諸外国の動向及びIEEE標準化動向

令和5年1月30日

一般財団法人 電波技術協会

■ 諸外国の動向調査の概要

6GHz帯無線LANの制度化状況

〇 電力レベルは3つに区分

①標準電力(Standard Power: **SP**)

②低電力屋内(Low Power Indoor: LPI)

③超低電力(Very Low Power: VLP)

○ 現行規定では、米国は③が、欧州は①に関する 規定がなく、現在検討中。

【電力レベル別の制度化状況】

	① SP 標準電力	② LPI 低電力屋内	③ VLP 超低電力
米国	0	0	検討中
欧州	検討中	0	0

- 〇 欧州のナローバンド(NB)対応は、③において制度化済みで、チャネル帯域幅20MHz未満で、周波数ホッピングが要件。豪州もNBの導入が検討中。
- クライアントデバイス(CD)間通信(C2C)は、欧州は②のアクセスポイント(AP)制御下で 可能である 一方、米国は全て不可で、現在検討中。

	米国での検討状況		
VLP	FCC(連邦通信委員会)が2020年4月に追加意見募集を開始。無線LAN業界による、6105MHz以上のチャネルで優先的に動作する新たなVLPデバイスの提案に対して、放送業界は同帯域をENGを含む免許局で使用していることから反対。		
C2C	FCCが2021年1月に公開諮問を開始。無線LAN業界はLPIのAP制御下でのC2Cを認めるよう提案する一方、放送業界はモバイルサービスへの利用及び6105MHz以上でのC2Cを認めるべきではないとして反対。		

	欧州での検討状況		
SP	ダイナミック周波数アクセス(DSA)調整機能の実装を前提とした、最大4W e.i.r.p.の高出力運用の検討が2022年 11月に開始。		

■ 技術的条件の国際比較

項目		米国	欧州	英国	豪州	韓国
根拠規定		FCC規則パート15(無線周波数デバイス)サブパートE(U-NIIデバイス)	欧州委員会実施決定 (EU) 2021/1067 ECC/DEC/(20)01 Draft ETSI EN 303 687 V1.0.0 (2022-04)	IR 2030 (UKインター フェース要件2030 : 免 許免除SRD)	無線通信(低干渉可 能性デバイス) クラス 免許2015(2022年 3月5日一部改正)	申告せずに開設できる無線局の無線 設備の技術基準(科学技術情報通 信省告示第2022-20号)
周波数帯 (MHz)		5925-6425 : U-NII-5 (LPI/SP) 6425-6525 : U-NII-6 (LPI) 6525-6875 : U-NII-7 (LPI/SP) 6875-7125 : U-NII-8 (LPI)	5945-6425	5925-6425	5925-6425	5925-7125
最大 e.i.r.p.	SP	AP及び固定クライアント : 36 dBm CD: 30 dBm	-	-	-	-
	LPI	AP: 30 dBm CD: 24 dBm	23 dBm	250mW [24dBm]	250mW [24dBm]	24 dBm(160MHz幅を電力密度 2 dBm/MHzで送信した場合で計 算)5925-7125MHz(屋内) 5925-6425MHz(地下鉄のみ)
	VLP	-	14 dBm	屋内·移動体屋外: 25mW [14dBm]	25mW [14dBm]	5925-6425MHz : 14 dBm
e.i.r.p. 電力密度 I	SP	AP及び固定クライアント : 23 dBm/MHz CD: 17 dBm/MHz	-	-	-	-
	LPI	AP: 5 dBm/MHz CD: -1 dBm/MHz	10 dBm/MHz	12.6mW/MHz [11dBm/MHz]	12.5mW/MHz [11dBm/MHz]	2 dBm/MHz 5925-7125MHz(屋内) 5925-6425MHz(地下鉄のみ)
	VLP	-	1dBm/MHz	規定なし	1.25mW/MHz [1dBm/MHz]	1dBm/MHz以下
チャネル帯域		320MHz以下	160MHz以下 NBデバイス:20MHz未満	規定なし	規定なし	160MHz以下(占有周波数带域幅)
干渉軽減機	紿	コンテンションベースのプロトコルの実装	適切な周波数共有メカニズムの実装(LBT等) NBデバイス:周波数ホッピング	5150-5250MHz 帯の 指定規格と同等の周波 数アクセス及び干渉軽 減技術を使用	コンテンションベースのプロトコルの実装(CSMA、MACA等)	LBT
AP制御下の通信	DC2C	不可(固定クライアントデバイス除く)	可能(LPI)	規定なし	規定なし	規定なし

■ 直近の動き

6GHz高域の配分をめぐる動き

- 現状では、WRC-23での議論の結果、IEEE 802.11beの規格化、IMTやWi-Fiの需要見込み、機器の標準化などを踏まえて、柔軟に対応する姿勢。
- ロシアや中国はIMTへの特定を支持する一方、EUは2024年以降に配分方針を提示。

CEPT SE 45での検討状況

- 6GHz高域への帯域拡張について継続検討し、固定業務の保護についてSE 19とさらに調整。
- DSA調整機能を実装した、6GHz低域での高出力(最大4W e.i.r.p.)運用の検討を開始。

AFCシステムの検討状況

- 米国は、2022年11月にAFCシステムを運用する13者を条件付きで認可し、2023年第一四半期末に商用化の見通し。カナダは2022年12月にAFCシステムの仕様が発表、AFCオペレーターの募集が開始される見通し。
- 韓国、サウジアラビア、CEPT、ブラジル、豪州などでも導入に向けて検討中。

米国におけるFCCと利害関係者間での議論

- 公益事業や公共安全の分野から、LPI APやVLPによる干渉懸念が提示。
- AFCの代替手段として、固定マイクロ業務における周波数調整手続きを用いることが提案。
- LPI機器やLPIアクセスポイントの出力引き上げや、VLP機器の運用の許可について要請。
- 無線LANと固定業務の干渉検討において、干渉確率の分析や用いられるモデルについて比較検討。

■ IEEE標準化動向の概要

IEEE 802.11会合情報

カテゴリ	活動内容	主要議論
TGbe Task Group be : Extremely High Throughput (EHT)	・スループット30Gb/s以上、最悪ケースでの遅延・ジッタの改善 ・対象帯域は1~7.250GHz、802.11axの~7.125 GHzから拡張。2.4GHz, 5GHz, 6GHz帯での後方互換の保証 ・広帯域化…11axは160 MHz ⇒ 320 MHz ・高MCS化…11axは1024-QAM ⇒ 4096-QAM ・Resource Unit (RU)割り当て…11axは1 STA 1 RU ⇒ 1 STAに複数RU – Multi-RU (MRU) ・複数のリンクを用いたパラレル伝送 – Multi-Link (ML)	 ・選択再送方式でのマルチリンク(ML)特有の問題に対処するテキスト(22/1336)合意 ・Release 1、Release 2識別の削除提案(22/1679)合意 ・STAが20MHzより細かい粒度でCCA行い、パンクチャ送信する提案リジェクト(22/1741) ・マルチリンクによる遅延・ジッタ改善をシミュレーションで確認(22/1348)
UHR SG (Ultra High Reliability Study Group)	・規格策定を行うTask Groupの立ち上げを行う (2023年5月活動開始を目指していたが、IEEE上の プロセスから難しい予想) ・無線LAN接続の信頼性向上、低遅延化、管理性向 上、スループット改善(SNRレベルに応じた改善を含む)、 低消費電力化に係る検討を対象	 ・Task Group立ち上げ文書に産業IoTなど遅延・ジッタ要求の高いユースケースを盛り込む提案(22/1919)合意 ・TGbeから検討持ち越しになった、MAP (Multi-AP Coordination:複数AP連携)への関心 ・TGbeのマルチリンクを拡張することにも関心(42.5~71GHzミリ波帯も対象に加え、既存ミリ波をリデザインする提案、シームレスローミングへ拡張する提案など) ・低遅延保証や低SNRでの特性改善を行うビームフォーミングなど