資料179-3-2

情報通信審議会 情報通信技術分科会 航空·海上無線通信委員会報告

電気通信技術審議会諮問第10号

「航空無線通信の技術的諸問題について」のうち

「90GHz 帯滑走路面異物検知レーダーに関する技術的条件」

航空·海上無線通信委員会

目次

Ι	検	討事項	.3
П	委	員会及び作業班の構成	.3
Ш	検	討経過	.3
IV	検	討概要	.4
第1	章	検討の背景	.4
1.	1	90GHz 帯滑走路面異物検知レーダーの概要	.4
1.	2	検討の背景及び目的	.5
1.	3	国内及び国際における実証動向	.6
1.	4	国内導入検討動向	12
1.	5	国際標準化動向	13
第2	章	周波数の共用に関する検討	18
2.	1	同一システムとの共用検討	19
2.	2	電波天文業務との共用検討	20
2.	3	地球探査衛星業務(受動)との共用検討	21
2.	4	地球探査衛星業務(能動)との共用検討	22
2.	5	電波防護指針への適合性について	24
第3	章	90GHz 帯滑走路面異物検知レーダーに関する技術的条件	26
3.	1	一般条件	26
3.	2	無線設備の技術的条件	26
3.	3	測定法	27
3.	4	干渉回避のための機能、設置、運用、その他の留意点	28
第4	章	今後の検討課題	28
V	審	議結果	29
別表	ŧ1	情報通信技術分科会 航空·海上無線通信委員会 構成員一覧	30
別表	ŧ2	90GHz 帯滑走路面異物検知レーダー作業班 構成員一覧	31
別	添		32
参考	資	料	36

I 検討事項

航空・海上無線通信委員会は、電気通信技術審議会諮問第10号「航空無線通信の技術的諸問題 について」(昭和60年4月23日)を所掌しており、今般、「90GHz帯滑走路面異物検知レーダーに 関する技術的条件」について検討を行った。

Ⅱ 委員会及び作業班の構成

委員会の構成は別表1のとおりである。

委員会における検討の促進を図るため、委員会の下に「90GHz 帯滑走路面異物検知レーダー作業 班」を設けて「航空無線通信の技術的諸問題について」のうち「90GHz 帯滑走路面異物検知レーダ ーに関する技術的条件」について調査を行った。作業班の構成は別表2のとおりである。

Ⅲ 検討経過

1 航空・海上無線通信委員会

(1) 第24回会合(令和5年10月25日(水))

「航空無線通信の技術的諸問題について」のうち「90GHz 帯滑走路面異物検知レーダーに関する 技術的条件」について検討を開始することとし、検討を促進させるための「90GHz 帯滑走路面異物 検知レーダー作業班の検討」の設置、作業方針及び検討スケジュールを定めた。

(2) 第26回会合(令和6年2月9日(金))

「航空無線通信の技術的諸問題について」のうち「90GHz 帯滑走路面異物検知レーダーに関する 技術的条件」に関する委員会報告案をとりまとめ、これについて意見募集を行うこととした。

2 90GHz 帯滑走路面異物検知レーダー作業班

(1) 第1回会合(令和5年11月1日(水))

「航空無線通信の技術的諸問題について」のうち「90GHz 帯滑走路面異物検知レーダーに関する 技術的条件」について作業方針及び調査スケジュールを定めた。また、電波天文業務及び地球探 査衛星業務との共用に関する詳細報告、国内実証結果、国際標準化動向及び国際展開等の報告並 びに令和元年度に総務省が実施した技術試験事務の調査結果の報告を受けて調査を行った。

(2) 第2回会合(令和5年12月5日(火))

滑走路面異物検知装置の導入検討状況及び 90GHz 帯滑走路面異物検知レーダー技術的条件に関する調査を行った。

(3) 第3回会合(令和6年1月24日(水))

「航空無線通信の技術的諸問題について」のうち「90GHz 帯滑走路面異物検知レーダーに関する 技術的条件」に関する作業班報告書をとりまとめた。 IV 検討概要

第1章 検討の背景

1.1 90GHz 帯滑走路面異物検知レーダーの概要

90GHZ 帯滑走路面異物検知レーダーのシステム基本仕様は、滑走路の FOD (FOREIGN OBJECT DEBRIS: 異物)検知に関する FAA ADVISORY CIRCULAR、滑走路周辺に機器を設置する際の航空法 に基づく各種の制限事項、実証フィールドの諸条件等を参考に決定した。FAA (連邦航空局) ADVISORY CIRCULAR は、FAA が航空関係者に情報を伝えるための刊行物であって、米国航空法のサポート的な役割を果たす。システム系統図を図 1、基本仕様を表1に示す。

図 1 基本システム系統図

制御装置は 30GHz 帯で 3GHz 幅のチャープ信号を生成した後、光変調器と光増幅器を介して空 港の既存光ネットワークに接続しレーダーに伝送する構成である。レーダーでは Photo Detector (PD) で電気信号に変換した後、3 逓倍・増幅しアンテナに給電、反射波は増幅後、送信 波と混合し AD 変換の後、制御装置まで光ファイバー経由で伝送され、FFT 処理や各種の信号処 理の後、端末にレーダー情報として表示される構成となっている。制御装置とレーダー間の信号 は、既存の光ファイバー網の一部を利用できるため、本システムのために空港内のファイバー網 を別途用意する必要はない。

Antenna unit type	Wide band
Frequency	92 GHz - 100GHz
Bandwidth	8 GHz
Transmitting power	20 dBm
Ranging method	FMCW
Frequency modulation method	Linear triangle
Frequency modulation chirp rate	Up to 1.25kHz
Antenna gain	44 dBi
Maximum number of radars per a runway	48 (※)

表1 90GHz 帯滑走路面異物検知レーダーの基本仕様

(※)1 滑走路当たりの最大 90GHz 帯滑走路面異物検知レーダー数は建築限界により 48。

1.2 検討の背景及び目的

2000(平成12)年、フランスの空港において、滑走路上の金属片が原因による超音速旅客機コ ンコルドの墜落事故が発生した。以降、同様な事故防止のため、航空機の離発着時に滑走路面に 落下した金属片をはじめとしたFODを検知するシステムの導入が求められてきた。その結果、近年 では光学監視カメラに加え、測距性能、距離分解能及び夜間の検出性能等で優れたレーダー方式 の検知システムが世界的に導入されてきたところである。

しかし、それら現行の検知システムでは遠方から検出できるFODの大きさに限界があること、シ ステムを滑走路近辺に配置する際には安全性の観点から小型化の向上が必要であること等から、 遠方から正確にFODを検出できる新しい小型の検知システムの実用化が望まれている。

図 2に示すように、近年光ファイバー技術と90GHz帯の周波数におけるイメージング技術を融合 したリニアセル方式の90GHz帯滑走路面異物検知レーダーが開発された。これは、小さなFODを正 確に検知でき、検知時間、空港滑走路程度の検知範囲を自由に設定できることから、早期に、大 規模な空港滑走路に90GHz帯滑走路面異物検知レーダーを導入することが期待されている。

5

図 2 システムの応用イメージ(滑走路監視)

- 1.3 国内及び国際における実証動向
- (1) 国内における実証動向

平成27年度から令和5年度(同年度以降も継続中)まで実施した実証実験について示す。

表 2 平成 27 年以降実施した実証実験一覧

時期	場所	内容		
平成 27 年 度~令和 元年度	成田国際空港	・B 滑走路に4台のレーダー装置及びカメラ、空港ビル内に中 央局装置を設置したシステムを構築 ・構築したシステムを使用した各種実証試験及び諸外国(マレ ーシア、ベトナム等)に向けデモンストレーションを実施		
令和3年 度	仙台空港、 大樹町多目的 航空公園	 ・滑走路環境を使用してアンテナ高と検知エリアの関係等を実 測により詳細に確認 ・レーダー信号発生器及び信号処理ボードの改良によりシステム雑音を低減し、滑走路環境で実測確認 		
令和4年 度	仙台空港	 FOD 検知システムの国際技術基準である最低性能要件 (EUROCAE^{*1} MASPS^{*2} ED-235^{*3})で規定された探知率試験を実施 		
令和5年 度	東京国際空港	・C 滑走路付近に路面局1局(レーダー:1台、カメラ:1台) を設置 ・24 時間の連続運転で現在も継続試験中		

※1 EUROCAE (European Organization for Civil Aviation Equipment):欧州民間航空機器機構
 ※2 MASPS (Minimum Aviation System Performance Standard) :最低性能要件

★3 ED-235 (MASPS for Foreign Object Debris Detection System)

成田国際空港での実証実験は、総務省の電波資源拡大のための研究開発「90GHz 帯リニアセル による高精度イメージング技術の研究開発」(平成 24 年度~27 年度)及び「90GHz 帯協調制御 型リニアセルレーダーシステムの研究開発」(平成 29 年度~令和元年度)の一環として行われ、 成田国際空港株式会社の協力のもとに実施し、仙台空港及び大樹町多目的航空公園での実証実 験は、電子航法研究所の研究の一環として行われ、仙台空港事務所、仙台国際空港株式会社及 び大樹町役場の協力のもとに実施し、東京国際空港での評価試験は電子航法研究所の研究の一 環として行われ、国土交通省航空局、東京航空局及び東京空港事務所の協力のもと実施した。

a. 成田国際空港

90GHz 帯周波数を利用し以下のとおり実証実験を実施した。

①B 滑走路に4 台のレーダー装置とカメラ、空港ビル内に中央局装置を設置したシステムを 構築。

②最大距離 500m において 1 インチ金属円柱(RCS: -20dBsm)を検知可能なレーダー性能を達成。

http://www.naa.jp/jp/airport/pdf/layout_01.pdf

図 3 成田国際空港における実証実験サイト

- 図 4 実証実験における 90GHz 帯滑走路面異物検知レーダーの配置(平成 27 年~令和元年)
 - b. 仙台空港/大樹町多目的航空公園

レーダーの精度を向上し実用にむけた実験を実施した。

①アンテナ高によるブラインドエリア解消及び電波照射角度による路面クラッタ低減のため、 アンテナ高と最適検知エリアの関係を実測により詳細に確認。

②実測結果を反映した検知エリア覆域解析ツールを開発。

- 図 5 仙台空港にける実証実験
- ③レーダー信号発生器及び信号処理ボードを改良後、コヒーレント積分処理を実装しシステム雑音を低減。成田国際空港実験時に比べ、検知感度を10dB以上改善。

図 6 積分処理によるシステム雑音低減効果

- c. 仙台空港
- ①上記 b における性能改善システムを用いて、最低性能要件探知率試験(EUROCAE MASPSED-235)で規定された FOD 探知率試験を実施。

図 7 最低性能要件探知率試験の様子

d. 東京国際空港

レーダー動作の安定性を向上させ実証実験を実施した。

①東京国際空港 C 滑走路付近に路面局装置 1 局(レーダー1 台、カメラ 1 台)を設置し、東京 空港事務所庁舎内に中央局を設置した。令和 5 年 3 月の設置工事完了後、24 時間連続運転 を実施し、現在も継続運転中。

図 8 東京国際空港に構築した実証実験システム

②最低性能要件探知率試験(EUROCAE MASPS ED-235)で規定された FOD 探知率試験を実施し、 全ての試験エリアにおいて、全種類検知率 95%以上を確認。

図 9 東京国際空港における最低性能要件探知率試験

③反射率の大きい航空機から反射率の小さい鳥まで、同一のレーダー装置により検知しカメ ラでの自動撮影が可能なことを確認。

人間

図 10 レーダー検知後のカメラ自動撮影画像結果

④特定の灯火からの反射電力を設置後7カ月間にわたり24時間モニタリングし、受信電力に 大きな変動はなく安定動作を確認済み。

(2) 海外における実証動向

高温多湿の環境下など海外における周波数利用について実験を実施した。

a. マレーシア

①6 基のレーダーから構成される評価システムを設置。
 ②東南アジアを中心とした空港関係者に対してショーケースとして活用。
 ③マレーシアが主体となって運用評価に移行するための準備中。

図 12 クアラルンプール空港における実証実験

b. 国際展開

今後以下のような国際展開が期待される。

①マレーシア管轄のマレーシア国内空港における実証実験の展開。

②マレーシアから、東南アジア、西南アジア及び中東に展開。

図 13 国際展開予定

1.4 国内導入検討動向

FOD は、航空機若しくはその関連システムに損傷を及ぼす可能性があることから、空港管理 者は FOD の存在又はその可能性がある事態(航空機部品欠落の発生等)の覚知の都度、滑走路 を閉鎖して臨時点検を行っている。これらの臨時点検の判断は、操縦士等からの通報等をもと に行っており、実際に FOD 発見の通報等から点検を開始するまでに一定の時間が経過してしま っていること、また点検の結果、FOD 発見に至らないことも多いことから、通報等によらない FOD の常時監視及び臨時点検の確立が課題となっている。これら課題を踏まえ、国土交通省に おいて滑走路の安全性の向上及び効率的な運用に資することを目的とし、関係機関からなる 「滑走路面異物(FOD)検知装置導入検討会」を令和3年度に設置し、発着回数及び滑走路臨 時点検回数が多い空港へのFOD検知装置導入について検討を行っている。

滑走路面異物(FOD)検知装置導入検討会(令和3年度 設置)

図 14 国内導入検討状況及び FOD 検知装置の活用(案)

1.5 国際標準化動向

90GHz 帯滑走路面異物検知レーダーシステムが利用を予定している周波数帯域(92-100GHz) は国際的に無線標定業務(RADIO LOCATION SERVICE:92-100GHz)及び無線航行業務 (RADIO NAVIGATION SERVICE:95-100GHz) に分配されている。更に、この帯域及び隣接帯域 は、移動業務、固定業務、地球探査衛星業務(受動及び能動)並びに電波天文業務にも分配さ れているため、90GHz 帯滑走路面異物検知レーダーシステムを海外展開するうえでは、他業務 との周波数共用条件を明確化する必要がある。このため、2017(平成 29)年5月より、ITU-R WP5B にて 90GHz 帯滑走路面異物検知レーダーシステムの国際標準化の取り組みが始まって いる。90GHz 帯滑走路面異物検知レーダーシステムの調達は、各国の空港あるいは政府機関か らの国際調達となる。国際調達では世界貿易機関(WTO:WORLD TRADE ORGANIZATION)の定め る国際調達基準を満たす必要がある。更に WTO 基準では国際標準化に沿ったシステムであるこ とが求められる。このため、製品システムの国際標準化活動は、国際調達に応募する際の重要 な基本条件となる。更に、ASEAN 諸国では各国独自の電波法制が定められることは稀で、多く の場合、無線分野では ITU-R に定められた諸規則をそのまま国内基準として転用することが多 い。このため、我が国における 90GHz 帯滑走路面異物検知レーダーシステムに沿った国際標準 化を進めることで、各国において個別の法制化を進める必要がなくなり、どの国に輸出する場 合でも、基本的な法整備は完了した状態となる。

図 15 は ITU-R 全体の会議体構成を示す系統図である。地上業務を統括する SG5 のもとに、 海上移動業務、航空移動業務及び無線測位業務を統括する WP5B、更にその下に無線測位業務 を統括する 5B1 が常設の会議体として全体が構成されている。90GHz 帯滑走路面異物検知レー ダーシステムに関する寄書は国内委員会で審査・承認を受けたうえで、総務省が ITU-R に提出 する。初回の現地会合で 90GHz 帯滑走路面異物検知レーダーシステムの寄書を審議するための Drafting Group (DG) を設置して実務的な議論をする旨が 5B1 議長によって提案・承認され、 柴垣信彦氏(日立国際電気)が DG5B1 FOD の議長を会期毎に指名され務めている。

DG5B1 FOD では FOD に関する各国からの寄書の審議を行うほか、図 15 に示すように同一帯 域を使用している他業務である WP7C(リモートセンシング)、WP7D(電波天文)及び WP5A (陸上移動)傘下の 5A2(システムと標準)、5A4(周波数共用)からのリエゾン文書を適切 に処理しつつ、周波数共用のための文書作成を行っている。

図 15 会議体系

#	文書名	文書概要	審議・承認の 状況
1	ITU-R 研究課題 260/5	90GHz 帯滑走路面異物検知レーダー 新研究課題	発行済み
2	ITU-R 報告 M. 2501-0	90GHz 帯滑走路面異物検知レーダー 技術仕様に関するレポート	発行済み
3	ITU-R 勧告 M. 2162-0	90GHz 帯滑走路面異物検知レーダ ー、気象レーダーに関する勧告	発行済み
4	Working document towards a preliminary draft new Report ITU-R M. [FOD_EESS_SHARE]	90GHz 帯滑走路面異物検知レーダー と地球探査衛星との周波数共用に関 する技術レポート	継続審議、2024(令 和6)年度の完成を 目指す

表3 ITU-Rにおける 90GHz 帯滑走路面異物検知レーダー関連文書の検討状況

(2024(令和6)年1月現在のステータス)

ITU-R報告 M. 2501-0は90GHz帯滑走路面異物検知レーダーの技術仕様を文書としてまとめたも のであり、以下の事項が記載されている。

①システム概要、システム特性(周波数帯域、チャネルプラン、レーダー性能、アンテナ特性) ②Annex1:成田国際空港での実証内容

③Annex2:スペクトラムエンベロープ(実測)

④Annex3:アンテナ仰角と90GHz帯滑走路面異物検知レーダーへの入射角の関係

⑤Annex4:クアラルンプール空港での実証内容

なお、ITU-R 勧告 M. 2162-0 は 90GHz 帯滑走路面異物検知レーダー及び気象レーダーに関する 勧告であるが、90GHz 帯滑走路面異物検知レーダーについては ITU-R 報告 M. 2501-0 に記載されて いる内容と同じ諸元が勧告として記載されている。

表 4	ITU-R 報告 M. 2501-0 に記載されている主要技術仕様

Parameters	Values	
Frequency range (GHz)	92-100	
Channel plan	See Fig. 3 (図 16)	
Channel bandwidth (GHz)	0.58-7.98	
Output power (mW)	100-200	
Spectrum envelope	See Annex 2	
Sweep frequency (kHz)	1.25	
Antenna type	Cassegrain	

Antenna gain (dBi)	44		
Antenna pattern	Recommendation ITU-R F.699		
Antenna height (m)	4-8		
Full width at half maximum	Elevation: 1.0,		
antenna gain (3 dB beamwidth) (degrees)	Azimuth: 1.0		
Antenna rotation speed (rpm)	15		
Detection distance (m)	200-500		
Antenna elevation angle (degrees)	-1.8 (see Annex 3)		
Radiated rotation angle in azimuth (degrees)	± 60		
Radar cross section specification (dBsm)	-20		
Emission bandwidth (-3 dB) (MHz)	1 (see Annex 2)		
Emission bandwidth (-20 dB) (MHz)	3.5 (see Annex 2)		
Adjacent channel leakage ratio (dBc)	< -70		
Receiver noise figure (dB)	10		
I/N protection criteria (dB)	-6		

Channel plan for foreign object debris detection system operating in the frequency range 92-100 GHz

図 16 ITU-R M. 2501-0 に記載されているチャネルプラン

Working document towards a preliminary draft new Report ITU-R M. [FOD_EESS_SHARE]は 90GHz 帯滑走路面異物検知レーダーと地球探査衛星の共用検討レポートであり、図 17 に示す構成 となっている。地球探査衛星(能動)の干渉検討については動的解析の結果、共用可能となり、 地球探査衛星(受動)の干渉検討については静的解析の結果、共用可能となっている。なお、ITU-Rのレポート案 ITU-R M. [FOD_EESS_SHARE]は 2024(令和 6) 年 5 月の会合でアップデートされ、 2024(令和 6)年度中の完成予定である。

Work	ing Document toward a PDNR ITU-R M.[EESS_SHARE]
•90Gł	Iz 帯滑走路面異物検知レーダーと地球探査衛星の共用検討レポート
✓	90GHz 帯滑走路面異物検知レーダーの技術特性
✓	地球探査衛星(受動・能動)の特性
✓	地球探査衛星(受動・能動)の保護基準
✓	90GHz 帯滑走路面異物検知レーダーシステムの展開シナリオ
✓	共用検討
✓	Annex1:地球探査衛星(能動)の干渉検討
	✓ 静的解析
	✓ 動的解析
✓	Annex2:地球探査衛星(受動)の干渉検討
	✓ 静的解析
	✓ 動的解析

図 17 Working Document toward a PDNR ITU-R M. [EESS_SHARE]の概要

第2章 周波数の共用に関する検討

90GHz 帯滑走路面異物検知レーダーとしては、世界的に一次業務として無線標定業務に分配されている 92-100GHz の周波数帯を用いる予定である。当該 90GHz 帯の周波数を用いる 90GHz 帯滑 走路面異物検知レーダーと他システムとの周波数共用条件を検討する帯域として、最大周波数帯 域幅である±8GHz の範囲に帯域外発射の影響が想定されるため、図 18 に示すとおり隣接周波数 である 81-92GHz 及び 100-109. 5GHz を含む 81-109. 5GHz を対象とした。

図 18 検討対象周波数及び隣接周波数の状況

図 19 に、90GHz 帯滑走路面異物検知レーダーと共用するシステムの関係に関する概略図を示す。 同図は、1 滑走路あたり 12 台を滑走路両脇に設置したことを想定した場合の 90GHz 帯滑走路面異 物検知レーダーの配置イメージである。令和 2 年 3 月電波利用料技術試験事務「空港滑走路にお ける 90GHz 帯 FOD レーダーの導入に向けた周波数有効利用に関する調査検討報告書」(以下、「90GHz 帯滑走路面異物検知レーダー技術調査報告書」という。)における共用検討では、1 滑走路あたり 48 台の 90GHz 帯滑走路面異物検知レーダーの各出力電力を 20dBm とし、出力電力は空港滑走路面 で反射すると 22dB 減衰するため、反射後の電力を-2dBm とした。ただし、空港内の滑走路の配置 によっては、滑走路片側のみのレーダーの配置や、両側と片側配置の組み合わせも想定できるこ ととした。

なお、最大設置数を48台としたのは、滑走路付近のレーダー鉄塔に脆弱性物件としての性能が 必要であることを考慮した結果、設置できるレーダー数(建築限界数)は1滑走路あたり最大で 48台と想定したためである。また、Working Document toward a PDNR ITU-R M. [EESS_SHARE]に おいても滑走路1あたりのレーダー設置数は最大48台を前提としている。

図 19 90GHz 帯滑走路面異物検知レーダーと共用システムの概要(滑走路両側配置の場合)

空中線について、90GHz 帯滑走路面異物検知レーダー技術調査報告書では、最大空中線利得は 44dBi、空中線の半値幅は1度以下の想定した検討を実施したが、90GHz 帯滑走路面異物検知レー ダーの覆域を向上させることを想定し、最大空中線利得は変更せず、空中線の垂直面又は水平面 の半値幅が5度以下の空中線を想定することとした。このため、90GHz 帯滑走路面異物検知レーダ ー技術調査報告書では送信波を滑走路面に向ける前提の運用であるため、主輻射方向は1度以上 下方に向けることを想定していたが、1度より広い半値幅に対応するため、主輻射方向は、水平面 より主輻射の角度の幅以上下方とすることとした。また、偏波面について、90GHz 帯滑走路面異物 検知レーダー技術調査報告書においては、直線偏波(垂直及び水平偏波)を想定していたが、異 物の多様な形状に対応することを想定し、偏波を指定しないこととした。

なお、共用検討においては、これらの空中線及び偏波面の想定の変更に伴う特段の追加検討事 項はない。

2.1 同一システムとの共用検討

90GHz 帯滑走路面異物検知レーダー同士は、同一周波数帯である 92-100GHz を用いるため、共 用検討を行う必要がある。条件として、1 つの空港にある複数台の 90GHz 帯滑走路面異物検知レ ーダーが、他の 90GHz 帯滑走路面異物検知レーダーに与える干渉を検討した。

2.1.1 技術試験事務の検討結果

90GHz帯滑走路面異物検知レーダー技術調査報告書第6章 6.4に記載のとおりである。

検討の結果、最大で滑走路6本の空港を想定した場合、同一周波数帯を用いた場合の空港間所 要離隔距離は78kmとなり、異なる周波数帯を用いた場合の空港間所要離隔距離は7.6kmで共用可 能となる。なお、同一空港内の複数滑走路において、空港内の全ての90GHz帯滑走路面異物検知 レーダーの回転同期を実施することで同一周波数帯を用いることが可能となる。

各空港において、滑走路が6本より少ない空港を想定した場合の離隔距離を表5に示す。

空港の滑走路数	各空港が使用する周波数	離隔距離 (km)
滑走路1本の空港	同一周波数	63
滑走路2本の空港	同一周波数	68
滑走路3本の空港	同一周波数	72
滑走路4本の空港	同一周波数	74
滑走路5本の空港	同一周波数	76
滑走路6本の空港	同一周波数	78
滑走路1本の空港	異なる周波数	3. 7
滑走路2本の空港	異なる周波数	5.0
滑走路3本の空港	異なる周波数	5.8
滑走路4本の空港	異なる周波数	6.5
滑走路5本の空港	異なる周波数	7.1
滑走路6本の空港	異なる周波数	7.6

表 5 空港の滑走路数と離隔距離

2.1.2 同一システムとの追加の共用検討

90GHz 帯滑走路面異物検知レーダー技術調査報告書以降に追記すべき情報は特になく、90GHz 帯 滑走路面異物検知レーダー同士の共用に関する結果は変わらない。

2.2 電波天文業務との共用検討

81-109.5GHz 帯には、電波天文業務に分配されており、このうち 85.5-92GHz 帯については、総務大臣が告示で指定した電波天文業務の用に供する受信設備が受信する周波数となっている。共用検討については、81-109.5GHz 帯を対象として実施した。

2.2.1 技術試験事務の検討結果

90GHz 帯滑走路面異物検知レーダー技術調査報告書第5章及び第6章 6.1 に記載のとおりである。

共用検討の条件として、電波天文業務の受信設備と反対方向に 90GHz 帯滑走路面異物検知レー ダーを設置する場合には 90GHz 帯滑走路面異物検知レーダーの背面からの漏洩電力は-89.7dBm と した。 検討の結果、空港と電波天文業務の受信設備が正対する場合には離隔距離 112km を確保するこ と、離隔距離 112km が確保できない場合には 90GHz 帯滑走路面異物検知レーダーを電波天文の受 信設備に対して背面に設置することにより、電波天文業務の受信設備との共用が可能となる。電 波天文業務の受信設備への有害干渉を回避するため、90GHz 帯滑走路面異物検知レーダーの設置 場所を中心として半径 112km 以内に、90GHz 帯滑走路面異物検知レーダーの送信周波数と同一周 波数を受信する電波天文業務の受信設備がある場合には、90GHz 帯滑走路面異物検知レーダーか ら電波天文業務の受信設備の方向を基点(0°)として、水平方向に 0°から+80°及び 0°から-80°の方向における放射電力が-89.7dBm 以下となるよう、遮蔽板を設ける等の対策を行う必要が ある。

2.2.2 電波天文業務との追加の共用検討

90GHz 帯滑走路面異物検知レーダー技術調査報告書以降、平成 24 年総務省告示第 52 号(電波法 第五十六条第一項の規定による電波天文業務の用に供する受信設備)が廃止されたが、電波天文業 務の受信設備との共用に関する結果は変わらない。なお、電波天文業務の受信設備に対して 90GHz 帯滑走路面異物検知レーダーを背面に向けて設置した場合や、隣接帯域となる場合を含む離隔距 離の検討結果を表 6 に示す。電波天文業務の受信設備である入来観測局(鹿児島県薩摩川内市)・ 石垣島観測局(沖縄県石垣市)・水沢観測局(岩手県奥州市)は本報告書作成時点では 92GHz 以下 の観測を行っているが、より高い周波数の観測を目指した開発が行われている。このため、これ らの観測局についても 92-100GHz を受信することを想定し、112kmの離隔距離を確保することが 望ましい。また、112kmの離隔距離が確保できない場合は 2.2.1 の記載のとおり遮蔽板を設ける 等の対策を行うことが望ましい。

レーダーのアンテナ方向	与干涉周波数	離隔距離
電波天文業務の受信設備と正対する設置	同一周波数	112km
電波天文業務の受信設備と正対する設置	隣接周波数	6.0km
電波天文業務の受信設備に背面向きに設置	同一周波数	5m 未満
電波天文業務の受信設備に背面向きに設置	隣接周波数	1m 未満

表 6 共用を可能とする離隔距離

2.3 地球探査衛星業務(受動)との共用検討

対象となる地球探査衛星業務(受動)のセンサーは、水循環観測技術衛星(GOSAT-GW)に搭載さ れている AMSR3(Advanced Microwave Scanning Radiometer 3)で、本センサーの使用周波数は隣 接周波数である 86-92GHz であるため、隣接チャネルとして共用検討を行う必要がある。

2.3.1 技術試験事務の検討結果

90GHz 帯滑走路面異物検知レーダー技術調査報告書第6章 6.2.1 に記載のとおりである。

本センサーは仰角 35°方向からの観測で、東京国際空港を例にとると、今後滑走路が増設されたとしても、5km×3kmの観測範囲には最大4滑走路しか含まれない。そのため4滑走路で共用検

討した。

干渉電力は、空港滑走路面での反射電力と、90GHz 帯滑走路面異物検知レーダーから直接上空 35°方向への電力の合計であり、この合計値が干渉許容電力密度(-169dBW)を下回ったため、地 球探査衛星業務(受動)のセンサーとの共用は可能である。

2.3.2 地球探査衛星業務(受動)との追加の共用検討

90GHz 帯滑走路面異物検知レーダー技術調査報告書以降に追記すべき情報は特になく、地球探 査衛星業務(受動)との共用に関する結果は変わらない。

2.4 地球探査衛星業務(能動)との共用検討

対象となる地球探査衛星業務(能動)のセンサーは、EarthCARE(Earth Clouds Aerosols and Radiation Explorer)衛星に搭載されている CPR(Cloud Profiling RADAR)である。CPR が使用する 周波数は、94.0-94.1GHz なので、同一周波数帯との共用検討を行う必要がある。なお、EarthCARE については 2024(令和 6)年度以降打ち上げ予定である。

2.4.1 技術試験事務の検討結果

90GHz 帯滑走路面異物検知レーダー技術調査報告書第6章 6.2.2 に記載のとおりである。

CPR の使用周波数は、94-94.1GHz で、瞬時観測域は 750m×750m であるが、10km 積分モードでの観測となるため、750m×10km で検討した。

地球探査衛星(受動)の共用検討と同様に、東京国際空港を例にとり、今後滑走路が増設され 最大6滑走路のうち4滑走路(うち、2滑走路は全域、残り2滑走路は1/3)が観測範囲に含まれる ことを想定し、90GHz帯滑走路面異物検知レーダー数は最大値として128台で検討した。

その結果、CPR の帯域内(94-94.1GHz)で 90GHz 帯滑走路面異物検知レーダーの電波を送信した 場合には共用不可となり、CPR の帯域外(92-100GHz のうち 94-94.1GHz 以外の周波数)で 90GHz 帯滑走路面異物検知レーダーの電波を送信した場合には共用可能となった。

2.4.2 地球探査衛星業務(能動)との追加の共用検討

90GHz 帯滑走路面異物検知レーダー技術調査報告書で検討された令和2年3月以降、更に検討 が進んだ内容について示す。ITU-R における議論では静的解析で共用条件が見出せない場合は、動 的解析で共用可能性を探ることが一般的であり議論が進んでいる。表7のとおり、動的解析での 許容条件は地球探査衛星(受動)の場合、ITU-R 勧告 RS. 2017において干渉を受ける時間率が0.01%、 地球探査衛星(能動)の場合、ITU-R 勧告 RS. 1166-4において干渉を受ける時間率が1%であるこ とが規定されている。

地球探查	参照勧告	静的許容条件(電力)	動的許容条件
衛星業務			(時間率)
受動	ITU-R 勧告 RS. 2017	$-169~\mathrm{dBW}$	0.01%
能動	ITU-R 勧告 RS. 1166-4	$-155~\mathrm{dBW}$	1%
		over 300kHz	

表 7 地球探査衛星の保護基準

地球探査衛星と90GHz 帯滑走路面異物検知レーダーの共用検討結果

・ITU-R での議論を参考にした地球探査衛星と90GHz 帯滑走路面異物検知レーダーの共用検討

- ✓ 地球探査衛星(受動)と 90GHz 帯滑走路面異物検知レーダーは技術試験事務で実施した静的解析で共用可能
- ✓ 地球探査衛星(能動)と90GHz帯滑走路面異物検知レーダーは ITU-R における動的解析で共用可能

技術試験事務(令和2年3月報告)

今回の検討

	静的許容条件			静的許容条件	動的許容条件
	(電力)			(電力)	(時間率)
受動	-169dBW		受動	-169dBW	0.01%
	共用可能	LL/		共用可能	
能動	-155dBW	Լ/	能動	-155dBW	1%
	over 300kHz	ļ		over 300kHz	共用可能
	FOD レーダーが禁止帯			静的検討では	
	(94-94.1GHz)を採用し共用可能			共用不可能	

図 20 地球探査衛星業務と 90GHz 帯滑走路面異物検知レーダーの共用検討

共用検討結果の概要を図 20 に示す。ITU-R においては、動的解析の結果から地球探査衛星 (能動) と 90GHz 帯滑走路面異物検知レーダーの共用は可能と考えられている。当該議論は、 Working document towards a preliminary draft new Report ITU-R M. [FOD_EESS_SHARE]として レポート化が進んでいる。令和6年1月時点では作業文書としてキャリーフォワードされてい る。

静的解析で共用不可となった地球探査衛星(能動)に対する動的解析の結果、干渉を受ける時間率の許容値1%に対し約0.01%の解析結果が示されており、国内関係者との調整の結果、 90GHz帯滑走路面異物検知レーダーは地球探査衛星(能動)と共用可能となった。 2.5 電波防護指針への適合性について

2.5.1 電波防護指針

電波防護指針では、電波のエネルギー量と生体への作用との関係が定量的に明らかにされてお り、これに基づき、システムの運用形態に応じて、電波防護指針に適合するようシステム諸元の 設定に配慮する必要がある。今回、電波防護指針の基準値(電気通信技術審議会答申 諮問第 38 号 「電波利用における人体の防護指針」(平成2年6月))への適合性について検討を行った。

電波防護指針では、評価する対象が、電波利用の実情が認識されていると共に、防護対象を特 定することができる状況下にあり、注意喚起など必要な措置可能であり、電波利用の実情が認識 され防護指針の主旨に基づいた電波利用を行うことが可能な場合は、管理環境を適用し、このよ うな条件が満たされない場合は、一般環境を適用することとしている。各条件における指針値を 次に示す。

表 8 管理環境の電磁界強度(6分間平均値)の指針値

周波数 f	電界強度の実効値	磁界強度の実効値	電力密度
	E[V/m]	H [A/m]	S [mW/cm ²]
1.5GHz-300GHz	137	0.365	5

 周波数 f
 電界強度の実効値
 磁界強度の実効値
 電力密度

 E[V/m]
 H [A/m]
 S [mW/cm²]

 1.5GHz-300GHz
 61.4
 0.163
 1

表 9 一般環境の電磁界強度(6分間平均値)の指針

電波の強度の算出については、「無線設備から発射される電波の強度の算出方法及び測定方法 を定める件」(平成11年郵政省告示第300号)において、以下の式が定められている。

$$S = \frac{PG}{40 \pi R^2} \cdot K \cdot \cdot \cdot (\vec{z})$$

S: 電力束密度[mW/cm²]

P: 空中線入力電力[₩]

- G:送信空中線の最大輻射方向における絶対利得
- R: 算出にかかる送信空中線と算出を行う地点との距離[m]
- K: 反射係数

すべての反射を考慮しない場合:K=1

大地面の反射を考慮する場合:K=2.56

また、電波法施行規則第21条の4において、一般環境の電波防護指針を超える範囲において は人が立ち入らないよう施設をしなければならいこととなっている。

2.5.2 電波防護指針への適合性の検討結果

90GHz 帯滑走路面異物検知レーダーは、通常、飛行場内の管理区域に設置されるため、電波防 護指針値への適合性については、管理環境の表 8 へ適合する必要がある。

90GHz 帯滑走路面異物検知レーダーの無線設備の諸元について、

・空中線電力:100mW(最大)

•空中線利得:44dBi (最大)

と想定し、大地面の反射を考慮した場合、離隔距離は 3.2m となり、当該無線設備は、滑走路に 平行して設置される状況から、電波防護指針に適合しているものと言える。

なお、90GHz 帯滑走路面異物検知レーダーを一般環境に設置する場合の離隔距離は 7.15m で あり、当該距離の範囲内に人が立ち入らないよう施設をするなど、電波法施行規則第 21 条の 4に適合することが必要である。 第3章 90GHz 帯滑走路面異物検知レーダーに関する技術的条件

以上の検討から、90GHz 帯滑走路面異物検知レーダーに関する技術的条件を次のとおり整理する。

- 3.1 一般条件
- (1)周波数

92GHz から 100GHz までとする。

- (2)変調方式FM-CW(周波数変調連続波)方式とする。
- (3)電波防護指針への適合電波法施行規則第21条の4を満足すること。
- 3.2 無線設備の技術的条件
- (1)周波数の許容偏差指定周波数帯によるため規定しない。
- (2) 占有周波数帯域幅の許容値 指定周波数帯によるため規定しない。
- (3)空中線電力

最大 100mW とする。

(4)等価等方輻射電力

規定しない。

(5)空中線系

送信空中線の絶対利得

44dBi 以下とすること。なお、送信空中線の水平面及び垂直面の主輻射の角度の幅は、5度以 下であることとし、主輻射方向は、水平面より主輻射の角度の幅以上下方となること。 ②偏波面

偏波は規定しない。

(6) 空中線電力の許容偏差

上限 50%、下限 50%以内であること。

(7)送信スペクトラムマスク

同一帯域及び隣接帯域を使用する全ての他業務との共用検討に基づく保護の観点により、帯 域外領域については、必要周波数帯域内の上限周波数及び下限周波数の電力値に対して-70dBc の電力比とする。

(8)チャネル配置

チャネル配置は、特段規定しない。なお、92-100GHz のうち、5.9GHz 以下の帯域幅を使用す る場合、94-94.1GHz を避ける周波数配置が望ましい。

- (9)帯域外領域における不要発射の強度の許容値 搬送波の平均電力より 70dB 低い値とする。
- (10)スプリアス領域における不要発射の強度の許容値 搬送波の平均電力より 70dB 低い値とする。

3.3 測定法

(1) 周波数の偏差及び使用周波数帯域幅

許容値が指定周波数帯で規定される場合は、試験機器を占有周波数帯幅が最大となる状態に 設定して、占有周波数帯幅の測定においてスペクトル分布の上限及び下限周波数が指定周波数 帯内にあることをもって確認する。使用周波数帯幅の測定は、スペクトル分布の全電力につい てスペクトルアナライザ等を用いて測定し、スペクトル分布の上限及び下限の部分における電 力の和が、それぞれ全電力の99%となる周波数幅を測定する。

(2)空中線電力

空中線電力の測定については、試験機器を通常の変調状態で空中線電力が最大となる状態に 設定して、空中線測定端子にて、平均電力を、高周波電力計等を用いて測定する。また、連続 送信波により測定することが望ましいが、バースト送信波にて測定する場合は、送信時間率が 最大となるバースト繰り返し周期よりも十分長い期間における平均電力を測定し、その測定値 に最大の送信時間率の逆数を乗じて平均電力とすることが適当である。

(3)帯域外領域及びスプリアス領域における不要発射の強度

帯域外領域とスプリアス領域の境界周波数を 92GHz 及び 100GHz とし、以下によって測定を 行うことが適当である。

試験機器を通常の変調状態に設定して、スペクトルアナライザを用いて不要発射の平均電力 (バースト波にあってはバースト内の平均電力)を測定する。この場合、スペクトルアナライ ザの分解能帯域幅は参照帯域幅を算出(ITU-R 勧告 M. 1177)して設定することが適当である。 ただし、参照帯域幅が 1MHz を超える場合は、分解能帯域幅を 1MHz に設定して測定することも 可能である。不要発射の強度の測定を行う周波数範囲は、可能な限り 9kHz から 110GHz までと することが望ましいが、30MHz から 110GHz までとすることができる。

- 3.4 干渉回避のための機能、設置、運用、その他の留意点
 - 90GHz 帯滑走路面異物検知レーダーの無線設備に関して、同一システム・他システムとの共用 の促進及び周波数有効利用に資するため以下の機能等を具備することが適当である。

(1) 干渉回避のための補助機能

①90GHz 帯滑走路面異物検知レーダー相互間の同期機能

同一空港内の同一滑走路又は複数滑走路において、同一の周波数を利用した 90GHz 帯滑走 路面異物検知レーダーを設置する場合、同一システム間の周波数を共用するため、全ての 90GHz 帯滑走路面異物検知レーダーの回転同期を実施する機能を設けること。なお、当該機能 については、民間標準規格に規定することが適当と考えられる。

②90GHz 帯滑走路面異物検知レーダーの不要な電波発射の停止

90GHz 帯の他システムとの共用の促進及び周波数有効利用の観点から、90GHz 帯滑走路面異 物検知レーダーの空中線が検知しようとする方向以外の方向を向いた際には、電波の発射を 停止する機能を設けること。なお、当該機能については、民間標準規格に規定することが適 当と考えられる。

第4章 今後の検討課題

本検討では、92-100GHz の周波数帯を対象として 90GHz 帯滑走路面異物検知レーダーの技術 的条件の検討を行った。当該周波数帯は、92-100GHz 帯が無線標定業務に分配されており、ま た、95-100GHz が無線航行業務に分配されている。90GHz 帯滑走路面異物検知レーダーの技術的 条件は、無線標定業務である滑走路面の異物検知以外にも、例えば、無線航行業務の用途にも 利用することが可能と考えられる。

無線標定業務以外の用途に用いる際、新たな技術的条件等が必要になった場合には、追加の 検討を行う必要があると考えられる。

V 審議結果

電気通信技術審議会諮問第 10 号「航空無線通信の技術的諸問題について」(昭和 60 年 4 月 23 日)のうち「90GHz 帯滑走路面異物検知レーダーに関する技術的条件」について、別添のとおり答申(案)をとりまとめた。

別表1

情報通信技術分科会 航空·海上無線通信委員会 構成員一覧

(敬称略)

氏	名	主 要 現 職
主査 専門委員	小瀬木 滋	一般財団法人航空保安無線システム協会 技術顧問
委員	森川 博之	東京大学 大学院 工学系研究科 教授
専門委員	石井 義則	一般社団法人情報通信ネットワーク産業協会 常務理事
11	井手 麻奈美	MOL マリン&エンジニアリング株式会社 海洋技術事業部 主任研究員
11	伊藤 功	株式会社モコス・ジャパン 取締役
11	大槻 秀夫	日本無線株式会社 マリンシステム事業部 マリンシステ ム技術部 担当部長
11	栗田 和博	日本航空株式会社 IT 企画本部 IT 運営企画部長
11	児玉 俊介	一般社団法人電波産業会 専務理事
11	齋藤 絵里	東芝インフラシステムズ株式会社 電波システム事業部 小向工場 センサシステム技術部 主務
11	髙橋 裕之	海上保安庁 総務部 情報通信課長
11	竹内 康夏	ANA システムズ株式会社 IT アーキテクチャ部 マネジャー
11	竹之下 早苗	スカパーJSAT 株式会社 宇宙事業部門 専任部長
11	豊嶋 守生	国立研究開発法人情報通信研究機構 ネットワーク研究所 ワイヤレスネットワーク研究センター 研究センター長
]]	生田目 瑛子	欧州ビジネス協会 電気通信機器委員会委員
11	南風立 千枝 子	一般社団法人全国漁業無線協会参与
11	福田 厳	東京海洋大学 学術研究院海事システム工学部門 海洋工 学部 海事システム工学科 准教授
11	藤井 威生	電気通信大学 先端ワイヤレス・コミュニケーション研究 センター 教授
11	山口 茂彦	国土交通省 航空局 交通管制部 管制技術課長

別表2

90GHz 帯滑走路面異物検知レーダー作業班 構成員一覧

(敬称略)

氏	名	所 属
主任	福島 荘之介	国立研究開発法人海上・港湾・航空技術研究所電子航法研究 所 特別研究主幹
構成員	栗田 和博	日本航空株式会社 IT 企画本部 IT 運営企画部長
11	柴垣 信彦	株式会社日立国際電気プロダクト本部プロダクト部 部員
11	竹内 康夏	ANA システムズ株式会社 IT アーキテクチャ部 マネジャー
11	中村 一城	公益財団法人鉄道総合技術研究所情報通信技術研究部通信 ネットワーク研究室長
11	中村 元	防衛省整備計画局サイバー整備課 防衛部員
11	西村 公佐	株式会社 KDDI 総合研究所フォトニクスイノベーション G
]]	野尻英行	一般社団法人電波産業会研究開発本部 担当部長
11	橋田 芳男	東芝インフラシステムズ株式会社小向事業所 フェロー
))	平松 正顕	大学共同利用機関法人自然科学研究機構国立天文台天文情 報センター周波数資源保護室長 講師
"	ニッ森俊一	国立研究開発法人海上・港湾・航空技術研究所電子航法研究 所 上席研究員
]]	細川 貴史	国立研究開発法人宇宙航空研究開発機構 周波数管理室 室長
11	堀江 宏昭	国立研究開発法人情報通信研究機構電磁波研究所電磁波伝 搬研究センター リモートセンシング研究室
11	牧野仁	国土交通省航空局交通管制部運用課 航空管制運航情報調 查官

別 添

電気通信技術審議会諮問第10号

「航空無線通信の技術的諸問題について」のうち

「90GHz 帯滑走路面異物検知レーダーに関する技術的条件」(案)

電気通信技術審議会諮問第10号「航空無線通信の技術的諸問題について」のうち 「90GHz 帯滑走路面異物検知レーダーに関する技術的条件」に対する一部答申(案)

航空無線通信の技術的諸問題のうち、90GHz帯滑走路面異物検知レーダーに関する技術的条件については、以下のとおりとすることが適当である。

1 一般条件

(1)周波数

92GHz から 100GHz までとする。

(2)変調方式

FM-CW(周波数変調連続波)方式とする。

- (3)電波防護指針への適合電波法施行規則第21条の4を満足すること。
- 2 無線設備の技術的条件
- (1)周波数の許容偏差指定周波数帯によるため規定しない。
- (2) 占有周波数帯域幅の許容値 指定周波数帯によるため規定しない。
- (3)空中線電力

最大 100mW とする。

(4)等価等方輻射電力

規定しない。

(5)空中線系

①送信空中線の絶対利得

44dBi 以下とすること。なお、送信空中線の水平面及び垂直面の主輻射の角度の幅は、5度以下であることとし、主輻射方向は、水平面より主輻射の角度の幅以上下方となること。 ②偏波面

偏波は規定しない。

(6) 空中線電力の許容偏差

上限 50%、下限 50%以内であること。

(7)送信スペクトラムマスク

同一帯域及び隣接帯域を使用する全ての他業務との共用検討に基づく保護の観点により、帯 域外領域については、必要周波数帯域内の上限周波数及び下限周波数の電力値に対して-70dBc の電力比とする。

(8)チャネル配置

チャネル配置は、特段規定しない。なお、92-100GHz のうち、5.9GHz 以下の帯域幅を使用す る場合、94-94.1GHz を避ける周波数配置が望ましい。

- (9)帯域外領域における不要発射の強度の許容値 搬送波の平均電力より 70dB 低い値とする。
- (10) スプリアス領域における不要発射の強度の許容値搬送波の平均電力より 70dB 低い値とする。
- 3 測定法
- (1) 周波数の偏差及び使用周波数帯域幅

許容値が指定周波数帯で規定される場合は、試験機器を占有周波数帯幅が最大となる状態に 設定して、占有周波数帯幅の測定においてスペクトル分布の上限及び下限周波数が指定周波数 帯内にあることをもって確認する。使用周波数帯幅の測定は、スペクトル分布の全電力につい てスペクトルアナライザ等を用いて測定し、スペクトル分布の上限及び下限の部分における電 力の和が、それぞれ全電力の99%となる周波数幅を測定する。

(2)空中線電力

空中線電力の測定については、試験機器を通常の変調状態で空中線電力が最大となる状態に 設定して、空中線測定端子にて、平均電力を、高周波電力計等を用いて測定する。また、連続 送信波により測定することが望ましいが、バースト送信波にて測定する場合は、送信時間率が 最大となるバースト繰り返し周期よりも十分長い期間における平均電力を測定し、その測定値 に最大の送信時間率の逆数を乗じて平均電力とすることが適当である。

(3)帯域外領域及びスプリアス領域における不要発射の強度

帯域外領域とスプリアス領域の境界周波数を 92GHz 及び 100GHz とし、以下によって測定を行うことが適当である。

試験機器を通常の変調状態に設定して、スペクトルアナライザを用いて不要発射の平均電力 (バースト波にあってはバースト内の平均電力)を測定する。この場合、スペクトルアナライ ザの分解能帯域幅は参照帯域幅を算出(ITU-R 勧告 M. 1177)して設定することが適当である。 ただし、参照帯域幅が 1MHz を超える場合は、分解能帯域幅を 1MHz に設定して測定することも 可能である。不要発射の強度の測定を行う周波数範囲は、可能な限り 9kHz から 110GHz までと することが望ましいが、30MHz から110GHz までとすることができる。

参考資料

参考資料1: (一社)電波産業会, "空港滑走路における 90GHz 帯 FOD レーダーの導入に向けた周 波数有効利用に関する調査検討報告書," (一社)電波産業会, 2020.

参考資料 2: ITU-R, "Protection criteria used for radio astronomical measurements," Rec. ITU-R RA.769-2, 2003.

参考資料 3 : ITU-R, "Levels of data loss to radio astronomy observations and percentage-of-time criteria resulting from degradation by interference for frequency bands allocated to the radio astronomy service on a primary basis," Rec. ITU-R RA.1513-2, 2015.

参考資料4:電波天文業務の用に供する受信設備 総務省告示第三百六十三号(平成 30 年 11 月 7日)

参考資料5:電波天文業務の用に供する受信設備総務省告示第三号(令和2年1月16日)

参考資料6:電波天文業務の用に供する受信設備 総務省告示第四百十五号(令和2年12月25 日)

参考資料7:電波天文業務の用に供する受信設備総務省告示第百七号(令和5年5月30日)

参考資料8:参考送信スペクトラムマスク(ITU-R 勧告 SM.1541 Annex8 による計算結果)
参考資料1 空港滑走路における 90GHz 帯 FOD レーダーの導入に向けた周波数有効利用 に関する調査検討報告書

第1章 空港滑走路における FOD 検知システムの現状と課題

1.1 空港 FOD レーダーシステムの必要性

2000年、フランスの空港において、滑走路上の金属片が原因による超音速旅客機コンコルドの墜落 事故が起った。以降、同様な事故防止のため、航空機の離発着時に滑走路面に落下した金属片をはじ めとしたFOD (Foreign Object Debris)を検知するシステムの導入が求められてきた。その結 果、近年では光学監視カメラに加え、測距性能、距離分解能及び夜間の検出性能等で優れたレーダ 一方式の検知システムが世界的に導入されてきたところである。

しかし、それら現行の検知システムでは遠方から検出できるFODの大きさに限界があるこ と、システムを滑走路近辺に配置する際には安全性の観点から小型化の向上が必要であるこ と等から、遠方から正確にFODを検出できる新しい小型の検知システムの実用化が望まれて いる。

図1に示すように、近年光ファイバー技術と90GHz帯の周波数におけるイメージング技術を 融合したRoF (Radio over Fiber)ベースのリニアセル方式の空港FODレーダーが開発された。 これは、小さなFODを正確に検知でき、検知時間、空港滑走路程度の検知範囲を自由に設定 できることから、早期に、大規模な空港滑走路に90GHz帯FODレーダーを導入することが期待され ている。

図1 システムの応用イメージ(滑走路監視)

1.2 空港 FOD レーダーシステム導入効果のある空港

空港滑走路における FOD 検知システムの導入効果のある空港に関しては、みずほ情報総研 が総務省受託事業として調査した結果がある [1]。

資料によれば、FOD 検知システムの導入効果を評価するには、空港における発着数、滑走路上の FOD 及びバードストライクによる被害発生件数と、FOD 検知システム導入費用を総合的に考慮する 必要がある。その結果、導入効果が期待できる空港は、海外では、日本から比較的近く導入後のサ ポートなどが容易なインドネシア ジャカルタのスカルノ・ハッタ国際空港、マレーシアのク アラルンプール国際空港、及び日本の東京国際空港であると記載されている。

日本国内においては、国土交通省の空港管理状況 [2]に記載されているように、東京国際空港、 成田国際空港、関西国際空港が航空機の発着頻度が高いことがわかっている。発着頻度の高い空港ほ ど FOD が発見された際の離発着の一時的ストップによる遅延や、付随して発生する経済的 損失が大きい。即ち、空港における離発着頻度が高ければ高いほど、FOD 検ロシステムを空港 に導入する効果は大きくなる。

1.3 海外システムの状況

表1に、空港滑走路における FOD 検知システムについて海外メーカの取り扱い状況を示す。FOD 検知システムには、ミリ波レーダーを主体としたものと光学カメラを主体にしたものがある。単独の 光学カメラは、空港のみならず監視カメラとして一般的に普及はしているものの、ミリ波レーダー方式 のほうが測距性能、距離分解能に加え、夜間での検出性能等の面で優れている傾向が強い。いずれ のシステムにおいても、もともとは軍向けに開発されたシステムを応用しているものが多く、 基本的に高性能である。

企業名	外観	実現技術	導入実績	参考
Moog Aircraft	Tarsier	Millimeter	① London	[3]
Group (US)		Wave	Heathrow	[4]
		Radar	Airport	
QinetiQ (UK)			② Vancouver Int'1	
		Night Camera	Airport	
		(a near	③ Dubai Int'l	
		infrared	Airport	
		illumination)	④Doha Int' 1	
			Airport	
			⑤MoD Boscombe Down	
Xsight	RunWize	Millimeter	① Bangkok	[5]
(Israeli)	(FODetect,	Wave	Suvarnabhumi	[6]

表1 FOD 検知システムの状況

Thales (France)	BirdWize, SnowWize, ViewWize)	(77GHz) High Resolution Camera	Airport ②Boston Logan Int' 1 Airport ③Tel-Aviv Ben Gurion Airport ④Seattle-Tacoma Int' 1 Airport	
Stratech (Singapore)	iFerret	High Resolution Camera	 Chicago HareInt' 1 Airport (taxiway) Düsseldorf Int' 1 Airport (apron) 	[7]
Trex Aviation Systems (US) Varec (US)	FOD Finder XF FOD Finder XM	Millimeter Wave (78-81GHz)		[8]
Rheinmetall (Italy)	DEB-RA	Millimeter Wave High Resolution		[10]

		Camera		
ELVA-1 (Sweden)		Millimeter Wave (76- 77GHz/FMCW)		[11]
Plextek	Plextek's FOD	Millimeter	①South Korea	[12]
(UK)	Radar	Wave (78- 81GHz)	Incheon Airport	
Pavemetrics	LFOD	High Speed		[13]
(Canada)		Camera Laser Line Projectors		

ArgosAI	A-FOD	High	 [14]
(Turkey)	rkey) (III-A/III-B)		
		Camera	
		(Deep	
		Learning)	

1.4 空港 FOD レーダーシステムと他システムとの共用検討の必要性

90GHz帯空港FODレーダーを国内の空港に導入、利用できるようにするためには、他システム との間で干渉の影響がないようにすることが必要である。

そこで本調査検討では、90GHz帯空港FODレーダーと同一又は隣接する周波数帯を利用する 他システムとの干渉について実測及びシミュレーションをもとにした調査を行い、周波数 共用及び両立性を確保するための条件等について検討し、技術基準の策定等により他シス テムとの共存を可能とすることを目的としている。 第2章 空港 FOD レーダーの性能

2.1 空港 FOD レーダーのシステム構成と基本仕様

システム基本仕様は、滑走路の FOD 検知に関する FAA ADVISORY CIRCULAR (FAA (FEDERAL AVIATION ADMINISTRATION: 米国連邦航空局)が航空関係者に情報を伝えるた めの刊行物。米国航空法のサポート的な役割を果たす。)、滑走路周辺に機器を設置する 際の航空法に基づく各種の制限事項、実証フィールドの諸条件等を参考に決定した。シス テム系統図を図 2、また、基本仕様を表 2 に示す。

図2 基本システム系統図

制御装置は 30GHz 帯で3GHz 幅のチャープ信号を生成した後、光変調器と光増幅器を介して空 港の既存光ネットワークに接続しレーダーに伝送する構成である。レーダーではPhoto Detector (PD) で電気信号に変換した後、3 逓倍・増幅しアンテナに給電、反射波は増幅後、送 信波と混合し AD 変換の後、制御装置まで光ファイバー経由で伝送され、FFT 処理や各種の信号 処理の後、端末にレーダー情報として表示される構成となっている。制御装置とレーダー 間の信号は、既存の光ファイバー網の一部を利用できるため、本システムのために空港内 のファイバー網を別途用意する必要はない。この RoF 接続型による中央局集中型の特徴は、 システムの拡張性を実現すると同時に、既設の滑走路にも比較的容易に導入ができるメリ ットがあることである。

Antenna unit type	Wide band
Frequency	92 GHz - 100GHz
Bandwidth	8 GHz
Transmitting power	20 dBm
Ranging method	FMCW
Frequency modulation method	Linear triangle
Frequency modulation chirp rate	Up to 15kHz
Antenna gain	44 dBi
Maximum number of radars per a runway	48 (※)

表 2 空港 FOD レーダーの基本仕様

(※) 1 滑走路当たりの最大 FOD レーダー数は建築限界による。標準的は 12。

2.2 空港 FOD レーダーによる FOD 検出例

平成28年度(2016年度)に、成田国際空港において実証実験した例が、電波資源拡大のための研 究開発成果発表会で報告されている[15]。

この実証実験結果を図 3に示す。図には、設置された空港 FOD レーダーから、深夜、航空機の離発着がない時間帯に、空港滑走路内に模擬的に配置した FOD までの距離に対する検出強度を示した。一般的にレーダーで探知される FOD の特性は、レーダー反射断面積と言われる RCS(Radar Cross Section:レーダー波が反射すると仮定した場合の面積で 1 平方メートルを 基準とした dB 値)で表示され、FOD が1 平方メートルの場合が 0dBsm となる。

実験では、空港 FOD レーダーから最大 450m で、-20dBsm(1 インチのボルト)相当の FOD を検出で きることを確認しており、更に、-10dBsm と-20dBsm 相当の 2 種類の FOD を直線状、或いは同 じ位置に配置した場合においても検出可能であることを実証したとされている。

第3章 成田国際空港における実証試験

- 3.1 漏洩電力測定について
- 3.1.1 測定目的等
 - (1) 測定目的

レーダーから電力が放射される際、目的の方向以外に漏洩している電力を測定、また、アンテナ カバーの遮蔽効果を確認し、得られた結果を電波天文業務、及び地球衛星探査業務への与干渉電 力評価に利用する。

(2) 測定場所

図4に示すように、成田国際空港のB滑走路の北東側に設置している実証実験システムのうち、路面装置A(レーダーA)を用いて測定を実施する。

図 4 成田国際空港における路面装置(レーダー装置)の配置

3.1.2 測定方法等

(1) 測定方法等

図 5に、レーダー周辺の測定点について示す。図中において、レーダーの発射方向は左で あり、左方向には滑走路がある。赤で示す点が測定点であるが、測定する際、レーダーに直接検出 器を接触させることはできないため、レーダー装置の中心より 1.5m から2.12m 離れた箇所で 測定を行う。 周波数は、空港 FOD レーダーとして予定している 92GHz から100GHz の中心周波数である96GHz に固定して実施する。アンテナビーム半値幅は1° (ビーム中心から 0.5°離れて 3dB 以下) 電波の 発射方向は樹脂で覆われており、電波の発射方向中心に対して±100°は樹脂、発射方向と逆側中 心に±80°及び上下面は金属板で遮蔽している。

図5 レーダー周辺の測定点

(2) 測定設備

図 6に示すスペクトラムアナライザとホーンアンテナを接続したミキサを用いて漏洩電力 測定を行う。

図6 漏洩電力測定設備

 アンテナ: 標準ゲインホーンアンテナ
 ミキサ: M1970W
 スペクトラムアナライザ: Keysight N9030A (3) 測定条件

成田国際空港におけるレーダーの設置状態を、図 7に示す。支柱の高さ約 4m の上にレーダーが配置され、漏洩電力測定時にはレーダーの回転を止め、滑走路方向に発射した状態で測定を実施する。レーダーを覆っているアンテナカバーが有る場合と、無い場合のそれぞれについて、測定を実施する。

図7 レーダー設置状況と測定条件

(4) 測定実施状況

図8に、測定点へ測定器を移動させるためバケット車を用いた測定の様子を示す。スペクトラムアナライザ、ミキサ、アンテナをバケット車の上に仮設して測定を実施した。レーダーの方向調整は、図9に示すようにスペクトラムアナライザの画面を見ながら行い、目的とする漏洩電力を測定した。測定は、MAX-HOLDモード、RBW+100kHz、VBW=1MHzで実施した。

3.1.3 漏洩電力測定結果

図5に示す測定点毎に測定した漏洩電力を図10に示す。レーダーからは 20dBm の電波を放 射しており、漏洩電力は平均-60dBm 程度であった。

アンテナカバーの背面側である測定点⑨⑩⑪においては、アンテナカバー有で-84.5dBmから-89.7dBm であり、期待された遮蔽効果が表れていることがわかる。しかし、レドーム上面の測定点④では-69.7dBm になっており、遮蔽効果が期待できないことがわかった。

	位置	アンテナからの距離	受信レベル (カバー有) [dBm]	受信レベル (カバー無) [dBm]	カバー有無 の差 [dB]	\backslash	位置	アンテナからの距離	受信レベル (カバー有) [dBm]	受信レベル (カバー無) [dBm]	カバー有無 の差 [dB]
1	左下 45度	2.12m	-70.7	-69.5	-1.2	Ī	右下 45度	2.12m	-70.1	-71.6	1.5
2	左水平	1.5m	-60.3	-56.7	-3.6	8	直下	1.5m	-89.7以下	-89.7以下	-89.7以下
3	左上 45度	2.12m	-59.7	-58.1	-1.6	9	後ろ 水平	1.5m	-89.7以下	-68.1	-21.6以上
4	真上	1.5m	-69.7	-59.2	-10.5	10	後ろ上 45度	2.12m	-84.5	-71.3	-13.2
5	右上 45度	2.12m	-65.5	-60.1	-5.4	1	後ろ下 45度	2.12m	-89.7以下	-76.2	-13.5以上
6	右水平	1.5m	-62.4	-60.4	-2		-8 *	9.7dBmは測定器 測定限界 : MAX	^器 の測定 HOLDした	限界レベ こ値	い

図 10 レーダー漏洩電力の測定結果

レーダーのアンテナカバーとしては背面と上面に金属板を使用している。水平方向の背面 では 20dB 程度の遮蔽効果を得ることができたが、上面における遮蔽効果は約 10dB 程度であり、 背面と同程度の遮蔽効果を得ることができなかった。

3.2 滑走路面反射電力測定

3.2.1 測定目的等

レーダーからの放射電力の滑走路面での反射電力を測定し、電波天文業務、地球探査衛星業 務への与干渉電力の評価に利用する。

3.2.2 測定方法等

測定装置は、図6に示すものと同様であるが、滑走路面での反射測定のため、図11に示すように 成田国際空港において、レーダーAから出力された電波が、滑走路面で反射した電力をレーダー D付近で受信することとした。

図 11 滑走路面反射電力測定におけるレーダー配置

滑走路面における反射電力測定においては、電力を送信するレーダーと、受信するスペクトラ ムアナライザの位置や高さが非常に重要である。そこで、反射電力測定の準備として、図 12 に 示すように送受信装置の滑走路面中心からの距離と高さを正確に把握した。そして、送信す る側のレーダーAの高さと同一の高さになるように、レーダーD側にスペクトラムアナライザを 配置した。測定は、MAX-HOLDモード、RBW=100kHz、VBW=1MHzで実施した。

レーダーA からレーダーD の距離 587m に対応する自由空間伝搬損を用いて算出される受信 電力計算値は-64dBm である。レーダーD 側に設置したスペクトラムアナライザでの受信電 力実測値は-63dBm となったことから、計算値と実測値はほぼ一致していると言える。

3.2.3 幅を持つビームの滑走路面反射

図12に従い、レーダーD 側に配置したスペクトラムアナライザの高さに関して詳細な検討を行った。レーダーA から送信するビームは、図13に示す②に合わせるため、ビームの中心は水平 面から 1.0°下向きになる。ビーム半値幅は 1°(ビーム中心から 0.5°離れて3dB 以下)で あるため、主ビームは俯角 0.5°から 1.5°の間に存在するので、俯角 0.5°のビームは③に、 1.5°のビームは①の地点に発射されることになる。

このことを考慮すると、滑走路面における①、①、②、③で反射した電力は、D において、図 13に示 す高さに到達することとなるので、反射①、①、②、③の高さにおいて反射電力の評価を行っ た。

3.2.4 滑走路面反射測定結果

図14 に、滑走路面における反射電力測定結果を示す。主ビーム中心に対応する反射©の点 における反射電力が-85dBm 程度であり、上方向、下方向どちらに移動しても約 2dB 小さくなる 結果が得られた。

なお、図 12に示した電力実測値-63dBm と、^①における電力実測値-85dBm を比較することに より、レーダーA から発射される電波を 1[°]下に向け、滑走路面で反射した場合には、-63-(-85)=22 における受信電力は 22dB 下がることが分かった。

15

図 14 滑走路面反射電力測定結果

3.2.5 レーダー出力信号(FMCW 方式の CW 信号)の実測

出力される信号に関して以下の系統で測定を実施した。

特に、FMCW 方式のCW 信号に対して離調周波数 10MHz のノイズレベルは帯域内外にある電波天文業務及び地球探査衛星業務への干渉波としても影響するため確認が必要である。

ここではスペクトラムアナライザとその付属ミキサ及び基本波ミキサにより測定系統を構築した。

また、より精度の高い組み合わせについても確認するため、4 つの測定系統について実測した。

(1) 系統1

スペクトラムアナライザはキーサイト社製を使用し、専用のスマートミキサ経由でレーダーと接続した。

図 15 レーダー出力信号測定接続図(系統1)

スペクトラムアナライザの設定については、スパンは 20MHz、RBW=1MHz、VBW=3MHz とし、検 波モードはノイズ測定のためサンプル設定とする。CW 信号の最大電力値に対して、離調周波 数 10MHz ではノイズレベルは-65.8dBc であった。

(2) 系統 2

スペクトラムアナライザはローデシュワルツ社製を使用し専用のミキサ経由でレーダーと 接続した。

図 17 レーダー出力信号測定接続図(系統1)

スペクトラムアナライザの設定については、スパンは 20MHz、RBW=1MHz、VBW=1MHz とし、検 波モードはノイズ測定のためサンプル設定とする。CW 信号の最大電力値に対して、離調周波 数 10MHz ではノイズレベルは-74.6dBc であった。

(3) 系統3

スペクトラムアナライザはキーサイト社製を使用し基本波ミキサ経由でレーダーと接続した。基本波ミキサへのローカル入力には信号発生器と逓倍器を使用した。

図 19 レーダー出力信号測定接続図(系統3)

スペクトラムアナライザの設定については、スパンは 20MHz、RBW=1MHz、VBW=3MHz とし、検波 モードはノイズ測定のためサンプル設定とする。CW 信号の最大電力値に対して、離調周波数 10MHz ではノイズレベルは-64.1dBc であった。

(4) 系統 4

スペクトラムアナライザはローデシュワルツ社製を使用し基本波ミキサ経由でレーダーと 接続した。基本波ミキサへのローカル入力には信号発生器と逓倍器を使用した。

図 21 レーダー出力信号測定接続図(系統 4)

図 22 系統 4 における測定結果

スペクトラムアナライザの設定については、スパンは 20MHz、RBW=1MHz、VBW=1MHz とし、検波 モードはノイズ測定のためサンプル設定とする。CW 信号の最大電力値に対して、離調周波数 10MHz ではノイズレベルは-73.6dBc であった。

以上の測定結果をまとめた結果を表 3に示す。レーダーより出力される信号については、離調 周波数 10MHz において出力信号に対して、キーサイトの測定器の場合-60dBc 以下、ローデシュ ワルツの測定器の場合-70dBc 以下の値がノイズレベルであることが分かった。

レーダー出力(CW信号)の 離調周波数10MHzにおけ るノイズレベル (出力20dBm時)	PSAシリーズ (キーサイト社)	FSWシリーズ (ローデシュワルツ社)
測定設備付属ミキサによる 測定結果	-65.8dBc	-74.6dBc
外部ローカルと基本波ミキ サの組み合わせによる測 定結果	-64.1dBc	-73.6dBc

表 3 解調周波数 10MHz におけるノイズレベル

また、スペクトラムアナライザ付属のミキサを使用することと、基本波ミキサにて外部ローカル信 号を使用する場合においてノイズレベルに大差はなかった。ただし、スペクトラムアナライザの 内部ノイズレベルには大きな差があるため、使用する測定器により測定結果 が大きく異なる。 CW 信号の離調周波数 10MHz におけるノイズ成分は測定器の内部ノイズ特性に依存しており、精 度よく測定するにはローデシュワルツ社製を用いることが望ましい。 なお、出力信号の帯域外に対する漏洩電力については、必要周波数帯域の10MHz 内側に使用する CW 信号を発生させ、その信号の帯域外領域と必要周波数帯域の境界のノイズを測定し、帯域外領域 の出力レベルとして測定する。 第4章 電磁界シミュレーション

電磁界シミュレーションは、アンテナの利得特性を3次元的に解析するものである。空港FOD レー ダーから発射される電力及び漏洩電力をシミュレーションし、実証実験の結果を理論的に裏付ける とともに、共用条件に用いる値を導き出すために実施した。

図23は電磁界解析で用いた3Dモデルを示している。図24に示すような一次放射器(円型導波 管)からの電界が放物面の完全導体に発射・反射されて収束することによりアンテナの利得特 性が計算される。

図 23 電磁界解析の 3D モデル

図25及び図26は一次放射器のみの利得パターンを 3D 及び2D で示したものである。一次放射器 の段階でH 偏波と V 偏波で僅かな利得特性の差が観測され、図27に示す反射器込みの 3D アンテ ナ特性でも偏波の差は観測されるが、差が顕著に現れるのは放射方向である0°から離れた角度域で ある。ITU-R 勧告のなかで 100GHz までの周波数をモデル化しているもののうち、本検討のレ ーダーで採用している反射型レーダーの Reference 特性を示している勧告 ITU-R RS.1813-1 を参照して検討を行う。勧告 ITU-R RS.1813-1 に示されるアンテナパターンの数学モデル(以 下、ITU-R モデルという)では、偏波の差はモデル化されていない。また ITU-R モデルでは仰 角が 69°以上 180°以下の範囲においては主反射面の直径と波長のみで定まる利得が採用 されている。これは数学モデルが 0°から 69°の角度域を主な対象としてモデル化されて いるとも考えられる。今回の検討で必要となる高利得反射型アンテナの 90°方向利得の高 精度測定は、周波数が高いこともあり学術的にも定まった測定法がないのが現状である。こ のため実測、ITU-R モデル、電磁界解析など異なる手法で確認することが必要になってくる。後 述するように実測値、ITU-R モデル、電磁界解析は主ビーム近傍の角度域では十分な一致を示 している。

図 26 一次放射器(円型導波管)の 2D アンテナ Gain パターン

図 27 電磁界解析で求めたアンテナ Gain の 3D 指向性パターン

図 28 と図 29 に ITU-R モデルと実測されたアンテナ利得を重ねて示す。角度範囲は± 120° と±10°である。両図に見られるように放射方向近傍ではアンテナ利得の絶対値・角 度依存 性ともに十分な一致を確認することができる。一方で±90°方向近傍では ITU-R モデルが一 定値を示すのに対し、実測値は利得の低い領域で激しく変動している。この変動は、アンテナ測 定システムのノイズフロアを勘案すると標準的な変動であると思われる。

図 30 と図 31 は同様の比較をアンテナ実測値と電磁界解析の H 偏波成分で行ったもので、 図32と図33は同様の比較をアンテナ実測値と電磁界解析の V 偏波成分で行ったものである。い ずれの比較も±60°までは一致しているが、それ以上の角度範囲では乖離が大きくなる傾向に ある。図34と図35は同様の比較をアンテナモデルと電磁界解析の H 偏波成分で行ったもので、 図36と図37は同様の比較をアンテナモデルと電磁界解析の V 偏波成分で行ったものである。こ れらの比較も±60°までは一致する傾向があるが、それ以上の角度範囲では乖離が大きくなる。

図 30 アンテナの測定結果と電磁界解析[H 偏波] (±120°)

図 32 アンテナの測定結果と電磁界解析[V 偏波](±120°)

図 34 アンテナの ITU-R モデルと電磁界解析[H 偏波] (±120°)

図 37 アンテナの ITU-R モデルと電磁界解析[V 偏波] (±10°)

図38、図39にアンテナモデル、実測、電磁界解析を重ねて示す。既に述べたように± 60°以内ではいずれも精度の範囲内で一致していると言えるが、±90°方向近傍に着目す ると、電磁界解析もアンテナモデルよりも利得が10dB 程度高い点では傾向が一致している。ITU-R のアンテナモデルは、ある角度以上では定数値を取るように定義されており、±90°方向の利得に 関しては、ITU-R モデルよりも実測値及び電磁界解析の値を用いて干渉検討することが望ましい と考えられる。

図 38 ITU-R モデル・測定結果・電磁界解析[H/V 偏波] (±120°)

第5章 空港 FOD レーダーと共用するシステム

5.1 想定される共用システム

空港FODレーダーとしては、世界的に一次業務として無線標定に分配されている92~ 100GHz の周波数帯を用いる予定である。当該 90GHz 帯の周波数を用いる空港FODレーダーと他シ ステムとの周波数共用条件を検討する帯域として、帯域外発射の影響が想定される 隣接周 波数である81~92GHz及び92~109.5GHz を対象とした(表4を参照)[16][17]。これらの周波 数帯域内で該当する業務は、電波天文業務[18]、地球探査衛星業務/宇宙研究業務(受動及び能 動)、固定及び移動業務である[19]。

表4 総務省 周波数割当(10-275GHz)から抜粋

5.2 共用モデル

図 40 に、空港FODレーダーと共用するシステムとの関係に関する概略図を示す。同図は、1滑 走路あたり12台を滑走路両脇に設置したことを想定した場合の空港 FODレーダーの配置イメージで ある。本検討では、最大48台が配置されると仮定した。ただし、空港内の滑走路の配置によって は、片側のみのレーダーの配置や、両側と片側配置の組み合わせも想定できる。FODを検知する ため、滑走路に向けて発射される電波は、滑走路面で反射し、その後、電波天文業務用のパ ラボラアンテナに到達する。この際、空港と電波天文業務用のパラボラアンテナ間に、山など がある場合には、回折損失などにより減衰することもある。空港FODレーダーから上方に向かって は、地球探査衛星業務の人工衛星に対して電波が到達する。

31

図 40 空港 FOD レーダーと共用システムの概要(両側配置の場合)

5.2.1 電波天文業務との共用検討

表4に示されるように、81-109.5GHz帯には、電波天文業務の割当てがあり、このうち85.5-92GHz帯については電波天文業務の用に供する受信設備として総務省告示で総務大臣が指定し た周波数であることから共用検討が必要である。

また、電波天文業務との干渉検討には、勧告 ITU-R RA769-2 にある干渉閾値[20]と RA.1513-2 にある干渉許容データ損率[21]を用いた。

成田国際空港における実証実験において、空港FODレーダーの周囲の漏洩電力と、空港滑走路面の 反射損失を測定した。その結果を用いて電波天文観測局と、日本国内の空港間の距離、距離によ る自遊空間損失、回折効果、大気中の水蒸気による減衰量などを考慮して、離隔距離を算出し た。

5.2.2 地球探査衛星業務(受動及び能動)との共用検討

我が国では、90GHz 帯を用いる地球探査衛星業務(受動)については、宇宙航空研究開発機 構(JAXA)が2012 年に打ち上げた水循環変動観測衛星「しずく」(GCOM-W)に搭載された受動セン サーである高性能マイクロ波放射計2 (AMSR2: Advanced Microwave Scanning Radiometer 2) と、同じく JAXA が2023 年度に打上げ予定である温室効果ガス・水循環観測技術衛星(GOSAT-GW)に搭載される受動センサーである高性能マイクロ波放射計3 (AMSR3: Advanced Microwave Scanning Radiometer 3)が該当する。

また、90GHz帯を用いる地球探査衛星業務(能動)については、宇宙航空研究開発機構(JAXA)及び情報 通信研究機構(NICT)と、欧州宇宙機関(ESA)とが共同で開発し、2022年度に打上げを予定 している雲エアロゾル放射ミッション(EarthCARE: Earth Clouds, Aerosols and Radiation Explorer)に搭載される能動センサーである雲プロファイリングレーダー

(CPR: Cloud Profiling Radar) が該当する。

これら各々の受動及び能動センサーについては、関連するITU-R勧告にシステム諸元 [22][23]及び干渉許容基準[24][25]が規定されている。

地球探査衛星業務(受動)である AMSR2 及びAMSR3 が使用する周波数は 86-92GHz、地球探 査衛星業務(能動)である CPR が使用する周波数は 94-94.1GHz となっている。

電波天文業務の場合と同様に、成田国際空港における実証実験で得た空港FODレーダー周 囲の漏洩電力と空港滑走路面の反射電力を用いて、これらの地球探査衛星業務(受動)及び(能 動)との共用検討を実施した。なお、地球探査衛星業務(受動)については、衛星高度が低く、 干渉の影響をより受けやすい「AMSR3」の方を採用した。

5.2.3 固定通信及び移動通信業務との共用検討

固定通信及び移動通信業務との共用検討対象としては、該当する周波数において、81~ 86GHzを利用する 80GHz 帯高速無線伝送システムがある。

80GHz帯高速無線伝送システムとの共用検討は、無線伝送システムの受信レベル(受信感度) を調査し、その電力値を基準として、空港FODレーダーがどの程度干渉を与えるかを算出し検討 した。

5.2.4 電磁界シミュレーション

電磁界シミュレーションと実証実験の関係について、図43に示す。勧告ITU-R RS. 1813-1のア ンテナモデルを参照し、レーダーを覆っているアンテナカバーの効果確認や電波吸収体の効果確認を行 った。更に、成田国際空港における実証実験とあわせて、実証実験結果との整合性を整理し、電波 天文業務と地球探査衛星業務との共用を可能とする方式の提案を行った。

図 43 電磁界シミュレーションと実証実験の関係

第6章 共用検討

6.1 電波天文業務との共用検討

図44 に電波天文業務との共用検討モデルを示す。レーダーからの電波の放射方向は水平より 1°下方に向いている。図 12 中に示すビームが水平方向の場合(直接波)の実測値-63dBm と、図 14中の正面における測定値を比較することにより、レーダーからの 1°下方 に発射された電波が滑走路面で反射することによって 22dB 程度減衰していることが分かる。そ こで、図 12中に示す実測結果の出力電力20dBmより22dB減じた値である-2.0dBmを滑走路面で反 射したことによる水平方向の干渉電力として共用検討を行った。

図 44 電波天文業務との共用検討モデル

共用検討の計算では、自由空間伝搬損失の計算式として数式1(勧告 ITU-R P.525 の(4)式) を用いた。空港FODレーダーの数については、標準的には1滑走路当たりの最大FODレーダー数は12基 である。しかし本検討では、将来の設置可能性を鑑み、より共用が厳しくなる値である、建築限界 による1滑走路あたり48基を設置したと仮定し計算を行った。計算結果を表5に示す。

数式 1 自由空間伝搬損失の計算式

$$L_{bf} = 32.4 + 20 \log f + 20 \log d$$
 dB

where:

- f: frequency (MHz)
- d: distance (km).
| | 項目 | Unit | 鹿児島空港~
VERA入来観測局
(In-Band
/ 92-100GHz) | 鹿児島空港~
VERA入来観測局シー
ルド措置版
(In-Band | 空港から観測局まで
の距離が112km以上
(In-Band
/ 92-100GHz) | 東京国際空港~
野辺山宇宙電波
観測所(In-Band
/ 92-100GHz) | 備考 アンテナから輻射される電力 |
|----------------------|---|-------------|---|--|--|---|--|
| | 送信電力 | dBm | -2.00 | -89.70 | -2.00 | -2.00 | マンテナ利得44dBiを含め
た実測値を使用する。 |
| D | 設置台数 | 台 | 48.00 | 48.00 | 48.00 | 48.00 | 滑走路あたり最大設置数 |
| (TX) | 滑走路数 | | 1.00 | 1.00 | 1.00 | 6.00 | 国交省様情報による。 |
| @空港 | 合計設置台数 | 台 | 48.00 | 48.00 | 48.00 | 288.00 | |
| | | dB | 16.81 | 16.81 | 16.81 | 24.59 | |
| | 対象周波数 | GHz | 92-100 | 92-100 | 92-100 | 92-100 | |
| | 中心周波数 | GHz | 96 | 96 | 96 | 96 | |
| | 占有带域幅B | MHz | 8000 | 8000 | 8000 | 8000 | |
| | アンテナ利得
(itu-r rs.1813-1
pp.1-2) | dBi | 44 | 0 | 44 | 44 | |
| | 帯域内輻射電力 | dBm | 58.81 | -72.89 | 58.81 | 66.59 | eirp |
| | 帯域内輻射電力密度 | dBm
/MHz | 19.78 | -111.92 | 19.78 | 27.56 | eirp-10*log(BW) |
| | Radar-天文台距離 | km | 27.167 | 27.1655 | 112 | 126.6 | |
| 伝搬路(損失) | 自由空間伝搬損
(itu-r p.525-3 p.2
eq.4) | dB | 160.7263 | 160. 7258 | 173.03 | 174.09 | 1.5m地点の測定値を用いる
時は伝搬距離から距離1.5m
分差し引く。 |
| | 大気中ガスによる損
失(itu-r p.676-12
p.23 fig.10) | dB/km | 10.87 | 10.87 | 44. 80 | 50.64 | • 0.4dB/km @ 96GHz |
| | 回折損失
(itu-r p.526-14
p.18 eq.31 or
p.452-16
p.10 eq.13) | dB | 0.00 | 0.00 | 0.00 | 61. 161 | 国土地理院ホームページによ
る |
| | アンテナ利得
(itu-r ra.769) | dBi | 0.00 | 0.00 | 0.00 | 0.00 | |
| RAS
(interference | 到達受信電力 | dBm
/MHz | -151.81 | -283. 51 | -198.05 | -258. 33 | |
| RX) | 迩 茨王法 <i>任</i> (李 力 | dBW | -189.00 | -189.00 | -189.00 | -189.00 | |
| | (itu-r ra. 769-2よ | dBm | -159.00 | -159.00 | -159.00 | -159.00 | 国立天文台様よりご意見 |
| | <i>り</i>) | dBm
/MHz | -198.03 | -198.03 | -198.03 | -198.03 | |
| | マージン | dB | -46.22 | 85.48 | 0.02 | 60.30 | |

表 5 空港と電波天文観測局との共用検討

図45に、天文台観測局に対して、空港FODレーダーが正面で向き合う場合のイメージ図を示す。 この場合、干渉マージンを確保し共用可能とするためには、最小離隔距離 112kmを確保して、 空港FOD レーダーを設置することが必要である(表5の第6列)。

共用検討においては、レーダーを設置する空港と最も近い距離にある電波天文業務の観測 局の干渉検討が最悪ケースとなる。電波天文局と空港の位置情報から空港と観測局の離隔距 離を求めた結果、鹿児島空港と国立天文台入来観測局の27.167kmが最短であることがわかった。 表5の第4列より、鹿児島空港と入来観測所間において、干渉許容電力に対する干渉マージンが-46.22dB となりマージン不足であることが分かった。そこで図46に示す結果からアンテナカバ ー背面方向への漏洩電力-89.7dBm 以下を使用し、背面方向に電波天文局が来るようにレー ダーの配置を変更した場合の干渉電力を再度試算した。観測所方向にシールド措置を実施し た場合のレーダーの輻射イメージを図47に示す。赤線が電波輻射方向の中心を示し、水色が電 波の輻射範囲である。その結果(表5の第5列)、干渉マージンが正の大きな値(約86dB)と なり、共用可能であることが分かった。

図 48 天文台観測局に対して空港 FOD レーダーが背面向きに位置する場合

干渉検討結果をまとめる。電波天文台と空港間の距離が112km以上ある場合は、特段の問題がな く共用可能である。一方、電波天文台から112km以内に空港FODレーダーを設置する場合、電波 の輻射を抑圧する必要がある。その場合のイメージを図48に示す。天文台観測局に対して空 港FODレーダーを背面向きに位置させることにより、電波天文観測局に対する輻射電力を低減 させることが可能である(表5の第5列)。

参考として、東京国際空港(羽田空港)と国立天文台野辺山宇宙電波観測所間の干渉検討結果 を表5の第7列に示した。空港と観測所間の回折損失を考慮すれば、現在滑走路数は4であるが、将 来の拡張性も考慮し滑走路数6でかつ正面方向での設置の場合においても、マージンを確保でき ていることがわかる。

従って、空港にレーダーを設置した場合には、電波天文業務を保護する目的で以下の 共用条件を導出できた。

空港と観測局の		1101 十进
離隔距離(※)	TI2Km 以上	112Km 不何
		メインビームは観測局に向
アンテナの使用古汁	水亚 260° 75 扶射可能	けず、アンテナ放射方向の背面
アンテナの使用方法	水平 300 仁 成射 可能	にシールド等で電波を遮
		蔽する。

(※) 観測局と空港間の地形により回折損失がない場合に限る。地形情報については付属資料 23 を参照のこと。 図49に鹿児島空港におけるレーダーの設置例を示す。

鹿児島空港と国立天文台入来観測局の位置関係が東西方向のため、観測局方向にメインビームが向かず、シールド等で電波を遮蔽するようにレーダーを配置することにより、空港 FODレーダーシステムを構築することが可能となる。

図 49 鹿児島空港でのレーダー設置例

なお、航空機の機体反射に関しては、空港の航空ダイヤ等を参照し、航空機が電波の放射範囲内 に存在するときは、放射を停止する出力制御機能を設け回避することができる。 6.2 地球探査衛星業務(受動及び能動)との共用検討

6.2.1 地球探査衛星業務(受動)との共用検討

共用検討の対象となる人工衛星は、2023年度に打上げが予定されている温室効果ガス・水 循環観測技術衛星(GOSAT-GW)であり、搭載されている受動センサーはAMSR3(Advanced Microwave Scanning Radiometer 3)である。

地球探査衛星業務(受動)については、2012年に打ち上げられ、運用中である水循環変動観 測衛星「しずく」(GCOM-W)という人工衛星に搭載された受動センサーである AMSR2 もあり、 これは、86-92GHzを利用する現行の受動センサーの中では、最も干渉を受けやすいセンサーで あるが、GOSAT-GW は、GCOM-Wよりも軌道高度が低くなるため、AMSR3 はAMSR2と比較してより 干渉を受けやすくなることから、GOSAT-GWのAMSR3を共用検討の対象として採用することとし た。

地球探査衛星業務(受動)と空港 FOD レーダーとの共用検討を行うにあたり、衛星の軌道高度と 地上のある地点の仰角が与えられた場合のスラントレンジ(地上のある地点から衛星まで の距離)は、数式2にて計算できる。

数式 2においては、hは軌道高度(m)、 θ は仰角(deg)、rは地球半径(m)であるため、 AMSR3を共用検討の対象とする場合、GOSAT-GWの軌道高度は 666km、AMSR3は地上から見て仰角 35degの方向にあり、そこから観測を行っているため、それぞれの値は、h=666000m、 θ =35degまたは0deg(GOSAT-GWが空港FODレーダーの設置場所をちょうど観測している場合又は空 港 FOD レーダーから見て GOSAT-GW が水平方向にある場合)r=6378137m である。

数式 2 スラントレンジの簡易近似式

$$d = \sqrt{(r+h)^2 + r^2 - 2(r+h)r\sin\left\{\theta + \sin^{-1}\left(\frac{r}{r+h}\cos\theta\right)\right\}}$$

結果として、 θ =35deg のときはd=1066km、 θ =0deg のときはd=2990km となる。

図50に、人工衛星(GOSAT-GW)の仰角と空港 FOD レーダーの位置関係を示す。GOSAT-GW に搭載された受動センサーである AMSR3は、地上から見て仰角 35degの方向で地球からの電波 を受信するため、仰角35deg方向が AMSR3のメインローブとなる。空港FODレーダーは、滑走路方 向に向かって発射されるため、仰角35deg方向はサイドローブ、Odeg方向はメインローブとな る。

そのため、①はAMSR3のメインローブと空港 FODレーダーのサイドローブの組み合わせ、 ②は AMSR3のサイドローブと空港FODレーダーのメインローブの組み合わせ、③は AMSR3 の サイドローブと空港FODレーダーのサイドローブの組み合わせとなっている。 これらのうち、空港FODレーダーからAMSR3への干渉が最も大きくなるのは①であるため、 最悪ケースとして①の場合のみを検討することとする。

AMSR3 は、地上から見て仰角 35degの方向にあり、そこから地球を観測しているが、その際の瞬時可視範囲は、5km×3kmとなっている。我が国において、滑走路が最も密に設置されているのは、東京国際空港であると考えられるため、東京国際空港を例にとり、瞬時可視範囲と空港の関係を図51に示す。同図に示すように、今後滑走路が増設され、最大6滑走路になるとしても、瞬時可視範囲内にさらに滑走路が入ってくる可能性は極めて低いものと想定されるため、瞬時可視範囲内には最大で4滑走路が入ることを考慮すれば十分である。

図 51 東京国際空港における AMSR3 の瞬時可視範囲

図 52に、地球探査衛星業務(受動)である AMSR3(仰角 35deg)と空港FODレーダーとの共用 検討モデルを示す。最悪ケースとなる仰角35degの場合のみを示しているが、この場合、干渉を与え るのは、直接波(空港 FOD レーダーから発射され、直接 AMSR3 に到達する電波)及び滑走路面反射 波(空港 FOD レーダーから発射され、滑走路面で反射して AMSR3 に到達する電波)が想定される ところ、その各々の状況について図示している。

滑走路面反射波の電力については、「3.2 滑走路面反射電力測定」で示されている、成田 国際空港における実証実験結果をもとに算定している。「3.2.4 滑走路面反射測定結果」に よると、基準からの高さが4mから12mの間では、2dB減衰するという結果が提示されている。 また、「3.2.4 滑走路面反射測定結果」のレーダーD の位置における仰角 35deg 方向の滑 走路面反射波の高さは、257m と算定される。「3.2.4 滑走路面反射測定結果」の結果をも とに、滑走路面反射波の電力が、基準からの高さに比例して減衰するものと考えると、基準 からの高さが257mの場合、滑走路面反射波の電力は、基準からの高さ4mから64dB減衰するこ とが計算でき、これが図52 に示されている。

44

図 52 AMSR3 (仰角 35deg) と空港 FOD レーダーとの共用検討モデル

上記の共用検討モデルを用いて共用検討を行った結果を表6に示す。表では、直接波による干渉電力及び滑走路面反射波による干渉電力を独立に算出し、合算して総干渉電力を算 定する方法をとった。

「3.2.5 レーダー出力信号 (FMCW 方式の CW 信号)の実測」の結果、CW から 1MHz 離れると-70dBc/MHz の電力が漏れていることが判明しているため、空港FODレーダーのもともとの送信電力 が 100mWつまり 20dBmであることから、地球探査衛星業務(受動)は、空港 FODレーダーの隣接帯 域で運用されることを踏まえ、隣接帯域への送信電力密度を計算すると、-50dBm/MHz となる。

上記により、空港FODレーダー1台当たりについて、直接波の送信電力密度は-50dBm/MHzであり、 滑走路面反射波に関しては、水平に輻射した電力から22dB減衰し、かつ仰角35deg方向の高さ 257m に おいては、さらにここから64dB減衰するため、仰角35deg方向への滑走路面反射波の送信電力密 度は、-50-22-64=-136dBm/MHz となる。

また、前述のとおり、AMSR3の瞬時可視範囲内に入るのは4滑走路であり、かつこれらの滑走路の 両側から、空港FODレーダーが発射されるため、直接波による干渉と、滑走路面反射波による干渉のそ れぞれについて、干渉を発生させる対象となる、空港FODレーダーの数を算定すると、いずれの場 合も、48×4=192台となる。これを用いると、瞬時可視範囲内の全ての空港FODレーダーからの直接 波及び滑走路面反射波の送信電力密度が算定できる。

上記の算定結果と、空港FODレーダーの送信アンテナ利得、数式2により、空港FODレーダーと 人工衛星(GOSAT-GW)の距離を計算した結果、得られる距離1066kmから算定される、ITU-R勧告 のP.525-3に基づく自由空間伝搬損失及び P.676-12に基づく大気中ガスによる損失、 AMSR3の受信アンテナ利得 62.4dBi により、AMSR3が受信する直接波及び滑走路面反射波からの 干渉電力密度を算定する。

その結果、AMSR3 が受信する直接波からの干渉電力密度は-172.16dBm/MHz(表6の4列 目)、滑走路面反射波からの干渉電力密度は-199.16dBm/MHz(表6の5列目)であるため、 AMSR3が受信する全ての干渉電力密度を算定すると、-172.15dBm/MHz(表6の6列目)となった。 一方で、受動センサーの干渉許容基準を定めた ITU-R 勧告のRS. 2017に規定されている干渉許 容電力密度は-159dBm/MHz であり、AMSR3 が受信する干渉電力密度は、この干渉許容電力密度を 下回ることから、結果として、共用可能であることが示された。

参考までに、空港FODレーダー数が6滑走路相当の48x6=288台になった場合の結果を表7に示す。 この条件であっても、共用可能であることが示された。

	項目	Unit	地球探査衛星 業務(受動) [直接波] (86-92GHz) <仰角35度>	地球探查衛星 業務(受動) [滑走路面 反射波] (86-92GHz) <仰角35度>	地球探査衛星 業務(受動) [合計] (86-92GHz) <仰角35度>
	送信電力	mW	100	100	
	隣接チャネル送信電 力密度	dBm/MHz	-50	-136	
Radar (Tx)		台	192	192	
(111)	検討対象台数	dB	22.83	22.83	
	対象周波数	GHz	86-92	86-92	
	中心周波数	GHz	89	89	
	アンテナ利得 (itu-r rs.1813-1 pp.1-2)	dBi	-15	44	
	带域外輻射電力密度	dBm/MHz	-42.17	-69.17	
	Radar-衛星距離	km	1066	1066	
伝搬路 (損失)	自由空間伝搬損失 (itu-r p.525-3 p.2 eq.4)	dB	191.94	191.94	
	大気中ガスによる損失 (itu-r p.676-12)	dB	0.45	0. 45	
	使用周波数(L8)		87.5-90). 5GHz	
	アンテナ利得	dBi	62.4	62.4	
	ビーム幅 (3dB)	degree	0.15	0.15	
人工衛星	周期	days	:	3	
(RX)	1日の周回回数	回/day	14.0	3666	
	人工衛星速度	km/s	6.8026	80726	
	受信電力密度	dBm/MHz	-172.16	-199.16	-172.15
	干渉許容電力密度	dBW/100MHz	-169	-169	-169
	干渉許容電力密度	$\mathrm{dBm}/\mathrm{100MHz}$	-139	-139	-139
	干渉許容電力密度	dBm/MHz	-159	-159	-159
マージン		dB	13.16	40.16	13.15

表 6 地球探査衛星業務(受動)との干渉検討結果

	項目	Unit	地球探査衛星 業務(受動) [直接波] (86-92GHz) <仰角35度>	地球探査衛星 業務(受動) [滑走路面 反射波] (86-92GHz) <仰角35度>	地球探査衛星 業務(受動) [合計] (86-92GHz) <仰角35度>
	送信電力	mW	100	100	
D 1	隣接チャネル送信電 力密度	dBm/MHz	-50	-136	
Radar (Tx)		台	288	288	
(11)	検討対象台数	dB	24.59	24.59	
	対象周波数	GHz	86-92	86-92	
	中心周波数	GHz	89	89	
	アンテナ利得 (itu-r rs.1813-1 pp.1-2)	dBi	-15	44	
	带域外輻射電力密度	dBm/MHz	-40. 41	-67.41	
	Radar-衛星距離	km	1066	1066	
伝搬路 (損失)	自由空間伝搬損失 (itu-r p.525-3 p.2 eq.4)	dB	191. 94	191.94	
	大気中ガスによる損失 (itu-r p.676-12)	dB	0.45	0. 45	
	使用周波数(L8)		87.5-90). 5GHz	
	アンテナ利得	dBi	62.4	62.4	
	ビーム幅 (3dB)	degree	0.15	0.15	
人工衛星	周期	days	1	.6	
(RX)	1日の周回回数	回/day	16.245	06218	
	人工衛星速度	km/s	7.	52	
	受信電力密度	dBm/MHz	-170.40	-197.40	-170.39
	干涉許容電力密度	dBW/100MHz	-169	-169	-169
	干涉許容電力密度	dBm/100MHz	-139	-139	-139
	干涉許容電力密度	dBm/MHz	-159	-159	-159
マージン		dB	11.40	38.40	11.39

表 7 地球探査衛星業務(受動)との干渉検討結果(参考)

6.2.2 地球探査衛星業務(能動)との共用検討

(1) 空港FODレーダーから地球探査衛星業務(能動) への干渉

共用検討の対象となる人工衛星は、2022 年度に打上げが予定されている雲エアロゾル放射 ミッション (EarthCARE: Earth Clouds Aerosols and Profiling RADAR) であり、搭載され ている能動センサーは CPR (Cloud Profiling RADAR)である。

CPR の瞬時可視範囲は 750m×750mであるが、CPR には、観測データを 10kmにわたって積分する 観測モードがあり、これが最も干渉を受けるケースであるため、対象となる観測範囲を750m×10km として検討を行う。

地球探査衛星業務(受動)との共用検討と同様に、東京国際空港を例にとり、観測範囲と空港 の関係を図53に示す。ここでは、今後滑走路が増設され、最大6滑走路になる場合に、観測範囲に入る 滑走路の数が最大となるように建設されるケースを想定した。観測範囲に 入る滑走路の数 が最大となるのは、図53のとおり、2滑走路が観測範囲の長辺と平行になることにより、全て観測 範囲に入り、さらに2 滑走路が一部ずつ観測範囲に入る場合である。

CPR of algument
a mathematicafor
for
for
for
for
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to<br/

(図53では、2滑走路の一部として約3分の1ずつが観測範囲に入っている。)

図 54に、地球探査衛星業務(能動)である CPR(仰角 90deg)と空港FODレーダーとの共用 検討モデルを示す。CPRは直下を観測するため、空港FODレーダーの真上にCPRがあり、CPRのメインロ ーブと空港FODレーダーのサイドローブの組み合わせとなるのが最悪ケースであるため、この最悪ケ ースとなる仰角 90degの場合のみを示している。この場合、干渉を与えるのは、直接波(空港FOD レ ーダーから発射され、直接 CPRに到達する電波)のみとなり、滑走路面反射波(空港FODレーダーか ら発射され、滑走路面で反射する電波)は、CPRが位置する仰角 90deg方向には到達しないことが想 定されるところ、その各々の状況について図示している。

図 54 CPR (仰角 90deg) と空港 FOD レーダーとの共用検討モデル

上記の共用検討モデルを用いて、94-94.1GHz を空港 FOD レーダーで使用した場合について、共用検討を行った結果を表 8 に示す。空港 FODレーダーの送信電力が 100mWつまり20dBm であることから、空港 FODレーダー1台当たりについて、直接波の送信電力は 20dBmである。

また、前述のとおり、CPR の観測範囲に入るのは、2 滑走路の全てと、さらに 2 滑走路の3 分の 1ずつであり、かつこれらの滑走路の両側から、空港 FOD レーダーが発射されるため、直接波による干 渉を発生させる対象となる、空港FOD レーダーの数を算定すると、48×2+(48/3)×2=128台と なる。これを用いると、観測範囲内の全ての空港FOD レーダーからの直接波の送信電力が算定で きる。

上記の算定結果と、空港FODレーダーの送信アンテナ利得、空港FODレーダーと人工衛

星(EarthCARE)の距離が衛星高度と同じ 393km であることから算定される、ITU-R勧告の
 P. 525-3に基づく自由空間伝搬損失及び P. 676-12に基づく大気中ガスによる損失、CPRの
 受信アンテナ利得 65.2dBiにより、CPRが受信する直接波からの干渉電力を算定する。

その結果、CPRが受信する直接波からの干渉電力は-87.74dBm(表8)であり、これが CPRの 受信する全ての干渉電力となる。一方で、能動センサーの干渉許容基準を定めた ITU-R勧告 の RS. 1166-4に規定されている干渉許容電力をもとに、既存の雲プロファイリングレーダ ーと比較して、CPRの性能が向上したこと、CPRでは 10kmにわたってデータを積分する観測 モードがあることを勘案した結果、CPRの干渉許容電力は-128dBmとなった。CPRが受信する干 渉電力は、この干渉許容電力を上回ることから、結果として、共用ができないことが示され た。

そこで、空港FODレーダーでは、CPRが運用される 94-94.1GHzを使用しないというチャネ ル回避策を適用することとして、共用検討を行った結果について、表9に示す。

この場合には、CPRが使用する 94-94.1GHz は、空港FODレーダーが使用する周波数の帯域 外となることから、「6.2.1 地球探査衛星業務(受動)との共用検討」と同様に、空港FODレー ダーの送信電力密度は、隣接帯域への送信電力密度である-50dBm/MHzを適用可能であるため、 空港FODレーダー1台当たりについて、直接波の送信電力密度は-50dBm/MHzとなる。

これをもとに、CPRが受信する直接波の干渉電力密度を算定すると、-157.74dBm/MHzであり、 これが CPRの受信する全ての干渉電力密度となる。一方で、前述のとおり、CPRの干渉許容電 力は-128dBm であり、その受信帯域幅は 300kHz (0.3MHz) であるため、干渉許容電力密度は -128dBm/0.3MHz、すなわち-122.77dBm/MHzとなる。よって、CPRが受信する干渉電力密度は、 この干渉許容電力密度を下回るため、チャネル回避策を適用した場合には、共用可能である ことが示された。

参考までに、空港FODレーダー数が 6滑走路相当の 48x6=288台になった場合の結果を 表10に示す。この条件であっても、共用可能であることが示された。

衣 0	地球抹宜陷生耒伤(肥勁)	この一つ物理的派	「未(リヤイルリ)
	項目	Unit	地球探査衛星 業務(能動) [直接波] (94-94.1GHz) <仰角90度>
		mW	100
D. L.	达信 單 刀	dBm	20
Kadar (Tx)	长 카 봐 舟 厶 粉	石	128
	(供 討 対 家 	dB	21.07
	中心周波数	GHz	94.05
	アンテナ利得 (itu-r rs.1813-1 pp.1-2)	dBi	-10
	带域内輻射電力	dBm	31.07
	Radar-衛星距離	km	393
伝搬路 (損失)	自由空間伝搬損失 (itu-r p.525-3 p.2 eq.4)	dB	183. 76
	大気中ガスによる損失 (itu-r p.676-12)	dB	0.26
	使用周波数(CPR-L2)		94.0465- 94.0535GHz
	アンテナ利得	dBi	65.2
人工衛星	ビーム幅 (3dB)	degree	0.095
(RX)	周期	days	25
	1日の周回回数	回/day	16. 60926091
	人工衛星速度	km/s	7.69
	受信電力	dBm	-87.74
	工洪盐灾重力	dBW	-158
	沙叶谷电刀	dBm	-128
マージン		dB	-40. 26

ま 8 地球に本衛見業務(計動) との干渉協会は主風(チャネル内)

	項目	Unit	地球探査衛星 業務(能動) [直接波] (94-94.1GHz) <仰角90度>
	送信電力	mW	100
Radar	隣接チャネル送信電力 密度	dBm/MHz	-50
(Tx)	検討対象台数	台	128
		dB	21.07
	中心周波数	GHz	94.05
	アンテナ利得 (itu-r rs.1813-1 pp.1-2)	dBi	-10
	带域外輻射電力密度	dBm/MHz	-38.93
	Radar-衛星距離	km	393
伝搬路 (損失)	自由空間伝搬損失 (itu-r p.525-3 p.2 eq.4)	dB	183. 76
	大気中ガスによる損失 (itu-r p.676-12)	dB	0. 26
	使用周波数(CPR-L2)		94. 0465- 94. 0535GHz
	アンテナ利得	dBi	65.2
人工衛星	ビーム幅 (3dB)	degree	0.095
(RX)	周期	days	25
	1日の周回回数	回/day	16.60926091
	人工衛星速度	km/s	7.69
	受信電力密度	dBm/MHz	-157.74
	工业改善上皮库	dBW/0.3MHz	-158
	十	dBm/0.3MHz	-128
	干涉許容電力密度	dBm/MHz	-122.77
マージン		dB	34.97

表9 地球探査衛星業務(能動)との干渉検討結果(チャネル回避)

	項目	Unit	地球探査衛星 業務(能動) [直接波] (94-94.1GHz) <仰角90度>
	送信電力	mW	100
Radar	隣接チャネル送信電力 密度	dBm/MHz	-50
(Tx)	檢討対象台数	台	288
		dB	24.59
	中心周波数	GHz	94.05
	アンテナ利得 (itu-r rs.1813-1 pp.1-2)	dBi	-10
	带域外輻射電力密度	dBm/MHz	-35.41
	Radar-衛星距離	km	393
伝搬路 (損失)	自由空間伝搬損失 (itu-r p.525-3 p.2 eq.4)	dB	183. 76
	大気中ガスによる損失 (itu-r p.676-12)	dB	0. 26
	使用周波数(CPR-L2)		94. 0465– 94. 0535GHz
	アンテナ利得	dBi	65.2
人工衛星	ビーム幅 (3dB)	degree	0.095
(RX)	周期	days	25
	1日の周回回数	回/day	16. 60926091
	人工衛星速度	km/s	7.69
	受信電力密度	dBm/MHz	-154.22
	工业教会量力会产	dBW/0.3MHz	-158
	十	dBm/0.3MHz	-128
	干涉許容電力密度	dBm/MHz	-122.77
マージン		dB	31.45

表 10 地球探査衛星業務(能動)との干渉検討結果(チャネル回避) (参考)

(2) 地球探査衛星業務(能動)から空港FODレーダーへの干渉

これまで、空港FODレーダーが与干渉となる場合について、前述のとおり、電波天文業務、 地球探査衛星業務(受動)及び(能動)との間の共用検討を行ってきたが、地球探査衛星業務(能 動)からは、94-94.1GHz において、逆に空港FODレーダーが干渉を受ける可能性がある。

ただし、(1)で述べたように、空港FODレーダーでは、地球探査衛星業務(能動)であるCPRが 運用される 94-94.1GHzを使用しないというチャネル回避策を適用することとして共用検討を行 うと、結果は表11のとおりとなる。

地球探査衛星業務(能動)である CPR については、送信電力が 1430Wである。一方で、無線設備 規則の別表第三号により、一次レーダーのスプリアス領域における不要発射の強度の許容値 は、空中線電力が 50Wを超えるものについては、基本周波数の尖頭電力より 60dB低い値とする ものと規定されている。さらに総務省告示第 1232 号により、非符号化パルス変調の一次レー ダーの場合には、参照帯域幅は 1/パルス幅 (μ s) となっている。これらを勘案すると、CPR においては、帯域外送信電力は最大で 1.55dBm、その参照帯域幅は 0.3MHzとなるため、帯域外送 信電力密度は最大で 6.78dBm/MHz となり、CPR の送信アンテナ利得65.2dBi を入れると、CPR から帯域外に送信される eirp 密度は、最大で 71.98dBm/MHz となる。

CPR は真下を観測するため、空港 FOD レーダーが最も大きな干渉を受けるのは、CPR が真上に来るケースである。この場合、空港 FOD レーダーは上空からの電力を受信することから、空港 FOD レーダーの受信アンテナ利得は 0dBi として検討を行う。

また、CPR の CPR の瞬時可視範囲である 750m×750m ではあるが、CPR の 3dB ビーム幅 0.095°を考慮すると、空港 FOD レーダー1 台に対して検討すれば十分である。

これらを踏まえ、CPR から空港 FOD レーダーが受信する干渉電力密度を算定すると、-112.03dBm/MHz となるが、空港FOD レーダーの干渉許容電力密度は-90dBm/MHz であるため、これ を下回ることとなり、共用可能であることが示された。

	項目	Unit	地球探查衛星 業務(能動) [直接波] (94-94.1GHz) <仰角90度>
	送信雷力	W	1430
		dBm	61. 55336037
人工衛星	中心周波数	GHz	94.05
(Tx)	アンテナ利得 (itu-r rs.1813-1 pp.1-2)	dBi	65.2
	世际外光信雪力密度	dBm/0.3MHz	1.55
	带域外达信电力盈度	dBm/MHz	6. 78
	帯域外送信電力密度 (eirp)	dBm/MHz	71.98
	Radar-衛星距離	km	393
伝搬路 (損失)	自由空間伝搬損失 (itu-r p.525-3 p.2 eq.4)	dB	183. 76
	大気中ガスによる損失 (itu-r p.676-12)	dB	0. 26
	アンテナ利得	dBi	0
Radar	檢討対象台数		1
(Tx)	供时内家口数	dB	0
	受信電力密度	dBm/MHz	-112.03
	干涉許容電力密度	dBm/MHz	-90.00
マージン		dB	22. 03

表 11 地球探査衛星業務(能動)から空港 FOD レーダーへの干渉検討結果

6.3 80GHz 帯高速無線伝送システムとの干渉検討

情報通信審議会 情報通信技術分科会 移動通信システム委員会において、80GHz高速線伝送 システムについての報告によれば、受信感度は-88.5dBm/MHzと規定されている。表 2の空港 FOD レーダーの仕様である出力電力20dBmと表 3の隣接周波数におけるノイズレベルである-70dBc (数dBマージンを確保し-70dBcとする)から、空港FODレーダーの隣接チャネル電力は-50dBm となり、これを-50dBm/MHzと置き換えても、差分は 38.5dBである。86GHzにおいて、数式1を適 用し、1m離隔したと仮定しても、71dBの損失となるため、-50-71=-121dBmとなり、80GHz高速無 線伝送システムの受信感度以下になるため、共用可能である。 6.4 空港FOD レーダー同士の干渉検討

空港 FOD レーダー同士の干渉には自由空間伝搬損失の数式で計算可能である。ただし、国内すべての空港に設置できることも考えられるようにすることと、将来的に見て1空港あたり滑走路6本となる可能性もあることから、最短離隔距離の空港及び東京国際空港-成田国際空港間等について検討した。ある空港に設置された与干渉側の全空港FOD レーダーの電力が、隣接する空港に

設置された被干渉側の空港FODレーダーの1台に集中して干渉を与える場合が最悪条件として 検討した。

図 55 空港 FOD レーダー同士の干渉モデル

表12に空港 FOD レーダー同士の干渉検討結果を示す。空港間の最短距離は、南大東空港と北大東空 港間の7.2kmであり、この離隔距離で同一周波数を用いてシステム構築すると、干渉許容電力に対す る受信電力のマージンが-40.74dBとなり干渉する結果となる。ただし、異なる周波数帯を用いる など、使用する適切なチャネル配置により干渉を回避できる場合には、マージンは7.26dB と なりシステム間干渉はなくなる。

1空港こ6滑走路を想定した場合で、かつ同一周波数帯を用いてシステムを構築し、地形的に空港 間の回折損失がない場合においては、離隔距離を78km確保することによって、システム間干渉が 回避できる。同様の位置関係で、異なる周波数帯を用いた場合には、空港間の離隔距離を8kmにまで 接近可能となる。

参考として、東京国際空港-成田国際空港間について同一周波数システムとして検討した。 この場合、両空港間の位置が分かっているため、回折損失26.12dB(付属資料 24 参照)が考慮で き、両者の離隔距離59kmでシステムの共用が可能となった。

上記で示したように、距離が比較的近い空港同士で空港FODレーダーを設置する場合、使用するチャネル配置や遮蔽板等によるシールド、設置台数の制限等により、システム間干渉の回避は可能であり、干渉を回避するためにはこれらの措置が必要となるものと考えられる。

項目	Unit	南大東島~北大東島 同一周波数帯	南大東島〜北大東島 異なる周波数帯	最大想定滑走路数~ 同一周波数	最大想定滑走路数〜 異なる周波数	東京国際空港 [~] 成田国際空港 同一周波数	備考
送信電力	dBm	-2.00	-50.00	-2.00	-50.00	-2.00	
設置台数	台	48.00	48.00	48.00	48.00	48.00	滑走路あたり最大設置数
滑走路数		1.00	1.00	6.00	6.00	6.00	国交省様情報による。
合計設置台数	台	48.00	48.00	288.00	288.00	288.00	
LINKELM	dB	16.81	16.81	24. 59	24. 59	24. 59	
対象周波数	GHz	92-100	92-100	92-100	92-100	92-100	
中心周波数	GHz	96	96	96	96	96	
アンテナ利得 (itu-r rs. 1813-1 pp. 1-2)	dBi	44	44	44	44	44	
帯域内輻射電力	dBm	58.81	10.81	66. 59	18.59	66. 59	eirp
システム間距離	km	7.2	7.2	78	8	59	南北大東島間 : 7.2km 成田-羽田間 : 59km
自由空間伝搬損 (itu-r p.525-3 p.2 eq.4)	dB	149.19	149.19	169.89	150.11	167.46	
大気中ガスによる損 失(itu-r p. 676-12 p. 23 fig. 10)	dB/km	2.88	2.88	31.20	3.20	23.60	• 0.4dB/km @ 96GHz
回折損失 (itu-r p. 526-14 p. 18 eq. 31 or p. 452-16 p. 10 eq. 13)	dB	0.00	0.00	0.00	0.00	26. 12	国土地理院ホームページによ る
アンテナ利得 (itu-r ra. 769)	dBi	44.00	44. 00	44.00	44.00	44.00	
到達受信電力	dBm	-49.26	-97.26	-90.49	-90.71	-106.59	
干涉許容電力	dBm	-90.00	-90.00	-90.00	-90.00	-90.00	
マージン	dB	-40.74	7.26	0.49	0.71	16.59	

表12 空港 FOD レーダー同士の干渉検討結果

なお、同様に、空港FODレーダーを設置するにあたり、地形的に空港間の回折損失がない場合にお いては、干渉を与えない空港間同士の離隔距離を計算結果について、同一周波数同士の場合を表13 に、異なる周波数同士の場合を表14に示す。

	項目	Unit	1	2	3	4	5	6	備考
	送信電力	dBm	-2.00	-2.00	-2.00	-2.00	-2.00	-2.00	
	設置台数	台	48.00	48.00	48.00	48.00	48.00	48.00	滑走路あたり最大設置数
	滑走路数		1.00	2.00	3.00	4.00	5.00	6.00	国交省様情報による。
Radar (TX)	合計設置台数	台	48.00	96.00	144.00	192.00	240.00	288.00	
@空港		dB	16.81	19.82	21.58	22.83	23.80	24.59	
- 110	対象周波数	GHz	92-100	92-100	92-100	92-100	92-100	92-100	
	中心周波数	GHz	96	96	96	96	96	96	
	アンテナ利得 (itu-r rs.1813-1 pp.1-2)	dBi	44	44	44	44	44	44	
	帯域内輻射電力	dBm	58.81	61.82	63. 58	64.83	65.80	66. 59	eirp
	システム間距離	km	63	68	72	74	76	78	
	自由空間伝搬損 (itu-r p.525-3 p.2 eq.4)	dB	168.03	168.70	169.19	169.43	169.66	169.89	
	大気中ガスによる損 失(itu-r p.676-12 p.23 fig.10)	dB/km	25. 20	27.20	28.80	29.60	30. 40	31. 20	• 0.4dB/km @ 96GHz
	回折損失 (itu-r p.526-14 p.18 eq.31 or p.452-16 p.10 eq.13)	dB	0.00	0.00	0.00	0.00	0.00	0	
受信システム	アンテナ利得 (itu-r ra.769)	dBi	44.00	44.00	44.00	44.00	44.00	44.00	
	到達受信電力	dBm	-90.42	-90.07	-90.41	-90.20	-90.26	-90.49	
	干渉許容電力	dBm	-90.00	-90.00	-90.00	-90.00	-90.00	-90.00	
	マージン	dB	0.42	0.07	0.41	0.20	0.26	0.49	

表13 同一周波数帯を用いた場合の空港間離隔距離

① は、同一周波数帯を用いた場合で、滑走路を 1 有する空港と隣接する空港間距離は 63km の離隔を確保すること。

② は、同一周波数帯を用いた場合で、滑走路を 2 有する空港と隣接する空港間距離は 68km の離隔を確保すること。

③ は、同一周波数帯を用いた場合で、滑走路を 3 有する空港と隣接する空港間距離は 72km の離隔を確保すること。

④は、同一周波数帯を用いた場合で、滑走路を 4 有する空港と隣接する空港間距離は 74km の離隔を確保すること。

⑤は、同一周波数帯を用いた場合で、滑走路を 5 有する空港と隣接する空港間距離は 76km の離隔を確保すること。

⑥は、同一周波数帯を用いた場合で、滑走路を 6 有する空港と隣接する空港間距離は 78km の離隔を確保すること。

	項目	Unit	Ō	8	9	10	1	12	備考
	送信電力	dBm	-50.00	-50.00	-50.00	-50.00	-50.00	-50.00	
	設置台数	台	48.00	48.00	48.00	48.00	48.00	48.00	滑走路あたり最大設置数
	滑走路数		1.00	2.00	3.00	4.00	5.00	6.00	国交省様情報による。
Radar (TX)	合計設置台数	台	48.00	96.00	144.00	192.00	240.00	288.00	
(III)	L FRAE D SA	dB	16.81	19.82	21.58	22. 83	23.80	24. 59	
O THE	対象周波数	GHz	92-100	92-100	92-100	92-100	92-100	92-100	
	中心周波数	GHz	96	96	96	96	96	96	
	アンテナ利得 (itu-r rs.1813-1 pp.1-2)	dBi	44	44	44	44	44	44	
	帯域内輻射電力	dBm	10.81	13.82	15.58	16.83	17.80	18. 59	eirp
	システム間距離	km	3.7	5	5.8	6.5	7.1	7.6	
伝搬敗(損生)	自由空間伝搬損 (itu-r p.525-3 p.2 eq.4)	dB	143.41	146.02	147.31	148.30	149.07	149.66	
	大気中ガスによる損 失(itu=r p.676-12 p.23 fig.10)	dB/km	1.48	2.00	2.32	2.60	2.84	3.04	• 0.4dB/km @ 96GHz
	回折損失 (itu-r p. 526-14 p. 18 eq. 31 or p. 452-16 p. 10 eq. 13)	dB	0.00	0.00	0.00	0.00	0.00	0.00	
受信システム	アンテナ利得 (itu-r ra.769)	dBi	44.00	44. 00	44.00	44.00	44.00	44.00	
	到達受信電力	dBm	-90.08	-90.20	-90.05	-90.07	-90.11	-90.11	
	干涉許容電力	dBm	-90.00	-90.00	-90.00	-90.00	-90.00	-90.00	
	マージン	dB	0.08	0.20	0.05	0.07	0.11	0.11	

表 14 異なる周波数帯を用いた場合の空港間離隔距離

⑦は、異なる周波数帯を用いた場合で、滑走路を1 有する空港と隣接する空港間距離は3.7kmの離隔を確保すること。

⑧は、異なる周波数帯を用いた場合で、滑走路を 2 有する空港と隣接する空港間距離は 5km の離隔を確保すること。

⑨は、異なる周波数帯を用いた場合で、滑走路を3有する空港と隣接する空港間距離は5.8kmの離隔を確保すること。

⑩は、異なる周波数帯を用いた場合で、滑走路を4 有する空港と隣接する空港間距離は6.5kmの離隔を確保すること。

①は、異なる周波数帯を用いた場合で、滑走路を5 有する空港と隣接する空港間距離は7.1kmの離隔を確保すること。

12は、異なる周波数帯を用いた場合で、滑走路を6有する空港と隣接する空港間距離は7.6kmの離隔を確保すること。

第7章 提言

7.1 技術的条件

検討結果を踏まえて、空港滑走路における 90GHz帯 FOD レーダーの技術的条件を次の通り整理する。

- 7.1.1 一般条件
- (1) 干涉検討基準

本技術基準は、同一帯域である 92GHzから100GHz及び隣接帯域である 81GHz から 92GHz 及び 100GHz から 109.5GHz を使用する他業務との共用検討に基づくものである。

(2) 周波数

92GHz から 100GHz までとすること。

ただし、94GHzから94.1GHzまでについては、地球探査衛星業務のうち能動業務を保護する観点から電力を出力しないことが必要とされる。

(3) 変調方式

FM-CW 変調(周波数連続変調)方式とする。

- (4) 電波防護指針への適合電波法施行規則第 21 条の3 を満足すること。
- 7.1.2 無線設備の技術的条件
- (1) 周波数の許容偏差指定周波数帯幅によるため規定しない。
- (2) 占有周波数帯域幅の許容値 指定周波数帯幅によるため規定しない。
- (3) 指定周波数带幅
 - 最大 8,000MHz (92GHz から 100GHz まで)とする。
- (4) 空中線電力

等価等方輻射電力によるため規定しない。

(5) 等価等方輻射電力

空港内の滑走路付近に送信点を設置した条件において、1 送信点からの実効輻射電力は 64dBm 以下となるようにすること。

(6) 空中線系

(ア)送信空中線の絶対利得44dBi 以下とすること。

(イ) 偏波面

直線偏波(垂直及び水平偏波)とすること。

(7) 空中線電力の許容偏差

送信設備に使用する電波の空中線電力の偏差は、上限 50%、下限 50%以内であること。ただし、空中線電力を自動的に制御する機能を有する場合には、電力低減時には許容偏差の下限は適用しない。

(8)送信スペクトラムマスク

同一帯域及び隣接帯域を使用するすべての他業務との共用検討に基づく保護の観点により、帯域外領域については、必要周波数帯域内の上限周波数及び下限周波数の電力値に対して-70dBcの電力比とする。

現状入手可能な地球探査衛星の仕様等を考慮し、94GHz から94.1GHz は送信禁止帯とする。 ただし、動的な干渉回避等により地球探査衛星との周波数共用が可能となる場合にはこの 限りではない。

(9) チャネル配置

指定周波数帯域幅内におけるチャネル配置を、以下のように規定する。

(ア) 2ch 配置

92.01GHz から 93.99GHz までと 94.11GHz から 99.99GHz まで。

(イ) 4ch 配置

92.01GHz から 93.99GHz までと、94.11GHz から 95.99GHz までと、

96.01GHから97.99GHz までと、98.01GHz から99.99GHz まで。

(ウ)8ch 配置

92.01GHz から 92.99GHz までと、93.01GHz から 93.99GHz までと、

94. 11GHz から94. 99GHz までと95. 01GHz から95. 99GHz までと96. 01GHz から

96.99GHz までと、97.01GHz から 97.99GHz までと、98.01GHz から 98.99GHz まで

と、99.01GHz から 99.99GHz まで。

(エ) 12ch 配置

92. 01GHz から 92. 59GHz までと、92. 71GHz から 93. 29GHz までと、

93. 41GHz から 93. 99GHz までと、94. 11GHz から 94. 69GHz までと、94. 71GHz から 95. 29GHz までと、95. 31GHz から 95. 89GHz までと、95. 91GHz から 96. 49GHz まで と、96. 51GHz から 97. 09GHz までと、97. 11GHz から 97. 69GHz までと、97. 71GHzか ら 98. 29GHz までと、98. 51GHz から 99. 09GHz までと、99. 11GHz から 99. 69GHzま で。

(10) 帯域外領域における不要発射の強度の許容値

帯域外領域とスプリアス領域において、同一の強度であるため、スプリアス領域における不 要発射の強度の許容値を参照のこと。 (11) スプリアス領域における不要発射の強度の許容値

スプリアス領域における不要発射の強度は、以下のとおりとする。

空中線電力	帯域外領域におけるスプリア	スプリアス領域における不
	ス発射の強度の許容値	要発射の強度の許容値
100mW 以下	送信周波数の最大出力電力よ	送信周波数の最大出力電力
	り70dB 低い値	より 70dB 低い 値

(12) 隣接チャネル漏洩電力比

87GHz から92GHz までは、-70dBc 以下とする。100GHz から105GHz までは、同じく-70dBc以下 とする。

7.1.3 測定法

(1) 周波数の偏差及び使用周波数帯域幅

許容値が指定周波数帯で規定される場合は、試験機器を占有周波数帯幅が最大となる状態に設定して、占有周波数帯幅の測定においてスペクトル分布の上限及び下限周波数が指 定周波数帯内にあることをもって確認する。

使用周波数帯幅の測定は、スペクトル分布の全電力についてスペクトルアナライザ等を用いて測定し、スペクトル分布の上限及び下限の部分における電力の和が、それぞれ全電力の99%となる周波数幅を測定する。

(2) 空中線電力

空中線電力の測定については、試験機器を通常の変調状態で空中線電力が最大となる状態 に設定して、空中線測定端子にて、平均電力(尖頭電力で表示する無線設備の場合は尖頭電力) を、高周波電力計等を用いて測定する。

また、連続送信波により測定することが望ましいが、バースト送信波にて測定する場合 (尖頭電力で表示する無線設備の場合を除く)は、送信時間率が最大となるバースト繰り返し周 期よりも十分長い期間における平均電力を測定し、その測定値に最大の送信時間率の逆数を 乗じて平均電力とすることが適当である。 (3) スプリアス発射又は不要発射の強度

帯域外領域とスプリアス領域の境界周波数を算出(ITU-R 勧告SM. 1541 Annex 8)し、以下の(ア)及び(イ)によって測定を行うことが適当である。

(ア)帯域外領域における不要発射の強度

試験機器を無変調状態に設定して、スペクトルアナライザを用いて帯域外領域における スプリアス発射の平均電力を測定する。

この場合、スペクトルアナライザの分解能帯域幅は参照帯域幅を算出(ITU-R 勧告M. 1177)して設定 することが適当である。ただし、参照帯域幅が 1MHz を超える場合は、分解能帯域幅を 1MHz に 設定して測定することも可能である。

(イ)スプリアス領域における不要発射の強度

試験機器を通常の変調状態に設定して、スペクトルアナライザを用いて不要発射の平均 電力(バースト波にあってはバースト内の平均電力)を測定する。

この場合、スペクトルアナライザの分解能帯域幅は参照帯域幅を算出(ITU-R 勧告M. 1177)して設定 することが適当である。ただし、参照帯域幅が 1MHz を超える場合は、分解能帯域幅を 1MHz に 設定して測定することも可能である。

スプリアス領域における不要発射の強度の測定を行う周波数範囲は、可能な限り 9kHz から110GHz までとすることが望ましいが、30MHz から 26GHz までとすることができる。

(ウ)帯域外領域およびスプリアス領域における不要発射強度の測定

現状 90GHz 帯においては、平成 17 年総務省告示 1232 号にある測定手法を精度よく実施でき る測定設備がないため、不要発射強度の測定は、以下に示すキャリア周波数において、変調等をか けずに電力を出力し、キャリア周波数から 10MHz 離調した周波数において、スペクトラムアナラ イザをサンプル設定し測定を行う。

7.1.4 干渉回避のための機能、設置、運用、その他の留意点

(1)干渉回避のための補助機能

(ア)送信設備に対する対策等

空港FODレーダーの出力による他共用システムに対する干渉を回避するため、輻射を停止 する出力機能を設けること。

(イ) 同期機能

同一空港内の複数滑走路において、空港内のすべての空港FODレーダーの回転同期を実施 すること。 (3)設置等の条件

設置等にあたり、以下の条件を満足することが望まれる。

(ア) ビーム放射方向

空港FODレーダーは、そのビーム正面の放射方向が水平面より 1°以上 下方になるよう に設置すること。

(イ) 電波天文の受信設備への干渉回避

設置場所を中心として周辺半径 112km 以内に、81GHz から 109.5GHz までの周波数を受信す る電波天文の受信設備がある場合には、空港FODレーダーから電波天文局方向を基点(0°) として、水平方向に 0°から+80°及び 0°から-80°の方向における放射電力が-89.7dBm 以下となるよう、遮蔽板を設ける等の対策を行い、電波天文の受信設備への有害干渉を回避するこ と。

(ウ)空港間同士の干渉回避

相互に干渉がない離隔距離を考慮し、空港FODレーダーを設置すること。 必要とされる離隔距離に満たない場合は、使用するチャネル配置や遮蔽板等によるシール ド、設置台数の制限等により干渉を回避すること。

(エ)干渉を回避するための設置とその性能の維持

位置精度の向上や干渉回避のため、滑走路内の定位置にある目標物からの反射電力に対し てキャリブレーションができるようにし、常に空港FODレーダー性能の維持を図ること。

キャリブレーションが不可能になった場合、アラームを出力し、空港FODレーダーの設置向 きを調整することで、ビームの方向を保つ施策が望ましい。例えば、コンクリート柱や三角 鉄塔などの極めて揺れの少ない構造物にレーダーを設置し、ビームの方向を維持する方法が ある。

67

7.2 実用化・普及にむけて

7.2.1 空港FOD レーダー開発の経緯

ミリ波帯を利用した新しい電波システムの実現を目指して、わが国では、空港FODレーダ ーシステムの開発が行われてきている。平成 24 年 (2012 年) から 4 年間の総務省委託 研究「90GHz帯リニアセルによる高精度イメージング技術の研究開発」で基本性能を確認し た空港 FODレーダーシステムは、委託研究の最終年度に成田国際空港 B 滑走路に 4基のア ンテナ装置と中央制御装置からなる実証システムを構築して終了した。関係機関の協力の もと、委託研究終了後も実証システムは維持され、実証試験システムの運用実績を重ねて いる。また、システムの更なる高度化を目的に平成 29年度からは空港 FOD レーダーシス テム第二期の委託研究である「90GHz 帯協調制御型リニアセルレーダーシステムの研究開 発」を受託中である。更に、この委託研究と並行して第一期「90GHz帯リニアセルによる高 精度イメージング技術の研究開発」の成果を海外展開するための「リニアセルレーダーシ ステムの海外展開を通じた周波数の国際協調利用促進に関する調査の請負」も推進中であ る。

7.2.2 ITU-R における国際標準化活動

空港 FOD レーダーシステムが利用を予定している周波数帯域(92-100GHz)は国際的に 無線標定業務(Radio Location Service: 92-100GHz)及び無線航行業務(Radio Navigation Service: 95-100GHz) に分配されている。更に、この帯域及び隣接帯域は、移 動業務、固定業務、地球探査衛星業務(受動及び能動)並びに電波天文業務にも割り当て られているため、空港 FOD レーダーシステムを海外展開するうえでは、他業務との周波数 共用条件を明確化する必要がある。このため、2017 年 5 月より、ITU-R WP5B にて空港 FOD レーダーシステムの国際標準化の取り組みが始まっている。空港 FOD レーダーシステ ムの調達は、各国の空港あるいは政府機関からの国際調達となる。国際調達では世界貿易 機構 (WTO:World Trade Organization) の定める国際調達基準を満たす必要がある。更に WTO 基準では国際標準化に沿ったシステムであることが求められる。このため、製品シス テムの国際標準化活動は、国際調達に応募する際の重要な基本条件となる。更に、ASEAN 諸国では各国独自の電波法制が定められることは稀で、多くの場合、無線分野ではITU-R に定められた諸規則をそのまま国内基準として転用することが多い。このため、我が国に おける空港 FOD レーダーシステムに沿った国際標準化を進めることで、各国において個別 の法制化を進める必要がなくなり、どの国に輸出する場合でも、基本的な法整備は完了し た状態となる。

図 56 は ITU-R 全体の会議体構成を示す系統図である。地上業務を統括する SG5のも とに、無線測位業務を統括する WP5B、更にその下に無線評定業務を統括する WP5B1が常設 の会議体として全体が構成されている。空港 FODレーダーシステムに関する寄書は国内委 員会で審査・承認を受けたうえで、総務省が ITU-R に提出する。初回の現地会合で空港 FODレーダーシステムの寄書を審議するための Drafting Group (DG) を設置して実務的な 議論をする旨が WP5B1議長によって提案・承認され、柴垣信彦氏(日立国際電気)が DG-5B1 FODの議長を務めることになった。

DG-5B1 FOD ではFOD に関する各国からの寄書の審議を行うほか、図 56 に示すように同一帯域 を使用している他業務である WP7C(リモートセンシング)、WP7D(電波天文)及びWP5A (移動)傘下の 5A2(システム)、5A4(周波数共用)からのリエイゾン文書を適切に処理 しつつ、周波数共用のための文書作成を行っている。

図 57 は、DG-5B1 FOD が 2017 年の 5 月会合以来審議してきた寄書を時系列でまとめた ものである。2018 年の 11 月会合時点で 4 本の文書を取り扱っている。

4 本の文書は

- 1 M. [FOD92] Technical & Operation Characteristics Report
- ② M. [FOD_EESS_SHARE] SHARING & COMPATIBILITY STUDIES REPORT
- ③ M. [Rad92GHz] Preliminary New Draft toward Recommendation

(4)New Question $[FOD_COMPT]/5$

でFOD関係の新研究課題を提案する④以外は、次回会合に引き継がれ(carry forward)、2019年5月に会合は終了している。

① の M. [F0D92]は 2017 年 5 月会合で最初に提案した文書であり、「90GHz 帯リニア セルによる高精度イメージング技術の研究開発」で構築した成田国際空港の実証実験の内容 や、開発した空港 FOD レーダーの基本特性をまとめている。ITU-R では新しいアプリケー ションの「Technical & Operation Characteristics Report」が提出されると、同一周波数 帯域を使用した他業務(例えば電波天文や地球探査衛星)を扱う作業部会からリエイゾン文 書が提出される。提出されたリエイゾン文書に対する応答を DG-5B1 FOD で審議し、上位会 合である WP5B1、WP5B に提案・承認を受けたうえでリエイゾン文書の発信元にリエイゾン 応答文書を返す形で周波数共用の実務が行われる。

② の M. [FOD_EESS_SHARE]は上述のような手順で WP7C(リモートセンシング)のグルー プとのリエイゾン文書の交換から派生した文書である。具体的には WP7C から求められた共 用計算を進めるうえでのアンテナ放射特性や送信電力を元に WP7C 側から提案された共用 検討の寄書と①の M. [FOD92]の該当部分を結合して現地会合期間中に作成した文書が基本 となっている。2018 年 5 月会合で起案した文書を 2018 年 11 月会合で審議したうえで、 次回会合に引き継がれる。

③は 2018 年 11 月会合でフランスが ITU-R 勧告草案として 94-100GHz の気象レーダーに 関する寄書を提出してきた寄書を元にしたものである。DG-5B1F0D での審議の結果、 気象レーダーと FOD レーダーを統合して範囲の広い勧告草案として進めていくことに合意 した。フランス提案に日本提案①の M. [FOD92]からFOD レーダーの基本パラメータを追加 した文書を現地で作成したうえ DG-5B1F0D で審議し上位会合である WP5B1、WP5B に提 案・承認を受けたうえで、次回会合に引き継いでいる。

④は 2017 年 5 月会合で最初に①の M. [FOD92]を提案した際に、新たな周波数での共用 検討を進めるためには、新規研究課題があると、共用検討作業を進めやすいとの指摘が米国 からあり、またその研究課題の提案を求められたことによる。これを受けて、総務省とも相 談の上 2018 年 5 月会合で提案した文書である。 2018 年 5 月会合で審議した新研究課題は 2018 年 11 月会合で上位会合である WP5B1、 WP5B に提案・承認され、更に上位の SG5 での承認を受けて、各国の主管庁に対しての承認 処理が終了次第、ITU-R の正式文書として発行される。

DG-5B1 FOD には FOD レーダーに関心のある米国の NASA、商務省及びボーイング、フラ ンスの主管庁及び気象局、ドイツのマックス・プランク研究所、カナダ、中国、韓国の各主 管庁などから約 20 名のエキスパートが毎回参加している。ITU-R 会合全体としては SG5 傘下の WP5A, 5B, 5C, 5D の各国代表団 400 名程度がジュネーブの ITU 本部に集まり 2 週間 の会期中、活発な議論が行われる。

7.2.3 今後の展開

- (1)FOD レーダーを日本国外へ展開する場合、設置予定の国での気象条件、生態系などを考慮する必要があり、少なくとも1年以上の事前調査は必要である。
- (2)総務省委託研究「90GHz 帯リニアセルによる高精度イメージング技術の研究開発」の成 果を海外展開するための「リニアセルレーダーシステムの海外展開を通じた周波数の国 際協調利用促進に関する調査の請負」事業の一環として行っている、マレーシアのクア ラルンプール空港での実証システム構築に向けた取り組みと、関連する ITU-R での国 際標準化活動が行われている。

空港 FOD レーダーシステムは、国内では国土交通省航空局の指導の下、基本性能の確認試験に向けた準備が進行中であり、海外ではマレーシア以外の第三国に対しても、総務省イベントを契機とした人脈形成が進められている。今後も、総務省や関連する共同研究機関と協力し、空港の安全を高めるためのシステム実用化に向けた取り組みの推進が期待される。

今後は、我が国における検討と ITU-R における検討に齟齬が生じないように、今回の 調査検討報告書における空港 FOD レーダーと電波天文業務、地球探査衛星業務(受動及 び能動)の共用検討の結果について、この技術レポートに反映していく必要がある。空港 FOD レーダーを設置する段階では、本調査検討会で検討した他業務との共用や空港 FOD レーダー同士の共用が必要なだけでなく、該当する滑走路同士で運用する際には、運用時 間、空間及び周波数調整が必要であり、この調整に関する取り決めの策定等が必要とな
付属資料

開催趣旨

2000年、フランスの空港において、滑走路上の金属片が原因による超音速旅客機コン コルドの墜落事故がおこった。以降、同様な事故防止のため、航空機の離発着時に滑走 路面に落下した金属片をはじめとした異物を検知するシステムの導入が求められてき た。その結果、近年では光学監視カメラに加え、測距性能、距離分解能および夜間の検 出性能等で優れたレーダー方式の検知システムが世界的に導入されてきたところであ る。

しかし、それら現行の検知システムでは遠方から検出できる異物の大きさに限界がある こと、システムを滑走路近辺に配置する際には安全性の観点から小型化の向上が必要であ ること等から、遠方から正確に異物を検出できる新しい小型の検知システムの実用化が望 まれている。

そこで、近年光ファイバー技術と90GHz帯の周波数におけるイメージング技術を融合したRoF (Radio over Fiber)技術を活用したリニアセル方式の異物検知レーダー(以下、「90GHz帯FODレーダー(Foreign Object Debris detection Radar)」と言う。)が開発された。これは、小さな異物を正確に検知でき、検知時間、空港滑走路程度の検知範囲を自由に設定できることから、早期に、大規模な空港滑走路に90GHz帯FODレーダーを導入することが期待されている。

上記を踏まえ、本調査検討では、90GHz帯FODレーダーを国内の空港で利用するために、 90GHz帯FODレーダーと同一又は隣接する周波数帯を利用する他システムとの干渉につい て実測及びシミュレーションにより調査を行い、周波数共用の条件等について検討し、技 術基準の策定等による周波数の有効利用に資することを目的とする。

74

空港滑走路における 90GHz帯FODレーダーの導入に向けた周波数有効利用に関する 調査検討会設置要綱

2019年 10月 3日

一般社団法人 電波産業会

(名称)

第1条 この調査検討会は、「空港滑走路における 90GHz帯FOD レーダーの導入に向けた 周波数有効利用に関する調査検討会」(以下「調査検討会」という。)と称する。

(目的)

第2条 この調査検討会では、90GHz帯FOD レーダーの早期導入に向け、国内の空港での技術 実証や90GHz帯FODレーダーと同一又は隣接する周波数帯を利用する他システムとの干渉 について実測及びシミュレーションによる調査結果を踏まえ、周波数共用の条件等につい て検討し、技術基準の策定等による周波数の有効利用に資することを目的とする。

(調査検討事項)

- 第3条 調査検討会は、前条の目的を達成するために、次の事項について調査検討を行う。
 - (1)同一及び隣接周波数帯を利用した既存無線システムへの共用条件の検討等 以下の既存無線システムとの共用検討を行い、90GHz帯F0Dレーダーを空港滑走路 脇に複数配置して使用する場合における各システムとの共用条件を整理する。

具体的には、電波資源拡大のための研究開発「90GHz帯リニアセルによる高精度イ メージング技術の研究開発」(平成24 年度から27 年度まで)及び「90GHz帯協調制 御型リニアセルレーダーシステムの研究開発」(平成 29 年度から令和元年度まで) の成果を踏まえ、90GHz帯FODレーダーの要求要件(出力、必要帯域幅、不要発射等) を整理すると共に、共用対象である以下(ア)~(エ)までの各システムの受信諸元 や許容干渉レベル、各システムの使用状況に応じた電波伝搬環境を整理する。また、 これらの整理結果をもとに、90GHz帯FODレーダーと各システムとの干渉モデルを検討 する。当該検討に当たっては、ITU-R勧告等の国際標準や各システムの過去の共用検 討手法等を考慮するものとする。

(ア) 衛星システム(地球探査衛星業務地球局、地球探査衛星業務人工衛星局)

- (イ) 電波天文
- (ウ) 固定業務
- (エ) 移動業務

更に、90GHz帯FODレーダーの放射パターンのフィールド測定を行うとともに、当該干 渉モデルに従い関係機関と調整し、日本国内の主要空港に 90GHz 帯 FOD レーダーを 導入した場合における上記(ア)~(エ)までの各システムへの影響をシミュレーショ ン評価し、それぞれの共用条件の分析を行う。

(2) 技術的条件の検討

上記(1)の検討結果を踏まえ、使用可能周波数帯、占有周波数帯幅の許容値、最 大空中線電力、スペクトラムマスク等の技術的条件案や制度化方針等について検討を 行い、素案を取りまとめる。

(構成)

第4条 調査検討会は、主査、副主査、委員、オブザーバー及び事務局で構成し、別紙の とおりとする。

(組織)

- 第5条 調査検討会には主査を置く。
- 2 主査は、構成員の互選により選出する。
- 3 主査は、構成員の中から副主査を指名する。
- 4 主査は、調査検討会の審議を促進するため、作業部会を設置することができる。

(運営)

- 第6条 調査検討会は、主査が招集し、主宰する。なお、主査が不在のときは、副主査が これを代行する。
- 2 主査は、必要があると認める時、調査検討会に必要と認める者の出席を求め、意見を述 べさせ、又は説明させることができる。
- 3 その他、調査検討会の運営に関する事項は、主査が認めるところによる

(事務局)

第7条 調査検討会の事務局は、一般社団法人 電波産業会が行う。

(調查検討会設置期間)

第8条 調査検討会の設置期間は、2019 年 10月 18日(第1回会議開催日)から 2020年 3月 31日までとする。

(成果の公表等)

- 第9条 調査検討会における調査検討事項に関する成果を公表する場合には、原則として 一般社団法人電波産業会及び総務省の承認を得るものとする。
- 2 調査検討会の報告書に関する全ての著作権は、総務省に帰属する。

付属資料3 調查検討会構成員名簿

(敬称略・順不同)

区分	機関名	所属等	氏名
主査	学校法人 早稲田大学	理工学術院 電子物理システム学科 教授	川西 哲也
副主査	学校法人 千葉工業大学	工学部 情報通信システム工学科 教授	枚田 明彦
委員	国土交通省	航空局 交通管制部 管制技術課航 行支援技術高度化企画室 管制技術調査官	往谷 康弘
委員	国土交通省	航空局 交通管制部 運用課 航空管制運航情報調查官	徳井 隆宏
委員	国立研究開発法人 宇宙航空研究開発機構	周波数管理室 室長	市川 麻里
委員	国立研究開発法人 海上・港湾・航空技術研究所	電子航法研究所 監視通信領域上席研究員	米本 成人
委員	一般財団法人 航空保安無線システム協会	衛星技術部 調查役	石井 秀幸
委員	大学共同利用機関法人 自然科学研究機構 国立天文台	天文情報センター 周波数資源保護室 室長・特任教授	大石 雅寿
委員	公益財団法人 鉄道総合技術研究所	信号・情報技術研究部 ネットワーク・通信研究室 室長	中村 一城
委員	株式会社 KDDI総合研究所	光アクセスネットワークグループ グループリーダー	西村 公佐
委員	東芝インフラシステムズ 株式会社	電波システム事業部 主幹	和田 将一
委員	日本無線株式会社	マリンシステム事業部 企画推進部 事業企画グループ 課長	宮寺 好男
委員	株式会社 日立国際電気	ソリューション統括本部 ソリューション本部 エンタープライズソリューション本部 主任技師	柴垣 信彦
オブザ ーバー	総務省	総合通信基盤局 電波部 基幹・衛星移動通信課 課長補佐	河間 善之
オブザ ーバー	総務省	総合通信基盤局 電波部 基幹・衛星移動通信課 振興係長	長澤輝明

オブザ ーバー	総務省	総合通信基盤局 電波部 基幹·衛星移動通信課 衛星推進係長	郷藤新之助
オブザ ーバー	総務省	総合通信基盤局 電波部 基幹·衛星移動通信課 航空係長	黒川 理雄
オブザ ーバー	総務省	総合通信基盤局 電波部 基幹·衛星移動通信課 振興係 総務技官	山本 隆大
オブザ ーバー	国土交通省	東京航空局東京空港事務所管制保安部 次席航空管制運航情報官	井上 浩二
オブザ ーバー	防衛省	整備計画局 情報通信課 電磁波政策室 防衛部員	阿部 敏和
オブザ ーバー	防衛省	陸上幕僚監部 指揮通信システム 情報部指揮通信システム課 指揮通信システム班 3等陸佐	村尾 俊輔
オブザ ーバー	防衛省	陸上幕僚監部 指揮通信システム 情報部指揮通信システム課 指揮通信システム班 3等陸佐	北川 明伸
オブザ ーバー	防衛省	防衛装備庁 プロジェクト管理部 事業計画官付 電波専門官	中濱 大晶
オブザ ーバー	成田国際空港株式会社	空港運用部門 総合安全推進部 運用計画グループ マネージャー (第2回から参加)	野澤 山路
オブザ ーバー	成田国際空港株式会社	空港運用部門 総合安全推進部 運用計画グループ アシスタントマネージャー (第1回まで参加)	玉造繁
オブザ ーバー	成田国際空港株式会社	空港運用部門 総合安全推進部 運用計画グループ 主任	小宮山大樹
事務局	一般財団法人電波産業会	研究開発本部 開発センター センター長	星克明
事務局	一般財団法人電波産業会	研究開発本部 参与	山田 和晴
事務局	一般財団法人電波産業会	研究開発本部 開発センター 担当部長	清水 良真
事務局	一般財団法人電波産業会	研究開発本部 開発センター 担当部長	石川 恭輔

付属資料4 調查検討過程

- 1. 第1回会合
 - 日時:2019年10月18 日(金) 13:30-15:00
 - 場所: (一社)電波産業会 第4会議室
 - 議事:
 - (1) 空港 FOD レーダー調査検討会の進め方(事務局)
 - (2) 検討課題
 - ①干渉モデルについて(日立国際電気)
 - ②アンテナシミュレーションと実測比較について(セルコ)
 - ③国際標準化活動と実証実験について(日立国際電気)
 - (3) その他

空港 FOD レーダーの海外展開状況について(日立国際電気)

- 概要:設置要綱についての説明、主査の選出及び副主査の指名が行われた。空港FODレーダー 調査検討会の進め方、検討課題(干渉モデル、アンテナシミュレーションと実測比較、国際 標準化活動と実測比比較)、空港FODレーダーの海外展開状況について説明が行われた。
- 2. 第2回会合
 - 日時:2020年2月17日(月) 15:00-17:00
 - 場所: (一社)電波産業会 第 3 会議室
 - 議事:
 - (1) 共用検討の概要について(事務局)
 - (2) 成田国際空港における実証実験について(日立国際電気)
 - (3) アンテナシミュレーションについて (セルコ)
 - (4) 実証実験とシミュレーション結果検討について(日立国際電気)
 - 概要:共用検討の概要、成田国際空港における実証実験、アンテナシミュレーションについて説明が

行われた。

- 3. 第3回会合
 - 日時:2020年3月2日(月) 15:30-17:00
 - 場所: (一社)電波産業会 第 6 会議室
 - 議事:
 - (1) 実証実験に対する再検討結果について(日立国際電気)
 - (2) 報告書(案) について(事務局)
 - (3)報告書作成にむけての今後の進め方(事務局)

- 概要:実証実験に対する検討結果の報告、報告書骨子案、報告書作成に向けての今後の進め方について説明が行われた。
- 4. アドホック作業班

日時:2020年3月6日(金) 15:00-16:30

場所: (一社)電波産業会 第 3 会議室

概要:臨時の作業班により、地球探査衛星業務との共用、技術的条件についての検討が行われた。

以降、メールにて報告書案の審議が行われた。

ARTICLE 5

Frequency allocations

Introduction

5.1 In all documents of the Union where the terms *allocation*, *allotment* and *assignment* are to be used, they shall have the meaning given them in Nos. 1.16 to 1.18, the terms used in the six working languages being as follows:

Frequency distribution to	French	English	Spanish	Arabic	Chinese	Russian
Services	Attribution (attribuer)	Allocation (to allocate)	Atribución (atribuir)	توزيع (يوزع)	划分	распределение (распределять)
Areas or countries	Allotissement (allotir)	Allotment (to allot)	Adjudicación (adjudicar)	تعیین (یعین)	分配	выделение (выделять)
Stations	Assignation (assigner)	Assignment (to assign)	Asignación (asignar)	تخصيص (يخصص)	指配	присвоение (присваивать)

Section I - Regions and areas

5.2 For the allocation of frequencies the world has been divided into three Regions¹ as shown on the following map and described in Nos. **5.3** to **5.9**:

The shaded part represents the Tropical Zones as defined in Nos. 5.16 to 5.20 and 5.21.

¹ 5.2.1 It should be noted that where the words "regions" or "regional" are without a capital "R" in these Regulations, they do not relate to the three Regions here defined for purposes of frequency allocation.

5.3 *Region 1:* Region 1 includes the area limited on the east by line A (lines A, B and C are defined below) and on the west by line B, excluding any of the territory of the Islamic Republic of Iran which lies between these limits. It also includes the whole of the territory of Armenia, Azerbaijan, the Russian Federation, Georgia, Kazakhstan, Mongolia, Uzbekistan, Kyrgyzstan, Tajikistan, Turkmenistan, Turkey and Ukraine and the area to the north of Russian Federation which lies between lines A and C.

5.4 *Region 2*: Region 2 includes the area limited on the east by line B and on the west by line C.

5.5 *Region 3*: Region 3 includes the area limited on the east by line C and on the west by line A, except any of the territory of Armenia, Azerbaijan, the Russian Federation, Georgia, Kazakhstan, Mongolia, Uzbekistan, Kyrgyzstan, Tajikistan, Turkmenistan, Turkey and Ukraine and the area to the north of Russian Federation. It also includes that part of the territory of the Islamic Republic of Iran lying outside of those limits.

5.6 The lines A, B and C are defined as follows:

5.7 Line A: Line A extends from the North Pole along meridian 40° East of Greenwich to parallel 40° North; thence by great circle arc to the intersection of meridian 60° East and the Tropic of Cancer; thence along the meridian 60° East to the South Pole.

5.8 *Line B:* Line B extends from the North Pole along meridian 10° West of Greenwich to its intersection with parallel 72° North; thence by great circle arc to the intersection of meridian 50° West and parallel 40° North; thence by great circle arc to the intersection of meridian 20° West and parallel 10° South; thence along meridian 20° West to the South Pole.

5.9 *Line C:* Line C extends from the North Pole by great circle arc to the intersection of parallel 65° 30' North with the international boundary in Bering Strait; thence by great circle arc to the intersection of meridian 165° East of Greenwich and parallel 50° North; thence by great circle arc to the intersection of meridian 170° West and parallel 10° North; thence along parallel 10° North to its intersection with meridian 120° West; thence along meridian 120° West to the South Pole.

5.10 For the purposes of these Regulations, the term "African Broadcasting Area" means:

5.11 *a)* African countries, parts of countries, territories and groups of territories situated between the parallels 40° South and 30° North;

- 5.12 b) islands in the Indian Ocean west of meridian 60° East of Greenwich, situated between the parallel 40° South and the great circle arc joining the points 45° East, 11° 30' North and 60° East, 15° North;
- **5.13** *c)* islands in the Atlantic Ocean east of line B defined in No. **5.8** of these Regulations, situated between the parallels 40° South and 30° North.

5.14 The "European Broadcasting Area" is bounded on the west by the western boundary of Region 1, on the east by the meridian 40° East of Greenwich and on the south by the parallel 30° North so as to include the northern part of Saudi Arabia and that part of those countries bordering the Mediterranean within these limits. In addition, Armenia, Azerbaijan, Georgia and those parts of the territories of Iraq, Jordan, Syrian Arab Republic, Turkey and Ukraine lying outside the above limits are included in the European Broadcasting Area. (WRC-07)

5.15 The "European Maritime Area" is bounded to the north by a line extending along parallel 72° North from its intersection with meridian 55° East of Greenwich to its intersection with meridian 5° West, then along meridian 5° West to its intersection with parallel 67° North, thence along parallel 67° North to its intersection with meridian 32° West; to the west by a line extending along meridian 32° West to its intersection with parallel 30° North; to the south by a line extending along parallel 30° North to its intersection with meridian 43° East; to the east by a line extending along meridian 43° East to its intersection with parallel 60° North, thence along parallel 60° North to its intersection with parallel 60° North, thence along parallel 60° North to its intersection with parallel 60° North, thence along parallel 60° North to its intersection with parallel 60° North, thence along parallel 60° North to its intersection with parallel 60° North, thence along parallel 60° North to its intersection with parallel 60° North, thence along parallel 60° North to its intersection with parallel 60° North.

5.16	1) The "Tropical Zone" (see map in No. 5.2) is defined as:
5.17	<i>a)</i> the whole of that area in Region 2 between the Tropics of Cancer and Capricorn;
5.18	b) the whole of that area in Regions 1 and 3 contained between the parallels 30° North and 35° South with the addition of:
5.19	i) The area contained between the meridians 40° East and 80° East of Greenwich and the parallels 30° North and 40° North;
5.20	ii) that part of Libya north of parallel 30° North.
5.21 to specia	2) In Region 2, the Tropical Zone may be extended to parallel 33° North, subject al agreements between the countries concerned in that Region (see Article 6).

5.22 A sub-Region is an area consisting of two or more countries in the same Region.

付属資料6 Article5 of Radio Regulations ~81-86GHz~より抜粋

Allocation to services						
Region 1 Region 2 Region 3						
81-84	FIXED 5.338A					
	FIXED-SATELLITE (Earth-to-space)					
	MOBILE					
	MOBILE-SATELLITE (Earth-to-space)					
	RADIO ASTRONOMY					
	Space research (space-to-Earth)					
	5.149 5.561A					
84-86	FIXED 5.338A					
	FIXED-SATELLITE (Earth-to-space)	5.561B				
	MOBILE					
	RADIO ASTRONOMY					
	5.149					

81-86 GHz

5.149 In making assignments to stations of other services to which the bands:

13 360-13 410 kHz,	4 950-4 990 MHz,	102-109.5 GHz,
25 550-25 670 kHz,	4 990-5 000 MHz,	111.8-114.25 GHz,
37.5-38.25 MHz,	6 650-6 675.2 MHz,	128.33-128.59 GHz,
73-74.6 MHz in Regions 1 and 3,	10.6-10.68 GHz,	129.23-129.49 GHz,
150.05-153 MHz in Region 1,	14.47-14.5 GHz,	130-134 GHz,
322-328.6 MHz,	22.01-22.21 GHz,	136-148.5 GHz,
406.1-410 MHz,	22.21-22.5 GHz,	151.5-158.5 GHz,
608-614 MHz in Regions 1 and 3,	22.81-22.86 GHz,	168.59-168.93 GHz,
1 330-1 400 MHz,	23.07-23.12 GHz,	171.11-171.45 GHz,
1 610.6-1 613.8 MHz,	31.2-31.3 GHz,	172.31-172.65 GHz,
1 660-1 670 MHz,	31.5-31.8 GHz in Regions 1 and 3,	173.52-173.85 GHz,
1 718.8-1 722.2 MHz,	36.43-36.5 GHz,	195.75-196.15 GHz,
2 655-2 690 MHz,	42.5-43.5 GHz,	209-226 GHz,
3 260-3 267 MHz,	48.94-49.04 GHz,	241-250 GHz,
3 332-3 339 MHz,	76-86 GHz,	252-275 GHz
3 345.8-3 352.5 MHz,	92-94 GHz,	
4 825-4 835 MHz,	94.1-100 GHz,	

are allocated, administrations are urged to take all practicable steps to protect the radio astronomy service from harmful interference. Emissions from spaceborne or airborne stations can be particularly serious sources of interference to the radio astronomy service (see Nos. **4.5** and **4.6** and Article **29**). (WRC-07)

5.338A In the frequency bands 1 350-1 400 MHz, 1 427-1 452 MHz, 22.55-23.55 GHz, 30-31.3 GHz, 49.7-50.2 GHz, 50.4-50.9 GHz, 51.4-52.6 GHz, 81-86 GHz and 92-94 GHz, Resolution 750 (Rev.WRC-15) applies. (WRC-15)

5.561A The 81-81.5 GHz band is also allocated to the amateur and amateur-satellite services on a secondary basis. (WRC-2000)

	Allocation to services	
Region 1	Region 2	Region 3
86-92	EARTH EXPLORATION-SATELLITE RADIO ASTRONOMY SPACE RESEARCH (passive)	E (passive)
S1842.7	5.340	
92-94	FIXED 5.338A MOBILE RADIO ASTRONOMY RADIOLOCATION 5.149	
94-94.1	EARTH EXPLORATION-SATELLITE RADIOLOCATION SPACE RESEARCH (active) Radio astronomy 5.562 5.562A	E (active)
94.1-95	FIXED MOBILE RADIO ASTRONOMY RADIOLOCATION 5.149	
95-100	FIXED MOBILE RADIO ASTRONOMY RADIOLOCATION RADIONAVIGATION RADIONAVIGATION-SATELLITE 5.149 5.554	
100-102	EARTH EXPLORATION-SATELLITE RADIO ASTRONOMY SPACE RESEARCH (passive) 5.340 5.341	E (passive)
102-105	FIXED MOBILE RADIO ASTRONOMY 5.149 5.341	
105-109.5	FIXED MOBILE RADIO ASTRONOMY SPACE RESEARCH (passive) 5.562B 5.149 5.341	
109.5-111.8	EARTH EXPLORATION-SATELLITE RADIO ASTRONOMY SPACE RESEARCH (passive) 5.340 5.341	E (passive)

86-111.8 GHz

13 360-13 410 kHz,	4 950-4 990 MHz,	102-109.5 GHz,
25 550-25 670 kHz,	4 990-5 000 MHz,	111.8-114.25 GHz,
37.5-38.25 MHz,	6 650-6 675.2 MHz,	128.33-128.59 GHz,
73-74.6 MHz in Regions 1 and 3,	10.6-10.68 GHz,	129.23-129.49 GHz,
150.05-153 MHz in Region 1,	14.47-14.5 GHz,	130-134 GHz,
322-328.6 MHz,	22.01-22.21 GHz,	136-148.5 GHz,
406.1-410 MHz,	22.21-22.5 GHz,	151.5-158.5 GHz,
608-614 MHz in Regions 1 and 3,	22.81-22.86 GHz,	168.59-168.93 GHz,
1 330-1 400 MHz,	23.07-23.12 GHz,	171.11-171.45 GHz,
1 610.6-1 613.8 MHz,	31.2-31.3 GHz,	172.31-172.65 GHz,
1 660-1 670 MHz,	31.5-31.8 GHz in Regions 1 and 3,	173.52-173.85 GHz,
1 718.8-1 722.2 MHz,	36.43-36.5 GHz,	195.75-196.15 GHz,
2 655-2 690 MHz,	42.5-43.5 GHz,	209-226 GHz,
3 260-3 267 MHz,	48.94-49.04 GHz,	241-250 GHz,
3 332-3 339 MHz,	76-86 GHz,	252-275 GHz
3 345.8-3 352.5 MHz,	92-94 GHz,	
4 825-4 835 MHz,	94.1-100 GHz,	

5.149 In making assignments to stations of other services to which the bands:

are allocated, administrations are urged to take all practicable steps to protect the radio astronomy service from harmful interference. Emissions from spaceborne or airborne stations can be particularly serious sources of interference to the radio astronomy service (see Nos. **4.5** and **4.6** and Article **29**). (WRC-07)

5.338A In the frequency bands 1 350-1 400 MHz, 1 427-1 452 MHz, 22.55-23.55 GHz, 30-31.3 GHz, 49.7-50.2 GHz, 50.4-50.9 GHz, 51.4-52.6 GHz, 81-86 GHz and 92-94 GHz, Resolution **750** (Rev.WRC-15) applies. (WRC-15)

5.340 All emissions are prohibited in the following bands:

1 400-1 427 MHz,

2 690-2 700 MHz,	except those provided for by No. 5.422,
10.68-10.7 GHz,	except those provided for by No. 5.483,
15.35-15.4 GHz,	except those provided for by No. 5.511,
23.6-24 GHz,	
31.3-31.5 GHz,	
31.5-31.8 GHz,	in Region 2,
48.94-49.04 GHz,	from airborne stations
50.2-50.4 GHz ² ,	
52.6-54.25 GHz,	
86-92 GHz,	
100-102 GHz,	
109.5-111.8 GHz,	
114.25-116 GHz,	
148.5-151.5 GHz,	
164-167 GHz,	
182-185 GHz,	
190-191.8 GHz,	
200-209 GHz,	
226-231.5 GHz,	
250-252 GHz. (WRC-03)	

 $^{^2}$ 5.340.1 The allocation to the Earth exploration-satellite service (passive) and the space research service (passive) in the band 50.2-50.4 GHz should not impose undue constraints on the use of the adjacent bands by the primary allocated services in those bands. (WRC-97)

5.341 In the bands 1 400-1 727 MHz, 101-120 GHz and 197-220 GHz, passive research is being conducted by some countries in a programme for the search for intentional emissions of extraterrestrial origin.

5.554 In the bands 43.5-47 GHz, 66-71 GHz, 95-100 GHz, 123-130 GHz, 191.8-200 GHz and 252-265 GHz, satellite links connecting land stations at specified fixed points are also authorized when used in conjunction with the mobile-satellite service or the radionavigation-satellite service. (WRC-2000)

5.562 The use of the band 94-94.1 GHz by the Earth exploration-satellite (active) and space research (active) services is limited to spaceborne cloud radars. (WRC-97)

5.562A In the bands 94-94.1 GHz and 130-134 GHz, transmissions from space stations of the Earth explorationsatellite service (active) that are directed into the main beam of a radio astronomy antenna have the potential to damage some radio astronomy receivers. Space agencies operating the transmitters and the radio astronomy stations concerned should mutually plan their operations so as to avoid such occurrences to the maximum extent possible. (WRC-2000)

Rec. ITU-R RA.769-2

Annex 1

Sensitivity of radio astronomy systems

1 General considerations and assumptions used in the calculation of interference levels

1.1 Detrimental-level interference criterion

The sensitivity of an observation in radio astronomy can be defined in terms of the smallest power level change ΔP in the power level *P* at the radiometer input that can be detected and measured. The sensitivity equation is:

$$\frac{\Delta P}{P} = \frac{1}{\sqrt{\Delta f_0 t}} \tag{1}$$

where:

P and ΔP : power spectral density of the noise

 Δf_0 : bandwidth

t: integration time. *P* and ΔP in equation (1) can be expressed in temperature units through the Boltzmann's constant, *k*:

$$\Delta P = k \ \Delta T; \quad \text{also} \quad P = k \ T \tag{2}$$

Thus we may express the sensitivity equation as:

$$\Delta T = \frac{T}{\sqrt{\Delta f_0 t}} \tag{3}$$

where:

$$T = T_A + T_R$$

This result applies for one polarization of the radio telescope. *T* is the sum of T_A (the antenna noise temperature contribution from the cosmic background, the Earth's atmosphere and radiation from the Earth) and T_R , the receiver noise temperature. Equations (1) or (3) can be used to estimate the sensitivities and interference levels for radio astronomical observations. The results are listed in Tables 1 and 2. An observing (or integration) time, *t*, of 2 000 s is assumed, and interference threshold levels, ΔP_H , given in Tables 1 and 2 are expressed as the interference power within the bandwidth Δf that introduces an error of 10% in the measurement of ΔP (or ΔT), i.e.:

$$\Delta P_H = 0.1 \,\Delta P \,\Delta f \tag{4}$$

In summary, the appropriate columns in Tables 1 and 2 may be calculated using the following methods:

- ΔT , using equation (3),
- ΔP , using equation (2),
- ΔP_H , using equation (4).

The interference can also be expressed in terms of the pfd incident at the antenna, either in the total bandwidth or as a spectral pfd, S_H , per 1 Hz of bandwidth. The values given are for an antenna having a gain, in the direction of arrival of the interference, equal to that of an isotropic antenna (which has an effective area of $c^2/4\pi f^2$, where c is the speed of the light and f the frequency). The gain of an isotropic radiator, 0 dBi, is used as a general representative value for the side-lobe level, as discussed under § 1.3.

Values of $S_H \Delta f (dB(W/m^2))$, are derived from ΔP_H by adding:

$$20 \log f - 158.5$$
 dB (5)

where f(Hz). S_H is then derived by subtracting 10 log $\Delta f(Hz)$ to allow for the bandwidth.

1.2 Integration time

The calculated sensitivities and interference levels presented in Tables 1 and 2 are based on assumed integration times of 2000 s. Integration times actually used in astronomical observations cover a wide range of values. Continuum observations made with single-antenna telescopes (as distinct from interferometric arrays) are well represented by the integration time of 2000 s, typical of good quality observations. On the other hand 2000 s is less representative of spectral line observations. Improvements in receiver stability and the increased use of correlation spectrometers have allowed more frequent use of longer integration times required to observe weak spectral lines, and spectral line observations lasting several hours are quite common. A more representative integration time for these observations would be 10 h. For a 10 h integration, the threshold interference level is 6 dB more stringent than the values given in Table 2. There are also certain observations of time varying phenomena, e.g. observations of pulsars, stellar or solar bursts, and interplanetary scintillations for which much shorter time periods may be adequate.

1.3 Antenna response pattern

Interference to radio astronomy is almost always received through the antenna side lobes, so the main beam response to interference need not be considered.

The side-lobe model for large paraboloid antennas in the frequency range 2 to 30 GHz, given in Recommendation ITU-R SA.509 is a good approximation of the response of many radio astronomy antennas and is adopted throughout this Recommendation as the radio astronomy reference antenna. In this model, the side-lobe level decreases with angular distance (degrees) from the main beam axis and is equal to $32 - 25 \log \varphi$ (dBi) for $1^{\circ} < \varphi < 48^{\circ}$. The effect of an interfering signal clearly depends upon the angle of incidence relative to the main beam axis of the antenna, since the side-lobe gain, as represented by the model, varies from 32 to -10 dBi as a function of this angle. However, it is useful to calculate the threshold levels of interference strength for a particular value of side-lobe gain, that we choose as 0 dBi, and use in Tables 1 to 3. From the model, this side-lobe level occurs at an angle of 19.05° from the main beam axis. Then a signal at the detrimental threshold level defined for 0 dBi side-lobe gain will exceed the criterion for the detrimental level at the receiver input if it is incident at the antenna at an angle of less than 19.05°. The solid angle

within a cone of angular radius 19.05° is 0.344 sr, which is equal to 5.5% of the 2π sr of the sky above the horizon that a radio telescope is able to observe at any given time. Thus if the probability of the angle of incidence of interference is uniformly distributed over the sky, about 5.5% of interfering signals would be incident within 19.05° of the main beam axis of an antenna pointed towards the sky. Note also that the 5.5% figure is in line with the recommended levels of data loss to radio astronomy observations in percentage of time, specified in Recommendation ITU-R RA.1513.

The particular case of non-GSO satellites presents a dynamic situation, that is, the positions of the satellites relative to the beam of the radio astronomy antenna show large changes within the time scale of the 2000 s integration time. Analysis of interference in this case requires integrating the response over the varying side-lobe levels, for example, using the concept of epfd defined in No. 22.5C of the Radio Regulations (RR). In addition it is usually necessary to combine the responses to a number of satellites within a particular system. In such calculations it is suggested that the antenna response pattern for antennas of diameter greater than 100 λ in Recommendation ITU-R S.1428 be used to represent the radio astronomy antenna, until a model based specifically on radio astronomy antennas is available; see § 2.2 for further discussion.

1.4 Bandwidth

Equation (1) shows that observations of the highest sensitivity are obtained when radio astronomers make use of the widest possible bandwidth. Consequently, in Table 1 (continuum observations), Δf is assumed to be the width of the allocated radio astronomy bands for frequencies up to 71 GHz. Above 71 GHz a value of 8 GHz is used, which is a representative bandwidth generally used on radio astronomy receivers in this range. In Table 2 (spectral line observations) a channel bandwidth Δf equal to the Doppler shift corresponding to 3 km/s in velocity is used for entries below 71 GHz. This value represents a compromise between the desired high spectral resolution and the sensitivity. There are a very large number of astrophysically important lines above 71 GHz, as shown in Recommendation ITU-R RA.314 and only a few representative values for the detrimental levels are given in Table 2 for the range 71-275 GHz. The channel bandwidth used to compute the detrimental levels above 71 GHz is 1000 kHz (1 MHz) in all cases. This value was chosen for practical reasons. While it is slightly wider than the spectral channel width customary in radio astronomy receivers at these frequencies, it is used as the standard reference bandwidth for space services above 15 GHz.

1.5 Receiver noise temperature and antenna temperature

The receiver noise temperatures in Tables 1 and 2 are representative of the systems in use in radio astronomy. For frequencies above 1 GHz these are cryogenically cooled amplifiers or mixers. The quantum effect places a theoretical lower limit of hf/k on the noise temperature of such devices, where h and k are Planck's and Boltzmann's constants, respectively. This limit becomes important at frequencies above 100 GHz, where it equals 4.8 K. Practical mixers and amplifiers for bands at 100 GHz and higher provide noise temperatures greater than hf/k by a factor of about four. Thus, for frequencies above 100 GHz, noise temperatures equal to 4hf/k are used in Tables 1 and 2.

The antenna temperatures in the Tables are also representative of practical systems in use in radio astronomy. They include the effects of the ionosphere or the neutral atmosphere, ground pickup in side lobes resulting from spillover or scattering, ohmic losses, and the cosmic microwave background. At frequencies above 100 GHz the atmospheric losses due to water vapour in the neutral atmosphere become very important. For these frequencies the values given are typical of the terrestrial sites used for major millimetric-wave radio astronomy facilities, such as Mauna Kea, Hawaii, or the Llano de Chajnantor at an elevation of 5 000 m in Chile, which is the site chosen for a major international radio astronomy array for frequencies in the range 30 GHz to 1 THz.

Centre frequency ⁽¹⁾ f _c (MHz)	Assumed	med Minimum Receiver nois	Receiver noise	System sensitivity ⁽²⁾ (noise fluctuations)		Threshold interference levels ^{(2) (3)}		
	$\begin{array}{c c} \text{bandwidth} \\ \Delta f \\ (\text{MHz}) \\ \end{array} \begin{array}{c} \text{antenna nc} \\ temperatu \\ T_A \\ (\text{K}) \end{array}$	temperature T _A (K)	temperature <i>T_R</i> (K)	Temperature ΔT (mK)	Power spectral density ΔP (dB(W/Hz))	Input power ΔP _H (dBW)	pfd $S_H \Delta f$ (dB(W/m ²))	Spectral pfd S_H (dB(W/(m ² · Hz)))
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
13.385	0.05	50 000	60	5 000	-222	-185	-201	-248
25.610	0.12	15 000	60	972	-229	-188	-199	-249
73.8	1.6	750	60	14.3	-247	-195	-196	-258
151.525	2.95	150	60	2.73	-254	-199	-194	-259
325.3	6.6	40	60	0.87	-259	-201	-189	-258
408.05	3.9	25	60	0.96	-259	-203	-189	-255
611	6.0	20	60	0.73	-260	-202	-185	-253
1 413.5	27	12	10	0.095	-269	-205	-180	-255
1 665	10	12	10	0.16	-267	-207	-181	-251
2 695	10	12	10	0.16	-267	-207	-177	-247
4 995	10	12	10	0.16	-267	-207	-171	-241
10 650	100	12	10	0.049	-272	-202	-160	-240
15 375	50	15	15	0.095	-269	-202	-156	-233
22 355	290	35	30	0.085	-269	-195	-146	-231
23 800	400	15	30	0.050	-271	-195	-147	-233
31 550	500	18	65	0.083	-269	-192	-141	-228
43 000	1 000	25	65	0.064	-271	-191	-137	-227
89 000	8 000	12	30	0.011	-278	-189	-129	-228
150 000	8 000	14	30	0.011	-278	-189	-124	-223
224 000	8 000	20	43	0.016	-277	-188	-119	-218
270 000	8 000	25	50	0.019	-276	-187	-117	-216

TABLE 1	
Threshold levels of interference detrimental to radio astronomy continuum observa	tions

(1) Calculation of interference levels is based on the centre frequency shown in this column although not all regions have the same allocations.

(2) An integration time of 2 000 s has been assumed; if integration times of 15 min, 1 h, 2 h, 5 h or 10 h are used, the relevant values in the Table should be adjusted by +1.7, -1.3, -2.8, -4.8 or -6.3 dB respectively.

(b) The interference levels given are those which apply for measurements of the total power received by a single antenna. Less stringent levels may be appropriate for other types of measurements, as discussed in § 2.2. For transmitters in the GSO, it is desirable that the levels be adjusted by -15 dB, as explained in § 2.1.

Rec. ITU-R RA.1513-2

RECOMMENDATION ITU-R RA.1513-2*

Levels of data loss to radio astronomy observations and percentage-of-time criteria resulting from degradation by interference for frequency bands allocated to the radio astronomy service on a primary basis

(2001-2003-2015)

Scope

This Recommendation addresses the levels of data loss to radio astronomy observations and percentage-oftime criteria resulting from degradation by interference for frequency bands allocated to the radio astronomy service on a primary basis. It includes studies of sharing situations for terrestrial and space-based applications, as well as an extensive section on measurement of data loss from weak, pulsed interference.

3.4.6 Summary

These calculations show, on the assumption that the pulsed interference does not exceed the Recommendation ITU-R RA.769 detrimental interference threshold for a 2 000-second observation, the following:

- Radar and other pulsed radiation, with periods less than 40 s, that average down to the detrimental level at 2 000 s set by Recommendation ITU-R RA.769 will not cause excess data loss > 2%.
- 2) For measurements with 40-second observing length, the worst-case pulse strength for > 2% excess data loss is 1.5 dB below the system noise, and then only for extremely infrequent pulses (1 in 2 000 s) in the absence of any mitigation effort that synchronizes data taking in anti-correlation to regular pulses.
- Aperiodic and/or variable strength interference will cause data loss at or below periodic pulses of constant strength.

4 Conclusions

A practical criterion for the aggregate data loss resulting from interference to the RAS is considered to be 5% of time from all sources. The existence of multiple overlapping sources of interference is a practical aspect that should be accounted for. Further study of the apportionment of the aggregate interference between different networks is required.

The data loss from any one system should be significantly less than 5%. To comply with this requirement, 2% per system is a practical limit.

The ITU Radiocommunication Assembly,

considering

 a) that research in radio astronomy depends critically upon the ability to make observations at the extreme limits of sensitivity and/or precision, and that the growing use of the radio spectrum increases the possibility of interference detrimental to the radio astronomy service (RAS);

b) that for some radio astronomy observations, such as those involving the passage of a comet, an occultation by the moon, or a supernova explosion, a high probability of success is desirable because of the difficulty or impossibility of repeating them;

c) that since interference to radio astronomy can result from unwanted emissions of services in adjacent, nearby, or harmonically related bands, interference from several services or systems may occur in any single radio astronomy band;

d) that burden sharing may be necessary to facilitate the efficient use of the radio spectrum;

e) that mitigation techniques are a part of burden sharing, and more advanced techniques are being developed for future implementation, to allow more efficient use of the radio spectrum;

f) that threshold levels of interference (assuming 0 dBi antenna gain) detrimental to the RAS for 2000 s integration times are given in Recommendation ITU-R RA.769, but that no acceptable percentage of time has been established for interference from services with transmissions randomly distributed in time and either sharing a frequency band with the RAS, or producing unwanted emissions that fall within a radio astronomy band;

g) that administrations may require criteria for evaluation of interference between the RAS and other services in shared, adjacent, nearby, or harmonically related bands;

h) that methods (e.g. the Monte Carlo method) have been developed to determine the appropriate separation distance between radio astronomy sites and an aggregate of mobile earth stations, and that these methods require the specification of an acceptable percentage of time during which the aggregate interference power exceeds the threshold levels detrimental to the RAS;

i) that studies of sharing scenarios and experience gained from long practice have led to values of tolerable time loss due to degradation of sensitivity, on time scales of a single observation, which are explained in more detail in Annex 1,

^{*} Radiocommunication Study Group 7 made editorial amendments to this Recommendation in the year 2017 in accordance with Resolution ITU-R 1.

recommends

1 that, for evaluation of interference, a criterion of 5% be used for the aggregate data loss to the RAS due to interference from all networks, in any frequency band allocated to the RAS on a primary basis, noting that further studies of the apportionment between different networks are required;

2 that, for evaluation of interference, a criterion of 2% be used for data loss to the RAS due to interference from any one network, in any frequency band, which is allocated to the RAS on a primary basis;

that the percentage of data loss, in frequency bands allocated to the RAS on a primary basis be determined by using one of the following: (1) Recommendation ITU-R S.1586; (2) Recommendation ITU-R M.1583, or (3) the percentage of integration periods of 2 000 s in which the average spectral pfd at the radio telescope exceeds the levels defined (assuming 0 dBi antenna gain) in Recommendation ITU-R RA.769, whichever is appropriate;

4 that the criteria described in § 3.3.2 of Annex 1 be used for evaluation of interference, in any frequency band allocated to the RAS on a primary basis, from unwanted emissions produced by any non-GSO satellite system at radio astronomy sites.

Rec. ITU-R RS.2017-0

TABLE 2

Interference criteria for satellite passive remote sensing up to 1 000 GHz Percentage of area or time Maximum Frequency permissible Reference Scan mode band(s) interference level bandwidth (MHz) interference level (N, C, L)⁽²⁾ (GHz) (dBW) may be exceeded(1) (%) 1.370-1.427 27 -1740.1 N, C 2.64-2.70 10 -176 Ν 0.1 4.2-4.4 0.1 N, C 200 -1666.425-7.25 200 -1660.1 N, C 10.6-10.7 100 N, C -166 0.1 N, C 15.2-15.4 50 -169 0.1 18.6-18.8 200 N, C -1630.1 21.2-21.4 100 -169 0.1 Ν 22.21-22.5 100 -169 0.1 Ν N, C 23.6-24 0.01 200 -166 N, C 31.3-31.8 200 -166 0.01 N, C 36-37 100 -166 0.1 50.2-50.4 0.01 N, C 200 -166 52.6-59.3 100 -169 0.01 N, C

0.01/1(3)

0.01/1(3)

N, L

N, L

5

86-92	100	-169	0.01	N, C
100-102	10	-189	1	L
109.5-111.8	10	-189	1	L
114.25-116	10	-189	1	L
115.25-122.25	200/10 ⁽³⁾	-166/-189 ⁽³⁾	0.01/1 ⁽³⁾	N, L
148.5-151.5	500/10 ⁽³⁾	-159/-189 ⁽³⁾	0.01/1 ⁽³⁾	N, L
155.5-158.5 ⁽⁴⁾	200	-163	0.01	N, C
164-167	200/10 ⁽³⁾	-163/-189 ⁽³⁾	0.01/1 ⁽³⁾	N, C, L
174.8-191.8	200/10(3)	-163/-189(3)	0.01/1(3)	N, C, L
200-209	3	-194	1	L
226-231.5	200/3(3)	-160/-194(3)	0.01/1(3)	N, L
235-238	3	-194	1	L
250-252	3	-194	1	L
275-285.4	3	-194	1	L
296-306	200/3(3)	-160/-194(3)	0.01/1(3)	N, L
313.5-355.6	200/3(3)	-158/-194(3)	0.01/1(3)	N, C, L

-158/-194(3)

-158/-194(3)

361.2-365

369.2-391.2

200/3(3)

200/3(3)

Frequency band(s) (GHz)	Reference bandwidth (MHz)	Maximum interference level (dBW)	Percentage of area or time permissible interference level may be exceeded ⁽¹⁾ (%)	Scan mode (N, C, L) ⁽²⁾				
397.2-399.2	200/3(3)	-158/-194(3)	0.01/1(3)	N, L				
409-411	3	-194	1	L				
416-433.46	200/3(3)	-157/-194(3)	0.01/1(3)	N, L				
439.1-466.3	200/3(3)	-157/-194(3)	0.01/1(3)	N, C, L				
477.75-496.75	3	-194	1	L				
497-502	200/3(3)	-156/-194(3)	0.01/1(3)	N, L				
523-527	200	-156	0.01	N				
538-581	200/3(3)	-156/-194(3)	0.01/1(3)	N, L				
611.7-629.7	3	-194	1	L				
634-654	200/3(3)	-155/-194(3)	0.01/1(3)	N, L				
656.9-692	200/3(3)	-155/-194(3)	0.01/1(3)	N, C, L				
713.4-717.4	3	-194	1	L				
729-733	3	-194	1	L				
750-754	3	-194	1	L				
771.8-775.8	3	-194	1	L				
823.15-845.15	200/3(3)	-154/-194 ⁽³⁾	0.01/1 ⁽³⁾	N, C, L				
850-854	3	-194	1	L				
857.9-861.9	3	-194	1	L				
866-882	200	-154	0.01	С				
905.17-927.17	200/3(3)	-153/-194(3)	0.01/1 ⁽³⁾	N, L				
951-956	3	-194	1	L				
968.31-972.31	3	-194	1	L				
985.9-989.9	3	-194	1	L				

TABLE 2 (end)

⁽¹⁾ For a 0.01% level, the measurement area is a square on the Earth of 2 000 000 km², unless otherwise justified; for a 0.1% level, the measurement area is a square on the Earth of 10 000 000 km² unless otherwise justified; for a 1% level, the measurement time is 24 h, unless otherwise justified.

⁽²⁾ N: Nadir, Nadir scan modes concentrate on sounding or viewing the Earth's surface at angles of nearly perpendicular incidence. The scan terminates at the surface or at various levels in the atmosphere according to the weighting functions. L: Limb, Limb scan modes view the atmosphere "on edge" and terminate in space rather than at the surface, and accordingly are weighted zero at the surface and maximum at the tangent point height. C: Conical, Conical scan modes view the Earth's surface by rotating the antenna at an offset angle from the nadir direction.

⁽³⁾ First number for nadir or conical scanning modes and second number for microwave limb sounding applications.

(*) This band is needed until 2018 to accommodate existing and planned sensors.

付属資料 11 Rec. ITU-R RS. 1861-0 より抜粋

34

Rec. ITU-R RS.1861

TABLE 19

EESS (passive) sensor characteristics operating between 86 and 92 GHz

	Sensor L1	Sensor L2	Sensor L3	Sensor L4	Sensor L5	ensor L5 Sensor L6		Sensor L8										
Sensor type		Conical scan			Mechanical nadir scan		Conie	al scan										
Orbit parameters																		
Altitude	867 km	705 km	833 km	:	833 km 822 km*		833 km 822 km*		833 km 822 km*		833 km 822 km*		835 km	700 km				
Inclination	20°	98.2°	98.7°		98.6° 98.7°*	98.7°	98.85°	98.2°										
Eccentricity	0	0.0015	0		0 0.001*	0		0.002										
Repeat period	7 days	16 days	17 days	:	9 days 29 days*	9 days	N/A	16 days										
Sensor antenna parame	ters																	
Number of beams	1	2	1	30 earth fields per 8 s scan period	30 earth fields per 8 s scan period 1 beam (steerable in 90 earth fields per scan period)*		2											
Reflector diameter	0.65 m	1.6 m	2.2 m	0.15 m	0.3 m 0.22 m*	0.203 m	0.6 m	2 m										
Maximum beam gain	50 dBi	60.5 dBi	56 dBi	34.4 dBi	34.4 dBi 47 dBi 44.8 dBi*		34.4 dBi 47 dBi 44.8 dBi*		34.4 dBi 47 dBi 44.8 dBi*		34.4 dBi 47 dBi 44.8 dBi*		34.4 dBi 47 dBi 44.8 dBi*		34.4 dBi 47 dBi 44.8 dBi*		54 dBi	62.4 dBi
Polarization		H, V			H QV*	QV	H	, V										
-3 dB beamwidth	0.43°	0.18°	0.39°	3.3°	1.1°	2.2°	0.4°	0.15°										
Instantaneous field of view	10 km × 17 km	A: 6.2 km × 3.6 km B: 5.9 km × 3.5 km	16 km × 12 km	Nadir FOV: Nadir FOV: 16 km 48.5 km (1.1°) Outer FOV: 0uter FOV: 53 × 149.1 × 79.4 km 27 km* 147 × 79 km* 27 km*		Nadir FOV: 31.6 km × 31.6 km Outer FOV: 136.7 × 60 km	12 km × 28 km	A: 5.1 km × 2.9 km B: 5.0 km × 2.9 km										
Main beam efficiency	96.2%	96%		95% N/A														

付属資料 12 Rec. ITU-R RS. 1166-4 より抜粋

Sancautima	Interference criteria	Data availability criteria (%)					
Sensor type	Performance degradation	<i>I/N</i> (dB) -6 -3 -5 -10 -10	Systematic	Random			
Synthetic aperture radar	10% degradation of standard deviation of pixel power	-6	99	95			
Altimeter	4% degradation in height noise	-3	99	95			
Scatterometer	8% degradation in measurement of normalized radar backscatter to deduce wind speeds	-5	99	95			
Precipitation radar	7% increase in minimum rainfall rate	-10	N/A	99.8			
Cloud profile radar	10% degradation in minimum cloud reflectivity	-10	99	95			

TABLE 2

付属資料 13 Rec. ITU-R RS. 2015-0 より抜粋

28

Rec. ITU-R RS.2105-0

TABLE 16

Characteristics of EESS (active) missions in the 94-94.1 GHz band

Parameter	CPR-L1	CPR-L2
Sensor type	Cloud profiling radar	Cloud profiling radar
Type of orbit	SSO	SSO
Altitude (km)	705	393
Inclination (degrees)	98.2	97
Ascending Node LST	13:30	10:30 ¹¹
Repeat period (days)	16	25
Antenna type	Parabolic reflector to offset cassegrain antenna	Parabolic reflector
Antenna diameter	1.85-2.5 m	2.5 m
Antenna (transmit and receive) peak gain (dBi)	63.1-65.2	65.2
Polarization	linear	LHC, RHC
Incidence angle at Earth (degrees)	0	0
Azimuth scan rate (rpm)	0	0
Antenna beam look angle (degrees)	0	0
Antenna beam azimuth angle (degrees)	0	0
Antenna elev. beamwidth (degrees)	0.12	0.095
Antenna az. beamwidth (degrees)	0.12	0.095
Beam width (degrees)	0.095-0.108	0.095
RF centre frequency (MHz)	94.050	94.050
RF bandwidth (MHz)	0.36	7
Transmit Pk pwr (W)	1 000	1 430
Transmit Ave. pwr (W)	21.31	28.8
Pulsewidth (µs)	3.33	3.3
Pulse repetition frequency (PRF) (Hz)	4 300	6 100-7 500
Chirp rate (MHz/µs)	N/A ¹²	2.1
Transmit duty cycle (%)	1.33	2.01
Minimum sensitivity (dBz)	-30 to -35	-30 to -35
Horizontal resolution	0.7-1.9 km	800 m
Vertical resolution	250-500 m	500 m
Doppler range	±10 m/s	±10 m/s
Doppler accuracy	1 m/s	1 m/s
System noise figure (dB)	7	7

¹¹ Descending.

 $^{^{12}\,}$ The sensor uses an unmodulated pulse.

付属資料 14 Rec. ITU-R P.526-14 より抜粋

空港と電波天文間の断面図から、ナイフエッジによる回折損失の際に参考にした。

4.1 Single knife-edge obstacle

In this extremely idealized case (see Figs 8a) and 8b)), all the geometrical parameters are combined together in a single dimensionless parameter normally denoted by v which may assume a variety of equivalent forms according to the geometrical parameters selected:

Rec. ITU-R P.526-14

$$v = h \sqrt{\frac{2}{\lambda} \left(\frac{1}{d_1} + \frac{1}{d_2} \right)}$$
(26)

$$\nu = \theta \sqrt{\frac{2}{\lambda \left(\frac{1}{d_1} + \frac{1}{d_2}\right)}}$$
(27)

$$v = \sqrt{\frac{2h\theta}{\lambda}}$$
 (v has the sign of h and θ) (28)

$$v = \sqrt{\frac{2 d}{\lambda} \cdot \alpha_1 \alpha_2} \quad (v \text{ has the sign of } \alpha_1 \text{ and } \alpha_2)$$
(29)

where:

16

- h: height of the top of the obstacle above the straight line joining the two ends of the path. If the height is below this line, h is negative
- d_1 and d_2 : distances of the two ends of the path from the top of the obstacle
 - d: length of the path
 - θ : angle of diffraction (rad); its sign is the same as that of h. The angle θ is assumed to be less than about 0.2 rad, or roughly 12°
- α_1 and α_2 : angles in radians between the top of the obstacle and one end as seen from the other end. α_1 and α_2 are of the sign of h in the above equations.

NOTE 1 – In equations (26) to (29) inclusive h, d, d_1 , d_2 and λ should be in self-consistent units.

Rec. ITU-R P.526-14

P.0526-08

Figure 9 gives, as a function of ν , the loss $J(\nu)$ (dB).

J(v) is given by:

$$J(v) = -20 \log \left(\frac{\sqrt{\left[1 - C(v) - S(v)\right]^2 + \left[C(v) - S(v)\right]^2}}{2} \right)$$
(30)

where C(v) and S(v) are the real and imaginary parts respectively of the complex Fresnel integral F(v) defined in § 2.7.

For v greater than -0.78 an approximate value can be obtained from the expression:

$$J(\nu) = 6.9 + 20 \log \left(\sqrt{(\nu - 0.1)^2 + 1} + \nu - 0.1 \right) \qquad \text{dB} \qquad (31)$$

P.0526-09

告示一九五号(平二五・四・二四)電波法五六条	二二・二一晩から二二・五晩まで一、六六〇・五晩から一五・四晩まで一、六六〇・五晩から一、六六八・四晩まで	一、四〇〇朏から一、四二七朏まで四 受信しようとする電波の周波数	北緯 三五度五六分四〇秒	長野県南佐久郡南牧村野辺山四六二番二号	三 設置場所	大学共同利用機関法人自然科学研究機構	二 その受信設備を設置している者の名称	電波天文業務	受信の業務の種別	の用に供する受信設備を指定した件)は、廃止する。	なお、平成十五年総務省告示第二百八十七号(電波天文業務	を指定したので、同条第三項の規定により告示する。	の規定により、次のとおり電波天文業務の用に供する受信設備	電波法(昭和二十五年法律第百三十一号)第五十六条第一項			総務省告示第百九十五号		(電波法第五十六条第一項)	電波天文業務の用に供する受信設備
五(追五二)											まで	平成二十五年三月二十五日から平成三十五年三月二十四日	六 指定の有効期間	常時	五 運用時間	一〇五・〇囁から一一六・〇囁まで	八六・〇础から九二・〇础まで	四二・五础から四三・五础まで	三一・三础から三一・五础まで	二三・六础から二四・○础まで

六(追五二)

電波天文業務の用に供する受信設備

東経 一三七度三七分四九秒	東経 一三八度一九分一六秒 長野県上田市菅平高原一二二三一三七五三北緯 三五度二五分三六秒 東経 一三八度三八分四二秒	① 山梨県南都留郡富士河口湖町富士ヶ嶺一三四七番地の二三 設置場所	国立大学法人名古屋大学二 その受信設備を設置している者の氏名又は名称電波天文業務	一 受信の業務の種別	年電波監理委員会規則第十四号)第五十条の六第三項の規定にを指定したので、同条第三項及び電波法施行規則(昭和二十五の規定により、次のとおり電波天文業務の用に供する受信設備電波法(昭和二十五年法律第百三十一号)第五十六条第一項	総務省告示第三百六十三号平成三十年十一月七日(電波法第五十六条第一項)
---------------	---	-----------------------------------	--	------------	---	-------------------------------------

北 東 緯 経

三五度四七分三四秒

七	六	五	兀		
その他参考事項	平成三十年十二月二日から平成四十年十二月一日まで指定の有効期間	常時運用時間	三二五・七五颭から三二八・六〇颭まで受信しようとする電波の周波数	北緯 三四度五〇分〇五秒東経 一三七度二二分〇九秒	四 愛知県豊川市穂ノ原三―一三

東経 一三〇度二六分二四秒	三 鹿児島県薩摩川内市入来町浦之名四〇一八番地三	北緒(二七角〇五分三一利	と拿 ここをつこう こっか	東経 一四二度一三分〇〇秒	[1] 财劳都才签房村父島学施山	二、東京部ト空京する毎年旦日	北緯 三九度〇八分〇一秒	東経 一四一度〇七分五七秒	① 岩手県奥州市水沢区星ガ丘町二番一二号	三 設置場所	大学共同利用機関法人 自然科学研究機構	二 その受信設備を設置している者の氏名又は名称	電波天文業務	一 受信の業務の種別 / 六 指	官	より告示する。 五 運	年電波監理委員会規則第十四号)第五十条の六第三項の規定に 八	を指定したので、同条第三項及び電波法施行規則(昭和二十五 四	の規定により、次のとおり電波天文業務の用に供する受信設備 二	電波法(昭和二十五年法律第百三十一号)第五十六条第一項 二	四受	義才令をえ多世下レーノチ	念殇皆与东南四百四十八子平成二十二年十二月二十八日	(電波法第五十六条第一項) 四	電波天文業務の用に供する受信設備
													〒成二十二年十二月十日から平成三十二年十二月九日まで	担定の有効期間	n時	運用時間	八五・五囁から九二・○囁まで	西二・五冊から四三・五ま碼で	三・六础から二四・○咄まで	二 ・二 础から二二・五趾まで	文信しようとする電波の周波数	北緯 二四度二四分四四秒	東経 一二四度一〇分一六秒	沖縄県石垣市字登野城嵩田二三八九番一	北緯 三一度四四分五二秒

付属資料 17 電波天文業務 総務省平成 22 年告示第 448 号

106

Ξ Л Ŧī. より告示する。 年電波監理委員会規則第十四号)第五十条の六第三項の規定に を指定したので、同条第三項及び電波法施行規則 の規定により、次のとおり電波天文業務の用に供する受信設備 電波天文業務の用に供する受信設備 電波法(昭和二十五年法律第百三十一号)第五十六条第一項 その受信設備を設置している者の氏名又は名称 受信の業務の種別 運用時間 八六・〇础から九二・〇础まで 二三・六囁から二四・○囁まで 受信しようとする電波の周波数 設置場所 電波天文業務 鹿児島県鹿児島市平川町字狐迫二一五五番地 大学共同利用機関法人 自然科学研究機構 一〇五・〇趾から一一六・〇趾まで 北緯 三一度二七分五一秒 東経 一三〇度三〇分二六秒 総務省告示第五十二号平成二十四年二月二十七日 (電波法第五十六条第一項) (昭和二十五 六 指定の有効期間 常時

総務省平成 24 年告示第 52 号

付属資料 18

電波天文業務

六の三(追四六)

告示五二号(平二四・二・二七)電波法五六条

平成二十四年二月十一日から平成三十四年二月十日まで

六 指定の有効期間 常時	五 運用時間	五 運用寺町 四 受信しようとする電波の周波数 工三・六邸から二四・○邸まで 二三・六邸から二四・○邸まで 二三・六邸から二四・○邸まで 二三・六邸から二四・○邸まで	三 設置場所 一 その受信設備を設置している者の氏名又は名称 一 受信の業務の種別	より告示する。 電波監理委員会規則第十四号)第五十条の六第三項の規定に年電波監理委員会規則第十四号)第五十条の六第三項の規定により、次のとおり電波天文業務の用に供する受信設備電波法(昭和二十五年法律第百三十一号)第五十六条第一項	総務省告示第百七十四号平成二十四年四月二十日(電波天文業務の用に供する受信設備
--------------	--------	--	---	---	---

付属資料 19 電波天文業務 総務省平成 24 年告示第 174 号

六の四 (過五二)
付属資料20 総務省 平成30年度電波の利用状況調査([19] より抜粋) システムの概要に関して多少の文言は異なるが、 §6-8-7、 §6-9-11 にも、下記§6-7-5

とほぼ同一の記述があり、電波天文業務保護の必要性を記載している。

§6-7-5 電波天文

(1) システムの概要

本システムは、天体から放射される電波を受信することにより、天体や宇宙空間の物理状態、さらには 宇宙そのものの成因など、宇宙全体を観測するためのシステムである。 遠方の天体から放射される線スペクトルは、宇宙膨張のため長い波長にずれる(赤方偏移によって、 最大7倍程度)。また微弱天体を感度よく観測するために広帯域で観測する。これらのため観測は可能な 限り広帯域で行われている。 21.2GHz-23.6GHz帯は、22.235GHzの水分子メーザースペクトル線の観測が盛んに行われている重要 な周波数帯のひとつである。国立天文台野辺山宇宙電波観測所ではこの周波数帯の観測で、巨大ブラッ クホールを検証した。また、VLBI観測も行われている。

線スペクトル:原子のエネルギー準位間の遷移によって放射または吸収されて生じる線上の光のスペクトル

VLBI(Very Long Baseline Interferometry): 超長基線電波干渉法のことで、天体からの電波を利用してアンテナの位置を計測する技術

(3) 電波天文業務の受信設備の保護

電波天文業務の受信設備は非常に小さい強度の電波を計測しているため、円滑に観測を実施するためには、無線局が発射する電波や不要発射から保護する必要がある。

このため、無線通信規則(RR)では電波天文業務に分配された周波数の保護を各主管庁に対して求 めており、これに基づいて、我が国は総務大臣の指定を受けた電波天文業務の受信設備を保護する旨 の規定を設けている(電波法第56条)。

(4) 指定を受けた電波天文業務の受信設備 今回の調査対象である3.4GHz帯を超える周波数帯域で(3)の保護指定を受けている受信設備の設置 場所及び受信周波数は次のとおりである。

設置場所(※)	受信周波数 (単位 : GHz)	(参考)告示番号			
長野県南佐久郡南牧村	$15.35 \sim 15.4$ $22.21 \sim 22.5$ $23.6 \sim 24.0$ $31.3 \sim 31.5$ $42.5 \sim 43.5$ $86.0 \sim 92.0$ $105.0 \sim 116.0$	平成25年4月24日総務省告示第195号			
岩手県奥州市	22.21~22.5	平成22年12月28日総務省告示第448号			
東京都小笠原村	23.6~24.0 42.5~43.5				
鹿児島県薩摩川内市	85.5~92.0				
沖縄県石垣市					
鹿児島県鹿児島市	23.6~24.0 86.0~92.0 105.0~116.0	平成24年2月27日総務省告示第52号			
岩手県奥州市	23.6~24.0	平成24年4月20日総務省告示第174号			

(※)告示された情報のうち、市名・村名までを記載。

付属資料21 総務省 平成30年度電波の利用状況調査([19] より抜粋)

§6-9-10 80GHz帯高速無線伝送システム

(1) システムの概要

本システムは、電気通信事業者等が、河川・鉄道・入江等の横断、島嶼・山間地域等の光ケーブルの 敷設が困難な場合の補間や応急代替に利用しており、2km程度までの伝送を想定している。 また、携帯電話等の基地局エントランスとして利用している。 高精細映像等の伝送用として使用する場合、低遅延伝送が可能である なお、使用周波数帯は80GHz帯の5GHz×2(71GHz~76GHz及び81GHz~86GHz)である。

(2) システムの構成イメージ

② 電波利用システムごとの免許人数と無線局数及び無線局数の割合

電波利用システム名	免許人数	無線局数	無線局数の割合
40GHz带画像伝送(公共業務用)	3者	143局	4.1%
40GHz帯公共・一般業務(中継系)	13者	53局	1.5%
38GHz帯FWA	1者	100局	2.9%
40GHz帯映像FPU	1者	4局	0.1%
40GHz帯駅ホーム画像伝送	11者	574局	16.5%
47GHz帯アマチュア	553者	592局	17.0%
50GHz帯簡易無線	107者	937局	26.9%
55GHz帯映像FPU	1者	3局	0.1%
60GHz電気通信業務用(無線アクセスシステム)	1者	4局	0.1%
80GHz帯高速無線伝送システム	25者	463局	13.3%
77.75GHz帯アマチュア	207者	231局	6.6%
120GHz帯映像FPU	0者	0局	0.0%
135GHz帯アマチュア	139者	160局	4.6%
249GHz帯アマチュア	12者	17局	0.5%
実験試験局(36GHz-)	18者	197局	5.7%
その他(36GHz-)	0者	0局	0.0%
120GHz帯超高精細映像伝送システム	1者	3局	0.1%
승탉	1 093者	3481局	-

*1 複数の電波利用システムを利用している免許人・無線局は、それぞれの電波利用システムで計上している。詳細は、 第2章第2節を参照のこと。

*2 0.05%未満については、0.0%と表示している。

○美味同粉(国際工用)	τı
○ 有怪回欸(国际+国)	신기

临法	売沖	着陸回数				
则其112	三日本	年間	日平均			
1	東京国際	227,631	624			
2	成田国際	128,952	354			
3	関西国際	94,833	260			
4	福岡	90,723	249			
5	那覇	81,963	225			
6	新千歳	77,706	213			
7	大阪国際	69,244	190			
8	中部国際	51,654	1 42			
9	鹿児島	34,992	96			
10	仙台	27,690	76			
11	熊本	22,153	61			
12	宮崎	21,965	61			
13	名古屋	21,711	60			
14	松山	15,738	44			
15	長崎	15,634	43			
16	神戸	14,817	41			
17	新潟	13,325	37			
18	新石垣	12,893	36			
19	八尾	12,748	35			
20	広島	12,410	34			

付属資料23 国内空港と天文台間の距離及び断面情報

92GHz から 100GHz を使用している野辺山宇宙電波観測所と、86GHz から 92GHz を使用している VERA 観測 4 局があり、それらと国内空港との距離及び断面情報について記載する。

23.1 電波天文観測所を起点とした国内空港に対する距離情報

(1) 野辺山宇宙電波観測所

図 A 1 に、野辺山宇宙電波観測所から、国内空港との距離を示した。図中にあるように、該当 する空港がどの程度にあるかで、直線距離がどの程度あるかを把握できる。表には、詳細の距離と、 併せて距離に対する自由空間損失及び大気減衰についても示した。

図A1 野辺山宇宙電波観測所と国内空港間距離

空港(from 野辺山天文台)	緯度	経度	直線距離(km)	自由空間損失(dB)	大気減衰(dB)
野辺山宇宙	35, 944448	138, 472348	0	0	0
電波観測所					
東京国際	35. 549517	139. 785472	126. 595	174. 0942444	50.638
成田国際	35. 777116	140. 382969	173.561	176.8347161	69.4244
関西国際	34. 430525	135. 231963	339.552	182.6636193	135.8208
福岡	33. 585874	130. 450823	779.275	189.8792524	311.71
那覇	26. 194672	127.646002	1493.253	195. 5280961	597.3012
新千歳	42.78602	141.679941	808.13	190. 1950609	323.252
大阪国際	34. 781943	135. 440151	304.246	181.7100062	121.6984
中部国際	34. 857858	136.805603	193. 533	177. 7807349	77.4132
鹿児島	31.803467	130. 719292	851.329	190. 6473927	340. 5316
仙台	38. 140129	140. 913879	326. 391	182. 3202621	130. 5564

熊本	32. 837377	130. 855112	780.35	189. 8912263	312.14
宮崎	31.877093	131.448669	790.496	190.0034307	316. 1984
名古屋	35. 256324	136. 92377	159.749	176. 1144909	63.8996
松山	33. 826553	132. 700707	577.432	187.2754652	230.9728
長崎	32. 917253	129.913	854.989	190.684646	341.9956
神戸	34. 632652	135. 224456	329.326	182. 3980172	131.7304
新潟	37.956305	139. 109947	230. 379	179. 2944309	92.1516
新石垣	24. 396457	124. 244999	1871.246	197. 4880446	748.4984
八尾	34. 596078	135. 598251	301.254	181.6241667	120. 5016
広島	34. 435661	132. 919671	532.606	186. 5735778	213.0424
大分	33. 479845	131. 737191	674.645	188.626948	269.858
北九州	33. 845754	131.035122	718.326	189. 1718715	287.3304
高松	34. 214153	134. 015791	449.424	185.0985849	179.7696
函館	41.770294	140.8211439	678.035	188. 6704833	271.214
高知	33. 546083	133.669408	513.924	186. 2634322	205.5696
秋田	39. 615734	140. 219085	435.539	184. 8260028	174. 2156
小松	36. 394918	136. 407557	192.375	177.7286087	76.95
宮古	24. 782771	125. 294979	1767.401	196. 9921291	706.9604
青森	40. 733797	140. 689547	565.815	187.0989353	226.326
奄美	28. 431822	129. 713134	1172.08	193. 4245755	468.832
丘珠(札幌)	43. 117547	141. 381123	834.589	190. 474889	333. 8356
帯広	42.732546	143. 218076	857.158	190. 7066515	342.8632
出雲	35. 413514	132.889648	508.74	186. 1753728	203. 496
調布	35. 67233	139. 527681	100.044	172.0499922	40.0176
岡山	34. 75678	133. 855019	439.847	184. 9114956	175.9388
花巻	39. 429292	141. 135419	452.465	185. 1571589	180.986
佐賀	33. 149668	130. 302462	811.111	190. 2270424	324.4444
釧路	43.040846	144. 192979	928.382	191. 3999672	371.3528
徳島	34. 132769	134. 606851	405.91	184. 2140675	162.364
静岡	34. 795916	138. 189805	129.989	174. 323955	51.9956
女満別	43. 880168	144. 164246	1005.971	192.0971413	402.3884
福島	37.228021	140. 427863	225.624	179. 1133924	90.2496
山形	38. 412086	140. 37149	321.6	182. 1918123	128.64
山口宇部	33. 930009	131. 278983	693.921	188. 8716416	277.5684
岡南	34. 590858	133. 933323	439.408	184. 9028248	175.7632
富山	36.648648	137. 187364	139.38	174. 9298266	55.752

米子(美保)	35. 493482	133. 239365	476.074	185. 5989486	190. 4296
旭川	43. 670501	142. 447337	922.596	191. 3456646	369.0384
松本	36. 166751	137.922647	55.33	166. 9094581	22.132
対馬	34. 284703	129. 330645	853.115	190. 6655864	341.246
福井	36. 142799	136. 223922	203.812	178.2302082	81.5248
茨城(百里)	36. 181189	140. 415605	177.024	177.0063089	70.8096
久米島	26. 363955	126. 713975	1542.066	195.8074872	616.8264
徳之島	27.835841	128. 881129	1276.035	194. 1626812	510.414
福江	32.667182	128.83333	958.306	191.6755169	383. 3224
屋久島	30. 385145	130. 659758	953.959	191.6360273	381.5836
鳥取	35. 530101	134. 165294	392.298	183.917797	156.9192
南紀白浜	33. 662534	135. 364255	380.71	183.6573607	152.284
大島	34. 781532	139. 360019	152.169	175. 6922735	60.8676
岩国	34. 146344	132.247268	601.839	187. 6350529	240. 7356
庄内	38. 812362	139. 787039	338.913	182.6472558	135.5652
八丈島	33. 115152	139. 786104	336.224	182. 5780616	134. 4896
沖永良部	27. 430901	128. 705102	1320.894	194. 4627884	528.3576
種子島	30. 605345	130. 991057	914.014	191.2644969	365.6056
但馬	35. 512871	134. 787023	336.819	182. 5934521	134.7276
喜界	28. 321694	129. 928165	1167.057	193. 3872718	466.8228
三沢	40. 703205	141. 369154	585.733	187. 3994404	234. 2932
天草	32. 482195	130. 159284	856.515	190. 7001342	342.606
中標津	43. 577526	144. 960024	1012.807	192. 1559657	405.1228
能登	37.29323	136.961666	201.645	178. 1373306	80.658
与論	27.043781	128. 401819	1372.893	194. 7981626	549.1572
与那国	24. 467324	122.979483	1955.924	197.8724662	782.3696
稚内	45. 404522	141.802501	1087.325	192. 7726188	434.93
三宅島	34. 071994	139. 559758	230. 222	179. 2885077	92.0888
新島	34. 369538	139. 268635	189.191	177. 5836458	75.6764
神津島	34. 189411	139. 133461	203.83	178. 2309488	81.532
石見	34. 676412	131. 78989	623.643	187.9441664	249.4572
隠岐	36. 178421	133. 323571	464.542	185. 3859624	185.8168
壱岐	33. 748686	129. 785437	830.641	190. 4337032	332.2564
大館能代	40. 19175	140. 37156	499.994	186.024749	199.9976
南大東	25.846804	131. 263481	1313.637	194. 4149366	525.4548
多良間	24. 653418	124. 675463	1820.58	197.2496224	728.232

大分県央	33. 026302	131. 505465	716.902	189. 1546367	286.7608
利尻	45.24188	141. 187328	1057.533	192. 53131	423.0132
紋別	44. 303823	143. 404055	1018.451	192. 2042349	407.3804
北大東	25.944715	131. 326787	1301.065	194. 3314091	520. 426
奥尻	42.071623	139. 43268	685.27	188. 7626748	274. 108
下地島	24. 825582	125. 145344	1774.174	197. 0253514	709.6696
粟国	26. 592577	127.240358	1487.622	195. 49528	595.0488
小値賀	33. 190706	129.090335	913.055	191. 2553728	365. 222
佐渡	38.060525	138. 414155	234.887	179. 4627431	93.9548
上五島	33. 013606	129. 192354	911.892	191.2443017	364.7568
慶良間	26. 167442	127. 293201	1518.826	195. 6755885	607.5304
波照間	24. 059835	123. 805629	1929.01	197. 7521163	771.604
伊江島	26. 722701	127. 786999	1440.167	195. 2136857	576.0668

(2) VERA 水沢観測局

図 A2 に、VERA 水沢観測局から、国内空港との距離を示した。図中にあるように、該当する空港 がどの程度にあるかで、直線距離がどの程度あるかを把握できる。詳細の距離については表に示 しており、併せて距離に対する自由空間損失及び大気減衰についても示した。

図 A2 VERA 水沢観測局と国内空港間距離

空港(from VERA 水沢局)	緯度	経度	直線距離(km)	自由空間損失(dB)	大気減衰(dB)
VERA 水沢観測局	39. 133543	141. 132548	0	0	0
東京国際	35. 549517	139. 785472	415.282	184. 4122869	166. 1128
成田国際	35. 777116	140. 382969	378.371	183. 6037817	151.3484
関西国際	34. 430525	135. 231963	741.165	189. 4437227	296.466

福岡	33. 585874	130. 450823	1138.101	193. 1690408	455.2404
那覇	26. 194672	127.646002	1908.433	197.658963	763.3732
新千歳	42.78602	141.679941	408.223	184. 2633742	163.2892
大阪国際	34. 781943	135. 440151	699.875	188. 9458343	279.95
中部国際	34. 857858	136.805603	610.985	187.7660357	244. 394
鹿児島	31.803467	130. 719292	1245.317	193. 9510242	498.1268
仙台	38. 140129	140. 913879	111.911	173. 0228815	44.7644
熊本	32. 837377	130. 855112	1159.325	193. 3295301	463.73
宮崎	31.877093	131. 448669	1190.309	193. 558619	476.1236
名古屋	35. 256324	136. 92377	569.754	187. 1591724	227.9016
松山	33. 826553	132. 700707	957.247	191.665905	382.8988
長崎	32. 917253	129.913	1222.586	193. 791013	489.0344
神戸	34. 632652	135. 224456	725.552	189. 2587956	290. 2208
新潟	37.956305	139. 109947	219.462	178.8726117	87.7848
新石垣	24. 396457	124. 244999	2279.066	199. 2005627	911.6264
八尾	34. 596078	135. 598251	704.76	189.0062496	281.904
広島	34. 435661	132.919671	898.943	191. 1200734	359.5772
大分	33. 479845	131. 737191	1050.5	192. 4733458	420.2
北九州	33. 845754	131.035122	1077.311	192.6922466	430. 9244
高松	34. 214153	134. 015791	837.79	190. 5081291	335.116
函館	41.770294	140. 8211439	293.98	181.4117806	117.592
高知	33. 546083	133. 669408	912.231	191.2475212	364.8924
秋田	39. 615734	140. 219085	95.189	171.6171813	38.0756
小松	36. 394918	136. 407557	515.362	186. 2876726	206.1448
宮古	24. 782771	125. 294979	2178.185	198. 8073199	871.274
青森	40. 733797	140. 689547	181.669	177.2310643	72.6676
奄美	28. 431822	129. 713134	1587.102	196. 0575214	634.8408
丘珠(札幌)	43. 117547	141. 381123	442.943	184. 9723816	177.1772
帯広	42.732546	143. 218076	436.532	184. 8457522	174.6128
出雲	35. 413514	132.889648	839.094	190. 521637	335.6376
調布	35.67233	139. 527681	409.559	184. 2917544	163.8236
岡山	34. 75678	133. 855019	809.568	190. 2104946	323.8272
花巻	39. 429292	141. 135419	32.837	162.3728271	13.1348
佐賀	33. 149668	130. 302462	1178.03	193. 4685517	471.212
釧路	43.040846	144. 192979	504.313	186. 0994295	201.7252
徳島	34. 132769	134. 606851	804. 92	190. 1604791	321.968

静岡	34. 795916	138. 189805	548.006	186.821132	219. 2024
女満別	43. 880168	144. 164246	584.681	187. 3838044	233. 8724
福島	37. 228021	140. 427863	220.341	178.9074139	88.1364
山形	38. 412086	140. 37149	103.872	172. 3754432	41.5488
山口宇部	33. 930009	131.278983	1053.578	192. 4987585	421.4312
岡南	34. 590858	133. 933323	815.776	190. 2768432	326.3104
富山	36. 648648	137. 187364	443.201	184. 9774394	177.2804
米子(美保)	35. 493482	133. 239365	807.494	190. 1882108	322.9976
旭川	43. 670501	142. 447337	515.716	186. 2936435	206.2864
松本	36. 166751	137.922647	434.292	184. 8011099	173. 7168
対馬	34. 284703	129. 330645	1182.507	193. 5014993	473.0028
福井	36. 142799	136. 223922	545.645	186. 7836283	218. 258
茨城(百里)	36. 181189	140. 415605	333. 723	182. 5131476	133. 4892
久米島	26. 363955	126. 713975	1952.343	197.8565471	780.9372
徳之島	27.835841	128.881129	1689.803	196. 6021462	675.9212
福江	32.667182	128.83333	1320.091	194. 4575026	528.0364
屋久島	30. 385145	130. 659758	1362.378	194. 7313771	544.9512
鳥取	35. 530101	134. 165294	735.308	189.3748105	294. 1232
南紀白浜	33. 662534	135. 364255	797.32	190.0780781	318.928
大島	34. 781532	139. 360019	508.093	186. 164289	203.2372
岩国	34. 146344	132.247268	967.563	191.7590097	387.0252
庄内	38. 812362	139. 787039	121.932	173. 7677799	48.7728
八丈島	33. 115152	139. 786104	678.703	188. 6790204	271.4812
沖永良部	27. 430901	128. 705102	1735.678	196.8348078	694.2712
種子島	30. 605345	130. 991057	1322.988	194. 4765435	529.1952
但馬	35. 512871	134. 787023	690.935	188.8341705	276.374
喜界	28. 321694	129. 928165	1583.633	196. 0385155	633. 4532
三沢	40. 703205	141. 369154	175.454	176.9286909	70.1816
天草	32. 482195	130. 159284	1234.681	193. 8765203	493.8724
中標津	43. 577526	144. 960024	588.214	187. 4361325	235.2856
能登	37.29323	136. 961666	418.449	184. 4782849	167.3796
与論	27.043781	128. 401819	1787.961	197.0925855	715. 1844
与那国	24. 467324	122. 979483	2357.559	199. 4946761	943.0236
稚内	45. 404522	141.802501	698.753	188. 9318984	279.5012
三宅島	34. 071994	139. 559758	579.012	187.299176	231.6048
新島	34. 369538	139. 268635	554.215	186. 9189902	221.686

神津島	34. 189411	139. 133461	576.982	187.268671	230. 7928
石見	34. 676412	131. 78989	967.712	191. 7603474	387.0848
隠岐	36. 178421	133. 323571	762.783	189. 6934454	305.1132
壱岐	33. 748686	129. 785437	1178.515	193. 472127	471.406
大館能代	40. 19175	140. 37156	134.424	174. 6149715	53.7696
南大東	25.846804	131.263481	1738.47	196.8487687	695.388
多良間	24. 653418	124. 675463	2229.194	199.008382	891.6776
大分県央	33. 026302	131. 505465	1099.408	192.8686048	439.7632
利尻	45.24188	141. 187328	678.515	188. 6766138	271.406
紋別	44. 303823	143. 404055	604.495	187.673279	241.798
北大東	25. 944715	131. 326787	1725.905	196. 7857624	690.362
奥尻	42.071623	139. 43268	356.558	183. 0880289	142.6232
下地島	24. 825582	125. 145344	2184.13	198. 8309943	873.652
粟国	26. 592577	127.240358	1899.321	197.6173921	759.7284
小値賀	33. 190706	129.090335	1266.75	194. 0992429	506.7
佐渡	38.060525	138. 414155	265.063	180. 5124071	106.0252
上五島	33. 013606	129. 192354	1270.306	194. 1235922	508.1224
慶良間	26. 167442	127. 293201	1932.624	197.768372	773.0496
波照間	24. 059835	123.805629	2336.348	199. 4161753	934. 5392
伊江島	26. 722701	127. 786999	1853.821	197. 4067806	741.5284

(3) VERA 小笠原観測局

図 A3 に、VERA 小笠原観測局から、国内空港との距離を示した。図中にあるように、該当する空港 がどの程度にあるかで、直線距離がどの程度あるかを把握できる。表には、詳細の距離と、併せ て距離に対する自由空間損失及び大気減衰についても示した。

図 A3 VERA 小笠原観測局と国内空港間距離

空港(from VERA 小笠原局)	緯度	経度	直線距離(km)	自由空間損失(dB)	大気減衰(dB)
VERA 小笠原観測局	27.091796	142. 216549	0	0	0
東京国際	35. 549517	139. 785472	965.773	191.7429261	386. 3092
成田国際	35. 777116	140. 382969	978.594	191.8578378	391.4376
関西国際	34. 430525	135. 231963	1052.488	192. 4897679	420.9952
福岡	33. 585874	130. 450823	1339.524	194. 5844347	535.8096
那覇	26. 194672	127.646002	1453.326	195. 2926856	581.3304
新千歳	42.78602	141.679941	1741.822	196. 8655001	696.7288
大阪国際	34. 781943	135. 440151	1069.987	192. 6329948	427.9948
中部国際	34. 857858	136. 805603	1003.821	192.0785504	401.5284
鹿児島	31.803467	130. 719292	1230.668	193. 8482484	492.2672
仙台	38.140129	140. 913879	1231.29	193. 8526318	492.516
熊本	32. 837377	130. 855112	1266.968	194. 1007451	506.7872
宮崎	31.877093	131.448669	1170.4	193. 4121548	468.16
名古屋	35. 256324	136. 92377	1035.89	192.3516976	414.356
松山	33. 826553	132. 700707	1179.057	193. 4761208	471.6228
長崎	32.917253	129.913	1349.955	194. 6518106	539.982
神戸	34. 632652	135. 224456	1069.897	192.6322642	427.9588

新潟	37.956305	139. 109947	1239.463	193. 9100961	495. 7852
新石垣	24. 396457	124. 244999	1826.047	197.2758081	730. 4188
八尾	34. 596078	135. 598251	1044.852	192. 4265204	417.9408
広島	34. 435661	132. 919671	1205.168	193. 6663804	482.0672
大分	33. 479845	131. 737191	1230.904	193. 8499084	492.3616
北九州	33. 845754	131.035122	1307.626	194. 3750957	523.0504
高松	34. 214153	134. 015791	1113.296	192.9776407	445. 3184
函館	41. 770294	140. 8211439	1633.301	196. 3067493	653. 3204
高知	33. 546083	133. 669408	1089.005	192. 7860925	435.602
秋田	39. 615734	140. 219085	1401.336	194. 9762705	560. 5344
小松	36. 394918	136. 407557	1168.589	193. 3986607	467. 4356
宮古	24. 782771	125. 294979	1712.874	196. 7201458	685.1496
青森	40. 733797	140. 689547	1519.711	195. 6806459	607.8844
奄美	28. 431822	129. 713134	1240.886	193. 9200853	496. 3544
丘珠(札幌)	43. 117547	141. 381123	1779. 579	197.0517702	711.8316
帯広	42.732546	143. 218076	1737.588	196. 8443619	695.0352
出雲	35. 413514	132.889648	1279.517	194. 186346	511.8068
調布	35. 67233	139. 527681	985.029	191.9144059	394.0116
岡山	34. 75678	133. 855019	1165.593	193.376366	466. 2372
花巻	39. 429292	141. 135419	1372.032	194. 7927101	548.8128
佐賀	33. 149668	130. 302462	1328.744	194. 5142511	531.4976
釧路	43.040846	144. 192979	1778.468	197.0468021	711.3872
徳島	34. 132769	134. 606851	1067.791	192. 6151641	427.1164
静岡	34. 795916	138. 189805	936.564	191. 4773955	374. 6256
女満別	43.880168	144. 164246	1870.923	197.486543	748.3692
福島	37. 228021	140. 427863	1136.53	193. 1570559	454.612
山形	38. 412086	140. 37149	1267.196	194. 1023019	506.8784
山口宇部	33. 930009	131. 278983	1293.607	194. 2814719	517.4428
岡南	34. 590858	133. 933323	1147.588	193. 2411448	459.0352
富山	36.648648	137. 187364	1161.165	193. 3433035	464.466
米子(美保)	35. 493482	133. 239365	1262.999	194. 0734849	505. 1996
旭川	43.670501	142. 447337	1839.529	197. 3395586	735. 8116
松本	36. 166751	137.922647	1085.227	192. 7558654	434.0908
対馬	34. 284703	129. 330645	1467.808	195. 3788098	587.1232
福井	36. 142799	136. 223922	1152.808	193. 2805644	461.1232
茨城(百里)	36. 181189	140. 415605	1022.159	192. 2360691	408.8636

久米島	26. 363955	126. 713975	1543.529	195. 8157206	617.4116
徳之島	27.835841	128.881129	1320.057	194. 4572785	528.0228
福江	32.667182	128. 83333	1431.408	195. 1606936	572.5632
屋久島	30. 385145	130. 659758	1185.75	193. 5255547	474.3
鳥取	35. 530101	134. 165294	1208.409	193. 6897038	483. 3636
南紀白浜	33. 662534	135. 364255	981.487	191.883118	392. 5948
大島	34. 781532	139. 360019	895.061	191.0824787	358.0244
岩国	34. 146344	132.247268	1233.851	193. 8706791	493. 5404
庄内	38. 812362	139. 787039	1319.417	194. 4530663	527.7668
八丈島	33. 115152	139. 786104	707.541	189. 0404781	283.0164
沖永良部	27. 430901	128. 705102	1337.839	194. 5736758	535. 1356
種子島	30. 605345	130. 991057	1161.861	193. 3502566	464. 7444
但馬	35. 512871	134. 787023	1170.457	193. 4125346	468. 1828
喜界	28. 321694	129. 928165	1219.059	193. 7659193	487.6236
三沢	40. 703205	141. 369154	1511.824	195. 6354495	604. 7296
天草	32. 482195	130. 159284	1308.806	194. 3829306	523. 5224
中標津	43. 577526	144. 960024	1845.712	197.3687037	738. 2848
能登	37.29323	136. 961666	1234.42	193. 8746845	493. 768
与論	27.043781	128. 401819	1369.678	194. 777876	547.8712
与那国	24. 467324	122. 979483	1949.345	197.8432503	779. 738
稚内	45. 404522	141.802501	2032.434	198. 2057537	812.9736
三宅島	34. 071994	139. 559758	814.624	190. 2647728	325.8496
新島	34. 369538	139. 268635	854.689	190. 6815872	341.8756
神津島	34. 189411	139. 133461	840.397	190. 536536	336. 1588
石見	34. 676412	131. 78989	1302.824	194. 3431398	521.1296
隠岐	36. 178421	133. 323571	1312.73	194. 408933	525.092
壱岐	33. 748686	129. 785437	1402.278	194. 9821072	560. 9112
大館能代	40. 19175	140. 37156	1462.963	195. 3500917	585. 1852
南大東	25.846804	131. 263481	1100.508	192.8776526	440.2032
多良間	24. 653418	124. 675463	1777.171	197.0400091	710.8684
大分県央	33. 026302	131. 505465	1223.472	193. 7973175	489.3888
利尻	45. 24188	141. 187328	2016.106	198. 1356919	806. 4424
紋別	44. 303823	143. 404055	1912.744	197.6785617	765.0976
北大東	25.944715	131. 326787	1092.493	192. 8139728	436.9972
奥尻	42.071623	139. 43268	1681.035	196. 5569598	672.414
下地島	24. 825582	125. 145344	1726.663	196. 7896178	690.6652

粟国	26. 592577	127.240358	1488.686	195. 5014868	595.4744
小値賀	33. 190706	129.090335	1432.404	195. 1667353	572.9616
佐渡	38.060525	138. 414155	1267.377	194. 1035412	506.9508
上五島	33. 013606	129. 192354	1415.599	195.0642298	566.2396
慶良間	26. 167442	127.293201	1488.69	195. 5015103	595.476
波照間	24. 059835	123. 805629	1878.242	197. 5205121	751.2968
伊江島	26. 722701	127. 786999	1433.18	195. 1714398	573.272

(4) VERA 入来観測局

図 A4 に、VERA 入来観測局からの国内空港との距離を示した。図中にあるように、該当する空港が どの程度にあるかで、直線距離がどの程度あるかを把握できる。表には、詳細の距離 と、併せ て距離に対する自由空間損失及び大気減衰についても示した。

図 A4 VERA 入来観測局と国内空港間距離

空港(from VERA 入来局)	緯度	経度	直線距離(km)	自由空間損失(dB)	大気減衰(dB)
VERA 入来観測局	31.747879	130. 439906	0	0	0
東京国際	35. 549517	139. 785472	963.435	191. 7218743	385.374
成田国際	35. 777116	140. 382969	1023.102	192. 2438044	409.2408
関西国際	34. 430525	135.231963	537.168	186. 6476316	214.8672

福岡	33. 585874	130. 450823	203. 838	178.2311565	81. 5352
那覇	26. 194672	127.646002	672.957	188.6051736	269. 1828
新千歳	42.78602	141.679941	1576.428	195.9989079	630. 5712
大阪国際	34. 781943	135. 440151	574. 573	187.2323325	229.8292
中部国際	34. 857858	136.805603	685.677	188. 7678189	274.2708
鹿児島	31.803467	130. 719292	27.167	160.7559601	10.8668
仙台	38. 140129	140.913879	1189.61	193. 5535176	475.844
熊本	32. 837377	130.855112	126.989	174. 120819	50. 7956
宮崎	31.877093	131.448669	96. 586	171.7438368	38.6344
名古屋	35. 256324	136. 92377	716.957	189. 1552891	286. 7828
松山	33. 826553	132.700707	313.019	181.956851	125. 2076
長崎	32.917253	129.913	138.838	174. 8956547	55. 5352
神戸	34. 632652	135. 224456	548.912	186. 8354831	219. 5648
新潟	37.956305	139. 109947	1049.355	192.4638745	419.742
新石垣	24. 396457	124. 244999	1016.618	192. 188841	406.6472
八尾	34. 596078	135. 598251	575.419	187.2451122	230. 1676
広島	34. 435661	132.919671	377.397	183. 5814111	150.9588
大分	33. 479845	131.737191	227.407	179. 1815245	90.9628
北九州	33. 845754	131.035122	239. 237	179.6220126	95.6948
高松	34. 214153	134.015791	431.839	184.7518688	172. 7356
函館	41.770294	140. 8211439	1445.537	195.2460095	578.2148
高知	33. 546083	133.669408	362.699	183.2363609	145.0796
秋田	39.615734	140. 219085	1241.755	193. 9261438	496.702
小松	36. 394918	136. 407557	754.102	189. 5940286	301.6408
宮古	24. 782771	125. 294979	921.981	191.3402599	368. 7924
青森	40.733797	140. 689547	1355.633	194. 6882688	542.2532
奄美	28. 431822	129. 713134	374.21	183. 5078167	149.684
丘珠(札幌)	43. 117547	141. 381123	1587.601	196.0602524	635.0404
帯広	42.732546	143. 218076	1661.026	196. 4529551	664.4104
出雲	35. 413514	132.889648	465.809	185. 4095878	186. 3236
調布	35. 67233	139. 527681	947.644	191. 5783303	379.0576
岡山	34. 75678	133.855019	461.069	185. 3207502	184. 4276
花巻	39. 429292	141. 135419	1288.975	194. 2503154	515.59
佐賀	33. 149668	130. 302462	155. 987	175.9072429	62. 3948
釧路	43.040846	144. 192979	1743.021	196.8714775	697.2084

徳島	34. 132769	134.606851	470.887	185. 5037642	188. 3548
静岡	34. 795916	138. 189805	796.921	190.0737334	318. 7684
女満別	43.880168	144. 164246	1804.378	197.1719755	721.7512
福島	37. 228021	140. 427863	1099.547	192.8697072	439.8188
山形	38. 412086	140. 37149	1167.918	193. 3936725	467.1672
山口宇部	33. 930009	131.278983	254. 429	180. 1567755	101.7716
岡南	34. 590858	133. 933323	453.361	185. 1743138	181. 3444
富山	36. 648648	137. 187364	825.582	190. 3806307	330. 2328
米子(美保)	35. 493482	133. 239365	489.912	185.8477912	195.9648
旭川	43.670501	142.447337	1690.956	196.6080718	676.3824
松本	36. 166751	137.922647	847.258	190.6058527	338.9032
対馬	34. 284703	129. 330645	299.822	181. 582706	119.9288
福井	36. 142799	136. 223922	723.287	189.2316401	289. 3148
茨城(百里)	36. 181189	140. 415605	1044.132	192. 4205338	417.6528
久米島	26. 363955	126. 713975	698.254	188.9257506	279. 3016
徳之島	27.835841	128.881129	459.065	185. 2829141	183. 626
福江	32.667182	128. 83333	182. 579	177.2745466	73.0316
屋久島	30. 385145	130. 659758	152. 533	175.7127477	61.0132
鳥取	35. 530101	134. 165294	543.442	186.7484926	217.3768
南紀白浜	33. 662534	135. 364255	508.127	186. 164875	203. 2508
大島	34. 781532	139. 360019	896. 196	191.0934862	358. 4784
岩国	34. 146344	132.247268	315.136	182.0153972	126.0544
庄内	38. 812362	139. 787039	1155.241	193. 2988774	462.0964
八丈島	33. 115152	139. 786104	891.65	191.0501913	356.66
沖永良部	27. 430901	128.705102	507.15	186.1486188	202.86
種子島	30. 605345	130. 991057	137.141	174. 7897445	54.8564
但馬	35. 512871	134. 787023	580. 441	187.3205927	232.1764
喜界	28. 321694	129.928165	382.992	183. 7093099	153. 1968
三沢	40. 703205	141. 369154	1395.282	194. 9386651	558. 1128
天草	32. 482195	130. 159284	85.627	170. 6977766	34. 2508
中標津	43. 577526	144.960024	1829.116	197.29025	731.6464
能登	37. 29323	136.961666	858.017	190. 715345	343. 2068
与論	27.043781	128. 401819	557.637	186.9724601	223.0548
与那国	24. 467324	122.979483	1089.457	192.7897186	435. 7828
稚内	45. 404522	141.802501	1806.616	197.1827421	722.6464

三宅島	34. 071994	139. 559758	890.848	191.0414983	356. 3392
新島	34. 369538	139.268635	873.903	190.8746908	349. 5612
神津島	34. 189411	139. 133461	856.296	190.6979061	342. 5184
石見	34.676412	131. 78989	348.32	182.885002	139. 328
隠岐	36. 178421	133. 323571	558.983	186. 9933999	223. 5932
壱岐	33. 748686	129. 785437	230. 204	179.2877042	92.0816
大館能代	40. 19175	140. 37156	1294. 548	194. 2877886	517.8192
南大東	25.846804	131.263481	658.955	188. 4225424	263. 582
多良間	24. 653418	124.675463	968.316	191.7658843	387. 3264
大分県央	33. 026302	131.505465	173.636	176.8382672	69.4544
利尻	45.24188	141. 187328	1763. 529	196.9730772	705.4116
紋別	44. 303823	143. 404055	1794.76	197.1255527	717.904
北大東	25.944715	131.326787	648.972	188.2899466	259. 5888
奥尻	42.071623	139. 43268	1396.32	194. 9451244	558.528
下地島	24. 825582	125. 145344	926.102	191.3786025	370. 4408
粟国	26. 592577	127.240358	650.574	188. 3113615	260. 2296
小値賀	33. 190706	129.090335	204.2	178.2468815	81.68
佐渡	38.060525	138. 414155	1009.949	192.1314147	403.9796
上五島	33. 013606	129. 192354	182.975	177.2970681	73.19
慶良間	26. 167442	127.293201	690.283	188.8265106	276. 1132
波照間	24. 059835	123.805629	1072.938	192.6570185	429.1752
伊江島	26. 722701	127.786999	613.731	187.8049887	245. 4924

(5) VERA石垣島観測局

図 A5 に、VERA 石垣島観測局からの国内空港との距離を示した。図中にあるように、該当する空港がどの程度にあるかで、直線距離がどの程度あるかを把握できる。表には、詳細の距離と、併せて距離に対する自由空間損失及び大気減衰についても示した。

図 A5 VERA 石垣島局と国内空港間距離

空港(from VERA 石垣島局)	緯度	経度	直線距離(km)	自由空間損失(dB)	大気減衰(dB)
VERA 石垣島観測局	24. 41219	124. 170904	0	0	0
東京国際	35. 549517	139. 785472	1943.476	197.8170083	777. 3904
成田国際	35. 777116	140. 382969	2002.307	198.076038	800.9228
関西国際	34. 430525	135. 231963	1542.297	195. 8087849	616.9188
福岡	33. 585874	130. 450823	1186.027	193. 5273162	474. 4108
那覇	26. 194672	127.646002	401.78	184. 125191	160. 712
新千歳	42.78602	141. 679941	2595.22	200. 3289083	1038.088
大阪国際	34. 781943	135. 440151	1582.935	196. 0346863	633.174
中部国際	34. 857858	136. 805603	1681.669	196. 560235	672.6676
鹿児島	31.803467	130. 719292	1041.076	192. 3951625	416. 4304
仙台	38. 140129	140. 913879	2197.327	198. 8833185	878.9308
熊本	32. 837377	130. 855112	1139.117	193. 1768284	455.6468
宮崎	31.877093	131. 448669	1092.685	192. 8153243	437.074
名古屋	35. 256324	136. 92377	1718.579	196. 7488147	687.4316

松山	33. 826553	132. 700707	1332.19	194. 536748	532.876
長崎	32. 917253	129.913	1096.554	192.8460251	438.6216
神戸	34. 632652	135. 224456	1557.21	195. 8923683	622.884
新潟	37.956305	139. 109947	2063.944	198. 3393829	825.5776
新石垣	24. 396457	124. 244999	7.711	149. 7879838	3. 0844
八尾	34. 596078	135. 598251	1579.446	196. 0155203	631.7784
広島	34. 435661	132. 919671	1396.864	194. 9485089	558.7456
大分	33. 479845	131. 737191	1245.717	193. 9538125	498.2868
北九州	33.845754	131.035122	1239.944	193. 9134661	495.9776
高松	34. 214153	134. 015791	1445.74	195. 2472307	578. 296
函館	41.770294	140. 8211439	2464.775	199. 8809703	985.91
高知	33. 546083	133. 669408	1370.355	194. 7820864	548. 142
秋田	39. 615734	140. 219085	2259.984	199. 127532	903. 9936
小松	36. 394918	136. 407557	1770. 795	197.0087904	708. 318
宮古	24. 782771	125. 294979	121.017	173. 7024048	48.4068
青森	40. 733797	140. 689547	2375.084	199. 5590043	950.0336
奄美	28. 431822	129. 713134	709.75	189.0675327	283.9
丘珠(札幌)	43. 117547	141. 381123	2605.308	200. 3626061	1042.1232
帯広	42.732546	143. 218076	2680.569	200. 6099655	1072.2276
出雲	35. 413514	132.889648	1480.362	195. 4527832	592.1448
調布	35.67233	139. 527681	1932.414	197.7674282	772.9656
岡山	34. 75678	133. 855019	1479.847	195. 4497616	591.9388
花巻	39. 429292	141. 135419	2304.288	199. 2961599	921.7152
佐賀	33. 149668	130. 302462	1137.915	193. 1676211	455. 166
釧路	43.040846	144. 192979	2762.379	200. 87109	1104.9516
徳島	34. 132769	134. 606851	1477.831	195. 4379201	591.1324
静岡	34. 795916	138. 189805	1776.7	197. 0377139	710.68
女満別	43.880168	144. 164246	2823.872	201.0623248	1129.5488
福島	37. 228021	140. 427863	2100.775	198. 4930169	840.31
山形	38. 412086	140. 37149	2180.226	198.815455	872.0904
山口宇部	33. 930009	131. 278983	1260.465	194. 0560405	504. 186
岡南	34. 590858	133. 933323	1471.017	195. 3977785	588.4068
富山	36. 648648	137. 187364	1840.33	197. 3433388	736. 132
米子(美保)	35. 493482	133. 239365	1506.677	195. 6058278	602.6708
旭川	43. 670501	142. 447337	2709.272	200. 702477	1083.7088
松本	36. 166751	137.922647	1853.042	197. 4031514	741.2168

対馬	34. 284703	129. 330645	1203.031	193. 6509619	481.2124
福井	36. 142799	136. 223922	1739.326	196. 8530444	695.7304
茨城 (百里)	36. 181189	140. 415605	2030. 437	198. 1972151	812.1748
久米島	26. 363955	126. 713975	335.002	182. 5463728	134.0008
徳之島	27.835841	128.881129	604.687	187. 6760373	241.8748
福江	32.667182	128.83333	1022.031	192. 2347135	408.8124
屋久島	30. 385145	130. 659758	921.5	191. 3353319	368.6
鳥取	35. 530101	134. 165294	1563.006	195. 9246376	625.2024
南紀白浜	33. 662534	135. 364255	1494.674	195. 536359	597.8696
大島	34. 781532	139. 360019	1863.186	197. 4505489	745.2744
岩国	34. 146344	132. 247268	1333.023	194. 5421775	533. 2092
庄内	38.812362	139. 787039	2171.795	198. 7818012	868. 718
八丈島	33. 115152	139. 786104	1801.123	197. 1562954	720. 4492
沖永良部	27. 430901	128. 705102	563.992	187.0708845	225. 5968
種子島	30. 605345	130. 991057	961.329	191. 7028708	384. 5316
但馬	35. 512871	134. 787023	1599.033	196. 1225751	639.6132
喜界	28. 321694	129.928165	719.376	189. 1845436	287.7504
三沢	40. 703205	141. 369154	2414.1	199. 7005298	965.64
天草	32. 482195	130. 159284	1069.039	192. 6252998	427.6156
中標津	43. 577526	144. 960024	2848.507	201. 1377705	1139.4028
能登	37.29323	136. 961666	1876. 585	197. 5127898	750. 634
与論	27.043781	128. 401819	514.956	186. 2808279	205. 9824
与那国	24. 467324	122. 979483	120.966	173. 6986921	48.3864
稚内	45. 404522	141.802501	2818.087	201.0445126	1127.2348
三宅島	34. 071994	139. 559758	1835.967	197. 3227221	734. 3868
新島	34. 369538	139. 268635	1830.953	197. 2989686	732. 3812
神津島	34. 189411	139. 133461	1809.64	197. 1972685	723. 856
石見	34. 676412	131. 78989	1355.262	194. 6858899	542.1048
隠岐	36. 178421	133. 323571	1571.864	195. 9737241	628.7456
壱岐	33. 748686	129. 785437	1169.784	193. 4075383	467.9136
大館能代	40. 19175	140. 37156	2313.696	199. 3315506	925. 4784
南大東	25.846804	131.263481	732.571	189. 3424243	293.0284
多良間	24. 653418	124. 675463	57.687	167. 2669926	23.0748
大分県央	33. 026302	131. 505465	1192.894	193. 5774649	477.1576
利尻	45.24188	141. 187328	2773.354	200. 9055308	1109.3416
紋別	44. 303823	143. 404055	2813.233	201. 0295387	1125.2932

北大東	25. 944715	131. 326787	740.931	189. 4409811	296.3724
奥尻	42.071623	139. 43268	2412.233	199. 6938098	964.8932
下地島	24. 825582	125. 145344	108.775	172.7760085	43.51
粟国	26. 592577	127.240358	391.852	183.9078674	156.7408
小値賀	33. 190706	129.090335	1084.624	192.7510089	433.8496
佐渡	38.060525	138. 414155	2027.386	198. 1841535	810.9544
上五島	33.013606	129. 192354	1071.742	192.6472369	428.6968
慶良間	26. 167442	127. 293201	369.688	183. 4021493	147.8752
波照間	24. 059835	123. 805629	53.854	166. 6697863	21.5416
伊江島	26. 722701	127. 786999	444. 409	185. 0011159	177.7636

23.2 国内空港を起点とした電波天文観測所に対する距離及び断面情報

上述の緯度、経度情報を用いて、国土地理院のホームページから断面情報を入手し、空港と天文台 間に障害物としての山等がある場合には、ナイフエッジによる回折損失があるため、既に 24.1 に述 べた自由空間損失、大気損失に加え、回折損失を算出し、参考値として損失合計値を算出した。

(1) ナイフエッジによる回折損失の算出方法と参考例

以下に、ITU-R P.526-14 を参考にした回折損失の算出方法を図 A6 に示す。start と stop は、回折損失を算出するときの、各々スタート地点とストップ地点である。start と stopの間 に、図に示すような山があった場合、最も高い箇所を回折ポイント obs としておく。ここで、start と stop を結んだ直線の傾きを slope_a とし、それと直交する直線の傾きを slope_b とし、 slope_b が obs を通過するような直線において、start から上方向に延長した直線との交点を intercept y としておき、slope_b が obs を通過する直線において逆に延長し slope_a との交点を diffraction base point とし、obs と diffraction base point の距離を H、start と diffraction base point との距離を D1、diffraction base point と stop との距離を D2 とする。これらのパラ メータから、factor v を計算、回折損失 Gdiff(dB)を得る。

図A6 ナイフエッジによる回折損失算出方法

例として、東京国際空港と、野辺山宇宙電波観測所間の結果を表 A1 に示す。算出した D1(m)、
 D2(m)、H(m)を用いて、factor v を計算し、回折損失 Gdiff(dB)=61.16dB の結果を得た。
 表 A1 東京国際空港〜野辺山宇宙電波観測所間の回折損失

(1) 空港FODレーダーの中心周波数		
freq (GHz)	96.00	
λ (m)	0.00	

 (2) スタート及びストップ地点、回折地点

 距離
 高さ

	上して四日	回り	
start(m)	0.00	5.37	
obs(m)	113470.00	2310.9	水平方向での回折地点座標
stop(m)	126595.00	1348.2	

(3) 自由空間損失	
------------	--

損失 (dB)	174.09			
(4) ナイフエッジによる回折損失				
slope_a	0.01			
slope_b	-94. 27			
intecept y(m)	10699669.95			
diffraction base	113481.74	1203.734 x, y座標		
point(m)				
D1 (m)	113488.07			
D2 (m)	13114.05			
H (m)	1107.23			
factor v	258.35			
Gdiff (dB)	61.16			

(2) 国内空港と各電波天文観測局との断面情報

以下の情報は、横軸、縦軸ともに単位は m を示し、横軸の 0m は空港、横軸の一番右側が対象 とする電波天文観測局の該当する空港からの距離である。空港から電波天文観測局を結んだと きの断面情報を表しており、図により空港、電波天文観測局間に回折する地点があるかどうかを 確認することができる。

◇東京国際空港

VERA 水沢観測局

1000

◇関西国際空港

VERA 入来観測局

VERA 水沢観測局

 $200000 \ 400000 \ 600000 \ 800000$

VERA 水沢観測局

◇那覇空港

野辺山宇宙電波観測所

VERA 水沢観測局

◇福岡空港

◇大阪国際空港

VERA 小笠原観測局

VERA 入来観測局

◇中部国際空港

◇鹿児島空港

VERA 石垣島観測局

◇熊本空港

VERA 水沢観測局

VERA 入来観測局

◇宮崎空港

5000 0 0 500000 1000000 1500000 VERA 入来観測局

VERA 水沢観測局

◇名古屋空港

VERA 水沢観測局

VERA 入来観測局

500000 1000000 1500000 VERA 入来観測局

VERA 水沢観測局

◇長崎空港

◇神戸空港

◇新潟空港

VERA 小笠原観測局

VERA 入来観測局

300000

VERA 入来観測局

0 100000 200000

◇新石垣空港

◇八尾空港

VERA 小笠原観測局

2000 0 1000000 2000000 0 3000000

VERA 水沢観測局

VERA 入来観測局

VERA 水沢観測局

野辺山宇宙電波観測所

VERA 小笠原観測局

◇広島空港

 $100000 \ 200000 \ 300000 \ 400000$

0

◇大分空港

VERA 小笠原観測局

VERA 石垣島観測局

◇北九州空港

◇高松空港

VERA 入来観測局

◇函館空港

◇高知空港

VERA 小笠原観測局

VERA 水沢観測局

VERA 石垣島観測局

◇宮古空港

2000000

1000000

◇青森空港

0

0

VERA 石垣島観測局

◇奄美空港

◇丘珠(札幌)空港

VERA 水沢観測局 2000 0 200000 400000 600000 VERA 入来観測局

◇出雲空港

1000 0 500000 1000000 1500000 VERA 石垣島観測局

VERA 水沢観測局

◇調布空港

◇岡山空港

VERA 入来観測局

VERA 水沢観測局

VERA 入来観測局

◇花巻空港

◇佐賀空港

VERA 石垣島観測局

 $50000 \ 100000 \ 150000 \ 200000$

◇釧路空港

◇徳島空港

0

1000000 2000000

3000000

VERA 入来観測局

◇静岡空港

VERA 石垣島観測局

◇女満別空港

3000000

◇山形空港

0

0

2000000

 $100000 \ 200000 \ 300000 \ 400000$

1000000

VERA 入来観測局

VERA 水沢観測局

1000000

1500000

2000 0 500000 1000000 1500000 0 VERA 入来観測局 1000

VERA 水沢観測局

◇岡南空港

0

500000

VERA 水沢観測局

◇富山空港

VERA 水沢観測局

◇米子(美保)空港

VERA 水沢観測局

◇旭川空港

◇松本空港

0

1000000 2000000

3000000

VERA 水沢観測局

◇対馬空港

◇福井空港

VERA 石垣島観測局

VERA 水沢観測局

◇茨城(百里)空港

VERA 小笠原観測局

◇久米島空港

◇徳之島空港

◇福江空港

VERA 石垣島観測局

◇屋久島空港

50000 100000 150000 200000

0

◇鳥取空港

0

0

500000

1000000

VERA 水沢観測局

◇大島空港

VERA 小笠原観測局

◇庄内空港

野辺山宇宙電波観測所

VERA 石垣島観測局

VERA 入来観測局

◇八丈島空港

VERA 入来観測局

◇沖永良部空港

◇種子島空港

◇但馬空港

166

1000000 2000000 3000000

野辺山宇宙電波観測所

◇喜界空港

500

0

◇三沢空港

0 0

VERA 水沢観測局

VERA 入来観測局

◇中標津空港

◇与論空港

间后氏

◇与那国空港

5000

0

0

500000 1000000 1500000

VERA 石垣島観測局

野辺山宇宙電波観測所

VERA 水沢観測局

◇新島空港

VERA 小笠原観測局

VERA 水沢観測局

◇神津島空港

2000000

◇石見空港

0

1000000

VERA 石垣島観測局

◇隠岐空港

VERA 石垣島観測局

1000 0 **100000** 2000000

◇壱岐空港

VERA 石垣島観測局

VERA 水沢観測局

◇大館能代空港

◇南大東空港

VERA 小笠原観測局

◇多良間空港

80000

◇大分県央空港

0

20000

40000 60000

VERA 水沢観測局

VERA 水沢観測局
1000
0
200000 400000 600000 800000

◇紋別空港

◇北大東空港

◇奥尻空港

VERA 石垣島観測局

◇粟国空港

VERA 入来観測局

◇小値賀空港

VERA 石垣島観測局

◇佐渡空港

VERA 石垣島観測局

◇慶良間空港

0

100000 200000 300000 400000

VERA 石垣島観測局

VERA 水沢観測局

上記の断面情報から、他の空港と他の電波天文観測局との回折損失を求めた結果を、一覧にして 表に示す。

		直線	自由空	大気	回折	損失	
No.	空港	距離	間損失	減衰	損失	合計	天文台
		(km)	(dB)	(dB)	(dB)	(dB)	
		126.6	174.1	50.6	61.2	285.9	野辺山宇宙電波観測所
		415.3	184.4	166.1	49.0	399.5	VERA 水沢観測局
1	東京国際	965.8	191.7	386.3	36.8	614.9	VERA 小笠原観測局
		963.4	191.7	385.4	50.3	627.4	VERA 入来観測局
		1943.5	197.8	777.4	44.2	1019.4	VERA 石垣島観測局
		173.6	176.8	69.4	58.5	304.8	野辺山宇宙電波観測所
		378.4	183.6	151.3	50.0	385.0	VERA 水沢観測局
2	成田国際	978.6	191.9	391.4	0.0	583.3	VERA 小笠原観測局
		1023.1	192.2	409.2	49.1	650.6	VERA 入来観測局
		2002.3	198.1	800.9	44.0	1043.0	VERA 石垣島観測局
		339.6	182.7	135.8	54.8	373.2	野辺山宇宙電波観測所
		741.2	189.4	296.5	56.6	542.5	VERA 水沢観測局
3	関西国際	1052.5	192.5	421.0	55.9	669.3	VERA 小笠原観測局
		537.2	186.6	214.9	54.6	456.1	VERA 入来観測局
		1542.3	195.8	616.9	46.4	859.1	VERA 石垣島観測局
		779.3	189.9	311.7	57.0	558.6	野辺山宇宙電波観測所
		1138.1	193.2	455.2	49.9	698.3	VERA 水沢観測局
4	福岡	1339.5	194.6	535.8	51.4	781.8	VERA 小笠原観測局
		203.8	178.2	81.5	55.3	315.1	VERA 入来観測局
		1186.0	193.5	474.4	48.8	716.7	VERA 石垣島観測局
		1493.3	195.5	597.3	58.3	851.1	野辺山宇宙電波観測所
		1908.4	197.7	763.4	55.4	1016.4	VERA 水沢観測局
5	那覇	1453.3	195.3	581.3	32.7	809.4	VERA 小笠原観測局
		673.0	188.6	269.2	32.6	490.4	VERA 入来観測局
		401.8	184.1	160.7	58.7	403.6	VERA 石垣島観測局
		808.1	190.2	323.3	44.8	558.2	野辺山宇宙電波観測所
G	东工告	408.2	184.3	163.3	49.2	396.8	VERA 水沢観測局
Ö	利丁成	1741.8	196.9	696.7	43.2	936.8	VERA 小笠原観測局
		1576.4	196.0	630.6	48.5	875.1	VERA 入来観測局

		2595.2	200.3	1038.1	45.6	1284.0	VERA 石垣島観測局
		304.2	181.7	121.7	57.5	360.9	野辺山宇宙電波観測所
		699.9	188.9	280.0	56.8	525.7	VERA 水沢観測局
7 大阪国際	1070.0	192.6	428.0	54.8	675.4	VERA 小笠原観測局	
		574.6	187.2	229.8	53.4	470.4	VERA 入来観測局
		1582.9	196.0	633.2	51.5	880.7	VERA 石垣島観測局
		193.5	177.8	77.4	59.2	314.4	野辺山宇宙電波観測所
		611.0	187.8	244.4	55.2	487.4	VERA 水沢観測局
8	中部国際	1003.8	192.1	401.5	31.5	625.1	VERA 小笠原観測局
		685.7	188.8	274.3	52.0	515.0	VERA 入来観測局
		1681.7	196.6	672.7	54.5	923.8	VERA 石垣島観測局
		851.3	190.6	340.5	56.0	587.1	野辺山宇宙電波観測所
		1245.3	194. 0	498.1	51.5	743.6	VERA 水沢観測局
9	鹿児島	1230.7	193.8	492.3	50.5	736.6	VERA 小笠原観測局
		27.2	160.8	10.9	0.0	171.6	VERA 入来観測局
		1041.1	192.4	416.4	61.3	670.2	VERA 石垣島観測局
		326.4	182.3	130.6	55.3	368.2	野辺山宇宙電波観測所
		111.9	173.0	44.8	41.2	259.0	VERA 水沢観測局
10	仙台	1231.3	193.9	492.5	22.0	708.3	VERA 小笠原観測局
		1189.6	193.6	475.8	54.7	724.1	VERA 入来観測局
		2197.3	198.9	878.9	51.6	1129.4	VERA 石垣島観測局
		780.4	189.9	312.1	57.1	559.2	野辺山宇宙電波観測所
		1159.3	193. 3	463.7	56.9	714.0	VERA 水沢観測局
11	熊本	1267.0	194.1	506.8	57.9	758.7	VERA 小笠原観測局
		127.0	174.1	50.8	51.9	276.9	VERA 入来観測局
		1139.1	193.2	455.6	60.5	709.4	VERA 石垣島観測局
		790.5	190.0	316.2	52.2	558.5	野辺山宇宙電波観測所
		1190.3	193.6	476.1	53.2	722.8	VERA 水沢観測局
12	宮崎	1170.4	193.4	468.2	0.0	661.6	VERA 小笠原観測局
		96.6	171.7	38.6	50.7	261.1	VERA 入来観測局
		1092.7	192.8	437.1	52.8	682.7	VERA 石垣島観測局
		159.7	176.1	63.9	58.4	298.4	野辺山宇宙電波観測所
10	友十已	569.8	187.2	227.9	57.5	472.5	VERA 水沢観測局
13	石古座	1035.9	192.4	414.4	41.5	648.2	VERA 小笠原観測局
		717.0	189.2	286.8	50.0	525.9	VERA 入来観測局

		1718.6	196.7	687.4	46.3	930.4	VERA 石垣島観測局
		577.4	187.3	231.0	55.5	473.7	野辺山宇宙電波観測所
		957.2	191.7	382.9	53.0	627.5	VERA 水沢観測局
14 松山	1179.1	193.5	471.6	54.6	719.7	VERA 小笠原観測局	
		313.0	182.0	125.2	52.8	360.0	VERA 入来観測局
		1332.2	194. 5	532.9	48.6	776.0	VERA 石垣島観測局
		855.0	190.7	342.0	53.6	586.3	野辺山宇宙電波観測所
		1222.6	193.8	489.0	57.6	740.4	VERA 水沢観測局
15	長崎	1350.0	194.7	540.0	54.0	788.7	VERA 小笠原観測局
		138.8	174.9	55.5	45.6	276.1	VERA 入来観測局
		1096.6	192.8	438.6	56.9	688.4	VERA 石垣島観測局
		329.3	182.4	131.7	56.5	370.6	野辺山宇宙電波観測所
		725.6	189.3	290.2	56.3	535.8	VERA 水沢観測局
16	神戸	1069.9	192.6	428.0	51.7	672.3	VERA 小笠原観測局
		548.9	186.8	219.6	53.9	460.3	VERA 入来観測局
		1557.2	195.9	622.9	51.0	869.8	VERA 石垣島観測局
		230.4	179.3	92.2	55.2	326.6	野辺山宇宙電波観測所
		219.5	178.9	87.8	56.3	323.0	VERA 水沢観測局
17	新潟	1239.5	193.9	495.8	57.0	746.7	VERA 小笠原観測局
		1049.4	192.5	419.7	47.8	660.0	VERA 入来観測局
		2063.9	198.3	825.6	51.7	1075.6	VERA 石垣島観測局
		1871.2	197.5	748.5	54.8	1000.7	野辺山宇宙電波観測所
		2279.1	199.2	911.6	51.0	1161.8	VERA 水沢観測局
18	新石垣	1826.0	197.3	730.4	0.0	927.7	VERA 小笠原観測局
		1016.6	192.2	406.6	0.0	598.8	VERA 入来観測局
		7.7	149.8	3.1	53.3	206.2	VERA 石垣島観測局
		301.3	181.6	120.5	54.8	356.9	野辺山宇宙電波観測所
		704.8	189.0	281.9	56.2	527.1	VERA 水沢観測局
19	八尾	1044.9	192.4	417.9	57.4	667.7	VERA 小笠原観測局
		575.4	187.2	230.2	52.6	470.0	VERA 入来観測局
		1579.4	196.0	631.8	44.6	872.4	VERA 石垣島観測局
		532.6	186.6	213.0	58.6	458.3	野辺山宇宙電波観測所
0.0	亡自	898.9	191.1	359.6	56.1	606.8	VERA 水沢観測局
20	山島	1205.2	193.7	482.1	53.8	729.5	VERA 小笠原観測局
		377.4	183.6	151.0	55.2	389.7	VERA 入来観測局

		1396.9	194. 9	558.7	51.3	805.0	VERA 石垣島観測局
		674.6	188.6	269.9	55.3	513.8	野辺山宇宙電波観測所
	21 大分	1050.5	192.5	420.2	56.5	669.2	VERA 水沢観測局
21		1230.9	193.8	492.4	45.2	731.4	VERA 小笠原観測局
		227.4	179.2	91.0	55.8	325.9	VERA 入来観測局
		1245.7	194.0	498.3	50.8	743.0	VERA 石垣島観測局
22	東京都東京 H						
		718.3	189.2	287.3	57.1	533.6	野辺山宇宙電波観測所
		1077.3	192.7	430.9	56.9	680.6	VERA 水沢観測局
23	北九州	1307.6	194.4	523.1	45.4	762.8	VERA 小笠原観測局
		239.2	179.6	95.7	55.3	330.6	VERA 入来観測局
		1239.9	193.9	496.0	50.7	740.6	VERA 石垣島観測局
		449.4	185.1	179.8	58.2	423.0	野辺山宇宙電波観測所
		837.8	190.5	335.1	52.0	577.6	VERA 水沢観測局
24	高松	1113.3	193.0	445.3	53.7	692.0	VERA 小笠原観測局
		431.8	184.8	172.7	53.7	411.2	VERA 入来観測局
		1445.7	195.2	578.3	54.3	827.9	VERA 石垣島観測局
		678.0	188.7	271.2	42.7	502.5	野辺山宇宙電波観測所
		294.0	181.4	117.6	51.3	350.3	VERA 水沢観測局
25	函館	1633.3	196.3	653.3	48.2	897.8	VERA 小笠原観測局
		1445.5	195.2	578.2	51.3	824.8	VERA 入来観測局
		2464.8	199.9	985.9	43.3	1229.1	VERA 石垣島観測局
		513.9	186.3	205.6	52.7	444.5	野辺山宇宙電波観測所
		912.2	191.2	364.9	56.1	612.2	VERA 水沢観測局
26	高知	1089.0	192.8	435.6	0.0	628.4	VERA 小笠原観測局
		362.7	183.2	145.1	49.3	377.6	VERA 入来観測局
		1370.4	194.8	548.1	47.9	790.8	VERA 石垣島観測局
		435.5	184.8	174.2	49.8	408.8	野辺山宇宙電波観測所
		95.2	171.6	38.1	56.6	266.3	VERA 水沢観測局
27	秋田	1401.3	195.0	560.5	53.3	808.8	VERA 小笠原観測局
		1241.8	193.9	496.7	48.5	739.2	VERA 入来観測局
		2260.0	199.1	904.0	48.4	1151.5	VERA 石垣島観測局
0.0	1. #\	192.4	177.7	77.0	64.8	319.4	野辺山宇宙電波観測所
28		515.4	186.3	206.1	55.1	447.5	VERA 水沢観測局

		1168.6	193.4	467.4	58.0	718.8	VERA 小笠原観測局
		754.1	189.6	301.6	51.6	542.8	VERA 入来観測局
		1770.8	197.0	708.3	47.4	952.7	VERA 石垣島観測局
		1767.4	197.0	707.0	56.9	960.8	野辺山宇宙電波観測所
		2178.2	198.8	871.3	53.2	1123.3	VERA 水沢観測局
29	宮古	1712.9	196.7	685.1	0.0	881.9	VERA 小笠原観測局
		922.0	191.3	368.8	0.0	560.1	VERA 入来観測局
		121.0	173.7	48.4	57.5	279.6	VERA 石垣島観測局
		565.8	187.1	226.3	50.8	464.2	野辺山宇宙電波観測所
		181.7	177.2	72.7	58.0	307.9	VERA 水沢観測局
30	青森	1519.7	195.7	607.9	53.0	856.6	VERA 小笠原観測局
		1355.6	194.7	542.3	50.5	787.4	VERA 入来観測局
		2375.1	199.6	950.0	43.6	1193.1	VERA 石垣島観測局
		1172.1	193.4	468.8	58.7	721.0	野辺山宇宙電波観測所
		1587.1	196.1	634.8	53.9	884.8	VERA 水沢観測局
31	奄美	1240.9	193.9	496.4	0.0	690.3	VERA 小笠原観測局
		374.2	183.5	149.7	0.0	333.2	VERA 入来観測局
		709.8	189.1	283.9	45.3	518.3	VERA 石垣島観測局
		834.6	190.5	333.8	39.8	564.1	野辺山宇宙電波観測所
		442.9	185.0	177.2	53.8	416.0	VERA 水沢観測局
32	丘珠(札幌)	1779.6	197.1	711.8	45.0	953.9	VERA 小笠原観測局
		1587.6	196.1	635.0	51.5	882.6	VERA 入来観測局
		2605.3	200.4	1042.1	54.4	1296.9	VERA 石垣島観測局
		857.2	190.7	342.9	48.7	582.3	野辺山宇宙電波観測所
		436.5	184.8	174.6	57.9	417.3	VERA 水沢観測局
33	帯広	1737.6	196.8	695.0	52.2	944.1	VERA 小笠原観測局
		1661.0	196.5	664.4	56.7	917.6	VERA 入来観測局
		2680.6	200.6	1072.2	57.1	1329.9	VERA 石垣島観測局
		508.7	186.2	203.5	60.9	450.6	野辺山宇宙電波観測所
		839.1	190.5	335.6	55.4	581.6	VERA 水沢観測局
34	出雲	1279.5	194.2	511.8	53.9	759.9	VERA 小笠原観測局
		465.8	185.4	186.3	50.1	421.8	VERA 入来観測局
		1480.4	195.5	592.1	51.0	838.6	VERA 石垣島観測局
25	調本	100.0	172.0	40.0	62.1	274.2	野辺山宇宙電波観測所
30	可可口口	409.6	184. 3	163.8	45.6	393.7	VERA 水沢観測局

		985.0	191.9	394.0	39.1	625.1	VERA 小笠原観測局
		947.6	191.6	379.1	62.7	633.4	VERA 入来観測局
		1932.4	197.8	773.0	51.7	1022.4	VERA 石垣島観測局
		439.8	184.9	175.9	57.9	418.7	野辺山宇宙電波観測所
		809.6	190.2	323.8	56.1	570.2	VERA 水沢観測局
36	岡山	1165.6	193.4	466.2	42.4	702.0	VERA 小笠原観測局
		461.1	185.3	184.4	51.0	420.7	VERA 入来観測局
		1479.8	195.4	591.9	47.6	835.0	VERA 石垣島観測局
		452.5	185.2	181.0	52.5	418.6	野辺山宇宙電波観測所
		32.8	162.4	13.1	47.3	222.8	VERA 水沢観測局
37	花巻	1372.0	194.8	548.8	48.1	791.7	VERA 小笠原観測局
		1289.0	194.3	515.6	50.2	760.0	VERA 入来観測局
		2304.3	199.3	921.7	48.8	1169.8	VERA 石垣島観測局
		811.1	190.2	324.4	54.6	569.3	野辺山宇宙電波観測所
		1178.0	193.5	471.2	57.4	722.1	VERA 水沢観測局
38	佐賀	1328.7	194. 5	531.5	48.8	774.8	VERA 小笠原観測局
		156.0	175.9	62.4	50.3	288.6	VERA 入来観測局
		1137.9	193.2	455.2	56.8	705.1	VERA 石垣島観測局
		928.4	191.4	371.4	50.2	613.0	野辺山宇宙電波観測所
		504.3	186.1	201.7	56.9	444.7	VERA 水沢観測局
39	釧路	1778.5	197.0	711.4	0.0	908.4	VERA 小笠原観測局
		1743.0	196.9	697.2	50.9	945.0	VERA 入来観測局
		2762.4	200.9	1105.0	44.5	1350.4	VERA 石垣島観測局
		405.9	184.2	162.4	54.7	401.3	野辺山宇宙電波観測所
		804.9	190.2	322.0	56.6	568.7	VERA 水沢観測局
40	徳島	1067.8	192.6	427.1	0.0	619.7	VERA 小笠原観測局
		470.9	185.5	188.4	59.3	433.1	VERA 入来観測局
		1477.8	195.4	591.1	54.2	840.7	VERA 石垣島観測局
		130.0	174.3	52.0	57.6	283.9	野辺山宇宙電波観測所
		548.0	186.8	219.2	56.4	462.4	VERA 水沢観測局
41	静岡	936.6	191.5	374.6	0.0	566.1	VERA 小笠原観測局
		796.9	190.1	318.8	56.6	565.5	VERA 入来観測局
		1776.7	197.0	710.7	48.4	956.1	VERA 石垣島観測局
40	/ 大))本日1	1006.0	192.1	402.4	48.7	643.2	野辺山宇宙電波観測所
42	又個別	584.7	187.4	233.9	54.7	476.0	VERA 水沢観測局

		1870.9	197.5	748.4	51.1	996.9	VERA 小笠原観測局
		1804.4	197.2	721.8	52.7	971.6	VERA 入来観測局
		2823.9	201.1	1129.5	52.0	1382.6	VERA 石垣島観測局
		225.6	179.1	90.2	59.6	329.0	野辺山宇宙電波観測所
		220.3	178.9	88.1	49.7	316.7	VERA 水沢観測局
43	福島	1136.5	193.2	454.6	52.0	699.7	VERA 小笠原観測局
		1099.5	192.9	439.8	58.6	691.3	VERA 入来観測局
		2100.8	198.5	840.3	53.6	1092.4	VERA 石垣島観測局
		321.6	182.2	128.6	52.5	363.3	野辺山宇宙電波観測所
		103.9	172.4	41.5	60.7	274.7	VERA 水沢観測局
44	山形	1267.2	194.1	506.9	59.8	760.7	VERA 小笠原観測局
		1167.9	193.4	467.2	53.5	714.1	VERA 入来観測局
		2180.2	198.8	872.1	54.8	1125.7	VERA 石垣島観測局
		693.9	188.9	277.6	57.8	524.2	野辺山宇宙電波観測所
		1053.6	192.5	421.4	57.0	670.9	VERA 水沢観測局
45	山口宇部	1293.6	194.3	517.4	49.1	760.9	VERA 小笠原観測局
		254.4	180.2	101.8	49.7	331.6	VERA 入来観測局
		1260.5	194.1	504.2	47.9	746.2	VERA 石垣島観測局
		439.4	184.9	175.8	56.7	417.4	野辺山宇宙電波観測所
		815.8	190.3	326.3	52.3	568.9	VERA 水沢観測局
46	岡南	1147.6	193.2	459.0	38.7	690.9	VERA 小笠原観測局
		453.4	185.2	181.3	52.3	418.8	VERA 入来観測局
		1471.0	195.4	588.4	51.3	835.1	VERA 石垣島観測局
		139.4	174.9	55.8	63.9	294.6	野辺山宇宙電波観測所
		443.2	185.0	177.3	54.0	416.3	VERA 水沢観測局
47	富山	1161.2	193.3	464.5	59.8	717.6	VERA 小笠原観測局
		825.6	190.4	330.2	50.5	571.1	VERA 入来観測局
		1840.3	197.3	736.1	56.0	989.5	VERA 石垣島観測局
		476.1	185.6	190.4	61.5	437.5	野辺山宇宙電波観測所
		807.5	190.2	323.0	54.0	567.2	VERA 水沢観測局
48	米子(美保)	1263.0	194.1	505.2	52.4	751.7	VERA 小笠原観測局
		489.9	185.8	196.0	52.7	434.5	VERA 入来観測局
		1506.7	195.6	602.7	53.1	851.4	VERA 石垣島観測局
40	hq []]	922.6	191.3	369.0	48.7	609.0	野辺山宇宙電波観測所
49	川山	515.7	186.3	206.3	55.0	447.6	VERA 水沢観測局

		1839.5	197.3	735.8	47.9	981.1	VERA 小笠原観測局
		1691.0	196.6	676.4	52.1	925.1	VERA 入来観測局
		2709.3	200. 7	1083.7	42.6	1327.0	VERA 石垣島観測局
		55.3	166.9	22.1	68.9	258.0	野辺山宇宙電波観測所
		434.3	184.8	173.7	58.3	416.8	VERA 水沢観測局
50	松本	1085.2	192.8	434.1	61.2	688.0	VERA 小笠原観測局
		847.3	190.6	338.9	64.9	594.4	VERA 入来観測局
		1853.0	197.4	741.2	60.5	999.1	VERA 石垣島観測局
		853.1	190.7	341.2	51.2	583.1	野辺山宇宙電波観測所
		1182.5	193.5	473.0	54.0	720.5	VERA 水沢観測局
51	対馬	1467.8	195.4	587.1	48.5	831.0	VERA 小笠原観測局
		299.8	181.6	119.9	46.4	347.9	VERA 入来観測局
		1203.0	193.7	481.2	51.1	725.9	VERA 石垣島観測局
		203.8	178.2	81.5	63.3	323.0	野辺山宇宙電波観測所
		545.6	186.8	218.3	52.6	457.6	VERA 水沢観測局
52	福井	1152.8	193. 3	461.1	57.4	711.8	VERA 小笠原観測局
		723.3	189.2	289.3	50.8	529.3	VERA 入来観測局
		1700.0	100.0	005 5	47.0	0.40 4	
		1739.3	196.9	695.7	47.9	940.4	VERA 石垣島観測局
53	広島H	1739.3	196. 9	695.7	47.9	940.4	VEKA 石垣島観測向
53	広島H	1739.3	196. 9 177. 0	695. 7 70. 8	47. 9 53. 8	940. 4 301. 6	VERA 石垣島観測局 野辺山宇宙電波観測所
53	広島 H	1739.3 177.0 333.7	196. 9 177. 0 182. 5	70. 8 733. 5	47.9 53.8 51.4	940. 4 301. 6 367. 4	VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局
53	広島 H 茨城 (百里)	1739.3 177.0 333.7 1022.2	196. 9 177. 0 182. 5 192. 2	695.7 70.8 133.5 408.9	47.9 53.8 51.4 0.0	940. 4 301. 6 367. 4 601. 1	VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局 VERA 小笠原観測局
53	広島 H 茨城(百里)	1739.3 177.0 333.7 1022.2 1044.1	196. 9 177. 0 182. 5 192. 2 192. 4	695.7 70.8 133.5 408.9 417.7	47.9 53.8 51.4 0.0 52.8	940. 4 301. 6 367. 4 601. 1 662. 9	VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局 VERA 小笠原観測局 VERA 入来観測局
53	広島 H 茨城(百里)	1739.3 177.0 333.7 1022.2 1044.1 2030.4	196. 9 177. 0 182. 5 192. 2 192. 4 198. 2	695.7 70.8 133.5 408.9 417.7 812.2	47.9 53.8 51.4 0.0 52.8 49.0	940. 4 301. 6 367. 4 601. 1 662. 9 1059. 4	VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局 VERA 小笠原観測局 VERA 入来観測局 VERA 石垣島観測局
53	広島 H 茨城 (百里)	1739.3 177.0 333.7 1022.2 1044.1 2030.4 1542.1	196. 9 177. 0 182. 5 192. 2 192. 4 198. 2 195. 8	695.7 70.8 133.5 408.9 417.7 812.2 616.8	47.9 53.8 51.4 0.0 52.8 49.0 54.0	940. 4 301. 6 367. 4 601. 1 662. 9 1059. 4 866. 6	 VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局 VERA 小笠原観測局 VERA 入来観測局 VERA 石垣島観測局 野辺山宇宙電波観測所
53	広島 H 茨城 (百里)	1739.3 177.0 333.7 1022.2 1044.1 2030.4 1542.1 1952.3	196. 9 177. 0 182. 5 192. 2 192. 4 198. 2 195. 8 197. 9	695. 7 70. 8 133. 5 408. 9 417. 7 812. 2 616. 8 780. 9	47.9 53.8 51.4 0.0 52.8 49.0 54.0 53.3	940. 4 301. 6 367. 4 601. 1 662. 9 1059. 4 866. 6 1032. 1	VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局 VERA 小笠原観測局 VERA 入来観測局 VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局
53	広島 H 茨城(百里) 久米島	1739.3 177.0 333.7 1022.2 1044.1 2030.4 1542.1 1952.3 1543.5	196. 9 177. 0 182. 5 192. 2 192. 4 198. 2 195. 8 197. 9 195. 8	695. 7 70. 8 133. 5 408. 9 417. 7 812. 2 616. 8 780. 9 617. 4	47.9 53.8 51.4 0.0 52.8 49.0 54.0 53.3 48.3	940. 4 301. 6 367. 4 601. 1 662. 9 1059. 4 866. 6 1032. 1 861. 5	VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局 VERA 小笠原観測局 VERA 石垣島観測局 PED山宇宙電波観測所 VERA 不短島観測局 PEA 不近観測局 VERA 小笠原観測局 VERA 小笠原観測局
53	広島 H 茨城(百里) 久米島	1739.3 177.0 333.7 1022.2 1044.1 2030.4 1542.1 1952.3 1543.5 698.3	196. 9 177. 0 182. 5 192. 2 192. 4 198. 2 195. 8 197. 9 195. 8 188. 9	695.7 70.8 133.5 408.9 417.7 812.2 616.8 780.9 617.4 279.3	47.9 53.8 51.4 0.0 52.8 49.0 54.0 53.3 48.3 47.4	940. 4 301. 6 367. 4 601. 1 662. 9 1059. 4 866. 6 1032. 1 861. 5 515. 6	VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局 VERA 水沢観測局 VERA 入来観測局 VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局 VERA 水沢観測局 VERA 小笠原観測局 VERA 入来観測局
53	広島 H 茨城(百里) 久米島	1739.3 177.0 333.7 1022.2 1044.1 2030.4 1542.1 1952.3 1543.5 698.3 335.0	196. 9 177. 0 182. 5 192. 2 192. 4 198. 2 195. 8 197. 9 195. 8 188. 9 182. 5	695. 7 70. 8 133. 5 408. 9 417. 7 812. 2 616. 8 780. 9 617. 4 279. 3 134. 0	47.9 53.8 51.4 0.0 52.8 49.0 54.0 53.3 48.3 47.4 58.8	940. 4 301. 6 367. 4 601. 1 662. 9 1059. 4 866. 6 1032. 1 861. 5 515. 6 375. 4	VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局 VERA 小笠原観測局 VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 木沢観測局 VERA 木沢観測局 VERA 木沢観測局 VERA 木沢観測局 VERA 木沢観測局 VERA 水沢観測局 VERA 小笠原観測局 VERA 八笠原観測局 VERA 八玉観測局 VERA 八玉観測局 VERA 八玉観測局 VERA 八玉観測局 VERA 八玉観測局
53	広島 H 茨城(百里) 久米島	1739.3 177.0 333.7 1022.2 1044.1 2030.4 1542.1 1952.3 1543.5 698.3 335.0 1276.0	196.9 177.0 182.5 192.2 192.4 198.2 195.8 197.9 195.8 188.9 182.5 194.2	695. 7 70. 8 133. 5 408. 9 417. 7 812. 2 616. 8 780. 9 617. 4 279. 3 134. 0 510. 4	47.9 53.8 51.4 0.0 52.8 49.0 54.0 53.3 48.3 47.4 58.8 57.9	940. 4 301. 6 367. 4 601. 1 662. 9 1059. 4 866. 6 1032. 1 861. 5 515. 6 375. 4 762. 4	VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局 VERA 小笠原観測局 VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 不短島観測局 VERA 水沢観測局 VERA 石垣島観測局 VERA 木沢観測局 VERA 木沢観測局 VERA 小笠原観測局 VERA 小笠原観測局 VERA 小笠原観測局 VERA 小笠原観測局 PEA 小笠原観測局 VERA 小笠原観測局 PEA 小笠原観測局 PEA 小笠原観測局 PEA 小笠原観測局
53	広島 H 茨城 (百里) 久米島	1739.3 177.0 333.7 1022.2 1044.1 2030.4 1542.1 1952.3 1543.5 698.3 335.0 1276.0 1689.8	196.9 177.0 182.5 192.2 192.4 198.2 195.8 197.9 195.8 188.9 182.5 194.2 196.6	695. 7 70. 8 133. 5 408. 9 417. 7 812. 2 616. 8 780. 9 617. 4 279. 3 134. 0 510. 4 675. 9	47.9 53.8 51.4 0.0 52.8 49.0 54.0 53.3 48.3 47.4 58.8 57.9 53.9	940. 4 301. 6 367. 4 601. 1 662. 9 1059. 4 866. 6 1032. 1 861. 5 515. 6 375. 4 762. 4 926. 4	VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局 VERA 小笠原観測局 VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 不短島観測局 VERA 木沢観測局 VERA 木沢観測局 VERA 木沢観測局 VERA 木沢観測局 VERA 小笠原観測局 VERA 八笠原観測局 VERA 八笠原観測局 VERA 八笠原観測局 VERA 八笠原観測局 VERA 八笠原観測局 VERA 大沢観測局 VERA 木沢観測局
53 54 55 55	広島 H 茨城(百里) 久米島 徳之島	1739.3 177.0 333.7 1022.2 1044.1 2030.4 1542.1 1952.3 1543.5 698.3 335.0 1276.0 1689.8 1320.1	196. 9 177. 0 182. 5 192. 2 192. 4 198. 2 195. 8 197. 9 195. 8 188. 9 182. 5 194. 2 194. 5	695. 7 70. 8 133. 5 408. 9 417. 7 812. 2 616. 8 780. 9 617. 4 279. 3 134. 0 510. 4 675. 9 528. 0	47.9 53.8 51.4 0.0 52.8 49.0 54.0 53.3 48.3 47.4 58.8 57.9 53.9 45.0	940. 4 301. 6 367. 4 601. 1 662. 9 1059. 4 866. 6 1032. 1 861. 5 515. 6 375. 4 762. 4 926. 4 767. 4	VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局 VERA 小笠原観測局 VERA 石垣島観測局 P辺山宇宙電波観測所 VERA 石垣島観測局 VERA 小笠原観測局 VERA 八笠原観測局 VERA 小笠原観測局 VERA 不垣島観測局 VERA 小笠原観測局 VERA 不垣島観測局 VERA 小笠原観測局 VERA 不垣島観測局 VERA 小笠原観測局 VERA 小笠原観測局
53 54 55 56	広島 H 茨城(百里) 久米島 徳之島	1739.3 177.0 333.7 1022.2 1044.1 2030.4 1542.1 1952.3 1543.5 698.3 335.0 1276.0 1689.8 1320.1 459.1	196.9 177.0 182.5 192.2 192.4 198.2 195.8 197.9 195.8 188.9 182.5 194.2 196.6 194.5 185.3	695. 7 70. 8 133. 5 408. 9 417. 7 812. 2 616. 8 780. 9 617. 4 279. 3 134. 0 510. 4 675. 9 528. 0 183. 6	47.9 53.8 51.4 0.0 52.8 49.0 54.0 53.3 48.3 47.4 58.8 57.9 53.9 45.0 39.4	940. 4 301. 6 367. 4 601. 1 662. 9 1059. 4 866. 6 1032. 1 861. 5 515. 6 375. 4 762. 4 926. 4 767. 4 408. 3	VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局 VERA 小笠原観測局 VERA 石垣島観測局 P辺山宇宙電波観測所 VERA 石垣島観測局 Pび回山宇宙電波観測所 VERA 木沢観測局 VERA 大沢観測局 VERA 大沢観測局 VERA 大沢観測局 VERA 石垣島観測局 VERA 小笠原観測局 VERA 木沢観測局 VERA 不垣島観測局 VERA 八笠原観測局 VERA 水沢観測局 VERA 小笠原観測局 VERA 小笠原観測局 VERA 小笠原観測局 VERA 小笠原観測局 VERA 小笠原観測局 VERA 小笠原観測局
53 54 55 56	広島 H 茨城(百里) 久米島 徳之島	1739.3 177.0 333.7 1022.2 1044.1 2030.4 1542.1 1952.3 1543.5 698.3 335.0 1276.0 1689.8 1320.1 459.1 604.7	196.9 177.0 182.5 192.2 192.4 198.2 195.8 197.9 195.8 182.5 194.2 196.6 194.5 185.3 187.7	695. 7 70. 8 133. 5 408. 9 417. 7 812. 2 616. 8 780. 9 617. 4 279. 3 134. 0 510. 4 675. 9 528. 0 183. 6 241. 9	47.9 53.8 51.4 0.0 52.8 49.0 54.0 53.3 48.3 47.4 58.8 57.9 53.9 45.0 39.4 59.4	940. 4 301. 6 367. 4 601. 1 662. 9 1059. 4 866. 6 1032. 1 861. 5 515. 6 375. 4 762. 4 926. 4 926. 4 767. 4 408. 3 488. 9	VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 水沢観測局 VERA 水沢観測局 VERA 八笠原観測局 VERA 石垣島観測局 野辺山宇宙電波観測所 VERA 木沢観測局 VERA 水沢観測局 VERA 木沢観測局 VERA 木沢観測局 VERA 石垣島観測局 VERA 大沢観測局 VERA 木沢観測局 VERA 木沢観測局 VERA 水沢観測局 VERA 小笠原観測局 VERA 小笠原観測局

		1320.1	194.5	528.0	57.0	779.5	VERA 水沢観測局
		1431.4	195.2	572.6	50.2	817.9	VERA 小笠原観測局
		182.6	177.3	73.0	57.7	308.0	VERA 入来観測局
		1022.0	192.2	408.8	55.1	656.2	VERA 石垣島観測局
		954.0	191.6	381.6	52.8	626.0	野辺山宇宙電波観測所
		1362.4	194.7	545.0	54.0	793.7	VERA 水沢観測局
58	屋久島	1185.8	193.5	474.3	0.0	667.8	VERA 小笠原観測局
		152.5	175.7	61.0	46.3	283.0	VERA 入来観測局
		921.5	191.3	368.6	60.5	620.5	VERA 石垣島観測局
		392.3	183.9	156.9	60.7	401.6	野辺山宇宙電波観測所
		735.3	189.4	294.1	57.8	541.2	VERA 水沢観測局
59	鳥取	1208.4	193.7	483.4	49.3	726.3	VERA 小笠原観測局
		543.4	186.7	217.4	50.0	454.1	VERA 入来観測局
		1563.0	195.9	625.2	48.7	869.9	VERA 石垣島観測局
		380.7	183.7	152.3	59.3	395.2	野辺山宇宙電波観測所
		797.3	190.1	318.9	53.4	562.4	VERA 水沢観測局
60	南紀白浜	981.5	191.9	392.6	40.5	625.0	VERA 小笠原観測局
		508.1	186.2	203.3	54.1	443.5	VERA 入来観測局
		1494.7	195.5	597.9	54.7	848.1	VERA 石垣島観測局
		152.2	175.7	60.9	52.9	289.4	野辺山宇宙電波観測所
		508.1	186.2	203.2	46.5	435.9	VERA 水沢観測局
61	大島	895.1	191.1	358.0	57.8	606.9	VERA 小笠原観測局
		896.2	191.1	358.5	52.1	601.7	VERA 入来観測局
		1863.2	197.5	745.3	30.2	972.9	VERA 石垣島観測局
		601.8	187.6	240.7	57.3	485.7	野辺山宇宙電波観測所
		967.6	191.8	387.0	59.0	637.7	VERA 水沢観測局
62	岩国	1233.9	193.9	493.5	50.8	738.2	VERA 小笠原観測局
		315.1	182.0	126.1	54.8	362.9	VERA 入来観測局
		1333.0	194.5	533.2	53.7	781.5	VERA 石垣島観測局
		338.9	182.6	135.6	46.9	365.1	野辺山宇宙電波観測所
		121.9	173.8	48.8	57.9	280.4	VERA 水沢観測局
63	庄内	1319.4	194.5	527.8	55.1	777.3	VERA 小笠原観測局
		1155.2	193. 3	462.1	51.8	707.2	VERA 入来観測局
		2171.8	198.8	868.7	43.3	1110.8	VERA 石垣島観測局
64	八丈島	336.2	182.6	134.5	59.6	376.7	野辺山宇宙電波観測所

		678.7	188.7	271.5	49.7	509.8	VERA 水沢観測局
		707.5	189.0	283.0	56.0	528.0	VERA 小笠原観測局
		891.7	191.1	356.7	0.0	547.7	VERA 入来観測局
		1801.1	197.2	720.4	54.0	971.7	VERA 石垣島観測局
65	舞洲 H						
		1320.9	194. 5	528.4	58.9	781.8	野辺山宇宙電波観測所
		1735.7	196.8	694.3	55.3	946.4	VERA 水沢観測局
66	沖永良部	1337.8	194.6	535.1	0.0	729.7	VERA 小笠原観測局
		507.2	186.1	202.9	0.0	389.0	VERA 入来観測局
		564.0	187.1	225.6	53.5	466.1	VERA 石垣島観測局
		914.0	191.3	365.6	58.0	614.9	野辺山宇宙電波観測所
		1323.0	194.5	529.2	55.5	779.1	VERA 水沢観測局
67	種子島	1161.9	193.4	464.7	0.0	658.1	VERA 小笠原観測局
		137.1	174.8	54.9	59.6	289.2	VERA 入来観測局
		961.3	191.7	384.5	46.6	622.8	VERA 石垣島観測局
		336.8	182.6	134.7	61.2	378.5	野辺山宇宙電波観測所
		690.9	188.8	276.4	57.1	522.3	VERA 水沢観測局
68	但馬	1170.5	193.4	468.2	51.8	713.4	VERA 小笠原観測局
		580.4	187.3	232.2	56.0	475.4	VERA 入来観測局
		1599.0	196.1	639.6	55.6	891.3	VERA 石垣島観測局
		1167.1	193.4	466.8	58.8	719.0	野辺山宇宙電波観測所
		1583.6	196.0	633.5	53.4	882.9	VERA 水沢観測局
69	喜界	1219.1	193.8	487.6	45.7	727.1	VERA 小笠原観測局
		383.0	183.7	153.2	0.0	336.9	VERA 入来観測局
		719.4	189.2	287.8	55.8	532.8	VERA 石垣島観測局
		585.7	187.4	234.3	48.4	470.1	野辺山宇宙電波観測所
		175.5	176.9	70.2	52.5	299.7	VERA 水沢観測局
70	三沢	1511.8	195.6	604.7	51.9	852.2	VERA 小笠原観測局
		1395.3	194. 9	558.1	47.7	800.8	VERA 入来観測局
		2414.1	199.7	965.6	42.7	1208.1	VERA 石垣島観測局
71	静岡H						
		856.5	190.7	342.6	56.4	589.7	野辺山宇宙電波観測所
70	工世	1234.7	193.9	493.9	55.3	743.0	VERA 水沢観測局
12		1308.8	194.4	523.5	48.6	766.5	VERA 小笠原観測局
		85.6	170.7	34.3	51.7	256.6	VERA 入来観測局

		1069.0	192.6	427.6	53.9	674.1	VERA 石垣島観測局
		1012.8	192.2	405.1	46.8	644.1	野辺山宇宙電波観測所
		588.2	187.4	235.3	57.6	480.3	VERA 水沢観測局
73 中標津	1845.7	197.4	738.3	32.7	968.3	VERA 小笠原観測局	
		1829.1	197.3	731.6	50.0	978.9	VERA 入来観測局
		2848.5	201.1	1139.4	49.9	1390.5	VERA 石垣島観測局
		201.6	178.1	80.7	59.5	318.3	野辺山宇宙電波観測所
		418.4	184.5	167.4	56.1	407.9	VERA 水沢観測局
74	能登	1234.4	193. 9	493.8	54.9	742.6	VERA 小笠原観測局
		858.0	190.7	343.2	52.6	586.5	VERA 入来観測局
		1876.6	197.5	750.6	46.8	995.0	VERA 石垣島観測局
		1372.9	194.8	549.2	57.0	800.9	野辺山宇宙電波観測所
		1788.0	197.1	715.2	52.7	965.0	VERA 水沢観測局
75	与論	1369.7	194.8	547.9	0.0	742.6	VERA 小笠原観測局
		557.6	187.0	223.1	25.9	435.9	VERA 入来観測局
		515.0	186.3	206.0	57.3	449.5	VERA 石垣島観測局
		1955.9	197.9	782.4	51.9	1032.2	野辺山宇宙電波観測所
		2357.6	199.5	943.0	48.6	1191.1	VERA 水沢観測局
76	与那国	1949.3	197.8	779.7	0.0	977.6	VERA 小笠原観測局
		1089.5	192.8	435.8	0.0	628.6	VERA 入来観測局
		121.0	173.7	48.4	41.2	263.3	VERA 石垣島観測局
		1087.3	192.8	434.9	49.9	677.6	野辺山宇宙電波観測所
		698.8	188.9	279.5	48.4	516.8	VERA 水沢観測局
77	稚内	2032.4	198.2	813.0	40.3	1051.5	VERA 小笠原観測局
		1806.6	197.2	722.6	47.8	967.6	VERA 入来観測局
		2818.1	201.0	1127.2	42.5	1370.7	VERA 石垣島観測局
		230.2	179.3	92.1	55.1	326.4	野辺山宇宙電波観測所
		579.0	187.3	231.6	47.5	466.4	VERA 水沢観測局
78	三宅島	814.6	190.3	325.8	0.0	516.1	VERA 小笠原観測局
		890.8	191.0	356.3	52.9	600.3	VERA 入来観測局
		1836.0	197.3	734.4	32.3	964.0	VERA 石垣島観測局
		189.2	177.6	75.7	57.7	310.9	野辺山宇宙電波観測所
70	dr 白	554.2	186.9	221.7	46.2	454.8	VERA 水沢観測局
79	新 島	854.7	190.7	341.9	41.0	573.6	VERA 小笠原観測局
		873.9	190.9	349.6	50.7	591.1	VERA 入来観測局

		1831.0	197.3	732.4	33.7	963.4	VERA 石垣島観測局
80	栃木H						
01	津市伊勢湾						
01	Н						
82	つくば H						
83	群馬 H						
84	奈良県 H						
		203.8	178.2	81.5	56.4	316.1	野辺山宇宙電波観測所
		577.0	187.3	230.8	46.1	464.2	VERA 水沢観測局
85	神津島	840.4	190.5	336.2	0.0	526.7	VERA 小笠原観測局
		856.3	190.7	342.5	52.2	585.4	VERA 入来観測局
		1809.6	197.2	723.9	38.2	959.3	VERA 石垣島観測局
		623.6	187.9	249.5	56.6	494.0	野辺山宇宙電波観測所
		967.7	191.8	387.1	54.3	633.1	VERA 水沢観測局
86	石見	1302.8	194. 3	521.1	51.8	767.2	VERA 小笠原観測局
		348.3	182.9	139.3	49.9	372.2	VERA 入来観測局
		1355.3	194. 7	542.1	45.6	782.4	VERA 石垣島観測局
	464.5	185.4	185.8	62.3	433.5	野辺山宇宙電波観測所	
		762.8	189.7	305.1	55.9	550.7	VERA 水沢観測局
87	隠岐	1312.7	194.4	525.1	48.3	767.8	VERA 小笠原観測局
		559.0	187.0	223.6	51.8	462.4	VERA 入来観測局
		1571.9	196.0	628.7	45.9	870.6	VERA 石垣島観測局
		830.6	190.4	332.3	56.1	578.8	野辺山宇宙電波観測所
		1178.5	193. 5	471.4	54.4	719.3	VERA 水沢観測局
88	壱岐	1402.3	195.0	560.9	52.8	808.7	VERA 小笠原観測局
		230.2	179.3	92.1	51.7	323.0	VERA 入来観測局
		1169.8	193.4	467.9	55.4	716.7	VERA 石垣島観測局
		500.0	186.0	200.0	49.6	435.6	野辺山宇宙電波観測所
		134.4	174.6	53.8	59.3	287.7	VERA 水沢観測局
89	大館能代	1463.0	195.4	585.2	49.2	829.7	VERA 小笠原観測局
		1294.5	194.3	517.8	51.6	763.8	VERA 入来観測局
		2313.7	199.3	925.5	45.4	1170.2	VERA 石垣島観測局
		1313.6	194.4	525.5	60.0	779.9	野辺山宇宙電波観測所
90	南大東	1738.5	196.8	695.4	51.9	944.2	VERA 水沢観測局
		1100.5	192.9	440.2	0.0	633.1	VERA 小笠原観測局

		659.0	188.4	263.6	34.4	486.4	VERA 入来観測局
		732.6	189.3	293.0	50.2	532.6	VERA 石垣島観測局
		1820.6	197.2	728.2	57.1	982.6	野辺山宇宙電波観測所
		2229.2	199.0	891.7	53.8	1144.5	VERA 水沢観測局
91	多良間	1777.2	197.0	710.9	26.3	934.3	VERA 小笠原観測局
		968.3	191.8	387.3	0.0	579.1	VERA 入来観測局
		57.7	167.3	23.1	58.6	248.9	VERA 石垣島観測局
		716.9	189.2	286.8	55.1	531.0	野辺山宇宙電波観測所
		1099.4	192.9	439.8	53.7	686.4	VERA 水沢観測局
92	大分県央	1223.5	193.8	489.4	52.5	735.7	VERA 小笠原観測局
		173.6	176.8	69.5	58.2	304.5	VERA 入来観測局
		1192.9	193.6	477.2	57.1	727.8	VERA 石垣島観測局
		1057.5	192.5	423.0	47.9	663.4	野辺山宇宙電波観測所
		678.5	188.7	271.4	48.1	508.1	VERA 水沢観測局
93	利尻	2016.1	198.1	806.4	45.6	1050.2	VERA 小笠原観測局
		1763.5	197.0	705.4	49.2	951.5	VERA 入来観測局
		2773.4	200. 9	1109.3	37.5	1347.7	VERA 石垣島観測局
		1018.5	192.2	407.4	55.7	655.3	野辺山宇宙電波観測所
		604.5	187.7	241.8	54.8	484.3	VERA 水沢観測局
94	紋別	1912.7	197.7	765.1	54.2	1017.0	VERA 小笠原観測局
		1794.8	197.1	717.9	48.8	963.9	VERA 入来観測局
		2813.2	201.0	1125.3	47.1	1373.4	VERA 石垣島観測局
		1301.1	194. 3	520.4	59.2	774.0	野辺山宇宙電波観測所
		1725.9	196.8	690.4	54.0	941.1	VERA 水沢観測局
95	北大東	1092.5	192.8	437.0	0.0	629.8	VERA 小笠原観測局
		649.0	188.3	259.6	32.7	480.6	VERA 入来観測局
		740.9	189.4	296.4	47.4	533.2	VERA 石垣島観測局
		685.3	188.8	274.1	52.1	515.0	野辺山宇宙電波観測所
		356.6	183.1	142.6	55.5	381.2	VERA 水沢観測局
96	奥尻	1681.0	196.6	672.4	48.4	917.3	VERA 小笠原観測局
		1396.3	194.9	558.5	52.3	805.8	VERA 入来観測局
		2412.2	199.7	964.9	40.1	1204.7	VERA 石垣島観測局
97	枕崎 H						
0.0	下业自	1774.2	197.0	709.7	58.1	964.8	野辺山宇宙電波観測所
98	↑地局	2184.1	198.8	873.7	53.7	1126.2	VERA 水沢観測局

		1726.7	196.8	690.7	0.0	887.5	VERA 小笠原観測局
		926.1	191.4	370.4	23.3	585.1	VERA 入来観測局
		108.8	172.8	43.5	57.4	273.7	VERA 石垣島観測局
99	若狭H						
		1487.6	195.5	595.0	57.9	848.4	野辺山宇宙電波観測所
		1899.3	197.6	759.7	54.3	1011.7	VERA 水沢観測局
100	粟国	1488.7	195.5	595.5	42.0	833.0	VERA 小笠原観測局
		650.6	188.3	260.2	0.0	448.5	VERA 入来観測局
		391.9	183.9	156.7	58.0	398.6	VERA 石垣島観測局
		913.1	191.3	365.2	56.1	612.5	野辺山宇宙電波観測所
		1266.8	194.1	506.7	57.0	757.8	VERA 水沢観測局
101	小値賀	1432.4	195.2	573.0	51.2	819.3	VERA 小笠原観測局
		204.2	178.2	81.7	0.0	259.9	VERA 入来観測局
		1084.6	192.8	433.8	53.6	680.2	VERA 石垣島観測局
102	高崎H						
		234.9	179.5	94.0	55.3	328.7	野辺山宇宙電波観測所
		265.1	180.5	106.0	55.1	341.6	VERA 水沢観測局
103	佐渡	1267.4	194.1	507.0	53.6	754.6	VERA 小笠原観測局
		1009.9	192.1	404.0	50.0	646.1	VERA 入来観測局
		2027.4	198.2	811.0	48.5	1057.7	VERA 石垣島観測局
		911.9	191.2	364.8	55.0	611.0	野辺山宇宙電波観測所
		1270.3	194.1	508.1	57.9	760.1	VERA 水沢観測局
104	上五島	1415.6	195.1	566.2	49.4	810.7	VERA 小笠原観測局
		183.0	177.3	73.2	0.0	250.5	VERA 入来観測局
		1071.7	192.6	428.7	55.9	677.3	VERA 石垣島観測局
105	豊富H						
106	米沢 H						
		1518.8	195.7	607.5	58.0	861.2	野辺山宇宙電波観測所
		1932.6	197.8	773.0	53.6	1024.4	VERA 水沢観測局
107	慶良間	1488.7	195.5	595.5	33.4	824.4	VERA 小笠原観測局
		690.3	188.8	276.1	0.0	464.9	VERA 入来観測局
		369.7	183.4	147.9	59.3	390.5	VERA 石垣島観測局
		1929.0	197.8	771.6	51.7	1021.1	野辺山宇宙電波観測所
108	波照間	2336.3	199.4	934.5	53.5	1187.4	VERA 水沢観測局
		1878.2	197.5	751.3	0.0	948.8	VERA 小笠原観測局

		1072.9	192.7	429.2	0.0	621.8	VERA 入来観測局
		53.9	166.7	21.5	36.2	224.4	VERA 石垣島観測局
		1440.2	195.2	576.1	58.3	829.6	野辺山宇宙電波観測所
		1853.8	197.4	741.5	52.7	991.6	VERA 水沢観測局
109	伊江島	1433.2	195.2	573.3	41.5	809.9	VERA 小笠原観測局
		613.7	187.8	245.5	31.8	465.1	VERA 入来観測局
		444.4	185.0	177.8	60.4	423.2	VERA 石垣島観測局
110	ニセコH						

(※)グレーアウトしている箇所は、ヘリポートのため除外。

24.1 東京国際空港と成田国際空港間の断面情報

表は、東京国際空港から成田国際空港への距離に対する高さ方向の情報を示す。 この情報に従って、ナイフエッジによる回折損失を算出した結果、26.16dBを得た。

(1) 空港FODレーダーの中心周波数					
freq (GHz)	96.00				
λ (m)	0.00				

(2) スタート及びストップ地点、回折地点

	距離	高さ	
start(m)	0.00	5.08	
obs(m)	57910.00	40.38	水平方向での回折地点座標
stop(m)	59707.00	38.82	

(3) 自由空間損失	
損失 (dB)	167.57

(4) ナイフエッジによる回折損失

slope_a	0.000565		
slope_b	-1769.62		
intecept y(m)	102478770.97		
diffraction base point(m)	57910.00	32. 72453	x, y座標
D1 (m)	57910.01		
D2 (m)	1797.01		
H (m)	7.66		
factor v	4.64		
Gdiff (dB)	26.16		

参照文献

- [1] みずほ情報総研、"リニアセル技術を活用した異物検知システムの空港への導入に際しての技術課題に関する調査、" [オンライン]. Available: https://www.mizuhoir.co.jp/case/research/fod2017.html.
- [2] 国土交通省、"空港管理状況、" 平成 30 年. [オンライン]. Available:
 http://www.mlit.go.jp/koku/15_bf_000185.html.
- [3] "Moog Aircraft Group," [オンライン]. Available: https://www.tarsierfod.com/.
- [4] "QinetiQ," [オンライン]. Available: https://www.qinetiq.com/sectors/aviation-and-aerospace/automatic-foreignobject-debris-detection.
- [5] "X-sight," [オンライン]. Available: https://www.xsightsys.com/.
- [6] "Thales," [オンライン]. Available: https://www.thalesgroup.com/en/worldwide/aerospace/fodetectr-automatedforeign-object-debris-detection-system.
- [7] "Stratech," [オンライン]. Available: http://fod-detection.com/wpcontent/uploads/2011/05/Stratech-iFerret-Patent-Announcement-May19.pdf.
- [8] "Trex Aviation Systems," [オンライン]. Available: http://www.infologic.sg/Aviation-Solution/Foreign-Object-&-Debris-Detection-System-(FOD)--radar-based-solution-for-runway-monitoring.
- [9] "Varec," [オンライン]. Available: https://www.varec.com/resources/mobilefod-solutions/.
- [10] "Rheinmetall," [オンライン]. Available: https://www.rheinmetalldefence.com/en/rheinmetall_defence/systems_and_products/aviation_systems/deb_r a/index.php.
- [11] "ELVA-1," [オンライン]. Available: http://elva-1.com/products/a40155.
- [12] "Plextek," [オンライン]. Available: https://www.plextek.com/wpcontent/uploads/Millimetre-Wave-Radar-for-Runway-FOD.pdf.
- [13] "Pavemetrics," [オンライン]. Available: http://www.pavemetrics.com/applications/airfield-inspection/laser-foddetection-system/.
- [14] "ArgosAI," [オンライン]. Available: https://www.argosai.com/.
- [15] 代表 柴垣信彦(日立国際電気), "電波資源拡大のための研究開発 第9回成果発表会

(平成 28 年)," 平成 28 年.

- [16] 総務省、"第4章 周波数区分ごとの評価結果、" 2018. [オンライン]. Available: https://www.tele.soumu.go.jp/resource/j/research/result/h30/H30_H_Chapter_4.pd f.
- [17] ITU 2016, "Redio Regulations (Articles)," 2016. [オンライン].
- [18] "電波天文業務の用に供する受信設備," 電波関係告示集.
- [19] 総務省、"参考 2 各システムの概要、" 2018. [オンライン]. Available: https://www.tele.soumu.go.jp/resource/j/research/result/h30/H30_H_sankou_2.pdf
- [20] ITU-R, "Protection criteria used for radio astronomical measurements," Rec. ITU-R RA. 769-2, 2003.
- [21] ITU-R, "Levels of data loss to radio astronomy observations and percentageof-time criteria resulting from degradation by interference for frequency bands allocated to the radio astronomy service on a primary basis," Rec. ITU-R RA. 1513-2, 2015.
- [22] ITU-R, "Typical technical and operational characteristics of Earth exploration-satellite service (active) systems using allocations between 432 MHz and 238 GHz," Rec. ITU-R RS.2105-0, 2017.
- [23] ITU-R, "Typical technical and operational characteristics of Earth exploration-satellite service (passive) systems using allocations between 1.4 and 275 GHz," Rec. ITU-R RS. 1861, 2010.
- [24] ITU-R, "Performance and interference criteria* for active spaceborne sensors," Rec. ITU-R RS. 1166-4, 2009.
- [25] ITU-R, "Performance and interference criteria for satellite passive remote sensing," Rec. ITU-R RS. 2017-0, 2012.
- [26] 宇宙航空研究開発機構, "EarthCARE、雲プロファイリングレーダー(CPR)," [オンライン]. Available: https://www.eorc.jaxa.jp/EARTHCARE/about/inst_cpr_j.html.
- [27] 宇宙航空研究開発機構, "GCOM-W1 (水循環変動観測衛星)," [オンライン]. Available: https://suzaku.eorc.jaxa.jp/GCOM_W/w_amsr2/amsr2_body_main_j.html.

参考資料 2 : ITU-R, "Protection criteria used for radio astronomical measurements," Rec. ITU-R RA.769-2, 2003.

RECOMMENDATION ITU-R RA.769-2

Protection criteria used for radio astronomical measurements

(Question ITU-R 145/7)

(1992-1995-2003)

The ITU Radiocommunication Assembly,

considering

a) that many of the most fundamental astronomical advances made in the past five decades, (e.g. the discovery of radio galaxies, quasars, and pulsars, the direct measurement of neutral hydrogen, the direct measurement of distances of certain external galaxies, and establishment of a positional reference frame accurate to ~ 20 arc \Box s) have been made through radio astronomy, and that radio astronomical observations are expected to continue making fundamental contributions to our understanding of the Universe, and that they provide the only way to investigate some cosmic phenomena;

b) that the development of radio astronomy has also led to major technological advances, particularly in receiving and imaging techniques, and to improved knowledge of fundamental radio-noise limitations of great importance to radiocommunication, and promises further important results;

c) that radio astronomers have made useful astronomical observations from the Earth's surface in all available atmospheric windows ranging from 2 MHz to 1 000 GHz and above;

d) that the technique of space radio astronomy, which involves the use of radio telescopes on space platforms, provides access to the entire radio spectrum above about 10 kHz, including parts of the spectrum not accessible from the Earth due to absorption in atmosphere;

e) that protection from interference is essential to the advancement of radio astronomy and associated measurements;

f) that radio astronomical observations are mostly performed with high-gain antennas or arrays, to provide the highest possible angular resolution, and consequently main beam interference does not need to be considered in most situations, except when there is the possibility of receiver damage;

g) that most interference that leads to the degradation of astronomical data is received through the far side lobes of the telescope;

h) that the sensitivity of radio astronomical receiving equipment, which is still steadily improving, particularly at millimetre wavelengths, and that it greatly exceeds the sensitivity of communications and radar equipment;

j) that typical radio astronomical observations require integration times of the order of a few minutes to hours, but that sensitive observations, particularly of spectral lines, may require longer periods of recording, sometimes up to several days; k) that some transmissions from spacecraft can introduce problems of interference to radio astronomy and that these cannot be avoided by choice of site for an observatory or by local protection;

l) that interference to radio astronomy can be caused by terrestrial transmissions reflected by the Moon, by aircraft, and possibly by artificial satellites;

m) that some types of high spatial-resolution interferometric observations require simultaneous reception, at the same radio frequency, by widely separated receiving systems that may be located in different countries, on different continents, or on space platforms;

n) that propagation conditions at frequencies below about 40 MHz are such that a transmitter operating anywhere on the Earth might cause interference detrimental to radio astronomy;

o) that some degree of protection can be achieved by appropriate frequency assignments on a national rather than an international basis;

p) that WRCs have made improved allocations for radio astronomy, particularly above 71 GHz, but that protection in many bands, particularly those shared with other radio services, may still need careful planning;

q) that technical criteria concerning interference detrimental to the radio astronomy service (RAS) have been developed, which are set out in Tables 1, 2, and 3,

recommends

1 that radio astronomers should be encouraged to choose sites as free as possible from interference;

2 that administrations should afford all practicable protection to the frequencies and sites used by radio astronomers in their own and neighbouring countries and when planning global systems, taking due account of the levels of interference given in Annex 1;

3 that administrations, in seeking to afford protection to particular radio astronomical observations, should take all practical steps to reduce all unwanted emissions falling within the band of the frequencies to be protected for radio astronomy to the absolute minimum. Particularly those emissions from aircraft, high altitude platform stations, spacecraft and balloons;

4 that when proposing frequency allocations, administrations take into account that it is very difficult for the RAS to share frequencies with any other service in which direct line-of-sight paths from the transmitters to the observatories are involved. Above about 40 MHz sharing may be practicable with services in which the transmitters are not in direct line-of-sight of the observatories, but coordination may be necessary, particularly if the transmitters are of high power.

Annex 1

Sensitivity of radio astronomy systems

1 General considerations and assumptions used in the calculation of interference levels

1.1 Detrimental-level interference criterion

The sensitivity of an observation in radio astronomy can be defined in terms of the smallest power level change ΔP in the power level *P* at the radiometer input that can be detected and measured. The sensitivity equation is:

$$\frac{\Delta P}{P} = \frac{1}{\sqrt{\Delta f_0 t}} \tag{1}$$

where:

P and ΔP : power spectral density of the noise

- Δf_0 : bandwidth
 - *t*: integration time. *P* and ΔP in equation (1) can be expressed in temperature units through the Boltzmann's constant, *k*:

$$\Delta P = k \ \Delta T; \quad \text{also} \quad P = k \ T \qquad \Box \Box \Box$$

Thus we may express the sensitivity equation as:

$$\Delta T = \frac{T}{\sqrt{\Delta f_0 t}} \tag{3}$$

where:

$$T = T_A + T_R$$

This result applies for one polarization of the radio telescope. *T* is the sum of T_A (the antenna noise temperature contribution from the cosmic background, the Earth's atmosphere and radiation from the Earth) and T_R , the receiver noise temperature. Equations (1) or (3) can be used to estimate the sensitivities and interference levels for radio astronomical observations. The results are listed in Tables 1 and 2. An observing (or integration) time, *t*, of 2 000 s is assumed, and interference threshold levels, ΔP_H , given in Tables 1 and 2 are expressed as the interference power within the bandwidth Δf that introduces an error of 10% in the measurement of ΔP (or ΔT), i.e.:

$$\Delta P_H = 0.1 \,\Delta P \,\Delta f \tag{4}$$

In summary, the appropriate columns in Tables 1 and 2 may be calculated using the following methods:

- ΔT , using equation (3),
- ΔP , using equation (2),
- ΔP_H , using equation (4).

The interference can also be expressed in terms of the pfd incident at the antenna, either in the total bandwidth or as a spectral pfd, S_H , per 1 Hz of bandwidth. The values given are for an antenna having a gain, in the direction of arrival of the interference, equal to that of an isotropic antenna (which has an effective area of $c^2/4\pi f^2$, where *c* is the speed of the light and *f* the frequency). The gain of an isotropic radiator, 0 dBi, is used as a general representative value for the side-lobe level, as discussed under § 1.3.

Values of $S_H \Delta f$ (dB(W/m²)), are derived from ΔP_H by adding:

$$20 \log f - 158.5 \quad \text{dB}$$
 (5)

where f(Hz). S_H is then derived by subtracting 10 log $\Delta f(Hz)$ to allow for the bandwidth.

1.2 Integration time

The calculated sensitivities and interference levels presented in Tables 1 and 2 are based on assumed integration times of 2 000 s. Integration times actually used in astronomical observations cover a wide range of values. Continuum observations made with single-antenna telescopes (as distinct from interferometric arrays) are well represented by the integration time of 2 000 s, typical of good quality observations. On the other hand 2 000 s is less representative of spectral line observations. Improvements in receiver stability and the increased use of correlation spectrometers have allowed more frequent use of longer integration times required to observe weak spectral lines, and spectral line observations lasting several hours are quite common. A more representative integration time for these observations would be 10 h. For a 10 h integration, the threshold interference level is 6 dB more stringent than the values given in Table 2. There are also certain observations of time varying phenomena, e.g. observations of pulsars, stellar or solar bursts, and interplanetary scintillations for which much shorter time periods may be adequate.

1.3 Antenna response pattern

Interference to radio astronomy is almost always received through the antenna side lobes, so the main beam response to interference need not be considered.

The side-lobe model for large paraboloid antennas in the frequency range 2 to 30 GHz, given in Recommendation ITU-R SA.509 is a good approximation of the response of many radio astronomy antennas and is adopted throughout this Recommendation as the radio astronomy reference antenna. In this model, the side-lobe level decreases with angular distance (degrees) from the main beam axis and is equal to $32 - 25 \log \varphi$ (dBi) for $1^{\circ} \Box \varphi \Box 48^{\circ}$. The effect of an interfering signal clearly depends upon the angle of incidence relative to the main beam axis of the antenna, since the side-lobe gain, as represented by the model, varies from 32 to -10 dBi as a function of this angle. However, it is useful to calculate the threshold levels of interference strength for a particular value of side-lobe gain, that we choose as 0 dBi, and use in Tables 1 to 3. From the model, this side-lobe level occurs at an angle of 19.05° from the main beam axis. Then a signal at the detrimental threshold level defined for 0 dBi side-lobe gain will exceed the criterion for the detrimental level at the receiver input if it is incident at the antenna at an angle of less than 19.05°. The solid angle

within a cone of angular radius 19.05° is 0.344 sr, which is equal to 5.5% of the 2π sr of the sky above the horizon that a radio telescope is able to observe at any given time. Thus if the probability of the angle of incidence of interference is uniformly distributed over the sky, about 5.5% of interfering signals would be incident within 19.05° of the main beam axis of an antenna pointed towards the sky. Note also that the 5.5% figure is in line with the recommended levels of data loss to radio astronomy observations in percentage of time, specified in Recommendation ITU-R RA.1513.

The particular case of non-GSO satellites presents a dynamic situation, that is, the positions of the satellites relative to the beam of the radio astronomy antenna show large changes within the time scale of the 2 000 s integration time. Analysis of interference in this case requires integrating the response over the varying side-lobe levels, for example, using the concept of epfd defined in No. 22.5C of the Radio Regulations (RR). In addition it is usually necessary to combine the responses to a number of satellites within a particular system. In such calculations it is suggested that the antenna response pattern for antennas of diameter greater than 100 λ in Recommendation ITU-R S.1428 be used to represent the radio astronomy antenna, until a model based specifically on radio astronomy antennas is available; see § 2.2 for further discussion.

1.4 Bandwidth

Equation (1) shows that observations of the highest sensitivity are obtained when radio astronomers make use of the widest possible bandwidth. Consequently, in Table 1 (continuum observations), Δf is assumed to be the width of the allocated radio astronomy bands for frequencies up to 71 GHz. Above 71 GHz a value of 8 GHz is used, which is a representative bandwidth generally used on radio astronomy receivers in this range. In Table 2 (spectral line observations) a channel bandwidth Δf equal to the Doppler shift corresponding to 3 km/s in velocity is used for entries below 71 GHz. This value represents a compromise between the desired high spectral resolution and the sensitivity. There are a very large number of astrophysically important lines above 71 GHz, as shown in Recommendation ITU-R RA.314 and only a few representative values for the detrimental levels are given in Table 2 for the range 71-275 GHz. The channel bandwidth used to compute the detrimental levels above 71 GHz is 1000 kHz (1 MHz) in all cases. This value was chosen for practical reasons. While it is slightly wider than the spectral channel width customary in radio astronomy receivers at these frequencies, it is used as the standard reference bandwidth for space services above 15 GHz.

1.5 Receiver noise temperature and antenna temperature

The receiver noise temperatures in Tables 1 and 2 are representative of the systems in use in radio astronomy. For frequencies above 1 GHz these are cryogenically cooled amplifiers or mixers. The quantum effect places a theoretical lower limit of hf/k on the noise temperature of such devices, where *h* and *k* are Planck's and Boltzmann's constants, respectively. This limit becomes important at frequencies above 100 GHz, where it equals 4.8 K. Practical mixers and amplifiers for bands at 100 GHz and higher provide noise temperatures greater than hf/k by a factor of about four. Thus, for frequencies above 100 GHz, noise temperatures equal to 4hf/k are used in Tables 1 and 2.

The antenna temperatures in the Tables are also representative of practical systems in use in radio astronomy. They include the effects of the ionosphere or the neutral atmosphere, ground pickup in side lobes resulting from spillover or scattering, ohmic losses, and the cosmic microwave background. At frequencies above 100 GHz the atmospheric losses due to water vapour in the neutral atmosphere become very important. For these frequencies the values given are typical of the terrestrial sites used for major millimetric-wave radio astronomy facilities, such as Mauna Kea, Hawaii, or the Llano de Chajnantor at an elevation of 5 000 m in Chile, which is the site chosen for a major international radio astronomy array for frequencies in the range 30 GHz to 1 THz.

2 Special cases

The levels given in Tables 1 and 2 are applicable to terrestrial sources of interfering signals. The detrimental pfd and spectral pfd shown in Tables 1 and 2 assume that interference is received through a 0 dBi side lobe, and should be regarded as the general interference criteria for high sensitivity radio astronomy observations, when the interference does not enter the near side lobes.

2.1 Interference from GSO satellites

Interference from GSO satellites is a case of particular importance. Because the power levels in Tables 1 and 2 were calculated based on a 0 dBi antenna gain, interference detrimental to radio astronomy will be encountered when a reference antenna, such as described in Recommendation ITU-R SA.509, is pointed within 19.05° of a satellite radiating at levels in accordance with those listed in the Tables. A series of such transmitters located around the GSO would preclude radio astronomy observations with high sensitivity from a band of sky 38.1° wide and centred on the orbit. The loss of such a large area of sky would impose severe restrictions on radio astronomy observations.

In general, it would not be practical to suppress the unwanted emissions from satellites to below the detrimental level when the main beam of a radio telescope is pointed directly towards the satellite. A workable solution is suggested by observing the projection of the GSO in celestial coordinates as viewed from the latitudes of a number of major radio astronomy observations (see Recommendation ITU-R RA.517). If it were possible to point a radio telescope to within 5° of the GSO without encountering detrimental interference, then for that telescope a band of sky 10° wide would be unavailable for high-sensitivity observations. For a given observatory this would be a serious loss. However, for a combination of radio telescopes located at northern and southern latitudes, operating at the same frequencies, the entire sky would be accessible. A value of 5° should therefore be regarded as the requirement for minimum angular spacing between the main beam of a radio astronomy antenna and the GSO.

In the model antenna response of Recommendation ITU-R SA.509, the side-lobe level at an angle of 5° from the main beam is 15 dBi. Thus, to avoid interference detrimental to a radio telescope meeting the antenna side-lobe performance of Recommendation ITU-R SA.509, pointed to within 5° of the transmitter, it is desirable that the satellite emissions be reduced 15 dB below the pfd given in Tables 1 and 2. When satellites are spaced at intervals of only a few degrees along the GSO, the emission levels associated with the individual transmitters must be even lower to meet the requirement that the sum of the powers of all the interfering signals received should be 15 dB below ΔP_H in Tables 1 and 2.

It is recognized that the emission limitations discussed above cannot, in practice, be achieved so as to enable sharing of the same frequency band between radio astronomy and down-link transmissions from satellites to take place. The limitations are, however, applicable to unwanted emission from the satellite transmitters, which fall within the radio astronomy bands listed in Tables 1 and 2. These emission limitations have implications for the space services responsible for the interference, which require careful evaluation. Furthermore, the design of new radio astronomy antennas should strive to minimize the level of side-lobe gain near the main beam as an important means of reducing interference from transmitters in the GSO.

2.2 Interference from non-GSO satellites

In the case of non-GSO satellites, and in particular for low-Earth orbit satellites, the systems usually involve constellations of many individual satellites. Thus determination of interference levels requires analysis of the combined effect of many signals, most of which are received through far side lobes of the radio astronomy antenna. A more detailed side-lobe model than that of Recommendation ITU-R SA.509 is therefore desirable, and it is proposed that the model in Recommendation ITU-R S.1428 be used until such time as a more representative model for radio astronomy antennas is obtained. In using this proposed model the case for antennas with diameter greater than $100 \square$ is generally appropriate for radio astronomy applications. It should be noted that Note 1 of Recommendation ITU-R S.1428, which allows cross-polarized components to be ignored, cannot be applied since radio astronomy antennas generally receive signals in two orthogonal polarizations simultaneously. The motion of non-GSO satellites across the sky during a 2000 s integration period requires that the interference level be averaged over this period, that is, the response to each satellite must be integrated as the satellite moves through the side-lobe pattern. One system of analysis that includes these requirements is the epfd method described in RR No. 22.5C. Values of epfd represent the pfd of a signal entering the antenna through the centre of the main beam that would produce an equivalent level of interference power. Since the threshold levels of detrimental interference in Tables 1 and 2 correspond to pfd received with an antenna gain of 0 dBi, it is necessary to compare them with values of (epfd \Box G_{mb}), where G_{mb} is the main beam gain, to determine whether the interference exceeds the detrimental level. Making use of the epfd method, Recommendation ITU-R S.1586 has recently been developed for interference calculations between radio astronomy telescopes and FSS non-GSO satellite systems. A similar Recommendation, Recommendation ITU-R M.1583 was developed for interference calculations between radio astronomy telescopes and MSS and radionavigation-satellite service non-GSO satellite systems. The applicability of the protection criteria given in Tables 1 and 2 is described in Recommendation ITU-R RA.1513.

2.3 The response of interferometers and arrays to radio interference

Two effects reduce the response to interference. These are related to the frequency of the fringe oscillations that are observed when the outputs of two antennas are combined, and to the fact that the components of the interfering signal received by different and widely-spaced antennas will suffer different relative time delays before they are recombined. The treatment of these effects is more complicated than that for single antennas in § 1. Broadly speaking, if the strength of the received interfering signal remains constant, the effect is reduced by a factor roughly equal to the

mean time of one natural fringe oscillation divided by the data averaging time. This typically ranges from some seconds for a compact array with the longest projected spacing $L' \sim 10^3 \lambda$, where λ is the wavelength, to less than 1 ms for intercontinental arrays with $L' \square 10^7 \lambda$. Thus, compared to a single radio telescope, the interferometer has a degree of immunity to interference which, under reasonable assumptions increases with the array size expressed in wavelengths.

The greatest immunity from interference occurs for interferometers and arrays in which the separation of the antennas is sufficiently great that the chance of occurrence of correlated interference is very small (e.g. for very long baseline interferometry (VLBI)). In this case, the above considerations do not apply. The tolerable interference level is determined by the requirement that the power level of the interfering signal should be no more than 1% of the receiver noise power to prevent serious errors in the measurement of the amplitude of the cosmic signals. The interference levels for typical VLBI observations are given in Table 3, based on the values of T_A and T_R given in Table 1.

It must be emphasized that the use of large interferometers and arrays is generally confined to studies of discrete, high-brightness sources, with angular dimensions no more than a few tenths of a second of arc for VLBI. For more general studies of radio sources, the results in Tables 1 and 2 apply and are thus appropriate for the general protection of radio astronomy.

TABLE 1

Threshold levels of interference detrimental to radio astronomy continuum observations

Centre	Assumed	Minimum	Receiver noise	System ser (noise fluc	nsitivity ⁽²⁾ ctuations)	Th	reshold interference	e levels ^{(2) (3)}
frequency ⁽¹⁾ f _c (MHz)	bandwidth △f (MHz)	antenna noise temperature <i>T_A</i> (K)	temperature <i>T_R</i> (K)	Temperature △ <i>T</i> (mK)	Power spectral density △P (dB(W/Hz))	Input power △P _H (dBW)	pfd $S_H riangle f$ (dB(W/m ²))	Spectral pfd <i>S_H</i> (dB(W/(m ² · Hz)))
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
13.385	0.05	50 000	60	5 000	-222	-185	-201	-248
25.610	0.12	15 000	60	972	-229	-188	-199	-249
73.8	1.6	750	60	14.3	-247	-195	-196	-258
151.525	2.95	150	60	2.73	-254	-199	-194	-259
325.3	6.6	40	60	0.87	-259	-201	-189	-258
408.05	3.9	25	60	0.96	-259	-203	-189	-255
611	6.0	20	60	0.73	-260	-202	-185	-253
1 413.5	27	12	10	0.095	-269	-205	-180	-255
1 665	10	12	10	0.16	-267	-207	-181	-251
2 695	10	12	10	0.16	-267	-207	-177	-247
4 995	10	12	10	0.16	-267	-207	-171	-241
10650	100	12	10	0.049	-272	-202	-160	-240
15 375	50	15	15	0.095	-269	-202	-156	-233
22 355	290	35	30	0.085	-269	-195	-146	-231
23 800	400	15	30	0.050	-271	-195	-147	-233
31 550	500	18	65	0.083	-269	-192	-141	-228
43 000	1 000	25	65	0.064	-271	-191	-137	-227
89 000	8 000	12	30	0.011	-278	-189	-129	-228
150 000	8 000	14	30	0.011	-278	-189	-124	-223
224 000	8 000	20	43	0.016	-277	-188	-119	-218
270 000	8 000	25	50	0.019	-276	-187	-117	-216

⁽¹⁾ Calculation of interference levels is based on the centre frequency shown in this column although not all regions have the same allocations.

(2) An integration time of 2 000 s has been assumed; if integration times of 15 min, 1 h, 2 h, 5 h or 10 h are used, the relevant values in the Table should be adjusted by +1.7, -1.3, -2.8, -4.8 or -6.3 dB respectively.

(3) The interference levels given are those which apply for measurements of the total power received by a single antenna. Less stringent levels may be appropriate for other types of measurements, as discussed in § 2.2. For transmitters in the GSO, it is desirable that the levels be adjusted by -15 dB, as explained in § 2.1.

TABLE 2^*

	Assumed spectral	Minimum	Receiver noise	System ser (noise fluc	nsitivity ⁽²⁾ tuations)	Th	reshold interference	e levels ^{(1) (2)}
Frequency f (MHz)	ine channel bandwidth Δf (kHz)	antenna noise temperature <i>TA</i> (K)	temperature <i>T_R</i> (K)	Temperature △ <i>T</i> (mK)	Power spectral density △Ps (dB(W/Hz))	Input power △P _H (dBW)	pfd $S_H \bigtriangleup f$ (dB(W/m ²))	Spectral pfd <i>S_H</i> (dB(W/(m ² · Hz)))
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
327	10	40	60	22.3	-245	-215	-204	-244
1 420	20	12	10	3.48	-253	-220	-196	-239
1612	20	12	10	3.48	-253	-220	-194	-238
1 665	20	12	10	3.48	-253	-220	-194	-237
4830	50	12	10	2.20	-255	-218	-183	-230
14 488	150	15	15	1.73	-256	-214	-169	-221
22 200	250	35	30	2.91	-254	-210	-162	-216
23 700	250	35	30	2.91	-254	-210	-161	-215
43 000	500	25	65	2.84	-254	-207	-153	-210
48 000	500	30	65	3.00	-254	-207	-152	-209
88 600	1 000	12	30	0.94	-259	-209	-148	-208
150 000	1 000	14	30	0.98	-259	-209	-144	-204
220 000	1 000	20	43	1.41	-257	-207	-139	-199
265 000	1 000	25	50	1.68	-256	-206	-137	-197

Threshold levels of interference detrimental to radio astronomy spectral-line observations

* This Table is not intended to give a complete list of spectral-line bands, but only representative examples throughout the spectrum.

(1) An integration time of 2 000 s has been assumed; if integration times of 15 min, 1 h, 2 h, 5 h or 10 h are used, the relevant values in the Table should be adjusted by \Box 1.7, -1.3, -2.8, -4.8 or -6.3 dB respectively.

(2) The interference levels given are those which apply for measurements of the total power received by a single antenna. Less stringent levels may be appropriate for other types of measurements, as discussed in § 2.2. For transmitters in the GSO, it is desirable that the levels need to be adjusted by -15 dB, as explained in § 2.1.

COLUMN DESCRIPTIONS FOR TABLES 1 AND 2

Column

- Centre frequency of the allocated radio astronomy band (Table 1) or nominal spectral line frequency (Table 2).
- (2) Assumed or allocated bandwidth (Table 1) or assumed typical channel widths used for spectral line observations (Table 2).
- (3) Minimum antenna noise temperature includes contributions from the ionosphere, the Earth's atmosphere and radiation from the Earth.
- (4) Receiver noise temperature representative of a good radiometer system intended for use in high sensitivity radio astronomy observations.
- (5) Total system sensitivity (mK) as calculated from equation (1) using the combined antenna and receiver noise temperatures, the listed bandwidth and an integration time of 2000 s.
- (6) Same as (5) above, but expressed in noise power spectral density using the equation $\Delta P \Box k \Delta T$, where $k \Box 1.38 \Box 10^{-23}$ (J/K) (Boltzmann's constant). The actual numbers in the Table are the logarithmic expression of ΔP .
- (7) Power level at the input of the receiver considered harmful to high sensitivity observations, ΔP_H . This is expressed as the interference level which introduces an error of not more than 10% in the measurement of ΔP ; $\Delta P_H \square 0.1 \Delta P \Delta f$: the numbers in the Table are the logarithmic expression of ΔP_H .
- (8) pfd in a spectral line channel needed to produce a power level of ΔP_H in the receiving system with an isotropic receiving antenna. The numbers in the Table are the logarithmic expression of $S_H \Delta f$.
- (9) Spectral pfd needed to produce a power level ΔP_H in the receiving system with an isotropic receiving antenna. The numbers in the Table are the logarithmic expression of S_H . To obtain the corresponding power levels in a reference bandwidth of 4 kHz or 1 MHz add 36 dB or 60 dB, respectively.

TABLE 3

Centre frequency (MHz)	Threshold level (dB(W/m ² · Hz)))
325.3	-217
611	-212
1413.5	-211
2 6 9 5	-205
4995	-200
10650	-193
15375	-189
23 800	-183
43 000	-175
86 000	-172

Threshold interference levels for VLBI observations

参考資料 3 : ITU-R, "Levels of data loss to radio astronomy observations and percentage-of-time criteria resulting from degradation by interference for frequency bands allocated to the radio astronomy service on a primary basis," Rec. ITU-R RA.1513-2, 2015.

RECOMMENDATION ITU-R RA.1513-2*

Levels of data loss to radio astronomy observations and percentage-of-time criteria resulting from degradation by interference for frequency bands allocated to the radio astronomy service on a primary basis

(2001-2003-2015)

Scope

This Recommendation addresses the levels of data loss to radio astronomy observations and percentageof-time criteria resulting from degradation by interference for frequency bands allocated to the radio astronomy service on a primary basis. It includes studies of sharing situations for terrestrial and spacebased applications, as well as an extensive section on measurement of data loss from weak, pulsed interference.

The ITU Radiocommunication Assembly,

considering

a) that research in radio astronomy depends critically upon the ability to make observations at the extreme limits of sensitivity and/or precision, and that the growing use of the radio spectrum increases the possibility of interference detrimental to the radio astronomy service (RAS);

b) that for some radio astronomy observations, such as those involving the passage of a comet, an occultation by the moon, or a supernova explosion, a high probability of success is desirable because of the difficulty or impossibility of repeating them;

c) that since interference to radio astronomy can result from unwanted emissions of services in adjacent, nearby, or harmonically related bands, interference from several services or systems may occur in any single radio astronomy band;

d) that burden sharing may be necessary to facilitate the efficient use of the radio spectrum;

e) that mitigation techniques are a part of burden sharing, and more advanced techniques are being developed for future implementation, to allow more efficient use of the radio spectrum;

f) that threshold levels of interference (assuming 0 dBi antenna gain) detrimental to the RAS for 2 000 s integration times are given in Recommendation ITU-R RA.769, but that no acceptable percentage of

^{*} Radiocommunication Study Group 7 made editorial amendments to this Recommendation in the year 2017 in accordance with Resolution ITU-R 1.

time has been established for interference from services with transmissions randomly distributed in time and either sharing a frequency band with the RAS, or producing unwanted emissions that fall within a radio astronomy band;

g) that administrations may require criteria for evaluation of interference between the RAS and other services in shared, adjacent, nearby, or harmonically related bands;

h) that methods (e.g. the Monte Carlo method) have been developed to determine the appropriate separation distance between radio astronomy sites and an aggregate of mobile earth stations, and that these methods require the specification of an acceptable percentage of time during which the aggregate interference power exceeds the threshold levels detrimental to the RAS;

i) that studies of sharing scenarios and experience gained from long practice have led to values of tolerable time loss due to degradation of sensitivity, on time scales of a single observation, which are explained in more detail in Annex 1,

recommends

1 that, for evaluation of interference, a criterion of 5% be used for the aggregate data loss to the RAS due to interference from all networks, in any frequency band allocated to the RAS on a primary basis, noting that further studies of the apportionment between different networks are required;

2 that, for evaluation of interference, a criterion of 2% be used for data loss to the RAS due to interference from any one network, in any frequency band, which is allocated to the RAS on a primary basis;

3 that the percentage of data loss, in frequency bands allocated to the RAS on a primary basis be determined by using one of the following: (1) Recommendation ITU-R S.1586; (2) Recommendation ITU-R M.1583, or (3) the percentage of integration periods of 2 000 s in which the average spectral pfd at the radio telescope exceeds the levels defined (assuming 0 dBi antenna gain) in Recommendation ITU-R RA.769, whichever is appropriate;

4 that the criteria described in § 3.3.2 of Annex 1 be used for evaluation of interference, in any frequency band allocated to the RAS on a primary basis, from unwanted emissions produced by any non-GSO satellite system at radio astronomy sites.

1 Introduction

An important parameter for all radiocommunication services is the percentage of time lost to interference. Administrations may need quantitative criteria relative to radio astronomy operations with active services operating in the same, adjacent, nearby, or harmonically related bands. For example, Recommendation ITU-R M.1316 uses this percentage of time lost to interference in the calculation of the separation distance by default between stations operating in the MSS (Earth-to-space) and a radio astronomy observatory, by using the Monte Carlo methodology.

Existing limits to the aggregate time losses tolerated by various other «science» services are given in Table 1, for comparison.

TABLE 1

Example of criteria for aggregate percentage of time of data loss use for other science services

Earth exploration-satellite service (EESS) (passive sensors) (%) (Recommendation ITU-R SA.1029-2):	
 3-D atmospheric sounding All other sensors 	0.01 1.0-5.0
Command and data transmission systems operating in the earth exploration-satellite and meteorological-satellite services (%) (Recommendation ITU-R SA.514-3)	0.1-1.0
EES and MetSat services using spacecraft in geostationary orbit (%) (Recommendation ITU-R SA.1161-1)	0.0025-0.1
Space operations systems $S/N \square 20$ dB for $\square 99\%$ of time (%) (Recommendation ITU-R SA.363-5)	1.0

Radio telescopes are designed to operate continuously, following a schedule of observing programs requested by astronomers. As a rule, access to radio telescopes is on a competitive basis, with research proposals often exceeding available telescope time by a factor of 2-3. Virtually all radio astronomy installations are operated out of public funds, and must be used very efficiently. Some loss of observing time resulting from maintenance or upgrading of hardware or software, however, cannot be avoided. Experience over many years of operation with major instruments by one administration shows that such losses need not exceed 5% of time, for example one 8 h day per week. Considerations of overall efficiency and cost of operation indicate that the additional aggregate time loss due to interference should be limited to a similar 5% figure.

In order to achieve the figures shown in Table 1, individual services should design their systems and control their operations to an appropriate fraction of these figures. Prudence dictates that individual systems be allowed only a fraction of the interference budget, depending on factors related to the actual allocation situation, such as band sharing and the interference potential due to unwanted emissions from other services. It should be noted that the concept of aggregate data loss is not fully developed at present. Simulation tools, such as the one described in Recommendation ITU-R M.1316, allow the case of interference resulting from a single system to be considered. Other methodologies for single systems are also being developed. At this time there is no similar tool for the case of aggregate data loss resulting from several systems. A method that takes into account the characteristics of several systems may be difficult to develop. A particular difficulty is the apportionment of the aggregate data loss among the various systems. Further studies of these problems are needed.

The advent of radio services using space stations and high-altitude platform stations requires reassessment

of the measures by which the RAS is protected from interference. Frequency sharing with such services is normally impossible, but potentially negative effects upon the RAS by services in nearby bands arise through two factors:

a) unwanted emissions falling in bands allocated to the RAS;

b)

intermodulation and departures from linearity in radio telescope systems due to strong signals in adjacent bands.

It is assumed that the satellite operators will use all practical means to minimize unwanted emissions, and radio astronomers all practical methods to minimize sensitivity to signals in adjacent or nearby bands. Nevertheless, item b) should be an important consideration when operating systems in bands adjacent or close to bands allocated to the RAS.

2 Data loss and sky blockage

Whenever data loss is mentioned in this Recommendation, it refers to data that have to be discarded because they are contaminated by the aggregate interference, from one or more sources that exceeds the levels of Recommendation ITU-R RA.769, under the assumptions stated therein. The term blockage is used here to indicate antenna directions in which the level of interference received exceed those given for detrimental interference in Recommendation ITU-R RA.769. In the presence of such interference, data useful for research at the frontiers of knowledge is generally not obtainable. Data loss may result from loss of part of the observing band, part of the observing time or from blockage of part of the sky. All of these can be expressed as loss of effective observing time.

It is stated in Recommendation ITU-R RA.1031 that many radio astronomy measurements can tolerate interference from a shared service which exceeds the thresholds given in Recommendation ITU-R RA.769, for 2% of time. It should be noted that such observations, which can tolerate enhanced measurement errors, represent observations such as solar radio flare patrols. Observations of significance in radio astronomy are those which result in new knowledge of astronomical phenomena, which either require making observations of objects not previously studied, or observing known objects with increased precision. Both such cases call for observations at the highest achievable sensitivity. As radio astronomy has matured, the usefulness of data which is limited in accuracy by the presence of interference has declined, and it is the usual practice of astronomers to delete data for which there is any evidence of interference. Thus it is a matter of practical reality that interference occurring at any identifiable level results in loss of the contaminated data.

The 0 dBi contour of the pattern for large antennas between 2 GHz and about 30 GHz defined in Recommendation ITU-R SA.509 has a radius of 19°. When a radio telescope points less than 19° from a transmitter, emitting in a radio astronomy band at the detrimental level defined in Recommendation ITU-R RA.769, interference results. This effectively blocks radio astronomy observation within a region of the sky 19° in angular radius. Fractional sky blockage is the ratio of sky blockage (above the horizon), as defined above, to the solid angle of the visible hemisphere.

Figure 1 shows the effect of a hypothetical transmitter on the horizon at the origin of the azimuth scale, which just meets the spectral pfd level of Recommendation ITU-R RA.769 at a radio astronomy station. The contours in the figure show the decibel level by which the received power from the transmitter exceeds the

level at which it is detrimental to radio astronomy, as a function of the pointing angle of the radio astronomy antenna. The received transmission causes detrimental interference when it is received in sidelobes of the radio astronomy antenna with gain greater than 0 dBi. Table 2 shows the percentage of sky receiving such detrimental interference, for pointing angles of the antenna at elevations above 5°. Since radio astronomy antennas are rarely pointed below 5°, this is the lowest elevation considered. For a source of interference above an elevation angle of 19° (such as an airborne or space transmitter) for which the spectral pfd at a radio astronomy station just meets the level in Recommendation ITU-R RA.769, a circular area of sky, with a radius of 19° centred on the source of interference, is blocked from radio astronomy observation at useful levels of sensitivity. This area subtends a solid angle of 0.344 sr, which is 5.5% of the 2π sr of sky above the horizon.

The application of the concept of sky blockage in a non-stationary environment (e.g. non-GSO satellite systems or mobiles) requires further study.

3 Sharing situations

In assessing interference it is useful to distinguish between transmissions of terrestrial origin, particularly in cases where there is no line-of-sight (LoS) path, and those coming from aircraft, high-altitude platforms and space-based transmitters in LoS of the affected radio telescope. Concerning the percentage of observing time lost, one should distinguish between interference from distant transmitters due to variable propagation conditions (i.e. beyond human control) and interference from active applications where the emission is effectively random with respect to the power level and the angle of arrival at a radio telescope (see § 3.1).

FIGURE 1

The effect of a source of interference at the detrimental level for the RAS, on the horizon at

zero azimuth

RA.1513-01

The curves show the decibel level by which the interference received by the radio astronomy receiver exceeds the detrimental level for different pointing angles of the radio astronomy antenna. Note that radio astronomy observations are generally made with pointing angles above 5° elevation.

TABLE 2

Percentage of sky in which sensitive observations are precluded by interference received above the detrimental level, as a function of pointing elevation of the radio telescope, for the interfering source in Fig. 1

Minimum elevation (degrees)	Blockage (%)
5	2.0
10	1.3
15	0.6
20	0

3.1 Interference due to variable propagation conditions

3.1.1 Terrestrial applications

In cases where the strength of an interfering signal varies as a result of time-varying propagation conditions, a percentage of time must be specified for propagation calculations. A number of 2% is given in Recommendation ITU-R RA.1031. However, this does not automatically lead to a 2% data loss for radio astronomy observations. Propagation conditions vary episodically, typically over periods of a few days. It should therefore be noted that over periods of weeks at a time, the period for which data are contaminated by interference may be only a few days. These effects occur primarily at longer wavelengths, i.e. below about 1 GHz. Periods of data loss can be reduced by dynamic rescheduling of radio astronomy observations.

3.1.2 Space-based applications

Time variable tropospheric propagation conditions need not be considered under LoS conditions.

3.2 In-band sharing, where the transmission is variable in time and location

3.2.1 Terrestrial applications

To maximize the efficiency with which radio telescopes are used, loss of observing time due to interference by other users of the spectrum should be avoided. However, some small loss may be inevitable. An example is unwanted emissions from mobile (earth) stations in the MSS. An acceptable practical level of data loss from such a system is 2%. Recommendation ITU-R M.1316 provides an example of coordination between the RAS and the MSS (Earth-to-space). In this Recommendation, the percentage of observing time loss is used in the calculation of the separation distance by default between mobile earth stations in the MSS (Earth-to-space) and the radio astronomy station, using the Monte Carlo methodology.
3.2.2 Space-based applications

Sharing with satellite downlinks is not possible in bands where the RAS has a primary allocation.

3.2.3 Space-based radio astronomy applications

Space-based radio astronomy requires individual analysis appropriate to the application.

3.3 Unwanted emissions into a radio astronomy frequency band, where the transmission is variable in time and/or direction of arrival

3.3.1 Terrestrial applications

Time-sharing between terrestrial applications and radio astronomy is not usually considered operationally feasible. Filtering of transmitters and geographical separation are employed to suppress unwanted emission levels into the radio astronomical band to below the Recommendation ITU-R RA.769 threshold values at the location of a radio telescope. There is a potential for interference when the radio astronomy beam is pointed closer than 19° to a terrestrial source (see Fig. 1). The levels in Recommendation ITU-R RA.769 are based on the assumption that the interference source is at the isotropic contour. As shown in Fig. 1, a terrestrial source on the horizon (elevation = 0°) can cause detrimental interference in up to 2% of the visible hemisphere for a telescope that can point within 5° of the horizon. However, as a rule, radio telescopes are pointed within 5° of the horizon for only a portion of their total observing time. Some sources of interference are known and can be avoided. In practice, a level of up to 2% data loss could be tolerated from one interfering system. It should be noted that as a radio telescope is pointed at very low elevation angles the system noise increases which reduces the sensitivity. This is not taken into account in Recommendation ITU-R RA.769, since the usual elevation limit of 5°-10° results in very little time being spent in the region of degraded sensitivity.

The methodology described in Recommendation ITU-R M.1316 may also be used to evaluate the effect of terrestrial unwanted emissions into a radio astronomy band.

3.3.2 Space-based applications

Protection of radio astronomy in the presence of GSO satellites is covered by Recommendation ITU-R RA.769.

To address the compatibility between non-GSO constellations and RAS sites two Recommendations were developed by the ITU-R:

Recommendation ITU-R S.1586 – Calculation of unwanted emission levels produced by a non-geostationary fixed-satellite service system at radio astronomy sites.

Recommendation ITU-R M.1583 – Interference calculations between non-geostationary mobile-satellite service or radionavigation-satellite service systems and radio astronomy telescope sites.

These Recommendations provide a methodology to evaluate the levels of unwanted emissions produced by non-GSO constellations and some other systems at radio astronomy sites prior to their bringing into use. In particular, these Recommendations provide methods to determine compatibility between radio astronomy sites and satellite systems, during the construction phase and prior to the launch of the latter, in response to *resolves* 1 and 2 of Resolution **739** (**Rev.WRC-07**).

The first step of this approach is to divide the sky into cells. First, a random choice is made for a pointing

direction of the RAS antenna, which will lie within a specific cell on the sky. Then, the starting time of the constellation is randomly chosen. The average epfd corresponding to this trial is then calculated for the chosen pointing direction and starting time of the constellation using the following equation to determine epfd corresponding to each time sample:

$$epfd_{G_r = 0 \, dBi} = 10 \log_{10} \left[\sum_{i=1}^{N_a} 10^{\frac{P_i}{10}} \cdot \frac{G_t(\theta_i)}{4\pi d_i^2} \cdot G_r(\phi_i) \right]$$
(1)

where:

- N_a : number of non-GSO space stations that are visible from the radio telescope;
 - *i*: index of the non-GSO space station considered;
- P_i : RF power of the unwanted emission at the input of the antenna (or RF radiated power in the case of an active antenna) of the transmitting space station considered in the non-GSO satellite system (dBW) in the reference bandwidth;
- θ_i : off-axis angle between the boresight of the transmitting space station considered in the non-GSO satellite system and the direction of the radio telescope;
- $G_t(\theta_i)$: transmit antenna gain (as a ratio) of the space station considered in the non-GSO satellite system in the direction of the radio telescope;
 - d_i : distance (m) between the transmitting station considered in the non-GSO satellite system and the radio telescope;
 - ϕ_i : off-axis angle between the pointing direction of the radio telescope and the direction of the transmitting space station considered in the non-GSO satellite system;
- $G_r(\phi_i)$: receive antenna gain (as a ratio) of the radio telescope, in the direction of the transmitting space station considered in the non-GSO satellite system.

For each of these cells, a statistical distribution of the epfd is determined. Then, these epfd distributions may be compared with pfd levels given in Recommendation ITU-R RA.769 (defined assuming a 0 dBi receiving antenna gain in the direction of interference and given a 2 000 s integration time) so that the percentage of trials during which this criterion is met may be determined for each of the cells which were defined.

FIGURE 2

Comparison between the pfd levels given in Recommendation ITU-R RA.769 and the epfd distribution given for a cell

From the pfd threshold levels of interference detrimental to radio astronomy given in Recommendation ITU-R RA.769, epfd threshold levels can be derived taking into account the maximum radio astronomy antenna gain, G_{max} , assumed in the calculations, through the following equation:

$epfd_{threshold} = pfd_{RA.769} - G_{max}$

Over the sky, for elevations higher than the minimum operating elevation angle of the radio telescope, the epfd threshold level defined above should not be exceeded for more than 2% of the time.

This methodology was initially developed to cover the case of non-GSO satellite systems, however it may also be used for some airborne systems, e.g. in the aeronautical MSS.

3.4 Measurement of data loss from weak, pulsed interference

This section specifies the measurement of excess data loss from pulsed interference meeting the 2 000 s average detrimental spectral-line threshold level specified by Recommendation ITU-R RA.769. This is the weak interference case. There is a significant difference in the interference behaviour of pulsed and continuous signals. Continuous, time-invariant interference that falls at or below the detrimental level thresholds described in Recommendation ITU-R RA.769 for 2 000 second integrations will not harm shorter observations, as the interference to noise ratio is largest in long integrations. This is not always the case for time variable signals. We define here those situations in which pulsed signals satisfy the threshold level provided by a 2 000 s integration, while still causing some excess data loss for shorter observations.

For periodic interference, the excess data loss measurement depends on two time scales, the interfering pulse period, t_{p} , and the observing interval over which astronomical data are averaged, t_{obs} , making an individual measurement. Technical and scientific reasons determine t_{obs} , which is typically a few seconds in duration.

In the case where t_{obs} is greater than 0.8 s, excess data loss > 2% is possible, but only if the interfering pulse period is longer than 40 s, as is shown by the calculations below. The data loss measurements are summarized in Fig. 3.

FIGURE 3

Excess data loss L% from pulsed interference

Excess Data Loss depends only on the combination of pulse period and observation length, as shown in Fig. 3. An observation is considered to be lost when it contains a signal stronger than $1/10^{\text{th}}$ of the system noise, averaged over the observation length. We find that the maximum excess data loss is less than the duration of one pulse period per 2 000 s. Therefore, radar and other short period pulsed signals do not create significant excess data loss.

3.4.1 Method

Consider the case of periodic pulses that average over time to the detrimental threshold levels for data loss over 2 000 s given in Recommendation ITU-R RA.769. It is apparent that, unlike the case of interference that is constant in time, observations that by their very nature are shorter than 2 000 s (e.g. pulsars, that are periodic emitters on time scales much shorter than 2 000 s) will suffer data loss in some cases, because the interfering pulse energy may be concentrated in one or a few of these shorter observations.

For example, a single interfering pulse every 2 000 s will fall in one out of every two observations in a series lasting 1 000 s each. The interference-to-noise ratio is no longer 1/10, as required in Recommendation ITU-R RA.769, but $\sqrt{2}$ /10 in one observation and 0 in the other. This is an excess data loss of 50%. (The factor is $\sqrt{2}$ as the average interference is twice as strong in the affected observation, but the shorter observation's rms noise is only $\sqrt{2}$ higher.) This example gives the worst possible case of excess data loss, as will be shown below.

Excess Data Loss is derived as follows: Let:

- *tobs* be the observation length, in seconds,
- t_p be the pulse period, in seconds,
- N_{obs} be the number of observations per 2 000 s, = 2 000/ t_{obs} ,
 - N_p be the number of pulses per 2 000 s, = 2 000/ t_p ,
 - P be the average pulse power during the observation time interval t_{obs} ,
- P_{sys} be the undisturbed system noise power averaged over 2 000 s,
 - L be the excess data loss, in seconds and,
- L% be the percentage excess data loss.

The energy supplied by the pulse stream should be $\leq 1/10$ of the undisturbed system energy (see Recommendation ITU-R RA.769), so:

$$N_p P t_{obs} \le (2000 P_{sys})/10$$
 (2)

Now parameterize *P* as:

$$P = (a P_{sys}/10) \sqrt{(2000/t_{obs})}$$
(3)

so that the pulse average power is a factor above the detrimental threshold for RFI for the time interval t_{obs} . From equations (2) and (3), one then derives an upper bound for the number of regular pulses in 2 000 s :

$$N_{p,max} = (1/a) \sqrt{(2000/t_{obs})}$$
 (4)

and the corresponding shortest allowed pulse period:

$$t_{p,min} = a\sqrt{2000t_{obs}} \tag{5}$$

This shows that the interfering pulse period must be more than the geometric mean of the observation length and 2 000 s for it to cause excess data loss in shorter observations, while at the same time meeting the a = 1detrimental limit at 2 000 s set by Recommendation ITU-R RA.769. Thus, for example, there are exactly 100 observations with $t_{obs} = 20$ s within a 2 000 s interval, whereon (5) guarantees $t_{p,min} = 200$ s. As $t_{p,min}$ is the longest period that satisfies the a = 1 requirement, fewer than 10 pulses can result in data loss, from at most 9 of the 100 twenty second observations.

The data loss is then:

$$L = N_p t_{obs} \quad \text{in seconds}, \tag{6}$$

and the percentage data loss is:

$$L\% = 100 L/2000 \tag{7}$$

From equations (5) and (6), one derives:

 $L(upper limit) = t_{p,min}$ in seconds, and (8)

$$L\%(upper \ limit) = 100 \ (t_{p,min}/2000)$$
 (9)

It is clear from this short-period pulsed signals ($t_p < 40$ s) cannot cause significant excess data loss above the 2% limit.

The relationship between t_{obs} , t_p and L% is shown in Fig. 3, above, for excess data loss of 0, 0.02, 0.2, 2 and

20%.

3.4.2 Effect of regular pulses

Periodic pulses of interference of constant strength represent the worst case in terms of excess data loss. Pulses that are irregularly spaced in time or varying in strength cause at most the same level of data loss, again on the a = 1 requirement that their average does not exceed the detrimental threshold level after 2 000 s. In some cases, more than one interfering pulse could occur during a single observation, which does not, however, increase the total number of lost observations, since just one pulse suffices for that.

Likewise, interfering pulses that vary in strength may decrease the number of lost observations. This occurs when pulses falls far enough below the average as not to exceed the detrimental level. Hence neither case can cause more loss than periodic, constant-strength pulses.

3.4.3 Long period pulses

The only interfering pulse periods that cause significant excess data loss are those with very long, tens to hundreds of second, periods. Such pulse strings are rare in commercial practice, though 'push-to-talk' applications may have irregularly spaced transmissions near these rates.

The reason for the limitation to long pulse periods is shown by the following example. From equation (5), to cause excess data loss the pulse period must be greater than the geometric mean of the observation length and 2 000 s. For example, there are one hundred 20-second integrations in 2 000 s. Hence a single pulse averaged over 20 s can be 100 times the 2 000-second detrimental threshold level and still average down to that level, and cause 1% excess data loss. This excess power can be reduced by a factor $\sqrt{100}=10$ and distributed over at most 10 pulses before going below the 20-second detrimental level. That gives a minimum pulse period of 200 s.

3.4.4 Mitigation methods

Interference that is easily visible in an isotropic antenna at any integration interval of one second or longer already shows that the average power over 2 000 s will exceed the detrimental threshold level, as shown below.

For signals at or below the detrimental threshold ($a \le 1$), the maximum pulse strength giving 2% data loss is a single pulse every 2 000 s that is 1.5 dB below the average noise in 40 s. That will damage one 40-second integration out of every 50, for 2% loss. The average noise in 40 s is $\sqrt{50}$ (8.5 dB) above the noise in 2 000 s, while the pulse can be 50 times (17 dB) above that level. The difference is 8.5 dB. This is still $\sqrt{2}$ fainter than the noise average in 40 s, so it will not be detectable in normal observations. Only very short (millisecond) observations can achieve a significant pulse detection, five sigma or more above the noise.

In all cases, detection of pulsed interference will require an antenna gain in the direction of the interference that is well above isotropic or, in the case of very brief pulses, high time resolution. As a corollary, interference that is visible in an isotropic antenna with a few seconds integration is guaranteed to exceed the detrimental limit when averaged over 2 000 s, even if no further interference occurs.

The discussion in this section assumes that no attempt has been made to synchronize the data acquisition rate with the pulse period. However, regular pulsed signals offer an exceptionally powerful mitigation method if this option is exercised. It is well known from pulsar detection work that an interference to noise enhancement proportional to the square root of the ratio of the pulse width to pulse period, typically 10 to 20 dB for radar, can be achieved.

3.4.5 Equivalence of rapid pulses and continuous emission

Rapid pulses, such as radar, can be treated as continuous interference corresponding in strength to the average pulse strength. In particular, pulsed interference that does exceed the Recommendation ITU-R RA.769 limit for a 2 000-second integration can be below the detrimental limit computed for a shorter integration. For example, consider a pulsed signal with a 20-second period that is 15 dB below the noise in each 20-second integration. The noise after 2 000 s will be 10 times weaker. Hence this signal, which is innocuous in each 20-second integration, will be 5 dB above the detrimental level after 2 000 s.

In other words, the pulsed signal is behaving in just the same way as a continuous signal. It is only pulse periods longer than the geometric mean of the integration time and 2 000 s that can cause excess data loss in the short integrations, while the pulsed interference does not exceed the Recommendation ITU-R RA.769 detrimental interference threshold for a 2 000-second integration. This may be a rare occurrence in practice.

3.4.6 Summary

These calculations show, on the assumption that the pulsed interference does not exceed the Recommendation ITU-R RA.769 detrimental interference threshold for a 2 000-second observation, the following:

- Radar and other pulsed radiation, with periods less than 40 s, that average down to the detrimental level at 2 000 s set by Recommendation ITU-R RA.769 will not cause excess data loss > 2%.
- 2) For measurements with 40-second observing length, the worst-case pulse strength for > 2% excess data loss is 1.5 dB below the system noise, and then only for extremely infrequent pulses (1 in 2 000 s) in the absence of any mitigation effort that synchronizes data taking in anti-correlation to regular pulses.
- 3) Aperiodic and/or variable strength interference will cause data loss at or below periodic pulses of constant strength.

4 Conclusions

A practical criterion for the aggregate data loss resulting from interference to the RAS is considered to be 5% of time from all sources. The existence of multiple overlapping sources of interference is a practical aspect that should be accounted for. Further study of the apportionment of the aggregate interference between different networks is required.

The data loss from any one system should be significantly less than 5%. To comply with this requirement, 2% per system is a practical limit.

参考資料4:電波天文業務の用に供する受信設備 総務省告示第三百六十三号(平成30年11月 7日)

ť 六 Ξī л 三 設置場所 理委員会規則第十四号)第五十条の六第三項の規 第三項及び電波法施行規則(昭和二十五年電波監 十六条第一項の規定により、次のとおり電波天文電波法(昭和二十五年法律第百三十一号)第五 ○総務省告示第三百六十三号 定により公示する。 業務の用に供する受信設備を指定したので、同条 称 平成三十年十一月七日 (三) 長野県木曽郡上松町大字小川字才児山四六 ① 長野県上田市菅平高原一二二三一三七五三 ① 山梨県南都留郡富士河口湖町富士ヶ嶺一三 受信の業務の種別 その他参考事項 その受信設備を設置している者の氏名又は名 なし 日まで 平成三十年十二月二日から平成四十年十二月 指定の有効期間 運用時間 常時 三二五・七五円から三二八・六〇円まで 受信しようとする電波の周波数 三九-一 四七番地の二 電波天文業務 東経 一三八度一九分一六秒 東経 一三八度三八分四二秒 北緯 三四度五〇分〇五秒 東経 一三七度二二分〇九秒 北緯 三五度四七分三四秒 東経 一三七度三七分四九秒 北緯 三六度三一分一二秒 北緯 三五度二五分三六秒 総務大臣 石田 真敏

3	令和2年1月16日 木曜	日官	報	第170号	
北緯 三七度四二分五五秒 東経 一四〇度四〇分〇九秒	二 その受信設備を設置している者の氏名又は名称 三 設置場所 一 宮城県大崎市鳴子温泉蓬田 (二) 宮城県大崎市鳴子温泉蓬田 (二) 宮城県大崎市鳴子温泉蓬田 (二) 宮城県大崎市鳴子温泉蓬田 (二) 宮城県大崎市鳴子温泉蓬田 (二) 宮城県大崎市鳴子温泉蓬田 (二) 宮城県大崎市鳴子温泉蓬田 (二) 宮城県大崎市鳴子温泉 (二) 2000 (1) 宮城県大崎市鳴子温泉 (1) 2000 (1)	一受信の業務の値別 一受信の業務の値別 6.1000 1.1000 1.1000 2.100			
					四 受信しようとする電波の周波数 二五・五五Hzから二五・六七Hzで 二五・五五Hz前間 今和元年十二月二十日から令和十一年十二月十九日まで 七 その他参考事項

参考資料5:電波天文業務の用に供する受信設備総務省告示第三号(令和2年1月16日)

	- 員 利	ğ О	
to we are a	。、畲乡	の電総	
大そ電気	2 分 現 ⊧	日 波 務	
子の政国	이 쓴 떴 ?	正法星	
同信文美	能年十日	(前日) 長	
利設業利	新十四 3	る和第	
用備務の	2 금 물 술	홍 그 딸	
微定 相關語 另	# / 魚 1	8 1 4	
法置 /	"干蛮"	葡菇五	
入し	五十支	を法号	
a 5	日余日	官 律	
日いる	- X î	し者	
科者	第)	٤Ξ	
学の	= 9	D +	
竹 氏 ② 夕	頃の	(<u>–</u>	
截支	親 『	a 😳	
構は	定了	系第	
名	(C 3	<u></u> 吾 五	
ተባኑ	ก็ร	흘 놋 👘	
	告 1	反条	
	示く	び第	
	9 T 25 H	电 頂	
	~ 1	まる	
	ţ	疽 規	
	Î	了定	
	Ê	間よ	
	総	0	
	務日	8.	
	- A 1	可次	
	hc -	fἕ	
	武 3	臣お	
	田倉	キリ	
	自治	电 电	
	〔 】 】	Ê 天	
	ŧ	里文	
		PC 1820	

_	7	令和2年12月25日	金曜日	官	報	第 402 号
_			なし	 五 道井時間 六 指定の有効期間 六 指定の有効期間 六 指定の有効期間 七 その他参考事項 	四二・五日2 日から九二・〇日まで 「八五・五日2 日から九二・〇日まで	 三 設置場所 四 四 (二)東京都一四二度の七分五七秒 北線 二七度の七分五七秒 東経 一四二度小2分二1秒 北線 三七度四四分五二秒 北線 三一度四四分五二秒 北線 三一度四四分五二秒 二二・二一日 (二) 市字登野城嵩田二三号 (二) 二一日 (二) 二 (二) 二

3	令和5	年3	月 30 日	木曜日	官	報		第 947 号	-
七 ;	六 五				四	Ξ Ξ	_	員務 O 会の電総	
なし その他参考事項 なし	指定の有効期間 常時 G G から − − ☆・ C H まて	八六・〇H GHから九二・〇H まで	四二・五HZ GHから四三・五HZ GHまで GHまで	二三・六Htm ら二四・OHまで 二三・二日 A から二二・五Hまで G G B から一五・四Hまで	受信しようとする電波の周波数 「三八度五六分四○秒 にようとする電波の周波数	それまである。その時代はその時代は、「「「「」」」であっていた。そこうでは、「「」」」、「「」」、「」」、「」」、「」、「」、「」、「」、「」、「」、「」	電安氏文業务 電安氏文業务	規則第十四号)第五十条の六第三項の規定により告示する。用に供する受信設備を指定したので、同条第三項及び電波法施行規則(昭和二十五年電波監理委波法(昭和二十五年法律第百三十一号)第五十六条第一項の規定により、次のとおり電波天文業務省告示第百七号	

参考資料8:参考送信スペクトラムマスク(ITU-R 勧告 SM. 1541 Annex8 による計算結果)

送信スペクトラムマスクとして、ITU-R 勧告 SM. 1541 Annex8 に記載の FMCW 方式を適用して算 出する。下記の数式において、BR は全周波数偏差(Hz)、T はチャープ周期(sec)となっている。

$$B_{-40} = 1.2B_R \left(1 + \frac{200}{\pi\sqrt{B_R T}}\right)^{\frac{1}{2}}$$

この式から算出される 40dB 帯域幅 B-40=9.72GHz、2.32 倍高調波周波数帯域 2.32×B-40=22.56GHz であり、図示すると下記のようなスペクトラムマスクとなる。

