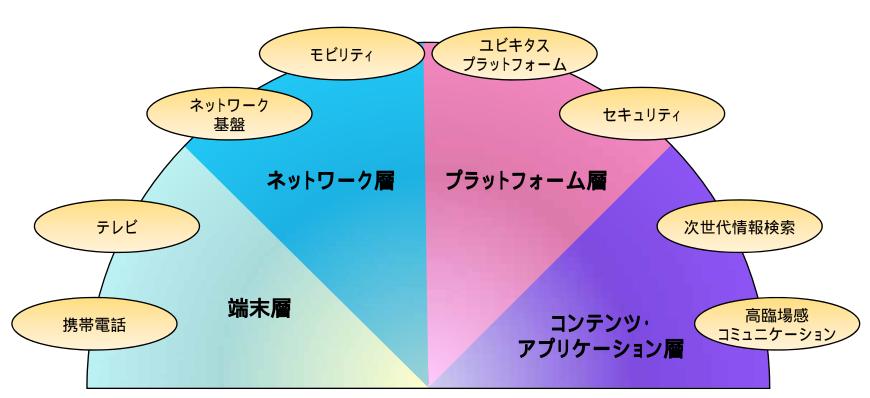
資料1

「技術イメージ」の整理について(案)


2008年5月

総務省 情報通信政策局

「技術イメージ」の整理方法(案)

- <u>1) 未来型の情報社会の将来像を検討するにあたり、主なICT技術の動向を把握しておくことが有効。</u>
- ・ ICT産業の4つのレイヤー(端末層、ネットワーク層、プラットフォーム層、コンテンツ・アプリケーション層)の 別に、利用者が比較的イメージしやすい象徴的な技術を各2つ、計8つを選択。
- 2) 2015年を念頭に、主なICT技術に関する実現性を評価。
 - ・ 各技術について、2015年頃までに実用化されていると予測されるサービスのイメージを提示。
 - ・また、必要とされる要素技術と、主たる要素技術の進展見通しを整理。

2015年までの実現性を評価する8つの技術(案)

端末層の整理イメージ

2015年までに実用化されるサービスのイメージ

要素技術の例

主たる要素技術のロードマップ

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

超大画面・ 高精細化による 高臨場感の追及

- •家庭のリビングが超高精細映像と立体 音響による高臨場感シアターに
- 人に優しい、自然な高臨場感放送へ
- 五感放送の基礎研究を推進

薄型·軽量化

- 新聞や広告(ポスター)に利用可能な フレキシブルシートディスプレイ
- 超小型プロジェクタによるテレビ

タイムシフト、 VODなど 視聴形態の 多様化

- 見たい時に見たい番組だけを視聴可能
- 受信機が個人に合わせた番組を提供 ~ コンシェルジュサービス ~

ネット接続による 映像視聴以外の 用途の拡大

- 「見る」から「使う」へ ~ ネットショッピン グや家電制御、ホームセキュリティなど のインターフェースとして用途が多様化
- 蓄積画像の共有

ネットワークの 多樣化·高速化

- 環境や通信内容に応じて、常に最適な 無線アクセスを選択
- •利用者の周りにある端末と近距離無線 などで連携してパーソナルエリアネット ワーク、ボディエリアネットワークを形成

放送視聴・ 動画コンテンツ 配信の拡大

携

帯

電話

- ワンセグの発展による高品質化、高機 能化した携帯端末向け放送の受信
- ●通信・放送の連携や、A V家電との連携 などによる新しい視聴スタイルの実現

アプリケーション 利用の拡大

- ユーザーの趣向に合わせたアプリケー ションの提供や機能カスタマイズ
- ローカルな記憶デバイスとネットワーク ストレージが連携した、インテリジェント なデータ管理

リアル連携、 コンテキストに 基づくサービス

- 事接触[Cによる決済・認証などリアルな コマース系用途が拡大
- RFID連携やGPS連携などによる、 利用者のコンテクストに応じた情報配信

•超高精細映像技術

- •立体テレビ
- •立体音響
- •五感放送技術
- •任意視点映像技術

•有機ELディスプレイ技術

- •液晶ディスプレイ技術
- ●電子ペーパー技術

情報蓄積機能の発達 (大容量化、知的蓄積化)

- •メタデータの高度化 ・コンテンツ検索技術
- •IPTV技術(VOD. 多ch)
- •DLNA等のネットワーク技術 •ネットワークセキュリティ技術
- •センサや家電との連携機能
- •操作インターフェース技術

●無線アクセス技術

- マルチアクセス技術
- 動的诵信品質制御
- •メッシュネットワーク技術
- •人体通信技術

•携帯端末向け放送の大容量化・ 高品質化、高機能化技術

- •通信・放送サービス連携技術
- ●携帯受信機と据置型 受信機との連携技術

•端末プラットフォーム·OS技術


- 携帯向けアプリケーション プラットフォーム技術
- モバイル向けストレージ
- ●サービス連携技術

•セキュリティ技術 (ユーザアクセス制御)

- •生体認証技術
- •コンテキストプラットフォーム
- •RFID·センサー連携技術

超高精細映像技術 (液晶ディスプレイ) 最大70インチQFHD(2k×4k) 最大100インチSHD(4k×8k) スーパーハイピジョン級の家庭用 ディスプレイモデル搭載の素子を開発 有機EL ディスプレイ 2~4型級 2~6型級QVGA~VGA級 (フレキシブル基板) 1~4型級 6~14型級 QCIF~VGA級 QVGA~VGA級 高輝度・低コスト化 VGA~XGA級 情報蓄積機能の 発達(大容量化) ハイピジョン1ヶ月録画 カート型マルチメディアサーバー128GB 全チャンネル H.264:7.2TB/2ch モバイルサーバー型放送対応 1年分録画 ネットワーク技術 (アプリケーション系 UPnP , DLNAなど 機器間接続· (עבום'כ センサー・RFタグ連携 個別プロトコルによる接続 有無線連携

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

携帯受信機と 据置型受信機と の連携技術

SSDXEU-30円/GB

SSDXEU-2円/GB

ユ-サー環境 (状況検知、 無線通信の TPO情報)に もとづく適応 標準化

個人認証タグ 1-ザ-プロ (RFID等)の ファイル(属性、 履歴、嗜好)に もとづく適応

携帯情報端末向け 情報サイト・OS.個人認証 タグデジタル情報家電 インターフェースの標準化

携帯情報端末・個人認証タグ パソコン.デジタル情報家電を ネットワーク経由で連携した 分散処理技術の進展

(出典)総務省「次世代放送技術に関する研究会、報告書、経済産業省「技術戦略マップ2008」等をもとに総務省作成

ネットワーク層の整理イメージ

2015年までに実用化されるサービスのイメージ

要素技術の例

主たる要素技術のロードマップ

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

高品質かつ 高信頼な IPネットワーク ●IPを用いて、既存の電話ネットワークと同 等の信頼性を持つ、高品質・高信頼かつ 高度なモビリティを実現

機能分散型ネットワーク運用技術

- •複数IPネットワーク間QoS制御技術
- •大容量アクセス収容技術
- •次世代光無線システム
- •大容量IF収容·制御技術

大容量アクセス 収容技術

> 固定・移動通信網融合や、速度の異なるネットワークを自律的に構成し 最適な相互接続や品質管理の可能なネットワーク構築技術の開発

複数IPネットワーク間 QoS制御技術

> いろいろなネットワークトで実現される様々なアブリケーションを シームレスに接続し、最適なサービス提供を可能とする技術の開発

大容量、高速、 超低消費電力の フォトニック ネットワーク

•多様化するサービスに柔軟に対応し、エ ンドユーザ間で大容量通信ができる超高 速フォトニックネットワークを低消費電力 で実現

- •超大容量光ノード技術
- 光波長ユーティリティ技術
- ●光波長アクセス技術
- 集積化アクティブ光アクセス技術
- •ユニバーサルリンク技術
- •全光ネットワーク基盤技術

超大容量 光ノード技術

> 光・電気技術により、 100テラピット級のコアルータ実現 のための要素技術を確立

100テラビット級ルータを実用化

ユーザに優しい 新世代の ネットワーク

ユーザーからの多種多様な要求に応え、 自由自在に最適な通信速度、品質、セ キュリティ等を確保できる

- •ダイナミックネットワーク技術
- •スケーラブルネットワーク技術
- ●ディペンダビリティ確保技術
- •仮想ネットワーク設計技術
- •ネットワーク資源自律最適化技術

仮想ネットワーク 設計技術

様々なアプリケーションの要求に対し、必要なネットワークのパラメータを設定し、 最適な仮想ネットワークを自動的に設計する技術を確立

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

ユーザが 意識することなく、 電波資源を 有効利用

- 周囲の電波利用環境に自律的に適応す る高度な電波利用の実現
- 高い周波数への移行や、未利用の周波 数帯の利用を促進する機器の実用化
- ソフトウェア無線技術
- •小型·低消費電力RF回路技術 •マルチバンドアンテナ技術
- 無線環境認識技術
- •異種無線システム協調制御技術
- •ミリ波帯利用技術
- •超高速無線アクセス技術
- •周波数利用効率向上技術 •端末プラットフォーム技術

周波数利用効率 向上技術 空間多重用アタフティフ アレー技術の確立 無線環境認識技術 の確立

チューナブルフィルター、 コケニティブ無線など CMOSワンチップ等 高度な電波共同利用の RF回路構成技術の ための技術の確立 確立

ユーザが意識することなく、 電波資源を有効に利用する システムの実現

大量の情報を 交換・活用できる 超高速モバイル

- 高速移動時でギガビット級、オフィス環 境で数十ギガビット級のスーパーブロー ドバンド移動通信を実現
- •フレキシブル無線ネットワーク技術

超高速無線 アクセス技術

スーパープロードバント + カビット級超高速無線アクセスを 移動诵信対応の 情報家雷に実装可能とする 無線アクセス技術の実現 チップ化技術の実現

固定と移動/無線の シームレスな融合 (FMC)

- 固定IPネットワークと多様なワイヤレス/ モバイルネットワークの統合により、シー ムレスでスケーラブルな接続環境を実現
- ●一台の高機能無線端末により、様々な 場面で必要なコンテンツを常に最適な状 態で享受可能
- 異種アクセス網インタフェース技術
- •サービスシームレスハンドオーバ技術 *異種アウセス網* •複数IPネットワーク間QoS制御技術
- •同一周波数·異周波数 RAN間協調制御技術

1)971-X技術

フェムトセル/高機能アプライアンス等 による、各種モバイル網と固定網の インタフェースの標準化や制度改正など

Δ

4G対応の無線アクセス技術の

開発・標準化を終了

コケニティブ無線技術などを利用し、異種ネットワークが 混在する中、1-サは1台の高機能アプライアンスにより、 様々な場面で必要なコンテンツを常に最適な状態で 享受できる環境が実現

(出典)情報通信審議会情報技術分科会研究開発・標準化戦略委員会「我が国の国際競争力を強化するための

ツ 基盤

ネ

モビ

プラットフォーム層の整理イメージ

2015年までに実用化されるサービスのイメージ

要素技術の例

主たる要素技術のロードマップ

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

センサー情報の 共有と効率的な 利用

身近な端末で

ユビキタス

サービスを享受

귣

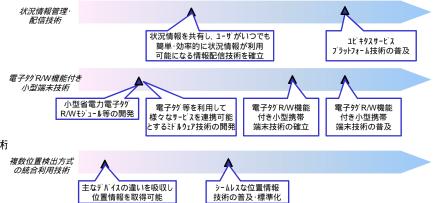
丰

夕

W

多量のセンサー情報を分析して状況や 行動を的確に認識し、利用者の状況に 応じた必要な情報やサービスを提供す ることが可能な環境を実現

- 携帯電話等の身近な端末で、電子タグ を活用したユビキタスサービスを利用
- 複数メディアに対応するシームレス端末
- •モノ向けの通信端末の実現


位置や場所に 関する情報を サービスに活用

- 場所を特定する情報を、どこでも取得し、 いつでもサービスに利用可能に
- 多種多様な表現の場所情報を、人間も コンピュータも理解しやすい形式で管理

ユビキタス環境に 対応した安全な 認証·課金

ユーザからのニーズとそれに見合った サービスを適宜結びつけ"つながり"を 動的に形成することが可能とするための、 セキュアな認証・課金システムを実現

- ◆センサー情報発見・管理・探索技術 •小規模ネットワーク連携技術
- •状況情報生成技術
- •状況情報管理·配信技術
- •プロファイル流通技術
- ●サービス連携制御·支援技術
- •電子タク R / W モシ ュール技術
- •ユビキタス端末利活用技術
- •プロートハント・シームレス端末技術
- ●モノ通信向けコピキタス端末技術
- •複数位置検出方式の統合利用技術
- •センシング空間管理技術
- •場所表現変換技術(屋内空間の 表現技術、屋内外空間の統合技術)
- •空間コードの体系化
- •個人認証技術(生体認証など)
- •認証基盤間連携技術
- •相互運用技術

個人認証技術

インターネットにおけるトレースパック

災害予測 災害状況把握

および伝達システムの実現

技術の実用化

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

ネットワーク上で の成りすまし の防止

情報が発信元から正しく送信されたもの

であることや、個人がまさしく本人である こと、情報が送信経路上で改ざんされて いないことなどを確認・証明し、ネットワーク 上での成りすましを防止

- •バイオメトリクス認証基盤技術
- 管理基盤技術

•証拠性を確保したログ保存等の

●暗号・認証プロリルの検証

バイオメトリクス 認証基盤技術

トレースパックネットワーク方式および

同相互接続方式の確立

tンサ-等により、災害時に被災者救

出・支援や状況把握に必要な情報を

悪意のある 通信の検知 回復·予防

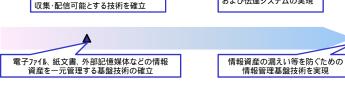
- ネットワーク管理として悪意のある通信 を検知・防衛・回復・予防
- ボット対策と漏出情報の自動流通停止

•災害発生予測および災害発生状況を収

•ネットワークインシデント分析・対策技術 ●トレーサフ ルネットワーク技術

- 経路ハイシ ャック検知・回復・予防技術
- •ボット駆除のための基盤構築

•非常時诵信網確保技術


- •防災減災基盤技術 •緊急情報伝達(データ放送など)
- •重要通信確保技術
- •次世代ドップラーレーダ技術
- 地ト/衛星共用モバイル通信技術

•情報資産管理基盤技術 (情報資産の重要度の自動評価、媒体 の一元管理など)

トレーサブル ネットワーク技術

防災·減災 基盤技術

情報資産管理 基盤技術

セキ

ユリテ

災害対策・

- 危機管理情報
- 媒体種別に 依存しない 情報資産管理
- ・電子・紙など媒体種別に依存せず、 組織間をやり取りされる情報資産を 適正に管理し、情報漏えいを抑止

集し、防災・減災

災害時の通信回線確保

(出典)情報通信審議会情報技術分科会研究開発・標準化戦略委員会「我が国の国際競争力を強化するための [CT研究開発・標準化戦略(案)」、経済産業省「技術戦略マップ2008」等をもとに総務省作成

コンテンツ・アプリケーション層の整理イメージ

2015年までに実用化されるサービスのイメージ

要素技術

主たる要素技術のロードマップ

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

ユーザーの 状況を考慮した 検索·解析

- •個々のユーザーの嗜好や置かれた状 況に適した検索・解析
- 対話型インターフェースなど新しいイン ターフェースによる検索

マルチメディア |情報の検索・解析

次

世代

情報

検

索

高

臨

場

感

Ξ

テキストに加え、画像・映像、音、セン サー情報などの検索・解析へ

様々な端末を 活用した 検索·解析

情報家電などの端末によって様々な場 面で使われる検索・解析へ

大量なデータ、 集合知の活用

センサーネットワークからの計測データ やインターネットの口コミ等、大量の データ、情報から集合知や未来予測を 発掘する解析の実現

•状況理解技術

- •実世界インターフェース (物体特定技術)
- •対話型のユーザー インタラクション適応

•メタデータ自動生成

- •音声認識技術
- •音響認識技術
- •画像認識技術
- •検索結果の表示インターフェース

●サービス連携技術

(端末属性によるプロファイル管理)

- •ユーザ認証・アクセス制御
- •アプリケーション連携技術
- •検索インターフェース
- •自動レポート生成
- ●データマイニング技術
- 情報の因果関係推論技術
- •異種システム連携技術
- •分散処理技術

状況理解 技術

発言履歴からの 広域センシング情報 1-ザ-の発言意図の からの状況推定 推定、内面的状況の推定

ヤンサーネットワーク/ 多種センサ-統合利用

体内・脳センシング

マルチメディア 検索結果表示 特定のメタデータの付与が開始される

放送コンテンツに多様なメタテータが付与される。ある程度、 個人の嗜好に合わせた番組選択が可能になる。

テロッフ 認識、メタテ ータ 付与による番組検索 が可能に

音声認識による メタテータからの 番組検索が可能に

個人の特性や、視聴 環境に応じた番組の自動 視聴が可能に

データマイニング 技術

情報家電の

コンテンツ検索

技術

確率統計的 知識抽出アルゴリズム プライバシー 保護技術

複数情報選択 意味的情報処理 能力向上のため 統合化技術 の推論アルゴリズム

メタデータによるモデルの 精度向上技術

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

高臨場感の 放送サービス

コミュニケーション

人に優しい、自然な高臨場感放送へ

•家庭のリビングが超高精細映像と立体 音響による高臨場感シアターに

- 五感放送の基礎研究を推進

リアルと バーチャルが 融合した新

- センサーやディスプレイなどの進歩によ り、ネットワークの仲立ちを意識せず 直接相手と接しているように感じる等、 新たなコミュニケーション形態が出現
- かおりや手触りも伝える ~ 五感通信、 五感放送

- 招高精細映像技術 • 立体テレビ
- •立体音響符号化技術
- •多重伝送技術
- •任意視点映像技術
- 立体映像 技術

1.3インチ、QVGAの IP立体が可能に

疲労の少ない二眼式 5インチ、 SDTVのIP立体 立体映像の提示が可能に ブロトタイプの開発

高画質な像再生型 立体映像の使用が可能に

立体音響 符号化技術

メタテ'ータによる 再生制御技術

多チャンネルフォーマットに ハイレゾリューション 対応した立体音響の 符号化·伝送技術 収録が可能に

家庭向け22.2チャンネル音声 再生方式の確立(2020年頃)

•実写·CG3次元映像合成技術

- •立体音響
- •五感放送技術 マルチモーダル通信
- •センサー等とアプリケーション の連携技術

マルチモータル (五感)表示

触覚表示 嗅覚 五感表示 没入感表示 3D表示 (かおり) 音場再生、音場合成