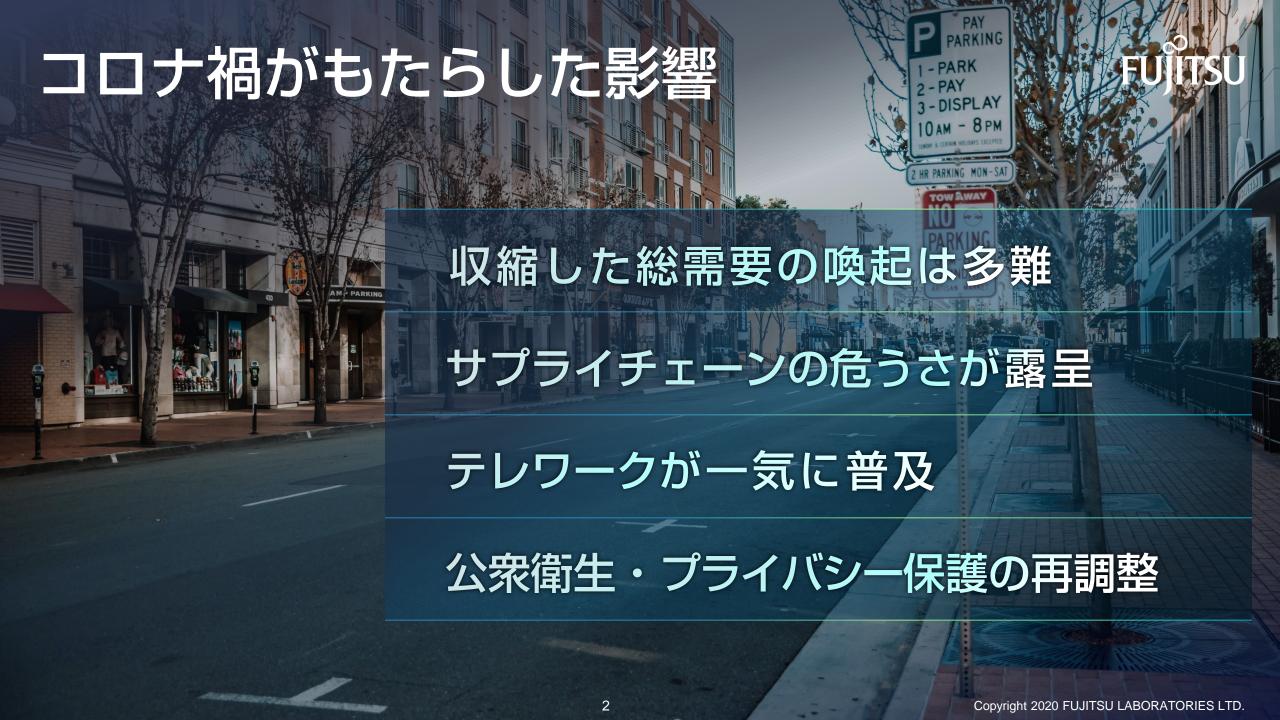
Alネットワーク社会 推進会議 議長ヒアリング


2020年11月25日

ニューノーマルにおける AI研究

株式会社富士通研究所 フェロー・人工知能研究所長

岡本青史

New Normal

これまでの常識が変わる

コロナ禍の後も変化の波が続く

Resiliency(回復力・弾力性)が重要

2025年のDXの崖への対策は急務

Work Life Shift

Human Centric Al

FUJITSU Human Centric Al

Zinfai

人と協調する人を中心としたAI

継続的に成長するAI

活用分野

FUJITSU

富士通研究所におけるAI研究

本日ご紹介する技術のポイント

1 社会課題を解決 できるAI

Deep Learning による認識・予測 に加え、意思決定、発見、最適化

2 変化し続ける社会 に対応できるAI

大量の過去データが必要ない省データ学習、知識処理、Simulation

3 社会実装を進める 信頼できるAI

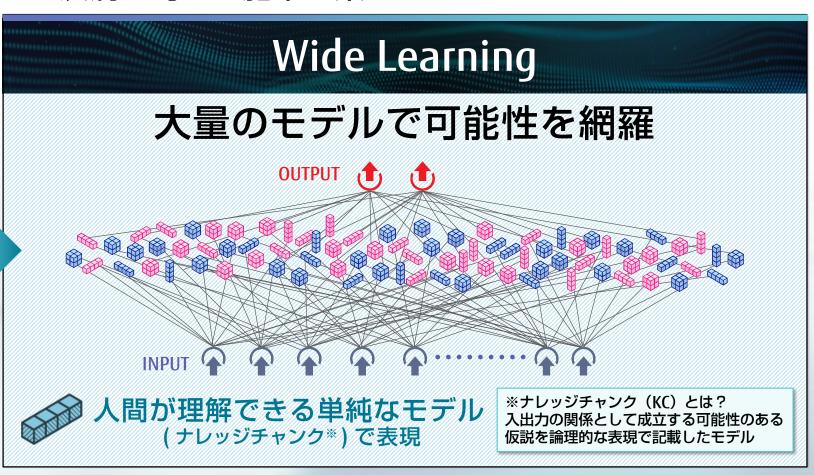
ブラックボックス性の解決、 セキュリティ、倫理

apter ch

社会課題を解決

■ Wide Learning :新しい仮説の発見 ■ デジタルアニーラ:組合せ最適化による問題解決

認識/予測から施策立案へ:Wide Learning

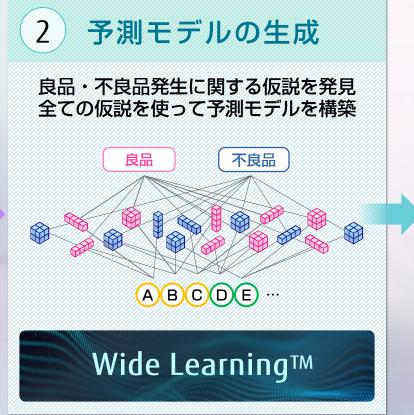


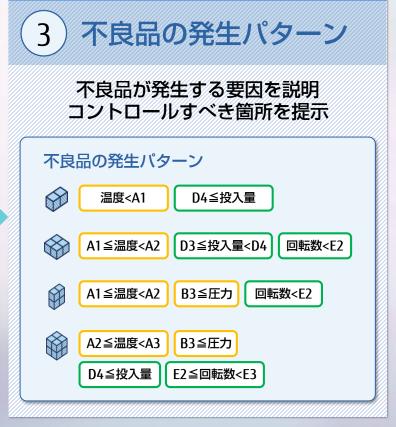
目的:少数のデータから、人間が理解可能な仮説を提示し新しい発見、行動につなげる

技術:データ項目の全組合せを仮説として生成、あらゆる角度から可能性を提示

適用:不良品発生防止策、新しい疾病に対する施策立案

Deep Learning 1つのモデルを洗練化 оитрит 🛡 人間が理解できない 複雑なモデル




事例:不良品発生防止策の立案

- 頻度が低く分析が難しい不良品の発生要因を、製造現場での各種センターの計測値を用いて予測モデルを構築
- ・現場の専門家も気づかない、発生要因と防止策を発見

最適化:デジタルアニーラ

目的:ビジネスや社会における最適化問題を飛躍的に高精度・高速に解決

技術:量子現象に着想を得た、組合せ最適化問題に特化した新アーキテクチャ

適用:物流最適化、IT創薬(中分子創薬)



デジタルアニーラ:中分子創薬での活用

- ・コンピュータ上で医薬候補を設計・評価することで、新薬開発のコスト、期間を短縮
- ・デジタルアニーラとHPCを連携、高速高精度な中分子医薬候補の安定性構造探索を実現 デジタルアニーラ:アミノ酸間の相互作用で絞込み⇒HPC:全原子モデルで構造探索
- ペプチドリーム社の新型コロナウィルス感染症治療薬の開発に適用、開発を加速

環状ペプチドの実験構造と計算構造の比較

RMSD: 0.73 Åの驚異的な精度で 実験構造と計算構造が一致

RMSD(Root Mean Square Deviation): 平均二乗偏差

chapter

常に変化する社会

■ Actlyzer : Al導入期間の短縮

■ High Durability Learning:学習済みモデルの信頼性

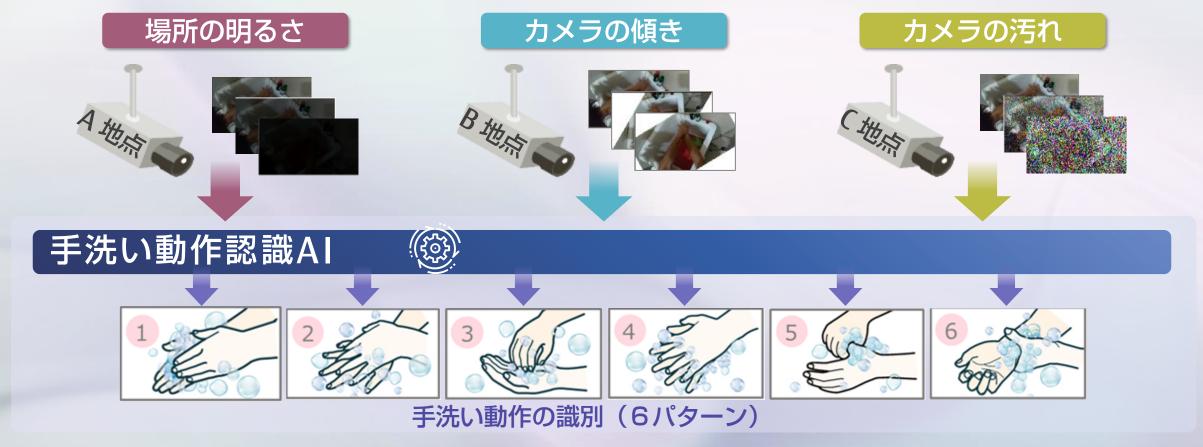
■AI×シミュレーション・:過去に経験のない状況への対処

導入期間の短縮:Actlyzer

目的:個別の学習データ準備やPoCなしで様々な行動を認識するAIを実現

技術:学習済の基本アクションをルールで組合せることで学習なしで人の行動を認識

適用:空港、商業施設での監視、手洗い動作等の感染症予防施策



Actlyzer:手洗い動作認識

2020年5月 プレスリリース

・食品業界や外食産業向け手洗い動作認識(Actlyzer)に適用

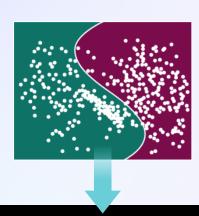
AI運用:学習済モデルの信頼性

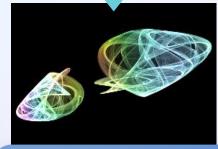
・システムの運用中、データの変化により、学習データ整備や再学習が必要

医療:FDAによる医療AI開発新規定では、開発者の修正計画やリスク能力も加味した評価を実施 (2019 / 4)

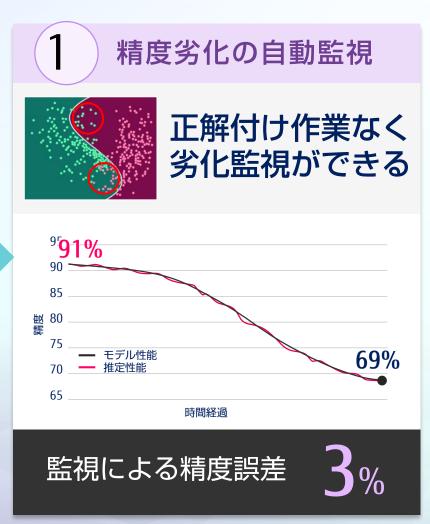
金融: AIを活用した金融の高度化に関するワークショップにおいて、AIシステム運用課題の議論 (2019/6)

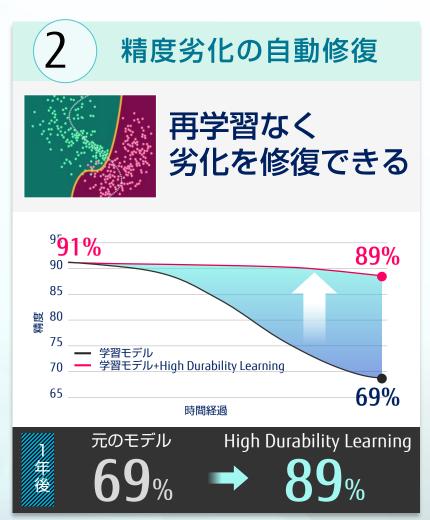
金融 信用リスク評価





AI運用自動化技術:High Durability Learning



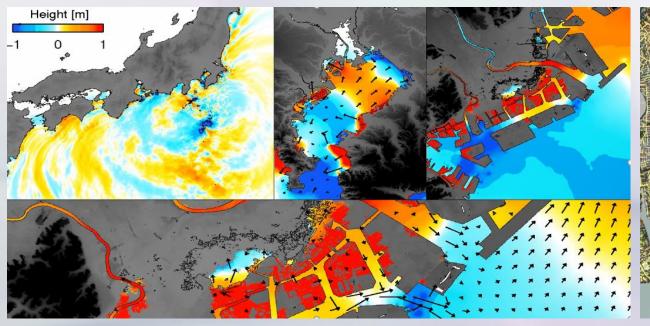


DT空間

データ空間への正解付けが可能

High Durability Learning の効果

想定外を想定:AI×Simulation

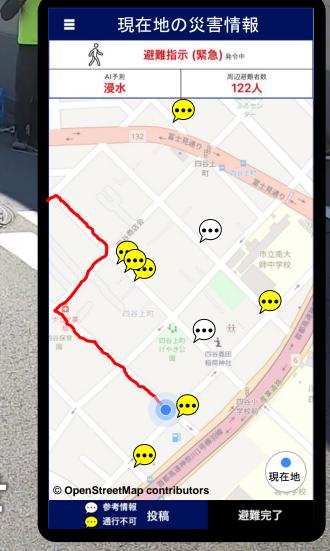


目的:経験したことのない自然災害に対するリアルタイム予測と対策

技術:100万件以上の物理シミュレーション、人流シミュレーションを機械学習で再現

適用:災害時のリアルタイム避難支援、施設等での感染症対策効果予測

東北大、東大、川崎市との共同研究



ほとんど事例がない大規模津波 (慶長型地震 Mw8.5)の リアルタイム浸水予測

川崎臨海部の昼間人口34万人の避難を予測

災害に強いまちにするための当社の取り組み

FUJITSU

々の位置情報を組み合わせ 避難誘導を最適化

東北大学・東京大学・川崎市との共同研究

pter D ch

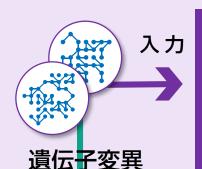
信頼されるAI

- ■説明可能なAI : Deep Learningのブラックボックス性解決 AIセキュリティ:AIに対する新しい攻撃、AIを使った新たな脅威
- :説明責任、公平性、透明性 ■AI倫理

説明可能なAI(Explainable AI)

• Deep Learningのブラックボックス性を解決し、人間と協調できるAIを実現

ナレッジグラフを用いた根拠の説明



グラフデータの「学習」と知識のグラフ表現を融合

推定因子特定技術

推定結果の 「理由」を説明

グラフデータ学習

Deep Tensor®

18 万件の疾患系 変異データから学習 出力

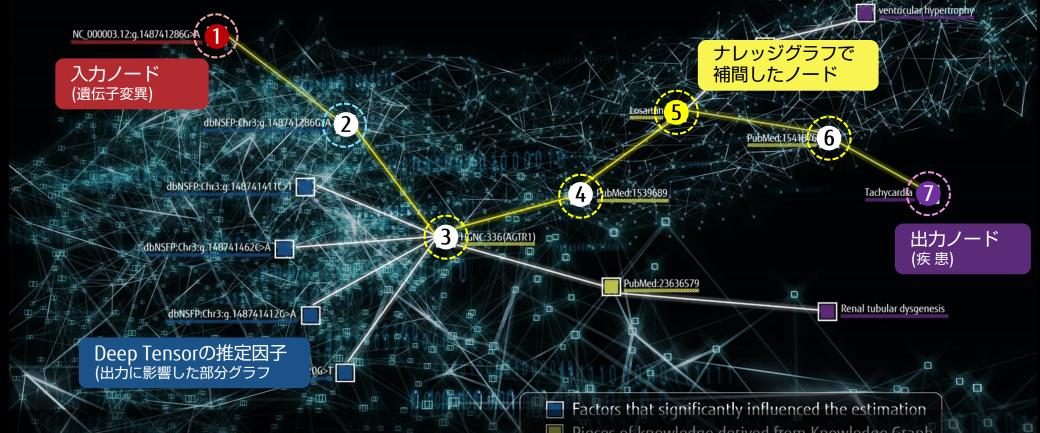
- ・変異から疾患を推定
- 推定因子で原因遺伝子を特定

疾患の推定

原因遺伝子

根拠構成技術

推定結果の 「根拠」を説明


医学論文1,700万件等から

100 をこえる 億知識を構築

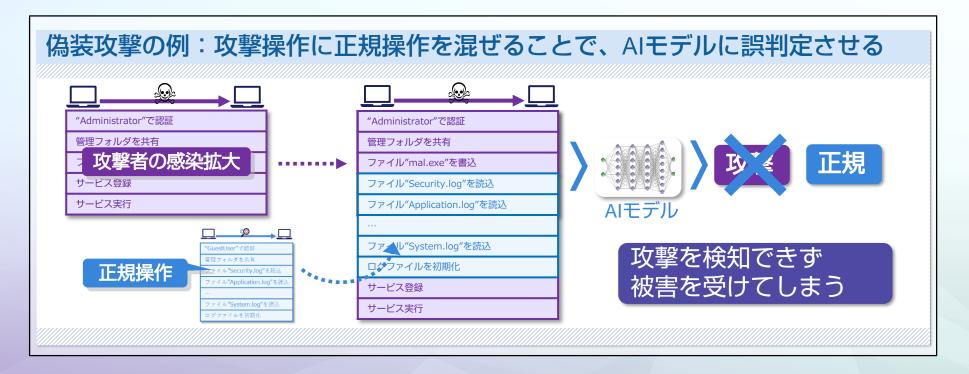
変異から疾患に至る、 医学的に裏付けされた根拠を構成

根拠パスの具体例

入力「変異」から出力「疾患」までの、根拠となるパスを構成

急性骨髄性白血病の治療方針の検討時間を半分以下に削減(東京大学医科学研究所との共同研究)

AIをだます偽装攻撃の検知:サイバー攻撃


目的:系列データを対象に、巧妙化する新たな攻撃を自動的に検知

2020年10月発表

技術:偽装攻撃の特性に基づく教師データの自動生成と、複数の攻撃の特徴毎の

モデルを使ったアンサンブル学習により、検出精度を24%から88%に向上

適用:サイバー攻撃検知、クレジットカード不正利用検知(検討中)


富士通のAI倫理への取組

- AIコミットメントを他社に先駆けて策定:2019年3月
- AI倫理外部委員会を開催、AIの信頼性を客観的に評価・改善: 2019年9月~ 産総研辻井センター長を委員長とし社外のAI倫理の有識者で構成

富士通グループAIコミットメント

- 1 AIによってお客様と社会に価値を提供します
- ② 人を中心に考えたAIを目指します
- 3 AIで持続可能な社会を目指します
- 4 人の意思決定を尊重し、支援する AIを目指します
- 5 企業の社会的責任として、AIの 透明性と説明責任を重視します

AI倫理外部委員会

客観的な意見や考え方を、当社グループの AI倫理指針にフィードバックする目的で設立

多様な分野のスペシャリストが就任

辻井 潤一

国立研究開発法人産業技術総合研究所情報・ 人間工学領域フェロー兼人工知能研究センター長 東京大学名誉教授・マンチェスター大学教授(兼任)

君嶋 祐子

慶應義塾大学 法学部 教授(知的財産法)

国谷 裕子

キャスター, 東京藝術大学 理事(学長特命担当)

武部 貴則

東京医科歯科大学 医学部統合研究機構 教授 横浜市立大学 コミュニケーション・デザイン・センター センター長、シンシナティ小児病院 オルガノイド センター 副センター長

板東 久美子

日本司法支援センター理事長

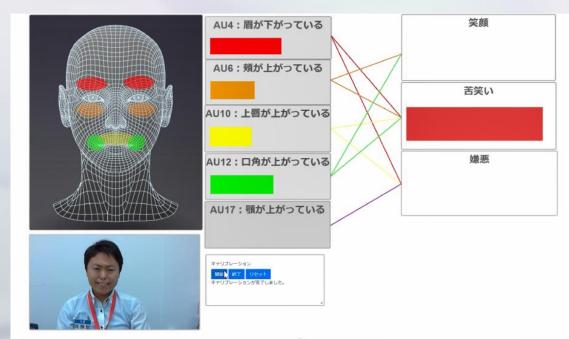
湯本 貴和

京都大学 霊長類研究所 所長同 社会生態研究部門 生態保全分野 教授

敬称略

https://pr.fujitsu.com/jp/news/2019/03/13-1.html

表情認識


■目的:対面でないと把握が難しい、人の集中度や納得度といった心理状態を把握

■技術: Action Unitに着目し、世界各国で収集・生成した世界唯一の学習データでモデルを構築、

国際学会のコンペティションで No.1 の精度を実現(2020.10.09)

15th IEEE International Conference on Automatic Face & Gesture Recognition

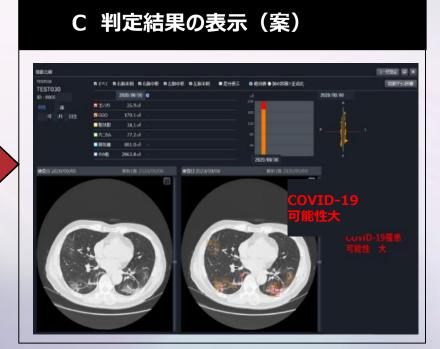
■適用:遠隔診療、健康保険指導、テレワーク時代のQoL向上

Action Unitによる表情認識

各チームのAction Unit認識精度 (評価式: 0.5×F1_Score + 0.5×Accuracy)

COVID-19画像診断支援AI

2020/9に東京品川病院との共同研究を発表



医師が胸部CT画像から肺炎の診断をする際、陰影の立体的な広がりを数百枚の胸部CT画像から目視で確認していた診断時間を短縮

CT画像から肺領域を含むスライスをサンプリングし、肺野領域の抽出と陰影パターンを分類。 その出力データから特徴量を抽出してAIで「COVID-19」の可能性を判定。

A 肺陰影判別技術の検証 富士通-広島大学で開発したAI 肺内の30スライスをサンプリングして陰影検出(8mm程度の間隔でサンプリング) 検出された陰影 に記している。 に記しているではてい

chapter おわりに

ニューノーマルにおけるAI研究

- ■本日紹介したAI研究は、COVID-19以前からDXを目指した研究の成果
- ■ニューノーマル下でのAIへの要求はより鮮明に

社会課題の解決

治療薬開発、感染リスクとビジネスの両立

常に変化する社会

ニューノーマルへの移行、COVID-19以前のデータは使えない

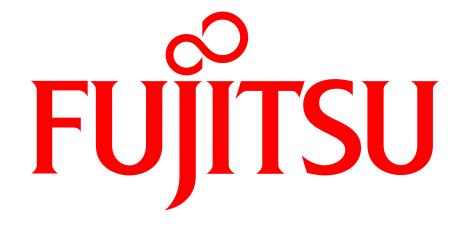
信頼性

社会活動がリアルからバーチャルへ移行した際の新たな信頼性

■ ニューノーマルでの経済活動、生活を支える研究開発には、シーズ側だけでなく、利用者の具体的な課題の調査・分類が必要

富士通のパーパス

FUJITSU


わたしたちのパーパスは、 イノベーションによって社会に信頼をもたらし、 世界をより持続可能にしていくことです

New normalに求められる「信頼」に対するコンセンサスの醸成とデジタル技術による「信頼」の実現を目指す

shaping tomorrow with you