

ダイヤモンド・高周波電カデバイスの開発と マイクロ波・ミリ波帯電力増幅器への応用 (061403014)

研究代表者

嘉数 誠⁽¹⁾ NTT物性科学基礎研究所

研究分担者

植田 研二^{†(2)} 小林 康之[†] 中川 匡夫^{††} [†]NTT物性科学基礎研究所 ^{††}NTT未来ねっと研究所

研究期間 平成18年度~平成22年度

現在所属⁽¹⁾ 佐賀大学大学院工学系研究科 ⁽²⁾名古屋大学大学院工学研究科

Copyright © NTT Basic Research Laboratories, NTT Corporation. All rights reserved.

半導体の物性値と高周波電力デバイス性能

材料	禁制帯幅	絶縁破壊電界	飽和速度	移動度	比誘電率	熱伝導率	性能指数
Material	E _G (eV)	E _{BR} (MV∕cm)	v_{sat} (×10 ⁷ cm/s)	µ (cm²∕Vs)	8 _r	λ (W/cmK)	JFOM
Diamond	5.47	>10	1.5 (e) 1.1 (h)	~ 4500 (e) ~3800 (h)	5.7	22	1340 (h)
GaN	3.42	3	2.4 (e)	~ 2000 (e)	8.9	1.5	580
SiC	3.26	2.8	2.2 (e)	~ 1000 (e)	9.7	4.9	420
Si	1.12	0.3	1.0 (e)	~ 1350 (e)	11.9	1.5	1

Johnson デバイス性能指数
(高周波電力性能) JFOM =
$$\left(\frac{E_{BR} \cdot v_{sat}}{2\pi}\right)^2$$
 Diamond = 3.2

通信システムからの要求と半導体の能力

デバイス基盤技術の3つのアプローチ

- 1. 水素終端ダイヤモンドFET
- 2. 新規ドーピング技術

イオン注入の高効率化

- イオン化可能な不純物の探索
- 3. 新規デバイス構造

ダイヤモンド・窒化物ヘテロ接合

水素終端ダイヤモンドFET構造

成果(1)水素終端p型伝導層の機構の解明

水素終端面の正孔生成機構を実験的に解明 半導体で最高の二次元キャリア濃度を達成

NO2でFETを封止

M. Kubovic and M. Kasu, Appl. Phys. Express 2 (2009) 086502 M. Kubovic, M. Kasu, H. Kageshima, Appl. Phys. Lett. (2010) 052101.

成果(1)NO2吸着による水素終端FET特性向上

成果(1)ダイヤモンド高周波増幅器

ダイヤモンド高周波電力増幅器を試作、無線周波数でシステムとして評価

成果(2)イオン注入ダイヤモンド高効率化の着想

10

イオン注入ダイヤモンドFETの高耐圧、高温動作

Vd(V)

11

成果(3)ダイヤモンド上・窒化物HEMT

Y.-F. Wu et al., IEEE Electron Device Lett. 25 (2004) 117.
J.W.Johnson et al. IEEE Electron Device Lett. 25 (2004) 459.
A. Chini et al. IEEE Electron Device Lett. 25 (2004) 55.

NOD (Nitride On Diamond)のヘテロ成長

ダイヤ上・窒化物HEMTの二次元電子特性

ダイヤ上・窒化物HEMTの直流特性

Source	Gate	Drain						
GaN cap (1 nm)								
i−AlGaN (10 nm), Al:0.25								
n–AlGaN (12 nm), Al:0.25, [Si]:1E18 cm ⁻³								
i−AlGaN (2 nm), Al:0.25								
GaN (600 nm)								
[AIN(4 nm)/GaN(21 nm)] ₂₀ multi-buffer								
AIN buffer (180 nm)								
Diamond (111) substrate								

Gate width: 50 μm, Gate length: 0.4 μm

ダイヤ上・窒化物HEMTの高周波小信号特性

16

高周波大信号(電力)特性@1GHz

PAE: Power Added Efficiency

窒化物HEMTの温度特性:基板材料の比較

消費電力: 2 W

従来の窒化物HEMTの約半分の温度上昇

まとめ

本研究課題ではダイヤモンド・デバイスの 新規ドーピング技術および新規デバイス構造 の基盤技術を開発する成果が得られた。

今後これらの技術を、さらに発展させ、特に 信頼性を上げる技術を開発することにより、 究極のダイヤモンド高周波電力増幅器の 実用化とマイクロ波帯、ミリ波帯情報通信の 大容量化はますます加速すると期待される。

