

人体に対する電磁界・熱混成 解析技術の研究開発

平田 晃正

名古屋工業大学大学院

電波の生体に与える影響への関心の高まり 「刺激作用:100kHz以下

熱作用 :10MHz以上←電力吸収に伴う発熱

SAR (Specific Absorption Rate) [W/kg]

単位質量当たりの吸収電力量

- ► ICNIRPガイドライン[†]
- ➢ IEEE規格 ^{↑†}

▶ 総務省電波防護指針***

- ICNIRP: "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)", Health Phys., vol.74, pp.494-522, 1998.
- †* IEEE C95-1 : "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz", 2005.

↑↑↑ 電気通信技術審議会答申: "諮問第89号「電波利用における人体防護の在り方」", 1997.

電波の生体影響評価の特徴

人体への防護指針で定められたレベル以上でのば く露実験は、<mark>倫理的に困難</mark>

低レベルのばく露では、温度上昇幅は十分小さい

実質的に人体実験が困難(動物実験) 計算機実験によるアプローチが主流

1. 電波による電力吸収とそれに伴う温度上 昇の解析手法の開発(高速・高精度化)

- 2. 個体差に伴う不確定性の影響評価
 - 一血流量(測定)
 - ーモデルによるばらつき
 - 一電気定数、熱定数
 - 一電波防護ガイドラインへの貢献

> 測定時間:5分間

血流量の実測値と文献値

FDTD法(マクスウェル方程式):人体と電磁波の相互作用を解析

$$SAR = \frac{\sigma}{2\rho} |E|^{2}$$

$$E: 電界[V/m]$$

$$\sigma: 導電率[S/m]$$

$$\rho: 質量密度[kg/m]$$

3

FDTD法(生体熱輸送方程式)<SARを熱源として代入

電波ばく露に伴う体内温度上昇の解析

・血流温度の時間変化考慮による高精度化

ADI-FDTD法による高速化

A. Hirata, et al, Phys. Med. Biol., vol.52, 2007

◆ 生体熱輸送方程式

$$C(\mathbf{r}) \cdot \rho(\mathbf{r}) \frac{\partial T(\mathbf{r}, t)}{\partial t} = \nabla \cdot \left(K(\vec{\mathbf{r}}) \nabla T \right) + A(\vec{\mathbf{r}}, t) + \rho(\mathbf{r}) \cdot SAR(\mathbf{r}) - B(\mathbf{r}, t) \cdot (T(\mathbf{r}, t) - T_b(t))$$

$$-K(\mathbf{r})\frac{\partial T(\mathbf{r},t)}{\partial n}s = H \cdot (T_s(\mathbf{r},t) - T_a) + SW(\mathbf{r},t)$$

√ パラメータ

ρ C K	: 組織の密度 [kg・m ³] : 比熱 [J/kg ℃] : 熱伝導率 [J/s・m℃]	n S	: 皮膚表面の 法線方向の単位ベクトル : 皮膚の表面積 [m ²]
A	 1、潮熱 [J/s・m³] : 各セルのSAR [J/s・kg] : 血流に関する定数 [J/s・m³℃] : 血液の温度 [℃] 	H	: 熱伝達率 [W/m ² ℃]
SAR		Ts	: 皮膚の温度 [℃]
B		Ta	: 外気の温度 [℃]
T _b		SW	: 汗に関する定数 [℃]

◆ 生体熱輸送方程式

$$C(\mathbf{r}) \cdot \rho(\mathbf{r}) \frac{\partial T(\mathbf{r}, t)}{\partial t} = \nabla \cdot \left(K(\vec{\mathbf{r}}) \nabla T \right) + A(\vec{\mathbf{r}}, t) + \rho(\mathbf{r}) \cdot SAR(\mathbf{r}) - B(\mathbf{r}, t) \cdot \left(T(\mathbf{r}, t) - T_b(t) \right)$$

◆ 血液温度の変化

$$T_b(t) = T_b(0) + \int_0^t \frac{b(\mathbf{r},t)(T - T_b(t))}{V_b \cdot C_b \cdot \rho_b} dt$$

・血液が組織から得る熱量が瞬時的に血液温度上昇になると仮定。

・血液温度を空間的に一定と仮定。

A. Hirata and O. Fujiwara, Phys. Med. Biol., 2009.

3. 数值解析結果

数値人体頭部モデル

モデルと解析条件

▶情報通信研究機構(NICT)開発[†]
 >セルサイズ:0.5mm
 >実測値:皮膚、脂肪の層に代入
 解析条件

▶ダイポールアンテナ

▶モデル表面から25mm

▶ 周波数:1-12GHz

▶SARの評価では、耳の値を除外^{††}

† T. Nagaoka, S. Watanabe, K. Sakurai, E. Kunieda, M. Taki and Y. Yamanaka, Phys. Med. Biol., vol.49, pp.1-15, 2004.
†† IEEE C95-1 : "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz", 2005.

SARと温度上昇の解析例(3GHz)

解析結果の後処理について

目的:SARは温度上昇を見積もる良い指標か?
国際標準化動向として、平均化質量10gを採用
SAR最大値と比べて1/100以上のセルに対して、
SARと温度上昇の相関を調査することを目的.
最小二乗法を適用

評価指標 ●加温係数の定義: ΔT/SAR_{avg} ●決定係数

加温係数のSAR平均化質量依存性

平均化質量8-20gのときに、加温係数はほとんど周 波数に依存しない。

Averaging Mass [g]

平均化質量5-20gのときに決定係数は0.7以上。 4GHz以上では低下傾向にある。

- 1. 電波による電力吸収とそれに伴う温度上昇の解析手法の開発
 ADI-FDTD法(高速化)
 血液の温度上昇の時間変化(高精度化)
- 個体差に伴う不確定性の影響評価
 一測定に基づく血流量による影響
 一電波防護ガイドラインへの貢献
 3-6GHzにおける防護指針の標準化

•「世界保健機関(WHO)による最優先課題(2006年)」 に対する成果が公表された(2010年)

>電波吸収による温度上昇に関する成果として紹介

 情報通信審議会:電波利用環境委員会の局所吸収 指針の在り方(諮問第2030号)で引用(2011年5月)

	H20年度	H21年度	H22年度	合 計
査読付き論文数	6件	7件	7件	18件
	(6件)	(6件)	(4件)	(16件)
被引用論文数	0件	7件	32件	39件
	(0件)	(7件)	(32件)	(39件)
その他の誌上発表数	0件	1件	1件	2件
	(0件)	(1件)	(0件)	(1件)
口頭発表数	5件	6件	8件	19件
	(4件)	(4件)	(7件)	(15件)

受賞: 文部科学大臣表彰科学技術賞(研究部門) 藤原修、平田晃正(H23.4)