【令和5年12月8日時点】

情報通信審議会 情報通信技術分科会 電波利用環境委員会 電波防護指針の在り方に関する検討作業班 報告(素案)

諮問第 2035 号「電波防護指針の在り方」のうち 「吸収電力密度の指針値の導入等」について

情報通信審議会 情報通信技術分科会 電波利用環境委員会 電波防護指針の在り方に関する検討作業班 報告(素案) 目次

I	検討事項	3
Π	委員会及び作業班の構成	3
Ш	検討経過	3
IV	検討概要	5
角	育1章 電波防護指針の概要	5
	1.1 検討の経緯及び背景	5
	1.2 電波防護指針の構成	6
	1.3 局所吸収指針の概要	8
角	育2章 吸収電力密度の指針値の導入等	9
	2.1 6GHz 以上の局所吸収指針の課題	9
	2.2 6GHz 超の局所吸収指針の検討1	0
	2.2.1 局所ばく露における吸収電力密度の適用性1	0
	2.2.2 吸収電力密度の平均化面積1	4
	2.2.3 吸収電力密度の指針値1	8
	2.3 電波防護指針全体の整合性2	<u>!</u> 1
	2.3.1 局所吸収指針の適用除外となる電力2	1
	2.3.2 総合照射比2	2
	2.3.3 基本制限の枠組み2	2
	2.3.4 基礎指針の注意事項2	23
	2.3.5 電波防護指針の全体像2	23
	2.4 電波防護指針と国際ガイドラインの整合性2	4
角	育3章 今後の検討課題2	25
	3.1 国際的な動向2	25
	3.2 研究課題	25
17	給計結里 2	96

別表 1 情報通信審議会情報通信技術分科会電波利用環境委員会構成員

別表 2 情報通信審議会情報通信技術分科会電波利用環境委員会電波防護指針の在 り方に関する検討作業班構成員

参考資料1 皮膚への生体影響閾値の検索(動物)

参考資料 2 皮膚温熱整理への影響(人体)

参考資料3 眼球への障害閾値の検索(動物)

参考資料4 諸外国における健康リスク評価

参考資料 5 現行の局所吸収指針

参考資料 6 現行の基礎指針

参考資料 7 現行の基本制限

別添 電波防護指針改定案

I 検討事項

電波利用環境委員会(以下「委員会」という。)は、情報通信審議会諮問第 2035 号 「電波防護指針の在り方」(平成 25 年 12 月 13 日諮問)のうち、「吸収電力密度の指針 値の導入等」について検討を行った。

Ⅱ 委員会及び作業班の構成

委員会の構成については、別表1のとおり。

なお、検討の促進を図るため、委員会の下の「電波防護指針の在り方に関する検討作業班」(以下「作業班」という。)において検討を行った。作業班の構成については、別表2のとおり。

Ⅲ 検討経過

1 委員会

① 第53回(令和4年12月9日)

委員会の運営方法について検討を行ったほか、「吸収電力密度の指針値の導入等」について検討の促進を図るため、作業班で検討することとした。また、合わせて検討を開始することとされた「携帯電話端末等の電力密度による評価方法」のうち、「6GHz~10GHz における吸収電力密度の測定方法等」についても、同時的に「電力密度評価方法作業班」で検討を進めていくこととした。

② 第 xx 回 (令和 xx 年 xx 月 xx 日)

委員会報告(案)について検討を行った。

③ 第 xx 回 (令和 xx 年 xx 月 xx 日)

委員会報告の取りまとめを行った。

2 作業班

①第12回(令和4年12月26日)

電力密度評価方法作業班(第7回)との合同会議とし、両作業班の運営方法

について検討を行った。また、電波防護指針の概要、国際動向、及び 6GHz 帯無線 LAN 適合性評価の事例と課題について説明が行われた。

②第13回(令和5年3月10日)

近年の健康リスク評価、皮膚に対する研究動向、及び吸収電力密度について 検討を行った。

③第14回(令和5年5月15日)

眼球に関する研究動向、基礎指針 4(b)、吸収電力密度の平均化面積、及び電波ばく露によるストレス応答マーカーの変動について検討を行った。

④第15回(令和5年7月26日)

適用除外となる電力、及び電波防護指針の見直しの方向性について検討を行った。

⑤第16回(令和5年12月8日)

基礎指針と ICNIRP 基本制限との関係性、及び今後の検討課題について、検討を行った。また、これまでの作業班における検討結果を踏まえ、作業班報告について検討を行った。

Ⅳ 検討概要

第1章 電波防護指針の概要

1.1 検討の経緯及び背景

我が国の無線局数は3億局を超えており、全国津々浦々で電波による無線通信が行われているほか、電子レンジや無線電力伝送といった電波をエネルギーとして利用する機器も数多く普及している。このように、電波を利用する機器・システムは、社会・経済基盤として重要な役割を果たしており、日常生活のあらゆる分野において電波利用が浸透している。また、今後もこれまでにない様々な利用形態が現れる可能性が見込まれている。

このような中で、電波が人体の健康に好ましくない影響を及ぼすのではないかという不安や疑問も提起されている。生体が強い電磁界にさらされた場合には、電磁界のエネルギーによる深部又は局所での温度上昇や、電流刺激による神経・筋の興奮といった生体作用が生じることが、これまでの国内外における調査研究によって明らかにされている。無線通信を行うことを目的として無線設備から発射される電波は、我々の日常生活の範囲においては非常に弱いエネルギー分布であり、懸念されるような生体作用が起きることはほとんどないと考えられているが、電波のエネルギー量と生体作用の関係を定量的に明らかにすることは重要であり、それが電波を安心して安全に利用できることにつながる。

そこで、我が国では、電波防護指針において人体の健康に好ましくない影響を及ぼさない電波の強さの指針値等が定められている。この電波防護指針に基づき電波法令による規制を設けることで、我が国における電波の安全性が確保されている。

電波防護指針は、十分な安全率を考慮した人体防護を前提として、電波の強さが人体の健康に好ましくない影響(生体作用)を及ぼさないレベルであるかどうかの指針を示すものである。

平成2年6月に電気通信技術審議会から答申された「電波利用における人体の防護指針」(諮問第38号)において、人体が電磁波にさらされる場合に、その電磁波が人体に好ましくない電磁的現象を及ぼさない状況であるか否かを判断する際の基本的な考え方、それに基づく指針値(基礎指針及び管理指針(電磁界強度指針・補助指針))、並びに電波利用施設周辺における電磁界強度等の測定法及び推定法が示された。

また、平成9年4月に電気通信技術審議会から答申された「電波利用における人体 防護の在り方」(諮問第89号)において、身体に近接して使われる無線機器等に関す る電波防護指針の具体化、それに伴う電波防護指針の構成の整理(管理指針への局所 吸収指針の追加等)、並びに具体化した電波防護指針の適用法と適用のために必要な 電波エネルギー吸収量の測定法及び推定法が示された。

そして、無線 LAN や第4世代携帯電話等において 3GHz 以上の周波数の電波が使用

されることが想定されるようになったことから、平成 23 年 5 月に情報通信審議会から答申された「局所吸収指針の在り方」(諮問第 2030 号) により、それまで 3GHz までの周波数を適用範囲としていた局所吸収指針について、その適用範囲が 6GHz にまで拡大された。

続いて、国際非電離放射線防護委員会 (ICNIRP) が 1Hz 以上 10MHz 以下の周波数領域における刺激作用等からの防護に関する国際ガイドラインを見直したことを踏まえ、平成 27 年 3 月に情報通信審議会から一部答申された「電波防護指針の在り方」(諮問第 2035 号) のうち、「低周波領域 (10kHz 以上 10MHz 以下) における電波防護指針の在り方」により、低周波領域の指針値について、国際ガイドラインへの調和が図られるとともに、積極的に適合性確認に用いることを想定して、新たな概念である基本制限が導入された。

さらに、第5世代携帯電話 (IMT-2020) において 6GHz 以上の周波数の電波が使用されることが想定されるようになったことから、平成 30 年9月に情報通信審議会から一部答申された「電波防護指針の在り方」(諮問第 2035 号) のうち、「高周波領域における電波防護指針の在り方」により、6GHz 以上の周波数について、人体から 10cm 以内に近接して使用される場合の電波防護指針として、入射電力密度による指針値が導入された。

その後の国際的な動向として、令和元年に、米国電気電子学会(IEEE)の国際電磁界安全委員会(ICES)が、C95.1 規格(OHz~300GHzの電界、磁界及び電磁界への人体のばく露に関する安全レベル)を改定したほか、令和2年に、ICNIRPも、電磁界(100kHz~300 GHz)へのばく露の制限に関するガイドラインを改定している。

それらでは、6GHz を超える周波数の電波による局所ばく露について、吸収電力密度 (APD: Absorbed Power Density) を用いた評価が推奨されていることから、我が国の電波防護指針を国際ガイドラインと調和させることを念頭に、「吸収電力密度の指針値の導入等」について検討した。

1.2 電波防護指針の構成

電波防護指針は、社会・経済的に需要の高まっている電波利用の健全な発展を図ることを目的に、電磁波が人体に好ましくない影響を及ぼさない安全な状況であるか否かを判断する際の基本的な考え方や、それに基づく指針値などを示しており、「基礎指針」、「基本制限」及び「管理指針」から構成されている(図1)。

¹ 生体内部方向に体表面を垂直に通過して吸収される単位面積当たりの電力。IEEE C.95-1-2019 では、 上皮電力密度 (Epithelial Power Density: The power flow through the epithelium per unit area directly under the body surface (i.e., in stratum corneum of the skin or corneal epithelium of eyes).) という用語が用いられているが、同一のものと捉えて差し支えないと考えられる。

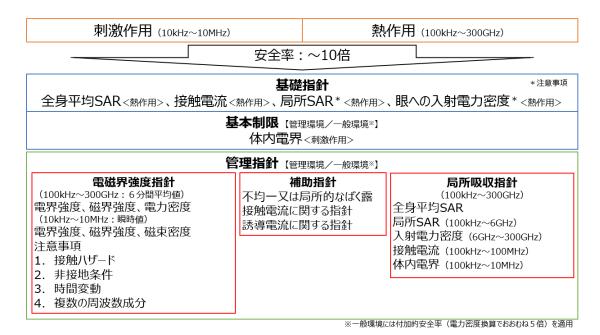


図 1 現行の雷波防護指針の構成

基礎指針は、人体が電磁界にさらされるときに人体に生じる各種の生体作用(体温上昇に伴う熱ストレス、高周波熱傷等)に基づいて、人体の安全性を評価するための基礎的な指針であり、実際の評価に用いるのではなく、管理指針の根拠となる指針である。

基本制限は、平成23年の改定の際に導入されたものであり、健康への有害な影響に至る可能性のある電波ばく露による生体内現象と直接関連する物理量についての制限値である。人体に生じる生体作用に基づいて示された人体防護に関する基礎的な指針という点では基礎指針と同様であるが、人体防護の実際の評価に用いることを想定していたという点では基礎指針とは異なっている。

管理指針は、基礎指針及び基本制限を満たすための実測できる物理量(電界強度、磁界強度、電力密度、電流及び比吸収率(SAR)²)で示したものであり、実際の評価に用いる。管理指針は、「電磁界強度指針」、「補助指針」及び「局所吸収指針」から構成される。

電磁界強度指針は、対象とする空間における電界強度、磁界強度、電力密度及び磁 東密度によって、当該空間の安全性を評価するための指針である。

補助指針は、電磁界強度指針を満足しない場合において、基礎指針又は基本制限に 従った詳細評価を行うために使用する指針である。電磁界強度指針は、基礎指針及び 基本制限を満たすための電界強度、磁界強度、電力密度及び磁束密度を導く際に、簡 易に評価できるように、より制約的な仮定を用いているため、それを超える数値が評

² Specific Absorption Rate: 生体が電磁界にさらされることによって単位質量の組織に単位時間に吸収されるエネルギー量

価されても必ずしも電波防護指針を満たさないということにはならない。補助指針は、 そのような場合に用いられるものである。

局所吸収指針は、携帯電話端末など人体に近接して使われる無線機器等から発射される電磁波のエネルギーが人体の局所に集中して吸収されるような場合における制限を定めているものである。

なお、電磁界強度指針、補助指針又は局所吸収指針のいずれか1つを満たせば基礎 指針を満たしていると判断できる。

基本制限及び管理指針については、電波防護指針の主旨を踏まえて、電磁環境が管理されている状況を対象とする「管理環境」と、電波防護指針及び電波利用状況が認識されていない状況を対象とする「一般環境」の区分を設けている。一般環境については、管理環境に比べて電磁界の管理が不十分で不確定性があることを考慮し、管理環境よりおおむね5倍(電力密度換算)の付加的安全率を設けている。

1.3 局所吸収指針の概要

局所吸収指針は、100kHz から 300GHz までの周波数に適用されるもので、携帯電話端末等の小型無線機を主な対象としており、電磁放射源に寄与するアンテナや筐体が人体に極めて近接して使用される場合にも適用できる制限である。

局所吸収指針は、全身平均 SAR、局所 SAR、入射電力密度、接触電流及び体内電界のそれぞれの指針値により制限されるが、携帯電話端末や無線 LAN 端末に適用される主なものは、次のとおりである。全文は、参考資料 5 参照。

周波数範囲	評価指標	管理環境	一般環境	
100kHz-300GHz	全身平均 SAR	0.4W/kg	0.08W/kg	
		任意の組織	任意の組織	
100kHz-6GHz	局所 SAR	10g 当たり 10W/kg	10g 当たり 2W/kg	
		(四肢では 20W/kg)	(四肢では 4W/kg)	
6GHz-30GHz		任意の体表面**	任意の体表面**	
0unz-30unz	│ │ 入射電力密度	4cm ² 当たり 10mW/cm ²	4cm ² 当たり 2mW/cm ²	
30GHz-300GHz	八別电力省及	任意の体表面**	任意の体表面**	
SUGITZ-SUUGITZ		1cm ² 当たり 10mW/cm ²	1cm²当たり2mW/cm²	

表 1 局所吸収指針(一部)

※人体の占める空間に相当する領域中の任意の面積に相当

(任意の6分間平均値)

第2章 吸収電力密度の指針値の導入等

2.1 6GHz 以上の局所吸収指針の課題

人体と近接して 6GHz 以上の周波数の電波を使用することが見込まれていた第5世代携帯電話(IMT-2020)については、2020年(令和2年)の実現に向けて、国際電気通信連合(International Telecommunication Union)や 3GPP(3rd Generation Partnership Project)などにおいて標準化活動が進められていたことを踏まえ、我が国では、同年のサービス開始に先立つ形で人体防護の確保に向けた検討が行われ、平成30年9月に情報通信審議会から「電波防護指針の在り方」(諮問第2035号)のうち、「高周波領域における電波防護指針の在り方」が一部答申され、それまでは100kHzから6GHzまでが適用範囲であった局所吸収指針が300GHzまでに拡張され、6GHz以上300GHz以下に係る入射電力密度の指針値が導入された。

この当時、ICNIRP や IEEE/ICES において国際ガイドラインの見直し中であったため、同一部答申に際しての電波利用環境委員会報告 2.5.3 において、国際的な整合を図る観点から、「入射電力密度のうち体内に吸収される透過電力密度³の割合は概ね50%以上であるため、透過電力密度の基本制限値の導入による入射電力密度の許容値への影響は周波数により変化するものの約2倍以下であること、かつ局所吸収指針の入射電力密度の指針値(管理環境で10mW/cm²、一般環境で2mW/cm²)は国際ガイドラインの改定版で想定される入射電力密度の指針値(職業ばく露環境で10-20mW/cm²、一般環境で2-4mW/cm²)に対してより制約的に設定していることに留意する必要がある。したがって、これらの国際ガイドラインの改定状況を踏まえ、随時、局所吸収指針を見直すことが重要である。」との見解が示されている。

平成30年の一部答申の後、ICNIRPやIEEE/ICESにおいても国際ガイドラインが改定され、6GHzを超える周波数においては、局所の電波ばく露による体表での温度上昇が考慮され、入射電力密度の指針値(参考レベル)及び吸収電力密度の指針値(基本制限)が導入されている。

評価	平成 30 年一部答申		ICNIRP2020		IEEE/ICES 規格 C95. 1-2019		
指標							
入射電	6-30GHz 20W/m ² @4cm ²		6-300GHz	$20-40W/m^2@4cm^2$	6-300GHz	$20-40W/m^2@4cm^2$	
力密度	30-300GHz	20W/m²@1cm²	30-300GHz	$40-80W/m^2@1 cm^2$	30-300GHz	$40-80W/m^2@1cm^2$	
吸収電	規定なし		6-300GHz	20W/m²@4cm²	6-300GHz	20W/m ² @4cm ²	
力密度	規定なし		30-300GHz	40W/m²@1cm²	30-300GHz	40W/m ² @1cm ²	

表 2 6GHz 以上の指針値の比較(一般環境)

³ 平成30年当時の検討では、「透過電力密度」との用語であったが、吸収電力密度と同じ概念である。

また、新たに定められた国際ガイドラインにおいては、リアクティブ近傍界(図2参照。なお、6GHz においては、 $\lambda/2\pi$ =8mm であるが、遠方界領域、放射近傍界領域及びリアクティブ近傍界領域の境界領域は、空中線等の電磁放射源に依存するため、一意には定められない。)における入射電力密度の指針値の適用について、「2GHz を超え 300GHz までの周波数範囲におけるリアクティブ近傍界領域内のばく露については、参考レベルの値に適用される物理量は、基本制限への適合性を保証するには不十分として扱われます。そのような場合、基本制限への適合性を評価しなければなりません。」(ICNIRP2020)や「参考レベルは、均一なばく露の仮定に基づいており、等価平面波電力密度 4 で表される。リアクティブ近傍界領域内では、その関係は成り立たない。」(IEEE C95. 1–2019)といった見解が示されており、吸収電力密度を用いた評価が推奨されている。

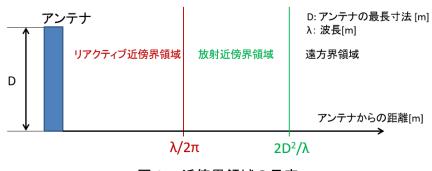


図2 近傍界領域の目安

2.2 6GHz 超の局所吸収指針の検討

2.2.1 局所ばく露における吸収電力密度の適用性

6GHz 超の局所吸収指針の検討に当たっては、高周波領域の電波は体内で熱を発生することがあるため、この熱による温度上昇を安全なレベルに保つことが重要である。

電波ばく露を受けた人体においては、電波は体表面からより深い方向へ指数関数的に減衰する。特に、概ね 6GHz を超えると、加熱の大部分は皮膚又はその周辺組織(皮下脂肪等)で生じることから、6GHz 超の局所ばく露においては、浸透深さより厚さのある質量 10g で平均化された局所 SAR は局所温度上昇の適切な評価指標とはならず、電力密度が表面温度上昇とよい相関を示すため、皮膚組織に対する吸収電力密度は評価指標として適切であるとされている。

⁴ 遠方界領域においては、反射や散乱が起きていなければ、波面が平面上となり、電界強度と磁界強度の比(波動インピーダンス)が一定値である平面波とみなせることから、それを前提として電界強度又は磁界強度から換算できる電力密度のこと。

Sasaki ら $^{5.6}$ の研究によれば、6GHz から 300GHz までの周波数の電波ばく露における 浸透深さについては、表 3 のとおりとされている。

		0 =	()()()
周波数f(GHz)	比誘電率 ε _r	導電率σ (S/m)	浸透深さる(mm)
6	36	4. 0	8. 1
10	33	7. 9	3. 9
30	18	27	0. 92
60	10	40	0. 49
100	7. 3	46	0. 35
300	5. 0	55	0. 23

表3 6GHz から300GHz までにおけるヒトの皮膚組織(真皮)の浸透深さ

ここで、吸収電力密度 S_{ab} は、体表面を z=0、身体の深さを Z_{max} (電波の浸透深さに対して十分に長い深さ: Z_{max} > δ)とし、平均化面積を A とすると、次式で表される。

$$S_{ab} = \frac{1}{A} \iint_{A} \int_{0}^{z_{max}} \rho \cdot SAR \, dz \, dx dy$$
$$= \frac{1}{A} \iint_{A} Re[\mathbf{E} \times \mathbf{H}^{*}] \cdot \mathbf{ds}$$

これらの式の意味するところは、図3のとおり、体表面を垂直に通過し、体表面から体内深部までの直方体の積分領域 V に伝搬される(単位時間当たりの)エネルギーが、体表面において全て吸収されるものとして捉えるということである。すなわち、6GHz から 10GHz までにおいては、皮膚組織又はより深部の組織でも一定の吸収はあるものの、「吸収電力密度」は、体表面を通過して人体内で単位時間に吸収されるエネルギー量を体表面における単位面積で平均化したものと位置づけることができる。

⁶ K. Sasaki, K. Wake, and S. Watanabe, "Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz," Phys. Med. Biol., vol. 59, no. 16, pp. 4739-4747, Aug 2014, doi: 10.1088/0031-9155/59/16/4739.

⁵ K. Sasaki, M. Mizuno, K. Wake, and S. Watanabe, "Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz," Phys. Med. Biol., vol. 62, no. 17, pp. 6993-7010, Sep 2017, doi: 10.1088/1361-6560/aa81fc.

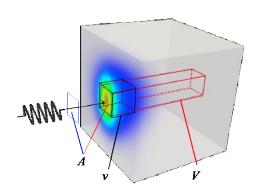


図3 局所 SAR、入射電力密度及び吸収電力密度の概念図⁷

SAR 及び吸収電力密度のそれぞれについて、温度上昇との関係を分析した研究も報告されており、図4のとおり、6GHz以上においては、吸収電力密度の方がより優れた相関があることが示唆されている。

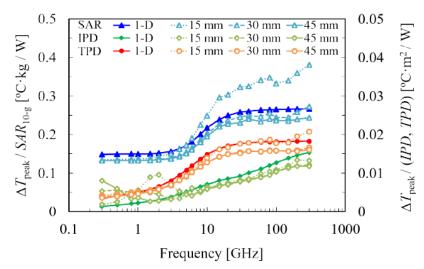


図4 ダイポールアンテナからの近傍ばく露における温度上昇8

- 注1)実線(1-D)は、1次元解析結果(平面波ばく露)。点線はアンテナー モデル間距離を変化させた場合の3次元解析結果。
- 注2) SAR (局所比吸収率) は10g 組織で平均化、IPD (入射電力密度) 及び TPD (透過電力密度: 吸収電力密度と同じ概念) は4cm²で平均化。

平成30年の一部答申では、入射電力密度を評価指標とすることについては、体表面を通過し、体内に吸収される吸収電力密度との間に乖離があることが指摘されている。

⁷ 電波防護指針の在り方に関する検討作業班 資料 13-4

⁸ D. Funahashi, A. Hirata, S. Kodera, and K. R. Foster, "Area-averaged transmitted power density at skin surface as metric to estimate surface temperature elevation," IEEE Access vol. 6, pp. 77665-77674, 2018.

これは、体表面において大きさが同じ入射電力密度であっても、ばく露条件(特に、周波数、入射角及び偏波)によって透過率が変わるためである。電界ベクトルが境界面に平行な TE 波については、入射角に対して透過率は単調に減少することから、温度上昇が最大となるのは、体表面に垂直に入射する場合である。また、磁界ベクトルが境界面に平行な TM 波については、Brewster 角 ⁹で入射した場合に反射が起こらず透過率が最大となるが、単位入射電力密度当たりの温度上昇に関しては、体表面に垂直に入射する場合がワーストケースとなることが示されている ¹⁰。このため、体表面に入射する電波は、TE 波と TM 波の重ね合わせによって表現されることから、入射電力密度の指針値の規定に当たっては、表面温度上昇がいずれも最大となる垂直入射での電力密度に基づくこととされた。

他方、図5のとおり、TM 波についての比較となるが、単位吸収電力密度当たりの温度上昇は、入射角にあまり依存せず、入射電力密度と比較して一貫性のある特性を示すことも確認されていることから、局所ばく露において、吸収電力密度を評価指標として適用することは、より適切となると考えられる。この場合において、前述の定義式にならい、吸収電力密度の評価は、生体が電磁界にさらされることによって生体内部方向に体表面を垂直に通過して吸収される単位面積当たりの電力を対象とすることを原則とすることが適当である。

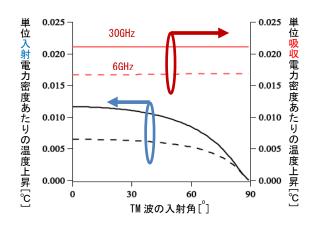


図 5 皮膚(多層平板構造)へ TM 波が入射する場合の温度上昇⁹

 9 屈折率の異なる 2 つの物質の境界に角度 θ を持って TM 波が入射する際には、反射係数の大きさ (|R|) が 0 となる角度 (Brewster 角) をもち、 θ =0° より Brewster 角まで反射係数の大きさは単調減少する。すなわち、透過率(1- $|R|^2$)は、 θ =0° より Brewster 角まで単調増加する。

¹⁰ Kun Li, Kensuke Sasaki, Soichi Watanabe and Hiroshi Shirai, "Relationship between power density and surface temperature elevation for human skin exposure to electromagnetic waves with oblique incidence angle from 6 GHz to 1 THz", Physics in Medicine & Biology, Volume 64, Number 6, 2019.

2.2.2 吸収電力密度の平均化面積

電力密度を評価する場合、電波が人体に入射する面(体表面)を定義し、ある面積にわたって平均化することになるが、空間的に一様なばく露であれば、いずれの面積で平均化しても平均値は変わらないものの、局所的なばく露を評価対象としていることから、評価する面積の設定によって面積平均最大値が変わる。このため、平均化するための面積が重要である。

表2のとおり、ICNIRP ガイドライン(2020)及び IEEE/ICES 規格 C95. 1–2019 のいずれも、6GHz を超え 300GHz 以下の局所吸収電力密度については、体表面の面積 4cm^2 の正方形で平均化している。また、30 GHz を超える周波数では、体表面の平均化面積 1cm^2 の正方形でのばく露について、平均化面積 4cm^2 での制限値の 2 倍に制限されるという追加的な制約を課している。

ICNIRP ガイドライン (2020) では、平均化面積の考え方について、平成 30 年答申と同様に、Hashimoto ら ¹¹及び Foster ら ¹²の研究が引用されている。

Hashimoto らは、4素子からなるダイポールアレーアンテナを、人体頭部を模擬した多層直方体モデル近傍(アンテナと人体モデルの距離は 15-40mm)に配置した場合のばく露で生じる単位入射電力密度当たりの皮膚の最大温度上昇を求めており、入射電力密度の平均化面積を変化させ、皮膚最大温度上昇との比の周波数特性を調査している。この報告によれば、図6に示すとおり平均化面積を4cm²とした場合には、温度上昇を面積平均の入射電力密度で除した割合は、平面波が均質媒質に入射する状態を想定した1次元解析の値に比べて、約30GHz までは小さいが、30GHz を超えると大きくなる場合もあり、その要因は吸収電力の局在化と考えられ、必ずしもより制約的ではない場合もあることが示されている。

Foster らは、2次元の皮膚単層モデルを用いて理論解析を行い、皮膚温度上昇と相関の取れる電力密度の空間平均値は、血流の影響を受けばらつきがあるものの、1-4cm²の範囲にあると算出している。

一般的には、周波数が増加するにつれて、より小さなビーム径になる可能性を考慮に入れて、平均化面積を縮小する必要がある。温度上昇によく一致するようにするためには、平均化面積を周波数が 6GHz から 300GHz まで増加するにつれて、4cm²から 1 cm²へと徐々に変化させることが考えられる。

しかしながら、国際ガイドラインでは、実用的な観点から、6GHz を超え 300GHz 以下の範囲での平均化面積に 4cm²の正方形を用いた上で、30GHz を超え 300GHz 以下(焦点集束ビームのばく露が起きる可能性がある。)においては、より小さな面積において

¹¹ Y. Hashimoto, A. Hirata, R. Morimoto, S. Aonuma, I. Laakso, K. Jokela, and K. R. Foster, "On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz", Physics in Medicine and Biology, vol. 62, pp. 3124—3138, 2017.

¹² K. R. Foster, M. C. Ziskin, and Q. Balzano, "Thermal modeling and the next generation of radiofrequency limits: Commentary", Health Physics, vol. 113, pp. 41-53, 2017.

1cm²の正方形の空間平均に対する制約を課すこととしている。
都合により図 6 は非掲載としています。

も健康への悪影響の運用上の閾値を超過しないことを確実にするために、追加的に

図 6 異なる平均化面積 (a) 1 cm² (b) 4 cm² (c) 9 cm² (d) 20 cm² で平均化した 入射電力密度における体表温度上昇⁸

さらに、IEEE/ICES TC95 SC6 (EMF Dosimetry Modeling)では、6GHz 以上の吸収電力密度の空間平均に対する異なるスキームの影響を調査・定量化するため、11 機関での相互比較研究が実施されている。具体的には、図7のとおり、形状を単純化した人体モデルの近傍に、ダイポールアンテナ又はダイポールアレーアンテナを配置した状態について、吸収電力密度をシミュレーションにより評価している 13。

¹³ K. Li, S. Kodera, D. Poljak, Y. Diao, K. Sasaki, A. Susnjara, A. Prokop, K. Taguchi, J. Xi, S. Zhang, M. Yao, G. Sacco, M. Zhadobov, W. El Hajj, A. Hirata, "Calculated Epithelial/Absorbed Power Density for Exposure From Antennas at 10-90 GHz: Intercomparison Study Using a Planar Skin Model". IEEE Access, 2023, 11: 7420-7435.

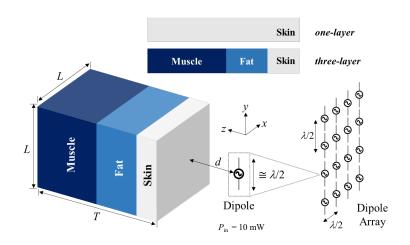


図7 ダイポール(アレー)アンテナを使用したばく露シナリオ

ダイポールアンテナを対象としたばく露シナリオにおいて、周波数を 10GHz、30GHz 及び 90GHz とし、平均化面積を 1cm² 及び 4cm² として計算した結果は図 8 のとおりであるが、各機関から概ね一致した値が得られている。ダイポールアンテナあるいはダイポールアレーアンテナ、両シミュレーション結果において、いずれの周波数でも、平均化面積 1cm² 及び 4cm² を比較すると、前者の方がより大きな値となっていることから、吸収電力密度分布が狭い領域に集中する場合には、1cm² の面積で平均化することにより、きめ細かな評価が可能となると考えられる。

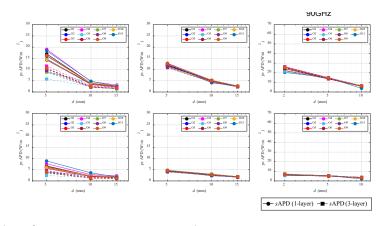


図8 ダイポールアンテナと人体モデル間の距離 d を変化させた際の 吸収電力密度(平均化面積: 1cm²及び 4cm²)

前述の Foster らの研究では、理論的熱モデルに基づき、電波の照射面積を小さくし 局所化した場合の最大表面温度上昇が生体内熱拡散により面積が大きい場合よりも小 さくなることが示されている。 また、Funahashi ら 8 は、精緻な人体頭部モデルの側頭部に、ダイポールアンテナ又は実機を想定したパッチアンテナを放射源として配置したシミュレーションを実施している。周波数を変えて、吸収電力密度と温度上昇の関係を評価した結果、図 9 のとおり、平均化面積 4 cm 2 の特性において、平均化面積 1 cm 2 では生じない吸収電力密度と温度上昇の相関の乖離が生じることがあり、平均化面積 1 cm 2 を用いることが適切な場合があることが示唆されている。

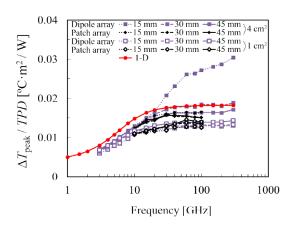
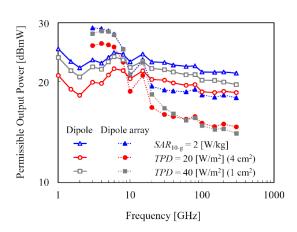



FIGURE 5. The ratio of the surface temperature elevation to the TPD averaged over 4 cm² and 1 cm² for the four elements dipole antenna and patch antenna array.

図9 4素子ダイポールアンテナアレー及びパッチアンテナアレーでの 単位吸収電力密度当たりの表面温度上昇(平均化面積:1cm²及び4cm²)

さらに、ダイポールアンテナを用いた数値シミュレーションにより、吸収電力密度の制限値 $20W/m^2$ (平均化面積 $4cm^2$)と制限値 $40W/m^2$ (平均化面積 $1cm^2$)で、許容される放射電力がおおよそ同じであることが図 10 のとおり示されている。

FIGURE 8. Permissible output power for dipole antenna and dipole antenna array when SAR or TPD restricted to the exposure limit.

図 10 局所 SAR 又は吸収電力密度の制限値を満たす許容出力

これらは、国際ガイドラインにおいて理論的検討に基づき設定された、平均化面積 1cm² での制限値について平均化面積 4cm² での制限値の 2 倍とすることの妥当性を具体的に確認したものである。

2.2.3 吸収電力密度の指針値

前述のとおり、高周波領域では、電磁波ばく露による温度上昇を制限することが重要である。ICNIRP ガイドライン(2020)では、 41° C以上の局所温度をもたらす電波ばく露を潜在的に有害として扱われている。具体的には、体温は、身体組織に応じて変化するため、表 4 のとおり、2 つの組織タイプに分類した上で、正常体温時の温度は、通常、タイプ 1 組織では 33° C未満から 36° Cまで、タイプ 2 組織では 38.5° C未満であることから、温度上昇がタイプ 1 及びタイプ 2 の組織内でそれぞれ 5° C及び 2° Cを局所ばく露における健康への悪影響の運用上の閾値としている 14.15。

左記温度上昇に必要なAPD値 基本制限 局所ばく露 全身ばく露 (30 min) 6-300 GHz > 30 GHz 正常体温時 運用上の 組織タイプ ばく雲部位 (/6 min • 4 cm²) (/6 min · 1 cm²) 職業げく霰 職業げく霰 温度 閾値 (安全率) ばく露 ばく露 太もも の全ての組織 職業ばく露 x 1/2 33℃未満~ タイプ1 $dT = 5^{\circ}C$ 36°C 眼の角膜・前房・虹彩 表皮・真皮組織 200 W/m² 400 W/m² 100 W/m² 20 W/m² 一般公衆 脂肪組織 (20 mW/cm²) (40 mW/cm²) (10 mW/cm²) (2 mW/cm²) ばく露: 筋組織 x 1/10 骨組織 頭部 ※職業レベル のさらに の全ての組織(た 腹部 x 1/5 タイプ2 だしタイプ1の部 38.5℃未満 $dT = 2^{\circ}C$ 背部 位を除く) 胸部 平均深部 職業:x1/10 全身平均SARで4 W/kg $dT = 1^{\circ}C$ 0.4 W/kg 0.08 W/ks 体温37℃ 公衆:x1/50

表4 組織タイプと基本制限

¹⁴ International Commission on Non-Ionizing Radiation Protection (ICNIRP), "GUIDELINES FOR LIMITING EXPOSURE TO ELECTROMAGNETIC FIELDS (100 kHz to 300 GHz)", HEALTH PHYS 118(5): 483—524; 2020

¹⁵ 高周波電磁界の生体影響として熱作用が確立されているが、有害な健康影響を生じる最も低い高周波 電磁界レベル(真の閾値)を決定することは必ずしも容易ではない。このため、ICNIRPでは、他の発生 源に係る熱生理学の知識も踏まえて、高周波電磁界への人体ばく露に関する「運用上の閾値」(全身ば く露については深部体温 1℃上昇、局所ばく露についてはタイプ 1 組織で 5℃、タイプ 2 組織で 2℃の温 度上昇)を設定している。高周波電磁界のばく露制限は前述のような温度上昇を抑制する考えに則って いるが、日常生活においては、暖房や温水浴により積極的に熱を享受することがあるため、リスク評価 の観点からは、これらの比較衡量にも留意が必要である。

6GHz から 300GHz までの範囲においては、電磁界エネルギーの大部分は表層組織に蓄積され、最悪事例の温度上昇は皮膚表面に近くで見られる。このため、この周波数範囲では、皮膚表面(タイプ 1 組織)の温度上昇について、健康への悪影響の運用上の閾値(5° C)を下回るように制限すれば、運用上の閾値を上回る温度上昇のために必要な吸収電力密度の値は同じであることから、タイプ 2 組織の温度上昇についても、健康への悪影響の運用上の閾値(2° C)を下回るように制限されることになると考えられる。

温度上昇と局所ばく露の関係に関しては、Morimotoら¹⁶の研究により、局所 SAR の場合の平均化時間(6分)は、6GHz から 300GHz までの局所ばく露においても適切であることが示されている。また、定常状態の局所温度上昇に達するまでの所要時間は、周波数の増加とともに徐々に減少するが、15GHz を超える周波数で顕著な変化は観察されない。このため、吸収電力密度の時間平均については、6分間平均とすることが適当であると考えられる。これは、現行の局所吸収指針である表 1の各項目とも整合的である。

また、Sasaki らにより、6GHz を超える周波数について、多層平板モデルへの平面波入射における吸収電力密度に対する加熱係数[$^{\circ}$ C・ $^{\circ}$ M]が研究されている。この研究では、加熱係数をモンテカルロ法により統計学的に推定しており、最大値が 0.025 $^{\circ}$ C・ $^{\circ}$ Mであると評価されている。

これらのことから、タイプ1組織について、健康への悪影響の運用上の閾値である5°C上昇させるためには、200W/m²の吸収電力密度が必要となる。また、この吸収電力密度の強度は、前述のとおり、タイプ2組織についても、健康への悪影響の運用上の閾値(2°C)を下回るように制限することができる。

国際ガイドラインでは、科学的不確かさ、人口集団全体での熱生理機能の違い、環境条件及び身体活動レベルの変動性が考慮されている。具体的には、基本制限における職業ばく露(電波防護指針の管理環境に相当)の指針値の設定に当たり、健康への悪影響の運用上の閾値(200W/m²)に対する低減係数2が適用されており、職業ばく露の指針値は100W/m²とされている。局所ばく露の低減係数は、全身ばく露のそれよりも小さく設定されている理由は、局所ばく露に関連する健康影響の閾値が環境条件及び高度に変化する中枢性体温調節プロセスにあまり依存せず、また、局所ばく露に関連する健康影響が医学的にそれほど深刻ではないためである。他方、一般公衆(電波防護指針の一般環境に相当)には、ばく露に気づくことを求めることはできず、リスク低減対策をとることを求めることはできないこと、また、一般人口集団では熱生理機能の違いもより大きくなると考えられる。このため、一般公衆ばく露には、健康への悪影響の運用上の閾値(200W/m²)に対する低減係数10が適用されており、指針値

¹⁶ Morimoto R, Hirata A, Laakso I, Ziskin M, Foster R. "Time constants for elevation in human models exposed to dipole antenna and beams in the frequency range from 1 to 30 GHz." Phys Med Biol 62:1676—1699; 2017.

は20W/m²とされている。

これらの指針値に関しては、例えば、総務省予算(生体電磁環境研究及び電波の安全性に関する評価技術研究)により、皮膚や眼球を対象とした研究が行われており、 その妥当性が検証されている。

久留米大学による動物実験(ラット皮膚への準ミリ波ばく露)¹⁷では、ICNIRP ガイドライン(2020年)の職業ばく露の指針値100 W/m²では皮膚の組織変化は生じないことなどが示唆されている。詳細は、参考資料1参照。

また、同大学による人体前腕皮膚のばく露実験では、吸収電力密度と温度上昇の関係について、実測値が人体モデルを用いた数値解析による推定値の 1/3 程度に下回ったことが確認されており、基本制限が実際の生きた人体皮膚でも十分に安全な制限として機能することが示唆されている。また、皮膚血流に対する実験結果からは、ばく露強度が基本制限を下回っていれば影響惹起の可能性は低いことが示唆されている。詳細は、参考資料2参照。

金沢医科大学における家兎眼球へのミリ波(28~162GHz)の電波ばく露による眼障害閾値の研究によれば、閾値(Damage Dose 50%)が極小となった事例(周波数:75GHz)であっても、入射電力密度で100~200mW/cm²(=1000~2000W/m²)の範囲にあることが示唆されており、入射電力密度のうち体内に吸収される割合は概ね 50%以上であること、また、瞬目など、眼が鋭敏な忌避反応を持つことからも、吸収電力密度で100W/m²(管理環境)は20W/m²(一般環境)は十分に安全側にあると考えられる。電波ばく露による眼部、眼瞼皮膚及び体部皮膚の表面温度変化や障害閾値を比較したところ、28GHz 及び60GHz のばく露による表面温度上昇は、角膜より皮膚が高く、障害閾値については角膜より皮膚が低いという結果が得られており、皮膚への防護をより意識することが重要であることも示唆されている。詳細は、参考資料3参照。

これらのことから、我が国の電波防護指針の局所吸収指針においても、国際ガイドラインとの調和を考慮し、6GHz を超え 300GHz 以下の周波数について、吸収電力密度の指針値を次のとおり設定することが適当であると考えられる。

周波数範囲管理環境一般環境6-300GHz任意の体表面 4cm² 当り 10mW/cm²任意の体表面 4cm² 当り 2mW/cm²30-300GHz任意の体表面 1cm² 当り 20mW/cm²任意の体表面 1cm² 当り 4mW/cm²

表 5 吸収電力密度(6分間平均値)の指針値(案)

-

¹⁷ Ijima E, Li K, Hikage T, Nagai A, Murakami Y, Arima T, Ishitke T, Masuda H: Intensity-dependent Temperature Rise Induced by Local Exposure to 26.5 GHz Quasi-Millimeter-wave in Rat. In Vivo 37 (5) 2092-2099; 2023. DOI: https://doi.org/10.21873/invivo.13306

2.3 電波防護指針全体の整合性

2.3.1 局所吸収指針の適用除外となる電力

局所吸収指針の適用範囲において、適用除外となる電力が示されており、6GHz 以上の周波数については表6のとおりである。適用除外となる電力は、入射された全ての電力が平均化面積の領域において吸収される最悪条件を想定しており、その算出方法は、小電力機器・電子機器の簡易評価方法の国際標準規格(IEC 62479:2010)に基づいている。具体的には、入射電力密度の指針値に対応する平均化面積を乗じたものである。なお、平均化時間は、対応する指針値に従う。

	管理	環境	一般環境		
周波数範囲[GHz]	6-30	30-300	6-30	30-300	
入射電力密度の指針値[mW/cm²]	10	10	2	2	
平均化面積[cm²]	4	1	4	1	
適用除外となる電力[mW]	40	10	8	2	

表 6 局所吸収指針の適用除外となる電力(現行)

この考え方は、吸収電力密度にも適用できるものであるが、2.2.3 の指針値案に基づく場合、適用除外となる電力は表7のとおりとなる。30GHz を超え 300GHz 以下については、2 つの平均化面積があるが、指針値との積で小さい方を適用除外とする電力の上限値とすることが、安全側に立った考え方である。

	管理環境		一般環境			
周波数範囲[GHz]	6-30 30-300 6-30 30-		30-	300		
吸収電力密度の指針値[mW/cm²] 10 10 20 2 2		2	4			
平均化面積[cm²]	4	4	1	4	4	1
指針值×平均化面積	40	40	20	8	8	4
適用除外となる電力[mW] 40			20	8		4

表7 適用除外となる電力の考え方

6GHz 以上の周波数においては、入射電力密度と吸収電力密度のいずれかの指針値を満たせば、電力密度の観点から評価ができることから、6GHz 以上の周波数における局所吸収指針の適用除外となる電力の上限値として、吸収電力密度の指針値に基づく計算結果を採用することができる。

なお、実際には、電波は平均化面積の領域よりも広い範囲に入射するため、適用除 外となる電力を超える場合においても、適切な方法により吸収電力密度又は入射電力 密度を評価することで、電波防護指針への適合性を確認することは可能である。

2.3.2 総合照射比

局所吸収指針においては、複数の周波数の電波にばく露する場合について、十分に 安全側での評価となるように、それぞれの周波数の電波により最も強くばく露される 領域が重なる最悪事例も考慮して、各周波数成分の指針値に対する割合の総和が1を 超えてはならないと定められている。吸収電力密度の指針値を導入した場合であって も、同様の考え方が適用されるように取り扱う必要がある。

具体的には、6GHz 以下の周波数の電波と 6GHz を超える周波数の電波に同時にばく露する場合には、局所 SAR と電力密度のそれぞれのばく露量の指針値に対する割合を足し合わせて評価することになるが、この場合において、6GHz を超える同一の周波数帯について、入射電力密度と吸収電力密度の両方を評価する必要はない。ただし、吸収電力密度の指針値を用いて評価する場合は、30GHz から 300GHz までについては平均化面積 1cm² と 4cm² のいずれも評価を行い、指針値に対する割合が高い方により評価することが適当である。

2.3.3 基本制限の枠組み

吸収電力密度の指針値は、身体に近接して使用される無線機器等から発射される電 波の評価に用いることを目的としており、管理指針の局所吸収指針に組み込まれるべ きものである。

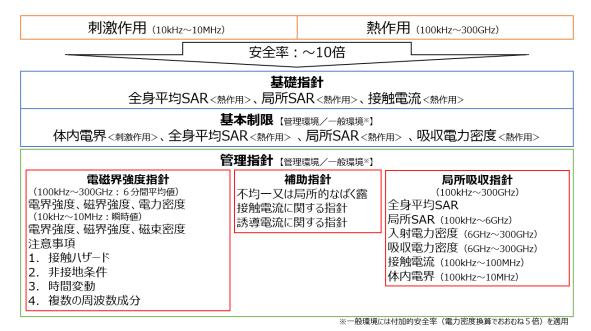
他方、基本制限は、「健康への有害な影響に至る可能性のある電波ばく露による生体内現象と直接関連する物理量についての制限値」と定義されており、吸収電力密度は、生体内(6GHz 超では主に体表面)で吸収される単位面積当たりの電力であり、「生体内現象と直接関連する物理量」にも当てはまることから、基本制限にも位置付けることが適当であると考えられる。

基本制限は、平成27年3月の一部答申「電波防護指針の在り方」(諮問第2035号)のうち、「低周波領域(10kHz以上10MHz以下)における電波防護指針の在り方」により、低周波領域に限って導入された概念であるが、その際に参照したICNIRPガイドライン(2010年)では、"Mandatory limitations on the quantities that closely match all known biophysical interaction mechanisms with tissue that may lead to adverse health effects."(健康への有害な影響に至る可能性のある、全ての、既知の、身体組織との生物物理学的相互作用メカニズムに直結する物理量に関する、守ることが義務づけられた制限値)と定義されている。その後のICNIRPガイドライン(2020年)においては、基本制限として、ICNIRPガイドライン(2010年)で定められた100kHzから10MHzまでの周波数における神経刺激に関連する指標(誘導電界)を

位置付けることをそのまま踏襲した上で、全身平均 SAR (100kHz から 300GHz まで)、 局所 SAR (100kHz から 6GHz まで)、局所吸収電力密度 (6GHz を超え 300GHz まで)と いった高周波領域の熱作用に係る評価指標が位置付けられている。

このため、国際ガイドラインとの整合の観点からは、我が国の電波防護指針においても、現行では低周波領域の刺激作用に係る評価指標のみが位置付けられている基本制限について、高周波領域の熱作用に係る評価指標である吸収電力密度を組み込むのであれば、全身平均 SAR 及び局所 SAR も同様に組み込むことが適当であると考えられる。

2.3.4 基礎指針の注意事項


基礎指針 4 (b) においては、「3GHz 以上の周波数においては、眼への入射電力密度(6分間平均)が 10mW/cm²以下とすること。」との注意事項が定められている。

他方、3GHz 以上の周波数に関し、電磁界強度指針については、管理環境においては、電力密度(空間最大値)の指針値は、5mW/cm²とされている。これは、ICNIRP ガイドライン(2020年)の全身ばく露に関する参考レベル(職業ばく露)に等しい。また、補助指針については、管理環境においては、電力密度(空間平均値)の指針値は電磁界強度指針と同様に5mW/cm²とされており、また、眼への入射電力密度(空間最大値)の指針値は10mW/cm²とされている。これらのことから、電磁界強度指針及び補助指針の指針値に適合するのであれば、基礎指針4(b)の注意事項も満たすことになる。

電波防護指針の適用手順としては、まずは管理指針(電磁界強度指針、補助指針及 び局所吸収指針)による評価を行い、それを満たさないことが示された場合に、基礎 指針又は基本制限に立ち戻った評価を行うこととされている。手順の重複となること から、基礎指針 4 (b) の注意事項については、削除することが適切であると考えられる。

2.3.5 電波防護指針の全体像

上述の電波防護指針の改定に関する検討を整理すると、その全体像は、図 11 のとおりである。

図11 電波防護指針の全体像(案)

2.4 電波防護指針と国際ガイドラインの整合性

6GHz 超の局所吸収指針の改定案は、全身平均 SAR、吸収電力密度及び入射電力密度から構成されている。局所吸収指針の管理環境における全身平均 SAR の指針値は、基礎指針における全身平均 SAR の指針値と同一である。

直近の国際ガイドラインの改定において、ICNIRP 高周波ガイドライン(2020 年)では、全身平均 SAR の基本制限及びそれに対応する電力密度が 300 GHz までに拡張されている。他方、IEEE C95. 1-2019 規格では、基本制限は 6 GHz までであるものの、全身平均 SAR に対応する電力密度を 300 GHz までに拡張している。

本検討においては、我が国の吸収電力密度の指針値について、国際ガイドラインとの整合を図りつつ、導入することとした。すなわち、基本制限及び局所吸収指針における全身平均 SAR の指針値(管理環境 0.4W/kg、一般環境 0.08W/kg)については、国際ガイドラインと整合している。また、その適用上限周波数(300GHz)については、ICNIRP ガイドラインと整合している。我が国では、平成 2 年答申以来、基礎指針において、全身平均 SAR の指針値を定め、電波防護指針の考え方の根拠を一貫させてきた訳であるが、本検討においてもそれを踏襲し、基本制限及び局所吸収指針における管理環境の全身平均 SAR の指針値を同じ値としている。

平成 30 年一部答申により導入された入射電力密度については、国際ガイドラインとの差異があるため、今後、整合性に関する検討が必要である。

第3章 今後の検討課題

- 3.1 国際的な動向
- 3.2 研究課題

V 検討結果

検討の結果、情報通信審議会諮問第 2035 号「電波防護指針の在り方」(平成 25 年 12 月 13 日諮問)のうち、「吸収電力密度の指針値の導入等」について、別添のとおり電波防護指針の改定案を取りまとめた。主な改定部分には下線を付しているが、それ以外にも誤記の訂正、用語の統一、曖昧さ回避その他のエディトリアルな修正を加えている。

情報通信審議会 情報通信技術分科会 電波利用環境委員会 構成員

		情報過過12門分析女 电放射用操充安良女 情况良
役職	氏名 (敬称略)	主 要 現 職
主査	平田 晃正	名古屋工業大学 先端医用物理・情報工学研究センター センター長・教授
(R5. 1∼)		
専門委員		
主査代理	石上 忍	東北学院大学 工学部 電気電子工学科 教授
(R5. 1∼)		
専門委員		
委員	長谷山 美紀	北海道大学 副学長・大学院情報科学研究院長
委員	増田 悦子	公益社団法人全国消費生活相談員協会 理事長
専門委員	秋山 佳春	NTT アドバンステクノロジ株式会社 スマートコミュニティ事業本部
		スマートエネルギービジネスユニット ビジネスユニット長
専門委員	石山 和志	東北大学 電気通信研究所 教授
専門委員	上原 仁	一般財団法人テレコムエンジニアリングセンター 常務理事
(R5. 1∼)		
専門委員	大西 輝夫	国立研究開発法人情報通信研究機構 電磁波研究所 電磁波標準研究センター
		電磁環境研究室 研究マネージャー
専門委員	熊田 亜紀子	東京大学 大学院 工学系研究科 電気系工学専攻 教授
専門委員	小島原 典子	静岡社会健康医学大学院大学 疫学領域長・教授
(R5. 1∼)		
専門委員	清水 久恵	北海道科学大学 保健医療学部 臨床工学科 教授
専門委員	杉本 千佳	横浜国立大学大学院工学研究院 知的構造の創生部門 准教授
(R5. 1∼)		
専門委員	曽根 秀昭	東北大学 データシナジー創生機構 特任教授
専門委員	田島 公博	一般社団法人情報通信技術委員会 伝送網・電磁環境専門委員会
		情報通信装置の EMC・ソフトエラー SWG リーダ
専門委員	塚原 仁	一般財団法人日本品質保証機構 総合製品安全部門計画室 参与
専門委員	徳田 寛和	富士電機株式会社 技術開発本部 デジタルイノベーション研究所 デジタル
		プラットフォームセンター システム制御研究部 主査
専門委員	堀 和行	ソニーグループ株式会社 Headquarters 品質マネジメント部 製品安全/環境
		コンプライアンスグループ チーフ EMC/RF コンプライアンススペシャリスト
専門委員	松永 真由美	静岡大学 学術院工学領域 准教授
専門委員	山口 さち子	国立研究開発法人情報通信研究機構 電磁波研究所 電磁波標準研究センター
		電磁環境研究室 主任研究員
専門委員	山崎 健一	一般財団法人電力中央研究所 グリッドイノベーション研究本部
		ファシリティ技術研究部門 副部門長
専門委員	山下 洋治	一般財団法人電気安全環境研究所 関西事業所 副所長
専門委員	和氣 加奈子	国立研究開発法人情報通信研究機構 経営企画部 企画戦略室 プランニング
		マネージャー
主査	多氣 昌生	東京都立大学 システムデザイン学部 特別先導教授・名誉教授(当時)
(∼R5. 1)		
専門委員		
(∼R5. 1)		
主査代理	山中 幸雄	国立研究開発法人情報通信研究機構 電磁波研究所 電磁波標準研究センター
(∼R5. 1)		電磁環境研究室 マネージャー (当時)
専門委員		
(∼R5. 1)		
専門委員	平 和昌	国立研究開発法人情報通信研究機構 電磁波研究所 所長 (当時)
(∼R5.1)		
専門委員	田中 謙治	一般財団法人テレコムエンジニアリングセンター 顧問 (当時)
(∼R5.1)		

(計 26 名)

情報通信審議会 情報通信技術分科会 電波利用環境委員会 電波防護指針の在り方に関する検討作業班 構成員

	氏名 (敬称略)	主要現職
主任	平田 晃正	名古屋工業大学 先端医用物理・情報工学研究センター長
		大学院工学研究科 電気・機械工学専攻 教授
主任代理	牛山 明	厚生労働省 国立保健医療科学院 生活環境研究部 部長
構成員	柿沼 由佳	公益社団法人全国消費生活相談員協会 IT 研究会 研究員
構成員	上村 佳嗣	宇都宮大学 工学部 特任教授
構成員	小島 正美	金沢医科大学 総合医学研究所プロジェクト研究センター
		境原性視覚病態部 客員教授
構成員	小寺 紗千子	名古屋工業大学 大学院工学研究科 電気・機械工学専攻
		准教授
構成員	佐々木 謙介	国立研究開発法人情報通信研究機構 経営企画部
		企画戦略室 プランニングマネージャー
構成員	寺尾 安生	杏林大学 医学部 医学科 教授
構成員	日景 隆	北海道大学 大学院情報科学研究院 准教授
構成員	増田 宏	久留米大学 医学部 環境医学講座 助教
構成員	松本 明子	佐賀大学 医学部 社会医学講座環境医学分野 准教授
構成員	宮越 順二	元 京都大学 特定教授
オブザーバ	多氣 昌生	東京都立大学 システムデザイン研究科 特任教授

(計13名)

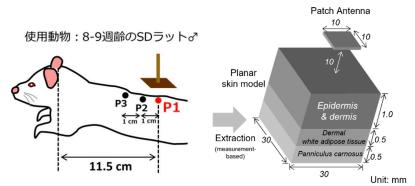
皮膚への生体影響閾値の検索(動物)

1. 背景

通信技術の目覚ましい進歩に伴い、6~GHz を超え、ミリ波(MMW)領域($30\sim300~GHz$)にまで及ぶ周波数を使用する第5~世代移動通信システム(5G)が、世界的に利用可能になりつつある。これに伴い、MMW ばく露による健康への悪影響の可能性を懸念する声もあることから、その評価が待たれている。

MMW は、体表面、すなわち皮膚組織には数ミリメートルしか浸透しない (1,2)。そのため、 MMW のエネルギーは皮膚表面で吸収され、その結果として、主に体表面の温度が上昇すると想定されている。皮膚組織は、発汗や血流による熱交換や外的要因からの保護に関与しており、生体の恒常性維持に重要な役割を果たすことが知られている (3)。したがって、温度変化に基づく皮膚組織への MMW ばく露の影響を評価することは、全身へのばく露影響を考える上でも重要である。

他方、現時点で皮膚への MMW ばく露影響を調べた研究は限定的である。Millenbaugh らは、ラットの腹部に MMW をばく露すると、皮膚と直腸の温度変化が誘発され、その後、皮膚の遺伝子発現が変化すると報告している^(4,5)。また、Nelson らは、ラットだけでなくアカゲザルやヒトでも MMW ばく露の生物学的影響を調べ、皮膚温上昇を比較した⁽⁶⁾。しかし、それらの影響、特にその閾値に強度依存的な変化があるかどうかは依然として不明である。


電波ばく露が及ぼす健康影響のうち、既に実証されている悪影響から人体を防護するため、国際非電離放射線防護委員会(ICNIRP)はガイドラインを制定している $^{(7)}$ 。最新のガイドラインでは、全身平均比吸収率(WBASAR)と吸収(上皮)電力密度(APD)の制限値が設定されており、それぞれ 6 GHz 以上の周波数における過剰な体幹温度上昇と局所温度上昇を防止している。局所的な温度上昇については、人体の異なる部位について、そのベースライン温度に応じて 2 つの代表的な組織タイプが定義されている:表皮、真皮、脂肪、筋肉、骨などの「Type-1」組織と、「Type-1」部位を除く頭部、眼球、腹部などの「Type-2」組織である。いずれの組織タイプも、局所温度が 41° Cを超える高周波電波ばく露により生体影響を及ぼす可能性があるとされている。そのため、温度上昇は「Type-1」では 5° C、

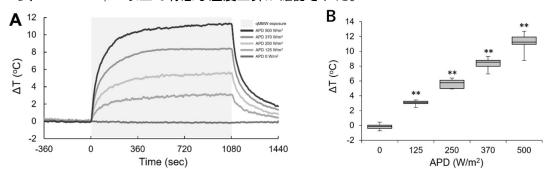
「Type-2」では 2℃を超えないように設定され、コンピューターシミュレーションによって両組織タイプの APD は、6~300 GHz の範囲で 200 W/m² と見積もられた。しかし、この閾値には、実際の生体が有する体温調節などの生理的反応は考慮されていない。したがって、生体において APD がどの程度体温上昇を引き起こすのか、また、どの程度の APD により皮膚障害が生じるのかは分かっておらず、動物を用いた実験的研究が必要である。

そこで、総務省予算(生体電磁環境研究及び電波の安全性に関する評価技術研究)により、実験動物(ラット)に対して $26.5~\mathrm{GHz}$ の準ミリ波(qMMW)を局所ばく露し、APD に対する体温上昇及び皮膚障害の関係を明らかにすることで、現行の ICNIRP ガイドラインの妥当性について検証した $^{(8)}$ 。

2. 評価方法

8~9 週齢の雄性 SD ラットを用いた。実験の間、ラットにはイソフルラン吸入麻酔を施しアクリル製脳定位固定治具に保定し、ばく露用ステージに固定した。局所ばく露を施す部位を耳の付け根より 11.5 cm後方の正中線上の背部皮膚を局所ばく露ターゲットとし、剃毛後に露出させた。周波数 26.5 GHz の正弦 qMMW を局所ばく露用に開発されたパッチアンテナを介してターゲット皮膚に照射した $^{(9)}$ 。5 段階(アンテナ入力電力:0.0.159.0.317.0.476、0.634 W) のばく露強度を設け、ばく露時間は 18 分間とした。ばく露中はターゲット皮膚温度及び直腸温度をグラスファイバー温度計で測定した。また、ターゲット皮膚はばく露 1 日後及び 3 日後に採取し、組織学的検討を行った。

図1 ターゲット部位と温度測定部位 ターゲット部位を P1 とし、1 cm前方 (P2) 及び 2 cm 前方 (P3) を陰性コントロール部位とした。皮膚モデルは文献 8 より一部引用。


3. 結果

3.1. ばく露強度の推定

本実験で用いた局所ばく露時のばく露強度をシミュレーションによって推定した。ラットの背部表面は平坦であるため、皮膚のばく露量解析には全身ボクセルモデルの代わりに多層平面モデルを使用した $^{(10)}$ (図 1)。簡略化されたモデルは、表皮、真皮、真皮白色脂肪組織、皮下脂肪組織(又は皮下脂肪筋)層で構成されており、SD ラットから摘出した組織の厚さを実測し反映させた。有限差分時間領域(FDTD)法 $^{(11)}$ と独自のプログラム $^{(12,13)}$ を用いて、ICNIRP ガイドラインに従って平均化面積を $4~{\rm cm}^2$ として計算した結果、本実験で実際に用いたアンテナ入力電力 0、0. 159、0. 317、0. 476、0. 634 W に対する入射電力密度 (IPD) 及びラット皮膚表面の空間平均 APD は、それぞれ 0、305、610、768、1020 W/m² 及び 0、125、250、370、500 W/m² と推定された。

3.2. 局所ばく露時の皮膚温度変化

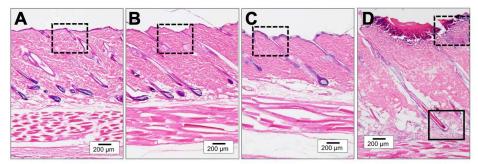

qMMW を 5 段階の強度でばく露したところ、ターゲット皮膚の温度は、ばく露強度に依存して上昇した(図 2)。ばく露 18 分間の温度上昇を偽ばく露時のそれに対して比較したところ、APD 125 W/m^2 以上で有意な温度上昇が確認された。

図 2 26.5 GHz-qMMW ばく露時の皮膚温度 ターゲット皮膚温度のタイムコース (A) 及びばく露 18 分後の上昇温度 (B) を示す (n=6-15)。**: p<0.01 v.s. APD 0 W/m² (文献8 より一部改変し引用)

3.3. 局所ばく露後の皮膚組織変化

qMMW ばく露後のターゲット皮膚切片を HE 染色し、顕微鏡観察を行った結果 (図 3)、APD $0\sim250~W/m^2$ でばく露した皮膚組織は正常のそれと同様の構造であった。また、APD 370 W/m^2 では、ばく露 1 日後及び 3 日後に表皮に肥厚が見られた。さらに、APD 500 W/m^2 では、ばく露 1 日後から表皮の肥厚だけでなく、真皮から脂肪層にかけて浮腫が認められるとともに、同層に好中球の集積や肉芽形成も観察された。

図3 26.5 GHz-qMMW ばく露皮膚の組織変化 qMMW ばく露3日後のターゲット皮膚組織 切片の HE 染色像を示す。A~D はそれぞれ APD 0、250、370、500 W/m² のばく露条件。

4. 考察及び今後の課題

ラット皮膚への局所ばく露実験から得られたデータを現行の ICNIRP ガイドラインと比較し、その妥当性を検証した。背部の皮膚は、表皮、真皮、脂肪、筋肉を有しており、「Type-1」の組織カテゴリーに属すると言える。ICNIRP ガイドラインでは、実際の組織温度が 41° Cに達しないように、「Type-1」組織における 6 分間の温度上昇の上限を 5° Cとし、この温度上昇をもたらす APD を 200 W/m^2 と見積もっている。本実験で得られたラット皮膚における APD と温度上昇値の関係から、APD 200 W/m^2 での温度上昇を推定すると 4.32° Cとなり、 5° Cに至らなかった(図 4)。また、ばく露開始前のターゲット皮膚温度は約 34° Cであったことから、実際の皮膚温度についても 41° Cに達しないことが分かる。したがって、今回の結果は、ヒトではないラットの皮膚を対象としたという制約はあるものの、ICNIRP ガイドラインで定められた「Type-1」組織に対する基準値は、実際の生きた皮膚に対しても妥当であることを示唆している。

qMMW 局所ばく露による皮膚の組織障害についても新たな知見が得られた。本実験条件下では、APD 370 W/m²以上で組織学的影響を生じることが認められた。ただし、ばく露時のターゲット皮膚温度から明らかなように、同影響は約 9° Cの温度上昇を伴っていた。前述したように皮膚の初期温度は約 34° Cだったことから、実際の皮膚温度は 43° C超ということになる。したがって、qMMW の直接的な影響ではなく、qMMW のエネルギー吸収による熱産生を介した影響、すなわち熱的影響だったことが示唆される。

他方、この強度より一段階低い APD 250 W/m^2 及びそれ以下でばく露された皮膚では、組織学的変化は認められなかった。つまり、仮に APD 200 W/m^2 の強度で qMMW を 6 分間ばく露した場合でも、皮膚障害が生じる可能性は低いことが考えられる。この結果も、ICNIRP ガイドラインの妥当性を支持するものと言える。

なお、以上の結果は、評価対象がラット皮膚であること、また、ばく露時間についても 18 分間と限定されていることから、今後、今回得られた閾値及び生体影響に基づき、ばく 露時間や慢性ばく露による影響なども検討していく必要がある。

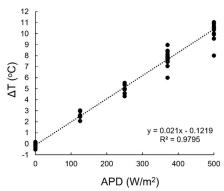


図4 電波ばく露強度 APD とターゲット皮膚温度変化との関係 ばく露開始 6 分後の温度変化を示す (n=7-15)。点線は線形回帰モデル。(文献 8 より引用)

参考文献

- Wu T, Rappaport TS, Collins CM: The human body and millimeter-wave wireless communication systems: Interactions and implications. 2015 IEEE International Conference on Communications (ICC), 2015. DOI: 10.1109/ICC.2015.7248688
- 2. Sasaki K, Mizuno M, Wake K, Watanabe S: Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz. Phys Med Biol 62(17): 6993-7010, 2017. DOI: 10.1088/1361-6560/aa81fc
- 3. Proksch E, Brandner JM, Jensen JM: The skin: an indispensable barrier. Experimental dermatology. Exp Dermatol 17(12): 1063-1072, 2008. DOI: 10.1111/j.1600-0625.2008.00786.x
- Millenbaugh NJ, Kiel JL, Ryan KL, Blystone RV, Kalns JE, Brott BJ, Cerna CZ, Lawrence WS, Soza LL, Mason PA: Comparison of blood pressure and thermal responses in rats exposed to millimeter wave energy or environmental heat. Shock 25(6): 625-632, 2006. DOI: <u>10.1097/01.shk.0000209550.11087.fd</u>
- Millenbaugh NJ, Roth C, Sypniewska R, Chan V, Eggers JS, Kiel JL, Blystone RV, Mason PA: Gene expression changes in the skin of rats induced by prolonged 35 GHz millimeter-wave exposure. Radiat Res 169(3): 288-300, 2008. DOI: <u>10.1667/RR1121.1</u>
- 6. Nelson DA, Walters TJ, Ryan KL, Emerton KB, Hurt WD, Ziriax JM, Johnson LR, Mason PA: Inter-species extrapolation of skin heating resulting from millimeter wave irradiation: modeling and experimental results. Health Phys 84(5): 608-615, 2003. DOI: 10.1097/00004032-200305000-00006
- 7. International Commission on Non-Ionizing Radiation Protection (ICNIRP): Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys 118(5): 483-524, 2020. DOI: 10.1097/HP.000000000001210
- 8. Ijima E, Li K, Hikage T, Nagai A, Murakami Y, Arima T, Ishitke T, Masuda H: Intensity-dependent Temperature Rise Induced by Local Exposure to 26.5 GHz Quasi-Millimeter-wave in Rat. In Vivo 37 (5) 2092-2099; 2023. DOI: https://doi.org/10.21873/invivo.13306
- 9. Higashibata S, Murakami Y, Arima T, Uno T: Localized electric field generating for rats head using a patch antenna in 26.5GHz band. IEICE Communications Express 8(8): 359-362, 2019. DOI: https://doi.org/10.1587/comex.2019XBL0073
- Li K, Kodera S, Poljak D, Diao Y, Sasaki K, Susnjara A, Prokop A, Taguchi K, Xi J, Zhang S, Yao M, Sacco G, Zhadobov M, Hajj WE, Hirata A: Calculated epithelial/absorbed power density for exposure from antennas at 10–90 GHz: Intercomparison study using a planar skin model. IEEE Access 11: 7420-7435, 2023. DOI: 10.1109/ACCESS.2023.3238582
- 11. Taflove A: Advances in computational electrodynamics: The finite-difference time-domain method. Taflove, A. (ed.). Norwood, MA: Artech House. 1998.
- 12. Li K, Sasaki K, Wake K, Onishi T, Watanabe S: Quantitative comparison of power densities related to electromagnetic near-field exposures with safety guidelines from 6 to 100 GHz. IEEE Access 9: 115801-115812, 2021. DOI: 10.1109/ACCESS.2021.3105608
- Li K, Diao Y, Sasaki K, Prokop A, Poljak D, Doric V, Xi J, Kodera S, Hirata A, Hajj WE: Intercomparison of calculated incident power density and temperature rise for exposure from different antennas at 10–90 GHz. IEEE Access 9: 151654-151666, 2021.DOI: 10.1109/ACCESS.2021.3126738

皮膚温熱生理への影響(人体)

1. 背景

第5世代移動通信システム(5G)やWiGig(IEEE 802.11ad)など、ミリ波(MMW)の利用は昨今広く拡大している。しかしその一方で、このMMWばく露によって人体に何かしらの生体影響が生じるのではないかと懸念する声もある。これに対し国際非電離放射線防護委員会(ICNIRP)は、既知の健康への悪影響から身を守るため、職業や一般公衆を対象に、比吸収率(SAR)や入射電力密度(IPD)を評価指標とするガイドライン (1)を策定している。例えば、MMW帯を含む局所ばく露(6~300GHz)における一般公衆の制限値は(20~40 W/m^2)とされている。これらの制限値は、マイクロ波による熱影響に関する生物学的エビデンスや熱変化に関するドシメトリなど (2-5)に基づいており、個人差や年齢を考慮した安全係数も加味されている。

しかし、ガイドラインの検証や改定には、新たな生物学的エビデンスが必要となる。とりわけ生活空間における 5G-MMW のばく露は急速に拡大しており、この周波数帯の電波に対するエビデンスの蓄積は急務である。また、5G-MMW は主に体表に吸収され、深部組織には浸透しないことが知られていることから $^{(6,7)}$ 、ばく露による皮膚組織への直接的な影響や、皮膚影響を介した他の生理機能への間接的な影響にも注目が集まっている。これまでにいくつかの研究グループが 5G-MWW ばく露による生物学的影響を調査してきた。しかし、これらは主に眼 $^{(8,9)}$ や培養細胞 $^{(10,11)}$ についての検討であり、皮膚の温度や血流、温感など人体表面への影響に関する情報はほとんどない $^{(12)}$ 。したがって、5G-MMW ばく露時のこれら生理学的データは、ガイドラインの妥当性検証に役立つ可能性がある。

そこで、総務省予算(生体電磁環境研究及び電波の安全性に関する評価技術研究)により、人体の前腕皮膚に対して 28 GHz の準ミリ波 (qMMW) を局所ばく露し、これに伴う皮膚の温度と血流の変化や、温感の有無について調査し、現行の ICNIRP ガイドラインの妥当性について検証した。

2. 評価方法

2.1. 研究対象者とインフォームド・コンセント

本研究では、20歳から39歳の健康な成人35名(成人28±6歳)を研究対象者とした。 人体を対象とした実験を行うため、対象者を公募し、事前説明会を経た後、インフォーム ド・コンセントを取得した。なお、本研究は、所定の倫理審査プロセスを経て、久留米大 学倫理委員会に承認されている。

2.2. 実験方法

生理学的パラメータは、皮膚温度・皮膚血流・温感有無の3種類とし、それぞれサーモグラフィーカメラ、2次元血流計カメラ、反応確認ボタンによって測定した。データ記録は定常状態確認後に開始し、ばく露開始前6分間の記録をコントロールデータ、ばく露開始後12分間のそれをばく露中データとした。なお、当該実験では二重盲検法を用い、対象者と実験者の両者にばく露強度を伏せて実施した。また、対象者については、実験全体の所要時間・経過時間・電波ばく露開始のタイミングについても併せて伏せた。

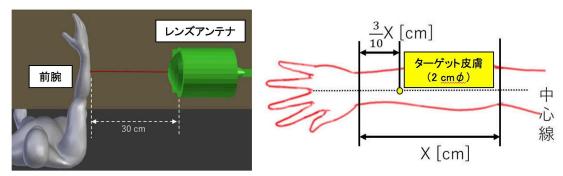


図1 人体前腕への28 GHz-qMMW ばく露 前腕はレンズアンテナから30 cm の距離に配置した。電波は前腕皮膚の直径2 cm の円形範囲に集中して照射される。ターゲット皮膚の位置は前腕サイズの個体差を考慮している。

3. 結果

3.1. ばく露強度の推定

ICNIRP ガイドラインに従って平均化面積を $4~\text{cm}^2$ として計算した結果、本実験で実際に用いたアンテナ入力電力 1~W に対する IPD は $600~\text{W/m}^2$ であり、これに基づき吸収電力密度 (APD) を推定したところ $300~\text{W/m}^2$ であった。なお、この APD 値の推定方法は現在国際的に検討が進められている段階であり、今後数パーセント程度の修正が加わる可能性がある。

3.2. 電波ばく露時の皮膚温度変化

qMMW を 8 段階の強度でばく露したところ、ターゲット皮膚の温度は強度に依存した上昇を示した (図 2)。ばく露 12 分間の温度変化を偽ばく露時のそれに対して比較したところ、APD 150 W/m^2 以上で有意な上昇が確認された。

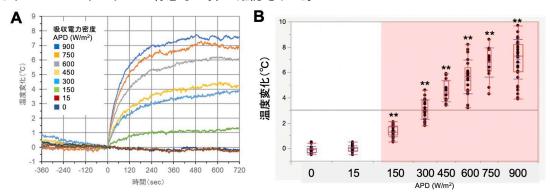
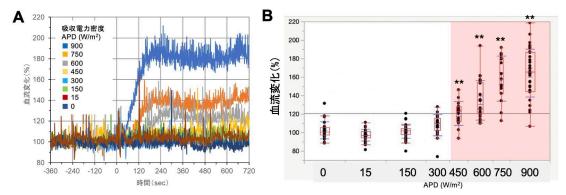



図 2 26.5 GHz-qMMW ばく露時の皮膚温度変化 (A) ターゲット皮膚における温度の時間変化。(B) ばく露 12 分間で生じる個体ごとの皮膚温度変化。(n=16-35)。**: p<0.01 v. s. APD 0 W/ m^2

3.3. 電波ばく露時の皮膚血流変化

qMMW を 8 段階の強度でばく露したところ、ターゲット皮膚の血流は強度に依存した上昇を示した (図 3)。ばく露 12 分間の血流変化を偽ばく露時のそれに対して比較したところ、APD 450 W/m^2 以上で有意な上昇が確認された。

図3 26.5 GHz-qMMW ばく露時の皮膚血流変化 (A) ターゲット皮膚における血流の時間変化。(B) ばく露 12 分間で生じる個体ごとの皮膚血流変化。(n=16-35)。**: p<0.01 v.s. APD 0 W/m²

3.4. 電波ばく露に対する温感知覚

qMMW ばく露開始後に温感を有した研究対象者の割合を調べたところ(図 4)、APD 400~900 W/m²のばく露強度で4割以上の研究対象者が皮膚の温度上昇を感じた。他方、300 W/m²以下の電波強度でも温感ボタンを押した研究対象者もいたが、その割合は偽ばく露群と大きな差はなかった。

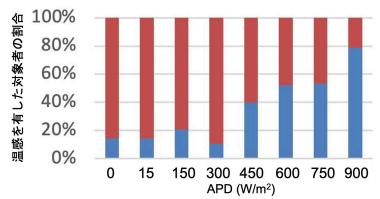


図 4 26.5 GHz-qMMW ばく露時の温感知覚反応 各強度で電波ばく露した際に温感を有した研究対象者の割合を示す。

4. 考察及び今後の課題

実験の結果、人体皮膚に 28 GHz の qMMW を局所ばく露すると、ばく露強度に依存する皮膚の温度上昇及び血流増加が認められた。そこで、取得されたデータから任意のばく露強度 (APD) に対するこれら評価パラメータの 6 分間の変化量を推定し、現行の ICNIRP ガイドラインの妥当性を検証した。

まず、皮膚温度については、シミュレーションで推定されていた上昇温度より低いことが明らかになった。人体の皮膚は、表皮、真皮、脂肪、筋肉を有しており、ICNIRP ガイドラインでは「Type-1」の組織に属する(1)。そして、同ガイドラインでは、実際の組織温度が 41°Cに達しないように、「Type-1」組織における 6 分間の温度上昇の上限を 5°Cとし、この温度上昇をもたらす APD を 200 W/m^2 と見積もっている(13)。本実験で得られた人体前腕皮膚における APD と温度との関係から、APD 200 W/m^2 での温度上昇を推定したところ 1.74°Cとなり、想定されていた 5°Cの温度上昇の 1/3 程度であった(図 5A)。ばく露開始前の前腕皮膚温度は約 32~34°Cであったことから、実際の皮膚温度は最大でも 36°Cであり、一般的な深部体温レベルと言える。したがって、今回の結果は、「Type-1」組織に対するガイドラインの基準値が実際の生きた人体皮膚でも妥当であることを示唆するものである。

次に、皮膚血流に対する実験結果からはガイドラインの基本制限の妥当性が示された。前述したとおり、平常時から 20 ポイント以上高く、かつ、有意な血流増加が認められたのはばく露強度が 450 W/m² 以上の場合であった(図 3B)。加えて、電波強度と血流変化との関係から、職業ばく露における基本制限値である APD 100 W/m² に対する血流変化を推定したが、やはり変化は認められなかった(図 5B)。したがって、温度変化に基づき設定された APD 基準値 200 W/m² はもとより、その 1/2 である基本制限 100 W/m² についても、生体影響評価指標を血流変化とした場合でも十分妥当であることが示唆された。

温感知覚評価については、統計学的検討がまだ十分とは言えない段階である。しかし、知覚者割合の顕著な増加は、APDが 450 W/m²以上の場合でのみ確認された。他方、有意な皮膚温度上昇を認めた APD 150 W/m²であっても知覚者割合は偽ばく露群と同等であった。これらの結果は、温感知覚は比較的高い上昇温度(4℃超)によって生じるものであり、基本制限 100 W/m² レベルの電波ばく露により温感知覚が生じる可能性は低いことを示唆している。

以上、今回得られた各種結果により、生きた組織に対する現行の ICNIRP ガイドラインの妥当性が示唆された。一方、データは人体前腕皮膚を対象としたものであり、ばく露時間についても 12 分間と限定されていることから、他の部位での生体反応や長時間ばく露による影響など、異なる条件における ICNIRP ガイドラインの妥当性を引き続き検証する必要は残されている。

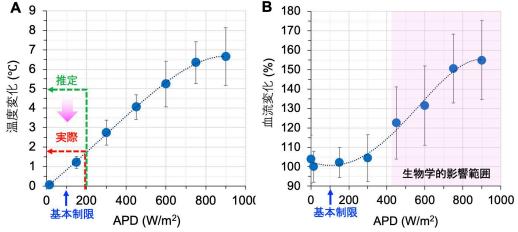


図5 前腕皮膚における電波ばく露強度 APD に対する温度及び血流の変化 いずれのプロットもばく露開始6分後の値を示す(n=16-35)。(A)皮膚温度変化、(B)皮膚血流変化。 点線は近似曲線を表す。

参考文献

- Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys (2020) 118:483–524.
- 2. Stern S, Margolin L, Weiss B, Lu ST, Michaelson SM. Microwaves: effect on thermoregulatory behavior in rats. Science (1979) 206:1198–1201.
- 3. Guy AW, Lin JC, Kramar PO, Emery AF. Effect of 2450-Mhz Radiation on the Rabbit Eye. IEEE Trans Microw Theory Tech (1975) 23:492–498.
- D'Andrea JA, DeWitt JR, Gandhi OP, Stensaas S, Lords JL, Nielson HC. Behavioral and physiological effects of chronic 2,450-MHz microwave irradiation of the rat at 0.5 mW/cm². Bioelectromagnetics (1986) 7:45–56.
- 5. Adair ER, Adams BW, Akel GM. Minimal changes in hypothalamic temperature accompany microwave-induced alteration of thermoregulatory behavior. Bioelectromagnetics (1984) 5:13–30.
- 6. Alekseev SI, Ziskin MC. Human skin permittivity determined by millimeter wave reflection measurements. Bioelectromagnetics (2007) 28:331–339.
- 7. Sasaki K, Mizuno M, Wake K, Watanabe S. Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz. Phys Med Biol (2017) 62:6993.

- 8. Kojima M, Suzuki Y, Sasaki K, Taki M, Wake K, Watanabe S, Mizuno M, Tasaki T, Sasaki H. Ocular Effects of Exposure to 40, 75, and 95 GHz Millimeter Waves. J Infrared Millim Terahertz Waves (2018) 39:912–925.
- 9. Cross B. The human eye's response to millimeter-wave radiation. (2021) Available at: https://www.ideals.illinois.edu/handle/2142/110323 [Accessed September 12, 2021]
- Haas AJ, Page YL, Zhadobov M, Sauleau R, Dréan YL. Effects of 60-GHz millimeter waves on neurite outgrowth in PC12 cells using high-content screening. Neurosci Lett (2016) 618:58–65.
- 11. Haas AJ, Le Page Y, Zhadobov M, Boriskin A, Sauleau R, Le Dréan Y. Impact of 60-GHz millimeter waves on stress and pain-related protein expression in differentiating neuron-like cells. Bioelectromagnetics (2016) 37:444-454.
- 12. Simkó M, Mattsson M-O. 5G Wireless Communication and Health Effects—A Pragmatic Review Based on Available Studies Regarding 6 to 100 GHz. Int J Environ Res Public Health (2019) 16:3406.
- 13. Hirata A, Kodera S, Sasaki K, Gomez-Tames J, Laakso I, Wood A, Watanabe S, Foster KR. Human exposure to radiofrequency energy above 6 GHz: review of computational dosimetry studies. Phys Med Biol (2021) 66: doi: 10.1088/1361-6560/abf1b7

眼球への障害閾値の検索(動物)

1. 背景

ミリ波は、波長範囲が 1-10mm(周波数範囲は 30-300GHz)の電波である。ミリ波帯のいくつかの周波数は、無線局の免許等が不要なこともあり、非接触操作用のジェスチャーコントローラー (1)や心拍数と呼吸数の遠隔監視用の重要なセンサー(2)など、社会のいたるところに普及している。社会におけるミリ波帯の使用が増加するにつれて、詳細なミリ波帯の生物学的影響を研究する必要がある。

我が国の電波防護指針における基礎指針4(b)には、「3GHz 以上の周波数においては、眼への入射電力密度(6分間平均)が 10mW/cm² 以下とすること」と眼に特化した注意事項が規定されている(3)。この基礎指針の根拠は、Rosenthal 5(4)の家兎の実験において、35GHz 及び107GHz の周波数で 10-50mW/cm² 程度の照射で一過性の角膜上皮障害が生じるという報告に基づくものである。一方、Chalfin 5は(5)は、サル眼を用いて 35GHz 及び 94GHz のパルス波ばく露の影響を比較し、眼障害閾値は 94GHz の方が 35GHz より大きいことを報告し、Rosenthal 5(4)の報告にはばく露方法による人工的な眼外傷(ホーンアンテナの眼球接触による外傷)の介入を指摘している。

Kojima らは、さまざまなミリ波ばく露($60GHz^{(6)}$ 、40、75、 $95GHz^{(7)}$ 、及び $162GHz^{(8)}$)による眼の損傷に関する一連の研究を同一手法のもとに実施している。本稿では、今までに報告されたミリ波ばく露による眼障害のデータ(一部周辺皮膚を含む)から、ミリ波帯での眼球への障害閾値(動物)について述べる。

2. 評価方法

ミリ波のばく露方法は、レンズアンテナを介して以下のように実施した。有色家兎角膜直径の平均値を13mmと規定し、ミリ波の入射電力密度は、直径13mmの領域における空間平均入射電力密度として定義された。眼障害の評価方法については、Rosenthal⁽⁴⁾、Chalfin⁽⁵⁾の蛍光色素染色による角膜上皮障害を細隙灯顕微鏡で評価する方法に改良を加えた方法⁽⁶⁻⁸⁾と前眼部OCT イメージから角膜断面像を画像解析することで角膜浮腫を定量的に評価した(図1:写真中央部、数値は角膜厚をmmで表示)。皮膚障害ダーモカメラ(皮膚専用カメラ)及び病理標本から判定した。

眼障害の評価方法は、Kojima らが実施してきたミリ波研究 ($^{(6-8)}$ では、実験動物の倫理的観点 (動物愛護法)から許容範囲内のミリ波ばく露による眼障害モデルを周波数毎に作成し、そのモデルに惹起される種々の障害を定性・定量的に捉えている。このモデルに生じる眼障害を基準として、ミリ波ばく露量を下げていく中で消失する眼障害を詳細に記録し、惹起した眼障害が全て消失するばく露量を臨床的眼障害閾値として表す。これとは別に、ミリ波曝露後 1日後における眼部損傷の確率は、プロビット解析を使用した最尤推定によって評価した ($^{(9)}$)。細隙灯顕微鏡法によって評価された角膜混濁、フルオレセイン染色によって示された上皮損傷、及び前眼部用OCTによって測定された角膜浮腫を含む、曝露後 1日の形態学的変化をプロビット分析に使用した。角膜損傷と入射電力密度間の用量反応関係は、R Ver 4.1.2 ソフトウェアを使用したプロビット解析の累積対数正規分布関数でフィッティングすることによって評価した ($^{(10)}$)。眼障害の確率を示すミリ波入射電力密度は眼障害線量 (DD: Damaged Dose)として定義され、p \leq 0.01 の最適プロビット関数から導出された。

眼部、眼部周辺組織、背部皮膚の温度測定はファイバー式温度計を用いた。

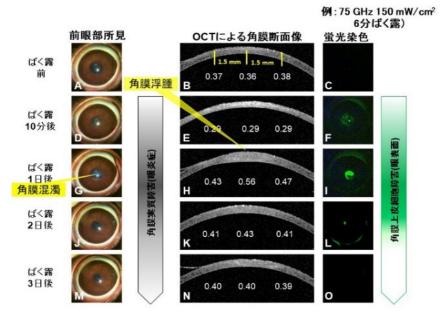


図1:眼障害評価方法

3. 結果

ミリ波ばく露による眼障害の発生、障害の継続時間、治癒過程については、ミリ波の周波数によって若干の相違はあるものの、大まかには以下の経過を取ることが明らかとなった。ばく露前の眼部所見は蛍光染色試験陰性で、角膜厚は家兎の週齢により若干異なるが、通常は 0.34-0.37mm を示す。

- 1)ミリ波ばく露終了 10 分後では、角膜上皮細胞のびまん性障害発症(びまん性蛍光染色陽性所見、図1F、本びまん性角膜上皮障害は周波数によって発症するものとしないものが認められる)、角膜厚の菲薄化(図1B、E)が観察される(ばく露10分後の角膜厚の菲薄化は現在までのところ全ての周波数で観察される)。
- 2) ばく露1日後の細隙灯顕微鏡評価で角膜混濁(図1G)、角膜浮腫(角膜厚 0.56mm、図1H)、 蛍光染色陽性所見(角膜上皮細胞欠損、図1I)を認める。
- 3)ばく露2日後は角膜混濁の改善(図1J)、角膜上皮欠損面積の縮小(図1L)、角膜浮腫の 改善(図1K)が見られる。
- 4)その後、角膜浮腫は日毎に改善し、周波数によりばく露7日から10日前後で実験開始前 の角膜厚に回復した時点で眼障害モデルの眼障害の治癒としている。

28-162GHz ミリ波ばく露により 50%の確率で発症する眼障害発生率のプロビット解析による解析結果を図2に示した。眼障害モデルでの 50%障害発生率の閾値が最も高いのは 28GHz (359mW/cm²)で、75GHz 付近で極小値 (143mW/cm²)を取ったのち、162GHz (252mW/cm²)にかけて眼障害閾値が徐々に上昇することが示された。

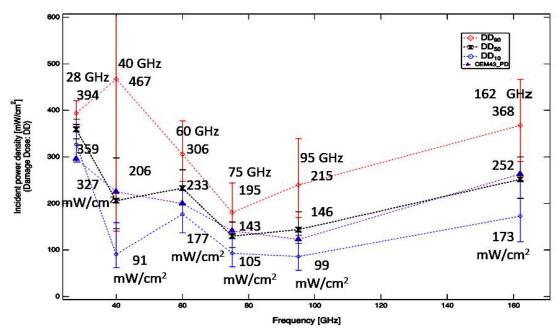


図2:各ミリ波周波数による眼障害発症率(文献(6-8,11)から作成)

電波ばく露による眼部、眼瞼皮膚及び体部皮膚の表面温度変化や障害閾値を比較したところ、28GHz 及び 60GHz のばく露による表面温度上昇は、角膜より皮膚が高く、障害閾値については角膜より皮膚が低いという結果が得られた(図3)(11)。

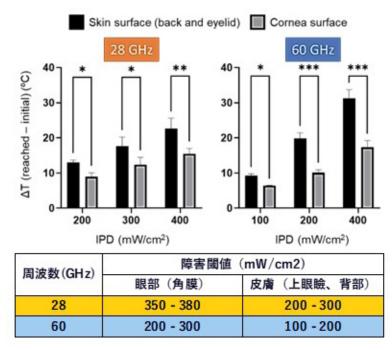


図3:眼瞼皮膚及び体部皮膚の表面温度変化及び障害閾値の比較(文献⁽¹¹⁾から作成) IPD:入射電力密度

4. 考察と今後の課題

Kojima らの異なる周波数のミリ波ばく露による眼障害を同一手法で検討した報告(6-8, 11)から、ミリ波ばく露による眼障害の発症機序は以下のように類推できる。すなわち、ミリ波が角膜で吸収されることにより発生した熱により、角膜上皮細胞が熱変性を受けて脱落する。角膜上皮層は

眼外部から角膜内に侵入するもののバリアとして働いており、角膜のバリア機構の破綻により、 眼外部から角膜内に水が浸入することによる二次的な眼障害が浮腫による角膜混濁(角膜実質炎)である。その根拠として、ミリ波周波数の相違による電波の浸透深さの相違があるにも関わらず、眼障害の臨床経過には大きな相違がないこと、ミリ波ばく露後の角膜浮腫(混濁)は時間経過とともに角間浮腫部位の水が吸収されるに伴ってその透明性は回復し、最終的には眼障害モデル等では眼障害は治癒に向かうことが挙げられる。

28-162GHz ミリ波ばく露のうち、閾値(Damage Dose 50%)が極小となった事例(周波数:75GHz)であっても、入射電力密度で 100-200mW/cm² の範囲にあり、また、瞬目など、眼が鋭敏な忌避反応を持つことからも、現行の電波防護指針は十分に安全側にあると考えられる。一方で、皮膚表面温度(サーモグラフィー測定)と皮膚障害の程度は相関を認めるが、眼表面温度と眼障害の程度は現時点では明らかな相関は得られていない。今後、この原因を解明する必要があると考える。

また、超高速・高精度のビームフォーミングが進展し、より波高値の高いパルス波形となっていくことが想定される。我が国の電波防護指針は主に連続波による生体影響研究を踏まえて検討されてきたことから、ミリ波帯における波高値の高いパルス波のばく露に関する障害閾値等の知見を得ることも今後重要であると考える。

参考文献

- 1. Hof E., Sanderovich A., and Hemo E., Gesture recognition with 60GHz 802.11 waveforms, arXiv:2002.10836v1 [eess.SP] 25 Feb (2020)
- 2. Zhang T., Sarrazin J., Valerio G., and Istrate D., Estimation of human body vital signs based on 60 GHz doppler radar using a bound-constrained optimization algorithm, Sensors18, 2254 (2018) https://doi.org/10.3390/s18072254
- 3. 諮問第38号「電波利用における人体の防護指針」(電気通信技術審議会 平成2年6月答申)
- Rosenthal S. W., Birenbaum L., Kaplan I. T., Metlay W., Snyder W. Z. and Zaret M. M. Effects of 35 and 107 GHz CW Microwaves on the rabbit eye, Biological effects of electromagnetic waves. Selected Papers of the USNC/URSI Annual Meeting, Boulder, Colorado, October 1975 Rockville, Maryland, US Department of Health, Education, and Welfare, HEW Publication (FDA) 77–8010, vol. 1, pp. 110–128, (1976)
- 5. Chalfin, S., D' Andrea, J. A., Comeau, P. D., Belt, M. E. and Hatcher, D. J. Millimeter wave absorption in the nonhuman primate eye at 35 GHz and 94 GHz, Health Phys, 83, 83–90, (2002).
- Kojima, M., Tasaki, T., Suzuki, Y., Kamijyo, T., Hada, A., Kik, A., Ikehata M. and Sasaki, H. Threshold for millimeter-wave (60 GHz)-induced ocular injury, J Infrared Milli Terahz Waves, 43, 260-271 (2022). https://doi.org/10.1007/s10762-022-00850-w
- Kojima, M., Suzuki, Y., Sasaki, K., Taki, M., Wake, K., Watanabe, S., Mizuno, M., Tasaki, T. and Sasaki, H. Ocular effects of exposure to 40, 75, and 95 GHz millimeter waves, J Infrared Milli Terahz Waves, 39, 912–925 (2018) https://doi.org/10.1007/s10762-018-0497-z
- 8. Kojima, M., Suzuki, Y., Tasaki, T., Tatematsu, Y., Mizuno, M., Fukunari M. and Sasaki, H. Clinical course of high-frequency millimeter-wave (162 GHz) induced ocular injuries and investigation of damage thresholds J Infrared Milli Terahz Waves, 41, 834-845 (2020) https://doi.org/10.1007/s10762-020-00714-1
- 9. Bliss, C. I., The Method of Probits, Science, 79, 38-39 (1934)
- 10. Core, R. Team (2021). R, A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Assessed 9 January, 2022
- 11. 宮澤 克人、佐々木 洋、小島 正美、田崎 隆史、「多様な環境条件での電波ばく露による 眼障害閾値 に関する研究」、令和4年度研究成果報告書、
 - https://www.tele.soumu.go.jp/resource/j/ele/body/report/pdf/r4_02.pdf (アクセス 2023 年 11 月 11 日)

諸外国における健康リスク評価

1. 調査の目的

電波が人体に与える健康影響に関する最新の研究に基づく健康リスク評価について、諸 外国の電波の人体防護に関わる政府機関やその諮問機関で実施された研究評価や系統的 レビュー(特定のテーマに関する既存の科学的文献について、系統的なプロセスに基づき、 収集・選定・評価を行うレビュー)の調査を実施した。

2. 調査対象とした健康リスク評価の取組

主に高周波(RF)周波数を対象として直近3年以内に公表された、電波が人体に与える健康影響に関する研究評価や系統的レビューの取組を調査した。これらの取組は、他機関の健康リスク評価においても参照されるなど、信頼性の高い取組として認知されている。結果だけでなく、評価対象の研究を選定する基準やプロセスにも注目した。

以降に各取組の詳細を示す。

スカー・コースペーク・コールーで ハッ。	
実施機関(公表年)	テーマ
米国食品医薬品局(2020)(1)	高周波電磁界ばく露の腫瘍形成への影響
オランダ保健評議会 (2020) ⁽²⁾	5G 周波数の電磁界による健康影響
フランス国立食品環境・労働衛生安全庁	5Gの展開に伴う電磁界への集団ばく露と関
(ANSES) (2022) (3)	連する健康への影響
オーストラリア放射線防護・原子力安全庁	5G 等を想定した 6GHz 超の電磁界放射の生
(ARPANSA) (2021) (4)	物学的及び健康への影響
スウェーデン放射線安全庁(SSM)(2022) ⁽⁵⁾	電磁界へのばく露に関連する潜在的な健康
	リスク
カナダ保健省 (2021) ⁽⁶⁾	6GHz~300GHzにおける高周波電磁界の局所
	的人体ばく露制限値
欧州委員会保健・環境・新興リスクについ	高周波電磁界へのばく露による潜在的な健
ての科学委員会(SCHEER) (2023) ⁽⁷⁾	康影響

2.1. 米国食品医薬品局 (2020 年)

2.1.1. 背景 • 目的

米国の公衆衛生の保護に責任を持つ食品医薬品局 (FDA) は、電磁波を発する電子製品の安全性の理解に影響を与える可能性がある科学的証拠を継続的に監視しており、その一環として高周波電磁界ばく露と腫瘍形成の間で想定される因果関係の影響をスコープとして、関連する査読済み科学文献のレビューによるリスク評価を行った。

2.1.2.評価・レビューの実施方法

テーマ	高周波電磁界による腫瘍形成への影響
対象周波数	100kHz-6GHz
対象研究	動物研究及び疫学研究
文献選定方法	動物研究: 高周波電磁界ばく露による腫瘍形成との因果関係を評価する動物研究 (遺伝毒性の動物研究も含む)について、2008年1月1日から2018年 8月1日に発表された査読済み科学文献を対象とした。ただし、NTP研究は2018年11月公表の最終報告書も対象とした。 PubMedでキーワード検索し、EMFポータルの検索結果や、他機関の評価(SCENIHR2015、スウェーデンSSMレポート、オランダ保健評議会報告書など)とも比較して、最終的に39件の文献を選定した。

	疫学研究:
	携帯電話使用による腫瘍リスクの存在に関する疫学データについて、
	2008 年 1 月 1 日から 2018 年 5 月 8 日に発表された査読済み科学文献
	を対象とした。PubMed でキーワード検索し、複数回のフィルタリング
	と事前レビューを行い、最終的に 69 文献を選定した。
評価実施者	FDA が科学文献の情報を整理・分析した上で、疫学、保健物理学、公衆
	衛生等を専門とする外部の科学者のピアレビューを受けた。

2.1.3. 評価結果

動物研究:

レビューした in vivo 研究は、高周波電磁界の哺乳類への潜在的影響に関する集団的理解に寄与している。全体として動物研究の一定の限界(例:全身ばく露による結果を携帯電話による局所ばく露による結果と関連づけられない)に基づき、評価した研究から高周波電磁界が何らかの腫瘍形成効果を有するという明確な証拠は示されていない。

疫学研究:

評価した疫学データから、携帯電話の高周波電磁界のばく露制限値以下でのばく露と腫瘍形成の間に定量的な因果関係はないとした FDA の判断を引き続き支持する。

2.1.4. 研究の質の評価

科学文献のレビューの結論の中で、レビュー対象とした動物研究及び疫学研究の研究の質について以下の見解を示している。

動物研究:

関連する動物研究において、高周波電磁界による潜在的な体温上昇の影響は交絡因子であり、評価を行うことが重要であるのにもかかわらず、参照した文献の大半に動物の体温 測定が含まれていない。

また、以下のような点で実験デザインが一貫していないことが、動物研究において発散した或いは矛盾した結論の理由になっていると考えられる。

- ・実験中の動物への投薬や拘束方法
- 対照群の使用方法
- ・生体試料の採取方法と扱い方(動物にばく露後、犠牲にしてから生体試料にするまで のプロセス及び所用時間)
- 盲検化の欠如

疫学研究:

疫学研究の焦点を、全体的なリスクが検出されない一般集団から、腫瘍形成のリスクに対して本質的に素因があり、強い高周波電磁界ばく露による推定上のリスク修飾を受けや すい少数のサブセットに移す必要性が示唆される。

高周波電磁界のばく露評価は、実験室以外では直接測定できず(参加者の追跡と自己申告に依存)、疫学研究において高周波電磁界に関連した十分な証拠を集めることができない。

2.2.オランダ保健評議会(2020年)

2. 2. 1. 背景•目的

5G の健康影響に対する社会の不安に対処するため、オランダ議会下院の諮問を受けて、政府の独立諮問機関である保健評議会が5G 周波数帯の電磁界が健康に影響を与える可能性について調査を行った。

2.2.2.評価・レビューの実施方法

テーマ	5G 周波数帯の電磁界による健康影響
対象周波数	700-2200MHz, 2.2-5GHz, 20-40GHz
対象研究	疫学研究・ヒト研究・動物研究・細胞研究
文献選定方法	各周波数におけるがん及びがん以外の影響に関する研究について、PubMed と EMF Portal によるキーワード検索や他機関のレビュー (WHOレビュー、スウェーデン SSM レポート、フランス ANSES 報告書、Simko and Mattsson (2019年) など) を参照して選定。
評価実施者	オランダ保健協議会の電磁界委員会

2.2.3. 評価結果

がんの発生、男性の生殖能力の低下、妊娠結果の悪化、先天性異常に関しては高周波電磁界へのばく露と関連している「可能性」を排除することはできないが、ばく露とこれら及びその他の疾患や状態との関連は証明されていない。

高周波電磁界へのばく露と生物学的プロセスの変化との関係の可能性に関して、脳の電気的活動の変化は高周波電磁界ばく露と関連している可能性は高いが、それが健康の観点で好ましいかどうかは不明。

その他の大部分の生物学的プロセスについては、その変化が高周波電磁界へのばく露と 関連していることは証明されておらず、またその可能性も低いが、可能性自体を排除する ことはできない。免疫系とホルモンレベルの変化は、関連性が示されなかった。

26GHz 前後の周波数へのばく露による影響は、ほとんど研究されていない。

2.2.4.研究の質の評価

調査において、下記の品質基準に1つ以上適合しない、或いは判断できない文献は分析 から除外された。また、分析の対象とされた文献についても、研究手法別に一般的に用い られる既存の品質評価基準やチェックリストにより品質を評価した。

<調査対象文献の品質基準>

疫学研究:

- ・研究基盤が特定されており、被験者や被験者の選定について適切な判断ができるよう、 十分な情報が提供されている
- ・記述的研究及び発生率研究において有病率/発生率を計算する際に適切な分母を使用 する
- ・少なくとも2つのレベルのばく露を考慮する(発生率時間推移研究を除く)
- ・関連する統計解析を行っている

ボランティア研究:

・ばく露条件が被験者に対して盲検化されており、この点を評価するために十分な情報 が提供されている

細胞研究:

- ・生物学的アッセイが適切に実施されている
- ・独立した実験回数が十分(3回以上)である

ボランティア研究・動物研究・細胞研究共通:

- ・少なくとも2つのばく露レベル(1つはシャムばく露)を含み、それ以外は同等の条件で実験されている(携帯電話の待機モードのみは不可)
- ・ばく露レベルが十分に制御され、文書化(ばく露量を決定する方法が提供)されている
- ・ばく露が固定した順番で行われていない
- ・統計的優位性を結論づけるために必要な場合関連する統計解析を行っている

2.3. フランス国立食品環境 労働衛生安全庁 (ANSES) (2022年)

2.3.1. 背景 • 目的

2018 年に策定されたフランス政府の 5G ロードマップで示された「5G 展開と公衆ばく露に関する透明性と対話の確保」の方針に基づき、2019 年に政府が ANSES に 5G の展開に伴う電磁界へのばく露と関連する健康影響に関する専門家評価を依頼。

2.3.2.評価・レビューの実施方法

テーマ	5G の展開に伴う電磁界への集団ばく露と関連する健康への影響		
対象周波数	700-2100MHz、3.5GHz 帯(3-4GHz)、26GHz 帯(18-100GHz)		
対象研究	疫学研究・ヒト研究・動物研究・細胞研究		
	700-2100MHz :		
	過去に ANSES が行った高周波電磁界の健康影響に関する評価や近年の		
文献選定方法	国際専門家による評価に依拠		
	3. 5GHz 帯 / 26GHz 帯 :		
	Scopus と PubMed による検索 (対象期間 2012 年 1 月~2020 年 7 月) で		
	抽出された文献		
	ANSES の速報版レビュー (2019 年) に掲載された文献		
	Simko and Mattsson (2019年) のレビューに掲載された文献		
	電波と健康に関する対話委員会からの推奨文献		
	公募により結成された、電磁界、眼科学、神経科学、皮膚科学、膜生物		
評価実施者	学、社会科学に関する専門家による 5G ワーキンググループ (物理的因		
	子と新規技術に関する専門家委員会に設置)が評価を実施。		
	評価は、フランス規格 NF X 50-110「専門家評価の品質-専門家による		
	評価のための能力の一般要件(2003年5月)」に準拠して実施され、		
	3. 5GHz 帯/26GHz 帯に関しては、文献ごとに 2 人の専門家が詳細レビ		
	ュー、ばく露システムの質に関して専門家が批判的レビューした上で、		
	分析結果を全体会合で議論した。		

2.3.3.評価結果

700-2100MHz:

ANSES が過去に行った専門家評価以降、他国の機関から発表された報告において、これらの周波数帯でモバイル技術からの電磁界へのばく露と健康影響の出現の間に新たな因果関係は示されていない。

3.5GHz 帯:

 $3.5\,\text{GHz}$ 帯で起こり得る健康影響について研究を行った科学文献は非常に少ない(異なる分野の5 件の研究のみ) ため、考えられる関連影響を評価するため、2G、3G、4G、Wi-Fi など近い周波数帯($840\,\text{MHz}\sim2.5\,\text{GHz}$ 帯)で利用できる科学文献についても評価した結果、現時点で制限値以下のばく露レベルにおいて、これらの周波数に関連した健康への悪影響についていかなる結論も導きだすことはできなかった。 $3.5\,\text{GHz}$ 帯で平均ばく露量が大きく増加していない点も踏まえ、 $3.5\,\text{GHz}$ 帯前後の周波数帯の5G 展開により誘発されるばく露が新たな健康リスクにはならないことを示唆している。

26GHz 帯:

この周波数帯の電磁界のばく露に伴う健康への悪影響について結論を出すには現時点で利用できるデータでは不十分である。

2.3.4.研究の質の評価

文献の分析では、選択基準に基づき方法論的に大きな弱点のある文献を除外した。

2. 4. オーストラリア放射線防護・原子力安全庁(ARPANSA)(2021年)

2.4.1.目的

5G などによる 6GHz を超える高周波電磁界の利用の増加により、人の健康への悪影響に対する一般の懸念が生じていることから、ARPANSA の EME (Electromagnetic Energy) Program の一環として、保健省の研究助成を受けて実施した。

2.4.2.評価・レビューの実施方法

テーマ	5G 等を想定した 6GHz 超の電磁界の生物学的及び健康への影響
対象周波数	6GHz 超
対象研究	疫学研究・ヒト研究・動物研究・細胞研究
文献選定方法	ICNIRP ガイドラインの職業ばく露制限値以下のばく露による生物学的及び健康影響に関する研究(対象期間:~2019 年 12 月まで)について、PubMed、EMF-Portal、Google Scholar、Embase、Web of Scienceでのキーワード検索や他機関のレビュー(英国 AGNIR (2012) や SCENHIR (2015)) の対象文献から抽出した上で絞り込み。細胞研究 91 件、動物研究 15 件、ヒト研究 1 件、レーダーへのばく露に関する疫学研究 31 件を選定した。
評価実施者	ARPANSA 及び共同研究者のスウィンバーン工科大学研究者が実施。

2.4.3. 評価結果

遺伝毒性、細胞増殖、遺伝子発現、細胞内シグナル伝達、膜効果:

遺伝毒性に関する十分にデザインされた研究において皮膚細胞におけるDNA損傷の証拠は一貫して見つかっていない。

染色体異常、微小核形成、紡錘体障害など、遺伝毒性を示す他の指標についても研究方法は一般的に厳密であったが、研究により矛盾する結果が報告されている。

細胞増殖への影響についても矛盾した結果が出ている。一部の陽性の結果ではドシメトリと温度制御が不適切であった。

遺伝子発現に関しては多くの研究が影響がないことを報告しているが、盲検法が使用されていないため実験的バイアスを結果から排除できない。一部陽性の報告については、生物学的妥当性に関しての独立された検証が行われていない。

細胞内シグナル伝達と電気的活性では様々な結果が報告されているが、殆どの研究で盲検法が行われておらず、一貫した影響は見つからなかった。また温度の影響を排除できていない、サンプル数が少ないなどの問題がある研究もあった。全体として報告された電気的活動への影響は正常な変動の範囲内であることは否定できない。

膜効果に関しては、全体として様々な膜効果が報告されているが、独立して再現されていない。研究に用いられた統計的手法が記載されていない。、不十分な温度管理や盲検化が行われていないなど、様々な方法論上の問題があった。

その他・

他の影響に関する報告(発がん促進、生殖機能、免疫機能など)も、一貫した影響が報告されていない。

総評:

6GHz 以上の低レベルの電磁界が人間の健康に有害であるという明確な証拠は示されなかった。

2.4.4.研究の質の評価

研究の質に基づき、文献をレビュー対象から除外はしていないが、実験方法の妥当性の評価は別途実施した⁽⁸⁾。実験方法に関して①盲検法、②ドシメトリへの適切な配慮、③陽性対照、④シャムばく露、⑤温度測定・制御の品質基準で評価した結果、5点満点の研究は1件のみ。品質スコアが低い研究ほど、より大きな影響を示す可能性が高いことが示された。今後の研究への課題として、加熱による影響の可能性を排除するために、ドシメトリと温度制御の改善が必要と指摘している。

2.5. スウェーデン放射線安全庁 (SSM) (2022年)

2.5.1.目的

SSM の電磁界科学委員会は、電磁界ばく露による潜在的な健康リスクに関する最新の研究を監視し、SSM の健康リスク評価に助言を行うため活動として、毎年電磁界と健康リスクに関する前年の研究をレビューする。2022 年の報告書は 16 回目の実施。

2.5.2. 評価・レビューの実施方法

テーマ	電磁界へのばく露に関連する潜在的な健康リスク
対象周波数	静磁界~高周波電磁界
対象研究	疫学研究・ヒト研究・動物研究・細胞研究
**********	2020 年 1 月~12 月に発表された電磁界と健康リスクに関する研究を
文献選定方法 	科学文献のデータベースの検索により特定。
評価実施者	SSMの電磁界に関する科学評議会

2.5.3. 評価結果

総評:

電磁界ばく露と健康リスクとの間に新たな確立された因果関係は確認されていない。

小児白血病:

対象の研究では、疫学的に一貫的に観察されている ELF 磁界と小児白血病との関連が因果関係なのかという点については解決されていない。

腫瘍:

腫瘍と携帯電話の使用の関係に関する新たな研究は非常に少ない。

各種症状:

携帯電話の使用と不眠症症状との関連は例年同様に観察されているが、ばく露レベルよりも使用期間と関連しており、高周波電磁界以外の要因が観察された関連性を説明している可能性を示唆している。青年期における認知機能及び脳容積に関する新しい研究では、高周波電磁界ばく露によるリスクは示されていない。

酸化ストレス:

動物研究において、以前の報告と同様に電磁界ばく露による酸化ストレスの増加が引き 続き観察された。一部は現在の基準値以下でも見られる。微弱な電磁界のばく露による酸 化ストレスがどのような状況で人の健康に影響を及ぼすかは、まだ調査されていない。

中間周波による影響:

中間周波数 (IF) 範囲 (300Hz-10MHz) のアプリケーションの使用が増加しているにもかかわらず、この範囲における潜在的な健康リスクに関する科学的評価は乏しい。確認された数少ない研究は、基準値以下の健康影響を示していない。

2.5.4.研究の質の評価

品質基準を満たさなかった研究はレビューから除外され、付録にレビューから除外された理由(シャムばく露なし、ドシメトリなし、携帯電話をそのままばく露源としている、など)とともにリストアップされている。

2.6.カナダ保健省(2021年)

2.6.1.目的

カナダにおける電磁界のばく露制限値に関するガイドラインである Safety Code6 における 6GHz 超の高周波電磁界に適用されるばく露制限値は、全身ばく露シナリオに基づいている。6GHz 超の人体に密着される機器が利用されることを想定し、6GHz 超の局所ばく露制限値に関する勧告を策定するため、ICNIRP ガイドライン(2020)を支持する科学的根拠の分析を実施した。本調査結果に基づきカナダ保健省は 2021 年 1 月に、 $6GHz \sim 300GHz$ の高周波電磁界の局所的な人体ばく露限度に関する勧告を公表 (9) 。

2.6.2.評価・レビューの実施方法

テーマ	6GHz~300GHz における高周波磁界の局所的人体ばく露制限値
対象周波数	6GHz~300GHz
対象研究	疫学研究・ヒト研究・動物研究・細胞研究
文献選定方法	ヒト及び動物における熱影響/非熱影響を調査した研究を含む 6GHz~300GHz のばく露による健康影響に関する関連科学文献の系統的分析を実施。また、計算や数値解析により、6GHz~300GHz のばく露と人体組織との相互作用を研究した関連科学文献も考慮した。
評価実施者	カナダ保健省

2.6.3. 評価結果

カナダ保健省はミリ波の電磁界強度が増加するにつれて回避されるべき主な健康への悪影響は、熱痛覚とタイプ 1 組織(皮膚/角膜など)への熱組織損傷であるという ICNIRP の見解に同意する。ただし、特定のばく露シナリオ (30GHz 以上の周波数の狭いビーム径における短パルスのばく露)において ICNIRP (2020)の局所ばく露制限値は十分に保守的ではないため、一部 ICNIRP (2020)に修正を加えることを推奨する。

2.6.4. 研究の質の評価

特に言及されていない。

2.7. 欧州委員会 SCHEER (2023 年)

2.7.1.目的

2021 年、欧州委員会は EU の政策立案に対して科学的助言を行う独立組織 SCHEER に対して、現行の欧州理事会勧告 1999/519/EC の付属書及び職業ばく露に関する新 EU 指令 2013/35/EU の付属書を ICNIRP ガイドライン (2020) に基づいて改定する必要性について諮問した。SCHEER は、欧州委員会への勧告を取りまとめられるため、100kHz~300GHz の高周波電磁界に関して入手可能な最新の科学的証拠のレビューを実施。

2.7.2.評価・レビューの実施方法

テーマ	6GHz~300GHz における高周波磁界の局所的人体ばく露制限値
対象周波数	静磁界~高周波電磁界
対象研究	疫学研究・ヒト研究・動物研究・細胞研究
文献選定方法	SCENIHR (2015) 以降、メタ分析と系統的レビューの文献が多く利用できるようになったため、証拠レベルの信頼性を高めるためにも、基本的に既存のメタ分析と系統的レビューに基づき評価を行い、不足している場合は、必要な基準を満たしたナラティブレビューや単一研究を使用した。
評価実施者	SCHEER O Working Group on Electromagnetic fields (EMF) I

2.7.3. 評価結果

相互作用メカニズム:

高周波電磁界の熱影響は十分に確立されており広範に研究されている。

吸収電力密度(APD)のような新しく導入された評価量を制御することでミリ波を用いた新たなアプリケーションから生じる可能性のある表面的かつ高速な組織加熱を制御可能である。

酸化ストレス、エピジェネティックな影響、カルシウム・シグナル伝達については系統 的レビューやメタ分析がなく、相互作用のメカニズムは実証されていない。

腫瘍性疾患:

高周波電磁界ばく露が腫瘍性疾患のリスクを増加させるという証拠の重みは、全体的に 不確かで弱い。動物の発がん性においては以下のような点。

- ・ラット研究における矛盾と部分的な不正確さ
- ・NTP のマウス研究ではラット研究と腫瘍反応が異なり、影響の一貫性がないため、人への影響との関連性が不確か。

神経学/神経行動学的影響:

全体的に、プロトコルやサンプルサイズの違いを含め、研究内、研究間においても所見に大きな異質性が認められる。

「神経疾患に関するヒトの研究では、明確な影響は確認されていないが、科学的証拠が限定されている」という、SCENIHR (2015) の結論を更新することはできないが、現在 WHO が実施している新しい系統的レビューに期待している。

各種症状:

「複数の二重盲検試験の結果から、高周波電磁界ばく露によって引き起こされるものではないという強い証拠の全体的な重みがあり、観察研究から得られた証拠は、EMF ばく露と非特異的症状との間の因果関係を否定するものである」とした SCENIHR (2015) の結論が現在も有効。

免疫システム:

高周波電磁界ばく露が免疫系に及ぼす(有益あるいは有害な)影響を示す証拠の重みは、 様々な研究から得られる情報が矛盾しているため不確かである。

生殖・発生:

高周波電磁界ばく露が生殖や発達に及ぼす影響に関する証拠の重みは、情報が矛盾しているため不確かである。

総評:

SCHEER は欧州理事会勧告 1999/519/EC 及び指令 2013/35/EU の付属書で設定された制限値以下のレベルの既存技術による慢性または急性の高周波電磁界ばく露による健康への悪影響について、中程度または強いレベルの証拠を特定できなかった。

上記の評価に基づき、SCHEER は、最新の ICNIRP ガイドライン(2020 年)が、高周波電磁界の発展に対応し、新しい技術的アプリケーションから人間をより効果的に保護可能な新しいばく露量とその制限値を導入している点を認め、したがって、高周波電磁界(100 kHz から 300 GHz) に関する理事会勧告 1999/519/EC 及び指令 2013/35/EU の付属書の改正の必要性について前向きに助言する、との最終意見を示している。

2.7.4.研究の質の評価

最終意見書の科学的根拠とした文献について、証拠の重み(Weight of Evidence: WoE)を評価しており、最終意見書とあわせて文献の WoE リストも公開されている。WoE は、2018年に SCHEER が公表した「証拠の重みづけと不確かさに関する覚書」に沿って評価されており、データの質を、Relevance (関連性)、Validity (妥当性)、 Reliability (信頼性)の軸で評価した上で、総合的な WoE スコアを算出している。

参考文献

- FDA, Review of Published Literature between 2008 and 2018 of Relevance to Radiofrequency Radiation and Cancer, February 2020 https://www.fda.gov/media/135043/download
- 2. Health Council of the Netherlands, Background document to the advisory report $5\mathrm{G}$ and health, September 2020
 - https://www.healthcouncil.nl/documents/advisory-reports/2020/09/02/5g-and-health
- 3. ANSES, Opinion of the French Agency for Food, Environmental and Occupational Health & Safety on "Population exposure to electromagnetic fields associated with the deployment of 5G communication technology and the related health effects" updating the opinion of 12 April 2021, February 2022
 - https://www.anses.fr/en/system/files/AP2019SA0006EN-2.pdf
- 4. Karipidis, K., Mate, R., Urban, D. et al. 5G mobile networks and health—a state-of-the-science review of the research into low-level RF fields above 6 GHz. J Expo Sci Environ Epidemiol 31, 585–605 (2021). https://doi.org/10.1038/s41370-021-00297-6
- 5. SSM, 2022:16 Recent Research on EMF and Health Risk, November 2022 https://www.stralsakerhetsmyndigheten.se/publikationer/rapporter/stralskydd/2022/202216/
- 6. Health Canada, Analysis of recommended localized human exposure limits for radiofrequency fields in the frequency range from 6 GHz to 300 GHz, January 2021 https://www.canada.ca/en/health-canada/services/health-risks-safety/radiation/types-sources/radiofrequency-fields/notice-localized-human-exposure-limits-range-6-ghz-300-ghz/executive-summary.html
- 7. SCHEER, Opinion on the need of a revision of the annexes in the Council Recommendation 1999/519/EC and Directive 2013/35/EU, in view of the latest scientific evidence available with regard to radiofrequency (100kHz · 300GHz), June 2023 https://ec.europa.eu/newsroom/sante/items/791342/en
- 8. Wood, A., Mate, R. & Karipidis, K. Meta-analysis of in vitro and in vivo studies of the biological effects of low-level millimetre waves. J Expo Sci Environ Epidemiol 31, 606–613 (2021). https://doi.org/10.1038/s41370-021-00307-7
- 9. Health Canada, Notice: Localized human exposure limits for radiofrequency fields in the range of 6 GHz to 300 GHz, January 2021 https://www.canada.ca/en/health-canada/services/health-risks-safety/radiation/types
 - sources/radiofrequency-fields/notice-localized-human-exposure-limits-range-6-ghz-300-ghz.html

現行の局所吸収指針

2. 2. 3 局所吸収指針

(a) 適用範囲

本指針は、周波数 100kHz から 300GHz までに適用する。

局所吸収指針の主な対象は、携帯電話端末等の小型無線機であり、電磁放射源に寄与するアンテナや筐体が人体に極めて近接して使用される場合を想定している。

具体的には、本指針は、電磁放射源(主にアンテナ)や放射に関わる金属(筐体等)と人体との 距離が 20cm 以内の場合に適用される。また、それ以外の距離においても、電磁界強度指針、補助指 針又は局所吸収指針のいずれか1つを満たせば基礎指針を満たしていると判断できる。ただし、 300MHz から 300GHz までの周波数において、10cm 以上 20cm 以内の距離における電磁界強度指針又 は補助指針の適用は排除されない。

なお、100kHz 以上6 GHz 以下の周波数において、空中線電力の平均電力が 20mW 以下の無線局については、仮に無線局の全出力が身体のごく一部に吸収される場合でも、局所 SAR の電波防護指針を満たしており、評価の必要性はないものと考えられる。また、管理環境においては、同 100mW 以下の無線局については、評価の必要性がないものと考えられる。

6 GHz 以上30GHz 以下の周波数において、空中線電力の平均電力が8mW以下の無線局については、仮に無線局の全出力が身体のごく一部に吸収される場合でも、入射電力密度の電波防護指針を満たしており、評価の必要性はないものと考えられる。また、管理環境においては、同40mW以下の無線局については、評価の必要性がないものと考えられる。

30GHz 超300GHz 以下の周波数において、空中線電力の平均電力が2mW以下の無線局については、仮に無線局の全出力が身体のごく一部に吸収される場合でも、入射電力密度の電波防護指針を満たしており、評価の必要性はないものと考えられる。また、管理環境においては、同10mW以下の無線局については、評価の必要性がないものと考えられる。

(b) 管理環境

次の要件を全て満たすこと。

- <1>全身平均 SAR の任意の6分間平均値が、0.4W/kg 以下であること。
- 〈2〉 6 GHz 以下の周波数では、任意の組織 10g 当りの局所 SAR (6分間平均値)が 10W/kg (四肢では 20W/kg) を超えないこと。
- 〈3〉 6 GHz 以上 30GHz 以下の周波数では、任意の体表面(人体の占める空間に相当する領域中の任意の面積) 4 cm² 当りの入射電力密度 (6 分間平均値) が 10mW/cm² を超えないこと。
- <4>30GHz 超 300GHz 以下の周波数では、任意の体表面(人体の占める空間に相当する領域中の任意の面積) 1 cm² 当りの入射電力密度(6分間平均値)が 10mW/cm² を超えないこと。
- 〈5〉複数の周波数の電波に同時にばく露する場合には、前項〈2〉、〈3〉及び〈4〉の各周波数成分の指針値に対する割合の総和が1を超えてはならない。
- 〈6〉接触ハザードが防止されていない場合は、100kHz から 10MHz までの周波数において接触電流が40mA 以下(実効値)であり、100kHz から 100MHz までの周波数において接触電流が100mA 以下(平均時間6分間)であること。

ただし、接触電流がこの指針に対して無視できないレベルの複数の周波数成分から成る場合は、100kHz から 10MHz までの周波数については、その各周波数成分の指針値(40mA(実効値))に対する割合の和の総和を求めるか、各周波数成分の指針値に対する割合について指針値の周波数特性に応じた適切な重み付け平均を求める。これらの総和が1を超えてはならない。さらに、100kHz から 100MHz までの周波数については、その各周波数成分の指針値(100mA(平均時間6分間))に対する割合の自乗和を求める。これらの総和が1を超えてはならない。

<7> 100kHz から 10MHz において体内電界強度が 2.7×10⁻⁴×f(Hz) V/m を超えないこと。

ただし、体内電界強度がこの指針値に対して無視できないレベルの複数の周波数成分から成る場合は、その各周波数成分の指針値に対する割合の和を求めるか、各周波数成分の指針値に対する割合について指針値の周波数特性に応じた適切な重み付け平均(付属書参照)を求める。これらの総和が1を超えてはならない。

なお、周波数 100MHz 以上の無線局は、<6>に述べた接触電流に関する指針に基づく評価を行う必要はない。また、周波数 10MHz 以上の無線局は、<7>に述べた体内電界強度に関する指針に基づく評価を行う必要はない。

(c) 一般環境

次の要件を全て満たすこと。

- <1>全身平均 SAR の任意の6分間平均値が、0.08W/kg 以下であること。
- <2> 6 GHz 以下の周波数では、任意の組織 10g 当たりの局所 SAR (6分間平均値) が 2 W/kg (四肢では 4 W/kg) を超えないこと。
- 〈3〉 6 GHz 以上 30GHz 以下の周波数では、任意の体表面(人体の占める空間に相当する領域中の任意の面積) 4 cm² 当りの入射電力密度(6 分間平均値)が 2 mW/cm² を超えないこと。
- 〈4〉30GHz 超 300GHz 以下の周波数では、任意の体表面(人体の占める空間に相当する領域中の任意の面積)1 cm² 当りの入射電力密度(6分間平均値)が2mW/cm² を超えないこと。
- <5>複数の周波数の電波に同時にばく露する場合には、前項<2>、<3>及び<4>の各周波数成分の指針値に対する割合の総和が1を超えてはならない。
- 〈6〉接触ハザードが防止されていない場合は、100kHz から 10MHz までの周波数において接触電流が 20mA 以下(実効値)であり、100kHz から 100MHz までの周波数においては接触電流が 45mA 以下 (平均時間 6 分間) であること。

ただし、接触電流がこの指針に対して無視できないレベルの複数の周波数成分から成る場合は、100kHz から 10MHz までの周波数については、その各周波数成分の指針値(20mA(実効値)に対する割合の和を求めるか、各周波数成分の指針値に対する割合について指針値の周波数特性に応じた適切な重み付け平均を求める。これらの総和が1を超えてはならない。さらに、100kHz から100MHz までの周波数については、その各周波数成分の指針値(45mA(平均時間6分間))に対する割合の自乗和を求める。これらの総和が1を超えてはならない。

<7> 100kHz から 10MHz までにおいて体内電界強度が 1.35×10⁻⁴×f(Hz)V/m を超えないこと。 ただし、体内電界強度がこの指針値に対して無視できないレベルの複数の周波数成分から成る 場合は、その各周波数成分の指針値に対する割合の和を求めるか、各周波数成分の指針値に対す る割合について指針値の周波数特性に応じた適切な重み付け平均(付属書参照)を求める。これ らの総和が 1 を超えてはならない。

なお、周波数 100MHz 以上の無線局は、<6>に述べた接触電流に関する指針に基づく評価を行う必要はない。また、周波数 10MHz 以上の無線局は、<7>に述べた体内電界強度に関する指針に基づく評価を行う必要はない。

現行の基礎指針

2. 3 基礎指針

基礎指針を表5-1に示す。基礎指針は、熱作用からの人体防護についての管理指針の根拠となる概念であるとともに、生体作用発生の可能性を判断するための基礎を与えるものである。

表 5-1 基礎指針

- 1 全身平均 SAR の任意の 6 分間平均値が、0.4W/kg 以下であること。
- 2 (削除)
- 3 100kHz から 100MHz までの周波数において、接触電流など対外からの流入電流が 100mA 以下 (平均時間 6 分間) であること。
- 4 上記の(1)(2)及び(3)に加え、次の点に関して注意事項として考慮すること。
 - (a) 全身平均 SAR の任意の 6 分間平均値が 0.4W/kg 以下であっても、任意の組織 1g 当りの SAR (6 分間平均値) が 8W/kg (体表と四肢では 25W/kg) を超えないことが望ましい。
 - (b) 3GHz 以上の周波数においては、眼への入射電力密度(6分間平均)が $10 \mathrm{mW/cm^2}$ 以下とすること。

現行の基本制限

2. 4 基本制限

低周波領域における刺激作用からの人体防護について、基本制限を表 5 - 2 に示す。基本制限は、健康への有害な影響に至る可能性のある電波ばく露による生体内現象と直接関連する物理量についての制限値と定義する。基礎指針による適合性確認が、管理指針により適合性確認できない場合の例外的措置と位置付けているのに対し、基本制限は積極的に適合性確認に用いることを想定している。

表5-2 刺激作用からの人体防護に係る基本制限 (実効値)

ばく露特性	国沙粉祭田	管理環境	一般環境
はく路付生	周波数範囲	体内電界(V/m)	体内電界(V/m)
頭部と体部の全組織	10kHz - 10MHz	$2.7 \times 10^{-4} \times f$	$1.35 \times 10^{-4} \times f$

(注1) fは周波数【Hz】

- (注2) 100kHz 以上の周波数範囲では、熱作用の指針値についても考慮することが必要
- (注3)電磁界が指針値に対して無視できないレベルの複数の周波数成分から成る場合は、電界強度、磁界強度及び磁束密度に関して、各周波数成分(10kHz 以上 10MHz 以下)の指針値に対する割合の和を求めるか、各周波数成分の指針値に対する割合について指針値の周波数特性に応じた適切な重み付け平均を求める(付属書参照)。これらの総和が1を超えてはならない。