地上デジタル放送方式高度化の 伝送路符号化方式に関する中間報告

概要

2022年10月11日

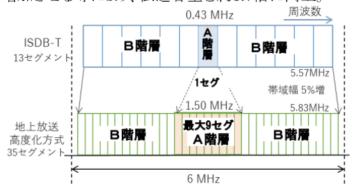
一般社団法人 電波産業会 デジタル放送システム開発部会 地上デジタル放送伝送路符号化作業班

中間報告の内容/検討状況

- 検討する伝送路符号化方式
- 検討項目
- 各伝送路符号化方式の検討状況
 - 方式の特長
 - 検討状況
 - 周波数使用条件
 - 伝送路符号化方式
 - サービス例を検討するためのビットレート
- まとめと今後の作業

検討対象の伝送路符号化方式

次世代の地上放送方式に関わる伝送路符号化方式の検討

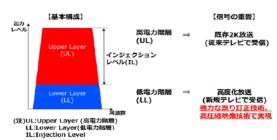

提案された方式のうち以下に示す2つについて 伝送路符号化に関する技術的条件の調査・検討を実施。

- ・地上放送高度化方式
- ·階層分割多重(LDM※)方式

新たなチャンネルを確保できた場合に高度化放送を実施する方式

① 地上放送高度化方式

変調方式の改善や、ガードバンドの削減により利用可能な帯域幅を増加させる等により、伝送容量を約1.7倍に向上。



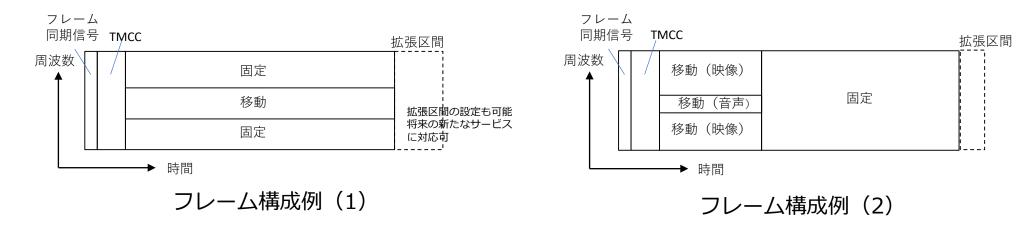
既存の2K放送と同一チャンネルで高度化放送を実施する方式

(高度化放送導入方式)

② 階層分割多重(LDM)方式

同一チャンネルにレベル差のある地デジと高度化放送の信号を 重ねて送信し、受信側で各々を取り出す方式。

★ LDM : Layered division multiplexing


検討項目

各方式について主に以下の技術的条件を検討

台力式にしい	(土に以下の技術的栄育を検討
周波数使用条件	 適用周波数帯 占有周波数帯幅 周波数の許容偏差 FFTサンプル周波数と許容偏差 送信スペクトルマスク スプリアス発射/不要発射の強度の許容値 測定法
伝送路符号化方式	 変調方式 キャリア変調方式 誤り訂正方式 信号帯域幅 インターリーブ処理 OFDMフレーム構成 FFTサイズ 有効シンボル長、ガードインターバル(GI)比 TMCC情報 緊急情報伝送

地上放送高度化方式の特長

- ISDB-Tの長所を継承しつつ、さらなる多機能化を実現
 - 移動受信向けサービスと固定受信向けサービスを自在に組み合わせる多様な階層伝送
 - 緊急警報放送や緊急地震速報等の低遅延・高耐性伝送
 - 時間軸上で拡張区間を設定可能。将来の新たなサービスにも対応可能

- 最新技術の導入により伝送性能を向上
 - 誤り訂正にLDPC符号を採用することによる雑音耐性の大幅な向上
 - 地デジに比べ高い多値数のキャリア変調が可能
 - 多値化による雑音耐性低下を不均一コンスタレーションにより軽減

検討状況 (地上放送高度化方式)

今回までに以下赤字の項目について主に検討

周波数使用条件	 適用周波数帯 占有周波数帯幅 周波数オフセット 周波数の許容偏差 FFTサンプル周波数と許容偏差 送信スペクトルマスク スプリアス発射/不要発射の強度の許容値 測定法
伝送路符号化方式	 ・ 変調方式 ・ キャリア変調方式 ・ 誤り訂正方式 ・ 信号帯域幅 ・ インターリーブ処理 ・ OFDMフレーム構成 ・ FFTサイズ ・ 有効シンボル長、ガードインターバル(GI)比 ・ TMCC情報 ・ 緊急情報伝送

周波数使用条件(案)

周波数使用条件	地上放送高度化方式	
/	条件	理由
適用周波数帯	UHFテレビジョン用 周波数帯	既存のテレビ放送用を利用
周波数オフセット	+1/18 MHz(0.056 MHz)	信号がチャンネル端の周波数を超 えないことを考慮
占有周波数帯幅	TBD	TBD
周波数の許容偏差	TBD	SFNを考慮
FFTサンプル周波数	512/81 MHz (6.320988 MHz)	キャリア間隔の逆数である有効シ ンボル期間において、Mode 3では 8192 点、Mode 4 では16,384 点、 Mode 5 では32,768 点が均等にサン プルされる値
送信スペクトルマスク	TBD	TBD
スプリアス発射/不要 発射の強度の許容値	無線設備規則第7条に準 拠する	有害な干渉を与えないため

地上放送高度化方式における周波数オフセット

- 現行地上デジタル放送と同じ+1/7 MHzとした場合、信号がチャンネルの 右端を越えてしまうことから、これを越えないオフセット値の検討を実施
- 実験の結果、周波数オフセット値は+1/18 MHz(55.555...kHz)とすること とした。(参考資料あり)

	現行地上デジタル放送	地上放送高度化方式 (ノーマルモード)
チャンネル幅	6 N	ЛHz
セグメント数	13	35
セグメント幅	6/14 MHz	6/36 MHz
1/3セグメント幅	2/14 = 1/7 MHz	2/36 = 1/18 MHz
信号配置	5/14 MHz 1/14 MHz +1/7 MHz 月波数 左端 チャンネルの中心 右端	5/36 MHz 1/36 MHz +1/18 MHz 1/36 MHz 1

伝送路符号化方式 (案)

項目	適用技術、値
システム	SISO
変調方式	OFDM
キャリア変調方式	QPSK, 16QAM, 64QAM, 256QAM, 1024QAM, 4096QAM (QAMは均一コンスタレーションと、不均一コンスタレー ションに対応)
誤り訂正方式	LDPC符号(内符号) + BCH符号(外符号) (LDPC符号の符号化率は2/16~14/16まで13通り)
信号带域幅	5.83 MHz(ノーマルモード) , 5.57 MHz(互換モード※¹)
セグメント数	35(ノーマルモード),33+調整帯域(互換モード)
FFTサイズ(モード)	8k(3), 16k(4), 32k(5)
有効シンボル長(モード)	1296μs(3) , 2592μs(4) , 5184μs(5)
GI比	1/4, 1/8, 1/16, 1/32, 1/256, 800/(FFTサイズ) ^{※2}
ビットレート	1.26~53.78 Mbps
緊急情報伝送	TBD

^{※1} 互換モード:帯域中央の33セグメントに1セグメント未満のキャリア数から構成される調整帯域を追加

^{※2 800/(}FFTサイズ):現行地上デジタル放送で運用しているGI長と同じ126μsとなるパラメータ

地上放送高度化方式のサービス例

• 固定受信向けサービス例

サービス	想定受信形態	データレート
番組1	固定受信	30.7 Mbps

• 固定受信向けと移動受信向けのサービス例

サービス	想定受信形態	データレート
番組1	移動受信	0.97 Mbps
番組1	固定受信	27.2 Mbps

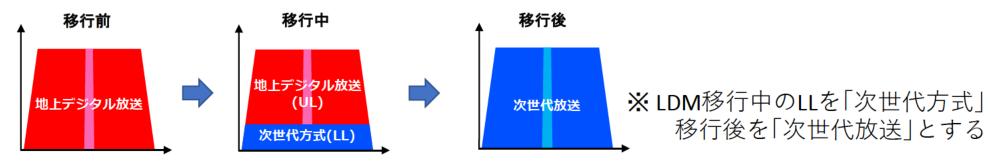
• 固定受信向けと移動受信向けおよび高耐性音声のサービス例

サービス	想定受信形態	データレート
番組1(音声)	移動受信	68.8 kbps
番組1		0.98 Mbps
番組1	固定受信	25.5 Mbps

地上放送高度化方式のサービス例

• 2番組の例

サービス	想定受信形態	データレート
番組1	移動受信	2.2 Mbns
番組2	沙勒文品	2.2 Mbps
番組1	固定受信	22.0 Mbns
番組2		22.9 Mbps


• 6番組の例

サービス	想定受信形態	データレート
番組1		
番組2		
番組3	固定受信	20.7 Mb. no
番組4	四足又旧	30.7 Mbps
番組5		
番組6		

番組数と事業者数の読み替えはデータレート的には可能。ただし、そのような使い方をする場合、 仕組みの検討が必要。

LDM方式の特長

- 地上デジタル放送(UL)に、レベル差をつけた次世代方式(LL)を重畳
 - 地上デジタル放送と同一チャンネルに次世代方式を重畳するため、 新たな周波数を必要としない。
 - 既存の地上デジタル放送受信機は、新たな操作をすることなく、地上デジタル放送 (UL) の受信が可能。次世代方式 (LL) は、新たなLDM対応受信機で受信できる。
 - UL・LLの変調方式、レベル差を適切に選択することで、必要な伝送容量、 サービスエリアを得ることができる。
 - 地上デジタル放送(UL)終了時、次世代放送にスムーズな移行が可能。
 - 送信設備は、変調器等一部の機器をLDM対応機器に置換することで導入でき、送信機や送信空中線はそのまま使用できる。

検討状況(LDM方式)

今回までに以下赤字の項目について主に検討

周波数使用条件	 適用周波数帯 占有周波数帯幅 周波数オフセット 送信周波数の許容偏差 FFTサンプル周波数と許容偏差 送信スペクトルマスク スプリアス発射/不要発射の強度の許容値 測定法
伝送路符号化方式	 変調方式 キャリア変調方式 誤り訂正方式 信号帯域幅 インターリーブ処理 OFDMフレーム構成 FFTサイズ 有効シンボル長、ガードインターバル(GI)比 TMCC情報 緊急情報伝送

周波数使用条件(案)

周波数使用条件	LDM方式	
<i>问版</i>	条件	理由
適用周波数帯	UHFテレビジョン用 周波数帯	既存のテレビ放送用を利用
周波数オフセット	+1/7 MHz(0.143 MHz)	地上デジタル放送の規定に準拠
占有周波数帯幅	5.7 MHz	地上デジタル放送の規定に準拠
周波数の許容偏差	1 Hz	SFNを考慮
FFTサンプル周波数	512/63 MHz (8.126984 MHz)	地上デジタル放送の規定に準拠
送信スペクトルマスク	TBD	TBD
スプリアス発射/不要 発射の強度の許容値	無線設備規則第7条 に準拠する	有害な干渉を与えないため

伝送路符号化方式 (案)

項目	適用技術、値				
次口 	UL	LL			
変調方式	OFDM				
キャリア変調方式	QPSK, 16QAM, 64QAM	QPSK, 16QAM, 64QAM, 256QAM, 1024QAM, 4096QAM (QAMは均一コンスタレーションと、 不均一コンスタレーションに対応)			
誤り訂正方式	畳込み符号+ リードソロモン符号 (畳込み符号の符号化率は1/2, 2/3,3/4,5/6,7/8の5通り)	LDPC符号 + BCH符号 (LDPC符号の符号化率は2/16 ~14/16まで13通り)			
信号帯域幅	5.57 MHz				
セグメント数	13				
FFTサイズ(モード)	2k(1), 4k(2), 8k(3)				
有効シンボル長(モード)	252μs(1) , 504μs(2) , 1008μs(3)				
GI比	1/4, 1/8, 1/16, 1/32				
ビットレート	3.651~23.234 Mbps	1.074~46.063 Mbps			
緊急情報伝送	ACキャリア	TBD 15			

LDM方式のサービス例

移行前

地上デジタル放送 (ISDB-T)

現行受信機 16.85Mbps

ワンセグ

416kbps

地上デジタル放送(UL) + 次世代方式(LL)

現行受信機 14.97Mbps

ワンセグ

416kbps

次世代方式①

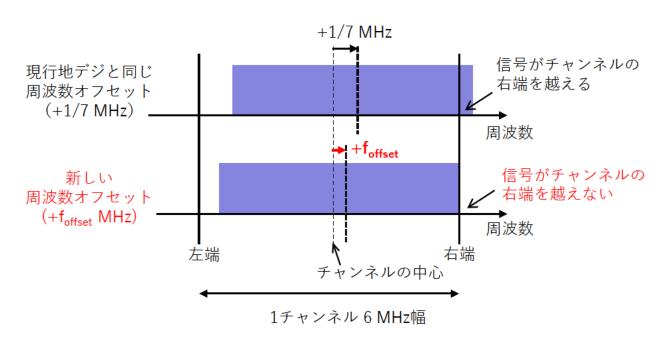
次世代方式受信機 2.17Mbps

※次世代方式①に比べて次世代方式②は、大きな伝送容量を 確保するため伝送可能エリアは狭くなる。

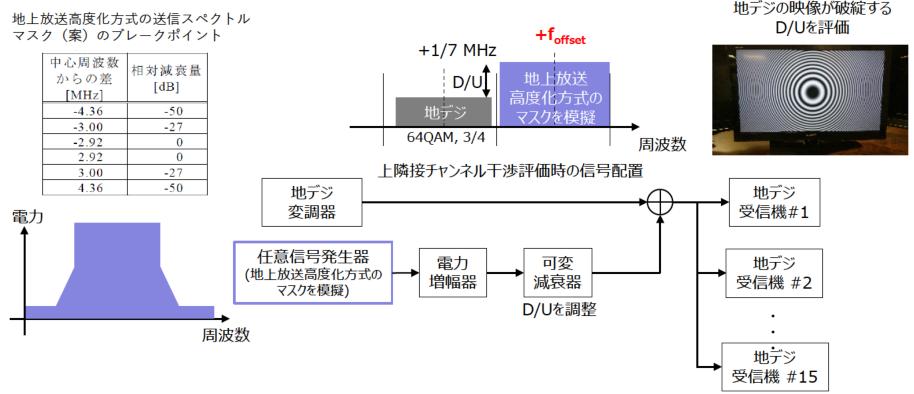
次世代放送

まとめと今後の作業

• 地上放送高度化方式

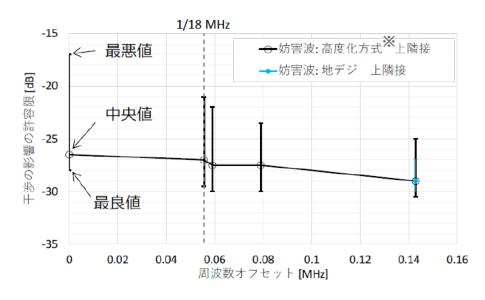

- 周波数使用条件について、FFTサンプル周波数、周波数オフセットなどを検討して、周波数オフセット値を定めた。
- 伝送路符号化方式について、フレーム構成、変調方式、 誤り訂正方式などについて検討し、同方式によるサービス例と ビットレートなどを算出した。
- 今後、伝送路符号化方式の未検討項目について議論を進める。

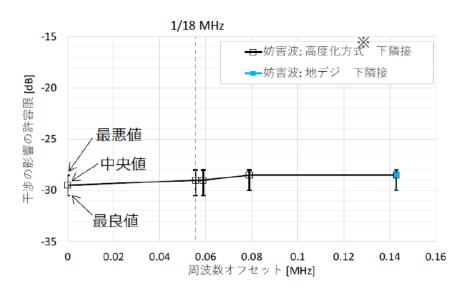
• LDM方式


- 周波数使用条件について、現行の地上デジタル放送の規定値をベースに検討し、一部未確認項目を除き、現行規定値を適用できることを確認した。
- 伝送路符号化方式については、地上デジタル放送とLDM方式の共通部、LDM固有部の分類分けを行った。
- 今後は、具体的な伝送路符号化方式の規定、および現行地上 デジタル放送終了後の次世代放送方式の規定を行う。
- 伝送ビットレート毎によるサービスイメージ例、今後の課題に ついて検討を行う。

地上放送高度化方式における周波数オフセットについて

- 地上放送高度化方式の信号帯域幅は、ノーマルモード(5.83 MHz幅)、 互換モード(5.57 MHz幅)から選択可能
- ノーマルモードにおいて、現行地上デジタル放送(地デジ)と同じ周波数オフセットを適用した場合、信号がチャンネルの右端を越えないオフセットの値を検討
- ノーマルモードにおいて、信号がチャンネルの右端から越えないよう現行地 デジと異なる周波数オフセットが必要


- (2)
- 2022年7月22日にNHK放送技術研究所において、地上デジタル放送伝送路符号化作業班と、地上放送高度化方式検討TG合同の公開実験として実施
 - 地上放送高度化方式のスペクトルマスク(案)を模擬した信号で、地デジスの隣接チャンネル干渉の許容限を室内実験で評価
 - 地上放送高度化方式のスペクトルマスク(案)は、地デジのスペクトルマスクの信号帯域幅を拡張したものを使用



(3)

• 測定結果

- 地上放送高度化方式の周波数オフセットf_{offset} を0 Hz, +1/18 MHz, +59 kHz, +79 kHz とし、干渉 波を高度化方式のスペクトルマスク(案)を模擬した信号、希望波を地デジ信号として、 地デジ受信機全15 台の干渉の許容源を測定した結果を示す。ここで、許容限は、正常受信 可能なD/U の最小値と定義し、0.5 dB 刻みで測定を実施した。
- 地デジの伝送パラメータを運用パラメータ(64QAM,3/4)とした場合の受信機全15台の上隣接チャンネル干渉の許容限の最悪値、中央値、最良値また、下隣接チャンネル干渉の結果は下図のとおり
- 実験結果をもって地上放送高度化方式の周波数オフセット値を1/18 MHz とすることとした。

上隣接チャンネル干渉の測定結果

下隣接チャンネル干渉の測定結果

各サービス例のパラメータ(地上放送高度化方式)

地上放送高度化方式のサービス例についてのパラメータを下表に示す

- ①固定受信向けサービス例、②固定受信向けと移動受信向けのサービス例、
- ③固定受信向けと移動受信、④2番組の例、⑤6番組の例

	サー	サービス		GI比	セグメント 使用比率	キャリア変調	LDPC符号化率	データレート [Mbps]	所要C/N [dB]
1	番組1	固定	16k	800/16384	35/35	256QAM	12/16	30.7	19.7
2	番組1	移動	1 <i>C</i> k	800/16384	4/35	16QAM	7/16	0.97	5.7
	番組1	固定	16k		31/35	256QAM	12/16	27.2	19.7
3	番組1	移動音声	16k	800/16384	2/35	QPSK	2/16	0.0688	-4.3
	番組1	移動			4/35	16QAM	7/16	0.98	5.7
	番組1	固定			29/35	256QAM	12/16	25.5	19.7
4	番組1・2	移動	161	800/16384	9/35	16QAM	7/16	2.2	5.7
	番組1・2	固定	16k		26/35	256QAM	12/16	22.9	19.7
5	番組1-6	固定	16k	800/16384	35/35	256QAM	12/16	30.7	19.7

各サービス例のパラメータ (LDM方式)

• LDM方式のサービス例に示すパラメータを下表に示す。

	使用階層	サービス	セグメント 数	キャリア 変調	畳込み符号化率* /LDPC符号化率	データレート [Mbps]	所要C/N [dB]
移行前	A階層	移動	1	QPSK	2/3*	0.416	6.0
	B階層	固定	12	64QAM	3/4*	16.85	19.1
移行中	UL(A階層)	移動	1	QPSK	2/3*	0.416	6.1
	UL(B階層)	固定	12	64QAM	2/3*	14.97	19.6
	LL(次世代方式①)	固定	13	QPSK	4/16	2.17	19.4
	LL(次世代方式②)	固定	13	16QAM	12/16	13.15	32.2
移行後	A階層(次世代放送)	移動	1	16QAM	7/16	0.588	6.2
	B階層(次世代放送)	固定	12	256QAM	11/16	22.25	19.0

注)・モード3、ガード比1/8で試算。

[・]所要C/Nの数値は実測値。