% NYU STERN

DIGITAL REGULATION: ETHICS, FAIRNESS AND GOVERNANCE IN AN ERA OF PLATFORMS AND ARTIFICIAL INTELLIGENCE

Arun Sundararajan Harold Price Professor of Entrepreneurship Professor of Technology, Operations and Statistics New York University

Facebook Bars Trump Through End of His Term

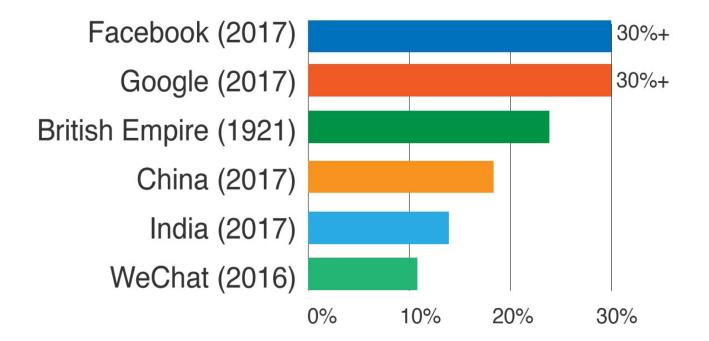
Mark Zuckerberg, Facebook's chief executive, said the risks of Mr. Trump using the service were too great, even as Twitter lifted its lock on the president's account.

Twitter suspends 70,000 accounts linked to QAnon

Airbnb cancels all bookings for DC during Inauguration week

- □ Fake news, disinformation, polarization, infodemics
- □ Privacy, data ownership, digital surveillance
- Questioning of the ability of humans to reason
- □ Evolution in the nature of global capitalism
- Perceived bias in artificial intelligence systems
- Delegating complex ethical problems to machines
- □ Heightened inequality fears due to AI and automation

how do we "regulate?" what do we regulate? what are some principles?

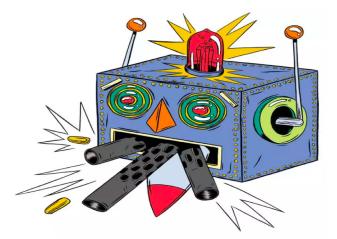

Principles for platform governance

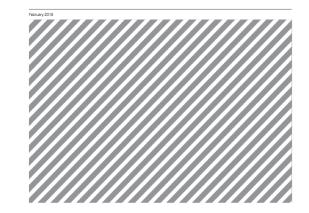
□ Algorithmic bias and fairness

Rethinking automation and digital inequity

platform governance

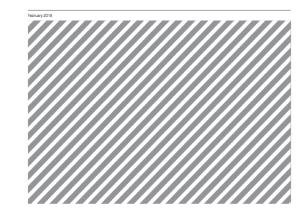
fraction of the world's population





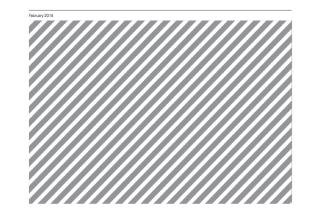
- **Define neutrality and independence**
- □ Assess scope of compliance oversight
- □ Choose level of transparency
- Define data property rights
- □ Create due process
- Optimize algorithmic bias

E /	WØRLD CØNOMIC
	FORUM
	\smile
_	
IM	COMMITTED TO PROVING THE STATE OF THE WORLD


Platforms and Ecosystems: Enabling the Digital Economy

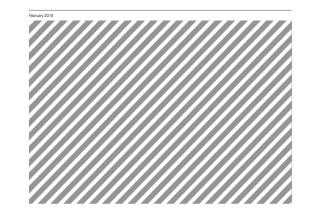
- Define neutrality and independence
- □ Assess scope of compliance oversight
- □ Choose level of transparency
- Define data property rights
- □ Create due process
- Optimize algorithmic bias

WORLD ECONOMIC FORUM
COMMITTED TO


Platforms and Ecosystems: Enabling the Digital Economy

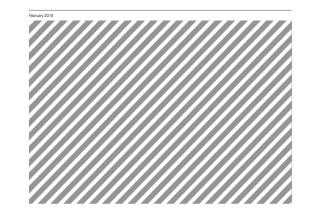
- Define neutrality and independence
- □ Assess scope of compliance oversight
- □ Choose level of transparency
- Define data property rights
- □ Create due process
- Optimize algorithmic bias

WØRLD ECØNOMIC FØRUM
COMMITTED TO IMPROVING THE STATE OF THE WORLD

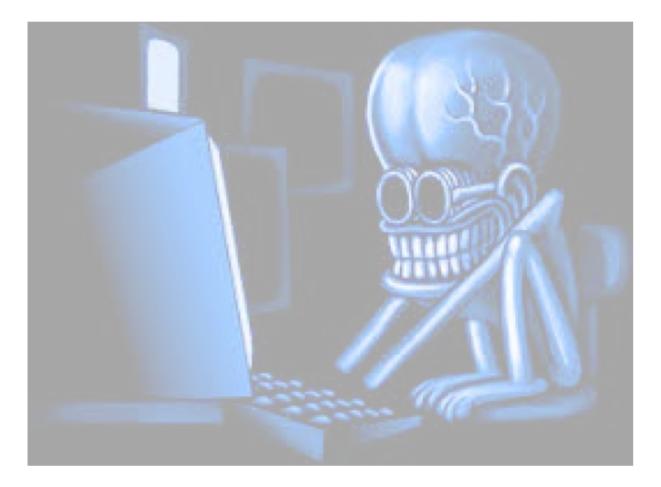

Platforms and Ecosystems: Enabling the Digital Economy

- Define neutrality and independence
- □ Assess scope of compliance oversight
- □ Choose level of transparency
- **Define data property rights**
- □ Create due process
- Optimize algorithmic bias

WORLD ECONOMIC FORUM

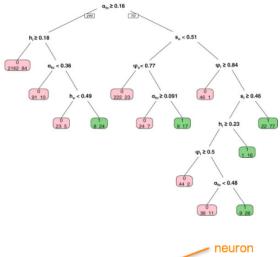

Platforms and Ecosystems: Enabling the Digital Economy

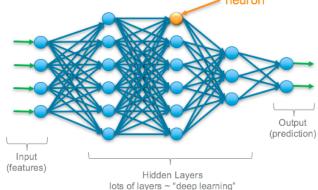
- Define neutrality and independence
- □ Assess scope of compliance oversight
- □ Choose level of transparency
- Define data property rights
- **Create due process**
- Optimize algorithmic bias


E	WØR CØNC FORI	DMIC
-	COMMITT PROVING T	

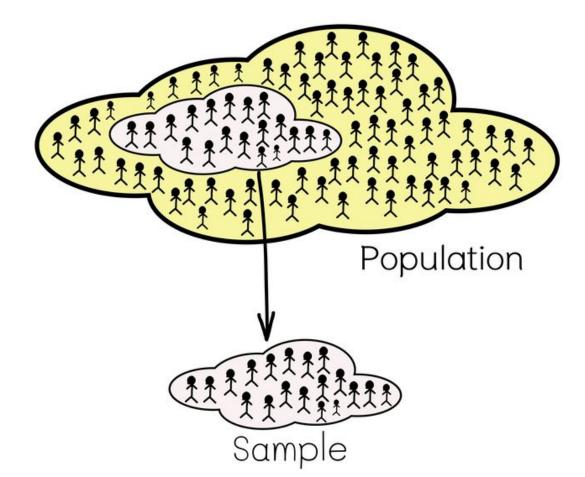
Platforms and Ecosystems: Enabling the Digital Economy

algorithmic bias


- □ Facial recognition
- Voice recognition
- □ AI-assisted recruiting
- Performance evaluation
- Deployment of law enforcement
- Bail decisions and criminal sentencing

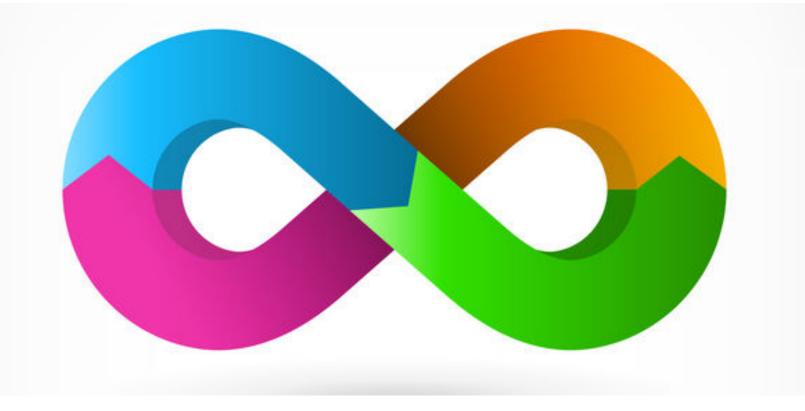


written versus trained "code"

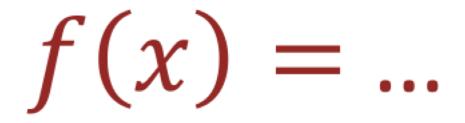

VS.

190	с	
191		PIN=0.02
192		IF (DDT.NE.0.0) THEN
193		DT=DDT
194		ELSE
195		DT-PIN
196		ENDIF
197		WRITE(*, '(A)') ' PLEASE ENTER NAME OF OUTPUT FILE (FOR EXAMPLE
198		* B:22.DAT)'
199		READ(*,'(A)') FNAMEO
200		OPEN(6,FILE=FNAMEO,STATUS='UNKNOWN')
201		PV=WFLX/TH
202		RS=NEQ*ROU*KD/TH
203		CO=CS
204	С	
205		TIME=0.0D0
206		EF=0.0D0
207	5	CONTINUE
208		GAMMA=DT/(2.D0*DX*DX)
209		BETA-DT/DX
210		IF((BETA*PV).GT.0.50D0) GO TO 7
211		IF((GAMMA*D/(BETA*PV)).LT.0.5D0) GO TO 6
212		GO TO 8
213	6	DX=DX/2
214		GO TO 5
215	7	DT=DT/2
216		GO TO 5
217	8	CONTINUE
218		N=COL/DX
219		NM1=N-1
220		NM2=N-2
221		NP1=N+1
222		GAMMA=DT/(2*DX*DX)

algorithms learn from biased samples



Sundararajan, 2014-2021

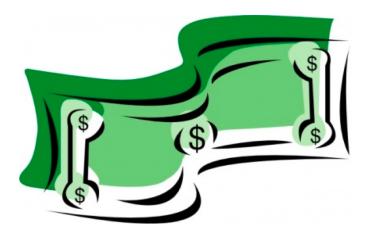

algorithms learn from biased samples

machine learning can reinforce bias from the past

choice of objective function can be complex

algorithmic bias and society

algorithmic bias is bad for business


- reputational risk
- lower profits
- market shifts


- □ Choosing the right benchmark
- Pretest, test and audit for fairness
- Bring humans into the decision loop
- □ Encourage and invest in "explainable" algorithms
- □ Consider transparency, but with care
- □ Create robust systems for due process
- □ Create government-led incentives for fairness

automation and digital inequity

the currency of inequality

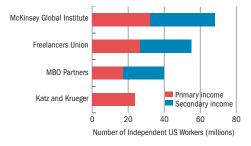
VS.

digital process and human labor

machines replace humans

machines augment humans

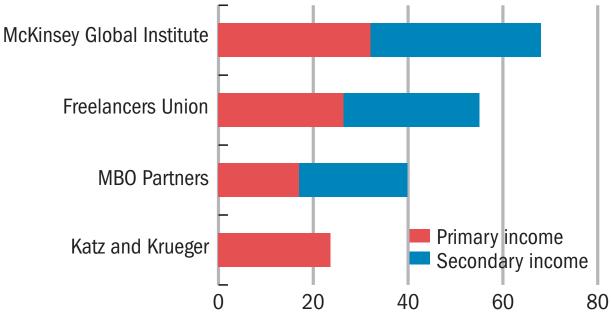
new business models alter the need for human labor


humans augment machines

COVID-19 accelerates the digital future of work

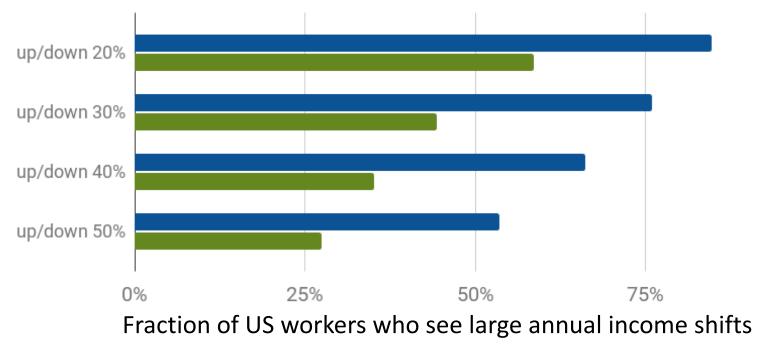
□ platform-based commerce has grown dramatically

- □ labor market shock removes barriers to automation
- □ legitimization of remote work removes barriers to platform talent
- □ change-oriented mindset complements automation investments
- □ recession catalyzes willingness to experiment with gig work
- $\hfill\square$...but recession may also slow capital expenditures needed for automation

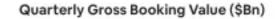


Independent employment

Four recent major studies found that a sizeable portion of the 160 million US workers earn income by working freelance.



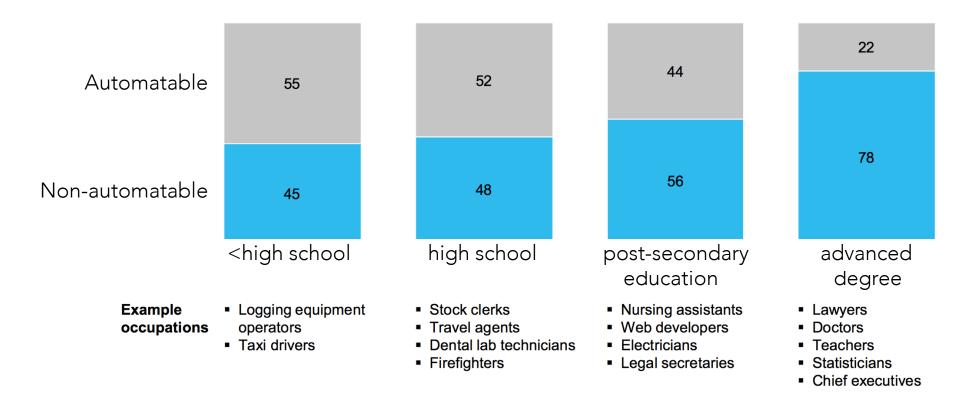
Number of Independent US Workers (millions)


Sundararajan, 2017, The Future of Work.

income volatility will rise as the future of work unfolds

Self-employed at some point 2003-2015 Consistently traditional employee

platforms redistribute economic risk



Q3 2020 vs Q3 2019

Airbnb: 17% decline in Gross Booking Value

Marriot: 66% decline in Revenue per Available Room

automation will impact different segments differently

Source: McKinsey Global Institute

job losses will not be geographically balanced

lowest projected rates of automation

Metro Area	Average Income	Fraction of workers with Bachelor's degree or Higher
San Jose-Sunnyvale-Santa Clara, CA	\$141,714	48.49%
Washington-Arlington-Alexandria, DC-VA-MD-WV	\$130,723	49.50%
Ann Arbor, MI	\$94,395	50.91%
Boston-Cambridge-Newton, MA-NH	\$116,506	45.55%
Bridgeport-Stamford-Norwalk, CT	\$149,214	46.38%
San Francisco-Oakland-Hayward, CA	\$130,134	46.14%
lthaca, NY	\$80,545	48.14%
Raleigh, NC	\$91,109	42.19%
Baltimore-Columbia-Towson, MD	\$104,236	37.66%
Huntsville, AL	\$83,250	35.50%
Santa Cruz-Watsonville, CA	\$107,478	37.88%
Seattle-Tacoma-Bellevue, WA	\$104,983	39.62%
Trenton, NJ	\$116,014	40.47%
Austin-Round Rock, TX	\$95,814	40.11%
Barnstable Town, MA	\$99,181	41.31%

highest projected rates of automation

Metro Area	Average Income	Fraction of workers with Bachelor's degree or Higher
Lake Havasu City-Kingman, AZ	\$57,408	11.798%
Merced, CA	\$66,439	13.089%
Elkhart-Goshen, IN	\$69,828	18.220%
Lima, OH	\$65,278	16.848%
Mansfield, OH	\$59,029	17.291%
Muncie, IN	\$57,255	22.237%
Odessa, TX	\$84,136	14.404%
Michigan City-La Porte, IN	\$67,310	17.522%
Anniston-Oxford-Jacksonville, AL	\$61,323	17.295%
Springfield, OH	\$64,422	18.057%
Las Vegas-Henderson-Paradise, NV	\$76,401	22.298%
Muskegon, MI	\$61,403	18.146%
Rocky Mount, NC	\$59,675	15.694%
Modesto, CA	\$74,685	15.936%
Laredo, TX	\$60,751	16.603%

stemming a rise in inequality: new individual issues

- □ Higher month-to-month income volatility
- □ Increases in large income shocks
- □ Redistribution of who bears business risk
- □ Inaccessible funding mechanisms for basic benefits
- □ Greater needs for mid-career occupation transition
- □ Increased need for geographic transitions
- □ Loss of institutional support: careers, community

a new individual-institution relationship

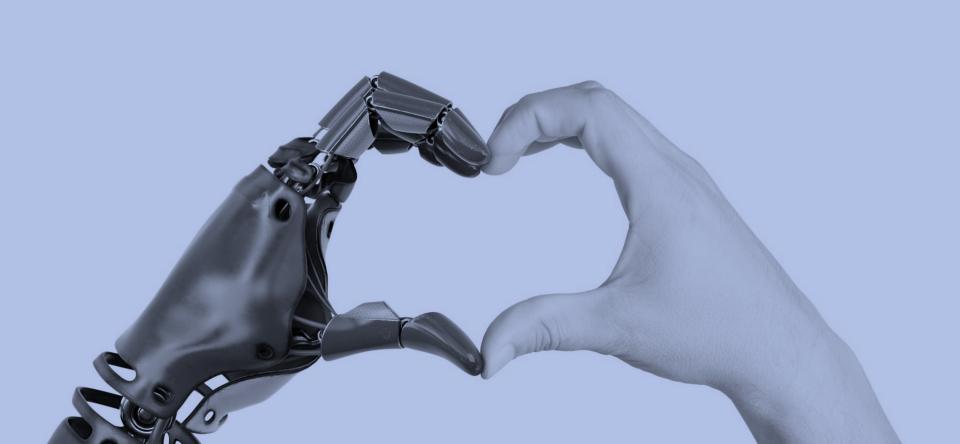
© Aru@SAnudaStanajana,r2j0104-20012412018

smoothing short-term income volatility

refashioning bankruptcy protections, "unemployment"insurance

new mechanisms for funding benefits

broad institution-based transition education


© Aru@ SAmuda Franajana, rajana, r

career paths and community

© Aru@SAnudaStanajara, r2jan4-2002412018

embed human values into digital systems

