下に示す。

3.2.1 920MHz 帯

920MHz 帯空間伝送型ワイヤレス電力伝送システムのパラメータを表 3.2.1 に示す。

受信装置への被干渉については、通信を行わないものとなるため、被干渉検討は対象外とした。 また、受電装置から送信装置への通信については、特定小電力データ通信等の他システムにより 規定された通信であるか、RFIDシステムと同様に受電装置から副次的に発する電波を使用するも のであり、送信装置より90dB低い等価等方輻射電力であるため、共用検討の対象外とした。

項目	パラメータ
空中線電力	1W (30dBm)
周波数	918.0MHz/919.2MHz
等価等方輻射電力	4W (36dBm)
占有周波数帯幅の許容値	200kHz
空中線利得 (送信)	6.0dBi
給電線損失	無損失
空中線高 (送信)	屋内設置 (床高 2.5m)
空中線指向特性(正面方向を	図 3.2.1 による
0度とする。)	
壁損失	10. 0dB
利用場所	屋内
設置高	2.5m (ビル等の天井高より想定)
変調方式	NON、G1D 等

表 3.2.1 920MHz 帯間伝送型ワイヤレス電力伝送システムのパラメータ

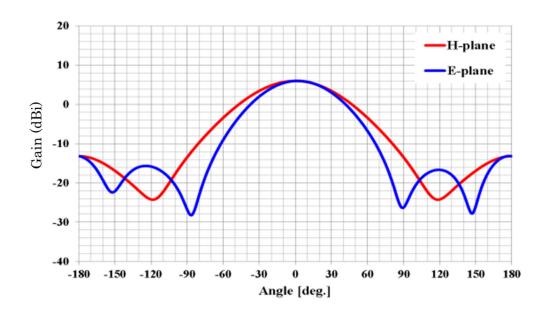


図 3.2.1 920MHz 帯空中線指向特性

3.2.2 2.4GHz 帯

2.4GHz 帯空間伝送型ワイヤレス電力伝送システムのパラメータを表 3.2.2に示す。

受電装置への被干渉については、通信を行わないものとなるため、被干渉検討は対象外とした。 また、送信装置と受電装置間の通信に関しては、特定小電力データ通信等の他システムにて規定 された通信方式であり、空間伝送型ワイヤレス電力伝送システム同士では、同一屋内環境におい ては一元的に管理するため、また、近隣施設については運用調整の仕組みを利用した措置等を行 うため、共用検討の対象外とした。

項目	パラメータ
空中線電力	15W (41.8dBm)
周波数	2,410MHz~2,486MHz
等価等方輻射電力	65.8dBm
占有周波数帯幅の許容値	規定しない
空中線利得 (送信)	24. 0dBi
給電線損失	無損失
空中線高 (送信)	屋内 天井面設置 (床高 4.5m)
空中線指向特性(大地方向を	図 3.2.2 による代表値又は図 3.2.3
0 度とする 60 度まで走査)	(代表値として60度までの例を記載)
壁損失	14. 0dB
利用場所	屋内
設置高	4.5m (トラック横づけ可能倉庫モデルより想定)
変調方式	NON

表 3.2.2 2.4GHz 帯間伝送型ワイヤレス電力伝送システムのパラメータ

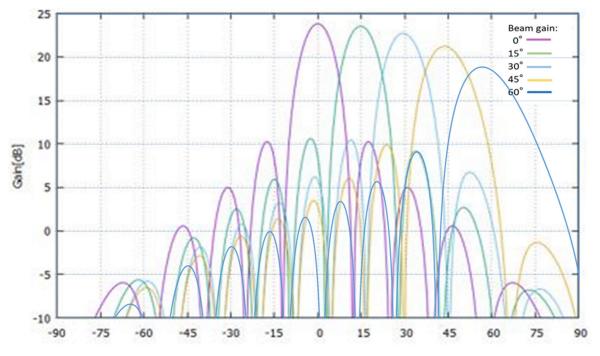


図 3.2.2 2.4GHz 帯空中線指向特性 (メインビーム放射角 0度~45度)

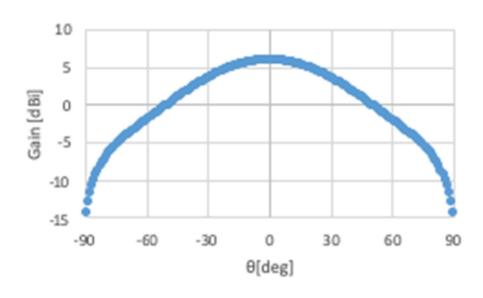


図 3.2.3 帯域外における空中線指向特性

3.2.3 5.7GHz 帯

5.7GHz 帯空間伝送型ワイヤレス電力伝送システムのパラメータを表 3.2.3 に示す。

受電装置への被干渉については、通信を行わないものとなるため、被干渉検討は対象外とした。また、送信装置と受電装置間の通信に関しては、特定小電力データ通信等の他システムに規定された通信方式であり、空間伝送型ワイヤレス電力伝送システム同士は、同一屋内環境においては一元的に管理し、近隣施設については運用調整の仕組みを利用した措置等を行うこととし、同一周波数によるビーコン信号では、送信装置より70dB低い等価等方輻射電力となるため、共用検討の対象外とした。

表 3.2.3 5.7GHz 帯空間伝送型ワイヤレス電力伝送システムのパラメータ

項目	パラメータ
空中線電力	32W (45.0dBm)
周波数	5,738MHz∼5,766MHz
等価等方輻射電力	70.0dBm
占有周波数帯幅の許容値	規定しない
空中線利得(送信)	25. 0dBi
給電線損失	無損失
空中線高 (送信)	屋内 天井面設置 (床高 5m)
空中線指向性(大地方向を0	図 3.2.4 による
度する 60 度まで走査)	(代表値として 55 度までの例を記載)
壁損失	16. 0dB
利用場所	屋内
設置高	5.0m(一般的な工場モデルより想定)
変調方式	NON

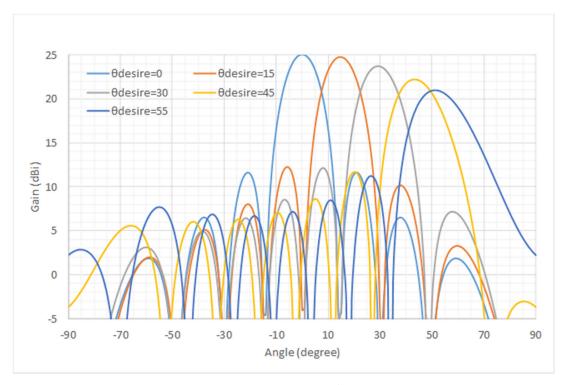


図 3.2.4 5.7GHz 帯空中線指向性

3.3 他の無線システムとの周波数共用条件

3.3.1 920MHz 帯システムと他の無線システムとの周波数共用条件

検討に当たっては、920MHz 帯空間伝送型ワイヤレスシステムの検討パラメータは、920MHz 帯を使用した RFID 構内無線局(パッシブ系電子タグシステム 1 W 設備)と同等であることから平成 23 年 5 月付の「情報通信審議会情報通信技術分科会携帯電話等高度化委員会報告書」(情報通信審議会一部答申 諮問第 81 号「携帯電話等の周波数有効利用方策」のうち「900MHz 帯を使用する移動通信システムの技術的条件」及び「携帯無線通信の中継を行う無線局の技術的条件」(平成 23 年 5 月)、同一部答申 諮問第 2009 号「小電力の無線システムの高度化に必要な技術的条件」のうち「920MHz 帯小電力無線システムの高度化に係る技術的条件」(平成 29 年 3 月)) において既に検討されている結果と同等であるものに関してはその検討結果を引用している。(参考資料 4) (1) デジタル MCA システム

デジタル MCA システム中継局の実際の立地条件(山上)を考慮すると、中継局の周辺 100m 以内に、RFID システムが設置される確率は極めて低く、双方の設備の離隔距離を 100m 以上確保することや、RFID 構内無線局 (パッシブ系電子タグシステム 1 W 設備) の空中線の設置条件の調整、中継局へのフィルタの挿入等の対策を行うことにより、共用可能との検討結果とされており、屋内使用となる本システムについては、壁損失も見込めることから共用が可能である。

(2) 高度 MCA システム

1対1対向における干渉計算結果を表3.3.1に示す。

高度 MCA 移動局(携帯)は、人が持ちながら使用することがあるため、空間伝送型ワイヤレス電力伝送システムと同一室内に共用する可能性がある環境では、帯域外感度抑圧レベルが大きく共用が判断できないため、SEAMCAT によるモンテカルロシミュレーションによる検討を実施した。その結果を表 3.3.2 に示す。高度 MCA 基地局等は、所要改善量を満たしており、さらに実際の設置環境を考慮すると共用は可能である。

表 3.3.1 空間伝送型ワイヤレス電力伝送システム ⇒ 高度 MCA システムにおける 1 対 1 対向干渉検討結果一覧

被干渉システム		帯域内干渉レベル		帯域外感度	壁損失	
7次下少	ンハノム	所要改善量	所要離隔距離	所要改善量	所要離隔距離	型頂大
高度	車載①	-0. 1dB	10m	21. 3dB	116m	あり
MCA	携帯②	-2. 1dB	8m	19. 3dB	92m	あり
移動局	扬市鱼	7. 9dB	25m	29. 3dB	291m	なし
高度 MCA	都市部③	-25. 2dB	10m	-13. 4dB	41m	あり
基地局	郊外④	−18. 7dB	7m	-6. 9dB	29m	あり

高度 MCA 移動局(車載①及び携帯②)のモンテカルロシミュレーションの結果を表 3.3.2 に示す。干渉確率 3%における改善量を 0dB とする所要改善量を算出した結果であり、共用は可能となる。また、高度 MCA 移動局(携帯)は、近接時又は双方の空中線が対向するような場合での干渉が発生する恐れがあることから、取扱説明書等による注意喚起を促すことが必要である。

表 3.3.2 SEAMCAT による干渉確率計算結果 (所要改善量)

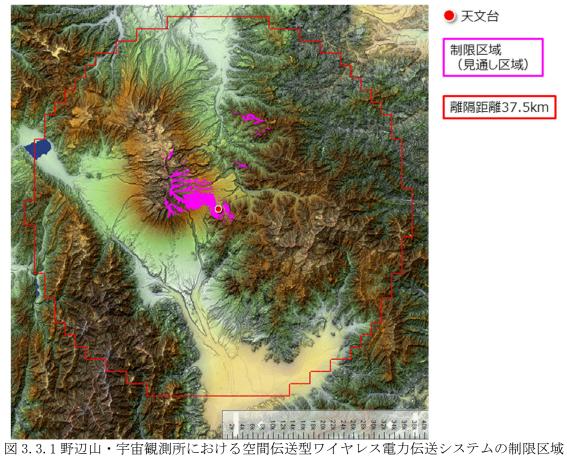
項目	壁損失	高度 MCA 移動局(車載)	高度 MCA 移動局(携帯)
対域内干渉	あり	(-0.1 dB)	(-2.1 dB)
N	なし	**2	−16.5 dB
世 林 从 咸 庄 拉 厂	あり	-13.3 dB	−15.3 dB
帯域外感度抑圧	なし	**2	−5.3 dB ※ 3

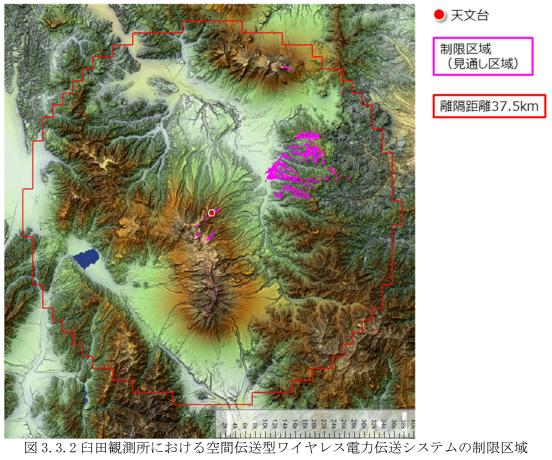
※1:括弧内の数値は表 3.3.1 参照。1 対 1 対向時の干渉計算結果。

※2: 高度 MCA 移動局(車載)の室内での利用は想定していない。

※3:干渉に関して、注意喚起することとする。

(3) 携帯電話システム


RFID システムから LTE 基地局及び LTE 移動局への干渉は、SEAMCAT を利用した干渉確率計算による評価において、所要改善量がマイナス又はほぼゼロであり、共用可能である。(参考資料 4 (3))


- (4) RFID 構内無線局/陸上移動局システム
- (5) RFID 特定小電力無線局システム
- (6) RFID テレメータ用、テレコントロール用及びデータ伝送用無線設備

920MHz 帯を利用した各種 RFID システム間の共用検討については、実施されていることから 答申の 920MHz 帯空間伝送型ワイヤレス電力伝送システム (送信装置) の技術基準が RFID 構内 無線局 (パッシブ系電子タグシステム 1 W 設備) に準拠していることを踏まえ、共用は可能である。

(7) 電波天文

920MHz 帯システムの 1.4GHz 帯における不要発射強度が、電波天文の干渉閾値換算値を下回るための所要減衰量は 126.9dB となり、所要離隔距離は 37.5km である。そのため、検討モデルで採用した空間伝送型ワイヤレス電力伝送システムの設置条件(壁損失:10dB)を確保した条件にて、観測所の設置位置から 37.5km の天文台から見通しとなる図 3.3.1~図 3.3.8 の地図内の制限区域(見通し区域)として示した区域が制限区域となる。制限区域を、空間伝送型ワイヤレス電力伝送システムの設置を制限する区域とすることで電波天文との共用は可能である。

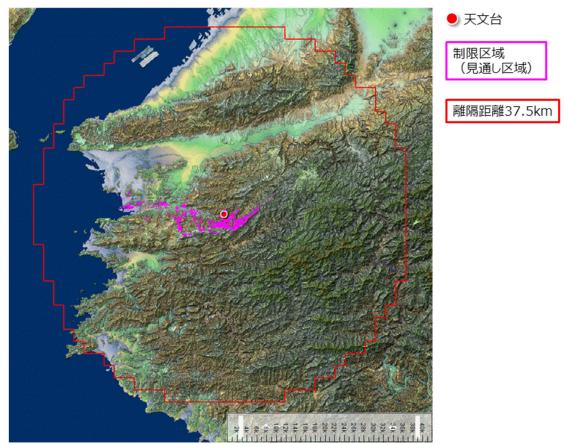


図3.3.3みさと天文台観測所における空間伝送型ワイヤレス電力伝送システムの制限区域

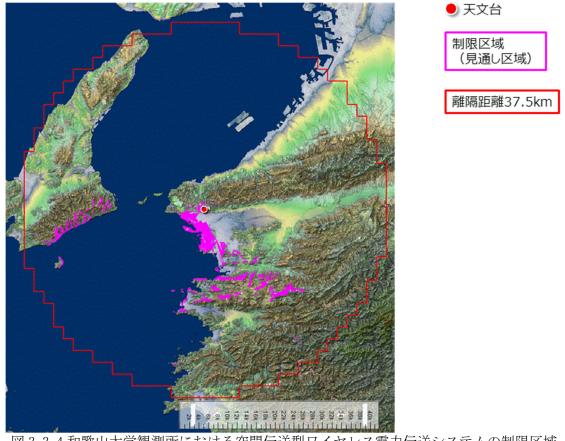
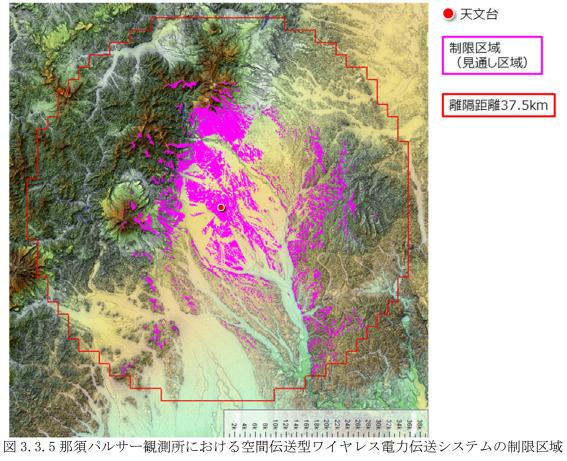



図3.3.4 和歌山大学観測所における空間伝送型ワイヤレス電力伝送システムの制限区域

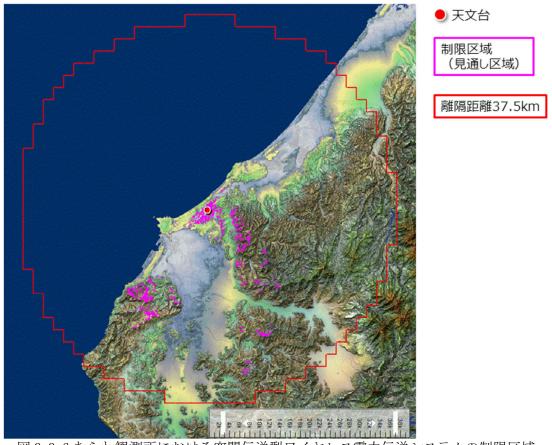


図3.3.6 あらわ観測所における空間伝送型ワイヤレス電力伝送システムの制限区域

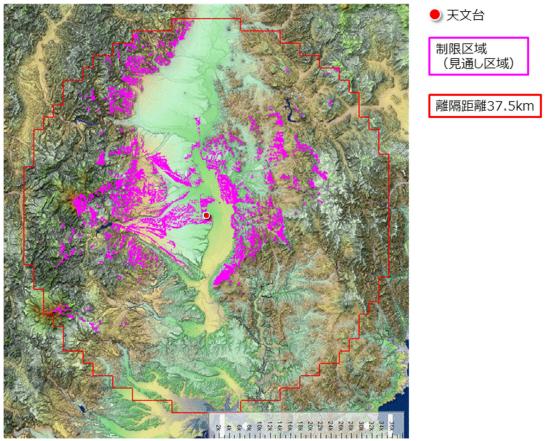


図3.3.7 水沢観測所における空間伝送型ワイヤレス電力伝送システムの制限区域

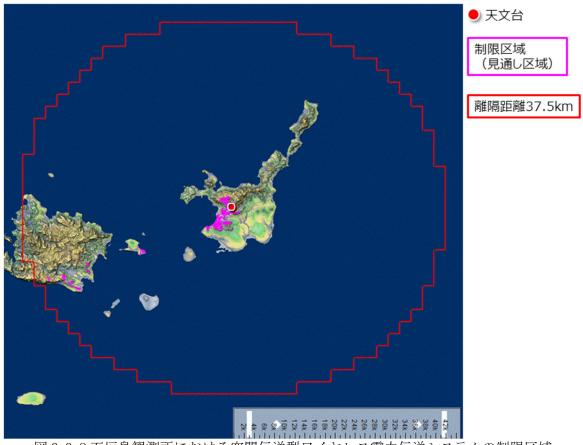


図3.3.8 石垣島観測所における空間伝送型ワイヤレス電力伝送システムの制限区域

3.3.2 2.4GHz 帯システムと他の無線システムとの周波数共用条件

(1) 2.4GHz 帯無線 LAN システム

空間伝送型ワイヤレス電力伝送システム送信装置の主ビーム方向の角度 θ を 45 度及び 60 度とした際の WPT 屋内設置環境外における受信点での信号強度を表 3.3.3 に示す。

設置物(壁、柵)がない場合については、角度 θ =45 度の場合、壁からの距離が 1mにて壁の外に設置した無線 LAN アクセスポイント(以下 AP)と同等の信号強度以下となるが、角度 θ =60 度の場合には、壁から 1m の距離では、壁の外に設置した無線 LAN システムの信号強度を 2.7dB 上回る結果となった。しかし、実際のユースケースを考慮した WPT 屋内設置環境に棚等の設置物がある場合においては、ビーム方向の角度 θ =60 度においても、壁の外に設置した無線 LAN AP の信号強度を下回る結果となった。

X of other management of the Control				
項目	受信点の位置(壁からの距離)			
() () () () () () () () () ()	1m	10m	100m	1,000m
無線 LAN AP (dBm)	-24.9	-34. 9	-54. 9	-74. 9
θ=45 度設置物なし (dBm)	-32.0	-41.0	-59. 3	-80. 4
θ=60 度設置物なし (dBm)	-22.2	-32.7	-52. 7	-74. 0
θ=45 度設置物あり (dBm)	-35.6	-44. 3	-64. 1	-85. 4
θ=60 度設置物あり (dBm)	-31.4	-45.0	-61.8	-82.8

表 3.3.3 WPT 屋内設置環境外における信号強度検討結果

WPT 屋内設置環境外の無線 LAN システムのスループット低下が、無線 LAN システム同士の干渉によるスループット低下と同等以下になる空間伝送型ワイヤレス電力伝送システムのキャリアセンスの設定を評価した。WPT 管理環境外 10m以内に無線 LAN AP が存在する場合でも、送信時間にかかわらず、アイドル時間を送信時間と等しくすることにより、スループットの低下は無線 LAN システム同士の干渉による低下より少ない結果を得た。アイドル時間と送信時間を等しくすることで、WPT 管理環境外における送信装置からの影響を抑制できる結果となり、2.4GHz 帯無線 LAN システムとの共用が可能となる。

送信時間:20ms とした場合

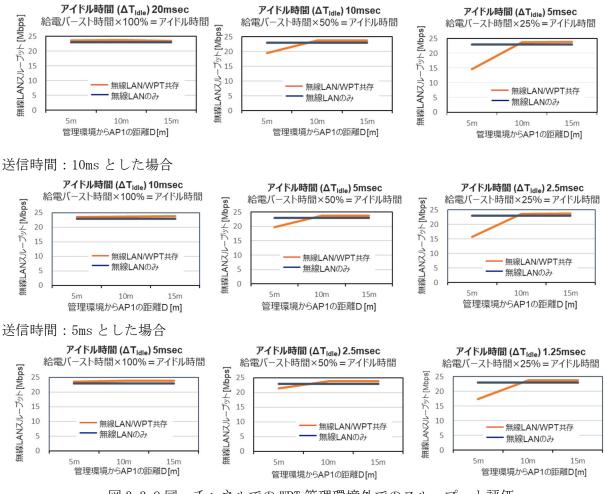


図 3.3.9 同一チャネルでの WPT 管理環境外でのスループット評価

無線 LAN システムが WPT 屋内設置環境に存在する場合のキャリアセンスによる無線 LAN システムの検出可能距離についての検討結果を表参 3.3.4 に示す。この結果より WPT 屋内設置環境において、空間伝送型ワイヤレス電力伝送システム送信装置がキャリアセンスによって同一チャネル、隣接チャネル及び次隣接チャネルの空き状況を判定する場合、空間伝送型ワイヤレス電力伝送システム送信装置の無線 LAN システム検出可能距離は 71m 以内であり、無線 LAN システムを WPT 屋内設置環境で使用する場合には、この範囲内にて設置することで共用可能となる。

表 3.3.4 キャリアセンスによる無線 LAN システム検出可能距離

項目	検討結果			
無線 LAN 周波数	2,412MHz			
無線 LAN 空中線電力	23. 0dBm			
無線 LAN 空中線利得	2. 14dBi			
CCA (Clear Channel Assessment)	-62dBm	-72dBm		
閾値	(隣接、次隣接)	(同一)		
受信空中線利得(最小値)	-10dBi	-10dBi		
所要結合量	77. 14dB	87. 14dB		
無線 LAN の検出可能距離	71m	223m		

屋内に設置した空間伝送型ワイヤレス電力伝送システムからの無線 LAN システムへの最大入力定格(このレベルを上回る信号が入力される場合、回路が破壊されるリスクが生じる)を 0dBm とすると同一屋内空間においては 25m の離隔距離が必要となる。なお、リスクが生じるのは、送信装置と受電装置間に無線 LAN システムを設置した場合であるが、同一伝搬経路をとなるビーコン信号が遮蔽され、電力は送信されない。そのため、同一運用者に注意喚起を行うこととして、共用は可能とした。

なお、壁損失を見込むことが可能な設置環境外では、離隔距離を 5m とすることで、設置環境外にて 0dBm を下回る結果となり共用が可能となる。



図 3.3.10 離隔距離による到達電力

(2) 構内無線局等

構内無線局等に対して空間伝送型ワイヤレス電力伝送システムは、同一屋内空間においては、同一運用者による一元的な管理を前提としていることから、空間伝送型ワイヤレス電力伝送システムがキャリアセンスを利用して構内無線局等を認識することができる離隔距離内で運用することによって、構内無線局等とも共用可能する。空間伝送型ワイヤレス電力伝送システムのキャリアセンスにより、構内無線局等を認識することができる送信装置からの検出可能距離を検討した。また、構内無線局等として、構内無線局及び特定小電力無線局を想定し、空間伝送型ワイヤレス電力伝送システムがキャリアセンス可能となるための厳しい条件として、どちらも応答機のパラメータにて実施した。

構内無線局等が WPT 屋内設置環境に存在する場合にキャリアセンスによる無線 LAN システムの検出可能距離についての検討結果を表 3.3.5 及び表 3.3.6 に示す。この結果より、WPT 屋内設置環境において空間伝送型ワイヤレス電力伝送システム送信装置がキャリアセンスによって同一チャネル、隣接チャネル及び次隣接チャネルの空き状況を判定する場合、特定小電力無線局の検出可能距離は 15m 以内、構内無線局にて 84.9m 以内であり、WPT 屋内設置環境で使用する場合には、この範囲内に設置することで干渉を抑制でき、共用可能となる。

表 3.3.5 キャリアセンスによる特定小電力無線局の検出可能距離

20:0:0 1 1 7 7 2 7 7 12 8				
項目	パラメータ値			
特定小電力無線局周波数	2, 450)MHz		
特定小電力無線局空中線電力	10dBm			
特定小電力無線局空中線利得	2dBi			
CCA 閾値	-62dBm (隣接、次隣接)	-72dBm (同一)		
受信空中線利得(最小値)	-10dBi -10dBi			
所要結合量	64dB 74dB			
無線 LAN の検出可能距離	15m	49.5m		

表 3.3.6 キャリアセンスによる構内無線局の検出可能距離

項目	パラメータ値		
特定小電力無線局周波数	2, 450)MHz	
特定小電力無線局空中線電力	24. 8	dBm	
特定小電力無線局空中線利得	2dBi		
CCA 閾値	-62dBm	-72dBm	
CON M IE	(隣接、次隣接)	(同一)	
受信空中線利得(最小値)	-10dBi	-10dBi	
所要結合量	78. 8dB	88.8dB	
無線 LAN の検出可能距離	84.9m	272.3m	

(3) 無人移動体高速伝送システム

空間伝送型ワイヤレス電力伝送システムは屋内、無人移動体高速伝送システム(ロボット無線システム)は屋外での運用として干渉計算を実施した。また、電波伝搬モデルについては、拡張秦モデル(郊外型)を用い、建物の外への透過損失14dBを見込んだ。

空間伝送型ワイヤレス電力伝送システムを天井に設置し、放射角度範囲を鉛直から 60 度以内とすることで、おおむね屋外にある無線 LAN AP からの信号強度と同等に抑制される。また、同一チャネルを使用した状況で受電装置の延長上にロボット無線システムがあった場合には所要離隔距離は 3.6km となるが、水平方向のずれ及び都市部においてはクラッタ損失を考慮することで所要離隔距離は短くすることが可能(±30度:1.5km、±40度:500m)である。

必要に応じ空間伝送型ワイヤレス電力伝送システムとロボット無線システムとの運用調整の仕組みを利用した調整を行うことで、すみ分けによる共用は可能となる。

表 3.3.7 無人移動体高速伝送システムへの与干渉検討結果

項目	同一チャネル	隣接チャネル	次隣接チャネル		
周波数	2,484 MHz	2,462MHz	2,437MHz		
送信空中線放射角度		60 度			
不要発射の強度		41.8 dBm			
送信空中線利得		−5 dBi			
壁損失		14 dB			
ロボット無線システム の空中線地上高	£	段:250m (ロボット 下段:10m (制御))		
許容干渉電力	-98dBm	-72dBm	-56dBm		
所要結合量	120.8 dB	94.8 dB	78.8 dB		
所要離隔距離 (拡張秦郊外モデル)	3.6 km 0.67 km	460 m 120 m	85m		
所要離隔距離 (自由空間損失)	10.5 km	530 m	85m		

(4) 移動体衛星通信システム (N-STAR)

空間伝送型ワイヤレス電力伝送システムと移動体衛星通信システム(N-STAR)の干渉計算に当たっての位置関係は、移動衛星通信端末と衛星とを結ぶ直線上に空間伝送型ワイヤレス電力伝送システム(送信装置)が存在し、さらに同じ直線上の受電装置が存在する環境として実施した。

移動衛星端末から通信衛星方位上(方位角差 0 度)に空間伝送型ワイヤレス電力伝送システム(送信装置)が設置された場合を想定し、帯域内干渉、帯域外干渉について検討した結果を表 3.3.8~表 3.3.13 に示す。空間伝送型ワイヤレス電力伝送システムの設置建屋の北向きにて、所要離隔距離を確保することで共用可能となる。ただし、建物の遮蔽等で移動衛星通信端末を利用できない範囲を除くものとする。

また、移動衛星通信端末に対して干渉影響が想定される場合には運用調整の仕組みを利用した協議等により共用を図るものとする。

	五 0: 0: 0 [] []	* 1 1/2 * /	() 14 D(F) 1/1E)	11 (2 1	-3/		
パラメータ		稚内	仙台	東京	大阪	福岡	那覇
通信衛星仰角(度)		37. 1	45. 1	48. 2	49.6	50. 7	58. 5
送信装置	周波数(MHz)	2, 490					
	最大電力(dBm)			-34	4. 2		
	受信点への角度 (度)	74	73	72	72	72	71
	空中線利得(dBi)	-5.0	-4.7	-4.5	-4.5	-4. 5	-4. 2
	メインローブの角度 (θ)	N/A (帯域外のた	こめメイン	ローブの角	度に依存	しない)
伝搬路	壁損失 (dB)	14. 0					
	受信点の壁からの距離(m)	6.0	4. 5	4.0	3.8	3. 7	2.8
	自由空間伝搬損 (dB)	64.8	64.0	63.8	63. 7	63.6	63.0
移動衛星	周波数(MHz)	(z) 2,500					
通信端末	空中線利得(dBi)			12	. 6		
(受信)	送信装置の方向角度 (度)	21	28	30	32	32	39
	指向性減衰量(垂直方向) (dB)	7. 7	10.7	11.8	12.0	12. 2	13. 3
	許容干渉電力(dBm)	-124. 9				•	
所要量	所要改善量 (dB)	11.9	9.8	9. 2	9. 2	9. 1	8.7
	所要離隔距離(m)	22	18	17	17	17	14

表 3.3.8 帯域内干渉の共用検討結果(地上高 0m)

妻 3 3	0 帯域内干渉の出用給討結里	(批 上萬 1	5m)

	パラメータ	稚内	仙台	東京	大阪	福岡	那覇				
	通信衛星仰角(度)	37. 1	45. 1	48. 2	49.6	50. 7	58. 5				
送信装置	周波数(MHz)	2, 490									
	最大電力(dBm)			-34	4.2						
	受信点への角度 (度)	78	77	77	77	76	76				
	空中線利得(dBi)	-6. 1	-5.8	-5.8	-5.8	-5. 5	-5.5				
	メインローブの角度 (θ)	N/A (帯域外のためメインローブの角度に依存しない)									
伝搬路	壁損失(dB)			14	. 0						
	受信点の壁からの距離 (m)	4.0	3. 0	2. 7	2.6	2.5	1.8				
	自由空間伝搬損(dB)	63. 5	62. 9	62. 7	62.6	62.6	62. 1				
移動衛星	周波数(MHz)	2,500									
通信端末	空中線利得(dBi)			12	. 6						
(受信)	送信装置の方向角度 (度)	25	32	35	36	37	44				
	指向性減衰量(垂直方向)(dB)	9. 4	12. 1	12.6	12.8	13. 0	14. 2				
	許容干渉電力(dBm)	-124. 9									
所要量	所要改善量 (dB)	10.3	8.5	8. 2	8. 1	8.3	7. 5				
	所要離隔距離(m)	17	15	13	13	13	11				

表 3.3.10 帯域内干渉の共用検討結果(地上高 3.0m)

	パラメータ			東京		福岡	那覇			
		稚内	仙台		大阪					
	通信衛星仰角(度)	37. 1	45. 1	48.2	49.6	50. 7	58. 5			
送信装置	周波数(MHz)			2, 4	190					
	最大電力(dBm)			-34	4.2					
	受信点への角度 (度)	83	83	82	82	82	82			
	空中線利得(dBi)	-8. 1	-8. 1	-7.6	-7.6	-7.6	-7.6			
	メインローブの角度 (θ)	N/A (帯域外のためメインローブの角度に依存しない)								
伝搬路	壁損失 (dB)	14. 0								
	受信点の壁からの距離 (m)	2.0	1.5	1.3	1.3	1.2	0.9			
	自由空間伝搬損 (dB)	62.0	61. 1	61.5	61.5	61. 5	61.3			
移動衛星	周波数(MHz)	2, 500								
通信端末	空中線利得(dBi)			12	. 6					
(受信)	送信装置の方向角度 (度)	30	38	41	42	43	51			
	指向性減衰量(垂直方向) (dB)	11.7	13. 1	13.6	13.8	14.0	15. 3			
	許容干渉電力(dBm)	-124. 9								
所要量	所要改善量 (dB)	7.4	6.5	6. 5	6.4	6. 2	5. 2			
	所要離隔距離(m)	12	10	9	9	9	6			

表 3.3.11 帯域外干渉の共用検討結果(地上高 0m)

	パラメータ	稚内	仙台	東京	大阪	福岡	那覇				
	通信衛星仰角(度)	37. 1	45. 1	48. 2	49.6	50. 7	58. 5				
送信装置	周波数(MHz)	2, 490									
	最大電力(dBm)			41	. 8						
	受信点への角度 (度)	74	73	72	72	72	71				
	空中線利得(dBi)	11.5	12. 1	12.7	12.7	12.7	13. 5				
	メインローブの角度 (θ)	60									
伝搬路	壁損失 (dB)			14	4. 0						
	受信点の壁からの距離(m)	6.0	4. 5	4.0	3.8	3. 7	2.8				
	自由空間伝搬損 (dB)	64.8	64.0	63.8	63. 7	63.6	63.0				
移動衛星	周波数(MHz)			2, 5	500						
通信端末	空中線利得(dBi)			12	. 6						
(受信)	送信装置の方向角度 (度)	21	28	30	32	32	39				
	指向性減衰量(垂直方向) (dB)	7. 7	10.7	11.8	12.0	12. 2	13. 3				
	許容干渉電力(dBm)			-41	1.0						
所要量	所要改善量 (dB)	20.5	18.8	18.5	18.4	18. 4	18.6				
	所要離隔距離(m)	30	29	27	26	25	24				

表 3.3.12 帯域外干渉の共用検討結果(地上高 1.5m)

	パラメータ	稚内	仙台	東京	大阪	福岡	那覇			
	通信衛星仰角(度)	37. 1	45. 1	48. 2	49. 6	50. 7	58. 5			
送信装置	周波数(MHz)		ľ	2,	490		1			
	最大電力(dBm)	41.8								
	受信点への角度 (度)	78	77	77	77	76	76			
	空中線利得(dBi)	8.3	9.0	9.0	9.0	10.0	10.0			
	メインローブの角度 (θ)	60								
伝搬路	壁損失 (dB)	14. 0								
	受信点の壁からの距離(m)	4.0	3. 0	2. 7	2.6	2.5	1.8			
	自由空間伝搬損(dB)	63. 5	62. 9	62. 7	62.6	62. 5	62. 1			
移動衛星	周波数(MHz)	2, 500								
通信端末	空中線利得(dBi)			12	. 6					
(受信)	送信装置の方向角度 (度)	25	32	35	36	37	44			
	指向性減衰量(垂直方向) (dB)	9.3	12. 1	12.6	12.8	13.0	14. 2			
	許容干渉電力(dBm)			-41	1.0					
所要量	所要改善量 (dB)	16.8	15. 4	15. 1	15.0	15. 9	15. 1			
	所要離隔距離(m)	25	22	22	21	20	17			

表 3.3.13 帯域外干渉の共用検討結果(地上高 3.0m)

	パラメータ	稚内	仙台	東京	大阪	福岡	那覇				
	通信衛星仰角(度)	37. 1	45. 1	48. 2	49.6	50. 7	58. 5				
送信装置	周波数(MHz)	2, 490									
	最大電力(dBm)			41	. 8						
	受信点への角度 (度)	83	83	82	82	82	82				
	空中線利得(dBi)	3. 9	3. 9	4. 7	4. 7	4. 7	4. 7				
	メインローブの角度 (θ)	60									
伝搬路	壁損失 (dB)	14. 0									
	受信点の壁からの距離(m)	2.0	1.5	1.3	1.3	1.2	0.9				
	自由空間伝搬損(dB)	62.0	61.7	61.5	61.5	61. 5	61.2				
移動衛星	周波数(MHz)	2, 500									
通信端末	空中線利得(dBi)	12.6									
(受信)	送信装置の方向角度(度)	30	38	41	42	43	51				
	指向性減衰量(垂直方向) (dB)	11.7	13. 1	13.6	13.8	14. 0	15. 3				
	許容干渉電力(dBm)	-41.0									
所要量	所要改善量 (dB)	11.6	10.6	11.0	10.8	10.6	9.6				
	所要離隔距離(m)	16	15	14	13	13	10				

(5) 移動体衛星通信システム (グローバルスター)

空間伝送型ワイヤレス電力伝送システムと移動体衛星通信システム (グローバルスター) の干渉計算に当たっての位置関係は、移動衛星通信端末と衛星とを結ぶ直線上に空間伝送型 ワイヤレス電力伝送システム (送信装置) が存在し、さらに同じ直線上の受電装置が存在するとして実施した。

空間伝送型ワイヤレス電力伝送システムから同一チャネル及び不要発射による干渉検討の結果を表 3.3.14 及び表 3.3.15 に示す。同一チャネルを使用する場合の所要離隔距離は 1km 弱となり、同一チャネルでの利用ができない可能性がある。しかし、移動体衛星通信システムの主なユースケースは携帯電話の不感地域での利用としたシステムであることから影響は限定的として、空間伝送型ワイヤレス電力伝送システムとはすみ分けが可能と考えられる。また、干渉の発生が懸念される場合には運用調整の仕組みを利用することでサービスへの影響を抑えることが可能である。

表 3. 3. 14 移動体衛星通信システム (グローバルスター) への 同一チャネル与干渉検討結果

	的 人 个 个 个 一 伊	
	項目	パラメータ
移動衛星通信端末空中	7線地上高	1.5m
	周波数	2484 MHz
	最大電力	41.8 dBm
送信装置	空中線地上高	4.5m
	空中線利得	-5dBi
	メインビームの角 (θ)	60 度
伝搬路	壁損失	14 dB
移動衛星通信端末	周波数	2484.390 MHz
	空中線利得	0.51dBi
(文信)	許容干渉電力	-119.4 dBm/MHz
所要結合量	所要結合量	142. 7dB
川安和日里	所要離隔距離(壁からの距離)	0.96km

表 3.3.15 移動体衛星通信システム (グローバルスター) への 不要発射与干渉検討結果

	項目	パラメータ
移動衛星通信端末空中	7線地上高	1.5m
	周波数	2462MHz
送信装置	最大電力	-34.2 dBm/MHz
	空中線地上高	4.5m
	空中線利得	−5 dBi
伝搬路	壁損失	14 dB
移動衛星通信端末	周波数	2484.390 MHz
	空中線利得	0.51dBi
(文百)	許容干渉電力	-119.4 dBm/MHz
所要結合量	所要結合量	64.9 dB
川女 加口里	所要離隔距離(壁からの距離)	7m

(6) 放送事業用 FPU システム

放送事業用 FPU システムが空間伝送型ワイヤレス電力伝送システムと正対設置の場合について検討モデルによる干渉計算を実施した。また、送信装置から受電装置への放射角度は、水平方向のサイドローブが大きくなる最大角度 60 度 (θ) とし、電波伝搬モデルについては、自由空間伝搬損を使用し、壁損失 14dB とした。

検討結果を表 3.3.16 及び表 3.3.17 に示す。放送事業用無線局の周波数帯域とは、30MHz 以上の離調があるため帯域外干渉として検討し、所要離隔距離・設置条件を満たすことで共用可能となる。また、ユースケースでの検討結果として、表 3.3.18~表 3.3.20 に示す。最長の所要離隔距離は9mとなり、WPT 屋内設置環境内にFPUシステムが設置された環境となるため、一元的に管理された環境内での使用するケースとなる。

表 3.3.16 放送事業用 FPU システムとの共用検討結果 (H31 年度答申システム)

	項目	固定中継 上り	移動中継 上り	固定中継 下り	移動中継 下り
	周波数[GHz]	2. 37	2. 37	2. 37	2. 37
	①標準受信電力 [dBm/BW]	-57	-57	-57	-57
	②所要 D/U 比[dB]	17.4	32.6	13	21.6
计	③FPU 許容干渉電力[dBm/BW] (=①-②)	-74. 4	-89. 6	-70	-78.6
時	④FPU 空中線利得[dBi]	21. 1	18. 1	12	5. 2
FPU -	⑤FPU 許容干渉電力[dBm/BW] (=③-④) (FPU 空中線利得考慮)	-95. 5	-107.7	-82	-83.8
0	と (FFU 空中線利得考慮) ⑥干渉電力[dBm/MHz]		-34. 2	-34. 2	-34. 2
正対時 FPU との所要離隔距離計算	⑦干渉電力[dBm/BW] (FPU 帯域換算)	-21.8	-21. 8	-21.8	-21.8
隔隔	⑧送信空中線利得[dBi]	6	6	6	6
距離	(FPU 帯域換算)	-15. 8	-15.8	-15.8	-15.8
算	⑩所要改善量[dB] (=⑨-⑤)	79. 7	91.9	66. 2	68
21	所要離隔距離[m] (自由空間損失)	97	397	21	25
	所要離隔距離[m] (壁損失 14dB、自由空間損失)	19	79	4	5
設	⑩所要改善量[dB]	79. 7	91. 9	66. 2	68
設置	⑪指向性減衰量[dB]	20	20	20	20
[離計算	⑫壁損失[dB]	14	14	14	14
算離	⑬残存する所要改善量[dB] (⑩-⑪ - ⑫)	45. 7	57. 9	32. 2	34
隔	所要離隔距離[m] (自由空間損失)	2.0	8.0	0.5	0.6

表 3.3.17 放送事業用 FPU システムとの共用検討結果 (現行システム)

	項目	移動中継 ハーフ 16QAM	移動中継 フル 16QAM	固定中継 32QAM	固定中継 フル 16QAM	移動中継 フル 8PSK	移動中継 ハーフ 32QAM
	周波数[GHz]	2. 37	2. 37	2.37	2. 37	2. 37	2.37
	①標準受信電力[dBm/BW]	-61	-61	-61	-61	-61	-61
	②所要 C/I[dB]	29. 4	22.4	26.8	19. 2	17. 2	23. 2
正対時 FPU	③FPU 許容干渉電力[dBm/BW] (=①-②)	-90. 4	-83. 4	-87. 8	-80. 2	-78. 2	-84. 2
時	④FPU 空中線利得[dBi]	18. 1	18.1	18. 1	18. 1	18.1	18. 1
راد UP	⑤FPU 許容干渉電力[dBm/BW] (=③-④) (FPU 空中線利得考慮)	-108.5	-101.5	-105. 9	-98. 3	-96. 3	-102. 3
の	⑥干渉電力[dBm/MHz]	-34. 2	-34. 2	-34. 2	-34. 2	-34. 2	-34. 2
との所要離隔距離計算	⑦干渉電力[dBm/BW] (FPU 帯域換算)	-21.8	-21.8	-21.8	-21.8	-21.8	-21.8
帰	⑧送信空中線利得[dBi]	6	6	6	6	6	6
離計	⑨干渉電力 EIRP[dBm/BW] (=⑦+⑧)	-15. 8	-15.8	-15.8	-15.8	-15.8	-15. 8
算	⑩所要改善量[dB] (=⑨-⑤)	92. 7	85. 7	90. 1	82. 5	80.5	86. 5
	所要離隔距離[m] (自由空間損失)	435	194	322	134	107	213
	所要離隔距離[m] (壁損失 14dB、自由空間損失)	87	39	64	27	21	42
	⑩所要改善量[dB]	92. 7	85. 7	90. 1	82. 5	80. 5	86. 5
所要離!	⑪送信指向性減衰量[dB]	20	20	20	20	20	20
離隔距離計	⑫壁損失[dB]	14	14	14	14	14	14
隔距離計算へ設置時の	③残存する所要改善量[dB] (⑩-⑪ - ⑫)	58. 7	51. 7	56. 1	48. 5	46. 5	52. 5
71	所要離隔距離[m] (自由空間損失)	6. 9	3. 9	6. 5	2.7	2. 2	4. 3

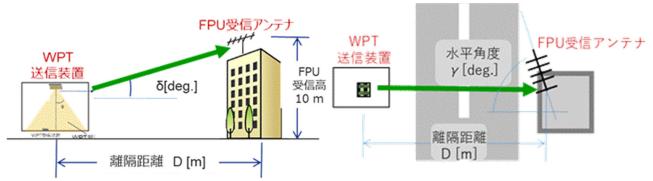


図 3.3.11 FPU システムのユースケース検討例

表 3. 3. 18 ユースケースによる所要離隔距離計算例 (垂直方向、平成 31 年答申システム)

設置地上高の差(垂直方向)と所要離	平成 31 年答申システム						
隔距離 (壁損失含む)	固定中継	上り回線	移動中継	上り回線			
FPU 空中線の地上高からの仰角δ [deg]/水平方向の所要離隔距離 D [m]	角度 δ	所要離隔距 離 D	角度 δ	所要離隔距 離 D			
	_	_	43. 9	5. 7			

※地上高の差が、表 3.3.16の所要離隔距離以上の場合は"-"としている

表 3.3.19 ユースケースによる所要離隔距離計算例(垂直方向、現行システム)

	A OF OF TO A CONTRACT STREET STREET STREET STREET STREET STREET												
設置地上高						現行シ	ステム						
差(垂直方	移動中継		移動	中継	固定	中継	固定	中継	移動	中継	移動	移動中継	
向)と所要離	ハーフ		フ	ル	320	QAM	フル		フル		ハーフ		
隔距離	16QAM		160	QAM			16QAM		8P	SK	320	QAM	
(壁損失含	1041111						204211						
ts)													
FPU 空中線	角度	所要	角度	所要	角度	所要	角度	所要	角度	所要	角度	所要	
の地上高か	δ	離隔	δ	離隔	δ	離隔	δ	離隔	δ	離隔	δ	離隔	
らの仰角 δ		距離		距離		距離		距離		距離		距離	
[deg]/		D		D		D		D		D		D	
水平方向の													
所要離隔距	65. 1	2.5	_	_	58.5	3. 4	-	_	_	_	_	_	
離 D [m]													

※地上高の差により所要離隔距離が不要の場合は"-"としている。

表 3.3.20 ユースケースによる所要離隔距離計算例 (水平方向)

	衣 3.3.20 4 一 ヘケー へによる別安離層理能可昇列(小十万回)										
項目		平成 3	1 年度			現行シ	ステム				
() 均日		答申シ	ステム								
FPU	FPU	固定	移動	移動	移動	固定	固定	移動	移動		
空中	指向	中継	中継	中継	中継	中継	中継	中継	中継		
線指	減衰	上り	上り	Half	16QAM	32QAM	16QAM	8PSK	32QAM		
向角	dB	回線	回線	Mode	Full	Ful1	Ful1	m	m		
γ 度		m	m	m	m	m	m				
-15.0	-12.0	_	1.4	0.6	-	0.8	-	_	-		
-10.0	-5.0	_	3. 2	1.4	-	1.9	_	_	_		
-5.0	-1.1	_	5.0	2. 2	_	3.0	_	_	_		
-1.0	-0.1	_	5. 7	2.5	_	3.3	_	_	_		
0.0	0.0	_	5. 7	2.5	-	3.4	_	_	_		
1.0	-0.1	_	5. 7	2.5	_	3.3	_	_	_		
5. 0	-1.1		5.0	2.2	_	3.0	_	_	_		
10.0	-5.0		3. 2	1.4	_	1.9	_	_	_		
15. 0	-12.0	_	1.4	0.6	_	0.8	_	_	_		

※所要離隔距離が不要の場合は"-"としている。

(7) 電波ビーコン

空間伝送型ワイヤレス電力伝送システムから電波ビーコンへの干渉として、壁を隔てた外にある車のビーコン車載空中線(地上高 1m)へ干渉を与える干渉計算を実施した。また、ユースケースとして電力伝送システムの送信装置から壁までを 10m として、共用検討を実施した。

空間伝送型ワイヤレス電力伝送システムからの干渉は、帯域外干渉として約 1.8km の所要離隔距離が必要となるが、共用モデルによる所要離隔距離は、22m と空間伝送型ワイヤレス電力伝送システムのユースケースとなる工場や倉庫等を考慮すると共用は可能となる。また、電波ビーコンは令和3年度末での情報提供停止とそれに向けた路側機の減少も公表されていることから、そのサービスに影響を与える可能性はより低いと国土交通省道路局 ITS 推進室から情報を得ている。

表 3.3.21 電波ビーコンとの共用検討結果(帯域内干渉)

項目	パラメータ			
干渉波周波数	2484 MHz			
空中線電力	41.8 dBm/MHz			
帯域外補正値	76. 0dBc			
帯域補正 (85kHz)	−10. 7dB			
帯域外空中線利得 (最大値)	6.0dBi			
ビーコン周波数	2499.7MHz			
ビーコン車載機空中線利得	2.0dBi			
許容干渉電力	-90.4dBm			
壁損失	14. 0dB			
所要結合量	53.5dB 39.5 dB(壁損失あり)			
所要離隔距離(壁からの距離)	4.5m 0.9m(壁損失あり)			

表 3.3.22 電波ビーコンとの共用検討結果(帯域外干渉)

項目	パラメータ				
干渉波周波数	2,484 MHz				
空中線電力	41.8 dBm				
空中線利得 (最大値)	24. 0dBi				
ビーコン周波数	2, 499. 7MHz				
ビーコン車載機空中線利得	2.0dBi				
ビーコンフィルタの減衰量	52. 5dB				
許容干渉電力	-90.4dBm				
壁損失	14. 0dB				
所要結合量	105.7dB 91.7 dB(壁損失あり)				
所要離隔距離(壁からの距離)	1,851m 369m (壁損失あり)				

表 3.3.23 電波ビーコンとの共用検討結果(共用モデル)

パラメータ				
2,484 MHz				
41.8 dBm				
60.0度				
70.7度				
13.5dBi				
2,499.7MHz				
52. 5dB				
2.0dBi				
-90.4dBm				
60.9dB				
14. 0dB				
20. 3dB				
22. Om				

(8) 電波天文

電波天文との共用検討では、周辺の建物等によるクラッタ損失を含む算出方法にて、所要結合量から所要離隔距離を算出した。また、伝搬損失は自由空間損失とし、壁による損失は、勧告 ITU-R P. 2109-1 における Traditional モデルである 14 dB、クラッタ損失の算出に当たっては、空間伝送型ワイヤレス電力伝送システムが設置される倉庫、工場等の施設内環境を踏まえ、勧告 ITU-R P. 2108-0 のデフォルト値(27m)として算出とした。

所要離隔距離の算出結果を表 3.3.24 に示す。この結果より小金井及び水沢観測所においては近傍 1.6km の範囲までを、野辺山、臼田、石岡、石垣島及び入来観測所においては近傍 5.7km の範囲までを空間伝送型ワイヤレス電力伝送システムを制限する区域とすることで電波天文との共用は可能となる。

表 3.3.24 観測所との所要離隔距離算出結果

観測施設	単位	野辺山	臼田	小金井	石岡	水沢	石垣島	入来
観測周波数	MHz	2695	2695	2695	2695	2695	2695	2695
観測周波数帯幅 Δf ₀	MHz	10	10	10	10	10	10	10
干渉閾値レベル	_	ı	İ	ı	ı	ı	ı	_
入力電力 ΔP _H	dBW	-207.0	-207.0	-207.0	-207.0	-207.0	-207.0	-207.0
pfd $S_H \Delta f$	$dB(W/m^2)$	-177.0	-177. 0	-177.0	-177.0	-177.0	-177.0	-177.0
pfd スペクトラム S _H	$dB(W/(m^2 \cdot Hz))$	-247.0	-247.0	-247.0	-247.0	-247.0	-247.0	-247. 0
離調周波数 (△f)	MHz	283	283	283	283	283	283	283
送信装置天井 (設置) 高 h ₁	m	4. 5	4. 5	4. 5	4. 5	4. 5	4. 5	4. 5
空中線入力電力密度	dBm/MHz	-34. 2	-34. 2	-34. 2	-34. 2	-34. 2	-34. 2	-34. 2
	dBW/MHz	-64. 2	-64. 2	-64. 2	-64. 2	-64. 2	-64. 2	-64. 2
水平方向空中線利得	dBi	-14. 2	-14. 2	-14. 2	-14. 2	-14.2	-14.2	-14. 2
壁損失	dB	-14.0	-14.0	-14.0	-14.0	-14.0	-14.0	-14.0
クラッタ損失	dB	-8.5	-8.5	-19.8	-8.5	-19.8	-8.5	-8. 5
0dBi 受信 Ant 入力閾値	dBm/MHz	-187.0	-187. 0	-187. 0	-187. 0	-187. 0	-187.0	-187. 0
所要結合量	dB	116. 1	116. 1	104.8	116. 1	104.8	116. 1	116. 1
所要離隔距離 (自由空間伝搬損)	Km	5. 7	5. 7	1.6	5. 7	1.6	5. 7	5. 7

(9) アマチュア無線

アマチュア無線との共用検討は、周辺の建物等によるクラッタ損失を見込んだ所要結合量から所要離隔距離を算出した。また、伝搬損失は自由空間損失とし、壁による損失は、勧告 ITU-R P. 2109-1 における Traditional モデルである 14 dB、クラッタ損失の算出に当たっては、倉庫、工場等の施設内環境を踏まえ、勧告 ITU-R P. 2108-0 のデフォルト値 27m としてクラッタ損失が小さくなる算出とした。

空間伝送型ワイヤレス電力伝送システムとアマチュア無線が、同一周波数を利用した場合及び 10MHz 離調がある場合について、最も干渉が大きい場合として、空間伝送型ワイヤレス電力伝送システムのビームの方向とアマチュア無線の空中線の最大空中線利得方向が正対した場合における算出結果を表 3.3.25 に示す。このような最悪のケースでは、4.4kmの離隔が必要との結果となった。

表 3.3.25 アマチュア無線との共用検討結果

項目	ママチュア無線 帯域内同一周波数	アマチュア無線帯域 内・外の不要発射 (10MHz 離調)	備考	
周波数	2,412/2,437MHz	2,462/2,484MHz		
空中線電力	41.8dBm	41.8dBm		
帯域外補正	-	76 . 0dBc		
送信メインローブ角度	60 度	-		
送信空中線利得 (水平方向)	-5.0dBi	-14.0dBi		
壁損失	14.0dB	14.0dB		
クラッタ損失 (勧告 ITU-R P.2108-0)	38. 7dB	0dB	送信側・受信側ともに 「郊外」として算出 不要発射は所要離隔 距離が小さく0とす る。	
アマチュア無線周波数	2,412/2,437MHz	2,400-2,450MHz		
アマチュア無線 空中線利得	18.0dBi/5.0dBi	18.0 dBi/5.0dBi	八木アンテナ 18.0dBi ホイップアンテナ 5.0dBi として計算	
許容干渉電力	-110.83dBm/MHz	-110.83dBm/MHz		
所要改善量	112. 1/99. 1dB	66. 6/53. 6dB		
所要離隔距離 (自由空間伝搬)	4.4km/0.97km	10.8m/0m	壁からの距離	

3.3.3 5.7GHz 帯システムと他の無線システムとの周波数共用条件

(1) 無線 LAN システム

共用検討のモデルとして、無線 LAN システムの AP 同士が共用する環境と無線 LAN システムと空間伝送型ワイヤレス電力伝送システムの共用する環境の共用検討モデルにて、システムスループットのシミュレーションを比較し、無線 LAN システム同士の干渉によるスループット低下より、空間伝送型ワイヤレス電力伝送システム送信装置による干渉によって発生するスループットの低下が同等以下となるキャリアセンスの設定を評価した。

また、壁損失及び屋内反射の影響については、レイトレーシングによるシミュレーションにより実施した。

送信時間が 10ms でのシステムスループットのシミュレーション結果を図 3.3.12、20ms の結果を図 3.3.13 に示す。無線 LAN システムのみの環境より、無線 LAN システムと空間伝送型ワイヤレス電力伝送システム環境でのスループットを高くするためには、「距離を離す」あるいは「センシング時間(CCA 時間)を長くする」必要がある。そのため、干渉を小さく抑える条件は、送信時間や CCA 時間の絶対値ではなく、相対時間関係を設定する必要があり、送信時間が 10ms の場合は CCA 時間が 4.6ms 以上、送信時間が 20ms の場合は CCA 時間が 9.2ms 以上であれば、無線 LAN システムの AP と空間伝送型ワイヤレス電力伝送システムの共用環境でのスループットは高くなる結果であり、送信時間と CCA 時間の関係が 2:1 となるように設定することで共用可能となる。

そのため、CCA 時間の設定としては、無線 LAN パケットの十分な検出可能な時間として 4ms とすることが妥当と考えられ、検討結果の 2:1 の関係より、送信時間は 8ms とした。

また、現行の無線 LAN システム (小電力データ通信システムの無線局) の無線設備規則 *13 に おける最大送信バースト長は 8ms であるが、無線 LAN システムの標準規格 IEEE 802. 11^{*14} では、実際の物理パケットの最大占有時間長は約 5.5ms に規定されており、制御フレームも逐次的に送受信されるため、CCA 時間としては 4ms にて無線 LAN システムの検出は可能である。

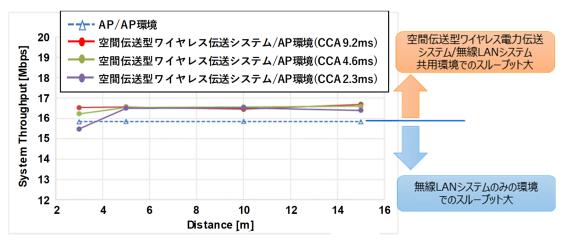


図 3.3.12 スループット評価結果例(送信時間:10msの場合)

※14 IEEE Std. 802.11-2016, IEEE Standard Association, 2016年12月

^{※13} 無線設備規則第四十九条の二十第三号へ より

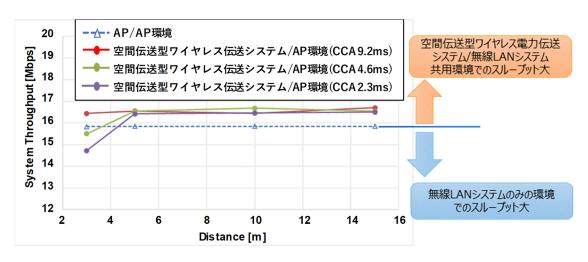


図 3.3.13 スループット評価結果例 (送信時間:20msの場合)

共用する無線 LAN AP が複数となった場合のシステムスループットのシミュレーション結果を図 3.3.14 及び図 3.3.15 に示す。図 3.3.12 及び図 3.3.13 の結果と同様となり、送信時間と CCA 時間の関係が 2:1 となるキャリアセンス設定にて無線 LAN システムとは共用可能となる。

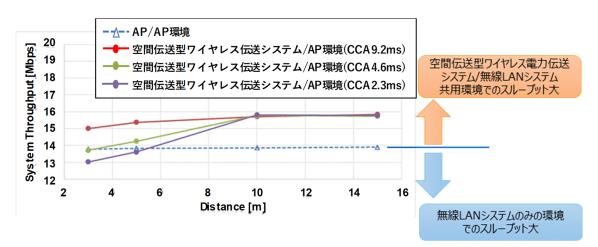


図 3.3.14 スループット評価結果例 (AP 複数・送信時間:10ms の場合)

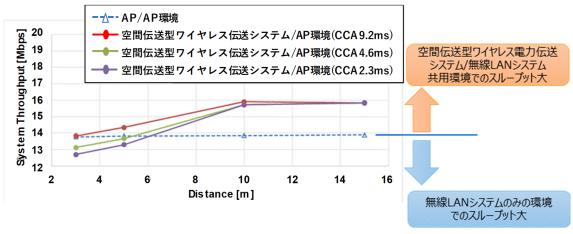


図 3.3.15 スループット評価結果例 (AP 複数・送信時間: 20ms の場合)

表 3.3.26 キャリアセンスの設定

センシング項目	パラメータ項目	共用 状態	非共用 状態	備考
	CCA 時間	4ms		
センシング時間	CCA 初期化時間	bs		CCA 時間・送信時間を初期化す る周期
	隣接チャネル	-75dBm		5680~5730MHz
センシング閾値	次隣接チャネル	-72dBm		5570~5680MHz
	次隣接チャネル以遠	-60dBm		5470~5570MHz
送信時間		8ms 192ms		

共用状態 : 送信時間と CCA 時間の比率が 2:1 となる動作状態。

非共用状態 : 無線 LAN システムとの共用の可能性が低いと判断した場合に、送信時間を延

ばす状態。

また、壁損失及び屋内反射の影響について、レイトレーシングによるシミュレーション結果を表 3.3.27 に示す。天井へ設置された空間伝送型ワイヤレス電力伝送システム送信装置からビーム角度 θ で放射された電波が壁を挟んで隣の部屋の無線 LAN 機器に到来する最大値は、-28.3dBm となった。そのため、反射を考慮した場合であっても、壁を挟んで WPT 屋内設置環境の外にある無線 LAN 機器に到来する空間伝送型ワイヤレス電力伝送システムによる電界強度は、既存の無線 LAN 機器と同程度であり、空間伝送型ワイヤレス電力伝送システムによって大きな伝送劣化は発生しないという結果となった。

表 3.3.27 反射を考慮したレイトレーシングシミュレーション結果

メインビーム角度 θ	0度	30 度	45 度	60 度
無線 LAN 機器に到来する 信号強度	-44.5dBm	−38.7dBm	-36.7dBm	-28.3dBm

屋内に設置した空間伝送型ワイヤレス電力伝送システム(送信装置)と近接した環境に存在する無線 LAN システムに対しての最大入力定格に対する検討結果を表 3.3.28 に示す。

正面対向の場合、所要離隔距離は $9.3m\sim41.5m$ となる。しかし、送信装置を天井への設置 とした場合での所要離隔距離は $4.9m\sim11m$ に抑えられる。

空間伝送型ワイヤレス電力伝送システムと無線 LAN システムが同一管理者によって運用されている環境では、互いに正面正対しない調整にて、運用することで共用可能とできる。また、別空間となる壁損失ありの場合は、所要離隔距離 1.5m~6.6m となり、想定される WPT 設置環境内における空間距離以下であり、別空間に設置する環境では共用可能になる。

表 3.3.28 無線 LAN システムとの共用検討結果(破壊防止)

項目	単位	Ī	E面対向]	天井	‡への設	'置	正面太	向壁損	失あり
無線 LAN 空中線利得	dBi	2. 14	7	20	2. 14	7	20	2. 14	7	20
無線 LAN 許容破壊レベル	dBm	0	10	10	0	10	10	0	10	10
周波数	MHz		5750							
等価等方輻射電力	dBm					70				
交差偏波識別度	dB					0				
壁損失	dB	0	0	0	0	0	0	16	16	16
伝搬モデル	_	自由空間損失								
所要減衰量	dB	72. 1	67	80	72. 1	67	80	56. 1	51	64
所要離隔距離	m	16.8	9.3	41.5	6.8	4. 9	11	2.65	1.5	6.6

(2) DSRC (狭域通信) システム

屋内に設置した空間伝送型ワイヤレス電力伝送システムから狭域通信システムに対する 影響を及ぼさない所要離隔距離は、送信装置からの電波がスプリアス・レスポンス・リジェ クション量及び DSRC 帯域内雑音入力量許容値以下となる距離とした。

また、DSRC システムには移動局・基地局の他に、移動局の試験を行う試験機があり、これはスプリアス・レスポンス・リジェクション量及び DSRC 帯域内雑音入力許容値が規定されていないため、共用検討の計算対象外とした。

スプリアス・レスポンス・リジェクション量に対する検討結果を表 3.3.29、DSRC 帯域内 雑音入力量許容値に対する検討結果を表 3.3.30 に示す。

所要離隔距離はスプリアス・レスポンス・リジェクション量に対するクラス2基地局が最大となり、2,620mとなる。また、DSRC帯域内雑音入力に関しては、移動局、基地局ともにスプリアス干渉による所要離隔距離は短く、スプリアス・レスポンス・リジェクション量となった。この結果より、壁の種類に応じて離隔距離を確保することが前提となり、被干渉局への干渉量は、被干渉局側の指向性減衰量及び壁損失を個別に考慮した干渉計算による所要離隔距離を確保することにより共用可能となる。なお、試験機が設置されている際には、個別に検討する必要がある。

表 3.3.29 狭域通信システムへの共用検討結果 (スプリアス・レスポンス・リジェクション量)

		勧告 ITU-R P.2109-1 壁モデル				
仏桜 乳 炊 仕田	光片	(Median 値)				
仕様·計算結果	単位	16.41 E	クラス 1	クラス 2		
		移動局	基地局	基地局		
規格受信感度+3dB	dBm	-57	-62	-72		
スプ。リアス・レスポンス・リシェクション	dB	24	28	30		
干渉許容電力	dBm	-33	-34	-42		
空中線利得	dBi	10 20		20		
受信指向性減衰量	dB		0			
偏波損失	dB		0			
EIRP	dBm		70			
壁損失	dB		16			
送信指向性減衰量	dB	0				
1m における自由空間損失	dB	47.6				
所要減衰量	dB	113	132			
所要離隔距離	m	294	1,043	2,620		

表 3.3.30 狭域通信システムへの共用検討結果(DSRC 帯域内雑音入力)

		勧告 ITU-R P.2109-1 壁モデル			
Д.按 ⊋L 按 分 田	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(Median 値)			
仕様・計算結果	単位	70-51 E	クラス1	クラス 2	
		移動局	基地局	基地局	
最小周波数	MHz	5, 775	5, 815	5, 815	
許容干渉入力量	dBm	-84. 5	-90. 0	-100.0	
受信空中線利得	dBi	10.0	20. 0	20. 0	
受信指向性減衰量	dB	0			
偏波損失	dB		0		
等価等方輻射電力	dBm/MHz	11.0	1.0	1.0	
壁損失	dB		16		
送信指向性減衰量	dB	0			
1m における自由空間損失値	dB	47. 6			
所要減衰量	dB	112.5 118.0 128.0			
所要離隔距離	m	276	520	1, 645	

(3) 放送業務用 STL/TTL システム

放送事業用 STL/TTL システムへ影響を与えない所要離隔距離は、STL/TTL システムにおける帯域内雑音信号が、STL/TTL の標準時熱雑音 C/N 及びフェージングマージン時所要熱雑音 C/N に影響を及ぼさない値とし、受信等価熱雑音レベルに対し 0.1dB 以下となる入力レベルである-117.9dBm を下回る所要減衰量 145.2dB とした。

また、標準時熱雑音 C/N に対する劣化は同一ルート干渉、フェージング時所要熱雑音 C/N に対しては差動フェージングを考慮して図 3.3.16 に示す検討モデルによる設置高低差による指向性減衰量を考慮した検討を実施した。

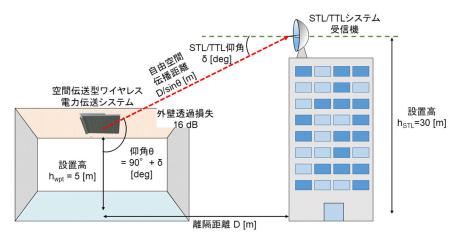


図 3.3.16 STL/TTL システムとのユースケース検討モデル

同一ルート干渉時の共用検討結果を表 3.3.31 に示す。所要離隔距離としては 46.8m となる。

異ルート干渉時の共用検討結果を表 3.3.32 に示す。所要離隔距離としては 836m となる。しかし、設置高の差が 5m 以上となる場合、STL/TTL 受信空中線の指向性減衰量を 20dB 見込むことが可能となり、所要離隔距離は 83.4m となる。また、図 3.3.16 にて送信装置の設置高を変更した場合の所要離隔距離と C/N 劣化量の状態を図 3.3.17 に示す。この結果より、所要離隔距離・設置条件を満たすことで共用可能となる。

表 3. 3. 31STL/TTL システムとの同一ルート十渉による共用検討結果					
項目	単位	値			
周波数	MHz	5, 850			
帯域幅	MHz	6. 7			
標準受信電力	dBm/BW	-42. 9			
受信空中線利得(フィーダ損失含む)	dBi	32. 1			
受信等価熱雑音	dBm	-101.5			
所要フェージングマージン	dB	28. 5			
フェージング時所要 C/N	dB	30. 9			
受信指向性減衰量	dB	0.0			
熱雑音劣化 0.1dB となる入力レベル	dBm/BW	-117. 9			
所要減衰量	dB	117. 6			
帯域外空中線電力(ア)	dBm/MHz	-38.0			
送信空中線利得(イ)	dBi	25. 0			
等価等方輻射電力の最大値(ア+イ)	dBm/MHz	-13.0			
送信指向性減衰量(83.9度)	dB	19. 5			
壁損失	dB	16. 0			
1m での自由空間損失	dB	47.8			
所要離隔距離	m	46.8			

表 3. 3. 31STL/TTL システムとの同一ルート干渉による共用検討結果

表 3.3.32STL/TTL システムとの異ルート干渉による共用検討結果

項目	単位	設置高低差 5m 以上	設置高低差 5m 未満
周波数	MHz	5, 8	350
帯域幅	MHz	6.	7
標準受信電力	dBm/BW	-42	2. 9
受信空中線利得(フィーダ損失含む)	dBi	32	. 1
受信等価熱雑音	dBm/BW	-10	1. 5
所要フェージングマージン	dB	28	. 5
フェージング時所要 C/N	dB	30. 9	
受信指向性減衰量	dB	20.0 0.0	
熱雑音劣化 0.1dB となる入力レベル	dBm/BW	-117. 9	
所要減衰量	dB	125. 2	145. 2
帯域外空中線電力(ア)	dBm/MHz	-38	3. 0
送信空中線利得(イ)	dBi	25	. 0
等価等方輻射電力の最大値(ア+イ)	dBm/MHz	-13	3. 0
送信指向性減衰量(86.6度)	dB	23. 0	
壁損失 (勧告 ITU-R P.2109-1 における	dB	16.0	
Traditional モデル)	uБ	16. 0	
1mでの自由空間損失	dB	47.8	
所要離隔距離	m	83. 4	836

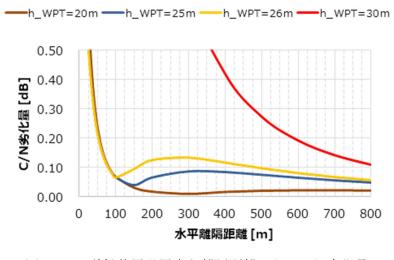


図3.3.17 送信装置設置高と離隔距離による C/N 劣化量

(4) 放送事業用 FPU/TSL システム

FPU システムに対する影響を及ぼさない所要離隔距離は、所要干渉波電力を下回るために必要な値とし、ユースケースとして図 3.3.18 に示す検討を実施した。

また、TSLシステムに関しては、前項のSTL/TTLシステムと同一方法により検討した。

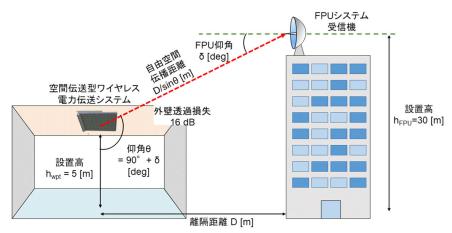


図 3.3.18 FPU システムの建屋設置時のユースケース

FPU システムとの共用検討結果を表 3. 3. 33 に示す。FPU システムの雑音入力が許容雑音入力レベル以下となるための所要減衰量は 124.8dB、所要離隔距離は 80.0m となり、所要離隔距離・設置条件を満たすことで共用可能となる。

項目	単位	固定中継局 (4K/8K 標準伝送)	可搬型 OFDM 中継局	移動中継局
周波数	MHz	5850	5850	5850
帯域幅	MHz	17. 5	17. 5	17. 5
標準受信電力	dBm/BW	-45. 0	-61. 0	-62
許容干涉雑音入力	dBm/BW	-89. 4	-95. 4	-90. 5
受信空中線利得(フィーダ損込)	dBi	30. 0	30.0	22. 7
受信空中線指向性損失量	dB	0	0	0
所要減衰量	dB	118.8	124.8	112.6
帯域外発射空中線電力(ア)	dBm/MHz	-38. 0	-38. 0	-38. 0
送信空中線利得(イ)	dBi	25. 0	25. 0	25. 0
等価等方輻射電力の最大値(ア+イ)	dBm/MHz	-33. 0	-33.0	-33. 0
離隔距離に対する仰角	deg	84. 6	86. 4	82. 3
送信指向性減衰量	dB	20. 5	23.0	17. 5
壁損失(勧告 ITU-R P.2109-1 にお	dB	16. 0	16. 0	16. 0
ける Traditional モデル)	uD	10.0	10.0	10.0
1mでの自由空間損失	dB	47.8	47.8	47.8
所要離隔距離	m	53. 0	80.0	37. 0

表 3.3.33FPU システムとの共用検討結果

図 3.3.18 に示すユースケースにおける FPU システムへの距離に対する雑音入力量の計算結果を図 3.3.19 に示す。空間伝送型ワイヤレス電力伝送システム設置高を 5m とした場合、15dB 程度の水平面指向性減衰量を見込めるため、空間伝送型ワイヤレス電力伝送システムからの帯域外雑音入力は、離隔距離に関わらず許容雑音電力以下となる。また、検討では FPUシステムの垂直面指向性減衰量は含まないとしたが、俯角 5 度で約 14dB、10 度で約 22dB を考慮でき、さらに所要離隔距離を短くすることが可能となる。

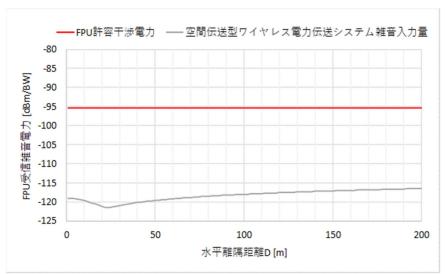


図3.3.19 水平離隔距離に対するとFPUシステムの受信する空間伝送型ワイヤレス電力伝送システム雑音電力の関係

TSL システムとの共用検討結果の同一ルート干渉を表 3.3.34 に示す。共用可能となる所要減衰量は、150.2dB(フェージング損導入による場合は 125.7dB)となり、同一ルート干渉による所要離隔距離は 88.3m となる。

異ルート干渉の共用検討結果を表 3.3.35 に示す。所要離隔距離は 1,485m となるが、TSL システムとの設置高低差が 7m 以上である場合、TSL 受信空中線指向性損失が 20dB、所要離隔距離は 148.5m となり、この所要離隔距離・設置条件を満たすことで共用可能となる。

表 3.3.34TSL システムとの共用検討結果 (同一ルート干渉)

次 5. 5. 5415L マハケムと の奈川検的相木(F		店
項目	単位	値
計算周波数	MHz	5850
帯域幅	MHz	16. 2
標準受信電力	dBm/BW	-44.8
空中線利得(フィーダ損込)	dBi	37. 1
受信等価熱雑音	dBm/BW	-98. 3
所要フェージングマージン	dB	24. 5
フェージングマージン時所要 C/N	dB	29.0
受信指向性減衰量	dB	0.0
熱雑音劣化 0.1dB となる入力レベル	dBm/BW	-114.7
所要減衰量 (フェージング損失含む)	dB	-125. 7
帯域外発射空中線電力(ア)	dBm/MHz	-38. 0
送信空中線利得(イ)	dBi	25. 0
等価等方輻射電力の最大値(ア+イ)	dBm/MHz	-13
送信指向性減衰量(86.8度)	dB	23.0
壁損失(勧告 ITU-R P. 2109-1 における Traditional モデル)	dB	16. 0
1mの自由空間減衰量	dB	47.8
所要離隔距離	m	88.3

表 3.3.35 TSL システムとの異ルート干渉条件における共用検討結果

		KITICAUTI DEL	4 10/4 1/10/14	
項目	単位	設置高低差 7m 以上	設置高低差 7m 未満	
 周波数	MHz	5,850		
帯域幅	MHz	16	. 2	
標準受信電力	dBm/BW	-44	1. 8	
受信空中線利得 (フィーダ損失含む)	dBi	37	. 1	
受信等価熱雑音	dBm/BW	-97	7. 7	
所要フェージングマージン	dB	24. 5		
フェージング時所要 C/N	dB	29. 0		
受信指向性減衰量	dB	20. 0	0	
熱雑音劣化 0.1dB となる入力レベル	dBm/BW	-11	7.9	
所要減衰量(受信指向性込)	dB	130. 2	150. 2	
帯域外空中線電力(ア)	dBm/MHz	-38	3. 0	
送信空中線利得 (イ)	dBi	25	. 0	
等価等方輻射電力の最大値(ア+イ)	dBm/MHz	-13	3. 0	
送信指向性減衰量(90度以上)	dB	23. 0		
壁損失(勧告 ITU-R P. 2109-1 における Traditional モデル)	dB	16. 0		
1m での自由空間損失	dB	47.8		
所要離隔距離	m	148. 5	1, 485	

(5) 無人移動体高速伝送システム

無人移動体高速伝送システム(ロボット無線システム)に対する影響を及ぼさない所要離隔距離として、同一、隣接、次隣接の各チャネル間隔での許容妨害波入力を下回るために必要な距離を検討した。また、空間伝送型ワイヤレス電力伝送システム側の指向性減衰量が最小となる条件として、ロボット無線システム搭載空中線の設置高は 0m としている。

共用検討結果を表 3.3.36 に示す。壁の損失が 16dB (勧告 ITU-R P. 2109-1 における Traditional モデル) にて、所要離隔距離は、同一チャネルで約 23km、次隣接チャネルで 185m となる。壁損失が 41dB (RC 壁: 厚さ 150mm) の場合に所要離隔距離は、同一チャネルで約 1km、次隣接チャネルで 27m となる。

空間伝送型ワイヤレス電力伝送システムは屋内利用、ロボット無線システムでは市街地以外の屋外での利用を想定しており、空間伝送型ワイヤレス電力伝送システムの利用環境(設置場所・使用チャネル・壁損失)を一元的に管理し、ロボット無線システムとの運用調整の仕組みを利用した調整を行うことで、すみ分けによる共用は可能となる。

表 3.3.36 無人移動体高速伝送システムとの共用検討結果

項目	同一 チャネル	隣接 チャネル	次隣接 チャネル
所要離隔距離(勧告 ITU-R P.2109-1 における Traditional モデル)	23,348 m	1,170 m	185 m
所要離隔距離(勧告 ITU-R P.2109-1 における Thermally efficient モデル)	4,249 m	213 m	49 m
所要離隔距離(RC 壁:厚さ 150mm)	1,313 m	68 m	27 m

(6) 気象レーダー

気象レーダーとの共用検討は、空間伝送型ワイヤレス電力伝送システムからの不要発射が 気象レーダー帯域内へ干渉した場合と送信信号が気象レーダーの帯域外干渉を生じるとした 場合について実施した。また、不要発射は気象レーダーの許容干渉レベル-120dBm/BW、送信 信号に対しては-40dBm とし、これを下回るために必要な所要離隔距離を算出した。

不要発射に対する共用検討結果を表 3.3.37 に示す。不要発射強度が、気象レーダーの許容雑音入力電力値を下回る所要減衰量は128.9dBとなり、所要離隔距離は137.2mとなった。送信信号が気象レーダーの帯域外へ干渉する場合の検討結果を表 3.3.38 に示す。受信許容入力電力を下回るための所要減衰量157.0dB、所要離隔距離は3,308mとなり、不要発射に対する所要離隔距離を上回る。そのため、空間伝送型ワイヤレス電力伝送システムの設置条件(天井への設置及び壁損失:16dB)を確保した環境にて、気象レーダー設置位置から3.3kmの範囲を、空間伝送型ワイヤレス電力伝送システムの設置を制限する区域とすることで共用可能となる。

表 3.3.37 気象レーダーとの共用検討結果(不要発射強度)

項目	単位	計算値
周波数	MHz	5, 372. 5
帯域幅	MHz	1.2
受信空中線利得	dBi	47. 0
受信許容雑音電力	dBm/BW	-120.0
受信指向性減衰量	dB	0.0
所要減衰量	dB	128. 9
帯域外空中線電力(ア)	dBm/MHz	-48. 0
送信空中線利得(イ)	dBi	25. 0
無相関雑音の減衰量(ア+イ)	dB	16. 0
等価等方輻射電力の最大値(ア+イ-ウ)	dBm/BW	-38. 2
送信指向性減衰量(87.9度)	dB	23. 0
壁損失	dB	16. 0
1m での自由空間損失	dB	47. 1
所要離隔距離	m	137. 2

表 3.3.38 気象レーダーとの共用検討結果(キャリア信号)

項目	単位	計算値
周波数	MHz	5732.0
受信空中線利得	dBi	47. 0
受信許容入力電力	dBm	-40.0
受信指向性減衰量	dB	0.0
所要減衰量	dB	157. 0
等価等方輻射電力	dBm	70.0
送信指向性減衰量(89.9度)	dB	23. 0
壁損失	dB	16. 0
1m での自由空間損失	dB	47. 6
所要離隔距離	m	3, 308

(7) 電波天文

電波天文との共用検討は、離調周波数が近い、臼田観測所 64m 反射鏡及び石岡観測所 13.2m 反射鏡を検討対象とした。また、所要離隔距離は、観測周波数 4995MHz 及び 10,650MHz における空間伝送型ワイヤレス電力伝送システムの不要発射強度 (-48dBm/MHz) が、電波天文の許容干渉レベル (-187dBm/MHz、-192dBm/MHz) を下回るための距離とした。

共用検討結果を表 3.3.39 に示す。不要発射強度が、電波天文の干渉閾値を下回るための所要減衰量は、臼田観測所は 107dB、石岡観測所は 112dB となり、所要離隔距離は 1,096m、1,736m となった。そのため、検討モデルで採用した空間伝送型ワイヤレス電力伝送システムの設置条件(天井への設置及び壁損失:16dB)を確保した条件にて、各観測所の設置位置から1.1km 及び 1.8km の範囲には空間伝送型ワイヤレス電力伝送システムの設置を制限する区域とすることで電波天文との共用は可能となる。

表 3.3.39 電波天文との共用検討結果

	項目	単位	臼田	石岡	備考
送信パ	(1)送信周波数	MHz	4995	10650	
ラメー	(2)送信空中線電力	dBm	-48.0	-48.0	
タ	(3)占有周波数帯域幅	MHz	1.0	1.0	
	(4)送信空中線利得	dBi	7. 0	7.0	
	(5)指向性減衰量	dB	-39.0	-39. 0	Bore sight
	(6) 帯域内発射電力	dBm	-80.0	-80.0	(2)+(4)+(5)
	(7)帯域内発射電力密度	dBm/MHz	-80.0	-80.0	(6)-10Log[(3)]
受信パ	(8)受信空中線利得	dBi	0.0	0.0	
ラメー	(9)指向性減衰量	dB	0.0	0.0	
タ	(10)電力スペクトルフラックス密度	$dB(W/(m^2 \cdot$	-255.0	-255.0	勧告 ITU-R
		Hz))			RA. 769-2
	(11)干渉閾値換算値	dBm/MHz	-187. 0	-192.0	
所要	(12)所要減衰量	dB	107.0	112.0	(7)-(11)
減衰量					
伝搬損	(13)自由空間損失	dB	107.0	112.0	1.096km
失	(14)水蒸気圧	mmHg	5. 5	5. 5	
	(15)水蒸気密度	$\mathrm{g/m^3}$	4. 1	4. 1	15℃
	(16)水蒸気分子による	dB/km	0.001	0.001	
	吸収係数				
	(17)大気減衰量	dB	0.0	0.0	
	(18)ナイフエッジ回折損失	dB	0.0	0.0	
	(19)伝搬損失の合計	dB	107.0	112. 0	(13)+(17)
所要離隔	距離	m	1,096	1, 736	
残差		dB	0	0	(12)-(19)

(8) アマチュア無線

アマチュア無線との共用検討は、周辺の建物等によるクラッタ損失を見込んだ所要結合量から所要離隔距離を算出した。また、伝搬損失は自由空間損失とし、壁損失は、勧告 ITU-R P. 2109-1 における Traditional モデルである 16 dB、クラッタ損失の算出に当たっては、空間伝送型ワイヤレス電力伝送システムが利用される工場・倉庫等は勧告 ITU-R P. 452-16 にて定義される"Industrial"、アマチュア無線が設置される都市部は"Urban"におけるクラッタ損を用いて算出した。

空間伝送型ワイヤレス電力伝送システムとアマチュア無線が、同一周波数を利用した際及び 1MHz 以上の離調周波数となる場合について、アマチュア無線の空中線最大利得方向が空間 伝送型ワイヤレス電力伝送システムの送信装置と対向した場合の所要離隔距離の算出結果を表 3.3.40 及び表 3.3.41 に示す。また、1MHz 以上の離調周波数となるアマチュア無線で用途としては月面反射通信 (EME) /レピータ/ビーコンとなる。

同一周波数かつ空間伝送型ワイヤレス電力伝送システムのビーム送信方向とアマチュア無線の空中線 (パラボラアンテナ)の指向方向が正対する最悪のケースでは、約 17.5km の所要離隔距離が必要となる結果となった。

表 3.3.40 アマチュア無線局への干渉レベル評価結果(同一周波数)

項目	パラボラアンテナ 想定	八木アンテナ想定	ホイップ アンテナ想定	
送信周波数		5,750 MHz		
等価等方輻射電力 (無変調)	70 dBm			
送信指向性減衰量 (水平方向)	23 dB			
クラッタ損失		38.5 dB		
アマチュア無線 空中線利得	30dBi	30dBi 15 dBi		
アマチュア無線 指向性減衰量	0 dB			
許容干渉電力	-110 dBm/MHz			
所要離隔距離	17, 500m	3,114 m	782 m	

表 3.3.41 アマチュア無線局への干渉レベル評価結果 (1MHz 離調)

項目	パラボラアンテナ 想定	八木アンテナ想定	ホイップ アンテナ想定		
送信周波数	5,756 MHz				
等価等方輻射電力 (無変調波)	10dBm				
送信指向性減衰量 (水平方向)	23 dB				
クラッタ損失	0	dB (離隔距離小のた	め)		
アマチュア無線 空中線利得	30dBi	15 dBi	3 dBi		
アマチュア無線 指向性減衰量	0 dB				
許容干渉電力	-110 dBm/MHz				
所要離隔距離	1,473m	262 m	66 m		

3.4 電波防護指針への適合性

電波防護指針では、電波利用において人体が電磁界にさらされるとき、その電磁界が人体に好ましくないと考えられる生体作用を及ぼさない安全な状況であるために推奨される指針値を示している。これに基づき、システムの運用形態に応じて、電波防護指針に適合するようシステム諸元の設定に配慮する必要がある。空間伝送型ワイヤレス電力伝送システムについては、新たな利用形態での使用となるため、電波防護指針(電気通信技術審議会答申 諮問第38号「電波利用における人体の防護指針」(平成2年6月)、同答申 諮問第89号「電波利用における人体防護の在り方」(平成9年4月)、情報通信審議会答申 諮問第2030号「電波利用における人体防護の在り方」(平成9年4月)、情報通信審議会答申 諮問第2030号「局所吸収指針の在り方」(平成23年5月)、同一部答申 諮問第2035号「電波防護指針の在り方」のうち「低周波領域(10kHz以上10MHz以下)における電波防護指針の在り方」(平成27年3月)、「高周波領域における電波防護指針の在り方」(平成30年9月))の指針値への適合性について検討を行った。

電波防護指針では、人体が電磁界にさらされている状況が認識され、電波の放射源を特定できるとともに、これに応じた適切な管理が行える場合には、管理環境の指針を適用し、このような条件が満たされない場合は、一般環境の指針を適用することとしている。各条件における指針値を、表 3.4.1 及び表 3.4.2 に示す。

電波防護指針を満足できる距離について基本算出式を用いたバンドごとに算出を行った。

	日 · 五 / () B · · · · · · · · · · · · · · · · · ·		"-
周波数 f	電界強度の実効値 E[V/m]	磁界強度の実効値 H[A/m]	電力東密度 S[mW/cm ²]
300MHz — 1. 5GHz	$3.54f^{1/2} $ $(61.4-137)$	$f^{1/2}/106$ (0. 163 – 0. 365)	f/300 (1-5)
1.5GHz — 300GHz	137	0. 365	5

表 3.4.1 管理環境の電磁界強度(6分間平均値)の指針値

※fは、MHzを単位とする周波数である。

20.1.2		. (0)) HI HI 10 E/ 42 HE	
周波数 f	電界強度の実効値 E[V/m]	磁界強度の実効値 H[A/m]	電力東密度 S[mW/cm²]
300MHz — 1.5GHz	1. 585f ^{1/2} (27. 5-61. 4)	$f^{1/2}/237.8$ (0. 0728-0. 163)	f/1500 (0.2-1)
1.5GHz — 300GHz	61. 4	0. 163	1

表3.4.2 一般環境の電磁界強度(6分間平均値)の指針値

※fは、MHzを単位とする周波数である。

① 920MHz 帯

920MHz 帯空間伝送型ワイヤレス電力伝送システムにおける電磁界強度 (6分間平均) の指針 値及び電波防護指針を満足できる距離の計算結果を表 3.4.3 及び表 3.4.4 に示す。

920MHz 帯における送信は連続送信であるが、間欠的送信とする場合には無送信時間分だけ電磁界強度の実効値が平均値としては下がることで、更に電波防護指針を満足できる距離は小さくなる。

表3.4.4より、工場のような「管理環境」においては、送信空中線と人体との距離を最低0.407m離すことで、電波防護指針を満足できる。これは、送信空中線を床から2.4m以上の高さに設置すれば電波防護指針を満足することを示している。

また、介護施設のような「一般環境」においては、送信空中線と人体との距離を最低 0.912 m離せば、電波防護指針を満足できる。これは、送信空中線を床から 2.5~2.8m以上の高さに設置すれば床面に直立する人体に対しおおむね電波防護指針を満足することを示している。

水面等大地面以外の反射波があり、金属物体等の建造物が存在し強い反射を生じさせる環境 においては、設置高さを一般環境にて約 2.9m 以上、管理環境にて約 2.4m 以上とすることで、 おおむね (床面に身長 2m の人が直立していることを前提) の電波防護指針の値を満足するこ とが可能である。

		100) 01日五川巨 (020MI	7 111 /
周波数 f=920MHz	電界強度の実効値	磁界強度の実効値	電力東密度
同波数 I=920MHZ	E[V/m]	H[A/m]	$S[mW/cm^2]$
管理環境	107. 374	0. 286	3. 067
一般環境	48. 075	0. 128	0.613

表 3.4.3 電磁界強度 (6 分間平均) の指針値 (920MHz 帯)

表 3.4.4 電波防護指針を満足できる距離 (920MHz 帯)

周波数 f=	K=1	K = 2.56	IZ — 4	電波の強度に	こ 6dB を加算
920MHz	17-1	K−2. 50	K=4	K = 2.56	K=4
管理環境	0.102m	0.163m	0.203m	0.325m	0.407m
一般環境	0. 227m	0.364m	0.456m	0.727m	0.912m

※すべての反射を考慮しない場合:K=1、大地面の反射を考慮する場合:K=2.56、水面等大地面以 外の反射を考慮する場合: K=4、算出地点付近にビル、鉄塔、金属物体等の建造物が存在し強 い反射を生じさせるおそれがある場合、算出した電波の強度の値(デシベルに換算した値) に6デシベルを加算する。

② 2.4GHz 帯

2.4GHz 帯空間伝送型ワイヤレス電力伝送システムにおける電磁界強度(6 分間平均)の指 針値及び電波防護指針を満足できる距離の計算結果を表 3.4.5 及び表 3.4.6 に示す。

2.4GHz 帯における送信は、キャリアセンスと間欠的送信による無送信時間分だけ電磁界強 度の実効値が平均値としては下がることで、更に電波防護指針を満足できる距離は小さくな る。

表 3.4.6 より、工場のような「管理環境」においては、送信空中線と人体との距離を 9.8m 以上離すことで、電波防護指針を満足できる。これは、送信空中線を共用検討モデルと同様 に 4.5m 以上の高さに設置した場合、水面等大地面以外の反射波があり、金属物体等の建造物 が存在し強い反射を生じさせる環境においても空中線の周囲半径約9.5mの範囲に対策するこ とで電波防護指針を満足することを示している。

また、2.4GHz 帯では「一般環境」での使用については今の時点では対象としないこととし た。

表 3.4.5 電磁界強度 (6 分間平均) の指針値 (2.4GHz 帯)

周波数 f=2400MHz	電界強度の実効値 E[V/m]	磁界強度の実効値 H[A/m]	電力東密度 S[mW/cm ²]
管理環境	137. 00	0. 365	5
一般環境	61. 40	0. 163	1

電波の強度に 6dB を加算 周波数 f= K=1K = 4K = 2.562400MHz K = 2.56K = 49.80m 管理環境 3.92m4.90m 2.45m 7.82m 一般環境 8.76m 10.95m17.49m 5.48m21.90m

表 3.4.6 電波防護指針を満足できる距離 (2.4GHz 帯)

※すべての反射を考慮しない場合:K=1、大地面の反射を考慮する場合:K=2.56、水面等大地面以外の反射を考慮する場合:K=4、算出地点付近にビル、鉄塔、金属物体等の建造物が存在し強い反射を生じさせるおそれがある場合、算出した電波の強度の値(デシベルに換算した値)に6デシベルを加算する。

③ 5.7GHz 帯

5.7GHz 帯空間伝送型ワイヤレス電力伝送システムにおける電磁界強度(6分間平均)の指針値及び電波防護指針を満足できる距離の計算結果を表 3.4.7及び表 3.4.8に示す。

5.7GHz 帯における送信は、キャリアセンスと間欠的送信による無送信時間分だけ電磁界強度の実効値が平均値としては下がることで、さらに電波防護指針を満足できる距離は小さくなる。

表 3.4.8 より、工場のような「管理環境」においては、送信空中線と人体との距離を最低 16m 離すことで、電波防護指針を満足できる。これは、5.0m 以上の高さに設置すれば、水面 等大地面以外の反射波があり、金属物体等の建造物が存在し強い反射を生じさせる環境においても空中線の周囲半径約 15.7m の範囲に対策することで、電波防護指針を満足することを示している。

また、5.7GHz 帯では「一般環境」での使用については今の時点では対象としないこととした。

文 6.1.1 电磁介 50次 (6 分間 1·3)				
周波数 f=5700MHz	電界強度の実効値	磁界強度の実効値	電力東密度	
月仅数 1-3700MIIZ	E[V/m]	H[A/m]	$S[mW/cm^2]$	
管理環境	137. 00	0. 365	5	
一般環境	61. 40	0. 163	1	

表 3.4.7 電磁界強度 (6 分間平均) の指針値 (5.7GHz 帯)

表 3.4.8 電波防護指針を満足できる距離 (5.7GHz 帯)

周波数 f=	K=1	K = 2.56	IZ — 4	電波の強度に	こ 6dB を加算
5700MHz	K-1	K −2. 50	K=4	K = 2.56	K=4
管理環境	4.00m	6.40m	8.00m	12.80m	16.00m
一般環境	9.00m	14.30m	17.80m	28.50m	35.70m

※すべての反射を考慮しない場合: K=1、大地面の反射を考慮する場合: K=2.56、水面等大地面以外の反射を考慮する場合: K=4、算出地点付近にビル、鉄塔、金属物体等の建造物が存在し強い反射を生じさせるおそれがある場合、算出した電波の強度の値(デシベルに換算した値)に6デシベルを加算する。

3.5 その他留意事項

3.5.1 運用調整

既存の無線システムとの円滑な周波数共用を図るためには、空間伝送型ワイヤレス電力伝送システム側にて設置環境及び運用について配慮する必要がある。併せて普及に向けた配慮も必要である。

空間伝送型ワイヤレス電力伝送システムの設置環境については第2章第3節(4)において、「WPT 屋内設置環境」、「WPT 管理環境」、「WPT 一般環境」を定義し管理を実施することとした。使用に当たっては、この定義に沿った設置、運用及び管理を継続的に実施することが必要である。

また、既存の無線システム等に与える影響を回避・軽減し、設置環境に配慮した設置や周波数の有効利用を図るためには、空間伝送型ワイヤレス電力伝送システムを利用する産業界がコアとなって、官民が連携した既存の無線システムとの運用調整の仕組みが構築され、電波の利用環境の維持に努めることが必要である。

空間伝送型ワイヤレス電力伝送システムの相互間の干渉については、基本的に送信しか行わないことから干渉回避は不要となる。しかし、5.7GHz 帯においては同一チャネル、2.4GHz 帯においては使用チャネル付近の 2.4GHz 帯高度化小電力データ通信システムをビーコン信号として使用するため、干渉により受電装置の位置推定が困難となる場合がある。この場合でも同一設置環境であれば管理者による調整が可能である。しかし、利用シーンとして無人倉庫、工場等を想定しており、近隣の環境でも空間伝送型ワイヤレス電力伝送システムを使用している可能性の高い流通団地、工業団地等において、使用チャネル状況により干渉が生じる恐れがあることから、運用調整の仕組みにより既存の無線システムと同様に利用環境の調整が行われることが望ましい。(参考資料2)

3.5.2 無線局としての管理の方向性

空間伝送型ワイヤレス電力伝送システムについては、上記のように WPT 管理環境や運用調整を前提とし、これには電波防護指針への適合性の確認等を必要とすることから、免許を必要とする無線設備とすることが適当である。

空間伝送型ワイヤレス電力伝送システムは、工場、倉庫及び介護現場での利用を想定しており、利用者の利便性も考慮して移設の際に変更申請等が必要のない構内無線局とすることが適当と考えられる。ただし、構内無線局は一の構内での移設を可能としているが空間伝送型ワイヤレス電力伝送システムでは、一の「WPT 屋内設置環境」内での移設に限定する必要がある。

また、他の無線システムとの干渉検討を設置時に評価する必要があることから移設、設置建物、設置階等の設置方法の変更等「WPT 屋内設置環境」外への漏えい電力が当初と変わる場合には、干渉検討を実施する必要がある。(参考資料2)

3.5.3 その他

920MHz 帯を使用した空中線電力 1W 以下の空間伝送型ワイヤレス電力伝送システムは、他の無線システムへの影響は、RFID システムと比較して同等以下であると想定され、機器の操作に関しては RFID システムと同等である。また RFID システムは、無線局の免許等手続に際して、無線設備の電気通信機器基準認定制度による「特定無線設備」に該当し、簡易な操作に該当するものとして無線従事者の配置は不要とされている。空間伝送型ワイヤレス電力伝送システムのいち早い普及の推進と申請者設置免許人への負担軽減等を勘案すると、920MHz 帯を使用した 1W 以下のシステムについては、「特定無線設備」として扱い、無線従事者の配置を不要とすることが望まれる。(参考資料12)

第4章 空間伝送型ワイヤレス電力伝送システムの技術的条件

4.1 920MHz 帯システムの技術的条件

これまでの検討を踏まえ、920MHz 帯を使用する空間伝送型ワイヤレス電力伝送システムの技術的条件については、以下のとおりとすることとした。また、本システムは RFID 構内無線システム に準拠した検討とした結果、特に支障のない項目については RFID システムと同一として、以下とすることが適当である。

4.1.1 一般的条件

(1) 無線周波数帯

917.8MHz~919.4MHz であること。

(2) チャネル

他の RFID システムとの干渉を考慮し、918.0MHz 及び 919.2MHz の 2 チャネルとする。

(3) 送信/通信方式

電力の送信のみの単向通信方式の他、RFIDシステムと同様な変調方式による通信を想定していることから単信方式、複信方式、半複信方式、同報通信方式とする。

(4) 変調方式

無変調 (NON) 又はパルス変調 (PON) を基本とするが、RFID システムと同様な変調方式(G1D 等)による通信も含めた送信を行う可能性があることから規定しないものとする。

(5) 識別符号

変調方式を無変調(NON)又はパルス変調(PON)を基本としていることから、規定しないものとする。

(6) 送信装置と受電装置の通信

受電装置との通信は、RFID システムと同様な変調方式(G1D 等)等の通信方式又は送信装置に接続された他方式システムによる機器により行われるものとして、本システムでは規定しないものとする。(参考資料8)

(7) 受電装置からのビーコン信号

送信装置からは無指向又は指向性を有した送信を行い、広範囲に設置された受電装置への送信とすることから受電装置からの位置推定のためのビーコン信号の送信は実施しなくてよいものとする。

また、ビーコン信号を必要とする場合は、特定小電力無線設備等の既存の他の無線システムを使用して行うものとして、本システムでは規定しないものとする。(参考資料8)

(8) システム設計条件

(ア)送信装置の筐体

空中線系を除く高周波部及び変調部は、容易に開けることができないこと。

(イ)送信空中線

無指向性空中線又は指向性を有する空中線として特に規定しないものとする。

(ウ)キャリアセンス

規定しないものとする。(参考資料7)

(エ) 送信時間制限装置

免許人以外が送信を認知できない「WPT 一般環境」にて使用する送信装置にあっては、電波を発射してから送信時間4秒以内にその電波の発射を停止し、かつ、送信休止時間50msを経過した後でなければその後の送信を行わないものであること。(参考資料2)また、「WPT 管理環境」にて使用する送信装置にあっては、送信時間制限装置は規定しないものとする。

(才)人体検出機能

規定しないものとする。

(9) 設置環境

送信機器の設置環境は、WPT 屋内設置環境の「WPT 管理環境」又は「WPT 一般環境」とすること。(参考資料2)

(10)空中線の設置方法

設置方法による干渉等の影響はないことから規定しないものとする。

(11)電波防護指針への適合

安全施設を設ける等、電波防護指針に適合するものであること。また、使用環境に合わせて一般環境又は管理環境を適用すること。(参考資料3)

4.1.2 無線設備の技術的条件

(1) 送信装置

(ア)周波数の許容偏差

RFID システムと同等とし、±20.0×10⁻⁶以内であること。

(イ) 占有周波数帯幅の許容値

RFID システムと同等とし、200kHz 以内であること。

(ウ)隣接チャネル漏えい電力

RFID システムと同等とし、空中線に供給される給電点における無線チャネル端において 10dBm 以下であること。また、隣接チャネル漏えい電力は 0.5dBm 以下であること。(図 4.1.1 参照)

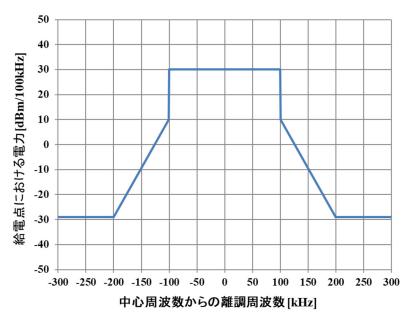


図 4.1.1 920MHz 帯チャネルマスク

(エ)不要発射の強度の許容値

給電線(給電線がない場合は空中線)に供給される電力における不要発射の強度の許容値は、RFIDシステムと同等とし表 4.1.1に定めるとおりであること。(参考資料 1 3)なお、給電点は図 4.3.3に示す給電線(給電線がない場合は空中線)入力端とする。

	周波数带		不要発射の強度の許容値 (平均電力)	参照帯域幅
710MHz	以下		-36dBm	100kHz
710MHz	を超え 900MHz	以下	-58dBm	1MHz
900MHz	を超え 915MHz	以下	-58dBm	100kHz
915MHz	を超え 915.7MHz	以下及び	-39dBm	100kHz
923.5MHz	を超え 930MHz	以下	-9addii	100кп2
915.7MHz	を超え 923.5MHz	以下	-29dBm	100kHz
930MHz	を超え 1GHz	以下	-58dBm	100kHz
1GHz	を超え 1.215GHz	以下	-48dBm	1MHz
1. 215GHz	を超えるもの		-30dBm	1MHz

表 4.1.1 不要発射の強度の許容値(給電点)

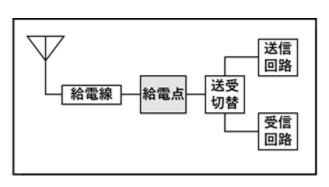


図 4.1.2 給電点

(才)空中線電力

1W以下とすること。

(カ)空中線利得

給電点までの損失を含み 6dBi 以下とすること。ただし、等価等方輻射電力が 36dBm (6dBi の送信空中線に 1W の空中線電力を加えたときの値であって、空中線電力の許容偏差を含む)以下となる場合は、その低下分を送信空中線の利得で補うことができるものとする。

(キ)空中線指向性

規定しないものとする。

(ク)等価等方輻射電力の制限値 規定しないものとする。

(ケ)空中線電力の許容偏差

上限 20%、下限 80%以内であること。

(2) 受電装置

副次的に発する電波等の限度については、RFID システムと同様に 930MHz 以下(915MHz を超え 930MHz 以下を除く。)は-54dBm/100kHz 以下、1.215GHz を超えるものは-47dBm/MHz 以下、それ以外の周波数においては不要発射の強度の許容値以下であること。

4.1.3 測定法

空中線接続端子がない場合の測定法は、試験時に測定用の空中線接続端子(臨時に設ける試験用端子を含む。)を設けることが困難な場合に適用すること。

(1) 周波数の偏差

(ア)空中線接続端子がある場合

被試験機の送信装置を送信されるように設定し、空中線接続端子に接続した周波数計 又は波形解析器等を使用し、測定する。

(イ)空中線接続端子がない場合

被試験機の送信装置を空中線から送信されるように設定し、試験用空中線に接続した周波数計又は波形解析器等を使用し、測定する。

(2) 隣接チャネル漏えい電力

(ア)空中線接続端子がある場合

被試験機の送信装置を定格出力で送信するよう設定し、空中線接続端子に接続されたスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲ごとに隣接チャネル漏えい電力を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、分解 能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に渡って積分 した値を求める。 アクティブ空中線等の複数空中線素子に給電する場合は、空中線電力の総和が最大となる状態にて測定し、空中線端子ごとに隣接チャネル漏えい電力を測定し、その全空中 線端子の総和が規定値以下となることを確認する。

なお、被試験機の送信装置の出力部から空中線放射部までにフィルタあるいは給電線 等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ)空中線接続端子がない場合

被試験機の送信装置を空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲ごとに送信周波数を中心とした参照帯域幅の電力と、送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力を測定する。

被試験機の送信装置を一定の角度ごとに回転させ、順次、送信周波数を中心とした参照帯域幅の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力を測定する。角度ごとに測定された送信周波数を中心とした参照帯域幅の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力の総和をそれぞれ求め、離調周波数を中心とした参照帯域幅の範囲において、全放射面の電力の総和を求める。分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に渡って積分した値を求める。

なお、被試験機の送信装置の出力部から空中線放射部までにフィルタあるいは給電線 等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(3) 占有周波数带幅

(ア)空中線接続端子がある場合

被試験機の送信装置を定格出力で送信するよう設定する。スペクトルアナライザを搬送波周波数に設定してその電力分布を測定し、全電力の 0.5%となる上下の限界周波数点を求め、その差を占有周波数帯幅とする。

(イ)空中線接続端子がない場合

被試験機の送信装置を空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線を被試験機の空中線と対向させる。試験用空中線に接続したスペクトルアナライザを搬送波周波数に設定してその電力分布を測定し、全電力の 0.5%となる上下の限界周波数点を求め、その差を占有周波数帯幅とする。

(4) 不要発射の強度

(ア)空中線接続端子がある場合

被試験機の送信装置を定格出力で送信するよう設定し、空中線接続端子に接続されたスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲ごとにスプリアス領域における不要発射の強度を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、分解 能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に渡って積分 した値を求める。

また、精度を高めた測定とする場合及び搬送波等の影響を受ける場合は、分解能帯域

幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。

なお、被試験機の空中線端子から空中線放射部までにフィルタあるいは給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

アクティブ空中線を用いる場合は、空中線電力の総和が最大となる状態にて測定し、 空中線接続端子ごとに測定されたスプリアス領域における不要発射の強度の総和を求め る。

(イ)空中線接続端子がない場合

被試験機の送信装置を空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲ごとにスプリアス領域における不要発射の強度を測定する。被試験機の送信装置を一定の角度ごとに回転させ、順次、スプリアス領域における不要発射の強度を測定する。周波数ごとに測定されたスプリアス領域における不要発射の強度の全放射面における総合放射電力を求める。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、分解 能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に渡って積分 した値を求める。

また、精度を高めた測定とする場合及び搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。

なお、被試験機の送信装置の出力部から空中線放射部までにフィルタあるいは給電線 等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(5) 空中線電力

(ア)空中線接続端子がある場合

被試験機の送信装置を定格出力で送信するよう設定し、電力計により空中線電力を測定する。

アクティブ空中線を用いる場合は、一の空中線電力を最大にした状態で空中線電力の 総和が最大となる状態等で測定すること。

なお、被試験機の送信装置の出力部から空中線放射部までにフィルタあるいは給電線 等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ)空中線接続端子がない場合

被試験機の送信装置を空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続した電力計により空中線電力を測定する。被試験機の送信装置からの一定角度ごとの空中線電力を測定し、測定された空中線電力の総合放射電力を求める。

なお、被試験機の送信装置の出力部から空中線放射部までにフィルタあるいは給電線 等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(6) 送信時間制限装置

(ア)空中線接続端子がある場合

スペクトルアナライザの中心周波数を試験周波数に設定し掃引周波数幅を 0Hz (ゼロスパン) として測定する。送信時間が規定の送信時間以下であること及び送信休止時間が規定の送信休止時間以上であることを測定する。測定時間精度を高める場合はスペクトルアナライザのビデオトリガ機能等を使用し、送信時間と送信休止時間の掃引時間を適切な値に設定すること。

(イ)空中線接続端子がない場合

被試験機の送信装置を空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線を被試験機の空中線と対向させる。試験用空中線に接続したスペクトルアナライザの中心周波数を試験周波数に設定し掃引周波数幅を 0Hz (ゼロスパン)として測定する。送信時間が規定の送信時間以下であること及び送信休止時間が規定の送信休止時間以上であることを測定する。測定時間精度を高める場合はスペクトルアナライザのビデオトリガ機能等を使用し、送信時間と送信休止時間の掃引時間を適切な値に設定すること。

(7) 受電装置の副次的に発する電波等の限度

スペクトルアナライザ等を用いて、給電線入力点において測定すること。この場合、スペクトルアナライザ等の分解能帯域幅は、技術的条件で定められた参照帯域幅に設定すること。なお、精度を高めるために分解能帯域幅を狭くして測定してもよく、この場合、副次発射の強度は、分解能帯域幅ごとの測定結果を参照帯域幅に渡り積分した値とする。

ただし、空中線端子がない場合においては、測定のために一時的に測定用端子を設けて同様に測定すること。なお、測定用の端子が空中線給電点と異なる場合は、損失等を補正する。

4.2 2.4GHz 帯システムの技術的条件

これまでの検討を踏まえ、2.4GMHz 帯を使用する空間伝送型ワイヤレス電力伝送システムの技術的条件については、以下のとおりとすることが適当である。

4.2.1 一般的条件

(1) 無線周波数帯

2,410MHz~2,486MHz であること。

(2) チャネル

2. 4GHz 帯高度化小電力データ通信等でのビーコン信号の使用を考慮し 2, 412MHz、2, 437MHz、2, 462MHz、2, 484MHz の 4 チャネルとする。

(3) 送信/通信方式

給電電力の送信のみとなるため単向方式とする。

(4) 変調方式

連続波(CW: Continuous Wave)による電力の送信のみとなるため、無変調(NON)とする。

(5) 識別符号

変調方式を無変調(NON)としていることから、規定しないものとする。

(6) 送信装置と受電装置の通信

受電装置は、2.4GHz 帯高度化特定小電力データ通信等の通信方式又は送信装置に接続された他の方式による通信が行えるものとして、使用する通信システムによる規定を適用し、本システムでは規定しないものとする。(参考資料8)

(7) 受電装置からのビーコン信号

送信設備からの指示にて、送信装置と同一周波数帯を使用した他の無線システムにて規定された通信電波等により行うものとし、本システムでは規定しないものとする。(参考資料8)

(8) システム設計条件

(ア)送信装置の筐体

空中線系を除く高周波部及び変調部は、容易に開けることができないこと。

(イ)送信空中線

ビームフォーミングアンテナによるビームを可変させ指向性を制御して受電装置に対しての送信を行うものであること。

(ウ)キャリアセンス (参考資料7)

- ① 送信装置は、新たな送信に先立ち、キャリアセンスによる干渉確認を実行した後、送信を開始すること。
- ② キャリアセンスは、電波を発射する周波数が含まれる単位チャネル及び隣接チャネル並びに次隣接チャネルに対して行い、0.17ms 以上行うものであること。
- ③ キャリアセンスレベルは、給電線入力点にて、発射しようとする電波と同一周波数

が含まれるチャネルにおける受信電力において-72dBm/20MHz、隣接及び次隣接チャネルにおいて-62dBm/20MHz とし、これを超える場合は、送信を行わないものであること

④ 共用状態確認の認定の時間基準については、特に規定しないでキャリアセンスを行うものとする。

(エ)送信時間制限装置

送信時間制限装置は、規定しないものとする。

(才)人体検出機能

電波防護指針の指針値を超える範囲に人が立ち入ったことを検出し、送信を停止する機能を有すること。

(9) 設置環境

送信装置の設置環境は、WPT 屋内設置環境の「WPT 管理環境」とすること。(参考資料2)

(10)空中線の設置方法

ビームフォーミングによる指向方向 (メインローブ) が水平方向に向かないために図 4.2.1 に示すように、空中線の最大空中線利得方向が大地面方向に対して±10 度以内となるように 原則として天井へ設置すること。また、設置は地下又は地上1 階とし、高層階への設置は行わないものとする。(参考資料2)

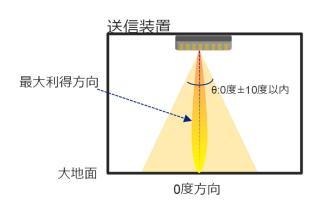


図 4.2.1 空中線の設置方法

(11)電波防護指針への適合

安全施設を設ける等、電波防護指針(管理環境)に適合するものであること。(参考資料3)

4.2.2 無線設備の技術的条件

(1) 送信装置

(ア)周波数の許容偏差

2.4GHz 帯を使用した機器部品特性を考慮し、±50.0×10⁻⁶以内であること。

(イ)占有周波数帯幅の許容値

変調方式が無変調(NON)であるため、占有周波数帯幅の許容値は規定しない。

(ウ) 隣接チャネル漏えい電力

隣接チャネルとは、20MHz以上離れており、不要発射の強度として規定することとし、 隣接チャネル漏えい電力は規定しないものとする。

(エ)不要発射の強度の許容値

給電線(給電線がない場合は空中線)に供給される電力の不要発射の強度の許容値は、表 4.2.1 及び図 4.2.2 に定めるとおりであること。なお、給電点は図 4.2.3 に示す給電線(給電線がない場合は空中線)入力端とし、各給電線(給電線がない場合は各空中線)への全給電点電力における不要発射の強度の合算値とする。(参考資料 1 3)

表 4.2.1 不要発射の強度の許容値

中心周波数 fc からの離調周波数	不要発射の許容値(給電点による電力)	
1MHz	15.8(dBm/MHz)	
10MHz 以上	-34.2(dBm/MHz)	

図 4.2.2 不要発射の強度の許容値(給電点における電力値)

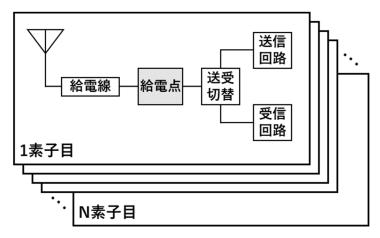


図 4.2.3 給電点

(才)空中線電力

空中線電力は、要求条件を考慮し、空中線入力電力の合算値にて15W以下とすること。

(カ)空中線利得

空中線利得は、要求条件を考慮し、利得値の上限値を設定したが、空中線電力を下げて空中線利得を上げることでも要求条件を満たし、干渉条件は変わらないことが可能であることから等価等方輻射電力の上限を定め、その範囲での使用を可能とした。

合成空中線利得として給電点までの損失を含み 24dBi 以下とすること。ただし、等価等方輻射電力が 65.8dBm (24dBi の送信空中線に 15W の空中線電力を加えたときの値であって、空中線電力の許容偏差を含む) 以下となる場合は、その低下分を送信空中線の利得で補うことができるものとする。

(キ)空中線指向性

複数の空中線素子及び送信素子を用いて1つ又は複数のビーム指向性 (メインローブ) を有する空中線とし、ビーム指向性を任意に形成・制御できるものであること。ただし、 図 4.2.4 に示すように大地面方向に対しての角度範囲 θ を 60 度以上としたビーム指向性 の形成を行わないこと。

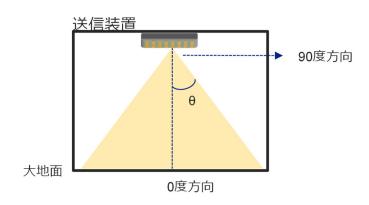


図 4.2.4 ビーム指向性の角度範囲

(ク)等価等方輻射電力の制限値

空中線の設置状態にて、ビーム指向性を大地面方向に対しての角度範囲 60 度以下のいかなる可変したビーム指向性を形成した場合においても、大地面方向に対しての角度範囲 θ の 80 度から 90 度の範囲において 47dBm/MHz 以下とすること。(参考資料 2)

(ケ)空中線電力の許容偏差

上限 20%、下限 50%以内であること。

(2) 受電装置

2.4GHz 帯高度化小電力データ通信等の他の無線システムにて規定した通信にて制御する ものとし、本システムでは規定しない。(参考資料8)

4.2.3 測定法

空中線接続端子がない場合の測定法は、試験時に測定用の空中線接続端子(臨時に設ける試験用端子を含む。)を設けることが困難な場合に適用すること。

(1) 周波数の偏差

(ア)空中線接続端子がある場合

被試験機の送信装置を送信されるように設定し、空中線接続端子に接続した周波数計又は波形解析器等を使用し測定する。

(イ)空中線接続端子がない場合

被試験機の送信装置を空中線から送信されるように設定し、試験用空中線に接続した周波数計又は波形解析器等を使用し、測定する。

(2) 不要発射の強度

(ア)空中線接続端子がある場合

被試験機の送信装置を定格出力で送信するよう設定し、空中線接続端子に接続されたスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲ごとに隣接チャネル漏えい電力を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、分解 能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に渡って積分 した値を求める。

アクティブ空中線等の複数空中線素子に給電する場合は、空中線電力の総和が最大となる状態にて測定し、空中線端子ごとに隣接チャネル漏えい電力を測定し、その全空中 線端子の総和が規定値以下となることを確認する。

なお、被試験機の送信装置の出力部から空中線放射部までにフィルタあるいは給電線 等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ)空中線接続端子がない場合

被試験機の送信装置を空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲ごとに送信周波数を中心とした参照帯域幅の電力と、送信周波数から離調周波数分離れた周波数を

中心とした参照帯域幅の電力を測定する。

被試験機の送信装置を一定の角度ごとに回転させ、順次、送信周波数を中心とした参照帯域幅の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力を測定する。角度ごとに測定された送信周波数を中心とした参照帯域幅の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力の総和をそれぞれ求め、離調周波数を中心とした参照帯域幅の範囲において、全放射面の電力の総和を求める。分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に渡って積分した値を求める。

なお、被試験機の送信装置の出力部から空中線放射部までにフィルタあるいは給電線 等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(3) 空中線電力

(ア)空中線接続端子がある場合

被試験機の送信装置を定格出力で送信するよう設定し、電力計により空中線電力を測定する。

アクティブ空中線を用いる場合は、一の空中線電力を最大にした状態で空中線電力の 総和が最大となる状態等で測定すること。

なお、被試験機の送信装置の出力部から空中線放射部までにフィルタあるいは給電線 等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ)空中線接続端子がない場合

被試験機の送信装置を空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続した電力計により空中線電力を測定する。被試験機の送信装置からの一定角度ごとの空中線電力を測定し、測定された空中線電力の総合放射電力を求める。

なお、被試験機の送信装置の出力部から空中線放射部までにフィルタあるいは給電線 等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(4) キャリアセンス

- (ア)標準信号発生器から規定の電力を連続的に加え、スペクトルアナライザ等により送信しないことを確認する。
- (イ)(ア)の状況後に標準信号発生器の出力を断にして送信を開始するまでの時間が、規定 の必須キャリアセンス時間以上であることを確認する。
- (ウ)標準信号発生器の出力断の時間が規定の必須キャリアセンス時間未満の場合は送信しないことを確認する。

なお、無線チャネル内の任意の周波数において動作することを確認すること。

(イ)においては、標準信号発生器の出力時間を送信時間程度、標準信号発生器の出力 断の時間を送信休止時間程度に設定した無変調波の繰り返しパルス信号等を用いること ができる。また、(ウ)においては、標準信号発生器の出力時間を送信時間程度、標準信 号発生器の出力断時間を必須キャリアセンス時間未満に設定した無変調の繰り返しパル ス信号を用いることができる。

4.3 5.7GHz 帯システムの技術的条件

これまでの検討を踏まえ、5.7GMHz 帯を使用する空間伝送型ワイヤレス電力伝送システムの技術的条件については、以下のとおりとすることが適当である。

4.3.1 一般的条件

(1) 無線周波数帯

5,738MHz~5,766MHz であること。

(2) チャネル

5,740MHz、5,742MHz、5,744MHz、5,746MHz、5,750MHz、5,752MHz、5,758MHz、5,764MHz の 9 チャネルとする。

(3) 送信/通信方式

電力の送信のみとなるため単向方式とする。

(4) 変調方式

連続波(CW: Continuous Wave)による電力の送信のみとなるため、無変調(NON)とする。

(5) 識別符号

変調方式を無変調(NON)としていることから、規定しないものとする。

(6) 送信装置と受電装置の通信

受電装置は、特定小電力設備等の他の通信方式又は送信装置に接続された機器により他の 通信方式による通信が行えるものとして、使用する通信システムによる規定を適用し、本シ ステムでは規定しないものとする。(参考資料8)

(7) 受電装置からのビーコン信号

特定小電力設備等を使用した送信設備からの指示により、送信装置と同一周波数帯の電波を発射するものとする。ただし、特定小電力無線設備等を使用した情報により、受電装置の位置の特定が可能な装置については、この機能を有しないものとする。(参考資料8)

(8) システム設計条件

(ア)送信装置の筐体

空中線系を除く高周波部及び変調部は、容易に開けることができないこと。

(イ)送信空中線

ビームフォーミングアンテナによるビームを可変させ指向性を制御して受電装置に対しての送信を行うものであること。

(ウ)キャリアセンス (参考資料7)

- ① 送信装置は新たな送信に先立ち、キャリアセンスによる干渉確認を実行した後、送信を開始すること。
- ② キャリアセンスは、5,470MHz 以上 5,730MHz 以下の周波数に対して行うものである こと。

- ③ キャリアセンスレベルは、5,680MHz 以上 5,730MHz 未満の周波数チャネルにおける 受信電力において-75dBm/20MHz、5,570MHz 以上 5,680MHz 未満の周波数チャネルに おいて-72dBm/20MHz、5,470MHz 以上 5,570MHz 未満の周波数チャネルにおいて -60dBm/20MHz 以上の場合、送信を行わないものであること。
- ④ キャリアセンスは累積非検出時間(=チャネルクリアと判定した時間の合計)が4ms 以上となるものとし、送信装置からの送信は開始後8ms以内に終了すること。ただ し、無線設備が非共用状態であることを認定した場合は、認定後の5秒間は、送信 の時間を192msに変更できるものとする。
- ⑤ 非共用状態であることの認定は、③に規定されるキャリアセンスレベルで、1 秒間 以上の検出が無い状態とすること。

(工) 送信時間制限装置

送信時間制限装置は規定しないものとする。

(才)人体検出機能

電波防護指針の指針値を超える範囲に人が立ち入ったことを検出し、送信を停止する機能を有すること。(参考資料3)

(9) 設置環境

送信装置の設置環境は、WPT 屋内設置環境の「WPT 管理環境」とすること。(参考資料2)

(10)空中線の設置方法

ビームフォーミングによる指向方向(メインローブ)が水平方向に向かわないために図4.3.1に示すように、空中線の最大空中線利得方向が大地面方向に対して±10度以内となるように原則として天井へ設置すること。(参考資料2)

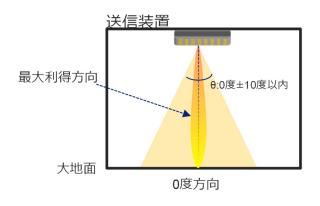


図 4.3.1 設置範囲

(11)電波防護指針への適合

安全施設を設ける等、電波防護指針(管理環境)に適合するものであること。(参考資料3)

4.3.2 無線設備の技術的条件

(1) 送信装置

(ア)周波数の許容偏差

5.7GHz 帯を使用した機器部品特性を考慮し、±20.0×10⁻⁶以内であること。

(イ)占有周波数帯幅の許容値

変調方式が無変調(NON)であるため、占有周波数帯幅の許容値は規定しない。

(ウ) 隣接チャネル漏えい電力

隣接チャネルは 2MHz 以上離れており、不要発射の強度として規定することとし、隣接チャネル漏えい電力としては規定しないものとする。

(エ)不要発射の強度の許容値

給電線(給電線がない場合は空中線)に供給される電力又は等価等方輻射電力における不要発射の強度の許容値は、表 4.3.1 及び図 4.3.2 に定めるとおりであること。なお、給電点は図 4.3.3 に示す給電線(給電線がない場合は空中線)入力端とし、各給電線(給電線がない場合は空中線)への全給電点電力における不要発射の強度の合算値とする。(参考資料 1 3)

表 4.3.1 不要発射の強度の許容値

中心周波数 fc からの離調周波数	不要発射の強度の許容値	不要発射の強度の許容値
中心可仮数ICがらの離前可仮数	(給電点による電力)	(EIRP)
-350MHz 以下	-48dBm/MHz	-23dBm/MHz
-350MHz を超え -200MHz 以下	-46dBm/MHz	-21dBm/MHz
-200MHz を超え -80MHz 以下	-38dBm/MHz	-13dBm/MHz
-80MHz を超え -10MHz 以下	-24dBm/MHz	1dBm/MHz
-10MHz を超え -2MHz 以下	-14dBm/MHz	11dBm/MHz
-2MHz を超え -50kHz 以下	8dBm/MHz	33dBm/MHz
50kHz を超え 2MHz 以下	8dBm/MHz	33dBm/MHz
2MHz を超え 10MHz 以下	-14dBm/MHz	11dBm/MHz
10MHz を超え 80MHz 以下	-24dBm/MHz	1dBm/MHz
80MHz を超え 900MHz 以下	-38dBm/MHz	-13dBm/MHz
900MHz を超えるもの	-48dBm/MHz	-23dBm/MHz

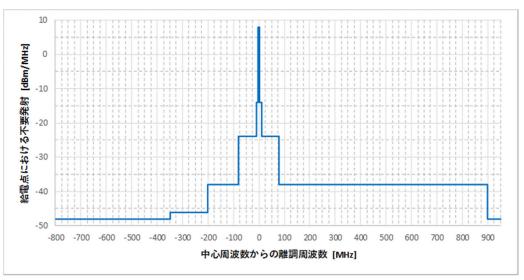


図 4.3.2 不要発射の強度の許容値(給電点における電力値)

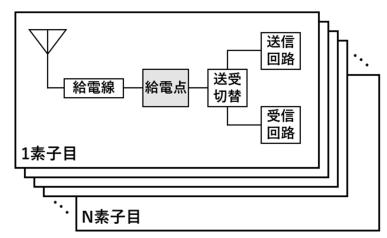


図 4.3.3 給電点

(才)空中線電力

空中線電力は、要求条件を考慮し、空中線入力電力の合算値で32W以下とすること。

(力)空中線利得

空中線利得は、要求条件を考慮し、利得値の上限値を設定したが、空中線電力を下げて空中線利得を上げることでも要求条件を満たし、干渉条件は変わらないことが可能であることから等価等方輻射電力の上限を定め、その範囲での使用を可能とした。

合成空中線利得として給電点までの損失を含み 25dBi 以下とすること。ただし、等価等方輻射電力が 70.0dBm (25dBi の送信空中線に 32W の空中線電力を加えたときの値であって、空中線電力の許容偏差を含む) 以下となる場合は、その低下分を送信空中線の利得で補うことができるものとする。

(キ)空中線指向性

複数の空中線素子及び送信素子を用いて1つ又は複数のビーム指向性を有する空中線とし、ビーム指向性を任意に形成・制御できるものであること。ただし、図4.3.4に示すように大地面方向に対して角度範囲 θ を60度以上としたビーム指向性の形成を行わないこと。

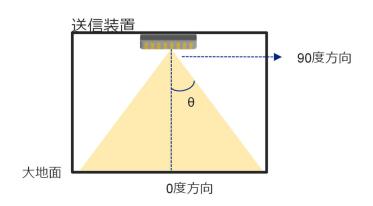


図 4.3.4 ビーム指向性の角度範囲

(ク)等価等方輻射電力の制限値

空中線の設置状態にて、ビーム指向性を大地面方向に対しての角度範囲 θ とした 60 度以下のいかなる可変したビーム指向性を形成した場合において、大地面方向に対しての角度範囲 θ の 80 度から 90 度の範囲において 47dBm/MHz 以下とすること。

(ケ)空中線電力の許容偏差

上限 20%、下限 50%以内であること。

(2) 受電装置

(ア) 周波数の許容偏差

5.7GHz 帯を使用した機器部品特性を考慮し、±20.0×10⁻⁶以内であること。

(イ)占有周波数帯幅の許容値

送信装置からの要求により、無変調(NON)波を受電装置の位置推定のために輻射する として、占有周波数帯幅の許容値は規定しない。

(ウ)隣接チャネル漏えい電力

隣接チャネルとは、2MHz 以上離れており、不要発射の強度として規定し、隣接チャネル漏えい電力は規定しないものとする。

(エ)不要発射の強度の許容値

給電線(給電線がない場合は空中線)に供給される給電点又は、等価等方輻射電力に おける不要発射の強度の許容値は、表 4.3.2 及び図 4.3.5 に定めるとおりであること。 なお、給電点は図 4.3.6 に示す給電線(給電線がない場合は空中線)入力端とする。

表 4.3.2 受電装置からの不要発射の強度の許容値(給電点)

中心周波数 fc からの離調周波数	不要発射の強度の許容値 (平均電力)	不要発射の強度の許容値 (平均 EIRP)
-80MHz 以下	-66dBm/MHz	-61dBm/MHz
-80MHz を超え -10MHz 以下	-62dBm/MHz	-57dBm/MHz
-10MHz を超え -2MHz 以下	-48dBm/MHz	-43dBm/MHz
-2MHz を超え -0.05MHz 以下	-36dBm/MHz	-31dBm/MHz
0.05MHz を超え 2MHz 以下	-36dBm/MHz	-31dBm/MHz
2MHz を超え 10MHz 以下	-48dBm/MHz	-43dBm/MHz
10MHz を超え 80MHz 以下	-62dBm/MHz	-57dBm/MHz
80MHz を超えるもの	-66dBm/MHz	-61dBm/MHz

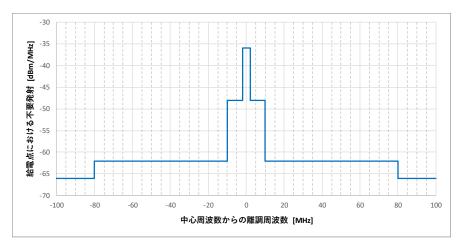


図 4.3.5 受電装置からの不要発射の強度の許容値

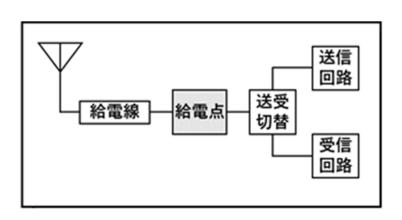


図 4.3.6 給電点

(才)空中線電力

空中線電力は、要求条件である伝送距離 10m 程度離れた受電装置から送信されたビーコン信号を用いて、送信装置が伝搬路を推定するのに必要とする電力とし、受電装置の空中線電力は 0.32mW 以下とすること。(参考資料 8)

(カ)空中線利得

空中線利得は、要求条件を考慮し、利得値の上限値を設定したが、空中線電力を下げ

て空中線利得を上げることでも要求条件を満たすことが可能であることから等価等方輻 射電力の上限を定め、その範囲での使用を可能として定めた。

給電線損失を含み 5dBi 以下とすること。ただし、等価等方輻射電力が 0dBm (5dBi の送信空中線に 0.32mW の空中線電力を加えたときの値であって、空中線電力の許容偏差を含む) 以下となる場合は、その低下分を送信空中線の利得で補うことができるものとする。(参考資料8)

(キ)空中線指向性

無指向性又は指向性を有する空中線として特に規定しないものとする。

(ク)空中線電力の許容値

上限 20%、下限 50%以内であること。

4.3.3 測定法

空中線接続端子がない場合の測定法は、試験時に測定用の空中線接続端子(臨時に設ける試験用端子を含む。)を設けることが困難な場合に適用すること。

(1) 周波数の偏差

(ア)空中線接続端子がある場合

被試験機の送信装置を送信されるように設定し、空中線接続端子に接続した周波数計 又は波形解析器等を使用し測定する。

(イ)空中線接続端子がない場合

被試験機の送信装置を空中線から送信されるように設定し、試験用空中線に接続した周波数計又は波形解析器等を使用し、測定する。

(2) 隣接チャネル漏えい電力

(ア)空中線接続端子がある場合

被試験機の送信装置を定格出力で送信するよう設定し、空中線接続端子に接続されたスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲ごとに隣接チャネル漏えい電力を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、分解 能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に渡って積分 した値を求める。

アクティブ空中線等の複数空中線素子に給電する場合は、空中線電力の総和が最大となる状態にて測定し、空中線端子ごとに隣接チャネル漏えい電力を測定し、その全空中 線端子の総和が規定値以下となることを確認する。

なお、被試験機の送信装置の出力部から空中線放射部までにフィルタあるいは給電線 等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ)空中線接続端子がない場合

被試験機の送信装置を空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲ごとに送信

周波数を中心とした参照帯域幅の電力と、送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力を測定する。

被試験機の送信装置を一定の角度ごとに回転させ、順次、送信周波数を中心とした参照帯域幅の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力を測定する。角度ごとに測定された送信周波数を中心とした参照帯域幅の電力と送信周波数から離調周波数分離れた周波数を中心とした参照帯域幅の電力の総和をそれぞれ求め、離調周波数を中心とした参照帯域幅の範囲において、全放射面の電力の総和を求める。分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、分解能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に渡って積分した値を求める。

なお、被試験機の送信装置の出力部から空中線放射部までにフィルタあるいは給電線 等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(3) 不要発射の強度

(ア)空中線接続端子がある場合

被試験機の送信装置を定格出力で送信するよう設定し、空中線接続端子に接続されたスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲ごとにスプリアス領域における不要発射の強度を測定する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、分解 能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に渡って積分 した値を求める。

また、精度を高めた測定とする場合及び搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。

なお、被試験機の空中線端子から空中線放射部までにフィルタあるいは給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

アクティブ空中線を用いる場合は、空中線電力の総和が最大となる状態にて測定し、 空中線接続端子ごとに測定されたスプリアス領域における不要発射の強度の総和を求め る。

(イ)空中線接続端子がない場合

被試験機の送信装置を空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続したスペクトルアナライザにより、分解能帯域幅を技術的条件により定められた参照帯域幅とし、規定される周波数範囲ごとにスプリアス領域における不要発射の強度を測定する。被試験機の送信装置を一定の角度ごとに回転させ、順次、スプリアス領域における不要発射の強度を測定する。周波数ごとに測定されたスプリアス領域における不要発射の強度の全放射面における総合放射電力を求め、別に求めた空中線利得を差し引き算出する。

分解能帯域幅を技術的条件により定められた参照帯域幅に設定できない場合は、分解 能帯域幅を参照帯域幅より狭い値として測定し、定められた参照帯域幅内に渡って積分 した値を求める。

また、精度を高めた測定とする場合及び搬送波等の影響を受ける場合は、分解能帯域幅を参照帯域幅より狭い値として測定し参照帯域幅に換算する方法を用いることができる。

なお、被試験機の送信装置の出力部から空中線放射部までにフィルタあるいは給電線 等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(4) 空中線電力

(ア)空中線接続端子がある場合

被試験機の送信装置を定格出力で送信するよう設定し、電力計により空中線電力を測定する。

アクティブ空中線を用いる場合は、一の空中線電力を最大にした状態で空中線電力の総和が最大となる状態等で測定すること。なお、被試験機の送信装置の出力部から空中線放射部までにフィルタあるいは給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(イ)空中線接続端子がない場合

被試験機の送信装置を空中線電力の総和が最大となる状態で送信するよう設定し、指向性方向を固定する。試験用空中線に接続した電力計により空中線電力を測定する。被試験機の送信装置からの一定角度ごとの空中線電力を測定し、測定された空中線電力の総合放射電力を求める。なお、被試験機の送信装置の出力部から空中線放射部までにフィルタあるいは給電線等による減衰領域がある場合には、測定結果を前記減衰量にて補正すること。

(5) キャリアセンス (受電装置を除く。)

- (ア)標準信号発生器から規定の電力を連続的に加え、スペクトルアナライザ等により送信しないことを確認する。
- (イ)(ア)の状況後に標準信号発生器の出力を断にして送信を開始するまでの時間が、規定の 必須キャリアセンス時間以上であることを確認する。
- (ウ)標準信号発生器の出力断の時間が規定の必須キャリアセンス時間未満の場合は送信しないことを確認する。

なお、無線チャネル内の任意の周波数において動作することを確認すること。

(イ)においては、標準信号発生器の出力時間を送信時間程度、標準信号発生器の出力 断の時間を送信休止時間程度に設定した無変調波の繰り返しパルス信号等を用いることが できる。また、(ウ)においては、標準信号発生器の出力時間を送信時間程度、標準信号発 生器の出力断時間を必須キャリアセンス時間未満に設定した無変調の繰り返しパルス信号 を用いることができる。

第5章 今後の検討課題等

空間伝送型ワイヤレス電力伝送システムでは、既存の無線システム等に与える影響の回避・軽減を考慮し、設置環境に配慮した設置や周波数の有効利用を図るため、既存の無線システムとの運用調整のための官民が連携した仕組みの構築について検討が行われることが必要である。

空間伝送型ワイヤレス電力伝送システムと既存の無線通信システムとの共用のためには、空間 伝送型ワイヤレス電力伝送システムを新たに設置する場合において壁損失等の条件を満たす必要 がある。また、設置後も、設置場所のレイアウトの変更等が条件の適合性に影響を生じる可能性 が考えられるため、制度化にあたってはこれらのことに配慮した検討が行われることが必要であ る。

また、電力伝送を目的とする空間伝送型ワイヤレス電力伝送システムは、主に通信を目的としてきた既存の無線システムとは性格を異とするものであり、運用調整に当たり、それぞれのシステム設置者等は、混信の除去に積極的に対応することが求められる。

本検討では、第1ステップとして、工場等の屋内での利用を前提とした空間伝送型ワイヤレス電力伝送システムに関し、他の無線通信システムとの共用や電波の安全性について検討を行った。今後、第2ステップ以降における屋外での利用や大電力化の可能性の検討においては、技術や研究の進展、商用化の時期や実用化の取組状況等を踏まえて、干渉の評価やその抑圧、周波数の有効利用等について改めて検討が行われることが必要である。

情報通信審議会 情報通信技術分科会 陸上無線通信委員会構成員一覧 (令和2年6月24日現在 敬称略)

氏	名	主要現職			
主 査 員	安藤 真	東京工業大学 名誉教授			
委 員	森川 博之	東京大学 大学院工学系研究科 教授			
専門委員	飯塚 留美	一般財団法人マルチメディア振興センター 電波利用調査部 研究主幹			
11	伊藤 数子	特定非営利活動法人STAND 代表理事			
"	河野 隆二	横浜国立大学 大学院工学研究院 教授 兼 同大学 未来情報通信医療社 会基盤センター長			
"	齋藤 一賢	日本電信電話株式会社 技術企画部門 電波室長			
11	鈴木 薫	一般社団法人全国陸上無線協会 専務理事			
"	薄田 由紀	日本電気株式会社 電波・誘導事業部 情報システム部 マネージャ			
"	高田 政幸	日本放送協会 放送技術研究所 伝送システム研究部長			
п	田丸 健三郎	日本マイクロソフト株式会社 技術統括室 業務執行役員 ナショナルテクノロジーオフィサー			
"	日野岳 充	一般社団法人日本アマチュア無線連盟 専務理事			
"	藤井 威生	電気通信大学 先端ワイヤレス・コミュニケーション研究センター 教授			
11	藤野 義之	東洋大学 理工学部 電気電子情報工学科 教授			
"	寶迫 巌	国立研究開発法人情報通信研究機構 ワイヤレスネットワーク総合研究センター 総合研究センター長			
"	本多 美雄	欧州ビジネス協会 電気通信機器委員会 委員長			
11	松井 房樹	一般社団法人電波産業会 代表理事・専務理事・事務局長			
"	松尾 綾子	株式会社東芝 研究開発本部 本部企画部 兼 研究開発センター 研究企画部 参事			
"	三谷 政昭	東京電機大学 工学部 情報通信工学科 教授			
"	三次 仁	慶應義塾大学 環境情報学部 教授			
11	吉田 貴容美	日本無線株式会社 新規事業開発本部 新規事業開発企画部 シニアエキス パート			

情報通信審議会 情報通信技術分科会 陸上無線通信委員会 空間伝送型ワイヤレス電力伝送システム作業班 構成員一覧

(令和2年5月22日現在、敬称略)

	 氏 名	(令和 2 年 5 月22日現任、飲称略) 主 要 現 職
<u> </u>		
主任	三谷 政昭	東京電機大学 工学部 情報通信工学科 教授
主任 代理	藤野 義之	東洋大学 理工学部 電気電子情報工学科 教授
構成員	浅井 裕介	ARIB 無線 LAN 作業班 T71_11ac SWG リーダ 日本電信電話(株) NTT アクセスサービスシステム研究所 無線アクセスプロジェクト 主幹研究員
"	井上 統之	KDDI(株) 技術企画本部電波部 企画・制度グループマネージャー
"	井上 保彦	ARIB 無線 LAN 作業班 主任 日本電信電話(株) NTT アクセスサービスシステム研究所 無線アクセスプロジェクト 主任研究員
"	上原 光太郎	国土交通省 道路局道路交通管理課 高度道路交通システム(ITS)推進室 課長補佐
"	大山 真澄	ソフトバンク(株) テクノロジーユニット電波企画室 担当部長
"	柿沼 由佳	(公社)全国消費生活相談員協会 IT研究会 研究員
//	亀谷 收	自然科学研究機構 国立天文台 電波研究部 水沢 VLBI 観測所
"	栗田 昌典	ARIB 小電力無線局作業班 主任 パナソニック株式会社 ライフソリューションズ社 エナジーシステム事業部 R&Dセンター 通信ネットワーク技術部
"	児島 史秀	(国研)情報通信研究機構 ワイヤレスネットワーク総合研究センター ワイヤレスシステム研究室 室長
"	佐々木 邦夫	ARIB 電子タグ作業班 主任 電気興業(株) 新規事業統括部 事業開発部 参事
"	佐野 康二	(一財)テレコムエンジニアリングセンター 電磁環境試験部 部長
"	庄木 裕樹	ブロードバンドワイヤレスフォーラム(BWF) ワイヤレス電力伝送ワーキング グループリーダ
"	鈴木 淳	(一財)移動無線センター 事業企画部 担当部長
"	角埜 勝明	(一社)電波産業会 研究開発本部周波数資源グループ 主任研究員
//	髙井 正興	(一社)日本アマチュア無線連盟 電磁環境委員会 委員長
"	高木 秀紀	(一財)総合研究奨励会 日本無人機運航管理コンソーシアム
"	中村 順一	ARIB ITS 情報通信システム推進会議 5GHz 帯路車間通信検討 WG 主査 東芝インフラシステムズ(株) 社会システム事業部 道路ソリューション技術部 道路システム技術主幹
"	成島 大輔	国土交通省 道路局道路交通管理課 高度道路交通システム(ITS)推進室 課長補佐
"	藤本 卓也	ブロードバンドワイヤレスフォーラム(BWF) ワイヤレス電力伝送ワーキンググループ TG6 リーダ
"	前田 規行	(株)NTTドコモ 電波部 電波技術担当課長
"	和氣 加奈子	(国研)情報通信研究機構 電磁波研究所 電磁環境研究室 研究マネージャー

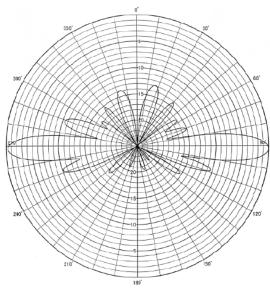
参考資料

参考資料1:各共用検討対象システムにおける共用検討用パラメータ

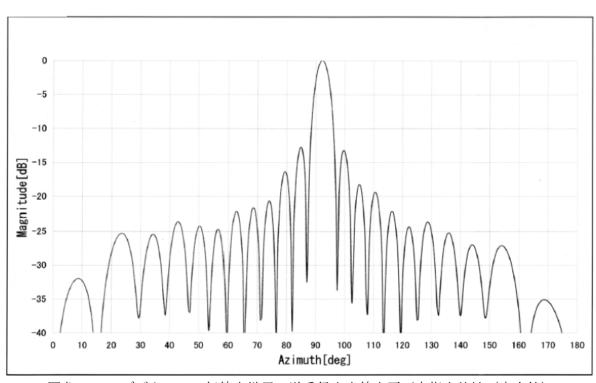
各共用検討対象システムにおける検討用パラメータを以下に示す。

(1) 920MHz 帯

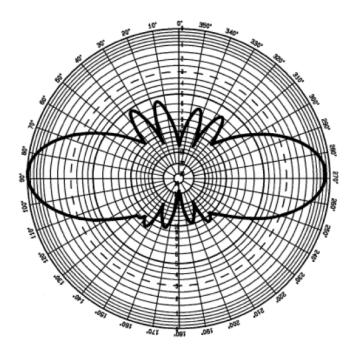
(ア)デジタル MCA システム

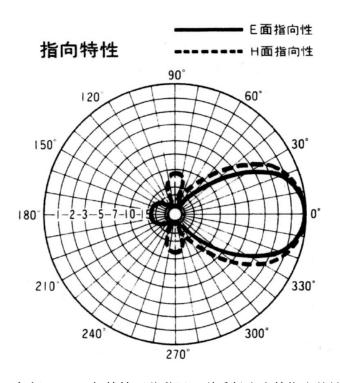

デジタル MCA システムの受信パラメータを表参 1.1.1 に示す。**15

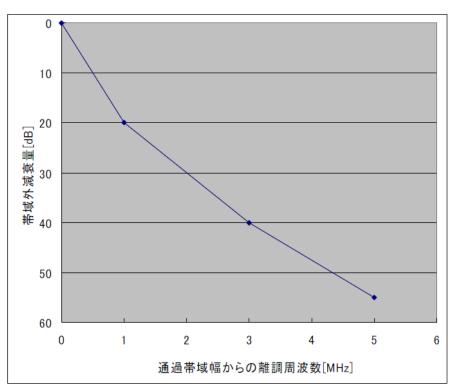
表参 1.1.1 デジタル MCA システムの受信側パラメータ


項目	中継局	移動局	備考
使用周波数	930~940MHz	850~860MHz	
受信感度•実効 選択度	1×10-2 (スタティック): 6.0dBμV以下 (規格感度) 3×10-2 (フェージング): 10.0 dBμV以下	1×10-2 (スタティック): 6.0dBμV以下(規格感度) 3×10-2 (フェージング): 10.0 dBμV以下	ARIB STD-T85 Ver. 1. 1 3. 4. 2 (2) フェージング条件:最大ドップ ラー周波数は 40Hz
給電線損失	0dB	1.5dB	一般値
空中線利得	1)10.5dBi 2)17dBi(大都市部)	車載移動局:4dBi 管理移動局:10dBi	一般値
空中線水平面 内指向特性	無指向性	車載移動局:無指向性 管理移動局:指向性	図. 参 1. 1. 3 及び図参 1. 1. 4
空中線垂直面 内指向特性	図参 1.1.1 及び図参 1.1.2	図参 1.1.3 及び図参 1.1.4	特性例
空中線地上高	1) 40m 2) 150m (大都市部)	車載移動局:1.5m 管理移動局:10m	一般値
受信周波数帯 域幅	16kHz	16kHz	情報通信審議会諮問第 117 号答 申 (H14.6.23)
変調方式	π/4シフト QPSK	π/4シフト QPSK	ARIB STD-T85 Ver. 1.1 3.2 (5)
受信フィルタ 特性	図参 1.1.5	任意	調査値
許容干渉レベル (帯域内)	-126.8dBm/16kHz	-126.8dBm/16kHz	情報通信審議会諮問第 117 号答 申 (H14.6.23)
感度抑圧レベ ル (帯域外)	-52dBm	-52dBm	ARIB STD-T85 Ver. 1. 1 3. 4. 2 (3) スプリアス・レスポンス 規格感度+3dB+53dB

-


^{※15} 平成7年7月24日付け電気通信技術審議会諮問第81号「携帯電話等の周波数有効利用方策」のうち「900MHz 帯を使用する移動通信システムの技術的条件」及び「携帯無線通信の中継を行う無線局の技術的条件」(平成23年5月17日答申)

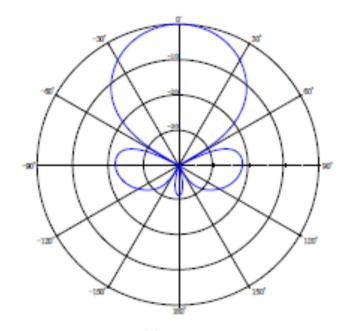

図参 1.1.1 デジタル MCA 無線中継局の送受信空中線垂直面内指向特性(実力値)


図参 1.1.2 デジタル MCA 無線中継局の送受信空中線水平面内指向特性(実力値)

図参 1.1.3 デジタル MCA 無線車載移動局の送受信空中線垂直面内指向特性 (実力値)

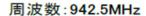
図参 1.1.4 デジタル MCA 無線管理移動局の送受信空中線指向特性(実力値)

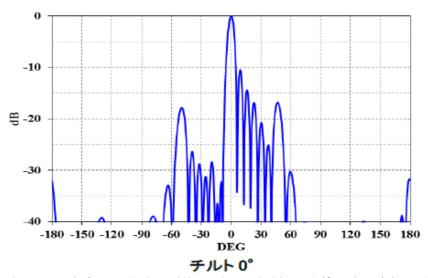
図参 1.1.5 デジタル MCA 中継局受信フィルタ特性 (干渉形態を前提に調査した結果)


(イ)高度 MCA システム

高度 MCA システムの受信パラメータを表参 1.1.2、に示す。高度 MCA システムは基本的に LTE 携帯電話システムと同等のパラメータである。 *16

表参 1.1.2 高度 MCA システムの受信パラメータ


項目	中継局 (基地局)	移動局	備考
使用周波数	895~900MHz	940~945MHz	
空中線利得	1) 19dBi(都市部) 2) 16dBi(郊外)	車載移動局: 4.5dBi 携帯移動局: 2dBi	
空中線水平面内指向特性	図参 1.1.6	無指向性	
空中線垂直面内指向特性	図参 1.1.7	無指向性	
空中線地上高	1) 150m (都市部) 2) 40m (郊外)	1.5m	
許容干渉レベル(帯域内)	-119dBm/MHz (I/N=10dB)	-110.8dBm/MHz (I/N=6dB)	
感度抑圧レベル (帯域外)	-43dBm	-56dBm (BW:Channel/2+7.5MHz 離調) -44dBm (BW:Channel/2+12.5MHz 離調)	3GPP TS36. 101V8. 3. 0 (2008-9)


^{※16} 平成 14 年 9 月 30 日付け情報通信審議会諮問第 2009 号「小電力の無線システムの高度化に必要な技術的条件」のうち「920MHz 帯小電力無線システムの高度化に係る技術的条件」(平成 29 年 3 月 31 日答申)

周波数:942.5MHz

図参 1.1.6 高度 MCA 中継局(基地局)の送受信空中線水平面内指向特性

図参 1.1.7 高度 MCA 中継局(基地局)の送受信空中線垂直面内指向特性

(ウ)携帯電話システム

携帯電話システムの受信パラメータを表参 1.1.3 に示す。※17

※17 平成7年7月24日付け電気通信技術審議会諮問第81号「携帯電話等の周波数有効利用方策」 のうち「900MHz 帯を使用する移動通信システムの技術的条件」及び「携帯無線通信の中継を行う 無線局の技術的条件」(平成23年5月17日答申)

表参 1.1.3 携帯電話システム受信側パラメータ

項目	基地局	移動局	備考
使用周波数	900∼915MHz	945~960MHz	
給電線損失	0dB	0dB	
空中線利得	14dBi	0dBi	
空中線水平面内指向特性	図参 1.1.8	無指向性	
空中線垂直面内指向特性	図参 1.1.9	無指向性	
空中線地上高	40m	1.5m	
許容干渉レベル(帯域内)	-119dBm/MHz (I/N=10dB)	-110.8dBm/MHz (I/N=6dB)	
感度抑圧レベル (帯域外)	-43dBm	-56dBm (BW:Channel/2+7.5MHz 離調) -44dBm (BW:Channel/2+12.5MHz 離調)	3GPP TS36. 101V8. 3. 0 (2008-9)
その他損失	_	8dB(人体吸収損)	

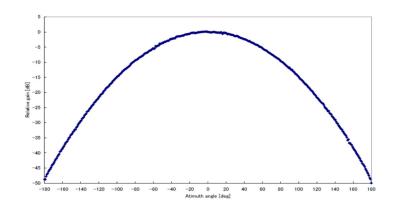


図2.2.1-1 LTE基地局の送受信アンテナパターン(水平面) (携帯電話等周波数有効利用方策委員会報告(平成18年12月21日)図3.2-1を引用)

図参 1.1.8 携帯電話システム基地局の送受信空中線水平面内指向特性

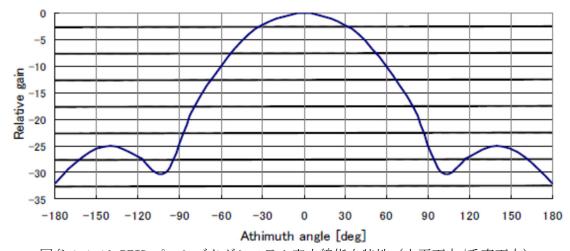
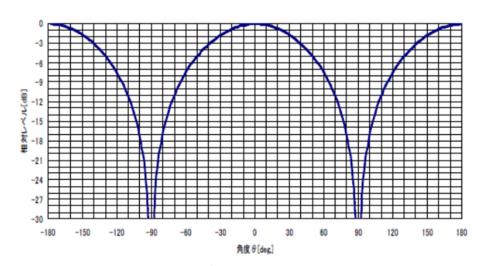


図2. 2. 1-2 LTE基地局の送受信アンテナパターン(垂直面) (携帯電話等周波数有効利用方策委員会報告(平成18年12月21日)図3. 2-2を引用) 図参 1.1.9 携帯電話システム基地局の送受信空中線垂直面内指向特性

- (エ)RFID 構内無線局/陸上移動局システム
- (オ)RFID 特定小電力無線局システム
- (カ) RFID テレメータ用、テレコントロール用及びデータ伝送用無線設備 共用検討用のパラメータを、表参 1.1.4 に示す*18。RFID 構内無線局/陸上移動局システム及び RFID 特定小電力無線局システムをパッシブタグシステム、RFID テレメータ用、テレコントロール用及びデータ伝送用無線設備をアクティブタグシステムとして記載している。


表参 1.1.4 RFID システムのパラメータ

	* **		-		
項目	パッシブタ	アクティブタグシステム			
送信周波数		920MHz 帯			
受信周波数		920MHz 帯			
空中線電力	30dBm	24dBm	24dBm	10dBm	1dBm
空中線利得	6d	3dBi			
空中線水平面内指向特性	図参 1.1.10 又は 図参 1.1.11	図参 1.1.11			
空中線垂直面内指向特性	図参 1.1.10 又は 無指向性	無指向性			
隣接チャネル漏えい電力	-61dBc -55c			-55dBc	
空中線地上高	1.5m				
許容帯域內干渉電力	-86. 4dBm/4. 2MHz				
許容帯域外干渉電力		-30dBm			

図参 1.1.10 RFID パッシブタグシステム空中線指向特性(水平面内/垂直面内)

^{※18} 平成 14 年 9 月 30 日付け情報通信審議会諮問第 2009 号「小電力の無線システムの高度化に必要な技術的条件」のうち「920MHz 帯小電力無線システムの高度化に係る技術的条件」(平成 29 年 3 月 31 日答申)

図参 1.1.11 RFID システム空中線水平面内指向特性(垂直面内は無指向性)

(キ)電波天文

干渉検討用に用いた電波天文のパラメータを表参 1.1.5 に電波天文施設の設置場所及び 設置状況を表参 1.1.6 に示す。**19

表参 1.1.5 電波天文の受信側パラメータ

項目	電波天文 観測局	備考
受信感度・実効選択度	「許容干渉レベル(帯域内)」を参照	
給電線損失	0dB	実力値
空中線利得	0dBi	勧告 ITU-R RA. 769-2
空中線指向特性 (水平)	パラボラ	
空中線指向特性 (垂直)	パラボラ	
空中線地上高	Om	
受信周波数帯域幅	1,400~1,427MHz(27MHz 幅)	勧告 ITU-R RA.769-2
許容干渉レベル(帯域内)	-188dBm/MHz	実力値
感度抑圧レベル (帯域外)	_	

_

^{※19} 平成7年7月24日付け電気通信技術審議会諮問第81号「携帯電話等の周波数有効利用方策」のうち「900MHz 帯を使用する移動通信システムの技術的条件」及び「携帯無線通信の中継を行う無線局の技術的条件」(平成23年5月17日答申)

表参 1.1.6 電波天文の設置場所・設置状況

観測所名	空中線 形式	大きさ (直径)	緯度	経度	海抜高 (m)	地上高 (m)	最小運用 仰角 (度)	観測周波 数 (MHz)
野辺山・ 宇宙	パラボ ラ	3m	138E 28′ 33″	35N 56′ 18″	1349	5. 2	5	1400-1427
臼田	パラボ ラ	64m	135E 21′46″	36N 07′ 57″	1456	33. 0	5	1400-1750
みさと天 文台	パラボ ラ	8 m	135E 24′24″	34N 8′39″	416	-	-	1420-1420
和歌山大 12m	パラボ ラ	12m	135E 9′00″	34N 16′02″	84	7. 5	10	144-8100
那須パル サー	固定球 面鏡	$20\text{m}\times8$ $30\text{m}\times1$	139E 59′00″	36N 55′ 30″	296	21. 0	70	1405-1425
あわら	パラボ ラ	10m	136E 14′07″	36N 15′ 50″	18	15. 0	2	1300-2500
水沢	パラボ ラ	20m (VERA)	141E 07′ 57″	39N 08′ 01″	63	22. 0	3	1350-2350
石垣島	パラボ ラ	20m (VERA)	124E 10′16″	24N 24′44″	26	22. 0	3	1350-2350

(2) 2. 4GHz 帯

(ア)無線 LAN システム

表参 1.2.1 2.4GHz 帯無線 LAN システムの受信パラメータ 1

As 1.2.1 a. folia il mm/m that v s s y c to y c l			
項目	パラメータ		
空中線電力	①FH 方式 (2,427MHz~2,470.75MHz) のもの:3mW/MHz 以下 ②スペクトル拡散方式のもの(①を除く):10mW/MHz 以下 ③0FDM のもの(①を除く) 占有周波数帯幅が 26MHz 以下:10mW/MHz 以下 占有周波数帯幅が 26MHz を超え 38MHz 以下:5mW/MHz 以下 ④上記以外のもの:10mW 以下		
空中線利得	2. 14dBi		
スプリアス発射又は 不要発射の強度の許 容値	2,387MHz 未満及び 2,496.5MHz を超えるもの:2.5 μ W/MHz 以下 2,387MHz 以上 2,400MHz 未満及び 2,483.5MHz を超え、2,496.5MHz 以下:25 μ W/MHz 以下		

表参 1.2.2 2.4GHz 帯無線 LAN システムの受信パラメータ 2

亦細十十	所要 D/U(dB)			受信感度(dBm)	
変調方式 (コーディングレート)	同一 チャネル	隣接 チャネル	次隣接 チャネル	10MHz	20MHz
BPSK (1/2)	10	-16	-32	-85	-82
QPSK (1/2)	13	-13	-29	-82	-79
16QAM(1/2)	18	-8	-24	-77	-74
64QAM(2/3)	26	0	-16	-69	-66

(イ)構内無線局等

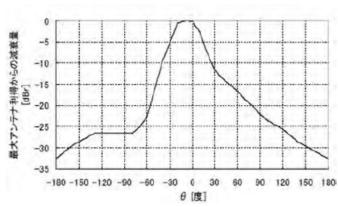
表参 1.2.3 構内無線局等共用検討用パラメータ

Į	頁目	構内無線局特定小電力無		
送信空中線電力		300mW 10mW		
送受信	周波数带	2. 46	Hz 帯	
送受信	質問機	11dBi	11dBi	
空中線利得	応答機	2dBi	2dBi	
給電線損	失(送受信)	0dB	0dB	
応答	応答機損失 10dB		dB	
伝搬~	マージン	10dB		
干渉マージン		10dB		
受信帯域幅		32kHz		
許容干渉入力 (空中線利得 11dBi を含む)		-98dBm -97dBm		

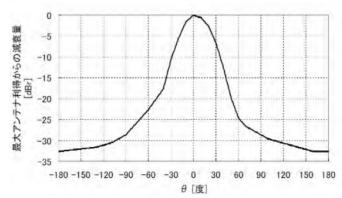
(ウ)無人移動体高速伝送システム

表参 1.2.4 2.4GHz 帯無人移動体高速伝送システムの検討パラメータ

項	Ħ	パラメータ		
送信空中	線電力	1W (30dBm)		
周波	数数	2. 4GHz 帯		
占有周波数帯幅		5MHz, 10MHz		
空中線利得	(送受信)	6dBi		
空中線高 地上利用		10m(制御側)	3m (ロボット側)	
三	上空利用	2m (制御側)	0~250m (ロボット側)	


表参 1.2.5 2.4GHz 帯無人移動体高速伝送システムの受信パラメータ

_								
	変調方式		所要 D/U(dB)			受信感度(dBm)		
	(コーディングレ ート)	同一 チャネル	隣接 チャネル	次隣接 チャネル	5MHz	10MHz	20MHz	
	BPSK (1/2)	10	-16	-32	-88	-85	-82	
	QPSK (1/2)	13	-13	-29	-85	-82	-79	
	16QAM(1/2)	18	-8	-24	-80	-77	-74	
	64QAM(2/3)	26	0	-16	-72	-69	-66	


(エ)移動衛星通信システム (N-STAR)

表参 1.2.6 N-STAR の受信パラメータ

項	I	移動局	
空中線	利得	12.6 dBi	
給電線損失		0 dB	
	帯域内干渉	-124.9 dBm/MHz	
許容干渉量	帯域外干渉	-60 dBm 0-10MHz 離調 -41 dBm 10-25MHz 離調 -37 dBm 25-30MHz 離調	

図参 1.2.1 垂直面内指向特性

図参 1.2.2 水平面内指向特性

(オ)移動体衛星通信システム (グローバルスター)

表参 1.2.7 グローバルスターの受信パラメータ

X 1. 2. 1 / 1 / 1	12 X III
項目	移動局
帯域幅	1.23 MHz
空中線利得	0.51 dBi
許容干渉電力(帯域内·帯域外)	-119.4 dBm/MHz

(カ)放送事業用 FPU システム

表参 1, 2, 8 1, 2/2, 3GHz 帯 4K・8K 対応高度化 FPU システムのパラメータ※20

表 9 1. 2. 0 1. 2/2. 00H2 H					
項目	固定中継上り	移動中継上り	固定中継下り	移動中継下り	
周波数[GHz]	2. 37	2.37	2. 37	2. 37	
標準受信電力 [dBm/BW]	-57	-57	-57	-57	
所要 D/U 比[dB]	17. 4	32. 6	13	21.6	
FPU 空中線利得 [dBi]	21. 1	18. 1	12	5. 2	

表参 1.2.9 1.2/2.3GHz 帯 FPU システムのパラメータ*21

項目	移動中継 ハーフ 16QAM- 0FDM2/3	移動中継 フル 16QAM-0FDM2/ 3	固定中継 32QAM- OFDM 3/4	固定中継 フル 16QAM-OFDM RS (204, 166)	移動中継 フル 8PSK-0FDM RS (204, 166)	移動中継 ハーフ 32QAM-0FDM RS (204, 188)
周波数[GHz]	2. 37	2. 37	2.37	2.37	2.37	2.37
標準受信電力 [dBm/BW]	-61	-61	-61	-61	-61	-61
所要 C/I[dB]	29. 4	22. 4	26.8	19. 2	17. 2	23. 2
FPU 空中線利得 [dBi]	18. 1	18. 1	18. 1	18. 1	18. 1	18. 1

^{※20} 情報通信審議会諮問第 2023 号「放送システムに関する技術的条件」における「放送事業用 無線局の高度化のための技術的条件」のうち「超高精細度テレビジョン放送のための 1.2GHz 帯及 び 2. 3GHz 帯を使用する放送事業用無線局 (FPU) の技術的条件」

^{※21} 情報通信審議会諮問第 2023 号「放送システムに関する技術的条件」のうち、「放送事業用無 線局の高度化のための技術的条件」

(キ)電波ビーコン

表参 1.2.10 電波ビーコンのパラメータ

パラメータ
20mW
2,499.7MHz
85kHz
2.5μW以下
2dB
52. 5dB
-90.4dBm

(ク)電波天文

表参 1.2.11 電波天文のパラメータ

7/9 11 -1 11	电灰パス・ジェーノ
項目	パラメータ
観測周波数	2,695 MHz
観測帯域	10 MHz
空中線利得	0 dBi
干渉閾値	
入力電力	-207 dBW
pfd	-177 dB(W/m2)
pfd スペクトラム	-247 dB(W/(m2 · Hz))

表参 1.2.12 電波天文の設置場所・設置状況

AS I. I. B BEACH								
観測所名	空中線形	大きさ	緯度	経度	海抜高	地上高	最小運用	観測周波数
	式	(直			(m)	(m)	仰角 (度)	(MHz)
		径)						
野辺山・	パラボラ	2m	138E 28′ 33″	35N 56′ 18″	1349	4. 7	5	1910-2090
宇宙	パラボラ	1.5m	138E 28′ 33″	35N 56′ 18″	1349	4.5	5	3410-3840
臼田	パラボラ	64m	138E 21′ 46″	36N 7′ 57″	1456	33	5	2200-2300
小金井	パラボラ	11m	139E 29′ 17″	35N 42′ 38″	99. 7	12.5	5	2212-2360
石岡	パラボラ	13.2m	140E 13′ 8″	36N 12′ 33″	130	18	3	2200-2400
水沢	パラボラ	20m	141E 7′ 57″	39N 8′ 1″	63	22	3	2200-2400
石垣島	パラボラ	20m	124E 10′ 16″	24N 24′ 44″	26	22	3	2200-2400
入来	パラボラ	20m	130E 26′ 24″	31N 44′ 52″	528	22	3	2200-2400

(ケ)アマチュア無線

表参 1.2.13 アマチュア無線のパラメータ

項目	パラメータ
最小感度	-110.83 dBm/MHz
D/U 比	0 dB
許容干渉入力	-110.83 dBm/MHz

(3) 5. 7GHz 帯

(ア)無線 LAN システム

無線 LAN システム (5,470MHz~5,730MHz) の受信側パラメータを表参 1.3.1 に示す。

表参 1.3.1 無線 LAN システムの受信パラメータ

項目		無線 LAN システム変調方式(コーディングレート)					
		BPSK (1/2)	QPSK (1/2)	16QAM(1/2)	64QAM(2/3)		
周波	数帯域		5,470~	5,730MHz			
受信息	-79dBm	-76dBm	-71dBm	-63dBm			
感度抑圧レベル	隣接チャネル	-16dB	-13dB	-8dB	0dB		
恐及抑圧レベル	次隣接チャネル	-32dB	-29dB	-24dB	-16dB		
	隣接チャネル	-63dBm					
計谷八万レベル	許容入力レベル 次隣接チャネル		-47dBm				
最大空中線利得		20dBi					
SIFS 時間		16us					
S1	ot 長		91	1S			

(イ)DSRC (狭域通信) システム

DSRC システムの受信側パラメータを表参 1.3.2 に示す。

表参 1.3.2 DSRC (狭域通信) システムの受信パラメータ

項目	秋朱 古	路位	則機
	車載機	クラス1	クラス 2
周波数帯域	5,775~5,805MHz ch 間隔 5MHz	5,815~5,845MHz ch 間隔 5MHz	5,815~5,845MHz ch 間隔 5MHz
スプリアス・レスポンス・ リジェクション (ISM 帯域内)	24. 0 dB	28.0 dB	30.0 dB
受信感度+3dB	-57.0 dBm	-62.0 dBm	-72.0 dBm
スプリアス許容入力量	-33.0 dBm	-34.0 dBm	-42.0 dBm
带域内干渉許容入力量	-84.5 dBm	-90.0 dBm	-100.0 dBm
空中線利得(最大値)	10 dBi	20 dBi	20 dBi

(ウ)放送業務用 STL/TTL システム

放送業務用の STL/TTL システムにおける干渉検討を行う回線設計パラメータを表参 1.3.3 に示す。

表参 1.3.3 放送事業用 STL/TTL システムの回線設計パラメータ

項目	SHF 帯 TS 伝送方式 B バンド
計算周波数	5,900MHz
キャリア変調方式	64QAM
伝播距離	平野 50km
所要フェージングマージン	−27. 6dB
帯域幅	6.7MHz
標準受信電力	-42.89dBm
受信雑音指数	4. 0dB
受信等価熱雑音	-101.6dBm
標準時熱雑音 C/N	58. 7dB
フェージングマージン時	30, 8dB
所要熱雑音 C/N	av. oab
空中線利得	40.4dBi
給電線損失	8.3dB

(エ)放送事業用 FPU/TSL システム

放送業務用の FPU システムにおける受信パラメータを表参 1.3.4 に TSL システムにおける干渉検討を行う回線設計を表 1.3.5 に示す。

表参 1.3.4 放送事業用 FPU システムの受信パラメータ

項目	固定中継局 (4K/8K 標準伝送)	固定中継局 (4K/8K 高品質伝送)	可搬型 OFDM 中継局	移動中継局
周波数帯域	5,850∼5,925 MHz	5,850∼5,925 MHz	5,850∼5,925 MHz	5,850∼5,925 MHz
キャリア変調方式	1024QAM (LDPC 2/3)	4096QAM (LDPC 5/6)	64QAM (FEC 5/6)	64QAM LDPC 5/6
標準受信電力	-55dBm	-45dBm	-61dBm	-62dBm
所要 C/N	27.1dB	37.1dB	28. 0dB	21. 2dB
干渉雑音(異伝播 路)C/N	34. 4dB	44. 4dB	34. 4dB	28. 5dB
帯域	17.5MHz	17.5MHz	17.5MHz	17.5MHz
干渉雑音電力(異伝	-89.4dBm	-89.4dBm	-95.4dBm	-90.5dBm
播路)	-101.8dBm/MHz	-101.8dBm/MHz	-107.8dBm/MHz	-102.9dBm/MHz
空中線利得	35.0dBi	35.0dBi	30.0dBi	23. 2dBi
給電線損失	5. 0dB	5. 0dB	0. 0dB	0. 5dB

表参 1.3.5 放送事業用 TSL システムの回線設計パラメータ

項目	SHF 帯 TSL 伝送方式 B バンド
計算周波数	5,900MHz
キャリア変調方式	64QAM
伝播距離	平野 50km
所要フェージングマージン	24. 5dB
帯域幅	16.2MHz
標準受信電力	-44.8dBm
受信雑音指数	4. 0dB
受信等価熱雑音	-98.5dBm
標準時熱雑音 C/N	53. 7dB
フェージングマージン時 所要熱雑音 C/N	29. 2dB
空中線利得	42.0dBi
給電線損失	4. 9dB

(オ)無人移動体高速伝送システム

無人移動体高速伝送システムの検討パラメータを表参 1.3.6、受信パラメータを表参 1.3.7、受信妨害波パラメータを表参 1.3.8 に示す。

表参 1.3.6 5.7GHz 帯無人移動体高速伝送システムの検討パラメータ

	.,.		12 4 17 4 7 1 1	
項目		パラメータ		
送信空中線電力		1W (30dBm)		
周波数		5. 7GHz 帯		
占有周波数帯幅		5MHz、10MHz、20MHz		
空中線利得(送受信)		6dBi		
空中線高地上利用		10m(制御側)	3m(ロボット側)	
1 工 下 脉 同	上空利用	2m (制御側)	0~250m(ロボット側)	

表参 1.3.7 5.7GHz 帯無人移動体高速伝送システムの受信パラメータ

_							
ĺ	変調方式		所要 D/U(dB)			受信感度(dBm)	
	(コーディングレ ート)	同一 チャネル	隣接 チャネル	次隣接 チャネル	5MHz	10MHz	20MHz
I	BPSK (1/2)	10	-16	-32	-88	-85	-82
	QPSK (1/2)	13	-13	-29	-85	-82	-79
	16QAM(1/2)	18	-8	-24	-80	-77	-74
	64QAM(2/3)	26	0	-16	-72	-69	-66

表参 1.3.8 無人移動体高速伝送システムの受信妨害波パラメータ

1五日	チャネル条件				
項目	同一チャネル	隣接チャネル	次隣接チャネル		
周波数	5,650MHz∼5,755MHz	5,650MHz∼5,755MHz	5,650MHz∼5,755MHz		
帯域幅	5MHz	5MHz	5MHz		
変調方式	BPSK(レート 1/2)	BPSK(レート 1/2)	BPSK(レート 1/2)		
最小受信感度	-88dBm	-88dBm	-88dBm		
各チャネル妨害 波所要 D/U	10dB	-16dB	−32dB		
各チャネル妨害 波許容入力量 -98dBm		-72dBm	-56dBm		
空中線利得	6dBi	6dBi	6dBi		

(カ)気象レーダー

気象レーダーの受信パラメータを表参1.3.9に示す。

表参 1.3.9 気象レーダーの受信パラメータ

Se not was a section of the section				
項目	パラメータ値	備考		
受信空中線利得	47dBi	空港設置の7m空中線タイプ		
指向性減衰量	0dB			
受信中心周波数	5,372.5MHz	最も近い周波数		
受信帯域幅	1.2MHz			
受信帯域内許容雑音入力電力	-120dBm/BW	NF 3dB の入力雑音及び I/N -10dB(勧告 ITU-R M. 1849-2)		
キャリア信号許容入力電力	-40dBm	許容雑音入力電力+ ダイナミックレンジ 80 dB		

(キ)電波天文

電波天文の設置場所・設置状況を表参 1.3.10 に、受信パラメータを表参 1.3.11 に示す。 5.7GHz 帯に近い国内電波天文台のうち、勧告 ITU-R RA.769-2 において許容干渉レベルが規 定されている臼田 64m 鏡 (観測周波数 4995MHz) 及び石岡 13.2m 鏡 (観測周波数 10650MHz) を検討対象とした。

表参 1.3.10 電波天文の設置場所・設置状況

観測	空中線	大きさ	緯度	経度	海抜高	地上高	最小運用	観測周波数
所名	形式	(直径)			(m)	(m)	仰角 (度)	(MHz)
臼田	パラボラ	64m	138E 21′ 46″	36N 7′ 57″	1456	33	5	4700-5140
石岡	パラボラ	13.2m	140E 13′ 08″	36N 12′ 33″	130	18	5	3000-14000

表参 1.3.11 電波天文の受信パラメータ

項目		値	備考
P.	受信空中線利得	0 dBi	
	指向性減衰量	0 dB	
電力スペ	クトルフラックス密度	-241.0 dB(W/(m2 · Hz))	勧告 ITU-R RA. 769-2
=	F涉閾値換算値	-187 dBm/MHz	
	伝搬条件	自由空間伝搬	
	水蒸気圧	5.5 mmHg	
と 伝搬条件	水蒸気密度	4.1 g/m3	15℃
	水蒸気分子による吸収係数	0.001 dB/km	
	大気減衰量	0.0 dB	
	ナイフエッジ回折損	0.0 dB	

(ク) アマチュア無線

表参 1.3.12 アマチュア無線の受信パラメータ

項目	パラメータ
最小感度	-110.83 dBm/MHz
D/U 比	0 dB
許容干渉入力	-110.83 dBm/MHz

参考資料2:設置環境等

(1) 設置環境

電力伝送を目的とする空間伝送型ワイヤレス電力伝送システムは、主に通信を目的としてきた既存の無線システムとは性格を異とするものであると同時に、システムの設置に際しては、無線 LAN システム等の無線システムと同一空間内に設置・使用されることによる影響が想定される。そのため、他の無線システムとの周波数共用の検討や、人体の電波防護に関する検討を行う際、使用する環境として「WPT 屋内設置環境」を新たに定義し、規定するものとした。

なお、本検討ではいずれの周波数帯においても屋内限定としたことから屋外使用に関する 設置環境については本報告による検討対象から除外している。

「WPT 屋内設置環境」を本検討での空間伝送型ワイヤレス電力伝送システムの設置環境と定義する。これは、下記に示す定義に対応する使用環境を「WPT 管理環境」とし、この定義に基づく管理を必要としない使用環境である「WPT 一般環境」とに区分される。

「WPT 管理環境」の定義

- 屋内(※)、閉空間であること。
- 電波防護指針における管理環境の指針値を満足するものとする。(電波防護指針における管理環境の指針値を超える範囲に人が立ち入った際には送電を停止することとする。)
- 屋内の管理環境に設置される空間伝送型ワイヤレス電力伝送システムの運用が、 他の無線システム等に与える影響を回避・軽減するため、本システムの設置者、 運用者、免許人等が、一元的に他の無線システムの利用、端末設置状況を管理で きること。
- 当該屋内に隣接する空間(隣接室内、上下階等)においても他の無線システムとの共用条件を満たすか、当該屋内と同一の管理者により一元的に管理できること。 【2.4GHz 帯、5.7GHz 帯】
 - ※窓を含めた「WPT 屋内設置環境」の周囲にある壁損失が干渉検討に使用する壁損 失以上を担保し、他の無線システム等への干渉を低減できる環境

また、この定義に基づく管理が不要な使用環境を「WPT 一般環境」と区分。

上記「WPT 管理環境」の定義を満たさない使用環境である「WPT 一般環境」では、同一屋内空間においても一元的には管理されない他の無線システムに干渉を与える可能性があり、これを考慮した対策等も必要である。(なお、WPT 一般環境では、電波防護指針における一般環境の指針値を満足するものとする。)

2. 4GHz 帯及び 5. 7GHz 帯では、最大空中線電力をそれぞれ 15W と 32W と大きな電力で送信することを許容していることから、現段階では「WPT 管理環境」のみで設置、使用できることとした。「WPT 一般環境」で他の無線システムと共用するには干渉の回避技術の検証が必要である。

2. 4GHz 帯は、設置場所の地上高が高いと比較的大きなサイドローブが壁を通過して、地上階に設置された運用中の衛星受信を行う無線システムに高い電力で到達する可能性がある。特に実用運用を考慮した場合に、周囲への他の無線局等への与える影響を回避・軽減するには、使用上支障をきたす大きな離隔距離が必要になるケースも考えられる。このため、2. 4GHz帯空間伝送型ワイヤレス電力伝送システムは、屋内の1階(地上階)又は地下階への設置とした。一方、5. 7GHz帯については、空間伝送型ワイヤレス電力伝送システムの設置場所の地上高が、他の無線システムへの干渉に与える影響は少なく、設置階の限定は不要とした。

また、窓を含めた「WPT 屋内設置環境」の閉空間の壁損失が参考資料9【壁等の通過時の損失】としてこの外にある無線システムへの干渉検討を行ったが、他の無線システム等への干渉を低減できる環境としてこの壁損失以上を担保することが必要であったため、屋内設置であることが要請された。

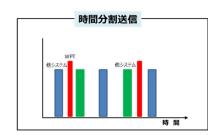
(2) 運用調整

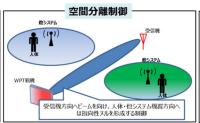
設置環境に配慮した設置や周波数の有効利用を図るために、空間伝送型ワイヤレス電力伝送システムの産業界がコアとなって、官民が連携した、既存の無線システムや空間伝送型ワイヤレス電力伝送システム相互間の運用調整のための仕組みが構築されることが必要である。この仕組みによって空間伝送型ワイヤレス電力伝送システムの使用周波数、使用場所等の情報を一元的に管理・公開し、使用チャネルの調整等、既存の他の無線システムを含む免許人の間の運用調整等により、共用可能とする環境を実現するものとする。また、この仕組みにより空間伝送型ワイヤレス電力伝送システムが既存無線局の運用に継続的に干渉を与える様な場合には、必要に応じて運用者へ対策を講じる措置等を指示するなどにより、電波の利用環境の維持に努める。

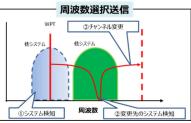
さらに後で設置される他の無線局からの照会に対しても、運用調整の仕組みを活用して協議、検討、変更等の協議を実施できるものとする。

(3)「WPT屋内設置環境」内であれば同一敷地内での送信装置の移設を可能とする方向性

空間伝送型ワイヤレス電力伝送システムの設置環境は、窓を含めた四方の壁損失が参考資料9【壁等の通過時の損失】において検討した壁損失以上を担保した屋内、閉空間である。これが保証される「WPT 屋内設置環境」内であれば送信装置を移設しても「WPT 屋内設置環境」外への漏洩電力には影響がないことから、移設の際に新たに他の無線システムとの共用検討をする必要はないと考えられる。また、空間伝送型ワイヤレス電力伝送システムは、工場、倉庫及び介護現場での利用を想定しており、利用者の利便性も考慮し移設の際に変更申請等が必要ない構内無線局とすることが適当と考えられる。ただし、構内無線局は一の構内での移設を可能としているが空間伝送型ワイヤレス電力伝送システムでは、一の「WPT 屋内設置環境」内での移設に限定する必要がある。


しかし、他の無線システムとの干渉条件の共用検討を設置時に行った上で実施できるシステムであることから当初設置環境と大きく異なる状況が発生する状況では、干渉検討等の検討なしに移設することは望ましく無く、設置建物、設置階等の設置方法が変わる等の「WPT 屋内設置環境」外への漏洩電力が著しく変わる環境の変更が発生する場合には、運用調整のための仕組みを利用した変更・検討を実施する必要がある。


(4) 人体及び被干渉機器との回避・共用


本報告における空間伝送型ワイヤレス電力伝送システムは、既存技術の組み合わせにより、屋内限定として検討している。しかし、空間伝送型ワイヤレス電力伝送システムが、継続的に発展・進化・拡大し、より大きな社会貢献をしていくためには、無線システムとの共用を行いながら、できる限り設置環境の制約を軽減させ、送信電力を増加させてアプリケーションを増やして行くことが望ましい。また、その際にも人体へのばく露に対する安全性の確保が必須である。

並行して推進されている、SIP (Strategic Innovation Promotion Program) 第 2 期では、時間・空間・周波数を統合的に制御することで、最大効率での電力伝送及びマイクロ波からDC 電源への変換効率の向上を目標としている。受電効率の増加と電波ばく露に対する人体の安全性の確保及び他の無線システムとの共用を同時に実現するために図参 2.4.1 に示すiTAF-WPT (intelligent Time-Area-Frequency Control WPT) 技術の研究開発が進められている。

このような革新的技術が開発され、実用化されることで空間伝送型ワイヤレス電力伝送システムの屋外へのユースケースの拡大や送信電力増加(920MHz 帯においては 100W-EIRP)の可能性も期待でき、次のステップへ向けた検討が可能になると予想される。

図参 2.4.1 iTAF-WPT 技術の概要

(5) 送信空中線の設置

空間伝送型ワイヤレス電力伝送システムの設置方法については、送信装置を壁に設置する 場合と天井に設置する方法の2種類が想定される。

(a)壁に設置の例

(b) 天井への設置の例

図参 2.5.1 送信装置の設置方法

2. 4GHz 帯及び 5. 7GHz 帯の送信装置は、ビーム指向性を任意に形成・可変できるフェーズドアレーを使用した空中線を想定している。そのため、空中線の設置に対して自由に方向を制御可能であるが、最大空中線利得方向となるのは一般的には空中線放射素子の正面である。これが横方向(水平方向)となる場合には、壁損失を含んでも他の無線システムへ大きな干渉を与える。そのため、本システムでは天井へ設置することを原則とし、空中線の最大空中線利得方向が大地面方向に対して±10 度以内となるように規定した。

また、原則としたのは、送信装置の形状等により、空中線の最大空中線利得方向が大地面方向に対して±10 度以内となるが、天井以外(壁と天井の角、梁等)に設置可能な送信装置を想定し、利用できるものとした。さらに、水平方向の等価等方輻射電力(EIRP)の制限値を規定することで「WPT 屋内設置環境」外への漏洩電力については影響がない事としており、設置位置を天井以外とした場合でも技術的条件は緩和しないことで他の無線システムへの影響は変わらないとした。

また、920MHz 帯については、送信装置の空中線設置方向による他の無線システムへの干渉について特に影響がないことから設置位置等の制限は設けないものとする。

(6) 920MHz 帯における「WPT 一般環境」使用時の送信時間制限

920MHz 帯を使用した空間伝送型ワイヤレス電力伝送システムはRFIDシステムを準拠したシステムとしての検討を実施した。そのため、RFIDシステムが採用している送信時間制限は、携帯電話への干渉時の確認として、「電波を発射してから送信時間4秒以内にその電波の発射を停止し、かつ、送信休止時間50msを経過した後でなければその後送信を行わないもの」とした条件とされている。

空間伝送型ワイヤレス電力伝送システムでは、RFID システムと同等設置条件となる「WPT 一般環境」においては、RFID システムと同様に携帯電話への干渉が発生する場合があるため「最大4秒送信50ms停止」とした送信時間制限を行うこととしたが、無線システムを一元的に管理する「WPT管理環境」内においては、空間伝送型ワイヤレス電力伝送システムの認知が免許人にて可能であることから送信時間制限装置を条件とはしないものとした。

参考資料3:対象システムにおける電波の安全性

(1) 安全性の検討

(ア)電波防護指針

電波防護指針では、電波利用において人体が電磁界にさらされるとき、その電磁界が人体に好ましくないと考えられる生体作用を及ぼさない安全な状況であるために推奨される指針値を示しており、これに基づき、システムの運用形態に応じて、電波防護指針に適合するようシステム諸元の設定に配慮する必要がある。空間伝送型ワイヤレス電力伝送システムについては、新たな利用形態での使用となるため、電波防護指針(電気通信技術審議会等申 諮問第38号「電波利用における人体の防護指針」(平成2年6月)、同答申 諮問第89号「電波利用における人体防護の在り方」(平成9年4月)、情報通信審議会答申 諮問第2030号「局所吸収指針の在り方」(平成23年5月)、同一部答申 諮問第2035号「電波防護指針の在り方」のうち「低周波領域(10kHz以上10MHz以下)における電波防護指針の在り方」(平成27年3月)及び「高周波領域における電波防護指針の在り方」(平成30年9月))の指針値への適合性について検討を行った。

電波防護指針では、人体が電磁界にさらされている状況が認識され、電波の放射源を特定できるとともに、これに応じた適切な管理が行える場合には、管理環境を適用し、このような条件が満たされない場合は、一般環境を適用することとしている。各条件における指針値を、表参 3.1.1 及び表参 3.1.2 に示す。

表 3.1.1 自在朱苑 V 电磁外强反 (0 万间干均值) V 间间值					
	周波数 f	電界強度の実効値 E[V/m]	磁界強度の実効値 H[A/m]	電力束密度 S[mW/cm²]	
	300MHz — 1.5GHz	$3.54f^{1/2}$ (61.4-137)	$f^{1/2}/106$ (0. 163 $-$ 0. 365)	f/300 (1-5)	
	1.5GHz — 300GHz	137	0. 365	5	

表参3.1.1管理環境の電磁界強度(6分間平均値)の指針値

※fは、MHzを単位とする周波数である。

表参 3.1.2	一般環境の電磁界強度	(6 分間平均値)	の指針値

周波数 f	電界強度の実効値 E[V/m]	磁界強度の実効値 H[A/m]	電力東密度 S[mW/cm ²]
300MHz — 1.5GHz	1. 585f ^{1/2} (27. 5-61. 4)	$f^{1/2}/237.8$ (0. 0728-0. 163)	f/1500 (0.2-1)
1.5GHz — 300GHz	61. 4	0. 163	1

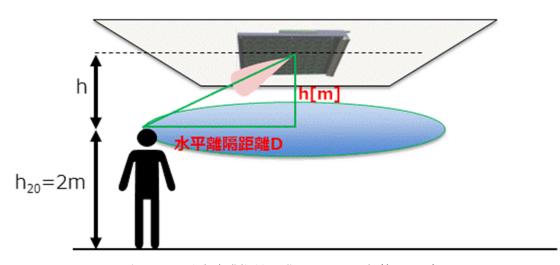
[※]fは、MHzを単位とする周波数である。

電波の強度の算出については、「無線設備から発射される電波の強度の算出方法及び測定方法を定める件」(平成 11 年郵政省告示第 300 号)において、以下の式が基本算出式として定められている。

$$S = \frac{PG}{40\pi R^2} \cdot K$$

S:電力東密度(mW/cm²) P:空中線入力電力(W)

G:送信空中線の最大発射方向における絶対利得(真数)


R:送信空中線と算出を行う地点との距離(m)

K:反射係数

すべての反射を考慮しない場合 : K=1 大地面の反射を考慮する場合 : K=2.56 水面等大地面以外の反射を考慮する場合 : K=4

算出地点付近にビル、鉄塔、金属物体等の建造物が存在し強い反射を生じさせるお それがある場合は、算出した電波の強度に 6dB を加えること。

この式を変換することで電波防護指針値を満足できる送信装置からの距離の算出が可能であり、図参 3.1.1 による算出モデルにて基本算出式を用いたバンドごとの電波防護指針を満足できる距離を算出した。また、指向性を考慮した空間的平均値の算出例として鋭い指向性を有する 2.46Hz 帯と 5.76Hz 帯について実施した。

図参 3.1.1 電波防護指針を満足できる距離算出モデル

計算例としては、空間伝送型ワイヤレス電力伝送システムにて想定している「WPT 屋内設環境」内であり、実際の電波防護指針への指針値を満足する距離の策定には、設置環境を考慮した反射係数による算出又は実際の測定等により確定させ、注意喚起の表示、安全柵等の対策を実施する必要がある。

また、人体の近傍 (20cm 以内) で使用が想定されるものについては、人体における比吸 収率の許容値 (表参 3.1.3) に適合する必要がある (ただし、平均電力が 20mW を超えない 場合は、適用対象外となる)

\$40 10 10 10 10 10 10 10 10 10 10 10 10 10					
条件	任意の組織 10g 当り	の比吸収率(W/kg)			
	人体(四肢、両手を 除く)	人体四肢(両手を除 く)			
管理環境	10	20			
一般環境	2	4			

表参 3.1.3 局所比吸収率の指針値 (6 分間平均値) (100kHz-6GHz)

本システムの 2.4GHz 帯及び 5.7GHz 帯では、人体検出機能を備え、電波防護指針値を超える範囲に人が立ち入ったことを検出した場合は、送信を停止する機能を有することとしている。人体検出方法は、工場等ではロボットや大型プレス機など危険な領域に人が入ると動作を止めるセーフティセンサがすでに設置されており、これと同様なものを想定した。これ以外にも人体検出方法としては、例えば、ドアや柵に連動するスイッチ、焦電センサ、画像センサ等が考えられる。人体検出の手段についてはこの他にもさまざまな技術開発が

行われおり、具体的な検出方法の規定は行わないものとした。

これらの人体検出による停波機能を正しく機能させることで安全対策とするが、電波防護指針を超える範囲には一般的な対策と同様に表示や柵等を設ける対策も併せて実施することが望ましい。また、920MHz 帯では電波防護指針値を超える範囲が至近距離となるため、設置位置の設計による対策としている。

人体の近傍における比吸収率については、ユースケースより、送信装置から 20cm 以内となる環境での使用は想定されないことから、評価の必要性はないと想定している。しかし、人体の近傍(20cm 以内)で使用することが想定される際には、比吸収率を評価する必要がある。

(イ)植込み型医療機器等への影響

総務省では、各種電波利用機器の電波が植込み型医療機器へ及ぼす影響の調査研究を実施し、平成28年11月改訂「各種電波利用機器の電波が植込み型医療機器等へ及ぼす影響を防止するための指針」として示されている。

しかし、空間伝送型ワイヤレス電力伝送システムは新しい無線システムであることから 調査対象機器が市場にないため、今後の調査検討が必要である。ただし、920MHz 帯システムは、920MHz 帯のパッシブ系電子タグシステム 1 W 設備の機器と同等であることからこれ に準じた取扱いについて調査した。また、2.4GHz 帯及び 5.7GHz 帯については、今後、評価及び対応の必要性についての検討が必要である。

(2) 920MHz 帯

(ア)電波防護指針

920MHz 帯空間伝送型ワイヤレス電力伝送システムにおける電磁界強度(6分間平均)の指針値及び電波防護指針を満足できる距離の計算結果を表参3.2.1及び表参3.2.2に示す。920MHz 帯における送信は連続送信であるが、間欠的送信とする場合には無送信時間分だけ電磁界強度の実効値が平均値としては下がることで、更に電波防護指針を満足できる距離は小さくなる。

表参 3.2.2 より、工場のような「管理環境」においては、送信空中線と人体との距離を 最大 0.325m離すことで、電波防護指針を満足できる。これは、送信空中線を床から約 2.4 m以上の高さに設置すれば(身長 2m の位置)の電波防護指針を満足することを示している。

また、介護施設のような「一般環境」においては、送信空中線と人体との距離を最大 0.727 m離せば、電波防護指針を満足できる。これは、送信空中線を床から 2.5~2.8m以上の高さに設置すればおおむね電波防護指針を満足することを示している。

以上のことから、920MHz 帯空間伝送型ワイヤレス電力伝送システムの送信空中線の高さは、水面等大地面以外の反射波があり、金属物体等の建造物が存在し強い反射を生じさせる環境においても一般環境にて約 2.9m 以上、管理環境にて約 2.4m 以上とすることで、(床面に身長 2m の人が直立していることを前提として) おおむね電波防護指針の値を満足することが可能である。

红沙 0.	农多 0.2.1 电磁介 3 (0 万间 1 名) v 7 百 直 (0 2 0 m 1 2						
周波数 f=920MHz	電界強度の実効値	磁界強度の実効値	電力東密度				
	E[V/m]	H[A/m]	$S[mW/cm^2]$				
管理環境 107.374		0. 286	3. 067				
一般環境	48.075	0. 128	0. 613				

表参 3.2.1 電磁界強度 (6 分間平均) の指針値 (920MHz 帯)

表参 3.2.2 電波防護指針を満足できる距離 (920MHz 帯)

周波数 f=920MHz	K=1	K = 2.56	K=4	電波の強度に	こ 6dB を加算
				K = 2.56	K=4
管理環境	0. 102m	0.163m	0.203m	0.325m	0.407m
一般環境	0. 227m	0.364m	0. 456m	0.727m	0.912m

※すべての反射を考慮しない場合:K=1、大地面の反射を考慮する場合:K=2.56、水面等大地面以外の反射を考慮する場合:K=4、算出地点付近にビル、鉄塔、金属物体等の建造物が存在し強い反射を生じさせるおそれがある場合、算出した電波の強度の値(デシベルに換算した値)に6デシベルを加算する。

(イ)植込み型医療機器等への影響

920MHz 帯空間伝送型ワイヤレス電力伝送システムは、920MHz 帯のパッシブ系電子タグシステム 1W 設備の機器と同等であることから、医療機器への影響発生を防止するため、「各種電波利用機器の電波が植込み型医療機器へ及ぼす影響を防止するための指針」(平成 19年4月)に示された RFID 機器(電子タグの読取り機)の電波が植込み型医療機器へ及ぼす影響を防止するための指針として、「据置きタイプ RFID 機器(高出力型 950MHz 帯パッシブ系電子タグシステムに限る。)」と同等な設置形式を想定しており、この対応策の指針に沿った適切な対応が望まれる。

(3) 2. 4GHz 帯

- 2.4GHz 帯空間伝送型ワイヤレス電力伝送システムにおける電磁界強度(6分間平均)の指針値及び電波防護指針を満足できる距離の計算結果を表参3.3.1及び表参3.3.2に示す。
- 2.4GHz 帯における送信は、キャリアセンスと間欠的送信による無送信時間分だけ電磁界強度の実効値が平均値としては下がることで、更に電波防護指針を満足できる距離は小さくなる。

表参3.3.2より、工場のような「管理環境」においては、送信空中線と人体との距離を9.8 m離すことで、電波防護指針を満足できる。これは、送信空中線を共用検討モデルと同様に4.5m以上の高さに設置した場合、水面等大地面以外の反射を考慮する反射波があり、金属物体等の建造物が存在し強い反射を生じさせる環境においても空間においても空中線周囲半径約9.5mの範囲に対策することでおおむね電波防護指針を満足することを示している。

また、2.4GHz 帯では「一般環境」での使用については今の時点では対象としないこととした。

表参 3.3.1 電磁界強度 (6 分間平均) の指針値 (2.4GHz 帯)

周波数 f=2400MHz	電界強度の実効値 E[V/m]	磁界強度の実効値 H[A/m]	電力束密度 S[mW/cm²]
管理環境	137. 00	0. 365	5
一般環境	61. 40	0. 163	1

表参 3.3.2 電波防護指針を満足できる距離 (2.4GHz 帯)

周波数 f=2400MHz	K=1 K=2.56	W - 9 F6	K=4	電波の強度に 6dB を加算	
户(反数 1—2400MIIZ		K-2.50		K = 2.56	K=4
管理環境	2.45m	3.92m	4.90m	7.82m	9.80m
一般環境	5.48m	8.76m	10.95m	17.49m	21.90m

※すべての反射を考慮しない場合:K=1、大地面の反射を考慮する場合:K=2.56、水面等大地面以外の反射を考慮する場合:K=4、算出地点付近にビル、鉄塔、金属物体等の建造物が存在し強

い反射を生じさせるおそれがある場合、算出した電波の強度の値(デシベルに換算した値) に6デシベルを加算する。

(4) 5. 7GHz 帯

5.7GHz 帯空間伝送型ワイヤレス電力伝送システムにおける電磁界強度(6分間平均)の指針値及び電波防護指針を満足できる距離の計算結果を表参3.4.1及び表参3.4.2に示す。

5.7GHz 帯における送信は、キャリアセンスと間欠的送信による無送信時間分だけ電磁界強度の実効値が平均値としては下がることで、更に電波防護指針を満足できる距離は小さくなる。

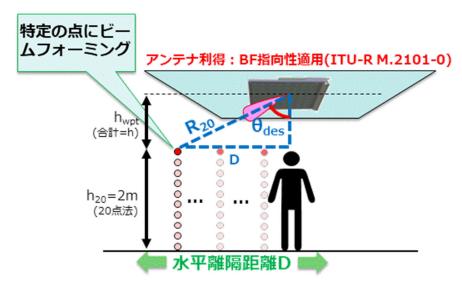
表参 3.4.2 より、工場のような「管理環境」においては、送信空中線と人体との距離を最大 16.0m離すことで、電波防護指針を満足できる。

また、5.7GHz 帯では「一般環境」での使用については今の時点では対象としないこととした。

	式》的第三名為外域次(6分間)的,可用如此(6.1 min)						
	周波数 f=5700MHz	電界強度の実効値	磁界強度の実効値	電力束密度			
		E[V/m]	H[A/m]	S[mW/cm ²]			
	管理環境	137. 00	0. 365	5			
	一般環境	61. 40	0. 163	1			

表参 3.4.1 電磁界強度 (6 分間平均) の指針値 (5.7GHz 帯)

表参342	電波防護指針を満足できる距離	集 (5 7GHz 帯)
12 9 0 1 1 4		


周波数 f=5700MHz	K=1 K=	K = 2.56	K=4	電波の強度に 6dB を加算	
向仮数 1-5700MHZ	K-1	K=2.56 K=4	K = 2.56	K=4	
管理環境	4.00m	6.40m	8.00m	12.80m	16.00m
一般環境	9.00m	14.30m	17.80m	28.50m	35.70m

※すべての反射を考慮しない場合:K=1、大地面の反射を考慮する場合:K=2.56、水面等大地面以外の反射を考慮する場合:K=4、算出地点付近にビル、鉄塔、金属物体等の建造物が存在し強い反射を生じさせるおそれがある場合、算出した電波の強度の値(デシベルに換算した値)に6 デシベルを加算する。

(5) 20 点法による算出

2. 4GHz 帯及び 5. 7GHz 帯空間伝送型ワイヤレス電力伝送システムでは、多素子アレー合成したビーム指向性を用いたビームフォーミングアンテナを使用することを想定している。このビームフォーミングアンテナは、狭いビーム幅となる高い空中線利得の指向性が成形できることから 20 点法による電力東密度の空間平均値での算出について検討した。

前項の電技防護指針の基本計算式にて満足できる距離よりも短い距離とすることが可能となる。20 点法による空間的平均値の算出モデル概要を図参 3.5.1、20 点法における電波防護指針を満足できる距離の計算結果例を表参 3.5.1 及び表参 3.5.2 に示す。

図参 3.5.1 20 点法による評価モデル

20 点法による空間的平均値の算出にあたっては、送信装置との距離が最小となる最長点(2m)に対して最大空中線利得方向を向けた場合の20点の平均値と各点に最大空中線利得方向を向けた場合の20点での平均値について比較した。

その結果、20点に対して最大空中線利得を向けた場合が最大となる。これは、最長点に対して向けた場合は距離による自由空間損失と角度による指向性減衰量により差が生じる為であり、この結果は基本算出式にて算出した距離より近い距離にて満足できる結果となった。

表参 3.5.1 20 点法を用いた電波防護指針を満足できる距離 (2.4GHz 帯)

周波数 f=2400MHz	K=1	K=2.56	K=4	電波の強度に 6dB を加算	
月仅数 1-2400MIIZ				K = 2.56	K=4
管理環境	Om	1.3m	2.2m	4. Om	4.9m
一般環境	2.6m	4.4m	5.4m	7.9m	9.4m

表参 3.5.2 20 点法を用いた電波防護指針を満足できる距離 (5.7GHz 帯)

周波数 f=5700MHz	K=1 K	K = 2.56	K=4	電波の強度に 6dB を加算	
月仅数 1—5700MIIZ		K-2.50 K-4	N −2. 50	K = 2.56	K=4
管理環境	1.5m	2.7m	3.4m	5.2m	6.2m
一般環境	3.8m	5.7m	6.8m	9.8m	11.7m

※すべての反射を考慮しない場合:K=1、大地面の反射を考慮する場合:K=2.56、水面等大地面以外の反射を考慮する場合:K=4、算出地点付近にビル、鉄塔、金属物体等の建造物が存在し強い反射を生じさせるおそれがある場合、算出した電波の強度の値(デシベルに換算した値)に6デシベルを加算する。

参考資料4:920MHz 帯における共用検討

(1) 共用検討対象システム及び検討の絞り込み

(ア)920MHz 帯 RFID との差異

920MHz 帯空間伝送型ワイヤレス電力伝送システム(送信装置)の技術基準が RFID 構内無線局(パッシブ系電子タグシステム 1W 設備)に準拠していることを踏まえ、共用検討対象を絞り込むこととした。RFID システムと本検討の 920MHz 帯空間伝送型ワイヤレス電力伝送システムとの差異を表参 4.1.1 に示す。

表参 4.1.1 RFID システムとの使用技術差

		: 参 4. 1. 1 KF	ロンステム	との使用技術差	
	920MHz帯 空間伝送型ワイヤレス電力伝送システム 920M			920MHz帯パ	ッシブRFID (1W)
使用環境	屋内工場、物流倉庫	屋内工場	介護等施設	屋内物流管理	マラソンタイム計測、移動車両に よる設備点検、構内に限定されない物流管理など(一部屋外の利用 も可能)
1日のうちの稼働率	30~90% (工場の稼働携帯による)	30~90% (工場の稼働携帯 による)	50~100% (入居者率による)	30~90% (工場の稼働携帯による)	数%~数十%程度
給電能力		数μW~数百μW		← (受信電力は同等レベル)	← (受信電力は同等レベル)
給電対象	環境センサ(IDあり) 人が持つセンサ(ID あり)	工作ロボット等の各 種センサ (IDあり)	環境センサ(IDあり)、見守り対象者がもつセンサ(IDあり)	IDタグ	←
給電距離		~5m程度		送信距離 ~5m	←
電波防護の 電磁界強度指針値	管理環境	管理環境	一般環境	一般環境	←
設置者	他無線の管理可能	他無線の管理可能	他無線の管理可能	免許人が基本	←
送電環境の認知	可能	可能	不可能	可能	←
人がいる時の送電	有り	有り の ・	有り 1	←	←
免許形式(案)	構	₹局(免許局:1W,パッ	シフ糸)	←	←
送電電力(EIRP)		4W		←	←
送信時間制御	無し	無し	有り (4秒以内に停止し 50msec後に送信)	← (介護施設等のWPT一般環境 と同一)	←
送電変調方式		規定しない (NON, G1Dなど)		←	←
占有帯域幅		200kHz		200kHz	←
るスプリアス 発射強度の上限値	900MHz を超え915MH 915MHz を超え915.7M び923.5MHz を超え93 915.7MHz を超え923. (無線チャネルの中心 離調が200kHz 以下を 930MHz を超え1000M	710MHz 以下 -36dBm(100kHz) 710MHz を超え900MHz 以下 -58dBm(100kHz) 900MHz を超え915MHz 以下 -58dBm(100kHz) 915MHz を超え9157MHz 以下 -39dBm(100kHz) 915.7MHz を超え923.5MHz 以下 -39dBm(100kHz) 915.7MHz を超え923.5MHz 以下 -29dBm(100kHz) 930MHz を超え1000MHz 以下 -58dBm(100kHz) 930MHz を超え1000MHz 以下 -48dBm(100kHz) 1000MHz を超え1215MHz 以下 -48dBm(1MHz)			←
スプリアス領域 (fc+2.5Bn)における		-29dBm/100kHz		←	←
受電側からの送信 信号	(バック	あり (バックスキャッタ通信・BLEなど)		あり (バックスキャッタ通信)	←
受電側からのビー コン信号		なし		←	←
キャリアセンス方式		なし		登録局のみあり	←
ユースケース				E NOODE	1073 (71 - 747372)) BIRICA-SIGNA

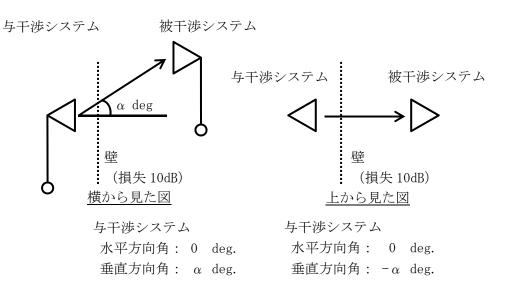
(イ)干渉検討対象システム

920MHz 帯空間伝送型ワイヤレス電力伝送システムを与干渉システム、他の 920MHz 帯の通信システムを被干渉システムとした、今回の検討対象とする干渉形態を表参 4.1.2 に示す。(空間伝送型ワイヤレス電力伝送システムを被干渉システムとしての干渉検討は行わない。)

また、表参 4.1.2 に示す高度 MCA システム以外の被干渉システムは「情報通信審議会情報通信技術分科会携帯電話等高度化委員会報告書」(電気通信技術審議会諮問第 81 号「携帯

電話等の周波数有効利用方策」のうち「900MHz 帯を使用する移動通信システムの技術的条件」、「携帯無線通信の中継を行う無線局の技術的条件」(平成23年5月11日)、「920MHz 帯小電力無線システムの高度化に係る技術的条件」(平成29年3月31日))において、既に検討が行われており、共用可能であると結論付けられている。

表参 4.1.2 920MHz 帯の検討対象となる干渉システム

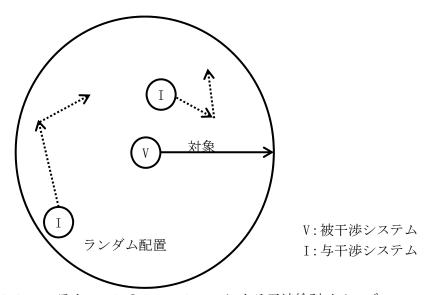

(920MHz 帯空間伝送型ワイヤレス電力伝送システム(与干渉システム) ⇒ 被干渉システム)

被干渉システム		過去の検討及び検討対象
デジタル MCA	中継局	実施済
1 2 9 10 MCA	移動局	実施済
高度 MCA	基地局(都市部・郊外)	今回の検討対象
向及 MCA	移動局(車載・携帯)	今回の検討対象
携帯電話	基地局	実施済
(LTE)	移動局	実施済
	構内無線局(パッシブ系電子タグシステム	実施済
	1W 設備) 特定小電力無線局(パッシブ系電子タグシ	
RFID	特定小电力無縁向(ハッシノボ电子タクシー ステム 250mW 設備)	実施済
	テレメータ用、テレコンとロール用及びデ	実施済
	一タ伝送用無線設備(アクティブタグ)	大 旭仍
電波天文		再実施

(2) 高度 MCA システム

(ア)共用検討モデル

1対1対向モデルによる検討を行い、設置条件として、壁損失10dBとして実施した。空間伝送型ワイヤレス電力伝送システムは屋内利用のため、屋外の被干渉システムとの間には壁損失が含まれるが、同室内に存在する場合には壁損失は含まれないものとして検討を実施した。また、空中線高低差を考慮できる基地局との検討では、自由空間伝搬損失に垂直面指向性減衰量を加えた損失にて、所要離隔距離が最小となる離隔距離での所要改善量を算出し、2システムの共用について検討を行い、被干渉局の許容干渉レベル(帯域内許容干渉レベル及び帯域外感度抑圧レベル)に対する所要改善量及び所要離隔距離を算出した共用条件を算出した。



図参 4.2.1 1 対 1 対向の干渉検討モデル

1対1対向モデルにて共用の判断ができない場合は、被干渉システムの特徴を考慮し、 確率的な調査の適用を可能と判断した被干渉システムについては、モンテカルロシミュレ ーションによる確率的な検討を行った。(図参 4.2.2)

モンテカルロシミュレーションは、移動局間の干渉又は与干渉、被干渉のいずれかの局が移動する干渉形態において、複数の局の相対的な位置関係により変化する被干渉システムへの総受信電力等の影響を考慮して、確率的に干渉影響を評価する手法である。

具体的には被干渉局から対象半径の範囲に、トラフィック量を考慮した複数の移動局をランダムに配置して、与干渉局からの総干渉電力を求める手法であり、SEAMCAT (Spectrum Engineering Advanced MonteCarlo Analysis Tool:モンテカルロ手法を用いた無線システム間の干渉調査を行うためのソフトウェアツール)による確率的な調査について配置パターンを変化させて複数回の計算を実施した。

図参 4.2.2 モンテカルロシミュレーションによる干渉検討イメージ

(イ)1対1対向検討

1対1対向モデルによる干渉計算結果を表参4.2.1に示す。

表参 4.2.1 空間伝送型ワイヤレス電力伝送システム ⇒ 高度 MCA システムにおける 1 対 1 対向干渉検討結果一覧

	17/11/11/19/19/19/19/19/19/19/19/19/19/19/							
被干渉システム		帯域内干渉レベル		帯域外感度	壁損失			
一級工例ン	/	所要改善量	所要離隔距離 所要改善量 所要		所要離隔距離	型 損犬		
高度 MCA	車載①	-0. 1dB	10m	21.3dB	116m	あり		
移動局	携帯②	-2. 1dB	8m	19. 3dB	92m	あり		
1夕野/1円	1万市公	7. 9dB	25m	29. 3dB	291m	なし		
高度 MCA 基地局	都市部 ③	−25. 2dB	10m	-13. 4dB	41m	あり		
	郊外④	-18. 7dB	7m	-6. 9dB	29m	あり		

① 空間伝送型ワイヤレス電力伝送システム ⇒ 高度 MCA 移動局(車載)

高度 MCA 移動局(車載)は、車に搭載されているため、屋内環境での使用は考えにくいため、壁損失がある場合のみ干渉計算を行い、壁損失がない場合は割愛している。

表参 4.2.1 に示すように帯域内干渉レベルの所要改善量は、マイナス (-) となっており、 十分に共用が可能である。

帯域外感度抑圧レベルにおいては、所要改善量が 21.3dB となっている。給電線損失や与 干渉システムである空間伝送型ワイヤレス電力伝送システムの設置場所に応じて、屋内構 造物による伝搬損失等で数十dB程度の損失を見込むことができる。しかし、共用が判断できないため、モンテカルロシミュレーションによる干渉確率検討を実施した。

② 空間伝送型ワイヤレス電力伝送システム ⇒ 高度 MCA 移動局(携帯)

高度 MCA 移動局(携帯)は、人が持ち使用するため、空間伝送型ワイヤレス電力伝送システムと同一室内にて共用する可能性がある。そのため、壁損失がある場合とない場合の2通りについて実施した。

高度 MCA 移動局(携帯)と空間伝送型ワイヤレス電力伝送システムが同一室内に存在しない、壁損失の考慮可能な場合、帯域内干渉レベルにおいては所要改善量がマイナス(-)となっており、共用可能である。

壁損失がある場合の帯域外感度抑圧レベルの所要改善量は 19.3dB となり、壁損失がない場合の帯域内干渉レベルの所要改善量 7.9dB となっている。これらは、給電線損失を考慮することで数 dB の損失が見込める。また、与干渉システムである空間伝送型ワイヤレス電力伝送システムの設置場所に応じて、実際には構造物による遮蔽損失等で数十 dB 程度の損失を見込むことが可能である。しかし、共用が判断できないため、モンテカルロシミュレーションによる干渉確率検討を実施した。

また、壁損失がない場合の帯域外感度抑圧レベルにおける所要改善量は 29.3dB となって おり、1 対 1 対向における干渉検討は、同様に共用が判断できないため、モンテカルロシミュレーションによる干渉確率検討を実施した。

- ③ 空間伝送型ワイヤレス電力伝送システム ⇒ 高度 MCA 基地局(都市部)
- ④ 空間伝送型ワイヤレス電力伝送システム ⇒ 高度 MCA 基地局 (郊外) 高度 MCA 基地局は、壁損失を考慮しており、空中線地上高が高く、垂直面指向性減衰量 も考慮している。これにより、帯域内干渉レベル及び帯域外感度抑圧レベルともに、所要 改善量がマイナス (-) となっており、共用可能と考える。

(ウ)モンテカルロシミュレーションによる確率検討

空間伝送型ワイヤレス電力伝送システムにおける 920MHz 帯の市場は、工場、倉庫・配送センター、物流現場、老人介護施設等を想定しており、表 4.2.2 に 2020 年から 2025 年までの普及予測を示す。

						—	
項目	推移						
年	2020	2021	2022	2023	2024	2025	
局数(局)	1,088	1,741	3, 717	6, 759	10, 828	19, 190	
累計(局)	1,088	2,828	6, 546	13, 305	24, 133	43, 323	

表参 4.2.2 920MHz 帯空間伝送型ワイヤレス電力伝送システムの普及予想

今回の同時送信台数等干渉計算パラメータを設定するにあたり、条件を以下として、表 参 4.2.3 に計算条件を示す。

- 従業員10名以上の事業所に設置されるとした。
- 想定地域は、従業員10名以上の事業所密度が全国1位の東京都とした。
- 東京都の従業員10名以上の事業所の比率に合わせて、送信局を設定した。
- 1台当たりの送信時間率は0.9とし、工場、倉庫・配送センター、物流現場、老人 介護施設等での平均的な設備の稼働率を0.875とした。
- 1対1対向干渉計算結果より、最大所要改善量(所要離隔距離)が高度 MCA 移動局 (携帯)のときに、帯域外感度抑圧において 29.3dB (291m)となることから、送 信局の設置密度から半径 300mの干渉円内に配置される空間伝送型ワイヤレス電力 伝送システムの送信局数を算出した。
- 伝搬モデルは、拡張秦式 SRD (Short Range Device) とした。

干渉エリア内における同時送信台数の計算結果は、表 4.2.3 に示す 0.88 台となった。

表参 4.2.3 920MHz 帯空間伝送型ワイヤレス電力伝送システムにおける モンテカルロ干渉計算の設定パラメータ

	項目	数值	単位	備考
A	送信局の設置台数 (2025 年)	43, 323	台	表参 4.2.1 より
В	東京都の事業所密度 (2016年)	85. 77	所/km²	東京都は従業員数 10 名以上の事業所密度が 全国 1 位
С	日本の事業所数 (2016 年)	944, 116	所	従業員数 10 名以上の事業所
D	東京都の事業所分布から 計算した WPT 送信局の設 置密度	3.94	台/km²	$A \times B \div C$
Е	1台当たりの送信時間率	0. 79		送信時間率 0.9×稼働率 0.875
F	平均送信台数	3. 10	台/km²	$D \times E$
G	干渉円内の送信局数	0.88	台	F×0.3 ² ×nm干渉園は半径300m
Н	干渉円内の送信局数 (整 数値)	1	台	SEAMCAT における設定値

(エ)モンテカルロシミュレーションによる干渉検討結果

周波数は、空間伝送型ワイヤレス電力伝送システムを 919.2MHz、高度 MCA 移動局を 942.5MHz として、表参 4.2.1 の所要改善量がプラス(+)となったものについて、表参 4.2.3、参考資料 1 表参 1.1.4 及び表参 1.1.6 を計算パラメータとして、SEAMCAT(バージョン 5.3.0) による干渉確率計算を実施した。このとき、干渉確率 3%における空間伝送型ワイヤレス電力伝送システムと高度 MCA システムとの距離が 10m の時に改善量を 0dB とする所要改善量として算出した。

以下の2つの干渉パターンにおいて、計算結果及び共用条件を表参4.2.4に示す。表参4.2.4に示すように所要改善量を満足する結果となり、共用可能と考なる。

ただし、高度 MCA 移動局 (携帯) への干渉については、空間伝送型ワイヤレス電力伝送システムと同一室内において利用することも想定され、空間伝送型ワイヤレス電力伝送システムの送信装置と高度 MCA 移動局 (端末) の近接による干渉を考慮して、920MHz 帯を使用した空間伝送型ワイヤレス電力伝送システムでは、設置者、運用者、免許人等に対して、本システムの取扱説明書等にて高度 MCA システムとの近接時又は双方の空中線が対向するような場合での干渉に関して、注意喚起を促すことが必要である。

表参 4.2.4 SEAMCAT による干渉確率計算結果 (所要改善量)

項目	辟铝 生	軽損失 移動局			制御局(基地局)		
-	至1月入	車載	携帯	都市部	郊外		
対域内干渉	あり	-0.1 dB	-2.1 dB	-25. 2dB	-18.7dB		
刈場門「沙	なし	*2	−16.5 dB				
帯域外感度抑圧	あり	−13.3 dB	−15.3 dB	-13. 4dB	-6.3dB		
市域外 恐及抑圧	なし	*2	-5.3 dB ³ 3				

※1: 太字はモンテカルロシミュレーションにより算出。その他は、表参 4.3.1 による 1 対 1 対向 時の干渉計算結果。

※2: 高度 MCA 移動局(車載)を室内での利用は想定していない。

※3:同一室内の移動局(携帯)干渉に関しては、注意喚起を明示する。

(3) 携帯電話システム

携帯電話システムとの共用検討は、RFID システムパッシブ系電子タグシステム 1W 設備による携帯電話システムとの共用検討と同等であり、過去の報告書(諮問第 2009 号「小電力の無線システムの高度化に必要な技術的条件」のうち「920MHz 帯小電力無線システムの高度化に係る技術的条件」について一部答申(平成 29 年 3 月 31 日))からの検討結果の抜粋を記載する。

(ア)1対1対向モデルにおける所要改善量の算出

1 対 1 対向モデルにおける所要結合量を表参 4.3.1 及び表参 4.3.2 に示す。また、表参 4.3.1 及び参表 4.4.2 にて、被干渉システムの所要結合損が最大となる与干渉システムについて、空中線指向性及び自由空間損失を考慮した場合の干渉所要改善量の算出結果を表参 4.3.3 及び表参 4.3.4 に示す。

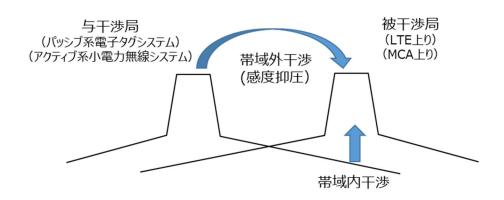
表参 4.3.1 920MHz 帯電子タグシステム等から携帯電話システム (LTE) 上り への干渉 所要結合量

_						
				与干渉 RFID		アクティブ
	項目		パッシブタグ	システム (リー	・ダ/ライタ)	タグシステム
	7,1		高出力(1W)	特小(250mw)	特小(10mw)	250mW
	基地局	帯域内干渉[dB]	86. 0	86. 0	86. 0	86. 0
	圣龙内	帯域外干渉 [dB]	88. 0	79. 0	65. 0	79. 0
	小電力レピータ	帯域内干渉[dB]	76. 9	76. 9	76. 9	76. 9
被干涉	小竜刀レビーメ	帯域外干渉[dB]	80. 0	71. 0	57. 0	71. 0
LTE	陸上移動中継局	帯域内干渉[dB]	79. 9	79. 9	79. 9	79. 9
上り	(屋外エリア用)	帯域外干渉[dB]	83. 0	74. 0	60. 0	74. 0
1 - 7	陸上移動中継局	帯域内干渉[dB]	76. 9	76. 9	76. 9	76. 9
	(屋内エリア用 一体型)	帯域外干渉[dB]	80. 0	71. 0	57. 0	71. 0
	陸上移動中継局	帯域内干渉[dB]	66. 9	66. 9	66. 9	66. 9
	(屋内エリア用 分離型)	帯域外干渉[dB]	70. 0	61.0	47. 0	61. 0

表参 4.3.2 920MHz 帯電子タグシステム等から携帯電話システム(LTE)上り への干渉 所要改善量

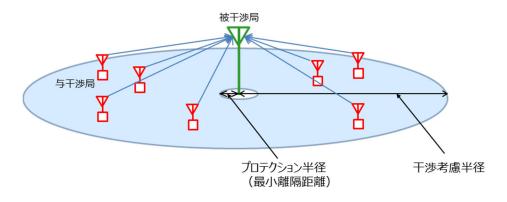
	項目		所要結合損	水平離隔距離	水平離隔距離 での結合損	所要改善量
			dB	m	dB	dB
	基地局	帯域内干渉	86. 0	274	82. 0	4. 0
	~ 心向	帯域外干渉	88. 0	274	82. 0	6. 0
	小電力レピータ	帯域内干渉	76. 9	0. 7	34. 9	42. 0
被干涉	小竜刀レヒーメ	帯域外干渉	80. 0	0. 7	34. 9	45. 1
f放下沙「 LTE	陸上移動中継局	帯域内干渉	79. 9	33	67. 4	12. 5
上り	(屋外エリア用)	帯域外干渉	83. 0	33	67. 4	15. 6
-"	陸上移動中継局	帯域内干渉	76. 9	0. 7	34. 9	42. 0
	(屋内エリア用 一体型)	帯域外干渉	80. 0	0. 7	34. 9	45. 1
	陸上移動中継局	帯域内干渉	66. 9	2. 2	44. 4	22. 5
	(屋内エリア用 分離型)	帯域外干渉	70. 0	2. 2	44. 4	25. 6

表参 4.3.3 920MHz 帯電子タグシステム等から携帯電話システム(LTE)下り への干渉 所要結合量(指向性考慮)


				与干渉 RFID		アクティブ
	項目			パッシブタグシステム (リーダ/ライタ)		
	7, 1		高出力(1W)	特小(250mw)	特小(10mw)	250mW
	移動局	帯域内干渉[dB]	57. 8	57. 8	57. 8	60.8
	19 到 10	帯域外干渉[dB]	72. 0	63. 0	49. 0	63.0
	小電力レピータ	帯域内干渉[dB]	74. 9	74. 9	74. 9	77. 9
	(基地局対向器・一体型)	帯域外干渉[dB]	89. 0	80.0	66. 0	80.0
被干涉	小電力レピータ	帯域内干渉[dB]	62. 9	62. 9	62. 9	65. 9
LTE	(基地局対向器・分離型)	帯域外干渉[dB]	77. 0	68. 0	54. 0	68. 0
下り	陸上移動中継局	帯域内干渉[dB]	70. 9	70. 9	70. 9	73. 9
ייו	(基地局対向器・屋外エリア用)	帯域外干渉[dB]	85. 0	76. 0	62. 0	76. 0
	陸上移動中継局	帯域内干渉[dB]	72. 9	72. 9	72. 9	75. 9
	(基地局対向器・屋内エリア用・一体型)	帯域外干渉[dB]	87. 0	78. 0	64. 0	78. 0
	陸上移動中継局	帯域内干渉 [dB]	62. 9	62. 9	62. 9	65. 9
	(基地局対向器・屋内エリア用・分離型)	帯域外干渉[dB]	77. 0	68. 0	54. 0	68. 0

表参 4.3.4 920MHz 帯電子タグシステム等から携帯電話システム(LTE)下りへの干渉 所要改善量(指向性考慮)

			所要結合損	水平離隔距離	水平離隔距離 での結合損	所要改善量
			dB	m	dB	dB
	移動局	帯域内干渉	60. 8	5	45. 9	14. 9
	1夕 到 问	帯域外干渉	72. 0	5	45. 9	26. 1
	小電力レピータ	帯域内干渉	77. 9	1. 1	37. 8	40. 1
	(基地局対向器・一体型)	帯域外干渉	89. 0	1. 1	37. 8	51. 2
4만 포 2보	小電力レピータ	帯域内干渉	65. 9	7. 9	54. 7	11. 2
被干渉 LTE	(基地局対向器・分離型)	帯域外干渉	77. 0	7. 9	54. 7	22. 3
下り	陸上移動中継局	帯域内干渉	73. 9	64. 0	71. 3	2. 6
ן יי	(基地局対向器・屋外エリア用)	帯域外干渉	85. 0	64. 0	71. 3	13. 7
	陸上移動中継局	帯域内干渉	75. 9	1. 5	40. 4	35. 5
	(基地局対向器・屋内エリア用・一体型)	帯域外干渉	87. 0	1. 5	40. 4	46. 6
	陸上移動中継局	帯域内干渉	65. 9	26. 0	65. 0	0. 9
	(基地局対向器・屋内エリア用・分離型)	帯域外干渉	77. 0	26. 0	65. 0	12. 0


(イ)SEAMCAT を用いた干渉確率の計算

1対1対向モデルにおいては、いずれの干渉パターンも所要干渉改善量がプラスとなるため、SEAMCATを用いた干渉確率計算を実施し、干渉確率を3%以下とするための所要改善量を算出した。干渉の様子を図参4.3.1に示す。

図参 4.3.1 干渉の様子

計算手法として、モンテカルロシミュレーションは ECO (European Communication Office) で開発されているモンテカルロ手法に基づく干渉確率計算プログラム SEAMCAT (Spectrum Engineering Advanced Monte Carlo Analysis Tool) を用いた。計算のモデルを図参 4.3.2 に示す。設定条件は表参 4.3.5 及び表参 4.3.6 に示す。

図参 4.3.2 確率干渉計算モデル

表参 4.3.5 設定条件

項目	パラメータ
計算ソフトウェア	SEAMCAT5. 0. 1
試行回数	20,000 回
干渉考慮半径	500m
最小離隔距離	5m
干渉確率	3%以下
	(累積 97%値で許容干渉レベル以下)
伝搬モデル	自由空間モデルまたは拡張秦モデル

表参 4.3.6 確率干渉計算条件 同時送信台数

パッシブ系	1W	4.464 台/km ²	4	4 台/半径500m
電子タグシステム	250mW	0.902 台/km ²	7	1 台/半径500m

920MHz 帯 RFID システムから携帯電話システム (LTE) 上りへの確率干渉計算を行った。 共用検討の評価についてはそれぞれ電力種別毎の無線局が同時存在したものとしてパッシ ブ系電子タグシステム単位で確率計算した結果で行った。なお参考までに、最大同時送信 台数は電力種別別毎に算出したため、個別に確率計算した結果も併せて記載した。

パッシブ系電子タグシステムから携帯電話システム (LTE) 上りへの影響の様子を図参 4.3.3、確率干渉計算結果を

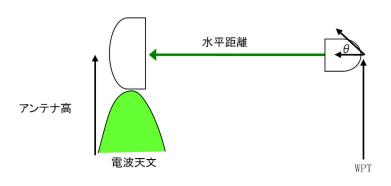
表参 4.3.7 に示す。表内の数値は干渉確率 3%における所要改善量 (dB) を示す。表の 1 行目から 3 行目が平成 23 年委員会報告値に基づいて今回新たな条件で確率干渉計算を実施した結果を、黄色で示している 4 行目から 6 行目までが、今回検討した値に基づいて確率干渉計算を実施した値である。また、1 行目と 4 行目がパッシブ系電子タグシステムをそれぞれシステム単位で確率計算を行った計算結果となり、それ以外の電力種別毎の計算結果は参考値である。

図参 4.3.3 パッシブ系電子タグシステムから携帯電話システム (LTE) 上りへの影響

表参 4.3.7 パッシブ系電子タグシステムから携帯電話システム (LTE) 上りへの 確率干渉計算結果

	被干渉機器											
与干渉機器		基地局			小電力レビ [®] ータ (移動局対向器)		陸上移動中継局 (移動局対向器 屋外型)		陸上移動中継局 移動局対向器 屋内用一体型)		陸上移動中継局 (移動局対向器 屋内用分離型)	
※半径500m内の同時送信台数	自由	空間	拡張秦		自由空間		自由	空間	自由	空間	自由空間	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	帯域内 (dB)	帯域外 (dB)	帯域内 (dB)	帯域外 (dB)	帯域内 (dB)	帯域外 (dB)	帯域内 (dB)	帯域外 (dB)	帯域内 (dB)	帯域外 (dB)	帯域内 (dB)	帯域外 (dB)
パッシブ系電子タグシステム※H23年委員会報告値 1W:10台、250mW:7台	9.53	2.60	-5.78	-11.72	16.51	14.91	9.29	3.40	16.61	15.07	6.40	4.85
パッシブ系電子タグシステム 1W:10台	-12.89	-10.89	-21.04	-19.04	10.53	13.63	-16.77	-13.67	10.52	13.62	0.50	3.60
パッシブ系電子タグシステム 250mW:7台	9.57	2.57	-5.93	-12.93	15.12	9.22	9.24	3.34	15.30	9.40	5.42	-0.48
パッシブ系電子タグシステム 1W:4台、250mW:1台	4.43	-2.46	-16.82	-19.31	9.48	9.96	1.17	-4.66	9.56	10.06	-0.36	-0.09
パッシブ系電子タグシステム 1W:4台	-16.11	-14.11	-27.36	-25.36	6.20	9.30	-20.22	-17.12	6.34	9.44	-3.50	-0.40
パッシブ系電子タグシステム 250mW:1台	4.36	-2.64	-18.63	-25.63	6.68	0.78	1.16	-4.74	6.60	0.70	-3.71	-9.61

パッシブ系電子タグシステムから LTE 基地局への干渉は、伝搬モデルを自由空間にて計算した場合は所要改善量がプラスとなるケースがあるが、より実環境に近い伝搬特性となる拡張秦式で計算した場合は、所要改善量がマイナスとなることから共用可能である。

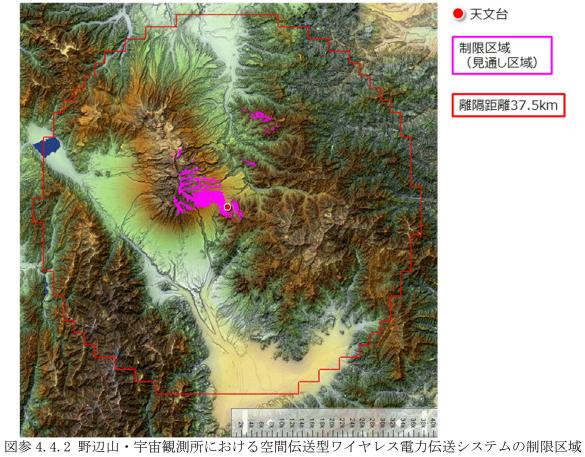

パッシブ系電子タグシステムから小電力レピータ及び陸上移動中継局への干渉は、所要改善量がプラスとなるケースがあるが、パッシブ系電子タグシステムの製造マージンが数dB、与干渉屋内⇒被干渉屋外及び与干渉屋外⇒被干渉屋内の位置関係になる場合においては壁損失(10dB 程度)が見込まれる。また小電力レピータ及び陸上移動中継局への干渉は設置高・考慮半径等の設定条件を SEAMCAT に実装されている伝搬式で適用可能な範囲で実施しているが、実運用においては遮蔽損、透過損等のその他減衰も見込まれる。

これらにより所要改善量の改善が見込まれる事及び実運用に当たってはパッシブ系電子タグシステムと携帯電話システム(LTE)の小電力レピータ及び陸上移動中継局のアンテナ設置場所及び設置条件(高さ、向き、離隔距離等)を調整する事により、共用可能である。

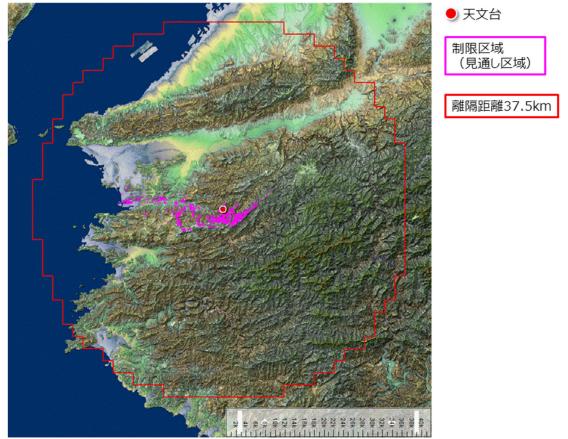
(4) 電波天文

(ア)共用モデル

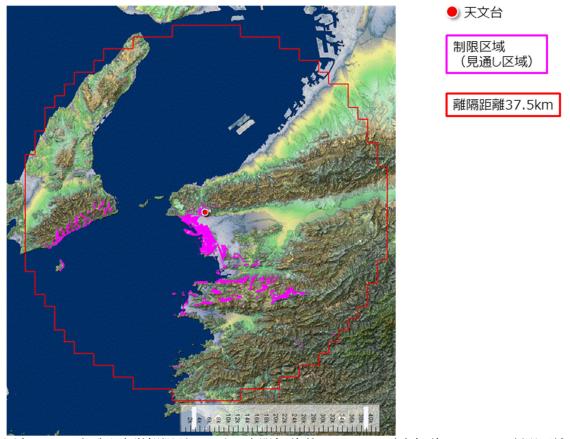
電波天文との共用検討を図参 4.4.1 に示す検討モデルとし、空間伝送型ワイヤレス電力 伝送システムから野辺山・宇宙 3 m反射鏡(観測周波数 1,413.5MHz)を検討対象とした。また、電波天文に対する影響を及ぼさない所要離隔距離は、観測周波数 1,413.5MHz における空間伝送型ワイヤレス電力伝送システムの不要発射強度実測値(-60.5dBm/MHz)が、電波天文の許容干渉レベル(-197.4dBm/MHz)に対して下回るための必要な距離とし、壁損失は、10dB として実施した。

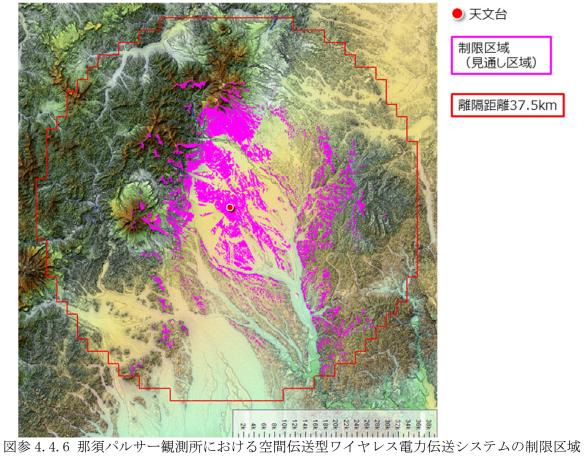

図参 4.4.1 電波天文の共用検討モデル

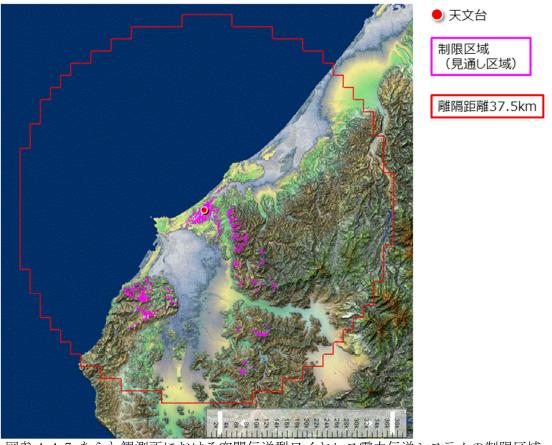
(イ)共用検討結果


共用検討結果を表参 4.4.1 に示す。920MHz 帯システムの不要発射強度が、電波天文の干渉閾値換算値を下回るための所要減衰量は126.9dBとなり、所要離隔距離は37.5kmである。そのため、検討モデルで採用した空間伝送型ワイヤレス電力伝送システムの設置条件(壁損失:10dB)を確保した条件にて、観測所の設置位置から37.5kmの天文台から見通しとなる範囲では、空間伝送型ワイヤレス電力伝送システム設置を制限する区域とすることで電波天文との共用は可能となる。

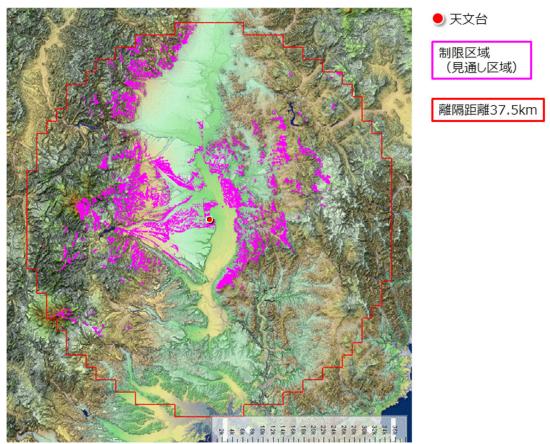
表参 4.4.1 電波天文との共用検討結果


		単位	野辺山・宇宙	備考
送信パラ	(1)送信空中線電力	中世 dBm	-60. 5	実測値
				夫 側恒
メータ	(2)占有周波数帯域幅	MHz	1.0	
	(3)送信空中線利得	dBi	0.0	
	(4)指向性減衰量	dB	-10.0	壁損失、仰角2度
	(5)帯域内発射電力	dBm	-70. 5	(1)+(3)+(4)
	(6) 带域内発射電力密度	dBm/MHz	-70. 5	(5)-10Log[(2)]
受信パラ	(7)受信空中線利得	dBi	0.0	
メータ	(8)指向性減衰量	dB	0.0	
	(0) 子 [° b]) - " b 古中	1D (W / (2 H))	055.0	勧告 ITU-R
	(9)電力スペクトルフラックス密度	$dB(W/(m^2 \cdot Hz))$	-255. 0	RA. 769-2
	(10)干涉閾値換算値	dBm/MHz	-197. 4	
所要	(11)所要減衰量	dB	126. 9	(6)-(10)
減衰量	(11/1/) 女网络里	dБ	120. 0	
伝搬損失	(12)自由空間損失	dB	126. 9	37.5km
	(13)水蒸気圧	mmHg	7. 5	
	(14)水蒸気密度	$\mathrm{g/m^3}$	5. 6	15℃
	(15)水蒸気分子による	dB/km	0.000	
	吸収係数	UD/ KIII	0.000	
	(16)大気減衰量	dB	0.0	
	(17)ナイフエッジ回折損失	dB	0.0	
	(18)伝搬損失の合計	dB	126. 9	(12)+(16)
	所要離隔距離	m	37, 500	
残差		dB	0	(11)-(18)

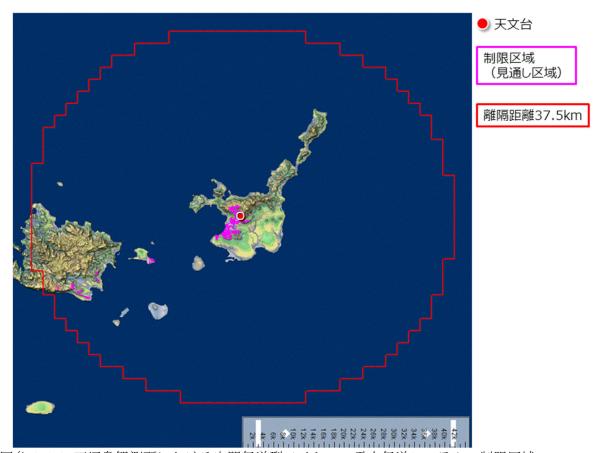




図参4.4.4 みさと天文台観測所における空間伝送型ワイヤレス電力伝送システムの制限区域



図参 4.4.5 和歌山大学観測所における空間伝送型ワイヤレス電力伝送システムの制限区域

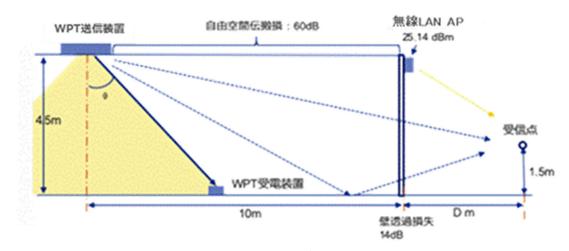


図参4.4.7 あらわ観測所における空間伝送型ワイヤレス電力伝送システムの制限区域

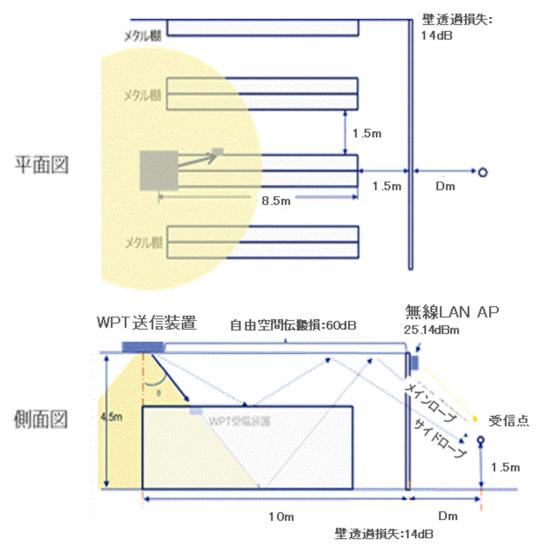
図参 4.4.8 水沢観測所における空間伝送型ワイヤレス電力伝送システムの制限区域

図参 4.4.9 石垣島観測所における空間伝送型ワイヤレス電力伝送システムの制限区域

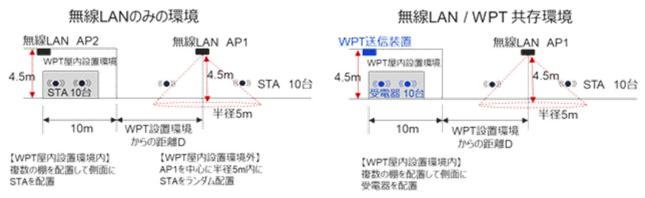
参考資料5:2.4GHz帯における共用検討


(1) 2. 4GHz 帯無線 LAN システム

(ア) 共用検討モデル


2. 4GHz 帯無線 LAN システムについてキャリアセンスによる共用を検討した。WPT 屋内設置環境内の空間伝送型ワイヤレス電力伝送システム送信装置からのWPT 管理環境外に設置された無線 LAN システムへの影響を検討するため、図参5.1.1(設置物が存在しないモデル)及び図参5.1.2(設置物が存在するモデル)によるWPT 屋内設置環境外における電波強度の検討を実施した。また、両モデルにおける検討方法は、レイトレーシング法により、反射4回、透過1回、床や天井は壁と同じコンクリート素材、設置物は金属製の棚と想定して、WPT 屋内設置環境外への信号強度とWPT 屋内設置環境の外壁に設置した無線LAN AP の信号強度との比較検討を実施した。

図参 5.1.3 の検討モデルにおいて、表参 5.1.1 に示すパラメータにより WPT 管理環境外に設置された無線 LAN システムのスループット低下が、空間伝送型ワイヤレス電力伝送システム送信装置からの干渉と無線 LAN システム同士の干渉と比較して、同等以下となるキャリアセンスの設定を評価した。また、無線 LAN AP の半径 5m 内に無線 LAN 子機を 10 台配置し、WPT 屋内設置環境に無線 LAN システムを設置した場合と WPT 送信装置を設置した場合のスループットを比較している。


WPT 屋内設置環境に無線 LAN システムが設置された場合において、空間伝送型ワイヤレス電力伝送システムの送信装置がキャリアセンスによって無線 LAN 機器を認識することが可能な検知可能距離についても併せて評価を実施した。

図参5.1.1 共用検討モデル (設置物なし)

図参5.1.2 共用検討モデル(設置物あり)

図参 5.1.3 無線 LAN システムのスループット評価モデル

表参 5.1.1 キャリアセンスパラメータ (無線 LAN システム)

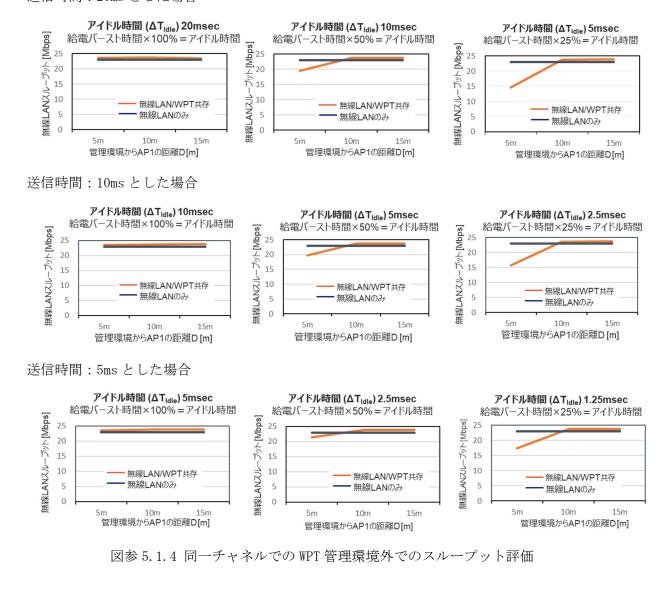
項目	無線 LAN システムのみの環境	無線 LAN システム/空間伝送型ワイヤレス電力伝送システム共用環境			
壁から AP1 までの距離	5m∼15m (AP2 と	壁の間の 10m を除く。)			
無線 LAN システムの子機数		10 台			
チャネル帯域幅		20MHz			
送信電力	23	dBm (AP)			
还信电力	18	dBm (STA)			
空中線利得	5	5 dBi (AP)			
至 中	0 dBi (STA)				
変調方式 符号化レート	BPSK 1/2~64QAM 3/4				
		同一チャネル評価:CH1			
チャネル	CH 1	隣接チャネル評価:CH6			
		次隣接チャネル評価:CH11			
CCA 閾値	-	-62 dBm			
許容干渉電力	-92dBm (同一 ch)、-66dBm	(隣接 ch)、-50dBm (次隣接 ch)			
種類	FTP, Inter-arrival	between 2 files as 1sec			
トラヒッ	(si	ze 0.3MB)			
ク 方向	DL:U	L= 86% : 14%			
シミュレーション時間		15s			

表参 5.1.2 キャリアセンスパラメータ (空間伝送型ワイヤレス電力伝送システム)

項目	パラメータ値
送信装置から壁までの距離	10m
受電装置数	10 台/送信装置
チャネル	CH 1 (2, 412MHz)
送信電力	41.8dBm
空中線利得	24dBi
CCA 閾値	-72dBm (同一 ch)、-62dBm (隣接 ch)、-62dBm (次隣接 ch)
送信時間 (ΔT _{wpt})	20ms, 10ms, 5ms
アイドル時間 (ΔT _{idle})	20ms、10ms、5ms、2.5ms、 2ms、1ms、0.5ms、0.1ms

(イ)共用検討結果

空間伝送型ワイヤレス電力伝送システム送信装置の主ビーム方向の角度 θ を 45 度及び 60 度とした際の WPT 屋内設置環境外における受信点での信号強度を表参 5.1.3 に示す。 設置物がない場合については、角度 θ =45 度の場合、壁からの距離が 1mにて壁の外に設置した無線 LAN AP と同等の信号強度以下となるが、角度 θ =60 度の場合には、壁から 1m の距離では、壁の外に設置した無線 LAN システムの信号強度を 2.7dB 上回る結果となった。 しかし、実際のユースケースを考慮した WPT 屋内設置環境に棚等の設置物がある場合にお


いては、ビーム方向の角度 θ =60 度においても、壁の外に設置した無線 LAN AP の信号強度を下回る結果となった。

表参 5.1.3WPT 屋内設置環境外における信号強度検討結果

百口	受信点の位置(壁からの距離)						
項目	1m	10m	100m	1,000m			
無線 LAN AP (dBm)	-24.9	-34. 9	-54. 9	-74. 9			
θ=45 度設置物なし (dBm)	-32.0	-41.0	-59. 3	-80. 4			
θ=60 度設置物なし (dBm)	-22.2	-32.7	-52. 7	-74.0			
θ =45 度設置物あり (dBm)	-35.6	-44. 3	-64. 1	-85. 4			
θ=60 度設置物あり (dBm)	-31.4	-45.0	-61.8	-82.8			

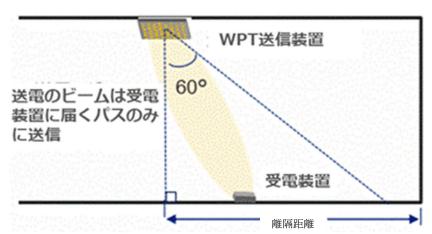
WPT 屋内設置環境外にある無線 LAN システムのスループット低下が、無線 LAN システム同士の干渉によるスループット低下と同等以下になる空間伝送型ワイヤレス電力伝送システムのキャリアセンスの設定を評価した(図参 5.1.4)。本検討により WPT 管理環境外 10m以内に無線 LAN AP が存在する場合でも、送信時間にかかわらず、アイドル時間を送信時間と等しくすることにより、スループットの低下は無線 LAN システム同士の低下を下回らない結果を得た。そのため、WPT 屋内設置環境の周辺 10m以内が同一管理者の管理でない場合でも、アイドル時間と送信時間を等しくすることで、WPT 管理環境外における送信装置からの影響を抑制できる結果となった。これにより、空間伝送型ワイヤレス電力伝送システムと 2.4GHz 帯無線 LAN システムとの共用が可能となる。

送信時間:20ms とした場合

無線 LAN システムが WPT 屋内設置環境に存在する場合のキャリアセンスによる無線 LAN システムの検出可能距離についての検討結果を表参 5.1.4 に示す。この結果より WPT 屋内設置環境において、空間伝送型ワイヤレス電力伝送システム送信装置がキャリアセンスによって同一チャネル、隣接チャネル及び次隣接チャネルの空き状況を判定する場合、空間伝送型ワイヤレス電力伝送システム送信装置の無線 LAN システム検出可能距離は 71m 以内であり、無線 LAN システムを WPT 屋内設置環境で使用する場合には、この範囲内にて設置することで共用可能となる。

項目 検討結果 無線 LAN 周波数 2,412MHz 無線 LAN 空中線電力 23.0dBm 無線 LAN 空中線利得 2. 14dBi CCA 閾値 -62 dBm-72 dBm(隣接、次隣接) (同一) 受信空中線利得(最小値) -10dBi -10dBi 所要結合量 77. 14dB 87. 14dB

表参 5.1.4 キャリアセンスによる無線 LAN システム検出可能距離


(ウ)共用検討モデル(破壊防止)

無線 LAN の検出可能距離

WPT 屋内設置環境に設置した空間伝送型ワイヤレス電力伝送システム(送信装置)と近接した環境に存在する無線 LAN システムに対して、最大入力定格による破壊及び不可逆的な影響について図参 5.1.5 に示す共用検討モデルにより干渉計算を実施した。

71m

223m

図参 5.1.5 無線 LAN システムとの共用検討モデル (破壊防止)

(工)共用検討結果(破壊防止)

屋内に設置した空間伝送型ワイヤレス電力伝送システムからの無線 LAN システムへの最大入力定格(このレベルを上回る信号が入力される場合、回路が破壊されるリスクが生じる)を 0dBm とすると同一屋内空間においては 25m 必要となる。しかし、壁損失を見込むことが可能な WPT 設置環境外では所要離隔距離 5m と WPT 設置環境外にて 0dBm を下回る結果となり共用可能となる。

同一設置環境においては、25m以下となり、送信装置からこの範囲に設置された場合には最大入力定格を上回ることとなる。しかし、送信装置は受電装置からのビーコンと同一伝搬経路に送信されるため、送信装置と受電装置の間に無線 LAN システムを設置してもビーコン信号は遮蔽され、無線 LAN システムに対して送信されることはないため、運用者に対しての注意喚起を行うことで共用可能とした。

図参 5.1.6 離隔距離による到達電力

(2) 構内無線局等

(ア)共用検討モデル

構内無線局等に対して空間伝送型ワイヤレス電力伝送システムは、屋内での利用が想定される。

同一屋内空間においては、同一運用者による一元的な管理を前提としていることから、空間伝送型ワイヤレス電力伝送システムのキャリアセンスにより、構内無線局等を認識することができる離隔距離内で運用することによって、構内無線局等とも共用可能とした。また、空間伝送型ワイヤレス電力伝送システムがキャリアセンスを使用して構内無線局等を認識することができる送信装置からの検出可能距離を検討した。

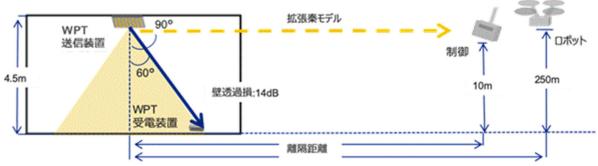
構内無線局等については、構内無線局及び特定小電力無線局を想定し、空間伝送型ワイヤレス電力伝送システムがキャリアセンス可能となるための厳しい条件として、どちらも応答機のパラメータを使用して計算を実施した。

(イ) 共用検討結果

構内無線局等が WPT 屋内設置環境に存在する場合のキャリアセンスによる無線 LAN システムの検出可能距離についての検討結果を表参 5.2.1 及び表参 5.2.2 に示す。この結果より、WPT 屋内設置環境において空間伝送型ワイヤレス電力伝送システム送信装置がキャリアセンスによって同一チャネル、隣接チャネル及び次隣接チャネルの空き状況を判定する場合、特定小電力無線局の検出可能距離は 15m 以内、構内無線局にて 84.9m 以内であり、WPT 屋内設置環境で共に使用する場合には、この範囲内に設置することで干渉を抑制できる。また、構内無線局等が空間伝送型ワイヤレス電力伝送システム設置された WPT 屋内設置環境との隣接空間に存在する場合、必要に応じ運用調整の仕組みを利用した調整を行い、影響を抑制する措置を行うことで共用可能とした。

表参 5.2.1 キャリアセンスによる特定小電力無線局の検出可能距離

項目	パラメータ値				
特定小電力無線局の周波数	2, 450)MHz			
特定小電力無線局の空中線電力	10dBm				
特定小電力無線局の空中線利得	2dBi				
CCA 閾値	-62dBm (隣接、次隣接)	-72dBm (同一)			
受信空中線利得(最小値)	-10dBi	-10dBi			
所要結合量	64dB	74dB			
検出可能距離	15m	49.5m			


表参 5.2.2 キャリアセンスによる構内無線局の検出可能距離

7 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
項目	パラメータ値					
構内無線局の周波数	2, 450)MHz				
構内無線局の空中線電力	24.8dBm					
構内無線局の空中線利得	2dBi					
CCA 閾値	-62dBm (隣接、次隣接)	-72dBm (同一)				
受信空中線利得(最小値)	-10dBi	-10dBi				
所要結合量	78. 8dB	88.8dB				
検出可能距離	84.9m	272.3m				

(3) 無人移動体高速伝送システム

(ア)共用検討モデル

空間伝送型ワイヤレス電力伝送システムは屋内、無人移動体高速伝送システム(ロボット無線システム)は屋外での運用が想定されているため、図参 5.3.1 の検討モデルにより干渉計算を実施した。ユースケースを想定し、送信装置は天井への設置とし、送信装置から受電装置への放射角度は、水平方向のサイドローブが大きくなる最大角度 60 度とした。電波伝搬モデルについては、拡張秦モデル(郊外型)を用い、建物の外への壁損失 14dB を見込んだ。

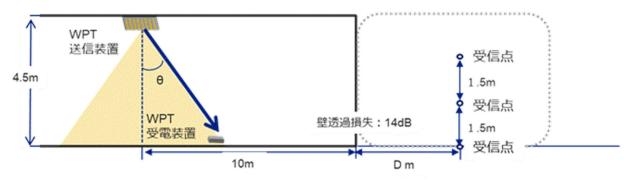
図参 5.3.1 無人移動体高速伝送システムとの共用検討モデル

(イ)共用検討結果

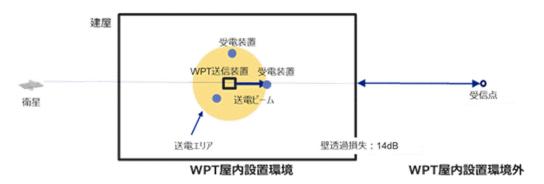
空間伝送型ワイヤレス電力伝送システムを天井に設置し、ビーム発射角度範囲を 60 度以内とすることで、おおむね屋外にある無線 LAN AP からの信号強度と同等に抑制される。また、同一チャネルを使用した状況に受電装置の延長上にロボット無線システムがあった場

合には、所要離隔距離は 3.6km となるが、水平方向のずれ又は都市部においてはクラッタ 損失を考慮すると所要離隔距離は短くすることが可能 (±30 度:1.5km、±40 度:500m) である。

空間伝送型ワイヤレス電力伝送システムは屋内利用であり、ロボット無線システムは、現状では屋外の主に市街地以外の地域の利用が想定されていることから、必要に応じ空間伝送型ワイヤレス電力伝送システムとロボット無線システムとの運用調整の仕組みを利用した調整を行うことで、すみ分けによる共用が可能となる。


項目	同一チャネル	隣接チャネル	次隣接チャネル				
周波数	2,484 MHz	2,462MHz	2,437MHz				
送信空中線放射角度		60 度					
不要発射空中線電力		41.8 dBm					
送信空中線利得		-5 dBi					
壁損失	14 dB						
ロボット空中線高		-段:250m(ロボット) 下段:10m(制御)					
許容干渉電力	-98dBm	-72dBm	-56dBm				
所要結合量	120.8 dB	94.8 dB	78.8 dB				
所要離隔距離 (拡張秦モデル)	3.6 km 0.67 km	85m					
所要離隔距離 (自由空間損失)	10.5 km	530 m	85m				

表参 5.3.1 ロボット無線システムへの与干渉検討結果


(4) 移動体衛星通信システム (N-STAR)

(ア)共用検討モデル

空間伝送型ワイヤレス電力伝送システムと移動体衛星通信システム (N-STAR) については、図参 5.4.1 及び図参 5.4.2 による検討モデルにより干渉計算を実施した。また、計算に当たっての位置関係は、移動衛星通信端末と衛星とを結ぶ直線上に送信装置が存在し、さらに同じ直線上の受電装置が存在する環境として実施した。

図参 5.4.1 移動体衛星通信システム (N-STAR) との共用検討モデル

図参 5.4.2 移動体衛星通信システム (N-STAR) との位置 (俯瞰) モデル

(イ)共用検討結果

移動衛星端末から通信衛星方位上(方位角差0度)に空間伝送型ワイヤレス電力伝送システム(送信装置)が設置された場合を想定し、帯域内干渉、帯域外干渉について検討した結果を表参5.4.1~表参5.4.6に示す。空間伝送型ワイヤレス電力伝送システムの設置建屋の北向きについて、所要離隔距離を確保することで共用可能となる。ただし、建物の遮蔽等で移動衛星通信端末を利用できない範囲を除くものとする。

また、移動衛星通信端末に対して干渉影響が想定される場合には運用調整の仕組みを利用した協議にてサービスへの影響を押さえることとし、運用調整の具体的な取組みについては運用調整の仕組み作りの中で共用を図るものとする。

① 帯域内干渉

日本6地点での所要離隔距離の計算結果を表参5.4.1~表参5.4.3に示す。地上高0mの 屋外に衛星移動端末が設置された環境において、壁から最大22mが所要離隔距離となる。

	項目	稚内	仙台	東京	大阪	福岡	那覇			
	通信衛星仰角(度)	37. 1	45. 1	48. 2	49.6	50. 7	58. 5			
送信装置	周波数(MHz)			2,	490					
	最大電力(dBm)			-34	4. 2					
	受信点への角度 (度)	74	73	72	72	72	71			
	空中線利得(dBi)	-5.0	-4.7	-4.5	-4.5	-4. 5	-4.2			
	メインローブの角度 (θ)	N/A (帯域外のためメインローブの角度に依存しない)								
伝搬路	壁損失 (dB)			14	. 0					
	受信点の壁からの距離(m)	6.0	4. 5	4.0	3.8	3. 7	2.8			
	自由空間伝搬損 (dB)	64.8	64.0	63.8	63. 7	63.6	63.0			
移動衛星	周波数(MHz)			2, 500						
通信端末	空中線利得(dBi)			12	. 6					
(受信)	送信装置方向の角度(度)	21	28	30	32	32	39			
	指向性減衰量(垂直方向) (dB)	7. 7	10.7	11.8	12.0	12. 2	13. 3			
	許容干渉電力(dBm)			-12	4. 9					
所要量	所要改善量 (dB)	11.9	9.8	9. 2	9. 2	9. 1	8. 7			
	所要離隔距離(m)	22	18	17	17	17	14			

表参 5.4.1 帯域内干渉の共用検討結果(地上高 0m)

表参 5.4.2 帯域内干渉の共用検討結果(地上高 1.5m)

	項目	稚内	仙台	東京	大阪	福岡	那覇	
	通信衛星仰角(度)	37. 1	45. 1	48. 2	49.6	50.7	58. 5	
送信装置	周波数(MHz)			2,	190			
	最大電力(dBm)			-34	1. 2			
	受信点への角度 (度)	78	77	77	77	76	76	
	空中線利得(dBi)	-6. 1	-5.8	-5.8	-5.8	-5. 5	-5. 5	
	メインローブの角度 (θ)	N/A (취	帯域外のた	めメインロ	ューブの角	度に依存し	<i>」ない</i>)	
伝搬路	壁損失 (dB)			14	. 0			
	受信点の壁からの距離(m)	4.0	3.0	2.7	2.6	2.5	1.8	
	自由空間伝搬損 (dB)	63. 5	62. 9	62. 7	62.6	62.6	62. 1	
移動衛星	周波数(MHz)	2, 500						
通信端末	空中線利得(dBi)			12	. 6			
(受信)	送信装置方向の角度(度)	25	32	35	36	37	44	
	指向性減衰量(垂直方向) (dB)	9. 4	12. 1	12.6	12.8	13. 0	14. 2	
	許容干渉電力(dBm)			-12	4. 9			
所要量	所要改善量 (dB)	10.3	8.5	8.2	8.1	8.3	7. 5	
	所要離隔距離(m)	17	15	13	13	13	11	

表参 5.4.3 帯域内干渉の共用検討結果(地上高 3.0m)

項目			仙台	東京	大阪	福岡	那覇	
	通信衛星仰角(度)	37. 1	45. 1	48. 2	49.6	50. 7	58. 5	
送信装置	周波数(MHz)			2,	190			
	最大電力(dBm)			-34	1. 2			
	受信点への角度 (度)	83	83	82	82	82	82	
	空中線利得(dBi)	-8. 1	-8. 1	-7.6	-7.6	-7.6	-7.6	
	メインローブの角度 (θ)	N/A (†	帯域外のた	めメインロ	ューブの角	度に依存し	」ない)	
伝搬路	壁損失 (dB)			14	. 0			
	受信点の壁からの距離 (m)	2.0	1.5	1.3	1.3	1.2	0.9	
	自由空間伝搬損(dB)	62.0	61. 1	61.5	61.5	61.5	61.3	
移動衛星	周波数(MHz)			2, 5	500			
通信端末	空中線利得(dBi)	12.6						
(受信)	送信装置方向の角度 (度)	30	38	41	42	43	51	
	指向性減衰量(垂直方向) (dB)	11. 7	13. 1	13.6	13.8	14. 0	15. 3	
	許容干渉電力(dBm)			-12	4. 9			
所要量	所要改善量 (dB)	7.4	6.5	6.5	6.4	6. 2	5. 2	
	所要離隔距離(m)	12	10	9	9	9	6	

② 帯域外干渉

日本6地点での所要離隔距離の計算結果を表参5.4.4~表参5.4.6に示す。地上高0mの 屋外に衛星移動端末が設置された環境において壁からの距離で最大30mの所要離隔距離と なる。

表参 5.4.4 帯域外干渉の共用検討結果(地上高 0m)

	百日	14.1	hli 🚣	由古	→ ₹□	설퍼	∓17 11.15			
	項目	稚内	仙台	東京	大阪	福岡	那覇			
	通信衛星仰角(度)	37. 1	45. 1	48.2	49.6	50.7	58. 5			
送信装置	周波数(MHz)			2, 4	190					
	最大電力(dBm)			41	. 8					
	受信点への角度 (度)	74	73	72	72	72	71			
	空中線利得(dBi)	11. 5	12. 1	12.7	12.7	12. 7	13. 5			
	メインローブの角度 (θ)	60								
伝搬路	壁損失(dB)	14. 0								
	受信点の壁からの距離(m)	6.0	4. 5	4.0	3.8	3. 7	2.8			
	自由空間伝搬損 (dB)	64.8	64.0	63.8	63. 7	63.6	63.0			
移動衛星	周波数(MHz)			2, 5	500					
通信端末	空中線利得(dBi)			12	. 6					
(受信)	送信装置方向の角度 (度)	21	28	30	32	32	39			
	指向性減衰量(垂直方向) (dB)	7. 7	10.7	11.8	12.0	12. 2	13. 3			
	許容干渉電力(dBm)			-41	1.0					
所要量	所要改善量 (dB)	20.5	18.8	18. 5	18. 4	18. 4	18.6			
	所要離隔距離(m)	30	29	27	26	25	24			

表参 5.4.5 帯域外干渉の共用検討結果(地上高 1.5m)

	項目	稚内	仙台	東京	大阪	福岡	那覇		
	通信衛星仰角(度)	37. 1	45. 1	48. 2	49.6	50. 7	58. 5		
送信装置	周波数(MHz)			2, 4	190				
	最大電力(dBm)			41	. 8				
	受信点への角度 (度)	78	77	77	77	76	76		
	空中線利得(dBi)	8.3	9.0	9.0	9.0	10.0	10.0		
	メインローブの角度 (θ)			6	0				
伝搬路	壁損失 (dB)			14	. 0				
	受信点の壁からの距離(m)	4.0	3.0	2. 7	2.6	2.5	1.8		
	自由空間伝搬損(dB)	63. 5	62. 9	62.7	62.6	62. 5	62. 1		
移動衛星	周波数(MHz)	2, 500							
通信端末	空中線利得(dBi)			12	. 6				
(受信)	送信装置方向の角度 (度)	25	32	35	36	37	44		
	指向性減衰量(垂直方向) (dB)	9.3	12. 1	12.6	12.8	13. 0	14. 2		
	許容干渉電力(dBm)			-42	1.0				
所要量	所要改善量 (dB)	16.8	15. 4	15. 1	15.0	15. 9	15. 1		
	所要離隔距離(m)	25	22	22	21	20	17		

項目 稚内 仙台 東京 大阪 福岡 那覇 通信衛星仰角(度) 37. 1 45. 1 48.2 49.6 50.7 58.5 送信装置 周波数(MHz) 2,490 最大電力(dBm) 41.8 受信点への角度 (度) 83 83 82 82 82 82 3.9 空中線利得(dBi) 3.9 4.7 4.7 4.7 4.7 メインローブの角度 (θ) 60 14. 0 伝搬路 壁損失 (dB) 受信点の壁からの距離 (m) 2.0 1.5 1.3 1.3 1.2 0.9 自由空間伝搬損 (dB) 62.0 61.7 61.5 61.5 61.2 61.5 移動衛星 周波数(MHz) 2,500 通信端末 空中線利得 (dBi) 12.6 (受信) 送信装置方向の角度(度) 30 38 41 42 43 51 指向性減衰量(垂直方向) (dB) 11.7 13. 1 13.6 13.8 14.0 15.3 許容干渉電力 (dBm) -41.0所要改善量 (dB) 所要量 11.6 10.6 10.8 10.6 9.6 11.0

16

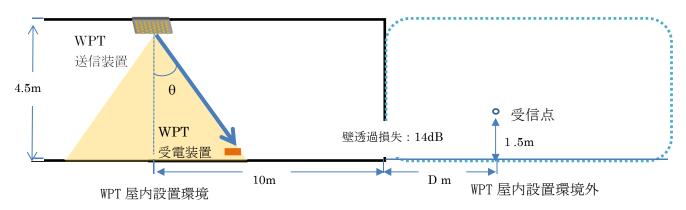
表参 5.4.6 帯域外干渉の共用検討結果(地上高 3.0m)

(5) 移動体衛星通信システム (グローバルスター)

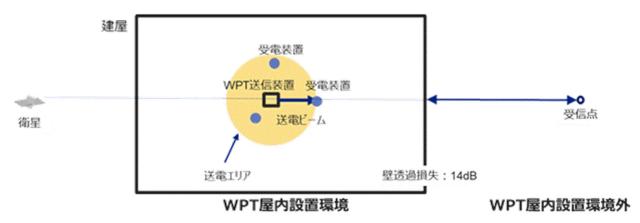
(ア)共用検討モデル

所要離隔距離(m)

空間伝送型ワイヤレス電力伝送システムは屋内、移動体衛星通信システム(グローバルスター)は屋外での使用が想定されているため、図参 5.5.1 及び図参 5.5.2 の検討モデルにより干渉計算を実施した。また、計算に当たっての位置関係は、移動衛星通信端末と衛星とを結ぶ直線上に送信装置が存在し、さらに同じ直線上の受電装置が存在する環境として実施した。


15

14


13

13

10

図参 5.5.1 移動体衛星通信システム (グローバルスター) との共用検討モデル

図参5.5.2 移動体衛星通信システム (グローバルスター) との位置 (俯瞰) モデル

(イ)共用検討結果

空間伝送型ワイヤレス電力伝送システムから同一チャネル及び不要発射による干渉検討の結果を表参 5.5.1 及び表参 5.5.2 に示す。同一チャネルを使用する場合の所要離隔距離は 1km 弱となり、同一チャネルで利用できない可能性がある。しかし、主なユースケースは携帯電話の不感地域での利用としたシステムであることから空間伝送型ワイヤレス電力伝送システムとはすみ分けが可能と考えられ、影響は限定的として共用可能とした。また、干渉の発生が懸念される場合には運用調整の仕組みを利用することでサービスへの影響を想定することが可能である。

① 同一チャネル干渉

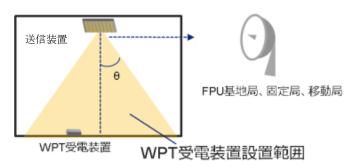
同一チャネルでの影響について拡張秦モデル(郊外型)を利用して計算結果を表参 5.5.1 に示す。

表参 5.5.1 移動体衛星通信システム (グローバルスター) への 同一チャネル与干渉検討結果

	項目	パラメータ		
移動衛星通信端末空中	線高	1.5m		
	周波数	2,484 MHz		
	最大電力	41.8 dBm		
送信装置	空中線地上高	4.5m		
	空中線利得	-5dBi		
	メインビームの角 (θ)	60 度		
伝搬路	壁損失	14 dB		
 移動衛星通信端末	周波数	2,484.390 MHz		
	空中線利得	0.51dBi		
(文百)	許容干渉電力	-119.4 dBm/MHz		
所要結合量	所要結合量	142.7dB		
川女和口里	所要離隔距離(壁からの距離)	0.96km		

② 不要発射による干渉

隣接チャネル(22MHz 離調)での不要発射による干渉を自由空間伝搬損により計算した結果を表参 5.5.2 に示す。


表参 5.5.2 移動体衛星通信システム (グローバルスター) への 不要発射与干渉検討結果

	項目	パラメータ
移動衛星通信端末空中	線高	1.5m
	周波数	2,462MHz
 送信装置	最大電力	-34.2 dBm/MHz
区旧表担	空中線地上高	4.5m
	空中線利得	−5 dBi
伝搬路	壁損失	14 dB
移動衛星通信端末	周波数	2,484.390 MHz
	空中線利得	0.51dBi
(文百)	許容干渉電力	-119.4 dBm/MHz
所要結合量	所要結合量	64.9 dB
	所要離隔距離(壁からの距離)	7m

(6) 放送事業用 FPU システム

(ア)共用検討モデル

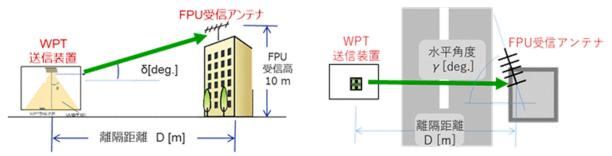
空間伝送型ワイヤレス電力伝送システムは屋内に設置されることから、正対設置の場合と図参 5.6.1 検討モデルによる干渉計算を実施した。また、空間伝送型ワイヤレス電力伝送システムは天井への設置とし、送信装置から受電装置への放射角度は、水平方向のサイドローブが大きくなる最大角度 60 度 (θ) とした。電波伝搬モデルについては、離隔距離が比較的小さくなる可能性から自由空間伝搬損を用い、壁損失 14dB とした。

図参 5.6.1 放送事業用無線局との共用検討モデル

(イ)共用検討結果

共用検討モデルに基づいた検討を表参 5.6.2 に示す。放送事業用 FPU システムとの周波 数帯域は 2.4GHz 帯空間伝送型ワイヤレス電力伝送システムとは 30MHz 以上の離調があるため帯域内干渉として検討した。

2. 3GHz 帯 FPU システムの受信点高 10m、2. 4GHz 帯空間伝送型ワイヤレス電力伝送システムの設置高 4.5m としたユースケースでは、最大の所要離隔距離が 9m となり、この所要離隔距離・設置条件を満たせば共用可能となる。また、多くの場合には、WPT 屋内設置環境内に FPU システムが設置された場合の距離と同等になるため、一元的に管理された環境内で使用するケースとなる。


表参 5.6.1 放送事業用 FPU システムとの共用検討結果 (平成 31 年度答申システム)

	項目	固定中継 上り	移動中継 上り	固定中継 下り	移動中継 下り
	周波数[GHz]	2. 37	2. 37	2. 37	2. 37
	占有周波数帯幅[MHz]	17. 5	17. 5	17. 5	17. 5
	①標準受信電力 [dBm/BW]	-57	-57	-57	-57
正	②所要 D/U 比[dB]	17. 4	32. 6	13	21.6
正対時 FPU	③FPU 許容干渉電力[dBm/BW] (=①-②)	-74. 4	-89. 6	-70	-78.6
時 円	④FPU 空中線利得[dBi]	21. 1	18. 1	12	5. 2
کے	⑤FPU 許容干渉電力[dBm/BW] (=③-④) (FPU 空中線利得考慮)	-95. 5	-107. 7	-82	-83. 8
の前	⑥与干渉干渉電力[dBm/MHz]	-34. 2	-34. 2	-34. 2	-34. 2
要離	⑦与干渉干渉電力[dBm/BW] (FPU 帯域換算)	-21.8	-21.8	-21.8	-21.8
隔	⑧送信空中線利得[dBi]	6	6	6	6
所要離隔距離計算	⑨与干渉電力 EIRP[dBm/BW] (=⑦+⑧)	-15. 8	-15. 8	-15. 8	-15. 8
算	⑩所要改善量[dB] (=⑨-⑤)	79. 7	91.9	66. 2	68
	所要離隔距離[m] (自由空間損失)	97	397	21	25
	所要離隔距離[m] (壁損失 14dB、自由空間損失)	19	79	4	5
所 天	⑩所要改善量[dB]	79. 7	91.9	66. 2	68
所要離原	⑪送信指向性減衰量[dB]	20	20	20	20
所要離隔距離計算へ井への設置による	⑫壁損失[dB]	14	14	14	14
離計管	⑬残存する所要改善量[dB] (⑩-⑪ - ⑫)	45. 7	57. 9	32. 2	34
算る	所要離隔距離[m] (自由空間損失)	2.0	8. 0	0. 5	0.6

表参 5.6.2 放送事業用 FPU システムとの共用検討結果 (現行システム)

	項目	移動中継ハーフ	移動中継フル	固定中継	固定中継フル	移動中継フル	移動中継ハーフ
		16QAM	16QAM	32QAM	16QAM	8PSK	32QAM
	周波数[GHz]	2.37	2.37	2.37	2. 37	2. 37	2.37
	占有周波数带幅[MHz]	8.5	17.5	17. 5	17.5	17.5	17. 5
	①標準受信電力[dBm/BW]	-61	-61	-61	-61	-61	-61
	②所要 C/I[dB]	29. 4	22.4	26.8	19. 2	17. 2	23. 2
正	③FPU 許容干渉電力[dBm/BW] (=① -②)	-90. 4	-83. 4	-87. 8	-80. 2	-78. 2	-84. 2
対	④FPU 空中線利得[dBi]	18. 1	18. 1	18. 1	18. 1	18. 1	18. 1
時 FPU との所要離隔距離計算	⑤FPU 許容干渉電力[dBm/BW] (=③ -④)(FPU 空中線利得考慮)	-108. 5	-101.5	-105. 9	-98. 3	-96. 3	-102. 3
が	⑥与干渉電力[dBm/MHz]	-34. 2	-34. 2	-34. 2	-34. 2	-34. 2	-34. 2
要離	⑦与干渉電力[dBm/BW] (FPU 帯域換算)	-24. 9	-21.8	-21.8	-21.8	-21.8	-21.8
隔距	⑧送信空中線利得[dBi]	6	6	6	6	6	6
離計	⑨与干渉電力 EIRP[dBm/BW] (=⑦+⑧)	-18.9	-15.8	-15.8	-15. 8	-15. 8	-15.8
算	⑩所要改善量[dB] (=⑨-⑤)	89. 6	85. 7	90. 1	82. 5	80. 5	86. 5
	所要離隔距離[m] (自由空間損失)	303	194	322	134	107	213
	所要離隔距離[m] (壁損失 14dB、 自由空間損失)	61	39	64	27	21	42
天井へ	⑩所要改善量[dB]	89. 6	85. 7	90. 1	82. 5	80. 5	86. 5
の設置に	⑪指向性減衰量[dB]	20	20	20	20	20	20
設置による所要	⑫壁損失[dB]	14	14	14	14	14	14
要離隔距離計算	⑬残存する所要改善量[dB] (⑩-⑪ - ⑫)	55. 6	51. 7	56. 1	48. 5	46. 5	52. 5
離計算	所要離隔距離[m] (自由空間損失)	6. 1	3. 9	6. 5	2. 7	2. 2	4. 3

FPU システム受信点をビル屋上に設置したユースケース(図参 5.6.2)での所要離隔距離計算例を表参 5.6.3、FPU システムの受信空中線の高さ方向の指向性を考慮した所要離隔距離の計算例を表参 5.6.4 及び FPU システムの受信空中線の水平方向の指向性を考慮した所要離隔距離の計算例を表参 5.6.5 に示す。これらの所要離隔距離・設置条件を満たせば共用可能となる

図参 5.6.2 FPU ユースケース(1)での検討例

表参 5.6.3 ユースケース(1)による所要離隔距離計算例 (平成 31 年答申システム)

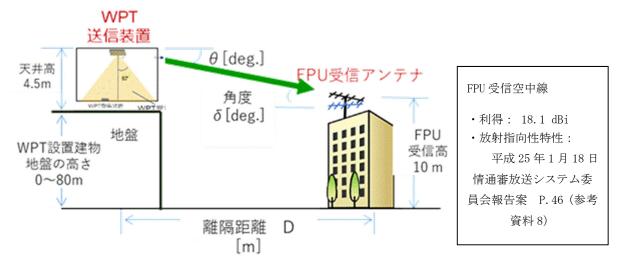
, , , , , , , , , , , , , , , , , , , ,	. 1 > 41 4 - 1114 1 - 1 4 - 1 1 1	21 5 4 1 7 7 7					
地上高差 (垂直方向) と所要離隔距離 (壁	平成 31 年答申システム						
損失含む)	固定中継 上	上り回線	移動中継	上り回線			
FPU 空中線の地上高からの仰角 δ [deg]/ 水平方向の所要離隔距離 D [m]	角度 δ 所	所要離隔距 離 D	角度 δ	所要離隔距 離 D			
	-	_	43.9	5. 7			

※地上高の差が、表参 5.6.1 の所要離隔距離以上の場合は"-"としている

表参 5.6.4 ユースケース(1)による所要離隔距離計算例 (現行システム)

						- 11.01					-	
地上高差(垂						現行システム						
直方向) と所	移動中継		移動中継		固定中継		固定中継		移動中継		移動中継	
要離隔距離	ハーフ		フ	ル	320	QAM	フ	ル	フ	ル	ハーフ	
(壁損失含	16QAM		160	QAM			160	QAM	8P	SK	320	QAM
む)												
FPU 空中線	角度	所要	角度	所要	角度	所要	角度	所要	角度	所要	角度	所要
の地上高か	δ	離隔	δ	離隔	δ	離隔	δ	離隔	δ	離隔	δ	離隔
らの仰角 δ		距離		距離		距離		距離		距離		距離
[deg]/		D		D		D		D		D		D
水平方向の												
所要離隔距												
離 D [m]	65. 1	2.5	_	_	58. 5	3. 4	_	_	_	_	_	_
						J. 1						

※地上高の差により所要離隔距離が不要の場合は"-"としている。


表参 5.6.3 及び表参 5.6.4 について、図参 5.6.2 右図のように FPU システムの受信空中線の水平方向角度によって、離隔距離を変化させた場合の検討結果は表参 5.6.5 となる。

表参 5.6.5 ユースケース(1)による所要離隔距離計算例

項目		H31 年/シス	要答申 テム			現行シ	ステム		
FPU	FPU	固定	移 動	移動	移 動	固定	固定	移動	移 動
空中	指向	中継	中継	中継	中継	中継	中継	中継	中継
線指	減衰	上り	上り	Half	16QAM	32QAM	16QAM	8PSK	32QAM
向角	dB	回線	回線	Mode	Ful1	Ful1	Ful1	m	m
γ°		m	m	m	m	m	m		
-15.0	-12.0	_	1.4	0.6	-	0.8	_	-	_
-10.0	-5.0	_	3. 2	1.4	-	1.9	_	-	_
-5. 0	-1.1	_	5.0	2.2	-	3.0	_	_	-
-1.0	-0.1	_	5. 7	2.5	-	3.3	_	_	-
0.0	0.0	_	5. 7	2.5	-	3.4	_	_	-
1.0	-0.1	_	5. 7	2.5	_	3.3	_	-	_
5. 0	-1.1	_	5.0	2.2	_	3.0	_	_	_
10.0	-5.0		3. 2	1.4	_	1.9	_	_	_
15. 0	-12.0	_	1.4	0.6	_	0.8	_	_	_

※所要離隔距離が不要の場合は"-"としている。

更に、ユースケースの例(2)として 2.4GHz 帯空間伝送型ワイヤレス電力伝送システムの空中線の高さを変更し、FPU システム受信空中線高を 10m とした場合の計算例を示す。

図参 5.6.3 FPU ユースケース(2)での検討例

- ·2. 4GHz 帯空間伝送型ワイヤレス電力伝送システムを設置する建物の地盤が周囲の地形より高い場合を想定し、FPU システムの受信空中線を地上高 10m、2. 4GHz 帯空間伝送型ワイヤレス電力伝送システムを設置する建物の地盤の高さを 0~80m と想定し、所要離隔距離を計算。
- ·2. 4GHz 帯空間伝送型ワイヤレス電力伝送システム空中線のメインローブの最大の放射角は 60 度以内に制限されており、メインローブが壁方向に直接放射することのない設置とする。帯域外放射は、大地面方向に放射され、地盤を透過することがないと想定。
- ・FPU システムの受信空中線の最大空中線利得方向が、2.4GHz 帯空間伝送型ワイヤレス電力 伝送システム空中線の方向となる、最も所要離隔距離が大きくなるケースに加え、垂直方

向に 2.4GHz 帯空間伝送型ワイヤレス電力伝送システム装置方向から、5 度、10 度の角度 差異が発生した場合の、FPU システムの受信空中線の垂直面指向性減衰量を見込んだ計算 を実施。

表参 5.6.6 ユースケース(2)による所要離隔距離計算例 (平成 31 年答申システム) FPU 受信空中線の指向性減衰量を見込まない場合の設置地盤の高さに対する所要離隔距離

			H31 年度	答申シス	ステム				
高	固定中	継	移動中継		固定中	継	固定中継		
さ	上り回	上り回線		線	下り回線		下り回	線	
m	角度	所要	角度	所要	角度	所要	角度	所要	
		離隔		離隔		離隔		離隔	
		距離		距離	距離			距離	
		m		m		m		m	
0	_	1	-43. 9	5. 7	1	1	_	_	
5	-14. 9	1.9	-3.6	7. 9	1	1	-81.0	0. 1	
10	_	1	12.8	19.8	1	1	_	_	
15	_	_	21.4	24. 2	_	_	_	_	
20	_	_	28.3	26. 9	_	_	_	_	

[※]所要離隔距離が不要の場合は"-"としている。

表参 5.6.7 ユースケース(2)による所要離隔距離計算例(現行システム) FPU 受信空中線の指向性減衰量を見込まない場合の設置場所の地盤の高さに対する所要離隔距離

	現行システム												
高	移動中継移動中継		継	固定中継		固定中継		移動中継		移動中継			
さ	Half Mo	ode	16QAM F	ull	32QAM Full		16QAM Full		8PSK		32QAM	Л	
m	角度	所要	角度	所要	角度	所要	角度	所要	角度	所要	角度	所要	
		離隔		離隔		離隔		離隔		離隔		離隔	
		距離		距離		距離		距離		距離		距離	
		m		m		m		m		m		m	
0	-65. 1	2.5	_	1	-58. 5	3.4	_	_	ı	1	ı	ı	
5	-4. 7	6.0	-7.4	3. 9	-4. 4	6.4	-10.7	2.6	-13.5	2.1	-6. 7	4. 2	
10	15. 4	16. 3	20.9	11.8	14.8	17.0	26. 7	8.9	-	-	19.7	12.6	
15	25. 5	19. 9	_	1	24. 5	20.8	_	_	-	-	-	-	

[※]所要離隔距離が不要の場合は"-"としている。

また、20mを超える範囲も所要離隔距離は不要となった。

また、15mを超える範囲も所要離隔距離は不要となった。

表参 5.6.8 ユースケース(2)による所要離隔距離計算例(平成 31 年答申システム) FPU 受信空中線の垂直指向方向と 2.4GHz 帯空間伝送型ワイヤレス電力伝送システムの空中線方向が 5 度異なる場合における設置場所地盤の高さに対する所要離隔距離

			H31 年度	答申シス	ステム				
高	固定中	継	移動中継		固定中	継	固定中継		
さ	上り回	線	上り回	線	下り回線		下り回	線	
m	角度	所要	角度	所要	角度	所要	角度	所要	
		離隔		離隔		離隔		離隔	
		距離		距離		距離		距離	
		m		m		m		m	
0	_	1	-51. 9	4. 3	ı	_	_	_	
5	-16. 9	1.6	-4. 1	7. 0	-	_	_	_	
10	_	-	13. 9	18. 2	_	_	_	_	
15	_	_	23. 3	22. 1	_	_	_	_	

※所要離隔距離が不要の場合は"-"としている。

また、15mを超える範囲も所要離隔距離は不要となった

表参 5.6.9 ユースケース(2)による所要離隔距離計算例(現行システム) FPU 受信空中線の垂直指向方向と 2.4GHz 帯空間伝送型ワイヤレス電力伝送システムの 空中線方向が 5 度異なる場合における設置場所の地盤の高さに対する所要離隔距離

	- 工作体が同かり及来なる物はにおける故画物が地盤が同じに対する所安性的に限												
					Ę	見行シス	テム						
高	移動中継移動中継		継	固定中継		固定中継		移動中継		移動中継			
さ	Half Mode 16QAM F		16QAM F	ull	32QAM F	u11	16QAM Full		8PSK		32QAN	M	
m	角度	所要	角度	所要	角度	所要	角度	所要	角度	所要	角度	所要	
		離隔		離隔		離隔		離隔		離隔		離隔	
		距離		距離		距離		距離		距離		距離	
		m		m		m		m		m		m	
0	1	1	_	1	-75. 5	1.4	_	1	1	1	1	_	
5	-5. 4	5.3	-8.4	3. 4	-5.0	5. 7	-12.2	2.3	-15. 4	1.8	-7.7	3. 7	
10	16.8	14. 9	22.8	10.7	16. 1	15. 6	28.8	8.2	-	-	21.4	11.5	
15	27.8	18.0	_	-	26. 7	18.9	_	-	_	-	-	_	

※所要離隔距離が不要の場合は"-"としている。

また、15mを超える範囲も所要離隔距離は不要となった。

表参 5. 6. 10 ユースケース(2)による所要離隔距離計算例(平成 31 年答申システム) FPU 受信空中線の垂直指向方向と 2. 4GHz 帯空間伝送型ワイヤレス電力伝送システムの空中線 方向が 10 度異なる場合における設置場所の地盤の高さに対する所要離隔距離

	H31 年度答申システム										
高	固定中	継	移動中継		固定中継		固定中継				
さ	上り回	線	上り回	線	下り回	線	下り回	線			
m	角度	所要	角度	所要	角度	所要	角度	所要			
		離隔		離隔		離隔		離隔			
		距離		距離	距離			距離			
		m		m		m		m			
0	_	1	_	_	ı	_	ı	-			
5	-27. 2	1.0	-6.4	4. 4	-	_	-	_			
10	_	-	19.0	13. 1	_	_	-	_			
15	_	_	_	_	_	_	_	_			

※所要離隔距離が不要の場合は"-"としている。

また、15mを超える範囲も所要離隔距離は不要となった。

表参 5. 6. 11 ユースケース (2) による所要離隔距離計算例 (現行システム) FPU 受信空中線の垂直指向方向と 2. 4GHz 帯空間伝送型ワイヤレス電力伝送システムの空中線 方向が 10 度異なる場合における設置場所の地盤の高さに対する所要離隔距離

	万円7 10 反共はも初日では17 も民臣が万つと出土の間ででの)。6万女は旧世日は											
	現行システム											
高	移動中	継	移動中	継	固定中	継	固定中継 移		移動中継		移動中継	
さ	Half Mo	ode	16QAM F	`u11	32QAM F	`u11	16QAM F	`u11	8PSK		32QAM	
m	角度	所要	角度	所要	角度	所要	角度	所要	角度	所要	角度	所要
		離隔		離隔		離隔		離隔		離隔		離隔
		距離		距離		距離		距離		距離		距離
		m		m		m		m		m		m
0	_	_	_	_	_	_	_	_	_	_	_	_
5	-8. 4	3.4	-13.2	2. 1	-7. 9	3.6	-19.3	1.4	-24.6	1.1	-12.0	2. 3
10	22. 9	10.7	_	_	21.9	11. 2	_	_	_	_	28.8	8. 2

※所要離隔距離が不要の場合は"-"としている。

また、15m以上の範囲も所要離隔距離は不要となった。

表参 5. 6. 6~表参 5. 6. 11 について、図参 5. 6. 2 右図のように FPU システムの受信空中線の水平方向の角度によって、所要離隔距離の変化を計算すると表参 5. 6. 12~表参 5. 6. 14 のようになる。

表参 5. 6. 12 ユースケース (2) による所要離隔距離計算例 (現行システム) FPU 受信空中線の垂直指向方向と 2. 4GHz 帯空間伝送型ワイヤレス電力伝送システムの空中線 方向が一致する場合の所要離隔距離

FPU	FPU	Н3	1 年度答	申システ	- 4	現行システム					
空中	指向	固定	移動	固定	固定	移動	移動	固定	固定	移動	移動
線指	減衰	中継	中継	中継	中継	中継	中継	中継	中継	中継	中継
向角	量 dB	上り	上り	下り	下り	Half	16QAM	32QAM	16QAM	8PSK	32QAM
γ°		回線	回線	回線	回線	Mode	Ful1	Ful1	Ful1	m	m
		m	m	m	m	m	m	m	m		
-15.0	-12.0	0.5	6.8	-	-	5.0	3.0	5. 2	2. 2	0.5	3. 2
-10.0	-5.0	1.1	15. 1	1	1	11.2	6.6	11.7	5.0	1.2	7. 1
-5.0	-1.1	1.7	23. 7	1	1	17.5	10.4	18.3	7. 9	1.8	11. 1
-1.0	-0.1	1.9	26.6	-	-	19. 7	11.6	20.6	8.8	2.1	12.4
0.0	0.0	1.9	26. 9	-	-	19. 9	11.8	20.8	8.9	2.1	12.6
1.0	-0.1	1.9	26.6	ı	ı	19.7	11.6	20.6	8.8	2.1	12.4
5. 0	-1.1	1.7	23. 7	1	1	17.5	10.4	18.3	7. 9	1.8	11. 1
10.0	-5.0	1.1	15. 1	1	1	11.2	6.6	11.7	5.0	1.2	7. 1
15. 0	-12.0	0.5	6.8	-	-	5.0	3.0	5. 2	2. 2	0.5	3. 2

※所要離隔距離が不要の場合は"-"としている。

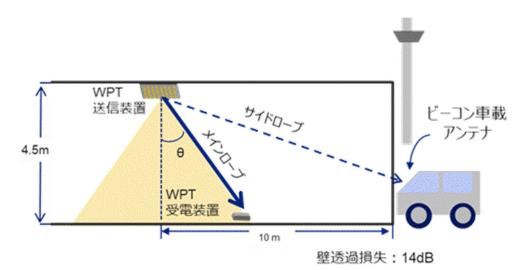
表参 5. 6. 13 ユースケース (2) による所要離隔距離計算例 (現行システム) FPU 受信空中線の垂直指向方向と 2. 4GHz 帯空間伝送型ワイヤレス電力伝送システムの空中線 方向が 5 度異なる場合の所要離隔距離

				· AUTHUR							
FPU	FPU	H31	1年度答	甲システ	- A			現行シ	ステム		
空中	指向	固定	移動	固定	固定	移 動	移 動	固定	固定	移動	移 動
線指	減衰	中継	中継	中継	中継	中継	中継	中継	中継	中継	中継
向角	量 dB	上り	上り	下り	下り	Half	16QAM	32QAM	16QAM	8PSK	32QAM
γ°		回線	回線	回線	回線	Mode	Ful1	Ful1	Ful1	m	m
		m	m	m	m	m	m	m	m		
-15.0	-12.0	0.4	5. 5	_	-	4. 5	2.7	4. 7	2. 1	0.5	2. 9
-10.0	-5.0	0.9	12.4	_	ı	10. 1	6.0	10.6	4.6	1.0	6. 5
-5.0	-1.1	1.4	19. 4	_	ı	15. 9	9.4	16.6	7. 2	1.6	10. 1
-1.0	-0.1	1.6	21.8	_	ı	17.8	10.6	18. 7	8. 1	1.8	11.4
0.0	0.0	1.6	22. 1	_	_	18.0	10. 7	18. 9	8.2	1.8	11.5
1.0	-0.1	1.6	21.8	_	ı	17.8	10.6	18. 7	8. 1	1.8	11.4
5. 0	-1.1	1.4	19. 4	-	ı	15. 9	9.4	16.6	7.2	1.6	10. 1
10.0	-5.0	0.9	12.4	_	_	10. 1	6.0	10.6	4.6	1.0	6. 5
15. 0	-12.0	0.4	5. 5	-	-	4. 5	2.7	4. 7	2. 1	0.5	2.9

※所要離隔距離が不要の場合は"-"としている。

表参 5.6.14 ユースケース(2)による所要離隔距離計算例(現行システム) FPU 受信空中線の垂直指向方向と 2.4GHz 帯空間伝送型ワイヤレス電力伝送システムの空中線 方向が 10 度異なる場合の所要離隔距離

FPU	FPU	НЗ	1 年度答	申システ	- 4			現行シ	ステム		
空中	指向	固定	移動	固定	固定	移動	移 動	固定	固定	移動	移 動
線指	減衰	中継	中継	中継	中継	中継	中継	中継	中継	中継	中継
向角	量 dB	上り	上り	下り	下 り	Half	16QAM	32QAM	16QAM	8PSK	32QAM
γ°		回線	回線	回線	回線	Mode	Full	Ful1	Ful1	m	m
		m	m	m	m	m	m	m	m		
-15.0	-12.0	0.2	3. 3	-	-	2. 7	0.5	2.8	0.4	0.3	0.6
-10.0	-5.0	0.5	7. 3	-	-	6.0	1.2	6.3	0.8	0.6	1.3
-5. 0	-1.1	0.9	11.5	1	ı	9. 4	1.9	9.9	1.3	1.0	2. 1
-1.0	-0.1	1.0	12.9	ı	ı	10.5	2. 1	11. 1	1.4	1. 1	2.3
0.0	0.0	1.0	13. 1	ı	ı	10.7	2. 1	11.2	1.4	1. 1	2.3
1.0	-0.1	1.0	12.9	1	ı	10.5	2. 1	11. 1	1.4	1. 1	2.3
5.0	-1.1	0.9	11.5	ı	ı	9. 4	1.9	9.9	1.3	1.0	2. 1
10.0	-5.0	0.5	7. 3	- 1	- 1	6.0	1.2	6.3	0.8	0.6	1.3
15. 0	-12.0	0.2	3. 3	-	-	2. 7	0.5	2.8	0.4	0.3	0.6


※所要離隔距離が不要の場合は"-"としている。

いくつかのユースケースの計算結果より、2.4GHz 帯空間伝送型ワイヤレス電力伝送システムが、地形上、FPU システムの受信空中線より高い位置に存在する場合、最大30m弱の所要離隔距離が必要となる。しかし、FPU システムの受信空中線の指向性減衰量を考慮すると所要離隔距離は10m以下となる。以上より、所要離隔距離・設置条件を満たせば共用可能である。

(7) 電波ビーコン

(ア)共用検討モデル

電波ビーコンとの共用検討モデルを図参 5.7.1 に示す。空間伝送型ワイヤレス電力伝送システムは屋内に設置され、壁を隔てた外にある車のビーコン車載空中線(地上高 1m) へは、サイドローブによる干渉を与えるとして干渉計算を実施した。また、送信装置から壁までを 10m とし、壁損失の有無での所要離隔距離についても検討を実施した。

図参 5.7.1 電波ビーコンとの共用検討モデル

(イ)共用検討結果

空間伝送型ワイヤレス電力伝送システムからの干渉にて、最大の所要離隔距離は、帯域外干渉の約 1.8km が必要となる。しかし、壁損失を含む共用モデルでは、369m となり、空間伝送型ワイヤレス電力伝送システムのユースケースとなる工場や倉庫等を考慮すると共用は可能となる。また、電波ビーコンは令和3年度末での情報提供停止、それに向けた路側機の減少も公表されていることから電波ビーコンのサービスに影響を与える可能性はより低いと国土交通省道路局 ITS 推進室から情報を得ている。

① 帯域内干渉

空間伝送型ワイヤレス電力伝送システムの帯域内干渉の検討結果を表参5.7.1に示す。

表参 5.7.1 電波ビーコンとの共用検討結果(帯域内干渉)

<u> </u>	7月15月11日75 (1175年111797)
項目	パラメータ
干渉波周波数	2,484 MHz
空中線電力	41.8 dBm/MHz
帯域外補正値	76. 0dBc
帯域補正 (85kHz)	-10.7dB
帯域外空中線利得 (最大値)	6.0dBi
ビーコン周波数	2,499.7MHz
ビーコン車載機空中線利得	2.0dBi
許容干渉電力	-90.4dBm
壁損失	14. 0dB
所要結合量	53. 5dB
	39.5 dB (壁損失あり)
所要離隔距離(壁からの距離)	4.5m
	0.9m (壁損失あり)

② 帯域外干渉

空間伝送型ワイヤレス電力伝送システムの帯域外干渉の検討結果を表参 5.7.2 に示す。

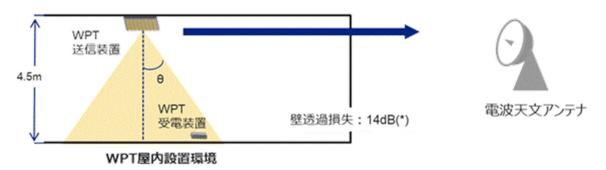
表参 5.7.2 電波ビーコンとの共用検討結果(帯域外干渉)

項目	パラメータ
干渉波周波数	2,484MHz
空中線電力	41.8dBm
空中線利得(最大値)	24.0dBi
ビーコン周波数	2,499.7MHz
ビーコン車載機空中線利得	2. 0dBi
ビーコンフィルタの減衰量	52. 5dB
許容干渉電力	-90.4dBm
壁損失	14. 0dB
所要結合量	105. 7dB 91. 7dB(壁損失あり)
所要離隔距離(壁からの距離)	1,851m 369m(壁損失あり)

③ 共用検討モデルによる干渉検討

空間伝送型ワイヤレス電力伝送システムの共用モデルによる干渉検討結果を表参 5.7.3 に示す。

項目	パラメータ
干渉波周波数	2,484 MHz
空中線電力	41.8 dBm
送信メインローブ角度	60.0度
送信サイドローブ角度 (車載空中線方向角度)	70.7度
サイドローブ方向の空中線利得	13. 5dBi
ビーコン周波数	2,499.7MHz
ビーコンフィルタの減衰量	52. 5dB
ビーコン車載機空中線利得	2. 0dBi
許容干渉電力	-90.4dBm
自由空間損失	60.9dB
壁損失	14. 0dB
- 三点八	14. UUD
所要結合量	20. 3dB


表参 5.7.3 電波ビーコンとの共用検討結果(共用モデル)

(8) 電波天文

(ア)共用検討モデル

電波天文との共用検討を図参 5.8.1 に示す検討モデルとし、周辺の建物等によるクラッタ損失を含む算出にて、所要離隔距離を算出した。

伝搬損失は自由空間損失とし、壁損失は、勧告 ITU-R P. 2109-1 における Traditional モデルである 14 dB とした。また、クラッタ損失の算出に当たっては、国内における道路の84%を占める市町村道の平均値が 3.7m、5%を占める国道の幅の平均値が <math>7.8m であるが、空間伝送型ワイヤレス電力伝送システムが設置される倉庫、工場等の施設内環境を踏まえ、勧告 ITU-R P. 2108-0 のデフォルト値(27m)として算出とした。

図参 5.8.1 電波天文との共用検討モデル

(イ) 共用検討結果

① クラッタ損失の算出

2.4GHz 帯における空間伝送型ワイヤレス電力伝送システムは建物 1 階部分への設置を想定しているため、離隔距離の大きい観測施設との間では、空間伝送型ワイヤレス電力伝送システム設置の周辺環境にてクラッタ損失するとして、勧告 ITU-R P.2108-0 の § 3 による算出結果を表参 5.8.1 に示す。

表参 5.8.1 クラッタ損失の算出結果

175						観測施設			
坦	目		野辺山	臼田	小金井	石岡	水沢	石垣島	入来
観測周波数	f	GHz	2. 695	2. 695	2. 695	2. 695	2. 695	2. 695	2. 695
送信空中線高	h	m	4. 5	4.5	4.5	4.5	4.5	4.5	4. 5
クラッタ			rural	rural	urban	rural	suburban	rural	rural
タイプ									
代表的	R	m	10	10	10	10	10	10	10
クラッタ高									
道路幅	W _s	m	27	27	27	27	27	27	27
計算項	J(ν)		25. 84	25. 84	25.84	25. 84	25.84	25. 84	25.84
	ν		4. 47	4. 47	4. 47	4. 47	4. 47	4. 47	4. 47
	K _{nu}		0.56	0. 56	0.56	0. 56	0.56	0.56	0. 56
	h _{dif}	m	5. 5	5. 5	5. 5	5. 5	5. 5	5. 5	5. 5
	$ heta_{ m clut}$	0	11. 51	11. 51	11.51	11. 51	11.51	11.51	11. 51
	K _{h2}		24. 47	24. 47		24. 47		24. 47	24. 47
クラッタ損		dB	8. 49	8. 49	19. 81	8. 49	19. 81	8.49	8. 49

② 所要離隔距離の算出

所要離隔距離の算出結果を表参 5.8.2 に示す。この結果より小金井及び水沢観測所においては 1.6km、野辺山、臼田、石岡、石垣島及び入来観測所においては 5.7km の範囲にて、空間伝送型ワイヤレス電力伝送システムを制限する区域とすることで電波天文との共用は可能となる。

観測施設 項目 単位 野辺山 臼田 小金井 石岡 水沢 石垣島 入来 観測周波数 MHz 2695 2695 2695 2695 2695 2695 2695 観測周波数帯幅 Δf₀ MHz. 10 10 10 10 10 10 10 干渉閾値レベル 入力電力 ΔP_H -207.0 -207.0 dBW -207.0-207.0-207.0 -207.0-207.0-177.0 -177.0-177.0 -177.0 -177.0 $S_H\,\Delta\;f$ $dB(W/m^2)$ -177.0-177.0pfd スペクトラム S_H $dB(W/(m^2 \cdot Hz))$ -247.0 -247.0-247.0 -247.0 -247. 0 -247.0 -247 0離調周波数 (△f) 283 283 283 283 送信空中線天井(設置)高 h 4.5 4.5 4.5 4.5 4.5 4.5 4.5 $\mathrm{dBm}/\mathrm{MHz}$ -34.2 -34.2 -34.2 -34.2-34.2 -34.2-34.2 空中線入力電力密度 dBW/MHz -64. 2 -64.2 -64.2 -64. 2 -64.2-64.2 -64.2 水平方向空中線利得 dBi -14.2-14.2-14.2-14.2-14.2-14.2-14.2壁損失 dB -14.0 -14.0-14.0 -14.0 -14.0 -14.0 -14.0 クラッタ損失 dΒ -8.5 -8.5 -19.8-8.5 -19.8-8.5 -8.5 -187.0 -187.0 0dBi 受信 Ant 入力閾値 -187.0 -187.0 -187.0 -187.0 -187. 0 dBm/MHz 所要結合量 dB 116.1 116.1 104.8 116.1 104.8 116.1 116.1 所要離隔距離

表参 5.8.2 観測所との所要離隔距離算出結果

(9) アマチュア無線

(自由空間伝搬損)

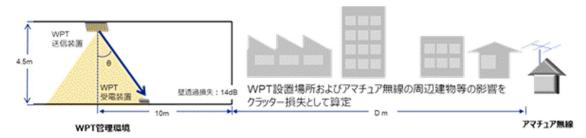
(ア)共用検討モデル

アマチュア無線との共用検討を図参 5.9.1 に示す検討モデルとし、周辺の建物等による クラッタ損失を見込んだ所要離隔距離を算出した。

5. 7

1.6

5.7


1.6

5.7

5.7

5.7

伝搬損失は自由空間損失、壁損失は、勧告 ITU-R P. 2109-1 における Traditional モデル である 14dB とした。また、クラッタ損失の算出に当たっては、国内における道路の 84%を 占める市町村道の平均値が 3.7m、5%を占める国道の幅の平均値が 7.8m であるが、空間伝送 型ワイヤレス電力伝送システムが設置される倉庫、工場等の施設内環境を踏まえ、勧告 ITU-R P. 2108-0 のデフォルト値 27m としてクラッタ損失が小さくなる算出とした。

図参 5.9.1 アマチュア無線との共用検討モデル

(イ)共用検討結果

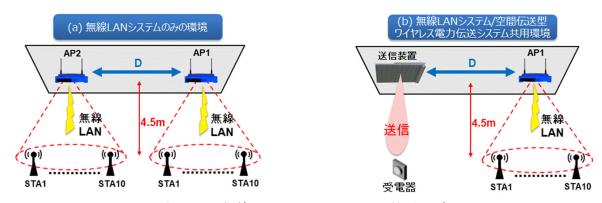
空間伝送型ワイヤレス電力伝送システムとアマチュア無線が、同一周波数を利用した場 合及び 10MHz 離調がある場合について、空間伝送型ワイヤレス電力伝送システムのビーム の方向とアマチュア無線の空中線の最大空中線利得方向が一致した場合における算出結果 を表参 5.9.1 に示す。同一周波数を利用する場合、4.4km の離隔が必要との結果となった。 ただし、これは空間伝送型ワイヤレス電力伝送システムのビームの方向とアマチュア無線 の空中線の指向方向が一致する場合となる。

表参 5.9.1 アマチュア無線との共用検討結果

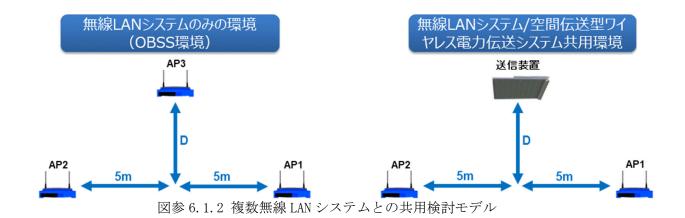
項目	(多 3. 3. 1) * / ユ / x アマチュア無線帯域 内同一周波数	アマチュア無線帯域 の不要発射 (10MHz 離 調)	備考
送信周波数	2,412/2,437MHz	2,462/2,484 MHz	
送信空中線電力	41.8dBm	41.8dBm	
帯域外補正	_	76. 0dBc	
空中線指向性指向方向	60 度	_	
送信空中線利得 (水平方向)	-5.0dBi	-14.0dBi	
壁損失	14.0dB	14. 0dB	
クラッタ損失 (勧告 ITU-R P. 2108-0)	38. 7dB	0dB	送信側・受信側ともに 「郊外」として算出 不要発射は所要離隔距 離が小さくなることか ら0とする。
アマチュア無線周波数	2,412/2,437MHz	2,400-2,450MHz	
アマチュア無線 空中線利得	18.0/5.0dBi	18.0/5.0dBi	八木アンテナ 18.0 dBi、ホイップアンテナ 5.0dBi として計算
許容干渉電力	-110.83dBm/MHz	-110.83dBm/MHz	
所要改善量	112. 1/99. 1dB	66. 6/53. 6dB	
所要離隔距離 (自由空間伝搬)	4.4km/0.97km	10.8m/0m	壁からの距離

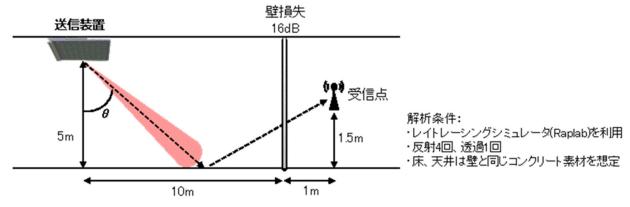
参考資料6:5.7GHz帯における共用検討

(1) 無線 LAN システム


(ア)共用検討モデル

共用検討のモデルを図参 6.1.1、共用検討パラメータを表参 6.1.1.に示す。


図参6.1.1(a)無線LANシステムのみの環境は無線LANシステムのAP同士が共用する環境、図参6.1.1(b)無線LANシステムと空間伝送型ワイヤレス電力伝送システムの共用環境は無線LANシステムの親局と空間伝送型ワイヤレス電力伝送システム送信装置が共用する環境となる。これら2つの共用検討モデルでのシステムスループットをシミュレーションにて両者を比較し、無線LANシステム同士の干渉によるスループット低下より、空間伝送型ワイヤレス電力伝送システム送信装置による干渉によって発生するスループットの低下が同等以下となるキャリアセンスの設定を評価した。なお、表3.2.3に記載した共用検討のパラメータは工場モデルとして床高5mとしているが、無線LAN子機の設置高を考慮し、図参6.1.1のモデルでは親局ー子機間距離を4.5mとした。


同様に無線 LAN AP が複数存在する場合の検討モデルを図参 6.1.2 に示し、無線 LAN 子機は半径 5m 内に 10 台を配置、壁損失及び屋内反射の影響はないものとした。

また、壁損失及び屋内反射の影響については、図参 6.1.3 に示すモデルにてレイトレーシングによるシミュレーションを実施し、評価した。

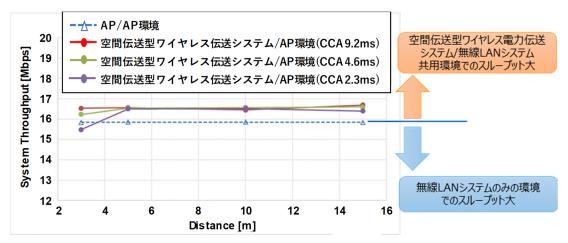
図参 6.1.1 無線 LAN システムとの共用検討モデル

図参 6.1.3 レイトレーシングによる共用検討モデル

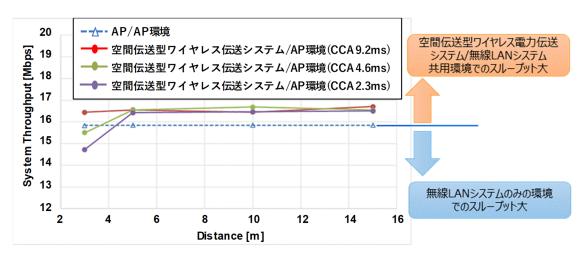
表参 6.1.1 シミュレーションパラメータ

	太少 0.1.1 7 〈 ユ 7	AP1+AP2	AP1+空間伝送型ワイ		
	項目	無線 LAN システムの	ヤレス電力伝送シス		
		みの環境	テムの共用環境		
無線 LAN シ	AP 間距離	3-15m	#N/A		
ステム	周波数帯域幅	20MHz			
	送信空中線電力	23dBm (AP)			
		18dBm (STA)			
	空中線利得	5dB:	i (AP)		
		0 dB:	i (STA)		
	チャネルモデル	802.	11n D		
	MCS	6			
	無線 LAN チャネル	144ch			
空間伝送型	周波数	#N/A	5750 MHz		
ワイヤレス	送信空中線電力	#N/A	40 dBm		
電力伝送シ	空中線利得	#N/A	Max Gain: 25.84dBi		
ステム	システム間距離	#N/A	3-15m		
	CCA 時間	#N/A	2.3ms(256slots)		
			4.6ms(512slots)		
			9.2ms(1024slots)		
	送信時間	#N/A	10-20ms		
Traffic	トラフィックシナリオ	FTP	(※1)		
	トラフィックタイプ	DL509	%/UL50%		
	シミュレーション時間		15s		

¾ 1 inter-arrival between 2 files as 1s (size:0.1MB)


(イ)共用検討結果

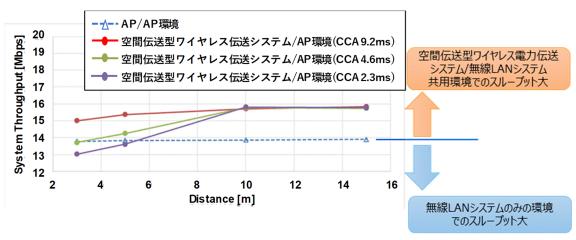
送信時間が 10ms のときのシステムスループットのシミュレーション結果を図参 6.1.4、20ms の結果を図参 6.1.5 に示す。いずれの結果も傾向は類似しており、無線 LAN システムのみの環境より、無線 LAN システム/空間伝送型ワイヤレス電力伝送システム環境でのスループットを高くするためには、「距離を離す」あるいは「センシング時間(CCA 時間)を大きくする」必要がある。また、無線 LAN AP 間の干渉よりも空間伝送型ワイヤレス電力伝送


システムによる干渉を小さく抑える条件としては、送信時間や CCA 時間の絶対値ではなく、相対時間関係の結果となった。

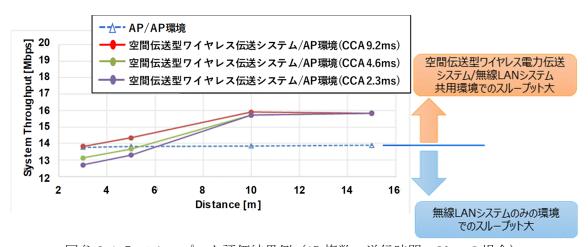
検討結果より、送信時間が 10ms の場合は CCA 時間が 4.6ms 以上、送信時間が 20ms の場合は CCA 時間が 9.2ms 以上であれば、無線 LAN システムの AP 同士の環境に対し、無線 LAN システムの AP と空間伝送型ワイヤレス電力伝送システムの環境でのスループットは高くなる結果となり、送信時間と CCA 時間の関係が 2:1 となるように送信時間は 8ms と設定することで共用可能となる。

また、現行の無線 LAN システム (小電力データ通信システムの無線局) の無線設備規則における最大送信バースト長は 8ms だが、無線 LAN システムの標準規格 IEEE 802.11 では、実際の物理パケットの最大占有時間長は約 5.5ms と規定されており、制御フレームも逐次的に送受信されることを加味すると、CCA 時間としては 4ms とすることで無線 LAN システムの検出が可能である。

図参 6.1.4 スループット評価結果例(送信時間:10msの場合)



図参 6.1.5 スループット評価結果例 (送信時間:20msの場合)


共用する無線 LAN AP が複数となった場合のシステムスループットのシミュレーション結果を図参 6.1.6 及び図参 6.1.7 に示す。

図参 6.1.4 及び図参 6.1.5 の結果と同様に送信時間が 10ms の場合は CCA 時間が 4.6ms 以上、送信時間が 20ms の場合は CCA 時間が 9.2ms 以上であれば、無線 LAN システムの AP 同士に対して無線 LAN AP と空間伝送型ワイヤレス電力伝送システムの共用環境でのスループ

ットが高い結果となり、送信時間と CCA 時間の関係が 2:1 となる表参 6.1.2 でのキャリアセンス設定にて無線 LAN システムとは共用可能となる。

図参 6.1.6 スループット評価結果例 (AP 複数・送信時間:10ms の場合)

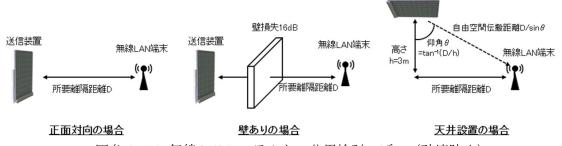
図参 6.1.7 スループット評価結果例 (AP 複数・送信時間:20ms の場合)

共用 非共用 項目 備 考 状態 状態 CCA 時間 4 msセンシング時間 CCA 時間・送信時間を初期化す CCA 初期化時間 5s る周期 隣接チャネル -75dBm $5,680 \sim 5,730 \text{MHz}$ センシング閾値 次隣接チャネル -72dBm $5,570\sim5,680\text{MHz}$ 次隣接チャネル以遠 $5,470\sim5,570\text{MHz}$ -60 dBm送信時間 8ms192 ms

表参 6.1.2 キャリアセンスの設定

共用状態:送信時間とCCA時間の比率が2:1となる動作状態。

非共用状態 :無線 LAN システムとの共用の可能性が低いと判断した場合に、送信時間を延ばす状態。


壁損失及び屋内反射の影響について、レイトレーシングによるシミュレーション結果を表 6.1.3 に示す。天井へ設置された空間伝送型ワイヤレス電力伝送システム送信装置からビーム角度 θ で放射された電波が壁を挟んで隣の部屋の無線 LAN 機器に到来する際の信号強度の最大値は、-28.3 dBm となった。そのため、反射を考慮した場合であっても、壁を挟んだ WPT 屋内設置環境の外にある無線 LAN 機器に到来する空間伝送型ワイヤレス電力伝送システム電界強度は、既存の無線 LAN 機器と同程度であり、空間伝送型ワイヤレス電力伝送システムによって大きな劣化は発生しない結果となった。

数少 0.1.0 				2 3 2 WINC
メインビーム角度 θ	0度	30 度	45 度	60 度
無線 LAN 機器に到来する 与干渉電力	-44.5dBm	-38.7dBm	-36.7dBm	-28.3dBm

表参 6.1.3 反射を考慮したレイトレーシングシミュレーション結果

(ウ)共用検討モデル(破壊防止)

屋内に設置した空間伝送型ワイヤレス電力伝送システム(送信装置)と近接した環境に存在する無線 LAN システムに対して、最大入力定格による破壊・不可逆的な影響を及ぼさないかについて図参 6.1.9 に示す共用検討モデルにより干渉計算を実施し、評価した。

図参 6.1.9 無線 LAN システムとの共用検討モデル (破壊防止)

(エ)共用検討結果(破壊防止)

干渉検討結果を表参 6.1.4 に示す。正面対向の場合、壁ありの場合及び天井への設置の場合について、無線 LAN システムの空中線利得を 3 種類 (2.14dBi、7dBi、20dBi) として無線 LAN 許容破壊レベル (0dBm、10dBm) に対する所要離隔距離を算出した。また、空中線利得 2.14dBi は無線 LAN 端末の子機、空中線利得 7dBi 及び 20dBi は、無線 LAN AP を想定した。

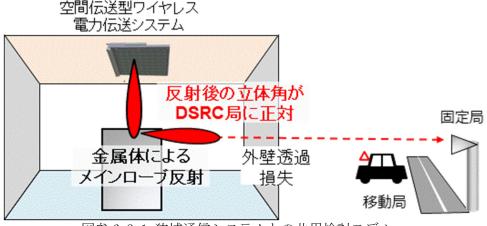
正面対向の場合、所要離隔距離は 9.3m~41.5m となるが、空間伝送型ワイヤレス電力伝送システム (送信装置) を天井への設置とすることにより、所要離隔距離は 4.9m~11m に抑えられる。ただし、空間伝送型ワイヤレス電力伝送システム (送信装置) と無線 LAN システムの空中線が対向とした場合であり、空間伝送型ワイヤレス電力伝送システムと無線LAN システムが同一管理者によって運用されている環境であれば、互いの指向性が正対しないように調整して運用することで回避できると考えられる。

また、別空間となる壁損失ありの場合は、所要離隔距離 1.5m~6.6m となり、想定される WPT 設置環境内における空間距離以下であり、別空間に設置する環境では共用可能となる。

	表参 0.1.4 無線 LAN システムとの共用検討結果 (破壊的正)									
項目	単位	I	正面対向		天井への設置		正面対向壁あり			
無線 LAN 空中線利得	dBi	2. 14	7	20	2. 14	7	20	2. 14	7	20
無線 LAN 許容破壊レベル	dBm	0	10	10	0	10	10	0	10	10
検討周波数	MHz		5750							
等価等方輻射電力	dBm					70				
交差偏波識別度	dB					0				
壁損失	dB	0	0	0	0	0	0	16	16	16
伝搬モデル		自由空間損失								
所要減衰量	dB	72. 1	67	80	72. 1	67	80	56. 1	51	64
所要離隔距離	m	16.8	9.3	41.5	6.8	4. 9	11	2.65	1.5	6.6

表参614 無線 LAN システムとの共用給討結果(破壊防止)

(2) DSRC (狭域通信) システム


(ア)共用検討モデル

屋内に設置した空間伝送型ワイヤレス電力伝送システム(送信装置)から狭域通信システムの共用検討については、図参 6.2.1 に示す。

また、狭域通信システムに対して影響を及ぼさない所要離隔距離は、送信装置からの電波が、スプリアス・レスポンス・リジェクション量及び DSRC 帯域内雑音入力量許容値を下回るために必要な距離とした。

DSRC システムには移動局・基地局の他に、移動局の試験を行う試験機があり、これはスプリアス・レスポンス・リジェクション量及び DSRC 帯域内雑音入力許容値が規定されていないため、共用検討の計算対象外とした。

空間伝送型ワイヤレス電力伝送システム(送信装置)は、天井へ設置することを前提とするため、屋外に対しては送信装置の指向性損失が見込まれる。しかし、非常に低確率ではある屋内に設置された工作機械等の金属体による反射波を考慮した最悪ケースである。

図参 6.2.1 狭域通信システムとの共用検討モデル

(イ) 共用検討結果

共用検討結果として、スプリアス・レスポンス・リジェクション量に対する結果を表参 6.2.1、DSRC 帯域内雑音入力量許容値に対する結果を表参 6.2.2 に示す。

壁損失を勧告 ITU-R P. 2109-1 における Traditional モデルの 16dB とした場合、所要離隔距離はスプリアス・レスポンス・リジェクション量に対するクラス 2 基地局が最大となり、2,620m となる。

また、実際の測定結果等の壁損失を使用した例として、鉄筋コンクリート(厚さ 150mm)、

壁損失41dBとした場合の所要離隔距離は、クラス2基地局に対し147mとなる。

DSRC 帯域内雑音入力に関しては、移動局、基地局共にスプリアス干渉による所要離隔距離は短く、スプリアス・レスポンス・リジェクション量となった。

検討結果では、壁の種類に応じての所要離隔距離の確保が前提であり、被干渉局側の指向性減衰量及び壁損失の個別実施した干渉計算による所要離隔距離を確保することにより 共用可能となる。また、試験機が設置されている際には、個別に検討する必要がある。

表参 6.2.1 狭域通信システムへの共用検討結果 (スプリアス・レスポンス・リジェクション量)

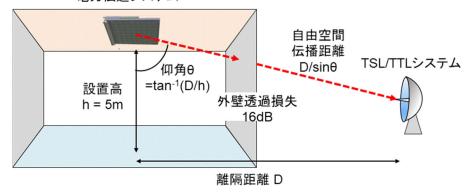
		仕様•計算結果						
					勧告 ITU-R P.2109-1			
項目	単位	鉄筋	鉄筋コンクリート壁			aditional モ		
7,1	1 124			T		(Median 値		
		移動局	クラス 1	クラス 2	移動局	クラス 1	クラス 2	
		1夕到1月	基地局	基地局	7岁到7月	基地局	基地局	
規格受信感度+3dB	dBm	-57	-62	-72	-57	-62	-72	
スプ [°] リアス・レスホ [°] ンス・ リシ [*] ェクション	dB	24	28	30	24	28	30	
干渉許容入力量	dBm	-33	-34	-42	-33	-34	-42	
受信空中線利得	dBi	10 20 20		10	20	20		
受信指向性減衰量	dB		0		0			
偏波損失	dB		0		0			
EIRP	dBm		70		70			
壁損失	dB		41		16			
送信指向性減衰量	dB	0			0			
1m における自由空間 損失値	dB	47.6				47.6		
所要減衰量	dB	113	124	132	113	124	132	
所要離隔距離	m	17	59	147	294	1,043	2,620	

表参 6.2.2 狭域通信システムへの共用検討結果(DSRC 帯域内雑音入力)

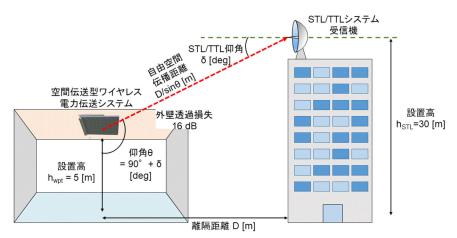
		鉄筋コンクリート壁			勧告 ITU-R P.2109-1 Traditional モデル			
仕様·計算結果	単位				11	(Median 値		
	7-1-1-2-	75.T.	クラス 1	クラス 2	70-F1 F2	クラス 1	クラス 2	
		移動局	基地局	基地局	移動局	基地局	基地局	
最小周波数	MHz	5,775	5,815	5,815	5,775	5,815	5,815	
許容干渉入力量	dBm	-84.5	-90.0	-100.0	-84.5	-90.0	-100.0	
受信空中線利得	dBi	10.0 20.0 20.0		10.0	20.0	20.0		
受信指向性減衰量	dB		0			0		
偏波損失	dB		0			0		
EIRP	dBm/MHz	11.0	1.0	1.0	11.0	1.0	1.0	
壁損失	dB		41			16		
送信指向性減衰量	dB	0			0			
1m における自由空 間損失値	dB	47.6				47.6		
所要減衰量	dB	112.5	118.0	128.0	112.5	118.0	128.0	
所要離隔距離	m	16	29	93	276	520	1,645	

(3) 放送業務用 STL/TTL システム

(ア)共用検討モデル


放送事業用 STL/TTL システムとの共用検討では、図参 6.3.1 及び図参 6.3.2 に示す検討 モデルより、干渉計算を実施した。

STL/TTLシステムに対する影響を及ぼさない所要離隔距離は、送信装置からのSTL/TTLシステムにおける帯域内雑音信号が、STL/TTLの標準時熱雑音 C/N 及びフェージング時熱雑音 C/N に対する影響を及ぼさない値として、受信等価熱雑音レベルの低下量が 0.1dB 以下になる入力レベル-117.9dBm 以下となる所要減衰量を 145.2dB とした。


また、標準時熱雑音 C/N に対する劣化は同一ルート干渉とし、正対条件(指向性損失 OdB)、フェージング時熱雑音 C/N に対しては差動フェージングを考慮した送受信での高低差による指向性減衰量を考慮した異ルート干渉として実施した。

空間伝送型ワイヤレス電力伝送システムは、天井に設置することを前提とし、指向性損失について、23dB を最大値、仰角 θ に対し $10\log_{10}(\cos^2(\theta))$ としている。伝搬損失は自由空間損失、壁損失は16dB とした。

空間伝送型ワイヤレス 電力伝送システム

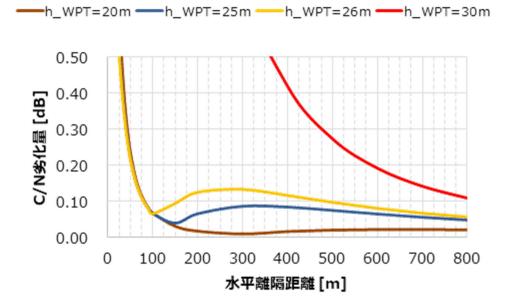
図参 6.3.1 STL/TTL システムとの共用検討モデル

図参 6.3.2 STL/TTL システムとのユースケース検討モデル

(イ)共用検討結果

同一ルート干渉の共用検討結果を表参 6.3.1 に示す。空間伝送型ワイヤレス電力伝送システムの不要発射による STL/TTL システムの雑音劣化が、フェージング損失、空間伝送型ワイヤレス電力伝送システム設置条件による天井への設置及び壁損失(16dB) を適用することで所要離隔距離は 46.8m となる。

異ルート干渉の共用検討結果を表参 6.3.2 に示す。空間伝送型ワイヤレス電力伝送システム設置条件による天井への設置及び壁損失(16dB)を適用することで所要離隔距離は836mとなる。しかし、STL/TTLシステムと送信装置の設置高の差が5m以上となる場合、STL/TTL受信指向性減衰量を20dB見込む事が可能となり、所要離隔距離は83.4mとなり、所要離隔距離を確保する事で、共用可能となる。


また、図参 6.3.2 に示すユースケースにおける空間伝送型ワイヤレス電力伝送システムの送信装置の設置高を変更した場合の離隔距離と C/N 劣化量の状態を示すグラフを図参 6.3.3 に示す。

表参 6.3.1 STL/TTL システムとの同一ルート干渉による共用検討結果

項目	単位	値
周波数	MHz	5, 850
帯域幅	MHz	6. 7
標準受信電力	dBm/BW	-42. 9
受信空中線利得(フィーダ損失含む)	dBi	32. 1
受信等価熱雑音	dBm	-101. 5
所要フェージングマージン	dB	28. 5
フェージング時所要 C/N	dB	30. 9
受信指向性減衰量	dB	0.0
熱雑音劣化 0.1dB となる入力レベル	dBm/BW	-117. 9
所要減衰量	dB	117. 6
帯域外空中線電力(ア)	dBm/MHz	-38.0
送信空中線利得(イ)	dBi	25. 0
等価等方輻射電力の最大値(ア+イ)	dBm/MHz	-13.0
送信指向性減衰量(83.9度)	dB	19. 5
壁損失	dB	16. 0
1m での自由空間損失	dB	47. 8
所要離隔距離	m	46.8

表参 6.3.2 STL/TTL システムとの異ルート干渉による共用検討結果

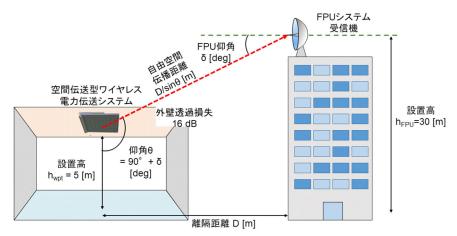
項目	単位	設置高低差 5m 以上	設置高低差 5m 未満	
周波数	MHz	5, 8	350	
帯域幅	MHz	6.	7	
標準受信電力	dBm/BW	-42	2. 9	
受信空中線利得(フィーダ損失含む)	dBi	32	. 1	
受信等価熱雑音	dBm/BW	-10	1. 5	
所要フェージングマージン	dB	28. 5		
フェージング時所要 C/N	dB	30.9		
受信指向性減衰量	dB	20.0 0.0		
熱雑音劣化 0.1dB となる入力レベル	dBm/BW	-117. 9		
所要減衰量	dB	125. 2 145. 2		
帯域外空中線電力(ア)	dBm/MHz	-38	3. 0	
送信空中線利得(イ)	dBi	25	. 0	
等価等方輻射電力の最大値(ア+イ)	dBm/MHz	-13.0		
送信指向性減衰量(86.6度)	dB	23.0		
壁損失(勧告 ITU-R P.2109-1 における	dB	10.0		
Traditional モデル)	uБ	16. 0		
1mでの自由空間損失	dB	47.8		
所要離隔距離	m	83. 4	836	

図参 6.3.3 送信装置設置高と離隔距離による C/N 劣化量

(4) 放送事業用 FPU/TSL システム

(ア) 共用検討モデル

放送事業用 FPU/TSL システムとの共用検討では、図参 6.4.1 に示す検討モデルにより実施した。


FPU システムに対する影響を及ぼさない所要離隔距離は、所要干渉波電力を下回るために必要な値として算出した。また、ユースケースとしては図参 6.4.2 における所要離隔距離を算出し、TSL システムに関しては、資料 5-2-6(3)(イ)STL/TTL システムと同一の方法にて実施した。

空間伝送型ワイヤレス電力伝送システムは、天井に設置することを前提とし、送信指向性減衰量は、23dB を最大値、仰角 θ に対し $10\log_{10}(\cos^2(\theta))$ とした。また、伝搬損失は自由空間損失、壁損失は16dB とした。

電力伝送システム 自由空間 (伝播距離 D/sinθ FPUシステム シ設置高 h = 5m 外壁透過損失 16dB

空間伝送型ワイヤレス

図参 6.4.1 FPU システムとの共用検討モデル

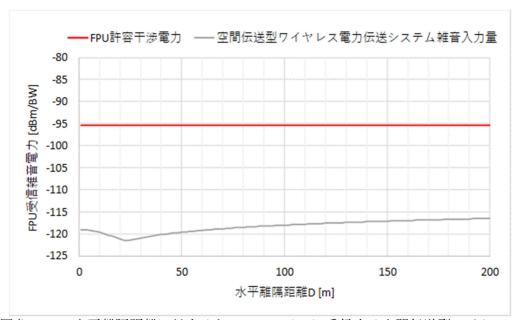
図参 6.4.2 FPU システムの建屋設置時のユースケース

(イ)共用検討結果

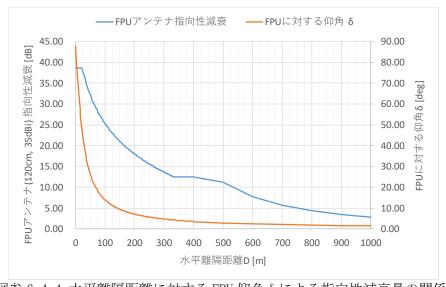
FPU システムとの共用検討結果を表参 6.4.1 に示す。空間伝送型ワイヤレス電力伝送システムの不要発射による FPU システムへの雑音入力が許容雑音入力レベル以下となるための所要減衰量は 124.8dB、設置条件の天井への設置及び壁損失(16dB)を適用することで所要離隔距離は 80.0m となり、所要離隔距離・設置条件を満たせば共用可能となる。

項目	単位	固定中継局 (4K/8K 標準伝送)	可搬型 OFDM 中継局	移動中継局
周波数	MHz	5, 850	5, 850	5, 850
帯域幅	MHz	17. 5	17. 5	17. 5
標準受信電力	dBm/BW	-45. 0	-61. 0	-62
許容干涉雑音入力	dBm/BW	-89. 4	-95. 4	-90. 5
受信空中線利得(フィーダ損込)	dBi	30.0	30.0	22. 7
受信空中線指向性損失量	dB	0	0	0
所要減衰量	dB	118.8	124.8	112.6
帯域外発射空中線電力(ア)	dBm/MHz	-38. 0	-38. 0	-38. 0
送信空中線利得(イ)	dBi	25. 0	25. 0	25. 0
等価等方輻射電力の最大値(ア+イ)	dBm/MHz	-33. 0	-33.0	-33. 0
離隔距離に対する仰角	deg	84. 6	86. 4	82. 3
送信指向性減衰量	dB	20. 5	23.0	17. 5
壁損失(勧告 ITU-R P. 2109-1 におけ	dB	16. 0	16. 0	16. 0
る Traditional モデル)	αБ	10.0	10.0	10. 0
1mでの自由空間損失	dB	47.8	47.8	47.8
所要離隔距離	m	53. 0	80.0	37. 0

表参 6.4.1 FPU システムとの共用検討結果


図参 6.4.2 に示したユースケースにおける FPU システムへの距離に対する雑音入力量の計算結果を図参 6.4.3 に示す。図参 6.4.3 に示すグラフは、空間伝送型ワイヤレス電力伝送システム設置高を 5m とした場合の FPU システムへ入力される空間伝送型ワイヤレス電力伝送システムからの帯域外雑音電力量を示す。

検討に当たっては、FPU の空中線指向方向は、水平 0 度方向に向き、俯角 δ による指向性減衰量を考慮した。また、空間伝送型ワイヤレス電力伝送システム設置高を 5m とした際の水平方向離隔距離と FPU 空中線から見た俯角 δ の関係及び検討に使用した FPU 受信空中線の指向性減衰量(直径 1.2m、最大空中線利得 35dBi の空中線)は、勧告 ITU-R F.699-8 にて定義される指向性モデル(図参 5.4.4)を適用した。


表参 6.4.1 での離隔距離に対して、15dB 程度の指向性減衰量を見込めるため、空間伝送

型ワイヤレス電力伝送システムからの帯域外雑音入力は、離隔距離によらず許容雑音電力以下となり、図参 6.4.3 によるユースケースでは、水平方向の所要離隔距離の確保は不要となった。

また、検討では FPU システムの垂直方向の指向性減衰量は含まないとして実施した。しかし、空間伝送型ワイヤレス電力伝送システムの送信装置方向と異なる場合には、俯角 5度で約 14dB、10 度で約 22dB を見込むことで更に短い距離での共用が可能となる。また、空間伝送型ワイヤレス電力伝送システムからの送信指向性減衰量は 23dB、壁損 16dB として実施した。

図参 6.4.3 水平離隔距離に対すると FPU システムに受信する空間伝送型ワイヤレス 電力伝送システム雑音電力の関係

図参 6.4.4 水平離隔距離に対する FPU 仰角 δ による指向性減衰量の関係

TSL システムとの共用検討結果の同一ルート干渉を表参 6.4.2 に示す。

共用可能となる所要減衰量は、150.2 dB(フェージング損導入による場合は 125.7 dB)となり、同一ルート干渉による所要離隔距離は 88.3 m となる。

異ルート干渉の共用検討結果を表参 6.4.3 に示す。空間伝送型ワイヤレス電力伝送システム設置条件による天井への設置及び壁損失(16dB) を適用することで所要離隔距離は

1,485m となる。しかし、TSLシステムとの設置高低差が 7m 以上ある場合には TSL 受信空中線指向性減衰量 20dB を見込めるため、所要離隔距離は 148.5m となり、この所要離隔距離・設置条件を満たすことで共用可能となる。

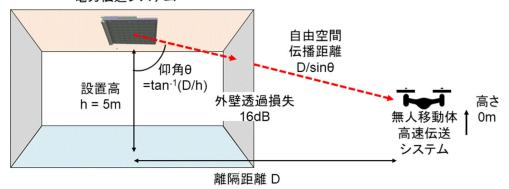
表参 6.4.2 TSL システムとの共用検討結果 (同一ルート干渉)

項目	単位	値
計算周波数	MHz	5, 850
帯域幅	MHz	16. 2
標準受信電力	dBm/BW	-44.8
空中線利得(フィーダ損込)	dBi	37. 1
受信等価熱雑音	dBm/BW	-98. 3
所要フェージングマージン	dB	24. 5
フェージングマージン時所要 C/N	dB	29. 0
受信指向性減衰量	dB	0.0
熱雑音劣化 0.1dB となる入力レベル	dBm/BW	-114. 7
所要減衰量 (フェージング損失含む)	dB	-125. 7
帯域外発射空中線電力(ア)	dBm/MHz	-38.0
送信空中線利得(イ)	dBi	25. 0
等価等方輻射電力の最大値(ア+イ)	dBm/MHz	-13
送信指向性減衰量(86.8度)	dB	23.0
壁損失(勧告 ITU-R P.2109-1 における Traditional	dB	16. 0
モデル)	ub	10.0
1mの自由空間減衰量	dB	47.8
所要離隔距離	m	88.3

表参 6.4.3 TSL システムとの異ルート干渉条件における共用検討結果

単位	設置高低差	設置高低差	
	7m以上	7m 未満	
MHz	5, 8	350	
MHz	16	. 2	
dBm/BW	-44	1. 8	
1D:	9.7	1	
GB1	31	. 1	
dBm/BW	-97. 7		
dB	24. 5		
dB	29. 0		
dB	20. 0	0	
dBm/BW	-11	7. 9	
dB	130. 2 150. 2		
dBm/MHz	-38	3. 0	
dBi	25	. 0	
dBm/MHz	-13.0		
dB	23. 0		
ЧD	16.0		
uБ	10	. 0	
dB	47.8		
m	148. 5	1, 485	
	MHz MHz dBm/BW dBi dBm/BW dB dB dB dB dB dBm/MHz dBi dBm/MHz dB dB dB dBm/MHz	単位 7m 以上 MHz 5, 8 MHz 16 dBm/BW -44 dBi 37 dBm/BW -97 dB 24 dB 29 dB 20.0 dBm/BW -11 dB 130.2 dBm/MHz -38 dBi 25 dBm/MHz -13 dB 23 dB 47	

(5) 無人移動体高速伝送システム


(ア)共用検討モデル

無人移動体高速伝送システム(ロボット無線システム)では、図参 6.5.1 に示す検討モデルにより実施した。また、ロボット無線システムに対する影響を及ぼさない所要離隔距離は、同一、隣接、次隣接の各チャネルにおける許容妨害波入力に対して下回るための必要な距離とした。

空間伝送型ワイヤレス電力伝送システムは、天井に設置することを前提、指向性減衰損23dB を最大値とし、仰角 θ に対し $10\log_{10}(\cos^2(\theta))$ の関数としている。伝搬損失は自由空間損失、壁損失は、勧告 ITU-R P. 2109-1 における Traditional モデルである 16dB を基準とし、勧告 ITU-R P. 2109-1 における Thermally efficient モデル(30. 8dB)及び厚さ 150mmの RC 壁(41dB)の場合も算出した。

また、空間伝送型ワイヤレス電力伝送システム側の指向性減衰量が最小となる条件として、ロボット無線システム搭載空中線の設置高は 0m としている。

空間伝送型ワイヤレス 電力伝送システム

図参 6.5.1 無人移動体高速伝送システムとの共用検討モデル

(イ)共用検討結果

共用検討結果を表参 6.5.1 に示す。壁損失が 16dB (勧告 ITU-R P.2109-1 における Traditional モデル) にて、所要離隔距離は、同一チャネルで約 23km、次隣接チャネルで 185m となる。

壁損失が 41dB (RC 壁:厚さ 150mm) の場合に所要離隔距離は、同一チャネルで約 1km、 次隣接チャネルで 27m となる。

空間伝送型ワイヤレス電力伝送システムは屋内利用、一方、ロボット無線システムは現状では市街地以外の屋外での利用を想定されている。そのため、空間伝送型ワイヤレス電力伝送システムの利用環境(設置場所・使用チャネル・壁損失)を一元的に管理し、ロボット無線システムとの運用調整の仕組みを利用することで、すみ分けによる共用は可能となる。

同一 隣接 次隣接 項目 チャネル チャネル チャネル 所要離隔距離(勧告 ITU-R P. 2109-1 における 23,348m 185m 1, 170m Traditional モデル) 所要離隔距離 (勧告 ITU-R P. 2109-1 における 4,249m 213m 49m Thermally efficient モデル) 所要離隔距離 (RC 壁:厚さ 150mm) 1,313m 68m 27m

表参 6.5.1 無人移動体高速伝送システムとの共用検討結果

(6) 気象レーダー

(ア)共用検討モデル

気象レーダーとの共用検討を図参 6.6.1 に共用検討モデルを示す。空間伝送型ワイヤレス電力伝送システムからの不要発射が気象レーダーの帯域内干渉、送信信号が気象レーダーの帯域外干渉となる検討を実施した。

また、気象レーダーに対する影響を及ぼさない所要離隔距離は、不要発射に対しては気象レーダーの許容干渉レベル (-120dBm/BW)、送信信号に対しては-40dBm として、これを下回るために必要な距離とした。

空間伝送型ワイヤレス電力伝送システム送信装置の設置条件は、天井への設置とし、指向性減衰量については、23dB を最大値とした仰角 θ に対し $10\log_{10}(\cos^2(\theta))$ の関数としている。また、伝搬損失は自由空間損失、壁損失は、勧告 ITU-R P. 2109-1 における Traditional モデルである 16dB、気象レーダーへの干渉が最大となる条件として、気象レーダーの設置地上高0m、指向性減衰量0dBとした。

空間伝送型ワイヤレス 電力伝送システム 自由空間 伝播距離 気象レーダー 仰角θ D/sinθ =tan-1(D/h) 設置高 不要発射 外壁透過損失 h = 5m(インバンド)及び 16dB キャリア信号 離隔距離 D

図参 6.6.1 気象レーダーの共用検討モデル

(イ)共用検討結果

空間伝送型ワイヤレス電力伝送システムからの不要発射に対する共用検討結果を表参 6.6.1 に示す。不要発射強度が気象レーダーの許容雑音入力電力値を下回る所要減衰量は 128.9dB となり、所要離隔距離は 137.2m となった。

キャリア信号の気象レーダーの帯域外へ干渉する場合の検討結果を表参 6.6.2 に示す。受信許容入力電力を下回るための所要減衰量 157.0dB、所要離隔距離は 3,308m となり、不要発射に対する所要離隔距離を上回る。そのため、共用検討モデルで採用した空間伝送型ワイヤレス電力伝送システムの設置条件(天井への設置及び壁損失:16dB)を確保した環境にて、気象レーダー設置位置から 3.3km の範囲には空間伝送型ワイヤレス電力伝送システムの設置を制限する区域とすることで共用可能となる。

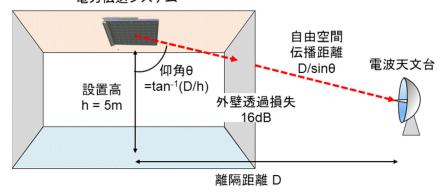
表参 6.6.1 気象レーダーとの共用検討結果(不要発射強度)

項目	単位	計算値
周波数	MHz	5, 372. 5
帯域幅	MHz	1.2
受信空中線利得	dBi	47. 0
受信許容雑音電力	dBm/BW	-120.0
受信指向性減衰量	dB	0.0
所要減衰量	dB	128. 9
帯域外空中線電力(ア)	dBm/MHz	-48.0
送信空中線利得(イ)	dBi	25. 0
無相関雑音の減衰量 (ア+イ)	dB	16.0
等価等方輻射電力の最大値(ア+イ-ウ)	dBm/BW	-38. 2
送信指向性減衰量(87.9度)	dB	23. 0
壁損失	dB	16. 0
1m での自由空間損失	dB	47. 1
所要離隔距離	m	137.2

表参 6.6.2 気象レーダーとの共用検討結果(キャリア信号)

項目	単位	計算値
周波数	MHz	5, 732. 0
受信空中線利得	dBi	47. 0
受信許容入力電力	dBm	-40.0
受信指向性減衰量	dB	0.0
所要減衰量	dB	157. 0
等価等方輻射電力	dBm	70.0
送信指向性減衰量(89.9度)	dB	23. 0
壁損失	dB	16. 0
1m での自由空間損失	dB	47. 6
所要離隔距離	m	3, 308

(7) 電波天文


(ア)共用検討モデル

電波天文との共用検討を図参 6.7.1 に示す検討モデルにより実施した。5.7GHz 帯空間伝送型ワイヤレス電力伝送システムからの離調周波数が近い、臼田観測所 64m 反射鏡(観測周波数 4,995MHz)及び石岡観測所 13.2m 反射鏡(観測周波数 10,650MHz)を検討対象とした。また、電波天文に対する影響を及ぼさない所要離隔距離は、観測周波数 4995MHz 及び10,650MHz における空間伝送型ワイヤレス電力伝送システムの不要発射強度(-48dBm/MHz)が、電波天文の許容干渉レベル(-187dBm/MHz、-192dBm/MHz)を下回るために必要な離隔距離とした。

空間伝送型ワイヤレス電力伝送システム(送信装置)の設置条件の天井への設置とし、指向性減衰量については、23dB を最大値とし、仰角 θ に対し $10 \log_{10}(\cos^2(\theta))$ の関数としている。

伝搬損失は自由空間損失とし、壁損失は、勧告 ITU-R P. 2109-1 における Traditional モデルである 16dB、電波天文の設置地上高は 0m としている。

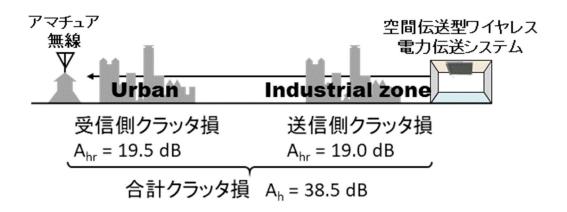
空間伝送型ワイヤレス 電力伝送システム

図参 6.7.1 電波天文の共用検討モデル

(イ) 共用検討結果

共用検討結果を表参 6.7.1 に示す。5.7GHz 帯空間伝送型ワイヤレス電力伝送システムの不要発射強度が電波天文の干渉閾値換算値を下回るための所要減衰量は、臼田観測所は107dB、所要離隔距離は1,096m であり、石岡観測所は112dB、所要離隔距離は1,736m である。そのため、検討モデルで採用した空間伝送型ワイヤレス電力伝送システムの設置条件(天井への設置及び壁損失:16dB)を確保した条件にて、各観測所の設置位置から1.1km及び1.8kmの範囲は、空間伝送型ワイヤレス電力伝送システムの設置を制限する区域とすることで電波天文との共用は可能となる。

表参 6	7 1	雷波天文と	の共用検討結果


	項目	単位	臼田	石岡	備考
送信パラ	(1)送信空中線電力	dBm	-48.0	-48.0	
メータ	(2)占有周波数帯域幅	MHz	1.0	1.0	
	(3)送信空中線利得	dBi	7. 0	7. 0	
	(4)指向性減衰量	dB	-39. 0	-39.0	Bore sight
	(5)帯域内発射電力	dBm	-80.0	-80.0	(1)+(3)+(4)
	(6) 帯域内発射電力密度	dBm/MHz	-80.0	-80.0	(5)-10Log[(2)]
受信パラ	(7)受信空中線利得	dBi	0.0	0.0	
メータ	(8)指向性減衰量	dB	0.0	0.0	
	(9)電力スペクトルフラックス密度	$dB(W/(m^2 \cdot Hz))$	-255.0	-255.0	勧告 ITU-R
					RA. 769-2
	(10)干渉閾値換算値	dBm/MHz	-187.0	-192.0	
所要	(11)所要減衰量	dB	107.0	112.0	(6)-(10)
減衰量					
伝搬損失	(12)自由空間損失	dB	107.0	112.0	1.096km
	(13)水蒸気圧	mmHg	5. 5	5. 5	
	(14)水蒸気密度	$\mathrm{g/m^3}$	4. 1	4. 1	15℃
	(15)水蒸気分子による	dB/km	0.001	0.001	
	吸収係数				
	(16)大気減衰量	dB	0.0	0.0	
	(17)ナイフェッシ 回折損失	dB	0.0	0.0	
	(18)伝搬損失の合計	dB	107.0	112.0	(12)+(16)
所要離隔距	离	m	1,096	1, 736	_
残差	-	dB	0	0	(11)-(18)

(8) アマチュア無線

(ア)共用検討モデル

アマチュア無線との共用検討を図参 6.8.1 に示す検討モデルにて、周辺の建物等による クラッタ損失を見込んだ所要結合量から所要離隔距離を算出した。

伝搬損失は自由空間損失とし、壁損失は、勧告 ITU-R P.2109-1 における Traditional モデルである 16dB とした。また、クラッタ損失の算出に当たっては、空間伝送型ワイヤレス電力伝送システムが利用される工場・倉庫等は勧告 ITU-R P.452-16 にて定義される"Industrial"、アマチュア無線が設置される都市部は"Urban"におけるクラッタ損の算出とした。

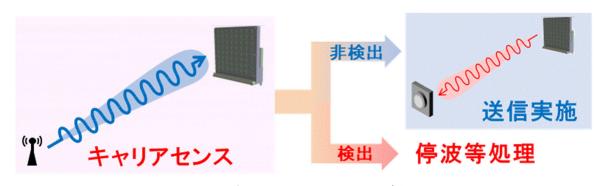
図参 6.8.1 アマチュア無線局との共用検討モデル

(イ) 共用検討結果

空間伝送型ワイヤレス電力伝送システムとアマチュア無線が、同一周波数を利用した際及び 1MHz 以上の離調周波数となる場合について、アマチュア無線の最大空中線利得方向が空間伝送型ワイヤレス電力伝送システムの送信装置と対向した場合の所要離隔距離の算出結果を表参 6.8.1 及び表参 6.8.2 に示す。また、1MHz 以上の離調周波数となるアマチュア無線で用途としては月面反射通信(EME)/レピータ/ビーコンとなる。

同一周波数かつ空間伝送型ワイヤレス電力伝送システムのビームの送信方向とアマチュア無線の空中線(パラボラアンテナ)の指向方向が一致する場合、約17.5kmの所要離隔距離が必要となる結果となった。この結果より、実運用上のケースにおいて、パラボラアンテナと空間伝送型ワイヤレス電力伝送システムの主方向が向き合った場合には、共用は難しいと考えられる。

表参 6.8.1 アマチュア無線局への干渉レベル評価結果(同一周波数)


項目	パラボラアンテナ 想定	八木アンテナ 想定	ホイップ アンテナ想定
送信周波数	5,750 MHz		
等価等方輻射電力 (無変調波)	70 dBm		
送信指向性減衰量(水平方向)	23 dB		
クラッタ損失	38. 5 dB		
アマチュア無線 空中線利得	30dBi	15 dBi	3 dBi
アマチュア無線 指向性減衰量	0 dB		
許容干渉電力	-110 dBm/MHz		
所要離隔距離	17,500m 3,114 m 782 m		782 m

表参 6.8.2 アマチュア無線局への干渉レベル評価結果 (1MHz 離調)

項目	パラボラアンテナ 想定	八木アンテナ 想定	ホイップ アンテナ想定
送信周波数	5,756 MHz		
等価等方輻射電力 (無変調波)	10dBm		
送信指向性減衰量(水平方向)	23 dB		
クラッタ損失	0 dB (離隔距離小のため)		
アマチュア無線 空中線利得	30dBi	15 dBi	3 dBi
アマチュア無線 指向性減衰量	0 dB		
許容干渉電力	-110 dBm/MHz		
所要離隔距離	1,473 m 262 m		66 m

参考資料7:キャリアセンス

キャリアセンス (Clear Channel Assessment: CCA) の概要を図参 7.1 に示す。送信装置は送信に先立ち、キャリアセンスによる干渉確認を実施し、干渉を検出しなかった場合のみ送信を開始するものであり、各バンドでのキャリアセンスについて示す。

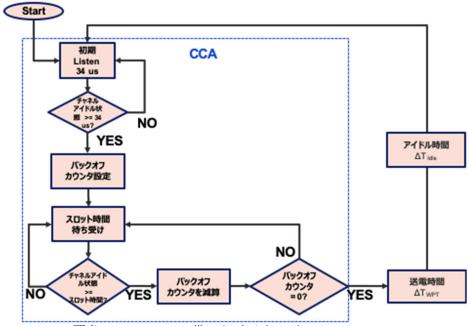
図参 7.1 キャリアセンスの概要

(1) 920MHz 帯

920MHz 帯空間伝送型ワイヤレス電力伝送システムでは、既設 RFID システムと等価等方輻射電力 (EIRP) を含めて同一の技術基準であり、キャリアセンスを不要とした。

また、干渉発生時には、運用調整の仕組みを利用した問合せ等も可能であり、キャリアセンスを不要としても他の無線システムへの影響は限定的であると考えられる。

(2) 2. 4GHz 帯


2.4GHz 帯の空間伝送型ワイヤレス電力伝送システムでは送信に先立ち、キャリアセンスによる干渉確認を実施した後、送信を開始する。キャリアセンスのパラメータを表参 7.2.1 に示す。キャリアセンスは同一チャネルの他、隣接チャネル、次隣接チャネルについても実施する。

カテゴリ	項目	パラメータ	
センシング時間	CCA 時間 (バックオフ時間を含む)	0.17〜99ms (初期 Listen 時間 34us スロット時間 9us バックオフカウンター 15-1023)	
センシング条件	同一チャネル CCA 閾値	-72dBm/20MHz	
	隣接チャネル CCA 閾値	-62dBm/20MHz	
	次隣接チャネル CCA 閾値	-62dBm/20MHz	
送信時間	最長送信バースト時間 (最長チャネル占有時間)	13ms	
アイドル時間	アイドル時間	13ms	

表参 7.2.1 キャリアセンスのパラメータ (2.4GHz 帯)

キャリアセンス、送信時間及びアイドル時間の制御フローを図参 7.2.1 に示す。WPT 屋内設置環境に隣接した場所においても、複数の無線 LAN AP 同士のキャリアセンスによるスループットが低下しないように 2.4GHz 帯の空間伝送型ワイヤレス電力システムにおいては、CCA 時間とは別にアイドル時間を設けている。

シミュレーションの結果より、WPT 管理環境の周辺 10m以内が同一管理者の管理でない場合でもアイドル時間と送信時間を等しくすることで、WPT 管理環境周辺におけるスループットの低下を無線 LAN システム同士より抑制するパラメータとなる。

図参7.2.12.4GHz 帯におけるキャリアセンスのフロー

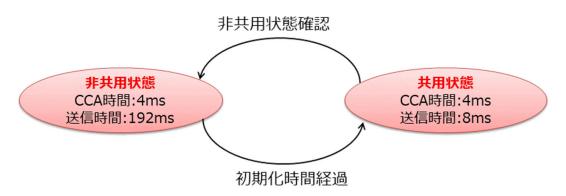
(3) 5. 7GHz 帯

5.7GHz 帯の空間伝送型ワイヤレス電力伝送システムのキャリアセンスのパラメータを表参7.3.1 に示す。5.7GHz 帯におけるキャリアセンスでは以下の2つの状態でのキャリアセンスを規定することとした。

- 共用状態 :無線 LAN システムに対するキャリアセンスのセンシング時間 (CCA 時間) と送信時間の比率が 1:2 となるように動作する状態。
- 非共用状態:無線 LAN システムが共用環境に無い可能性が高いと判断した場合に、送信時間を延ばす状態。

カテゴリ	項目	共用 状態	非共用 状態	備考
	CCA 時間	4ms		
センシング時間	CCA 初期化時間	h c		CCA 時間・送信時間を初期 化する周期
	隣接チャネル	-75dBm		5,680∼5,730MHz
	次隣接チャネル	-72dBm		5,570∼5,680MHz
	次隣接チャネル以遠	-60dBm		5,470~5,570MHz
送信時間		8ms	192ms	

表参 7.3.1 5.7GHz 帯におけるキャリアセンスのパラメータ


共用状態と非共用状態の2つの状態は、図参 7.3.1 に示すステートマシンに従って制御され、各状態でキャリアセンス時間と送信時間が設定される。

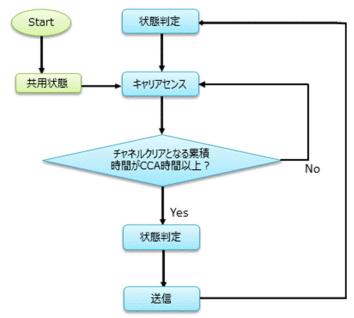
空間伝送型ワイヤレス電力伝送システムの標準は、共用状態とし、一定時間のキャリアセンスにより干渉がないと確認された場合のみ、非共用状態へ移行する。ただし、非共用状態に移行した場合であっても、初期化時間(5秒)経過後は基本状態へ戻り、監視・制御を行うものとする。

共用状態から非共用状態への移行条件(非共用状態との認識)は、「共用状態において連続

1秒間に渡りセンシング閾値以上の信号を検出しないこと」とする。

1 秒間は無線 LAN システムのビーコン平均周期の約 10 倍であり、非共用状態へ遷移するためには「4ms の CCA での Idle 判定とその後の 8ms の電力伝送」を 80 回以上(1 秒÷ [4ms+8ms] ≒83 回)連続して繰り返す必要があるため、検出漏れのリスクを十分に回避できる時間である。また、連続 1 秒間内のキャリアセンス時間においてセンシング閾値以上の信号を検出しなかった場合のみ、共用状態から非共用状態に最短で遷移し、途中でセンシング閾値以上の信号を検出した場合は、累積時間をリセットするものとする。

図参 7.3.1 5.7GHz 帯キャリアセンスの制御ステートマシン


5.7GHz 帯のキャリアセンスの制御フローは図参 7.3.2 に示す。共用状態からスタートし、キャリアセンスと送信を行うごとの状態判定により、キャリアセンス時間及び送信時間のパラメータ更新を行い、キャリアセンスと送信処理を実施する。

また、「非共用状態」の送信時間は 192ms に設定されており、電波法規則における無線 LAN の最大バースト長(8ms)と比較して長く設定されている。このため、空間伝送型ワイヤレス電力伝送システムの長期間の送信により、無線 LAN の送信機会が得られなくなる可能性が懸念されるが、「非共用状態」の運用は、図参 7.3.1 及び図参考 7.3.2 に示した状態遷移図に記載された通り、周囲に無線 LAN システムが運用されていないことが確認された場合においてのみ許容されている。

具体的には、以下の動作となる。

- ・空間伝送型ワイヤレス電力伝送システムの初期状態は「共用状態」から開始され、周囲に 無線 LAN システムが存在しないことが確認された場合においてのみ、「非共用状態」へと 遷移する。
- ・「非共用状態」での運用期間は、「初期化時間(5秒)」により、時間制限が課せられており、 定期的に無線 LAN の運用を確認する「共用状態」に遷移する。
- ・「非共用状態」での運用中に周囲で無線 LAN システムが運用され始めた場合には、「非共用状態」から「共用状態」に遷移するまでの間(最大 5 秒)、無線 LAN システムの通信機会が得られにくい期間が発生するが、一度「共用状態」に遷移し、無線 LAN を検出した場合には、「非共用状態」には遷移しない。

したがって、周囲の無線 LAN システムへの影響は限定的であり、「WPT 管理環境」内での使用する環境では管理者による対応も可能であることから、実運用上は問題とならないと考えられる。

図参 7.3.2 5.7GHz 帯キャリアセンスの制御フロー

(4) 5. 7GHz 帯のキャリアセンスのパラメータ算出

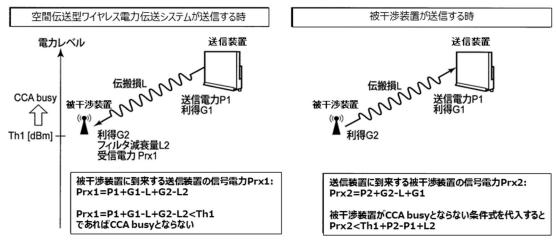
5.7GHz 帯のキャリアセンスのパラメータのセンシング閾値及び送信時間の算出根拠となる 導出方法について以下に示す。

センシング閾値及び送信時間のパラメータの算出根拠となるキャリアセンスのセンシング 閾値の導出は、下記の2つの条件を考慮した。

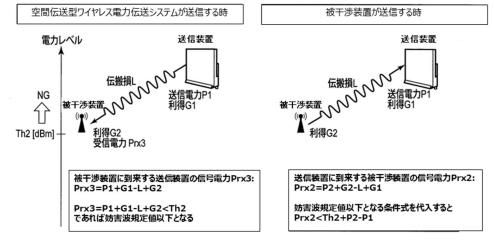
・条件1:送信装置からの送信電力によって、被干渉装置(他無線システム)における キャリアセンスがチャネルビジーとならないこと。

・条件2:送信装置から被干渉装置へ到来する電力レベルが、被干渉装置における妨害波規定レベルを超えないようにすること。

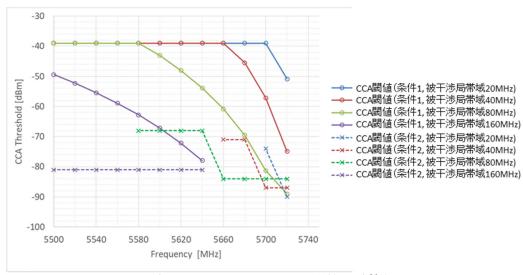
条件1を満たすキャリアセンス閾値の導出の関係を図参 7.4.1 に示す。図参 7.4.1 左側に示すように、空間伝送型ワイヤレス電力伝送システム(送信装置)の送信電力を P1、空中線利得を P1、公中線利得を P1、伝搬損を P1 とすると、被干渉装置に到来する送信装置の電力 P1 は P1+P1-P1 で表され、これがキャリアセンス閾値 P1 を下回る式(1)となれば、条件1を満足する状態となる。


式(2)により条件1を満たすキャリアセンス閾値が導出される。

同様に条件 2 を満たすキャリアセンス閾値の導出を図参 7.4.2 に示す。条件 1 での関係と同様であるが、図参 7.4.1 でのキャリアセンス閾値 1 が被干渉装置のデジタル入力レベルで規定されるのに対し、図参 1.4.2 での妨害波規定値レベル 1 は被干渉装置の 1 RF 入力レベ


ルで規定される点が異なる。すなわち、条件 2 では被干渉装置でのチャネル選択フィルタによる減衰は考慮されないため、条件 2 を満たす条件式は以下の式(3) となる。

Prx2 〈 Th2+P2-P1 式(3)


条件1、条件2を満たすキャリアセンス閾値の計算結果例を図参7.4.3に示す。図参7.4.3の実線は、条件1を満たすキャリアセンス閾値の計算例であり、式(2)に基づいて算出している。この計算例におけるTh1は、被干渉装置側でのキャリアセンス閾値(-62dBm)、P2は被干渉装置側の送信電力(19dBm)、P1は送信装置の空中線電力(40dBm)、L2は被干渉装置側のフィルタ減衰量(4次バタワースフィルタ)とし、さらにマージンM(6dB)を加えた値とした。点線は条件2を満たすキャリアセンス閾値の計算例であり、式(3)に基づいて算出している。ここで、Th2は被干渉装置側の妨害波規定値(-63dBm:隣接チャネル、-47dBm:次隣接チャネル)である。

図参7.4.1条件1を満たすキャリアセンス閾値の導出

図参7.4.2条件2を満たすキャリアセンス閾値の導出

図参 7.4.1 キャリアセンス閾値の計算例

無線 LAN システムの通信特性への影響を限りなく小さくするためには、キャリアセンスのセンシング閾値として、図参 7.4.1 の実線及び点線を下回る閾値を設定することが好ましい。

しかし、その場合には空間伝送型ワイヤレス電力伝送システムが過度に信号検出をすることになり、送信時間が無くなる可能性がある。そのため、条件1及び条件2を考慮し、送信時間との両立が図れるキャリアセンス閾値として表参7.3.1による値を設定した。

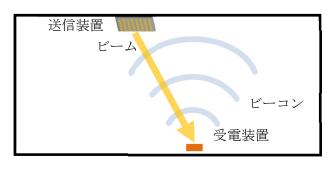
表参 7.3.1 による閾値とした場合、条件 1 はほぼ満足するが、条件 2 は十分に満たさない可能性がある。具体例としては、閾値未満のレベル (-75dBm 未満) で通信する無線 LAN システムに対して、送信装置からの信号の電力レベルが妨害波規定値以上になる。

一方で、空間伝送型ワイヤレス電力伝送システムから無線 LAN システムに対して一定程度の干渉を与えた場合でも、干渉影響が他の無線 LAN システムからの干渉影響と同程度以下であれば、空間伝送型ワイヤレス電力伝送システムと無線 LAN システムとは共用可能といえる。

そのため、共用検討では、表参 7.3.1 によるキャリアセンスのパラメータを使ったシミュレーション評価にて、空間伝送型ワイヤレス電力伝送システムからの干渉が、他の無線 LANシステムからの干渉の影響と同程度以下であることを確認した。

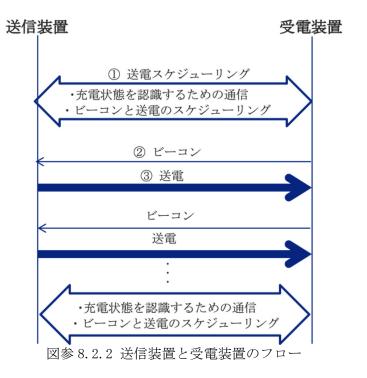
参考資料8:受電装置の位置推定

空間伝送型ワイヤレス電力伝送システム(送信装置)から受電装置へ送信するにあたり、送信装置からのビームを受電装置に向け効率的に送信するために、基本的に受電装置の位置推定の必要がある。送信装置が受電装置の位置を推定するには、受電装置はビーコン信号を発出し、送信装置はビーコン信号の到来方向に、ビーム形成することにより、受電装置に向けた効率的な送信が可能となる。


(1) 920MHz 帯

920MHz 帯空間伝送型ワイヤレス電力伝送システムでは、送信装置からは無指向又はブロードな指向性による送信を行い、広範囲に設置された受電装置へ広く送信を行うことから特定の受電装置の位置推定は実施しないこととする。また、ユースケースによりビーコン信号を必要とする場合には、同一チャネルを使用する RFID システムにおける信号にて代用できることから本システム独自での規定を実施しない。

(2) 2. 4GHz 帯


2.4GHz 帯空間伝送型ワイヤレス電力伝送システムにおける受電装置からのビーコン信号は、本システムと同一チャネル帯を使用する 2.4GHz 帯高度化小電力データ通信等の既存無線システムによる電波を使用して行うものとして本システム独自でのシステムは実施しない。また、2.4GHz 帯高度化小電力データ通信を例にビーコン信号として使用する場合のフローを図参8.2.2に示す。

2. 4GHz 帯高度化小電力データ通信で送信スケジューリングを実施し、受電装置から 2. 4GHz 帯高度化小電力データ通信方式による発出した電波をビーコン信号として、空間伝送型ワイヤレス電力伝送システム(送信装置)の空中線にて受信した到来方向に送信することにより(レトロディレクティブ方式等)、ビームが受電装置方向に形成されることを実現する。

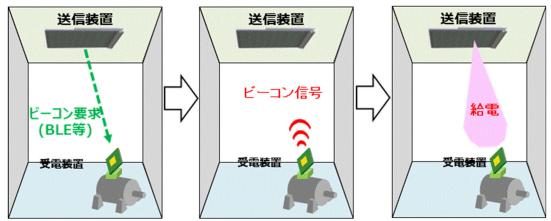
図参8.2.1 受電装置からのビーコンと送信装置からのビーム

ビーコン信号及び送信装置からの送信に先立ち、スケジューリングでは、送信装置と受電装置は ID や負荷装置の充電状態の確認等を行うことで受電装置の認識を行うものとする。また、ビーコン信号にて使用する 2.4 GHz 帯高度化小電力データ通信を例として送信装置と受電装置間の通信を比較したものを表参 8.2.1 に示す。

表参 8.2.1 送信装置と受電装置間の通信

通信の種類	①スケジューリング 【既存無線システム】	②ビーコン 【既存無線システム】	③ 送信
帯域幅	2 MHz	2 MHz	100 kHz
最大電力	3.2 mW	10 mW	15 W
最大空中線利得	6 dBi	2 dBi	24 dBi
送信方向	双方向	受電装置から 送信装置	送信装置から 受電装置

※既存無線システムは 2. 4GHz 帯高度化小電力データ通信を例にしたもの


(3) 5. 7GHz 帯

5.7GHz 帯空間伝送型ワイヤレス電力伝送システムにおける受電装置からのビーコン信号は、本システムと同一チャネル帯を使用し、ビーコン信号として転用可能な既存無線システムが存在しないことから本検討にて規定するものとした。また、受電装置からのビーコン信号については、制御用の無線通信は既存無線システムを使用した方法が情報収集として効率的であること、消費電力、製造コスト等を考慮すると無変調による送信が有効であることから送信装置と同様な CW による無変調として検討を実施した。

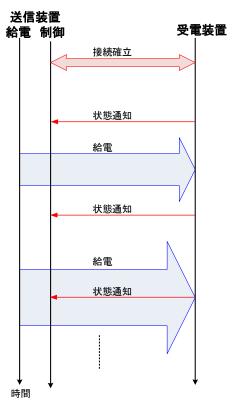
(ア)位置推定の制御フロー

5.7GHz 帯の空間伝送型ワイヤレス電力伝送システムの送信では、受電装置に向けたビーム形成を行う必要がある。そのため、ビーム形成(指向方向を決める)は、送信に使用する周波数と同一周波数による受電装置からのビーコン信号を利用して送信空中線のビーム形成を構成する。また、制御無線通信による受電装置の位置情報から送信装置からの受電装置の方向を推定する方法を想定している。

しかし、いずれの方法においても送信装置と受電装置との間では、制御用の無線通信を 行う必要があり、ビーコン信号と制御通信のイメージを図参 8.3.1 に示す。

図参8.3.1 制御用通信とビーコン信号のイメージ

受電装置との制御用無線通信は、送信装置又は送信装置に接続された機器により、受電装置との間で制御用の無線通信を行う。この制御用無線通信の通信方式は、既存システムを用いるものとし、通信プロトコル等の通信制御方式は、利用する通信システムの規定に基づき、空間伝送型ワイヤレス電力伝送システム独自のシステムとして、受電装置より送信するビーコン信号のみを規定する。


受電装置と送信装置の間では、制御用無線通信により以下のような機能を実施する。

- ・受電装置から送信装置に対して、受電装置の ID・受電状態・バッテリー情報等を通知
- ・送信装置における受電装置の位置推定
- ・受電装置へのビーコン要求の通知

受電装置の位置推定方法としては、制御用無線通信を利用する場合又は送信装置と同一帯域のビーコン信号を使用する2種類いずれかの方法にて実施する。

制御用無線通信を利用する場合の送信装置との制御用無線通信のフロー例は図参 8.3.2 となり、送信装置と受電装置との間では、以下の3つのやりとりが行われる。また、送信装置は、制御用無線信号の受信情報を利用して受電装置の位置推定を行い、空中線のビームを形成する。

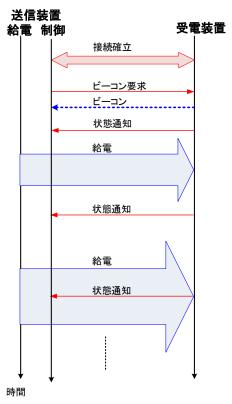
- ① 接続確立:送信装置と受電装置との間で、制御用無線通信を介して接続確立を行う。ここで、送信装置と受電装置は、互いの固有 ID (MAC アドレス等) を交換する。
- ② 状態通知:受電装置は、制御用無線通信を介して、受電装置の ID、バッテリー情報、受電位置情報等の必要なデータを送信装置に通知する。また、状態通知は、送信中に行われてもよい。
- ③ 送信:送信装置は、②にて通知された情報に基づいて受電装置に対して送信する。

図参 8.3.2 5.7GHz 帯システムにおける制御フロー例 1

通信の種類 項目 ①スケジューリング ②狀熊通知 ③送信 【既存無線システム】 【既存無線システム】 帯域幅 1 MHz 1 MHz 50 kHz 最大電力 2.5 mW2.5 mW25 W 最大空中線利得 4 dBi 4 dBi 32 dBi 受電装置から 送信装置から 送信方向 双方向 送信装置 受電装置

表参 8.3.1 送信装置と受電装置間の通信例 1

※既存無線システムはBluetooth (Bluetooth Low Energy) Class2 を例にしたもの


制御用無線通信とは別に、ビーコン信号を送信装置に対して送信する場合のフロー例を図参 8.3.3 に示す。この場合の送信装置と受電装置との間では、以下の5つのやりとりが行われる。また、送信装置は、ビーコン信号をもとに受電装置の位置推定を行い、空中線のビームを形成する。

- ① 接続確立:送信装置と受電装置との間で、制御用無線通信を介して接続確立を行う。ここで、送信装置と受電装置は、互いの固有 ID (MAC アドレス等) を交換する。
- ② 状態通知:受電装置は、制御用無線通信を介して、受電装置の ID、バッテリー情報、受電情報等を送信装置に通知する。また、状態通知は、送信中に行われてもよい。
- ③ ビーコン要求信号:送信装置は、制御無線通信を介して受電装置にビーコン要求信号を 通知する。送信装置と受電装置とは事前に接続確立を介して ID を交換しており、ビーコ ン要求信号には受電装置の ID が含まれている。
- ④ ビーコン信号:受電装置は、③ビーコン要求信号を受信し、自身の ID がビーコン要求信

号に含まれていた場合に、ビーコン信号を送信装置に対して送信する。

⑤ 送信:送信装置は、②にて通知された情報に基づいて受電装置に対して送信する。

ビーコン信号は、制御用無線通信を通じて送信装置からビーコン要求があった場合に、送信装置と同一周波数帯の電波を発射するものとする。ビーコン信号の目的は、送信装置において受電装置に向けた空中線のビーム形成を可能とすることである。

図参8.3.3 5.7GHz 帯システムの制御フロー例2

表参 8.3.2 送信装置と受電装置間の通信例 2 ^{通信の種類}

750	通信の種類					
項目	①スケジューリング 【既存無線システム】	②状態通知 【既存無線システム】	③ビーコン要求信号 【既存無線システム】	④ビーコン信号	⑤送信	
帯域幅	1 MHz	1 MHz	1 MHz	50 kHz	50 kHz	
最大電力	2.5 mW	2.5 mW	2.5 mW	0.32 mW	25 W	
最大空中 線利得	4 dBi	4 dBi	4 dBi	5 dBi	32 dBi	
送信方向	双方向	受電装置から 送信装置	送信装置から 受電装置	受電装置から 送信装置	送信装置から 受電装置	

※既存無線システムはBluetooth (Bluetooth Low Energy) Class2 を例にしたもの

(イ)受電装置からのビーコン信号の要求条件

受電装置からのビーコン信号は、制御用無線通信等を使用した送信装置からの指示により、送信装置と同一周波数帯の電波を発射するものとする。

受電装置がビーコン要求信号を受信してからビーコン信号を送信するまでの時間は、受電装置の低消費電力動作及び送信装置側の待ち受け動作による送信効率への影響を考慮し、10ms 以内とする。

受電装置からのビーコン信号の等価等方輻射電力 (EIRP) の上限は 0dBm とする。これは 5.7GHz 帯空間伝送型ワイヤレス電力伝送システムの要求条件である伝送距離 10m を考慮し、受電装置から送信されたビーコン信号を受信した送信装置が、伝搬路を推定して空中線のビームを形成するために必要な所要値である。また、受電装置は低消費電力動作の IoT センサ等が想定されるため、空中線電力の上限は-5dBm (0.32mW) とし、等価等方輻射電力が 0dBm 以下となる範囲で、効率的に空中線利得を選択できるものとする。

受電装置からのビーコン信号の時間長の上限は、送信装置における送受信切り替えや制御通信に伴う遅延の影響を考慮し 100ms とする。ただし、ビーコン信号を使って空中線のビームを形成した後は、送信環境が変化しない限り、同じ空中線のビーム形成にて送信を行うため、ビーコン信号やビーコン要求信号は送信しなくてもよいものとする。

これは、固定の場所に設置された受電装置に対して送信を行うような場合は、ビーコン信号やビーコン要求信号の送信頻度を下げることにより、ビーコン信号の時間占有率を低く抑えられるためである。

(ウ)受電装置のビーコン信号と他の無線システムとの共用

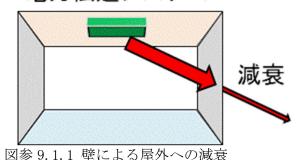
ビーコン信号を送信する受電装置は、送信装置と比較して等価等方輻射電力(EIRP)の 上限が 0dBm と低いため、他の無線システムへの影響は、送信装置が支配的であり、送信装 置が共用条件を満たしていれば、受電装置も十分に共用可能である。

しかし、無線 LAN システム等は、空間伝送型ワイヤレス電力伝送システムと WPT 屋内設置環境又は隣接する建造物等で使用される可能性があるため、キャリアセンスの必要性と所要離隔距離について検討した。

受電装置のビーコン信号は最大の等価等方輻射電力が 0dBm と既存無線 LAN システムと同程度である。そのため、キャリアセンスを実施しても、無線 LAN システム同士のキャリアセンスと同等と考えられる。

しかし、無線 LAN システムのキャリアセンスは、使用チャネルと同一のチャネルのみを キャリアセンス対象としており、受電装置は無線 LAN システムとは、同一周波数を使用し ないことから同一チャネルでのキャリアセンスは不要とした。

無線 LAN システムが使用するチャネルと隣接チャネルとなる場合は、無線 LAN システムの隣接チャネルの妨害波規定値は-63dBm であり、ビーコン信号の等価等方輻射電力 0dBm に対して「自由空間における 1m 伝搬時の減衰量 47dB」と「5.7GHz 帯における壁損失 16dB」の合算値に等しい結果となる。そのため、受電装置と無線 LAN システムが、壁を介して 1m 以上離れていれば、妨害波規定値以下の干渉量となる。


そのため、ビーコン信号による WPT 屋内設置環境外の無線 LAN システムとは共用可能となり、受信装置のキャリアセンスは不要とした。

参考資料9:壁等の通過時の損失

(1) 検討の背景

空間伝送型ワイヤレス電力伝送システムは、屋内に設置することなる。それに対して被干 渉局は、屋外設置や他建物等に設置されるため、図参 9.1.1 に示すように壁等による通過損 失により、減衰した電力となる。本資料では、壁損失について検討を実施した。

空間伝送型ワイヤレス 電力伝送システム

(2) ITU-R にて定義される損失モデル

標準的な壁損失として、勧告 ITU-R P.2109-1 "Prediction of building entry loss" 第3節にて定義され、損失モデル(Building entry loss model)を利用することで算出することが可能である。

通過損失値は、外壁材に依存するため、同モデルでは電磁波反射特性の高い遮熱・断熱材を用いた外壁"Thermally efficient"及びそれらを利用しない外壁"Traditional"の2種が提供されており、損失の中央値を求めることが可能である。以下に損失モデルの計算式を示す。また、損失は周波数にも依存するため、周波数依存性も考慮した式となっている。

$$L_{h} = r + s\log(f) + t(\log(f))^{2}$$

算出式の L_h は、通過損失の中央値、r、s、t は表参 9.2.1 に示す定数、f は通過周波数(GHz) となる。空間伝送型ワイヤレス電力伝送システムで使用する 3 周波数帯の代表周波数に対する計算結果を表参 9.2.2 に示す。

"Thermally efficient"モデルは、"Traditional"に対し 15dB 程度損失が大きいモデルとなっているが、すべての外壁に断熱・遮熱材料が用いられていることは考えにくいため、使用する通過損失としては、"Traditional"モデルの値を基準に検討した。

表参 9.2.1 勧告 ITU-R P.2109-1 における損失モデルに用いる定数一覧

項目	r	S	t
Traditional	12.64	3.72	0.96
Thermally efficient	28. 19	-3.00	8. 48

表参 9.2.2 空間伝送型ワイヤレス電力伝送システムで利用する 3 周波数帯に対する計算結果

項目	920MHz	2450MHz	5750MHz
Lh (Traditional)	12.5 dB	14.2 dB	16.0 dB
Lh (Thermally efficient)	28.3 dB	28.3 dB	30.8 dB

(3) 実際の各種外壁材の損失

損失モデルにて定義された損失値の妥当性を検証するため、実際に外壁材の測定を行った 文献の調査を実施した。壁損失については、鉄筋コンクリート等によるシミュレーションと 実際の損失による検証論文*1がみられ、シミュレーションでは、コンクリート等の材料の比誘電率と鉄骨等を導電性メッシュとしてモデル化したものであり、実測結果と比較して数 dB 程度の差で一致している。*2

空間伝送型ワイヤレス電力伝送システムを使用する工場、介護施設、オフィス等では、鉄筋コンクリート (RC 構造) 又は軽量気泡コンクリート (ALC 材) が外壁として多く使用されている。

軽量気泡コンクリート壁(ALC 材)における通過損失の測定値を表参 9.3.1 に示す。通過損失の最小値は、勧告 ITU-R P. 2109-1 にて定義されたモデル計算値を上回る結果となっている。

773 4 4 4 E E E M E E E E E E E E E E E E E				
項目	810MHz	2500MHz	5000MHz	
損失最小値	11 dB	18 dB	35 dB	
損失最大値	15 dB	27 dB	49 dB	
中央値	13 dB	22.5 dB	42 dB	

表参 9.3.1 軽量気泡コンクリート壁の損失測定例

(4) 窓等の壁以外の損失

窓ガラスによる通過損失については、金属膜等をコーティングした Low-E ガラスについては、壁損失と同等又はそれ以上の通過損失が期待できる。しかし、ワイヤー等の金網を封入した網入りガラスは 10dB 程度までしか期待できない。**3

しかし、電磁波のシールド目的としたガラス貼付けフィルムが広く使用されており、これらは 20dB 以上の通過損失を明記しているものであり、Low-E ガラス以外の既設ガラスを使用した窓においてもこれらのシールド対策を実施することで勧告 ITU-R P. 2109-1 にて定義されたモデル計算値の壁損失と同等にすることは可能となる。

(5) 遮蔽損失値と実環境

干渉検討に用いる屋内から屋外への壁損失は、最近の建物では環境等への配慮から高い遮熱・断熱材を用いた外壁が多く使用されているが、工場等の従来建築物も多く利用されることから勧告 ITU-R P. 2109 における Traditional モデルの値を基準とした。但し、920MHz 帯に関しては、RFID システムにて干渉検討に使用されている厳しい値 10dB とした。

また、鉄筋コンクリート (RC 構造) 又は軽量気泡コンクリート (ALC 材) 等は厚さや製造メーカによる差が発生する壁損失については、実際の測定結果、メーカによる評価データ又は今後の標準化動向による損失値を個別の共用検討にて使用できるものとする。ただし、使用材料、設置状況等により変わり得ることを踏まえ、時宜を得た確認を実施する必要がある。

	1 12 12 12 14 14 1		
項目	920MHz 帯	2.4GHz 帯	5.7GHz 帯
干渉検討に使用する損失値	10.0 dB	14.0 dB	16.0 dB

表参 9.5.1 干渉検討に使用する壁損失

空間伝送型ワイヤレス電力伝送システムを使用する屋内環境における窓については、干渉検討に使用する壁損失と同等又はそれ以上の損失を確保できる様な対策を実施するものとして、Low-E ガラス等の高損失となるガラスを使用するか、既存の窓ガラスに電磁シールドシート等の対策を実施することで、壁損失以上の通過損失を確保された環境とした WPT 屋内設置環境となる対策を行うものとする。

また、表参 9.5.1 の値以上とする壁損失においては、実際の通過損失を測定した場合には その測定結果を用いることとし、窓への対策にて得られる高い損失値は使用しないこととした。

参考文献

- ※1 遠藤他 "屋内電波環境推定のための一般建築材料の透過反射特性に関する実験的検討" 日本建築学会環境系論文集 第587号 71-78 2005年1月
- ※2 遠藤他 "屋内電波環境推定のための一般建築材料の透過反射特性に関する実験的検討" 大成建設技術センター報 第 38 号 (2005)
- ※3 松野他 "ガラス透過損失による屋内-屋外伝搬に関する実験的検討" 信学技報 A・P2014-125 (2014-10)

参考資料10:共用条件検討で使用した伝搬モデル

共用条件検討において、所要改善量、必要離隔距離算出に利用した伝搬モデルを示す。なお、 以下伝搬モデルで用いている対数(log)はすべて底が10となる常用対数である。

(1) 自由空間伝搬モデル

自由空間伝搬損失は、散乱体がない理想的な自由空間に無指向性(等方性)空中線が置かれた場合の伝搬損失式である。伝搬損失 L[dB]の式を以下に示す。

$$L = 20 \log \left(\frac{4\pi d}{\lambda}\right) = 20 \log \left(\frac{4\pi f d}{c}\right) = 20 \log f + 20 \log d + 20 \log \left(\frac{4\pi}{c}\right)$$
$$= 20 \log f + 20 \log d + 32.4 [dB]$$

f: 周波数[MHz]

d: 距離[km]

c: 光速 3.0×10⁸ [m/s]

同心球の表面積が $S=4\pi d^2$ で表され、無指向性で放射された電力は、伝搬距離 d を半径とした表面積で割った値に減少する。よって伝搬損失は距離の二乗に比例して増大することになる。

(2) SEAMCAT 拡張秦モデル

無線システム間の干渉評価方法として、勧告 ITU-R SM. 2028-2 で示されるモンテカルロシミュレーションに基づく干渉評価ソフトウェア SEAMCAT (Spectrum Engineering Advanced Monte-Carlo Analysis Tool) がある。このソフトウェアはヨーロッパ CEPT (European Conference of Postal and Telecommunications Administrations) の Spectrum Engineering WG で開発され、携帯電話システムを中心として多くのシステム干渉検討に用いられている実績を持つ。SEAMCAT で使用する与干渉局と被干渉局との間の伝搬モデルは、伝搬距離、環境、周波数範囲によって伝搬損失を求める式を分けている。伝搬損失計算式を表参 10.2.1 に示す。

表参 10.2.1 SEAMCAT 秦式モデルで用いる伝搬損失計算式

距離範囲	環境	周波数範囲	伝搬損失
<i>d</i> ≤ 40m	共通	30MHz < f ≤ 3000 MHz	$L = 32.4 + 20\log f + 10\log \left[d^2 + \frac{(H_b - H_m)^2}{10^6} \right]$
100m ≤ <i>d</i>	都	$30 \mathrm{MHz} < f \leq 150 \mathrm{MHz}$	$\begin{split} L &= 69.6 + 26.2 \log(150) - 20 \log\left(\frac{150}{f}\right) \\ &- 13.82 \log(\max\{30; H_b\}) \\ &+ [44.9 - 6.55 \log(\max\{30; H_b\})] \left(\log(d)\right)^{\alpha} \\ &- a(H_m) - b(H_b) \end{split}$
100m ≤ d 市		150МНz < $f \le 1500$ МНz	$L = 69.6 + 26.2\log(f)$ $-13.82\log(\max\{30; H_b\})$ $+ [44.9 - 6.55\log(\max\{30; H_b\})] (\log(d))^{\alpha}$ $-a(H_m) - b(H_b)$

		1500MHz < f ≤ 2000MHz	$L = 46.3 + 33.9\log(f)$ $-13.82\log(\max\{30; H_b\})$ $+ [44.9 - 6.55\log(\max\{30; H_b\})](\log(d))^{\alpha}$ $-a(H_m) - b(H_b)$
		2000MHz < f ≤ 3000MHz	$L = 46.3 + 33.9\log(2000) + 10\log\left(\frac{f}{2000}\right)$ $-13.82\log(\max\{30; H_b\})$ $+ [44.9 - 6.55\log(\max\{30; H_b\})](\log(d))^{\alpha}$ $- a(H_m) - b(H_b)$
	郊 外 30MHz < f ≤ 3000MHz		$L = L(\text{Urban})$ $-2 \cdot \left\{ \log \left[\frac{(\min\{\max\{150; f\}; 2000\})}{28} \right] \right\}^2 - 5.4$ ※ $L(\text{urban})$ は都市部の伝搬損失値
	開放	$30 \text{MHz} < f \leq 3000 \text{MHz}$	$L = L(Urban)$ $-4.78 \cdot \{\log[\min\{\max\{150; f\}; 2000\}]\}^2$ $+18.33 \cdot \{\log[\min\{\max\{150; f\}; 2000\}]\}$ -40.94 ※ $L(urban)$ は都市部の伝搬損失値
40m < d < 100m	共通	$30 \text{MHz} < f \le 3000 \text{MHz}$	$L = L(0.04) + \frac{[\log(d) - \log(0.04)]}{[\log(0.1) - \log(0.04)]} \times [L(0.1) - L(0.04)]$

- - -

$$\begin{split} a(H_m) &= (1.1\log(f) - 0.7) \cdot min\{10; H_m\} - (1.56\log(f) - 0.8) + max\left\{0; 20\log\frac{H_m}{10}\right\} \\ b(H_b) &= min\left\{0; 20\log\frac{H_b}{30}\right\} \\ \alpha &= \begin{cases} 1 & d \leq 20 \text{km} \\ 1 + (0.14 + 1.87 \times 10^{-4} \times f + 1.07 \times 10^{-3} \times H_b) \left(\log\frac{d}{20}\right)^{0.8} & 20 \text{km} \leq d \leq 100 \text{km} \end{cases} \end{split}$$

f: 周波数[MHz、30~3,000MHz]

 h_1 : 送信局空中線高[m] h_2 : 受信局空中線高[m]

$$H_b = \max\{h_1; h_2\}$$

$$H_m = \min\{h_1; h_2\}$$

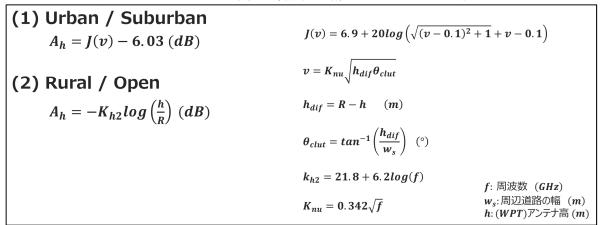
d: 距離[km、∼100km]

この伝搬損失式で計算した結果が自由空間伝搬損失より小さい値を示す場合、L は自由空間伝搬損失値に置き換える。

また、 h_1 、 h_2 が 1.5m 以上、3m以下、d が 300m以下のような SRD(Short Range Device)の場合における補正係数 $b(H_b)$ には次式を用いる。

$$b(H_b) = (1.1\log(f) - 0.7) * min(10, H_b) - (1.56\log(f) - 0.8) + max\left(0,20\log\left(\frac{H_b}{10}\right)\right)$$

なお、表参 10.2.3 に示されている環境(土地区分)は都市部の場合は建物等が密集している地域のことを示す。郊外の場合は樹木、家屋等の散在する田園地帯、郊外の街道筋など移動局近傍に妨害物はあるが密集していない地域のことを示す。開放地場合は電波の到来方向に高い樹木、建物の妨害物がない開けた地域のことを示す。目安として前方 300~400m 以内が開けているような畑地、田地、野原などが該当する。


本調査検討では、「都市モデル (SRD 補正計数反映)」を使用した。

(3) クラッタ損失

無線システム間の干渉評価として、無線設備周辺の建物影響として勧告 ITU-R P. 2108-0 及び勧告 ITU-R P. 452-16 で示されるクラッタによる伝搬損失を使用しており、クラッタ損失 (Ah) の計算式を表参 10.3.1 及び表参 10.3.2 に示す。また、勧告 ITU-R P. 2108-0 は、3GHz までの算出方式、勧告 ITU-R P. 452-16 は 50GHz までの算出式となる。

表参 10.3.1 において、Ah は周辺環境により計算式が異なり、都市、住宅環境、森林等、比較的高いクラッタが想定される環境においては式(1)を、海や農村部等、高いクラッタが存在しない環境においては式(2)を利用する。また、算出に際し利用する周辺の道路幅は、国内における道路の 84%を占める市町村道の平均が 3.7m、5%を占める国道の幅の平均が 7.8m であるが、空間伝送型ワイヤレス電力伝送システムのユースケースである、倉庫及び工場の周辺環境を踏まえ、勧告 ITU-R P.2108-0 におけるデフォルト値 27m を使用する。道路幅が狭いとよりクラッタ損失は大きくなるため、安全方向での評価とした。また、クラッタ高は、いずれも 20m として算出している。

表参 10.3.1 クラッタ損失の算出式 (勧告 ITU-R P.2108-0)

表参 10.3.2 クラッタ損失の算出式 (勧告 ITU-R P. 452-16)

$$A_h = 10.25 F_{fc} \cdot e^{-d_k} \left(1 - \tanh \left[6 \left(\frac{h}{h_a} - 0.625 \right) \right] \right) - 0.33 \text{ [dB]}$$

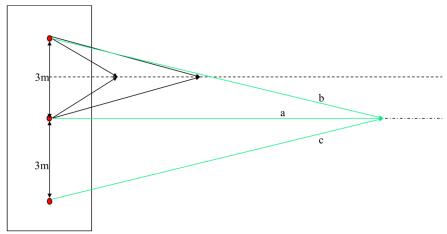
 $F_{\rm fc} = 0.25 + 0.375\{1 + \tanh[7.5(f - 0.5)]\}$

 d_k : アンテナからクラッタポイントまでの距離(ITU-R規定値) [km]

h : 地面からのアンテナ高 [m]

 h_a : 地面からのクラッタ高(ITU-R規定値)[m]

f : 信号周波数 [GHz]


参考資料11:複数送信による空間影響

複数送信装置による他システムへの干渉としては、空間合成による干渉の増加が考えられる。 基本的な空間合成の考え方について整理し、位相を考慮しない複数送信による影響のシミュレーション検討を実施した。

(1) 屋外への複数送信による影響

複数の送信装置から同一周波数の任意の空間上で同相合成となる環境では、干渉量が増加する可能性がある。この場合、送信装置から発射される電波の位相が同期(同一)であれば伝搬による遅延を考慮しても2台の送信装置の中心点の延長線上が同相合成となり2倍となる。

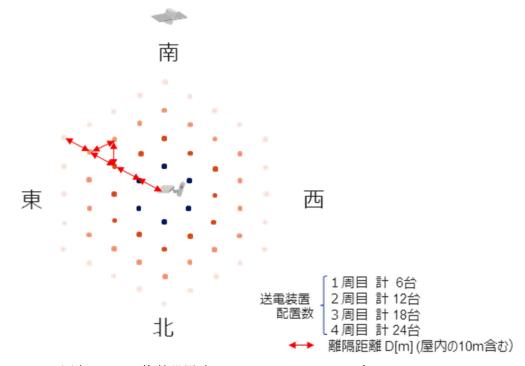
3台の場合は、位相差が $\lambda/4$ の場合には合成加算され、この位相差内となる距離は、送信装置の間隔が3mとした場合、2.4GHz 帯にて約145m、5.7GHz 帯にて約346mとなる。(図参11.1.1)

図参 11.1.1 同相合成となる距離条件

送信装置から発射される電波の位相は、無変調波であり、位相周期が揃うのは、2つの電波がベクトル的に加算される周期の差が $\lambda/4$ 以下のときであり、そのためには、数 $10p\sim100ps$ の時間差での位相周期の開始が必要であり、同期を取るための補助装置(1PPS 信号等)がない環境では極めて低い確率となる。

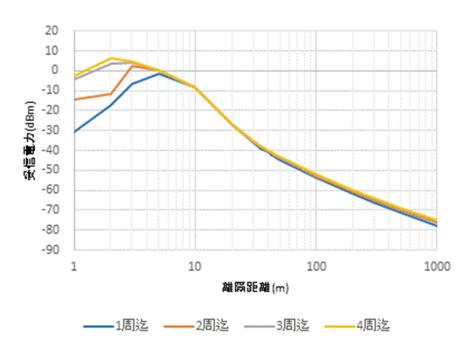
2. 4GHz 帯と 5. 7GHz 帯の空間伝送型ワイヤレス電力伝送システムでは、ビームフォーミングアンテナを使用する。これは、複数素子空中線を使用したビームフォーミングアンテナであり位相や電力を制御することでビーム可変をおこなうもので、放射される電波の位相は、指向方向が異なれば同一とはならない。また、可変位相器等の RF コンポーネントによる製造個体差の補正を必要とする装置であることから送信装置を同期するための技術を使用しなければ、同一指向性でも発射された電波には、位相差が生じる。

複数台装置による干渉は、近距離では2台、150m 以上では複数台による干渉検討が必要となるが、送信装置から10m 程度で許容干渉値以下となる結果であれば、合成による増加は伝搬損失の増加により相殺されることから2台を超える干渉合成は許容値以下になる。


また、2台の送信装置の合成でも同期を考慮すると同相合成は、極めて低い確率でしか発生しない。

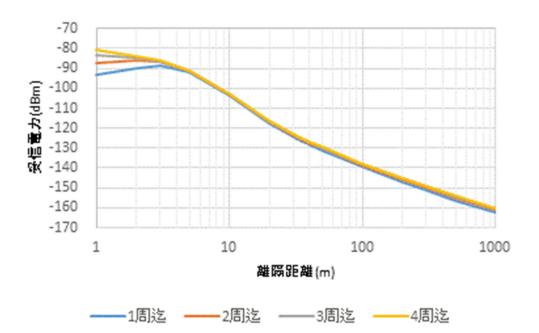
(2) 複数送信におけるシミュレーション

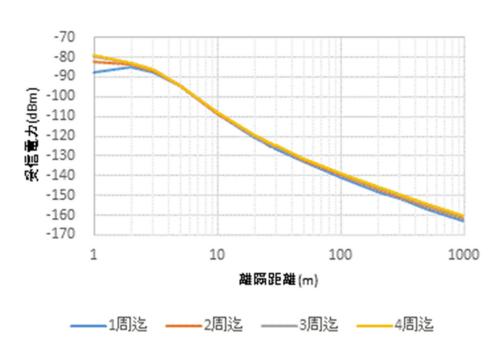
2.4GHz 帯にて実施したシミュレーションモデルを図参 11.2.1、計算パラメータを表参 11.2.1 に示す。シミュレーションでは、被干渉システム(本シミュレーションでは移動衛星 通信端末)を中心におき、送信装置を周囲に 10m間隔で複数台設置(6 台、12 台、18 台、24 台)した際の合成受信電力について実施した。ただし、本シミュレーションでは位相差による減衰は考慮しないものとして実施した。


表参 11.2.1 複数設置時のシミュレーションパラメータ

計算	帯域内	帯域外	
通信衛星	への仰角(度)	37	. 1
	周波数 (MHz)	24	90
送信装置	最大電力(dBm/MHz)	-34. 2	41.8
	空中線利得	空中線指向	可性による
	メインローブの角度(度)	N/A	60
伝搬路	壁損失(dB)	14. 0	
1公顶山台	伝搬損失(dB)	自由空間損失	
	周波数(MHz)	25	00
移動衛星通信端末	空中線利得 (dBi)	12.6	
(受信)	設置地上高(m)	0及び1.5	
	指向性減衰量	空中線指向性による	

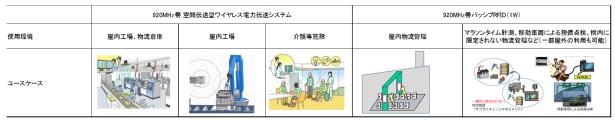
図参 11.2.1 複数設置時のシミュレーションモデル


シミュレーション結果を図参 11.2.2~図参 11.2.5 に示す。いずれの結果についても 5m を超えた付近より台数による差は見られない結果となり複数台による影響は少ないものと考えられる。


図参 11.2.2 複数台による帯域内干渉電力(端末地上高 0m)

図参 11.2.3 複数台による帯域内干渉電力(端末地上高 1.5m)

図参 11.2.4 複数台による帯域外干渉電力 (端末地上高 0m)



図参 11.2.5 複数台による帯域外干渉電力(端末地上高 1.5m)

参考資料 1 2 : 920MHz 帯 1W 以下無線局の取扱い

(1) 920MHz 帯におけるユースケース

920MHz 帯を使用した空間伝送型ワイヤレス電力伝送システムと RFID システムでのユースケースを比較したものを図参 12.1.1 に示す。空間伝送型ワイヤレス電力伝送システムと RFID システムが同時に重複して使用されるケースがあり、送信装置、操作方法、設置方法などは、いずれのシステムも類似なものになることを想定している。しかし、無線システムとしての使用目的が、空間伝送型ワイヤレス電力伝送システムはセンサ等への給電・充電であり、RFIDシステムは通信とその利用目的に違いがある。

図参 12.1.1 920MHz 帯でのユースケース

(2) 920MHz 帯の周囲への影響

920MHz 帯を使用した空間伝送型ワイヤレス電力伝送システムと RFID システムの要求基準を 比較したものを表参 12.2.1 に示す。送信電力及び等価等方輻射電力は、同じであるが空間伝 送型ワイヤレス電力伝送システムは、RFID システムと比較して、本システムにて限定した壁 損失を見込める使用環境の「WPT 屋内設置環境」として屋内での使用に限定されたものとなっ ている。

そのため、空間伝送型ワイヤレス電力伝送システムの 1W 送信装置では、RFID システムの機器を空間伝送型ワイヤレス電力伝送システム向けとして簡易な変更にて対応させるものと予想される。そのため、従来から使用されている機器での実績を考慮すると設計等のミスにより、想定外の動作が発生するなどの不良や想定外の発振等の発生は少ないと考えられる。

また、屋内での使用に限定されたものとなる空間伝送型ワイヤレス電力伝送システムでは、他の無線システムへの影響は、RFID システムと比較して少ないものとなっており、何らかの原因で壁損失が見込まれない環境で使用されたとしても他の無線システムへの影響はRFIDシステムと同等であり、運用調整の仕組みを利用することで使用場所等がわかる環境であることから他の無線システムへの影響は少なく、限定的なものになると考えられる。

表参 12.2.1 RFID システムとの要求基準の差

項目	920MHz帯 空	間伝送型ワイヤレス電力		<u>* ・ </u>	ンブRFID(1W)
使用環境	屋内工場、物流倉庫	屋内工場	介護等施設	屋内物流管理	マラソンタイム計測、移動 車両による設備点検、構内 に限定されない物流管理 など(一部屋外の利用も可
1日のうちの稼働率	30~90% (工場の稼働携帯による)	30~90% (工場の稼働携帯(こよる)	50~100% (入居者率による)	30~90% (工場の稼働携帯(こよる)	数%~数十%程度
給電能力		数μW~数百μW		← (タグの受信電力は同等レベル)	← (タグの受信電力は同等レベル)
給電対象	環境センサ(IDあり) 人が持つセンサ(IDあ り)	工作ロボット等の各種 センサ (IDあり)	環境センサ(IDあり)、 見守り対象者がもつセ ンサ(IDあり)	IDタグ	+
給電距離		~5m程度		送信距離 ~5m	←
電波防護の 電磁界強度指針値	管理環境	管理環境	一般環境	一般環境	←
設置者	他無線の管理可能	他無線の管理可能	他無線の管理可能	免許人が基本	←
送電環境の認知	可能	可能	不可能	可能	←
人がいる時の送電	有り	有り	有り	←	←
免許形式(案)	構内無	乗線局(免許局:1W,パッ?	ンブ系)	←	←
送電電力(EIRP)		4W		←	←
送信時間制御	無し	無し	有り (4秒以内に停止し 50msec後に送信)	← (介護施設等のWPT一般環境 と同一)	←
送電変調方式		規定しない (NON, G1Dなど)		←	←
占有帯域幅		200kHz		200kHz	←
帯域外領域における スプリアス 発射強度の上限値	710MHz 以下 -36dBm(100kHz) 710MHz を超え900MHz 以下 -58dBm(100kHz) 900MHz を超え915MHz 以下 -58dBm(100kHz) 915MHz を超え915.7MHz 以下 A39dBm(100kHz) 915.7MHz を超え923.5MHz 以下 (無線チャネルの中心周波数からの離調が200kHz 以下を除く。) -29dBm(100kHz) 930MHz を超え1000MHz 以下 -58dBm(100kHz) 1000MHz を超え1215MHz 以下 -48dBm(1MHz) 1.215GHz を超えるもの -36dBm(100kHz) -30dBm(1MHz)			←	←
スプリアス領域 (fc+2.5Bn)における不 要発射強度の上限値	—29dBm/100kHz			←	←
受電側からの送信信 号	あり (バックスキャッタ通信・BLEなど)			あり (バックスキャッタ通信)	←
受電側からのビーコン 信号	なし			←	←
キャリアセンス方式		なし			←

(3) 空中線電力 1W 以下の 920MHz 帯空間伝送型ワイヤレス電力伝送システム

920MHz 帯を使用した空間伝送型ワイヤレス電力伝送システムの影響は、RFID システムと比較しても限定的なものであると想定される。RFID システムでは、無線局の免許等手続きに際して、無線設備の基準認定制度による特定無線設備に該当し、簡易な操作に該当するとして無線従事者の配置は不要とされている。

本検討となる空間伝送型ワイヤレス電力伝送システムの 1W 以下となる 920MHz 帯の機器に関しては、他の無線システムを含めた周囲への影響と機器の操作に関しては RFID システムと同等以下であることから 920MHz 帯空間伝送型ワイヤレス電力伝送システムの普及の推進と申請者の負担軽減等から「特定無線設備」及び無線従事者の配置を不要とすることが望まれる。

参考資料13:不要発射の強度の許容値

(1) 不要発射の強度の許容値の検討に当たっての考え方※22

空間伝送型ワイヤレス電力伝送システムにでは、920MHz 帯を除き、変調信号を使用せず、 伝送情報がないキャリア信号のみのため、送信信号はCW波となる無変調信号(電波型式:NON) としている。

また、キャリアセンスなどにより送信の断続は発生するが、モールス信号等の情報伝達手段とは異なり、基本的には連続した無変調信号を送信し、無情報となる電力送電を目的とした方式であることから、現在規定されている不要発射の強度の許容値には該当する指針が直接は見当たらない。

それに加え、無線局においては一般的に占有周波数帯幅の許容値を必要周波数帯幅とみなし、帯域外領域とスプリアス領域にて不要発射の強度の許容値を規定している。しかし、空間伝送型ワイヤレス電力伝送システムは、無変調信号(電波型式:NON)とし、占有周波数帯幅の許容値は規定しないことから、一般条件による規定にも合致しないものと考えられる。

そのため、類似方式について調査を実施し、既存の規定において CW 波を無情報で発射する 無変調 CW レーダー*23を参考にして、他の無線システムとの干渉を考慮して不要発射の強度 の許容値を規定することとした。これは空間伝送型ワイヤレス電力伝送システムの雑音スペクトルは CW 信号の雑音スペクトルと同様に搬送波周波数の近傍では局部発振器 (回路) の雑音に由来する位相雑音が支配的となるためである。一般的に局部発振回路の雑音帯域は回路内のループフィルタの通過帯域幅と同等であり、2MHz から 6MHz まで程度である。スペクトルの形状はメーカ等によっても大きく異なるため、様々な位相雑音に対応するためには不要発射の強度の許容値を階段状の形状としなければならない場合がある。

規定に当たっては、空間伝送型ワイヤレス電力伝送システムは、社会インフラとして大型設備となる海洋波浪レーダー等の無変調CWレーダーとは異なり、免許人が工場等の自己インフラとして使用することが前提となる。そのため、不要発射の強度の許容値としては、無変調CWレーダーを参考としつつ、国内外での製造普及可能なコスト、大きさ等を考慮して周波数ごとに規定される事が望ましい。

これらの考え方から、それぞれの用途等を考慮した【前提条件】を設定し、2.4GHz 帯、5.7GHz 帯においては、無変調 CW レーダーの不要発射の強度の許容値を適用した場合に比べ、他の無線システムに影響を与えない範囲にて、一部許容値が大きい部分がある。

そのため、他の無線システムとの干渉検討においては、不要発射の強度の許容値の規定よりも共用条件が厳しくなる値での検討や、他の無線システムが使用している離調周波数では、不要発射の強度の許容値を厳しくするなどの工夫を行った。

また、今後の ITU-R 勧告**24の標準化動向により、空間伝送型ワイヤレス電力伝送システムとして不要発射の強度の許容値が規定される場合には、見直しの検討が必要となるものと考えられる。

^{※22} 無線設備の「スプリアス発射の強度の許容値」の見直し 平成17年12月総務省総合通信基盤局 https://www.tele.soumu.go.jp/resource/j/others/spurious/files/sanko002.pdf

^{※23} 平成 17 年総務省告示第 1232 号及び令和元年 6 月総務省告示第 67 号 (無線設備規則別表第 三号の 15 ただし書の規定に基づく無線測位業務を行う無線局の送信設備の参照帯域幅及び帯域 外領域とスプリアス領域の境界の周波数)

^{*24} Recommendation ITU-R SM. 1541-6(08/2015) "Unwanted emissions in the out-of-band domain"

(2) 920MHz 帯

【前提条件】

• RFIDシステムとの親和性の考慮

920MHz 帯空間伝送型ワイヤレス電力伝送システムでは、既設 RFID システムと変調方式、占有周波数帯幅の許容値、等価等方輻射電力(EIRP)を含めて同一の基準であり、隣接チャネル漏えい電力及び不要発射の強度の許容値についても同一とした。

(3) 2. 4GHz 帯

【前提条件】

- コスト、普及の観点から無線 LAN システム等の国際的に広く使用されている汎用部品を使用した構成を利用
- 受電装置からのビーコン信号として既存無線システムの信号を活用すること
- ビーコンの受信のタイミングやキャリアセンスにより発生する送信オン/オフに起因する帯域の広がりを考慮

空間伝送型ワイヤレス電力伝送システムの諸条件を無変調 CW レーダーに対する領域定義及び不要発射の強度の許容値に適用した際の各帯域・減衰量を表参 13.3.1 に示す。

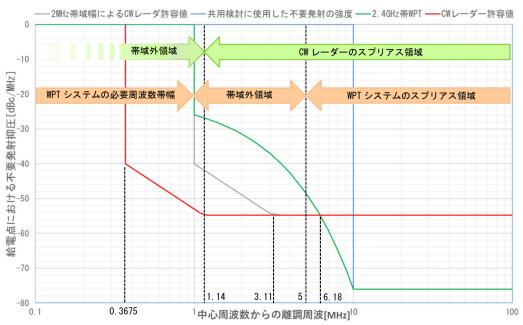
X 9 10. 0. 1 2. 10112 () 0 11 V	7 / 1/1/2/11/2/TE / / /
搬送波周波数 Fc	2,450 MHz
40 dB 帯域幅 B ₋₄₀	0.735 MHz
帯域外領域とスプリアス領域の境界周波数	1.14 MHz
空中線電力 PEP	41.8 dBm (15 W)
スプリアス領域における減衰量 (60dB または43+10og(PEP)のいずれか小さい減衰量)	54.8 dBc
スプリアス領域における不要輻射電力	-13 dBm (50 μ W)

表参 13.3.1 2.4GHz での CW レーダーのスプリアス放射関連パラメータ

上記で求めた不要発射の強度の許容値と報告書本文 4.2.2(エ)2.4GHz 帯空間伝送型ワイヤレス電力伝送システムの不要発射の強度の許容値を重ねたものを図参 13.3.1 に示す。

2.4GHz 帯空間伝送型ワイヤレス電力伝送システムでは、ビーコン受信・送電の切り替えで発生する帯域幅の広がりがおよそ240kHz から460kHz までと想定(キャリアセンスのタイミングは考慮していない)され、キャリアセンス、周波数偏差等による波形変動等と合わせた実測値としては1.7MHz 程度となる。無線LANシステム等の民生汎用部品の利用及びマージンを考慮して、必要周波数帯幅を2MHzとした。(したがって、2.4GHz 帯空間伝送型ワイヤレス電力伝送システムとしての帯域外領域とスプリアス領域との境界周波数は2.5BN=5MHzとなる。)

また、様々な位相雑音に対応するためには不要発射の強度の許容値を階段状の形状にする 必要があるが、他のシステムとの周波数の共用を考慮し、離調周波数 1MHz から 10MHz までを 直線的に 50dB 下げる形で不要発射の強度の許容値を規定した (図参 13.3.1 は横軸が対数の ため緑色線は円弧状となっている)。


そのため、不要発射の強度の許容値を無変調 CW レーダー(図参 13.3.1 の赤色線)と比較した場合、CW レーダーの 40 dB 帯域幅 B_{-40} である 0.735MHz から 6.18MHz までの間では、2.4GHz 帯空間伝送型ワイヤレス電力伝送システムの不要発射の強度の許容値が上回ったものとなっている

また、40 dB 帯域幅 B-40 を 2MHz として無変調 CW レーダーを適用(図参 13.3.1 の灰色線) した場合でも 1MHz から 6.18MHz までの領域にて、許容値が上回っている。

離調周波数が 6.18MHz を超える領域では、干渉を考慮し、不要発射の強度の許容値は無変調 CW レーダーより厳しい値で規定した。

さらに、他の無線システムとの共用検討においては、離調周波数が 10MHz 以内の場合は、

条件の厳しい最大輻射電力値(図参 13.3.1 の青色線)を用いての共用検討を実施し、共用可能とする結果を得ている。

図参 13.3.1 2.4GHz 帯の不要発射の強度の許容値比較

(4) 5. 7GHz 帯

【前提条件】

- コスト、普及の観点から広く使用されているシリコン系半導体の使用を前提として不要発射を抑制 (不要発射を抑えるためには電子管や化合物半導体を使った低雑音構成が好ましいが、空間伝送型ワイヤレスシステムが想定している市場での、コスト、管体サイズ、重量等が現実的ではないため)
- ビーコン(専用の CW 信号)の受信のタイミングやキャリアセンスにより発生する送信オン/オフに起因する帯域の広がりを考慮

空間伝送型ワイヤレス電力伝送システムの諸条件を無変調 CW レーダーに対する領域定義及び不要発射の強度の許容値に適用した際の各帯域・減衰量を表参 13.4.1 に示す。

	· ////////////////////////////////////
搬送波周波数 Fc	5,750 MHz
40 dB 帯域幅 B ₋₄₀	1.725 MHz
帯域外領域とスプリアス領域の境界周波数	3.43 MHz
空中線電力 PEP	45 dBm (31.6 W)
スプリアス領域における減衰量 (60dBまたは43+10og(PEP)のいずれか小さい減衰量)	58 dBc
スプリアス領域における不要輻射電力	-13 dBm (50 μ W)

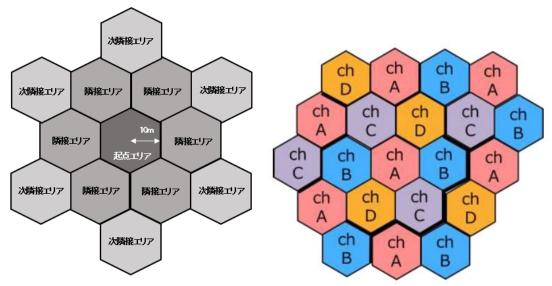
表参 13.4.1 5.7GHz 帯での CW レーダーのスプリアス放射関連パラメータ

上記で求めた不要発射の強度の許容値と報告書 4.3.2(エ)の 5.7GHz 帯空間伝送型ワイヤレス電力伝送システムの不要発射の強度の許容値を重ねたものを図参 13.4.1 に示す。5.7GHz 帯空間伝送型ワイヤレス電力伝送システムではビーコン受信、キャリアセンス時の受信・送電の切り替えで発生する帯域幅の広がりが 30kHz から 60kHz までと想定され、周波数偏差等を合わせた実測値としては 80kHz 程度と想定されることから、マージンを考慮し、必要周波数帯幅を 100kHz とした(したがって、5.7GHz 帯空間伝送型ワイヤレス電力伝送システムとして

の帯域外領域とスプリアス領域との境界周波数は 2.5BN=250kHz となる。)。また、干渉を与える他の無線システムとの離調周波数、搬送波の変動、ビーコン受信のタイミング等で発生する搬送波のオン/オフに起因する帯域の広がりを考慮し、離調周波数に応じて不要輻射の強度の許容値を段階的に規定した。

搬送波近傍から 862. 5kHz (無変調 CW レーダーの $B_{-40}/2$) まで及び 2MHz を超える領域では、他の無線システムへの干渉を考慮し、無変調 CW レーダーの不要発射の強度の許容値以下とした。 ただし、862. 5kHz から 2MHz 未満の領域ではシリコン系半導体部品の選定を考慮したため、CW レーダーの不要発射の許容値を上回る値とした。

なお、他の無線システムとの共用検討については、これらの規定した値を用いて実施した。


図参 13.4.1 5.7GHz 帯の不要発射の強度の許容値比較

参考資料 1 4:5.7GHz 帯空間伝送型ワイヤレス電力伝送システムの使用周波数 (チャネル)

(1) チャネル設定に当たっての考え方

5.7GHz 帯空間伝送型ワイヤレス電力伝送システム(以下、この章では「WPT システム」という。)は、工場内の大規模なセンサ群等への電力送信を行うために複数の送信装置を利用することを想定しており、所要の給電を過不足なく実現する上で必要なチャネルについて検討を行った。

チャネルの検討に当たり、WPT システムのエリア半径を 10m とし、それぞれの WPT システムのビーコン波同士の干渉検討により、図参 14.1.1 に示す次隣接エリアにて WPT システムの同一チャネルを使用できる周波数間隔としては、2MHz となった。

図参 14.1.1 WPT システムのエリア半径 及び各エリアの位置関係

図参 14.1.2 WPT システム同士で所要 D/U を 確保できる場合のチャネル配置例

まず、5.7GHz 帯の WPT システムでは、D/U を満足する所要離隔距離の関係から、隣接エリアを構成できるチャネルに制約が発生する。WPT システム同士でビーコン信号受信時の所要 D/U が概ね 10dB を満足する所要離隔距離が取れない場合、受信位置・伝搬推定精度に誤差が生じ、ビームフォーカス性能の劣化により、目的の給電を実現することができなくなる。

このため、工場内において所要の給電を行うためには、同一チャネルの WPT システムの設置は所要 D/U:10dB を満足する次隣接エリアとする必要があることから、図参 14.1.2 のように少なくとも 4 つのチャネルが必要となる。

一方で、工場内等において、送信装置から建物壁までの距離を 5m 程度確保できず、送信装置からの電波が壁や柱などからの反射・散乱の影響を多く受ける場合には、次隣接エリアへの干渉が発生するため、ビーコン信号に対する WPT 送信信号による D/U の劣化により所要の給電が実現できなくなってしまい、同一チャネル又は 2MHz の離調周波数となる隣接チャネルを次隣接エリアでは使用できない場合が発生することから、最低限 7 つのチャネルが必要となる。

離隔距離 周波数 EIRP 空間減衰 ビーコン 5752 dB -70.6 dBm 10 m 0 MHz dBm 67.6 dB 希望波の受信電力 MHz (所望信号) 3 dB -80.2 dBm 9.5 dB 同一Chエリアが1個飛ばしの配置条件で同一chビーコン入射がワースト条件 30 m **0 MHz** $^{0}_{dBm}$ **77.2 dB** (妨害信号) ビーコン受信時なので、BF無(指向性 無線IAN **22 MHz** $^{20}_{dBm}$ 61.6 dB -41.6 -29.1 5 m 0 dB 減衰なし)が最悪条件 MHz dΒ (妨害信号) dBm dB 相互変調歪が問題となる 5758 MHz 6 MHz $^{70}_{dBm}$ **73.7dB** 23 dB $^{15}_{dB}$ -41.7 dBm WPT送信機 -29.0 同一天井設置の横方向伝搬を想定 20 m (妨害信号) 数MHz離調で数十dB WPT(妨害) 無線LAN(20MHz BW) カットできるフィルタで受かる限界からの所**要**値

表参 14.1.1 5.7GHz 帯 WPT システムの所要 D/U

図参 14.1.3 5.7GHz 帯 WPT システムの所要 D/U の算出の考え方

これらのことから、5.7GHz 帯の WPT システムの使用チャネルについては、必要な7つのチャネルについて、他の無線システムとの共用をはかりつつ、どのような周波数を設定するかという点から検討を行った。

WPT システムの利用周波数については、海外の製品開発の状況を見たときに ISM バンドの 周波数 (5,725MHz-5,785MHz) の利用が主流であり、将来の国際的な周波数の共用を見据えると、同様に ISM バンド内の周波数の利用が必須であると考えられることから、当該バンド内から利用周波数を選定することとした。

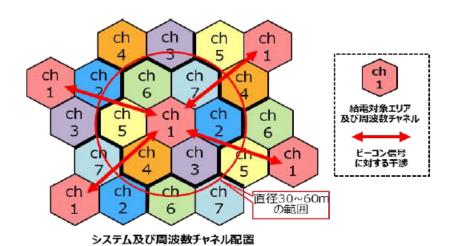
7つのチャネルの候補に割り当てる周波数については、工場内等で生産管理等の情報のやり取りに必要不可欠な無線 LAN との直接の干渉を回避するため、同一チャネルとなる 5470MHz から 5,730MHz までは候補から除外することとした。また、ETC ゲートの開閉等の安全性に関わる DSRC システムとの直接の干渉を回避するため、5,768MHz 以上は候補から除外することとした。

これらより 5, 732 MHz から 5, 768 MHz までの周波数帯域において、チャネル間隔を 2 MHz とすると、チャネルの候補は 19 の周波数となる。

アマチュア無線との共用検討において、アマチュア無線のビーコン (5755MHz から 5757MHz まで)、EME (5,760MHz から 5,762MHz まで)、レピータ (5765MHz から 5770MHz まで) とインバンドとなる 5,756MHz、5,760MHz、5,762MHz、5,766MHz、5,768MHz は除外した。また、アマチュア無線用ビーコン周波数 (5,755MH から 5,757MHz まで) との離調周波数が 1MHz となる 5754MHz も除外した。

無線 LAN との共用検討において、 $5,732 MHz \sim 5,738 MHz$ は無線 LAN がガードバンドとして空けている周波数であり、離調周波数が 10 MHz 以下となり、共用が難しいことから、 $5,732 MHz \sim 5,738 MHz$ は除外した。

ここまでの検討により、利用可能なチャネルの候補は次の9つ(表参14.2.1)となる。ここからは具体的なユースケースを元に、これらのうち、どの周波数を使用するかについて精査を進めた。


5, 740MHz 5, 742MHz 5, 744MHz 5, 746MHz 5, 750MHz 5, 752MHz 5, 758MHz 5, 764MHz —

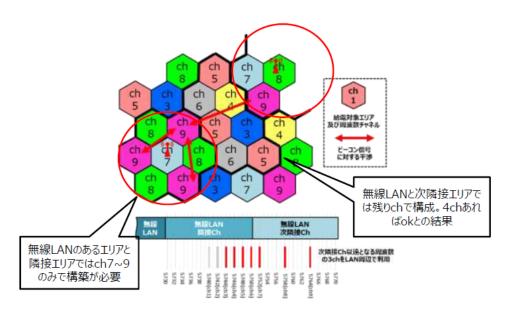
表参 14.2.1 利用可能なチャネルの候補

(2) ユースケースを元にしたチャネルの検討

(ア)位置推定の制御フロー送信信号の反射・散乱による影響がある工場内

送信信号の反射・散乱による影響がある環境においては、ビーコン信号に対する WPT 送信信号による D/U 劣化を避けるため、5,740MHz、5,742MHz、5,744MHz、5,746MHz、5,748MHz、5,750MHz、5,752MHz の7つのチャネルを使用し、同一・隣接チャネルが次隣接エリア以遠となる構成とする(図参 14.2.1)。

図参 14.2.1 位置推定の制御フロー送信信号の反射・散乱による影響がある 環境でのチャネル配置

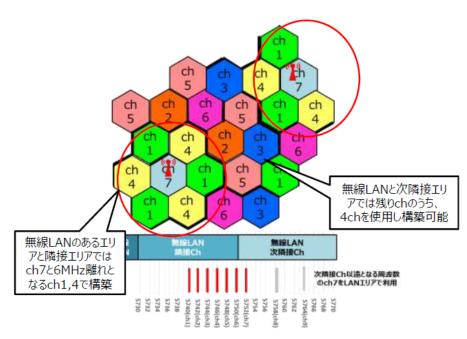

(イ) 5.6GHz 帯を使用する無線 LAN がある工場内

5.7GHz 帯 WPT システムの導入を検討している大規模な工場においては、工場内のラインをセンサでリアルタイムにモニタリングすることにより、品質や生産状況の管理を行うなどしており、センサで取得された大量のデータが無線通信によるセンサネットワークを通じて常時やり取りされている。このようなセンサネットワークは今や製造現場においては必須のものとなっており、そのアクセスポイント(以下「AP」という。)については工場内のライン等をカバーするための必要な箇所に設置されている。また、工場内をカバーするため複数の AP を設置して動画データを含む大量のセンサ情報をリアルタイムで分析してフィードバックを行うなどの必要があることから、5GHz 帯無線 LAN の W52、W53、W56 すべてを使用せざるを得ないケースがある。

ここで、工場内に 5.6GHz 帯の無線 LAN システム (W56) が存在するケースにおいては、無線 LAN の最近接周波数チャネル (ch144:5,710MHz~5,730MHz) との関係が問題となる。CCA による互いの送信効率低下が発生し、送信効率が 50%以下のレベルまで低下した場合必要な給電ができなくなることから、適切なチャネルの設定により送信効率のレベルを確保する必要がある。

他方で、ユーザ側で無線 LAN (ch144) の使用の制限を操作する方法は機器の仕様にもより、半径 10m のエリア内に 10 個のセンサ等で通信が使用される関係からチャネル固定の運用は難しい。そのため、送信効率のレベルを確保するためには、無線 LAN システムの AP と同一及び隣接のエリアにおけるチャネルの周波数を無線 LAN (ch144) の次隣接チャネルの周波数とする必要がある。

そこで、5,752MHz、5,758MHz、5,764MHz の 3 つのチャネルにて無線 LAN と同一及び隣接エリアを構成し、次隣接エリア以降を残りの周波数のうち同一のものとは 30m 離れとなる次隣接エリアとして構成する。すなわち、残り 6 つの周波数の中から 4 つの周波数を選択し、それら 4 つを適切に配置することで構築可能であり、例えば、5,744MHz、5,744MHz、1,74MHz の 1,74MHz の

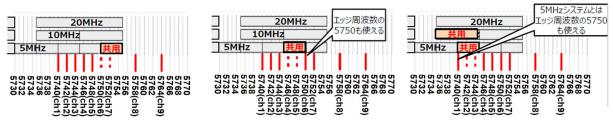


図参 14.2.2 5.6GHz 帯を使用する無線 LAN がある環境でのチャネル配置

(ウ)5.6GHz 帯を使用する無線 LAN があり近隣に DSRC 等がある工場内

DSRC 等(DSRC、FPU、アマチュア無線等)との干渉回避のため上側の周波数帯の使用に制限が生じ、かつ無線 LAN システムがエリア内に存在する場合、無線 LAN システムがエリア内に存在する場合、無線 LAN システムがエリア内に存在するチャネルには ch144 の次隣接チャネル内の周波数となるが一番影響の少ない 5,752MHz を使用する。隣接エリアは 5,752MHz に対してできるだけ離調周波数が大きくなり、フィルタ実力値を考慮すると所要 D/U を確保できるそれぞれ 6MHz 離調となる 5,740MHz と 5746MHz で構築する。この隣接エリアは無線 LAN の隣接チャネル内の周波数となってしまうが、利用効率の低下はある程度許容することとする。その他のエリアについては、5,742MHz、5,744MHz、5,748MHz、5,7450MHz を使用する(場合によっては 5,740MHz、5,746MHz、5,752MHz を使用)。

すなわち、5,740MHz、5,742MHz、5,744MHz、5,746MHz、5,748MHz、5,750MHz、5,752MHz の7つを用いる。


図参 14.2.3 5.6GHz 帯を使用する無線 LAN があり近隣に DSRC 等がある

環境でのチャネル配置

(エ)近隣にロボット無線(無人移動体高速伝送システム)の使用がある工場内

工場の近隣において $5,745 \, \text{MHz}$ の $20 \, \text{MHz}$ システムのロボット無線が使用される場合、 $5,740 \, \text{MHz}$ 、 $5,742 \, \text{MHz}$ 、 $5,744 \, \text{MHz}$ 、 $5,746 \, \text{MHz}$ 、 $5,748 \, \text{MHz}$ 、 $5,750 \, \text{MHz}$ 、 $5,752 \, \text{MHz}$ の 7 つの周波数の利用に影響が生じる。このため、他の $10 \, \text{MHz}$ システム又は $5 \, \text{MHz}$ システムを WPT システムとインバンドにした使用として、WPT システムの使用が破綻しないような調整が必要となる。

同様に、10MHz システム、5MHz システムのロボット無線が使用される場合においても、7つの周波数の組合せによる調整が必要となる。

図参14.2.4 近隣にロボット無線の使用がある環境でのチャネル配置

以上のユースケースを元にした検討の結果、工場内で 5.7GHz 帯 WPT システムを使用してセンサ等に必要な給電を行うためには、他の無線システムとの共用状態により、数種類の7つの周波数(チャネル)での組合せが必要であり、これには表参 14.2.1 で候補となっていた9つの周波数が必要となることから、これらの9つの周波数をチャネルとして設定することとした。

ただし、7つのチャネルというのはエリア構成のモデルによるチャネル数であり、実際に使用するチャネル数については、WPTを使用する広さ、エリア数、屋内形状に合わせて最適化し、最小のチャネル数とすることで電波の有効利用を図るものとする。