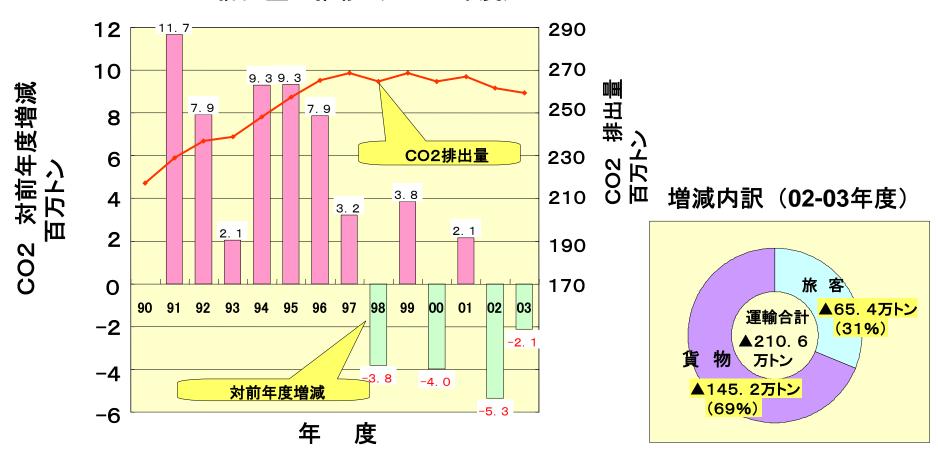
道路·交通分野におけるICT利活用


日本自動車工業会 トヨタ自動車 (株) 大野栄嗣

1. 運輸部門の現状

(1)運輸部門のCO₂排出量

運輸部門のCO2排出量は、すでに減少傾向に転じている。

C○2排出量の推移(90-03年度)

*03年度は環境省暫定値

出典:エネルギーバランス表などから自工会作成

(2)車の燃費向上

- ◇ 自動車の燃費改善は、かなりの勢いで進んでいる。
 - ・乗用車2010年燃費基準は、2005年に90%以上達成見込み。
 - ・乗用車ポスト2010年燃費基準導入も検討。
- ◇ カタログ燃費同様に、実走行燃費も改善している。
- ◇ 今後、低燃費車が普及するにつれ、CO2削減効果が ますます顕在化すると予測。

主な燃費改善技術

燃費改善技術は、細かい地道な技術の積み重ね。

エンジンの効率の向上

熱効率の向上

リーンバーン

直接筒内噴射

可変機構(可変気筒、VVT等)

摩擦損失の低減

ピストン&リングの摩擦低減

低摩擦エンジンオイル

可変補機駆動

空気抵抗の低減

ボデー形状の改良

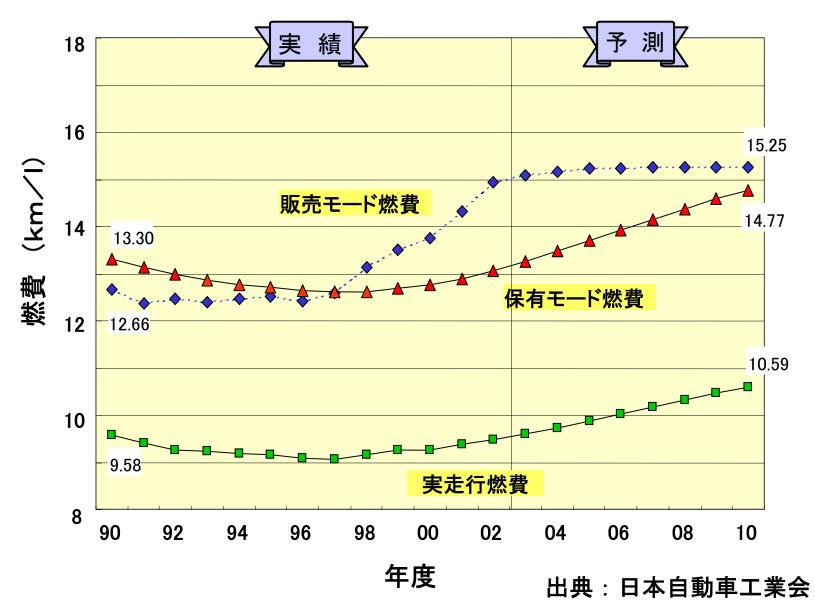
車両の軽量化

軽量材料の採用拡大 ボデー構造の改良

駆動系の改良

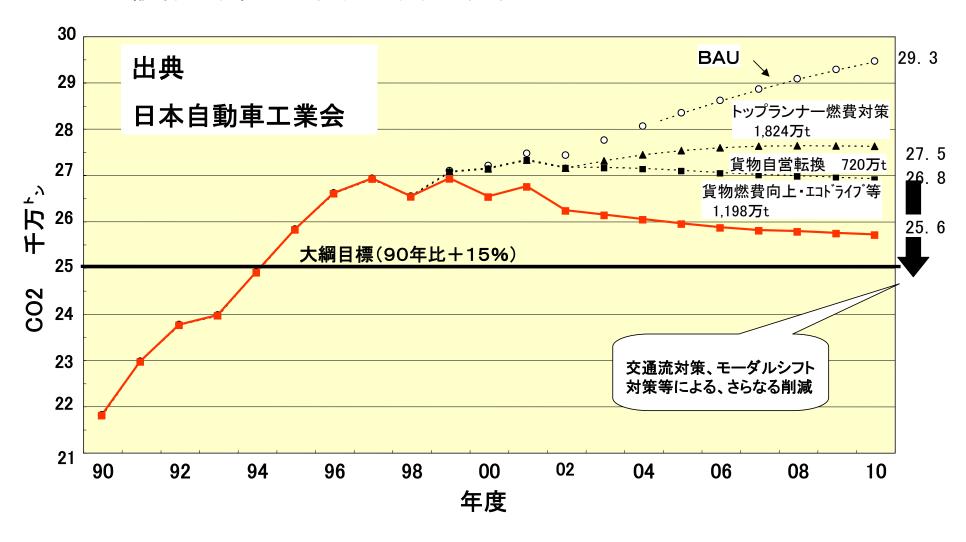
ロックアップ域の拡大 シフト段数の増加 CVT

その他


電気パワーステアリング アイト・リング・ストップ

ハイブリット・車

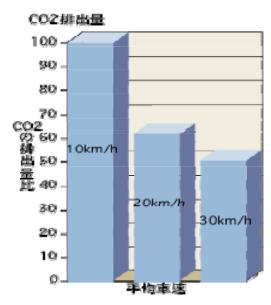
ころがり抵抗の低減


低ころがり抵抗タイヤ

ガソリン乗用車のモード燃費と実走行燃費の予測

(3)運輸部門のCO2排出量予測(2002年度実績ベース)

自動車燃費向上・物流改善は、大綱の目標を過達成する見込み。 交通流対策・モーダルシフトなどの効果が大きければ、 運輸部門の目標より減少する可能性もある。



(4)交通流改善

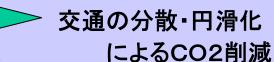
◇ 東京都の走行速度は10・15モードに近く、各国モードに比べて低い。

各国燃費試験モードの平均速度

日本10・15モード	22.7km/h
米国La#4	31.5km/h
欧州	33.6km/h

◇ 交通流改善による走行速度のアップは、燃費改善に極めて効果的。

佐賀県:約11km/ポ


東京都:約8km/ポ

そのためには、ICT技術が有効。

◇ ITSによる交通流改善

·VICS(カーナビ)やETCが急速に普及拡大し、高度な交通管制センター の導入など、交通の円滑に貢献し、CO2削減の効果が表われ始めた。

道路交通情報をリアルタイムに提供

累計1,044万台(2004年9月末現在) 累計1、622万台 (

(出典:国土交诵省HP)

2002年度現在 95万トン-CO2削減

国土交诵省HP) (以下写真:

(出典:社会資本整備審議会環境部会中間とりまとめ(平16年6月))

2ETC: 自動料金支払いシステムによるノンストップ通行

料金所渋滞の減少 によるCO2削減

2002年度現在 0.5万トン-CO2削減

(出典:社会資本整備審議会環境部会中間とりまとめ(平16年6月))

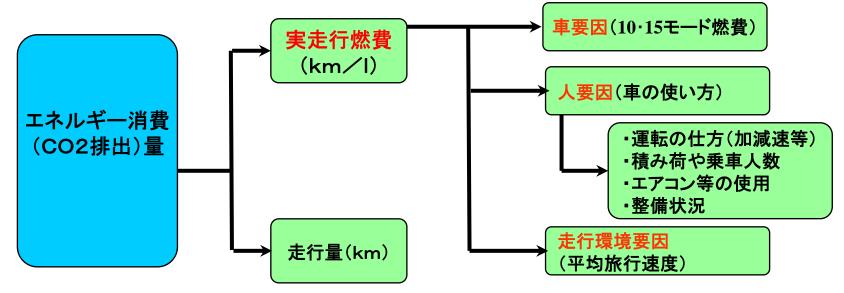
③信号制御(MODERATO等)の高度化: リアルタイムに信号制御等

交通流円滑化

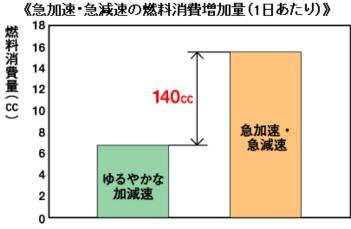
高度交通管制システムの展開

によるCO2削減

96~00年度累計(推計) 131万トン-CO2削減


(出典:「特定交通安全施設等整備事業の整備効果」警察庁HP)

4その他:


テレマテックス/プローブカー/バスロケーションシステム/物流ITS等

(5)エコドライブの普及

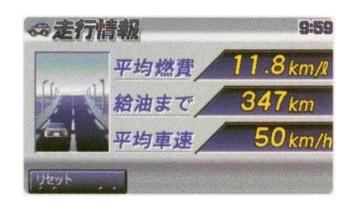
◇自動車の実走行燃費は、車、人、走行環境の3要因で決まる

◇ エコドライブが普及すれば、 カタログ燃費向上以上に、 実走行燃費が改善できる。

出典(財)省エネルギーセンターHP

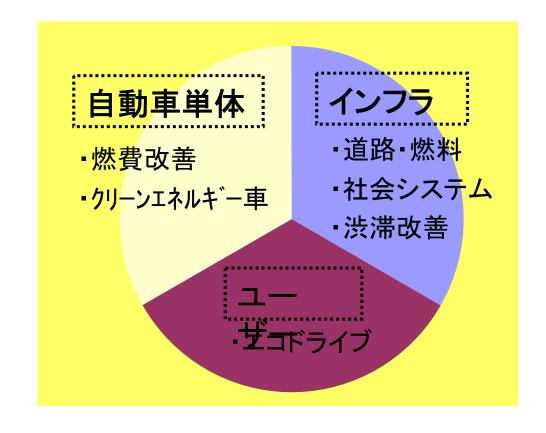
エコドライブのための車載情報提供例

【レガシィ】


瞬間燃費をリアルタイムで 表示するタイプのカーナビ

【シビックフェリオ】エコランプ。効率的なエネルギー 【ランサー】 平均燃費を表示。 の利用でランプが灯る。

◇ 物流のCO2は、かなり減少中。
エコドライブの普及も、その一因。


ICT技術を活用する余地あり。

(6)現状まとめ

◇ 運輸部門のCO₂低減対策には、車・人・インフラ 各方面からの総合的取り組みが重要。

ICT活用の余地がある。

現状

将 来

(1)交通情報の高度化

VICSの活用

プローブカー情報の活用

(2)ETCの活用

料金所渋滞の解消

柔軟な料金制度やスマートICの整備

(3)路上駐車対策

駐車場満空情報の提供

きめ細かな料金設定 (短時間駐車への対応) 予約システム キャッシュレス化

(4)公共交通機関の利便性 向上

バスロケーションシステム PTPS(バス優先信号システム)

(5)信号制御の高度化

交通状況に応じたエリア制御 MODERATO方式(リアルタイム制御)

(6)マイカーのエコドライブ への活用

燃費メータ等、車載の表示 装置

カーナビ・携帯、車載センサーを活用した支援機器

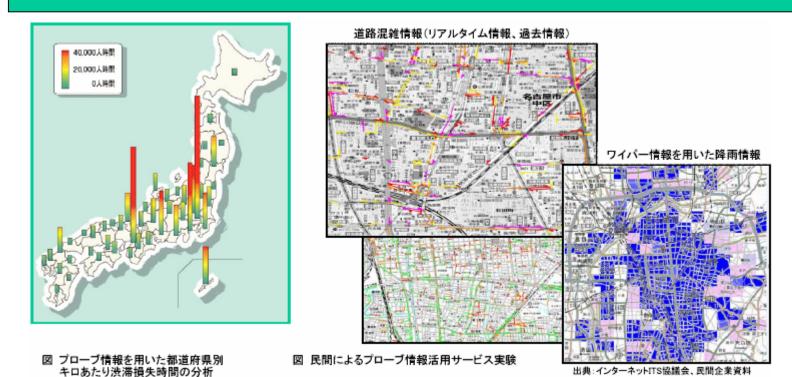
(7)物流のエコドライブ への活用

デジタルタコグラフ、エコドライブナビゲーション

2. ユビキタス技術を活用した 2010年予測

(1)交通情報の高度化

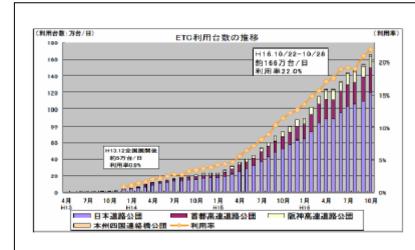
- ① VICSの活用
- ・ 渋滞回避や目的地まで最短経路で運転が可能

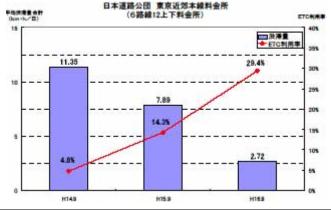

時間短縮、 燃費改善、 CO2低減に効果

·サービスエリアの拡大、道路交通情報の内容の充実を推進し、 更なる普及が見込まれる。

②プローブカー情報の活用

- ・車(プローブカー)の旅行時間データなどを、渋滞緩和に活用。
- ・バス・タクシー・マイカーなどの位置情報やワイパー情報等をもとに、 道路混雑情報、天気情報の提供サービスの充実・普及が期待される。
- ・渋滞評価等道路管理の高度化 ・湿雑情報による交通誘導・分散
- ・旅行時間・渋滞等交通情報の高精度化・広域化
- ・事業者向け車両位置・動態情報の提供・・降雨・降雪等天気・路面情報の提供・等




(出典:国土交通省スマートウェイ推進会議(平16年6月)資料)

(2)ETCの活用

- ・料金所の渋滞解消によるCO2削減が、普及拡大によってさらに期待される。
- ・ETCを活用し、多用な料金施策+スマートICの導入により、
 - 一般道路の渋滞削減を進めれば、CO2削減効果は大きいと予想。

(O4年10月からスマートIC社会実験開始)

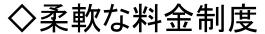
■2010年のCO2削減見込み

ETC利用率: JH 70%

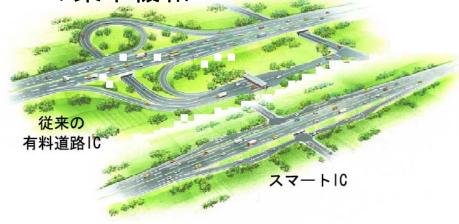
の想定 首都高速・阪神高速 100%

約20万t-CO2削減

(ETC活用による多用な料金施策、スマートICの 導入の効果等は含まれない)


(出典:社会資本整備審議会環境部会中間取りまとめ(平16年6月))

ETCの効果例(渋滞解消)


- ·首都高の本線料金所(全18料金所)では、 渋滞が半減
- ・お盆のピーク時でも、渋滞が半減 等

(出典:国土交通省04年12月発表資料)

ETC活用で初めて可能に

- ●時間帯別割引き等、料金による 誘導・分散
- ◇スマートICの整備
 - ●高速道路へのアクセス向上、IC
- への集中緩和

	従来(トランペット)	スマートIC	削減
建設コスト	約35億円	約25億円	約3割削減
管理コスト	0	約5割削減 人件費等が不要のため)	

⇒環境改善 【建設・管理者】 コストダウン ⇒経営効率化

【利用者】

時間短縮・燃費向上

⇒利便性向上

【社会】

渋滞緩和

10年後のCO2削減効果 約300万トン

出典:国土交通省「使えるハイウエイ推進会議」資料より作成

(3)路上駐車対策

規制・取締り

柔軟な駐車規制 (区間·時間の緩和) 取締り機会の拡大 (民間委託) (実効ある罰則制度) (所有者責任に拡大)

※H18年の道交法改訂により実現

利便性の向上

目的地近くの 駐車スペースの整備

駐車場満空等、情報 提供インフラの整備

ITを活用できる施策 カーナビ・携帯

リアルタイムな駐車場 満空、規制情報の提供

予約システム

ETC-DSRC

きめ細かいな料金設定による 短時間駐車への対応

キャッシュレス化

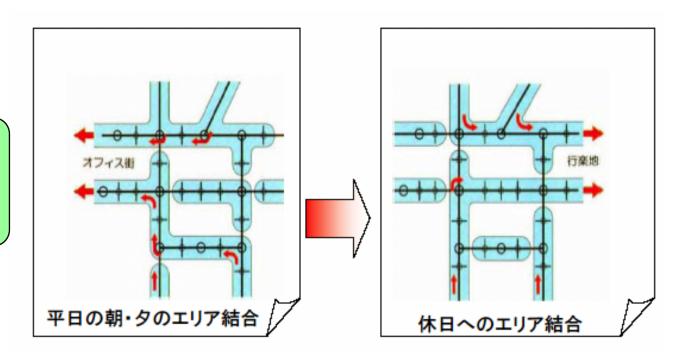
路上駐車対策は、道路の拡幅と同じ円滑化効果を低コストで実現

(4)公共交通の利便性向上

- ◇バスロケーションシステム(バス近接情報)
 - ーバス会社500社中、40社に普及(04年実績)
- ◇PTPS(公共車両優先システム)···信号待ち時間の調整
 - -84**のバス**路線、424kmに普及(04年2月実績)

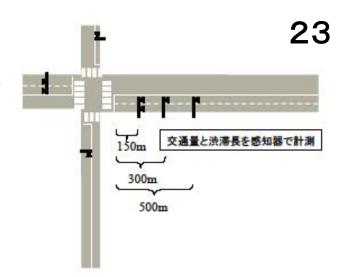
導入効果事例(札幌市)

旅行時間(実施区間)	▲6. 1%
信号待ち停止回数	▲7. 1%
信号待ち停止時間	▲20. 1%
バスの乗客数	+9.9%


出典:『交通管理システムの技術と実際』

(財)日本交通管理技術協会

- (5)信号制御の高度化
- ◇交通状況に応じたエリア制御
 - 一平日と休日で統合制御する信号基のエリア結合を変更


交通状況に応じたエリア制御の例

出典:警察庁資料

◇MODERATO方式

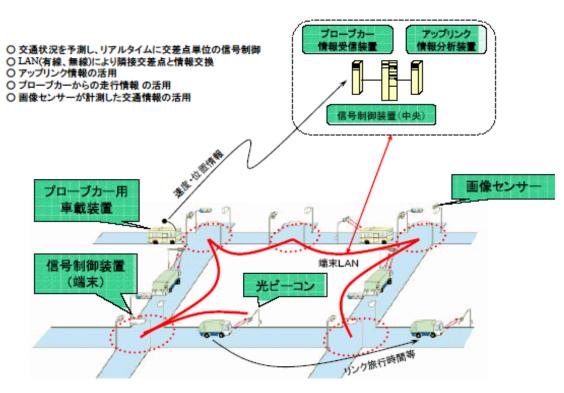
一車両感知器で交差点の交通量、旅行時間等 を計測し、信号待ちの総時間を最小にする、 リアルタイム制御方式

導入効果事例 (新鳥取交通管制システム)

渋滞長(m)事前110m210m事後100m150m増減率▲9%▲ 29%

信号制御の高度化による 2010年のCO2削減効果 大綱の目標値:210万トン (交通安全施設の整備も含む)

出典:警察庁、住友電工㈱資料


【観測システムの高度化】

- ◇光ビーコン
- ◇画像センサー
- ◇プローブカー

【課題】 設置・運用コスト負担

出典:警察庁資料

幅広い活用が想定できるため、観測システムの高度化は推進すべき

- ◇信号制御の高度化
- ◇道路交通情報の正確化
- ◇交通流対策、交通安全対策の評価

(6)マイカーのエコドライブへの活用

◇マイカーでのエコドライブが普及すれば、 大きなCO2削減効果が期待できる。

◇マイカーのエコドライブ普及課題

僅かな燃費向上は 体感しにくい

走行距離が短く燃料代 節約額は小さい 高額な後付支援装置は 普及しにくい

◇ ICT活用の余地あり。
国民的運動も期待。

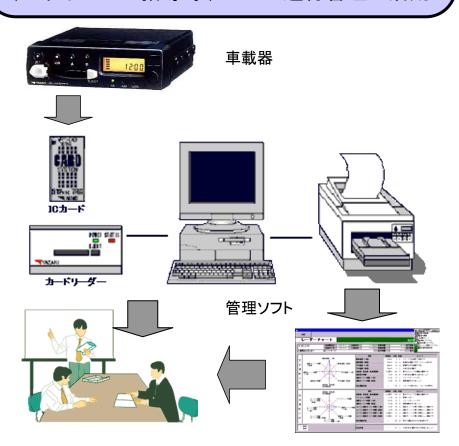
(7)物流のエコドライブへの活用

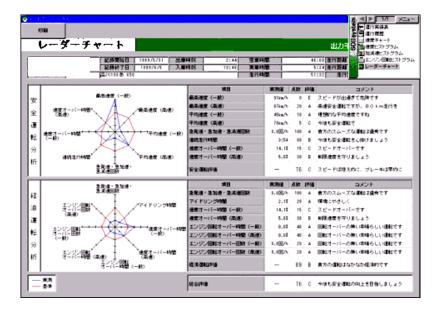
◇今後の活用・発展性

デジタルタコグラフ等、省燃費運転支援機器が有効

物流のエコドライブ普及の3要素

装置が後付できる

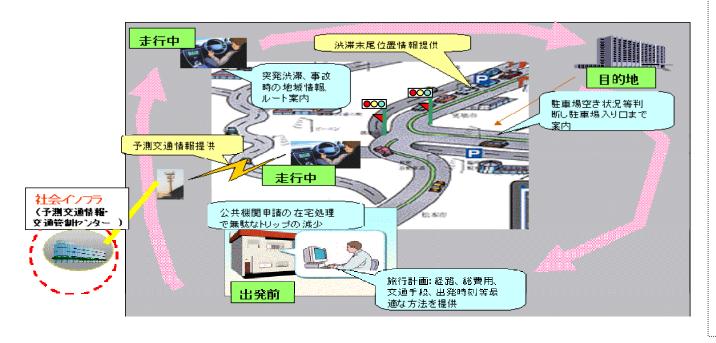

走行距離が長く燃料代 等で投資額をペイできる 運行管理の徹底や 褒章制度で継続性あり


普及可能性が高く効果も大きい

デジタコを活用した運行管理

運行管理のフロー

- ◇運転状況データをICカードに記録
- ◇安全、経済運転の状況が自動的にグラフ化
- ◇ドライバーの指導等、日々の運行管理に活用

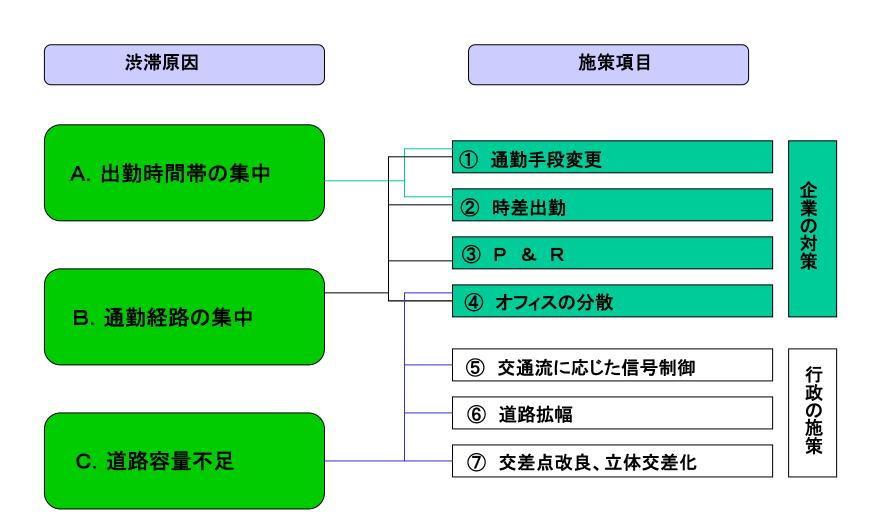

レーダーチャート

- ◇「速度オーバー」「急発進・急加速」「アイドリング時間」などを数値化
 - ⇒改善点や目標達成状況がわかる
- ◇ドライバーのランキング
 - ⇒ "競争" 意識で相乗効果がある

出典:矢崎総業㈱資料などより自工会作成

(8)交通流改善の総合的取り組み

交通流改善対策は様々な方策が検討されているが、 より効果を高めるためには 総合的な施策推進・一体的整備が重要。

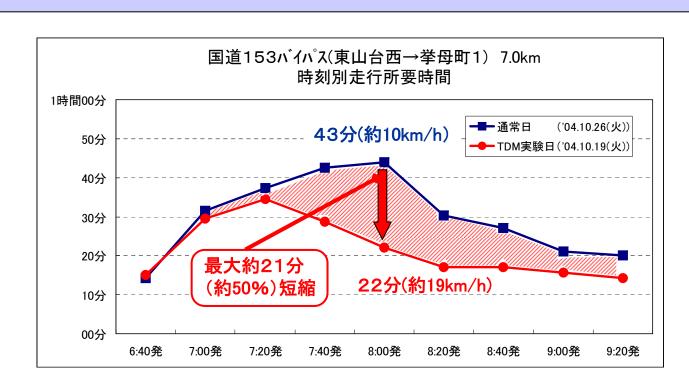

想定システム

- 1)情報収集
- ・VICS(光ビーコン)
- ・プローブカー
- 2)情報提供
 - 通信型ナビゲーション
 - **-VICS**
 - ・インターネットITS
 - ・駐車場案内システム
- 3)交通管理
 - 信号管制の高度化
- 4)ハード
 - ・駐車場の整備・改良
 - ・迂回路の整備

等

(9)地域の取組みの一例:豊田市

◇ 地元企業と地域が一体となった取組み事例

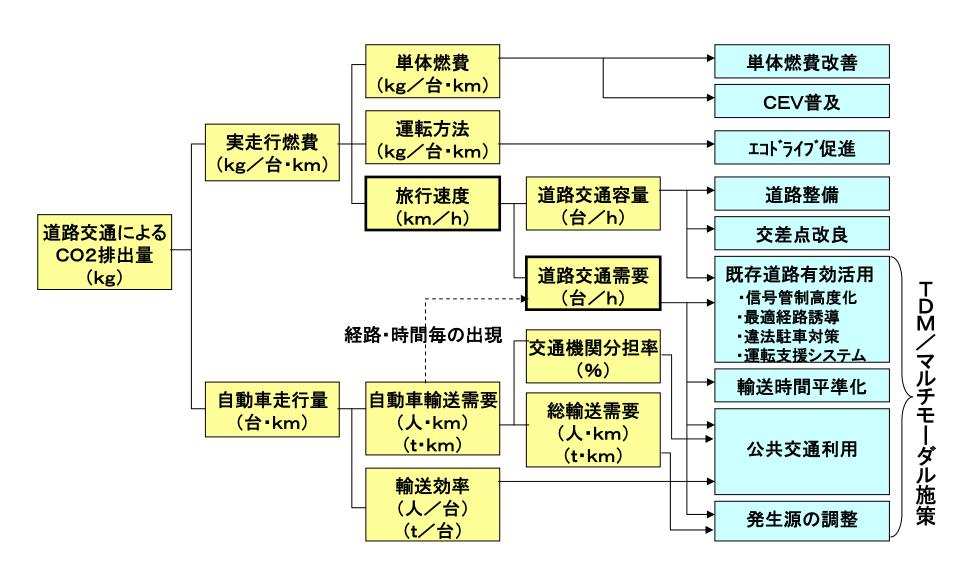


◇ 豊田市におけるTDM社会実験

く実験概要>

- 1. 目 的・・・朝夕の中心市街地などの道路渋滞緩和
- 2. 実験参加事業者数・・・ 豊田市TDM研究会事業所(トヨタ自動車他 37事業所)、その他事業所(6事業所)、豊田市
- 3. 期間・・・2004年10月18日~22日(5日間)
- 4. 実験参加申込者数
 - 6, 156人(1日だけの参加者を含む)
- 5. 主な対策・・・通勤手段の転換(鉄道、バス、徒歩等)、P&R駐車場の整備、時差出勤

<効果>



(10)2010年の将来像まとめ

- ・運輸部門の発生CO2を更に削減するには、 車単体での燃費改善に加え、ICT活用による交通流 改善が期待される。
- ・現在、さまざまなICT活用による交通流改善技術が 登場しつつある。
 - 今後、ビジョンを作り上げて行く必要がある。
- ・長期的視点から、新しい交通体系の検討も期待される。 例:IMTS

3. CO2評価手法の提案

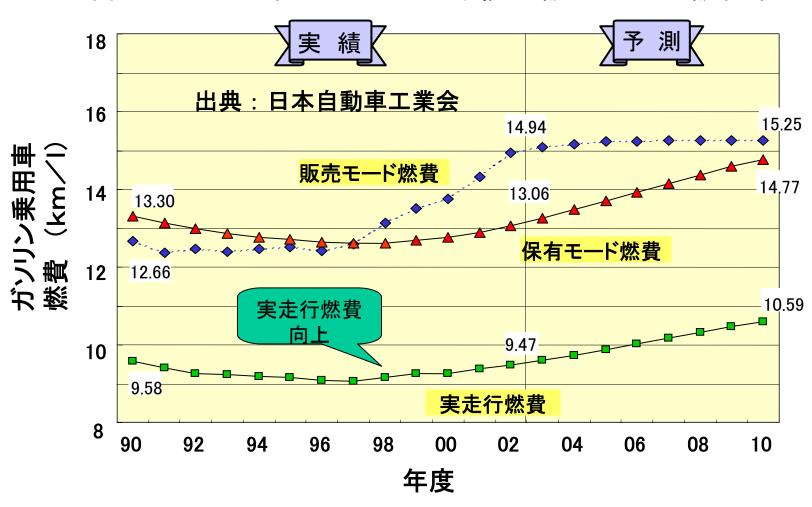
道路交通によるCO2排出量決定要因と施策

(1) 現状の問題点

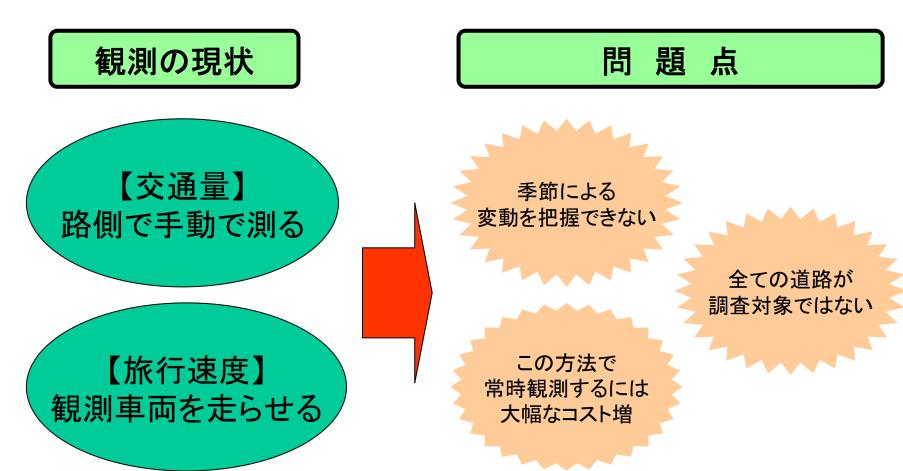
既存統計の問題点

- ① エネルギー統計誤差・・・改善されつつある。
- ② 交通流把握誤差・・・・・常時観測体制がない *旅行速度調査は数年に一度(「道路交通センサス」)
- ③ 速報性がない・・・・ 公表までには、1年以上かかる

将来予測の問題点

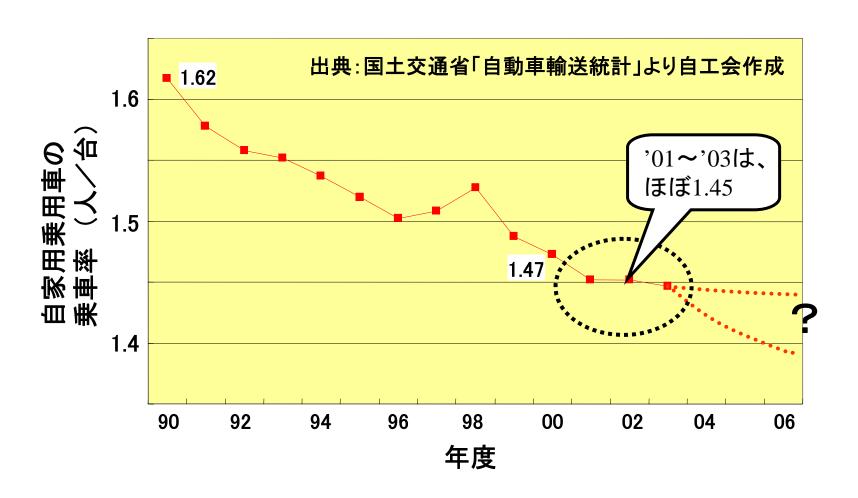

④ 将来トレンド不明確・・・・長期的研究テーマ。

*例:乗車率

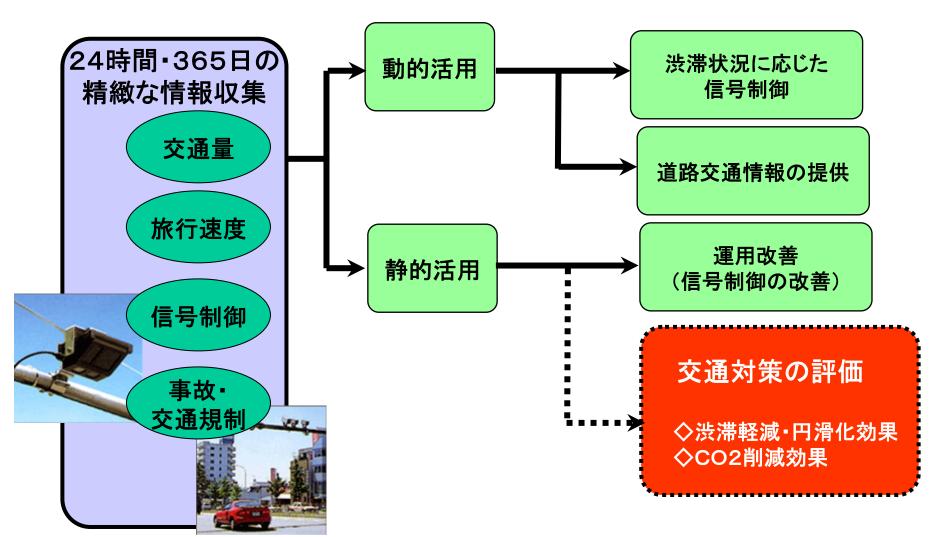

CO2は、100年問題 ⇒ 日本の評価体制整備が急務

統計問題の例

2004年版「環境白書」では、実走行燃費が悪化と書かれている。 ⇒ これは、統計誤差による誤認。


全国規模の道路交通量・旅行速度調査「道路交通センサス」は数年に一度、平日、休日一日のみ。

乗車率の将来予測の例


乗用車「平均乗車率」の低下傾向が、将来どうなるか不明

⇒ 乗用車の「総走行量予測」の不確定要素

(2)交通流対策の評価手法の提案

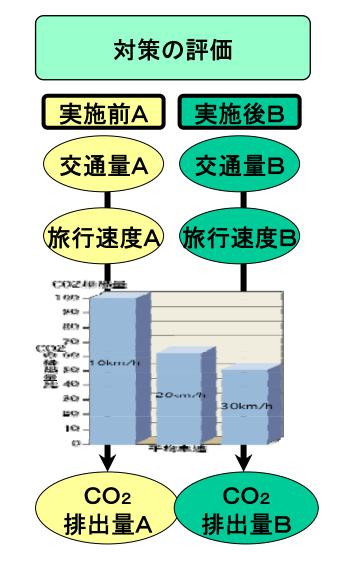
◇常時観測による道路交通情報は、ICT活用で高品質化。 交通流CO2対策評価に活用可能。

◇ 提案1 道路交通情報の活用

VICS情報は24時間、365日の旅行速度と交通量の実績がわかる。

提案:交通センサスと共に、VICS情報や検討中のプローブ情報などを 交通流対策の評価に活用する。

VICS情報と道路交通センサスの比較


	更新頻度	美	情報精原	叓	対象道路		対象車種	Ē
VICS情報	<u>常時更新</u> (リアルタイ ムで活用可)	0	交通感知 機で常時 計測	0	※ 3. 4万 Km 交通量の 多い道路 が中心	\(\)	2車種 (小型、大 型)	Δ
道路交通センサス	5年毎 (平日・休日 の2日間) *公表まで に1年以上 かかる	×	交通量及 び混雑時 の平均旅 行時間	Δ	19万Km	0	4車種 (乗用、バス、 小型貨物、 普通貨物)	0

◇ 提案2 交通対策評価体制の確立

提案:ICTを使った諸情報を集約し、 常時活動できる、省庁の枠を 超えた体制を作る。

各施策による、交通量・旅行速度の変化を評価し、CO2削減効果を算出。効率的削減対策にフィードバックする。

交通施策評価のビジョン

警察庁からの情報

道路交通情報 (感知器情報)

光ビーコンから のアップリンク情報

各種統計からの情報

自動車輸送統計

エネルギー統計

国土交通省からの情報

車検時のオドメータ記録

交通情報解析センター(仮称)

交通施策の効果解析

国土交通省からの情報

道路交通センサス調査

交通量常時観測調査

プローブカーによる 渋滞モニタリング調査

対策実施者からの情報

信号制御高度化

路上駐車対策

交差点改良

バイパスの整備

対策のPDCAサイクル確立

自動車交通流改善には、

「いつでも、どこでも、つながるユビキタス通信技術(ICT)が、 非常に重要な役割をになっており、ICT技術の高度化には 総務省(国)として積極的に推進して頂きたいと考えております。

> また、交通流対策の評価体制を確立するには、 関係省庁の連携は必須であり、 省庁連携に向けた働きかけをお願いいたします。