資料:10-2

情報通信審議会情報通信技術分科会陸上無線通信委員会V-High帯公共BB/狭帯域無線システム作業班(第10回)

公共BB(CH1)と狭帯域IoT無線システムとの共用検討(案)

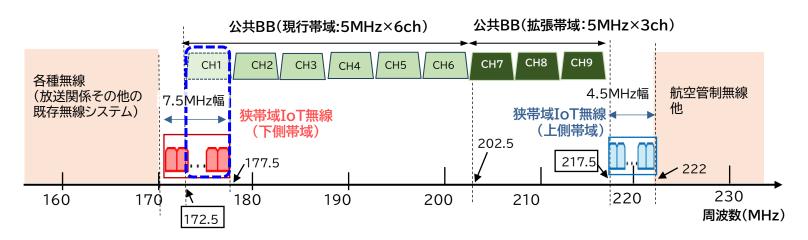
令和7年10月2日

V-High帯公共BB/狭帯域無線システム作業班・アドホックグループ 株式会社国際電気、日本無線株式会社 株式会社スペースタイムエンジニアリング、自営無線通信研究所

目次

- 1. はじめに
- 2. 公共BB(CH1)と狭帯域IoT無線システムとの同一周波数 共用条件
 - 2.1 同一周波数共用検討条件の考え方
 - 2.2 共用検討結果(狭帯域IoT無線の与干渉/公共BBの被干渉)[*]
 - 2.3 共用検討結果(狭帯域IoT無線の被干渉/公共BBの与干渉)[*]

参考資料 D/U実測値による同一周波数共用条件の検討条件

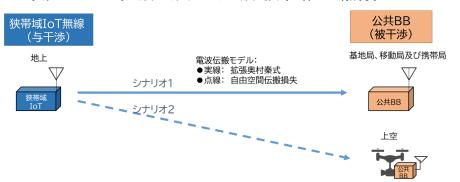

[*]: 所要離隔距離の検討の詳細は、第9回作業班で報告済

■本紙では、公共BBと狭帯域IoT無線システムとの共用条件について、同一周波数共用(公共BB:CH1)の場合について、報告する。

○公共BB(CH1)が与干渉・被干渉の場合

- ①公共BB(CH1)【被干渉】 ← 狭帯域IoT無線(下側帯域)【与干渉】
- ②公共BB(CH1)【与干涉】 → 狭帯域IoT無線(下側帯域)【被干渉】

■公共BB及び狭帯域IoT無線の周波数配置



2.1 同一周波数共用検討条件の考え方

第9回作業班資料を再掲


- ① 公共BBと狭帯域IoT無線システム間の同一周波数共用条件については、同一帯域内の自システムとして、 以下の手法により、所要離隔距離の検討を行う考え方とした。
 - ●手法2: 両システム間のD/U実測値により、所要離隔距離を算出した(参考資料3、参考資料4)
- ② 公共BBのCH1との共用条件を検討するため、当該バンドの中央(175MHz)に着目して共用検討を実 施した。
- ③ 所要離隔距離を試算する電波伝搬モデルは、過去の情報通信審議会等における検討モデルを踏襲して 検討を進めることとした。(下図参照)
 - ここで、所要離隔距離については、双方の空中線利得が最大値(公共BB:10dBi、狭帯域IoT無線:6dBi(下側帯 域))の場合が最大(最悪条件)となる。なお、例えば、主に利用が想定される空中線(2dBi)を考慮した場合は、上記に 対して、8又は4dBのマージンをそれぞれ有することに相当する。
- ④ 共用条件の検討条件(パラメータ等)を参考資料に示す(第9回作業班資料・再掲)

■干渉シナリオ(D波:公共BB、U波:狭帯域IoT無線)

- シナリオ1: 狭帯域IoT無線(地上) → 公共BB(基地局、移動局) 【拡張奥村秦式】
- シナリオ2: 狭帯域IoT無線(地上) → 公共BB(携帯局(上空)) 【自由空間伝搬損失】

■干渉シナリオ(D波:狭帯域IoT無線 、U波:公共BB)

- シナリオ1: 狭帯域IoT無線(地上) → 公共BB(基地局、移動局) 【拡張奥村秦式】
- シナリオ2: 狭帯域IoT無線(地上) → 公共BB(携帯局(上空)) 【自由空間伝搬損失】

2.2 同一周波数共用検討結果 (狭帯域IoT無線の与干渉/公共BBの被干渉)

■ 同一周波数共用検討結果 (D波:公共BB、U波:狭帯域IoT無線)

第9回作業班資料を再掲

●手法2により、両システム間のD/U実測値により算出した、所要離隔距離を以下に示す。

条件 公共BB: 空中線利得10dBi(最大値)、2dBi、 狭帯域IoT無線: 空中線利得 6dBi(最大値)、2dBi

未行 ム六DD. 土中桃竹舟 I DUDI(取入恒人 ZUDI、 次市以IDI 無線・ 土中線竹舟 DUDI(取入恒人 ZUDI								
【D波】被干涉·公共BB(CH1)			【U波】与干渉・狭帯域IoT無線(下側隣接帯域)				<i>i</i> — 11-	干渉
	亦無七十	空中線	所要離隔距離(m)				伝搬	シナリオ
無線局種別	変調方式 (1次変調)	利得 [dBi]	FSK		OFDM		モデル	#
			空中線利得:6dBi	空中線利得:2dBi	空中線利得:6dBi	空中線利得:2dBi		
	QPSK		900		840			
	16QAM	10	1,400		1,300		拡秦	#1
基地局	64QAM		2,000		1,900			
全地 问	QPSK			320		300		
	16QAM	2		470		440	拡秦	#1
	64QAM			690		650		
	QPSK		280		260			
7671	16QAM	10	410		390		拡秦	#1
移動局	64QAM		610	00	570			
(可搬型基地局)	QPSK			99		97	14- 4-	
	16QAM	2		150		140	拡秦	#1
	64QAM		240	220	220	200		
	QPSK 1604M	10	240		220		₩ ≠	#1
移動局	16QAM	10	350 510		330 480		拡秦	#
(可搬型基地局以外)	64QAM QPSK		510	93	400	91		
(円版空基地同以外)	16QAM	2		130		120	拡秦	#1
	64QAM			180		170	JA X	# 1
携带局(上空)	QPSK		12,200	100	10,900	170		
	16QAM	10	24,300		21,700		自由	#2
	64QAM		48,400		43,200			π ′-
	QPSK		.3,100	2,000	.5,200	1,800		
	16QAM	2		3,900		3,500	自由	#2
	64QAM			7,700		6,900		

凡例 "拡秦":拡張奥村秦モデル、"自由":自由空間伝搬損失

2.2 同一周波数共用検討結果 (狭帯域IoT無線の与干渉/公共BBの被干渉)

■同一周波数共用検討まとめ (D波:公共BB、U波:狭帯域IoT無線)

○ 公共BBと狭帯域IoT無線システムが同一周波数干渉となる場合の共用条件(手法2)にあっては、上記のとおりである。

公共BBが移動局の場合において、所要離隔距離が300~600m程度であるが、例えば、両システムで主に利用が想定される空中線(2dBi)を考慮した場合は、実効的に、所要離隔距離が100~200m程度に短縮が 見込まれる結果にある。

なお、公共BBの上空利用にあっては、それぞれの空中線の垂直面指向性の俯角損失により、干渉の軽減が見込まれる。

〇 狭帯域IoT無線は、常時送信は行わないことから、両システム共に移動運用であることを踏まえると、 継続的な被干渉が起こる可能性は低く、共用可能と考えられる。

また、公共BBが、狭帯域IoT無線と近い場所であっても、公共BBの受信電力が高く、良好な回線品質が確保されていれば、干渉の影響は許容されるものと想定される。

2.3 同一周波数干渉 共用検討結果(公共BBの与干渉/狭帯域IoT無線の被干渉)

■ 同一周波数共用検討結果(D波:狭帯域IoT無線、U波:公共BB)

第9回作業班資料を再掲

●手法2により、両システム間のD/U実測値により算出した、所要離隔距離を以下に示す。

条件 公共BB:空中線利得10dBi(最大値)、2dBi、狭帯域IoT無線: 空中線利得 6dBi(最大値)、2dBi

【D波】被干渉: 狭帯域IoT無線			【U波】与干渉: 公共BB(CH1)				干渉	
帯域等	空中線利得 [dBi]			局種等	所要離隔距離 [m] 空中線利得		伝搬 モデル	シナリオ #
	[dDi]			10dBi	2dBi			
 下側* ¹	6	FSK OFDM	₩ ₽	8,900 7,300		拡張奥村	#1	
卜加	2	FSK OFDM	基地局		4,100 3,400	秦式	#1	
 /pii*1	6	FSK OFDM	移動局	1,900 1,600		拡張奥村	ш1	
下側*1	2	FSK OFDM	(可搬型基地局)		900 700	秦式	#1	
下側*1	6	FSK OFDM	移動局	1,600 1,300		拡張奥村	#1	
	2	FSK OFDM	(可搬型基地局以外)		800 600	秦式	# 1	
下側*1	6	FSK OFDM		100km超 100km超		自由空間	#3	
门侧	2	FSK OFDM	(1W、上空)		38,500 27,300	伝搬損失	#3	
下側*1	6 2	FSK OFDM	携帯局 ^{*2} (5W、上空)	100km超 100km超		自由空間伝搬損失	#2	
		FSK OFDM			86,100 60,900		#3	

*1: 172.5MHz~177.5MHz

*2: 陸上から3海里を超える範囲を除く。3海里以遠は、5W以下

2.3 同一周波数干渉 共用検討結果(公共BBの与干渉/狭帯域IoT無線の被干渉)

■同一周波数共用検討まとめ (D波:狭帯域IoT無線、U波:公共BB)

〇 公共BBと狭帯域IoT無線システムが同一周波数干渉となる場合の共用条件(手法2)にあっては、上記のとおりである。

公共BBが移動局の場合において、所要離隔距離が1.3~1.9km程度であるが、例えば、両システムで主に利用が想定される空中線(2dBi)を考慮した場合は、実効的に、所要離隔距離が600m~900m程度に短縮が見込まれる結果にある。

- 〇 また、狭帯域IoT無線システムが、公共BBと近い場所であっても、狭帯域IoT無線システムの受信電力 が高く、良好な回線品質が確保されていれば、干渉の影響は許容されるものと想定される。
- 公共BBは主に災害時等での利用が想定されており、狭帯域IoT無線システムが同種の場面で近接利用 される場合は、公共BBからの干渉を許容する必要がある。他方、平時においては、公共BBは常時接続を 行わないシステムであることから、共用可能と想定される。

第9回作業班資料(参考資料3、4)を一部抜粋・編集

参考資料

D/U実測値による同一周波数共用条件の検討条件

第9回作業班資料(参考資料3)再掲

参1. D/U実測値による同一周波数共用条件の検討条件(D波:公共BB、U波:狭帯域IoT無線)

参1.1 D/U測定の概要(D波:公共BB、U波:狭帯域IoT無線)(同一周波数干渉)

狭帯域IoT無線システムと公共BBの同一数周波数共用条件 (D/U実測結果:参1.1及び下表)をもとに、所要離隔距離を試算した。 (注)令和5技術試験事務・成果 (京都大学大学院情報学研究科 原田研究室)

● D/U特性実測結果(希望波受信入力電力:-70dBm、所要回線品質BER=1×10-6)

D波	U波(狭帯域IoT無線)	D/U(dB)	備考
	FSK(100Kbps、400kHz幅)	11	FECあり
公共BB (QPSK)	FSK(300Kbps、400kHz幅)	12	FECあり
	OFDM(600Kbps、400kHz幅)	11	FECあり

FEC: 畳み込み符号

- 公共BB(QPSKの場合)と周波数が完全に重なる離調周波数において、D/U=12dB以下(狭帯域IoT無線:FSK)、11dB以下(狭帯域IoT無線:OFDM)が得られた。
- 公共BBの変調方式が16QAM及び64QAMの場合は、変調方式に対応する所要CNRに相当する値を考慮した、D/U=18dB及び24dB(狭帯域IoT無線:FSK)、17dB及び23dB(狭帯域IoT無線:OFDM)となる。

参1.2 D/U実測値による所要離隔距離の検討条件(同一周波数干渉)

ここでは、公共BB(希望波)の受信電力(D波)を一般的に運用されている「-70dBm」とし、近端からの狭帯域IoT無線(U波)の同一周波数干渉波入力電力(下側帯域:250mW)に対し、所要D/U モデルを想定し、公共BBの所要回線品質(BER=1×10⁻⁶)が得られる干渉雑音レベルを求め、所要離隔距離を算出した。

- ●干渉波(U)による等価的な干渉雑音電力は、所要D/U 値から定まる値に対して、雑音電力の増加分を考慮して、3dB減とした。
- ●狭帯域IoT無線システムから公共BBへの与干渉軽減手段として、干渉抑圧フィルタの使用することを前提に、所要離隔距離を算出した。

所要離隔距離の試算条件を以下に示す。

区分		試算条件			
	変調方式	QPSK、16QAM、64QAM			
被干涉条件(公共BB)	空中線利得 ^(※1)	10 dBi ^(※2)			
	給電線損失	基地局:OdB、移動局及び携帯局:OdB			
	空中線高	基地局:30m、移動局(可搬型基地局):3m、移動局(可搬型基地局以外):1.5m (携帯局(上空):-) ^(※3)			
	受信入力電力	-70dBm想定			
	空中電電力	下側帯域:250mW(max)			
与干渉条件	変調方式	FSK、OFDM			
(狭帯域IoT	空中線利得 ^(※1)	下側帯域:6dBi ^(※2)			
無線)	給電線損失	0dB			
	空中線高	3m(下側帯域:上空なし)			
試算条件(※5)	所要D/U	狭帯域IoT無線がFSKの場合 : 12dB(QPSK)、18dB(16QAM)、24dB(64QAM) 狭帯域IoT無線がOFDMの場合 : 11dB(QPSK)、17dB(16QAM)、23dB(64QAM)			
	干渉雑音電力(※4)	狭帯域IoT無線がFSKの場合 : -85dBm(QPSK)、-91dBm(16QAM)、-97dBm(64QAM) 狭帯域IoT無線がOFDMの場合:-84dBm(QPSK)、-90dBm(16QAM)、-96dBm(64QAM)			

- ※1: ただし、空中線電力の低減や給電線損失無しを補う分の増加は認められる
- ※2:表中の値は、最大値を示す。 ここで、公共BB及び狭帯域IoT無線ともに、主に使用が想定される移動局及び携帯局(上空)にあっては、空中線利得:2dBi が見込まれる。
- ※3:空中線高は考慮せず、無線局間の絶対距離にて伝搬損失を計算した(自由空間伝搬損失式を適用)
- ※4: 等価干渉雑音電力=受信入力電力(-70dBm)-所要D/U値-3dB
- ※5: 空中線利得を含まず

第9回作業班資料(参考資料4)を再掲

参2. D/U実測値による同一周波数共用条件の検討条件 (Dig:來帯域IoT無線、Uig:公共BB)

参2.1 D/U測定の概要(D波:狭帯域IoT無線、U波:公共BB)(同一周波数干渉)

狭帯域IoT無線システムと公共BBの同一数周波数共用条件(D/U実測結果:参2.1及び下表)をもとに、所要離隔距離を試算した。 (注)令和5技術試験事務・成果(京都大学大学院情報学研究科 原田研究室)

●D/U特性実測結果(希望波受信入力電力:-70dBm、所要回線品質PER=10%)

D波(狭帯域IoT無線)	U波	D/U(dB)	備考
FSK(100Kbps、400kHz幅)		1	FECなし
FSK(300Kbps、400kHz幅)	公共BB (QPSK)	2	FECなし
OFDM(600Kbps、400kHz幅)	(4. 51.)	5	FECなし

- 公共BB(U波)に対して、D/U=2dB以下(狭帯域IoT無線:FSK)、5dB以下(狭帯域IoT無線:OFDM)が得られた。
- OFDMでは、実運用では、誤り訂正(FEC)の適用を想定しているため、実効的にさらに数dB程度以上の改善量が期待される(例えば6dB^(※)程度のFEC改善を見込むと、-1dB(=5dB-6dB)が期待される)。

参2.2 D/U実測値による所要離隔距離の検討条件(同一周波数干渉)

ここでは、狭帯域IoT無線システム(希望波)の受信電力(D波)を「-70dBm」とし、近端からの公共BB(U波)の同一干渉波入力電力(5W(上側:1W))に対し、所要D/U モデルを想定し、狭帯域IoT無線の所要回線品質(PER=10%)が得られる干渉雑音レベルを求め、所要離隔距離を算出した。

● 干渉波(U)による等価的な干渉雑音電力は、所要D/U 値から定まる値に対して、雑音電力の増加分を考慮して、3dB減とした。

所要離隔距離の試算条件を以下に示す。

区分		試算条件			
被干涉条件 (狭帯域IoT	変調方式	FSK、OFDM			
	空中線利得 ^(※1)	下側帯域:6dBi ^(※2)			
	給電線損失	0dB			
無線)	空中線高	3m(下側帯域:上空なし)			
	受信入力電力	-70dBm想定			
	空中電電力	基地局:20W、移動局:5W、携帯局(上空):1W ^(※6)			
	変調方式	QPSK			
与干渉条件 (公共BB)	空中線利得 ^(※1)	10dBi ^(**2)			
	給電線損失	基地局:OdB、移動局及び携帯局:OdB			
	空中線高	基地局:30m、移動局(可搬型基地局):3m、移動局(可搬型基地局以外):1.5m 携帯局(上空):- (※3)			
試算条件 ^(※5)	所要D/U	FSKの場合 : 2dB(FECなし)、 OFDMの場合 : -1dB(FECあり:想定値)			
	干渉雑音電力(※4)	FSKの場合 : -75dBm(FECなし)、 OFDMの場合 : -72dB(FECあり:想定値)			

- ※1: ただし、空中線電力の低減や給電線損失無しを補う分の増加は認められる
- ※2:表中の値は、最大値を示す。ここで、公共BB及び狭帯域IoT無線ともに、主に使用が想定される移動局及び携帯局(上空)にあっては、空中線利得:2dBi が見込まれる。
- ※3: 空中線高は考慮せず、無線局間の絶対距離にて伝搬損失を計算した(自由空間伝搬損失式を適用)
- ※4: 等価干渉雑音電力=受信入力電力(-70dBm)-所要D/U値-3dB
- ※5:空中線利得を含まず ※6:陸上から3海里を超える範囲を除く。3海里以遠は、5W以下